
Dipl.-Ing. Johannes Karl-Wilhelm Stahl, BSc.

Contributions to Single-Channel Speech Enhancement
with a Focus on the Spectral Phase

Doctoral Thesis

in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

submitted to

Graz University of Technology, Austria
Doctoral School of Information and Communications Engineering

Supervisor and First Assessor/Examiner:

Priv.-Doz. Pejman Mowlaee, PhD
Widex A/S

Nymøllevej 6, 3540 Lynge, Denmark

Supervisor and Second Assessor/Examiner:

Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin
Signal Processing and Speech Communications Laboratory

Graz University of Technology, Austria

Third Assessor/Examiner:

Prof. Dr.-Ing. Tim Fingscheidt
Institute for Communications Technology

Technische Universität Braunschweig, Germany

Graz, January 2019

This work was supported by the Austrian Science Fund (FWF): P28070-N33.





AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral dissertation.

EIDESSTATTLICHE ERKLÄRUNG
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Abstract

Single-channel speech enhancement refers to the reduction of noise signal components in
a single-channel signal composed of both speech and noise. Spectral speech enhancement
methods are among the most popular approaches to solving this problem. Since the short-
time spectral amplitude has been identified as a highly perceptually relevant quantity,
most conventional approaches rely on processing the amplitude spectrum only, ignoring
any information that may be contained in the spectral phase. As a consequence, the noisy
short-time spectral phase is neither enhanced for the purpose of signal reconstruction
nor is it used for refining short-time spectral amplitude estimates.

This thesis investigates the use of the spectral phase and its structure in algorithms for
single-channel speech enhancement. This includes the analysis of the spectral phase in
the context of theoretically optimal speech estimators. The resulting knowledge is exploi-
ted in formulating single-channel speech enhancement algorithms. On the one hand, the
developed algorithms process the noisy spectral magnitude using spectral phase infor-
mation and also modify the noisy spectral phase itself. On the other hand, the findings
about the spectral phase also result in the conclusion that in certain cases, phase-aware
processing should be deliberately circumvented.

Besides objective evaluation of the algorithms presented in this thesis, two subjective
listening tests have been conducted in order to evaluate the perceptual relevance of
the proposals. The results show that the proposed algorithms consistently improve the
perceived speech quality of noisy speech signals while improving the speech intelligibility
compared to their conventional counterparts.





Kurzfassung

Einkanalige Sprachverbesserung meint die Reduktion von Rauschsignalkomponenten in
einem einkanaligen Signal, das sich sowohl aus Sprach- als auch Rauschanteilen zusam-
mensetzt. Die Klasse der spektralen Sprachverbesserungsmethoden gehört zu den be-
liebtesten Ansätzen dieses Problem zu lösen. Da die spektrale Amplitude als perzeptiv
höchst relevante Größe eingestuft wird, beruhen die meisten konventionellen Ansätze
darauf, nur das Kurzzeitamplitudenspektrum zu verarbeiten, wobei zumeist jegliche in
der spektralen Phase enthaltene Information ignoriert wird. Infolgedessen wird das ver-
rauschte Kurzzeitphasenspektrum weder zum Zwecke der Signalrekonstruktion verbes-
sert noch zur Verfeinerung der Kurzzeitamplitudenschätzung verwendet.

Die vorliegende Arbeit untersucht die Rolle der spektralen Phase in Algorithmen zur
einkanaligen Sprachverbesserung. Dies beinhaltet ihre Analyse im Zusammenhang mit
theoretisch optimalen Sprachschätzern. Das so gewonnene Wissen wird für die Formu-
lierung von Sprachverbesserungsalgorithmen genutzt. Diese Vorgehensweise resultiert in
Schätzern, die sowohl die verrauschte spektrale Phase als auch die verrauschte spektra-
le Amplitude modifizieren. Überdies führen die Erkenntnisse über die spektrale Phase
auch zu der Schlussfolgerung, dass phasensensitive Verarbeitung in bestimmten Fällen
bewusst umgangen werden sollte.

Neben der objektiven Bewertung der in dieser Arbeit vorgestellten Algorithmen wurden
zwei subjektive Hörtests durchgeführt, um auch die perzeptive Relevanz der Beiträge zu
evaluieren. Die Ergebnisse zeigen, dass die vorgeschlagenen Algorithmen die wahrgenom-
mene Sprachqualität von verrauschten Sprachsignalen konsistent verbessern und gleich-
zeitig die Sprachverständlichkeit im Vergleich zu ihren konventionellen Gegenstücken
verbessern.
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1
Introduction

Speech communication technology has become an indispensable part of our lives. It is
hard to imagine a world without mobile telephony, smart devices, or medical devices such
as hearing aids, all of them equipped with dedicated speech and/or language processing
units. As we rely more and more on the functionality of these devices, we expect speech
communication technology to work robustly and with high performance. By mitigating
the impact of acoustic noise, reliable single-channel speech enhancement algorithms play
a key role in ensuring the functionality of the respective application.

This thesis presents work that investigates the role that the spectral phase can play in
a single-channel speech enhancement framework, together with practical methods that
make use of the resultant insights.

The rest of this chapter is structured as follows. Section 1.1 explains the motivation
behind the work that forms this thesis together with the formulation of the underlying
research question and Section 1.2 presents a selection of PhD theses that are relevant
in the context of the present work. Finally, Section 1.3 introduces the publications that
resulted from the work included in this thesis and Section 1.4 further explains their
relation to the remaining chapters of this thesis.

1.1 Motivation and Research Question

Single-channel speech enhancement algorithms aim to improve the performance of speech
communication systems in noisy environments. This includes extracting a high quality
speech signal from a recorded signal that contains not only the desired speech signal but
also acoustic noise that deteriorates certain perceptual aspects of the original (clean) ref-
erence speech signal. It depends on the specific application what we expect the speech
enhancement algorithm to improve. As an example, in a phone conversation we are
interested in high intelligibility while also the perceived quality should be high. In auto-
matic speech recognition (ASR) applications, on the other hand, the only objective of the
speech enhancement algorithm is to increase the word accuracy rate of the ASR system,
generally without any constraints on the perceived quality of the speech enhancement
system’s output signal.
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The literature on single-channel speech enhancement dates back for decades. Among
the pioneering works are the studies in [12–14]. These works and many of their most
prominent successors, e.g. [15–18], formulate the problem of estimating speech from the
noisy mixture signal in the short-time Fourier transform (STFT) domain. In general, the
discrete Fourier transform (DFT) yields complex-valued expansion coefficients, rendering
the problem of retrieving the clean speech signal from the noisy mixture a problem of
estimating real and imaginary parts, or equivalently magnitude and phase, of the masked
speech coefficients.

The spectral magnitude is typically considered to be the most perceptually relevant
quantity [15]. While this has been justified by the human ears’ insensitivity to relative
phase changes in the sinusoidal components of a signal [19], in [20] it was shown that rapid
fluctuations in the relative phases in sinusoidal speech signal components significantly
degrade perceived speech quality. The study of Wang and Lim in [19] from 1982, boldly
entitled “The unimportance of phase in speech enhancement”, has been a key reference
for works that only consider estimation of the speech spectral magnitude. More recently
however, in 2011, Paliwal et al. in [21] reconsidered the role of the spectral phase in
the context of speech enhancement, finding it to be perceptually important. Following
this study, a plethora of phase-sensitive approaches to speech enhancement have been
proposed, notable works include [22–31].1

With the advent of deep learning, it may arise the impression that classical statistical
model-based speech enhancement approaches will become more and more outdated.
However, the classical approaches circumvent lengthy training phases, are known to
generalize well [34], and in principle machine learning-based approaches may be fused
with the a priori knowledge about the speech signal characteristics and the perceptual
constraints that typically form the basis of classical methods. Perhaps most relevant in
the context of this thesis is the fact that the majority of recent neural network-based
approaches to speech enhancement, e.g. [35, 36], also only estimate the magnitude of
the STFT from the noisy magnitude, i.e. do not feed any phase information into the
network.2

As already mentioned, for many speech enhancement approaches that solely rely on
estimating the spectral magnitude in order to enhance the noisy speech signal, Wang
and Lim’s study in [19] has been a key reference for arguing why such a strategy is
promising. However, it is the author’s belief that the very same study actually motivates
further research into the role of the spectral phase in speech enhancement as Wang and
Lim conclude their study by stating that

... an effort to more accurately estimate the phase from the noisy speech is
unwarranted in the context of speech enhancement if the estimate is used to

1 Detailed overviews on these recent advances can be found in [32, 33] and more in depth discussions
on the contributions relevant to this thesis are given in Chapter 2 and Chapter 3.

2 End-to-end strategies that process the time domain data directly, such as the recently proposed
speech enhancement generative adversarial network (SEGAN) [37], obviously use the full information
contained in the signal.
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reconstruct a signal by combining it with an independently estimated magni-
tude or to reconstruct the signal using the phase-only signal reconstruction
algorithm [5] [[38] in this thesis, author’s note]. However, if a significantly
different approach is used to exploit the phase information such as using the
phase estimate to further improve the magnitude estimate, then a more ac-
curate estimation of phase may be important. [19]

Starting from this vantage point, this thesis aims to investigate the hypothesis that
phase information can be exploited to further improve magnitude estimates. Further,
we show by means of analytical results as well as by proposing dedicated algorithms how
knowledge about the speech spectral phase, or its structure along time and frequency,
may be incorporated into estimating the complex-valued short-time spectrum of the
clean speech signal. The research question(s) encompassing this thesis hence may be
formulated as follows:

What role does the spectral phase play in statistical estimators of the complex-valued
spectrum? What tools are needed to find practical solutions to estimating the clean
speech signal’s complex-valued spectrum? When can we expect performance gains from
complex-valued solutions compared to their magnitude-based counterparts?

1.2 Related Doctoral Theses

Single-channel speech enhancement is a well-studied subject and the sheer amount of
literature that is constantly published makes it a challenging task to keep track of those
publications that are most relevant to one’s own work. This thesis was influenced by
a vast amount of publications among which the five PhD theses that are shortly sum-
marized in the following are probably the most relevant. The following overview is
intended to introduce the basic concepts underlying each of the theses. The conclusion
in Chapter 7 then addresses how the contributions in this thesis relate to them.

The work of Martin Krawczyk-Becker, who submitted his PhD thesis, “Phase-Aware
Single-Channel Speech Enhancement” [39], in 2016 at the Carl von Ossietzky Univer-
sität, Oldenburg, is highly relevant to this thesis, particularly to Chapter 4. The main
contributions in his work are the development of a novel phase reconstruction method
together with clean speech estimators that incorporate the resultant phase information
by modeling the spectral phase as a von Mises distributed random variable. Besides
the evaluation by means of instrumental metrics that confirms the effectiveness of such
approaches, the author of [39] also conducted listening experiments that further validate
the hypothesis that phase processing may help to improve speech enhancement quality
compared to traditional purely magnitude-based approaches.

Mostly connected to Chapter 4, in 2015, Matthew C. McCallum submitted his PhD
thesis “Single-Channel Statistical Bayesian Short-Time Fourier Transform Speech En-
hancement with Deterministic A Priori Information” [40] at the University of Auckland.
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As its key contribution, McCallum’s thesis investigates the speech enhancement prob-
lem under a stochastic-deterministic signal model for both the speech and noise signals.
McCallum justifies the stochastic-deterministic signal model choice by the presence of
sinusoidal components in the observed signals that are further interpreted as a non-zero
mean for the purpose of statistical modeling the observations. A similar signal model also
forms the basis of the derivations in Chapter 4 of the present work. McCallum develops
speech enhancement methods that take this signal model into account and also gives a
thorough introduction to stochastic-deterministic processes and presents empirical evi-
dence for the selected signal model. The proposed algorithms are reported to come with
increased speech quality performance in conjunction with relatively low computational
complexity.

Thomas Esch submitted his PhD thesis [41] entitled “Model-Based Speech Enhance-
ment Exploiting Temporal and Spectral Dependencies” in 2012 at the Rheinisch-Westfälis-
che Technische Hochschule, Aachen. In his thesis, Esch develops speech enhancement
algorithms that explicitly take into account temporal and spectral dependencies of both
the speech and noise DFT expansion coefficients. While the temporal correlations are
exploited by means of a modified Kalman filter that relies on a complex-valued sub-
band autoregressive (AR) model, the spectral correlations are incorporated by artificial
bandwidth extension techniques. Further, a method for improving the power spectral
density (PSD) estimation of harmonic noise in the fashion of minimum statistics is pre-
sented. The modified Kalman filter and the corresponding derivations are most relevant
for Chapter 5 of the present work, where the inherent AR parameter estimation task is
reconsidered under the harmonic plus noise model. Esch reports that all his proposed
approaches achieve higher noise suppression and less speech distortions compared to
state-of-the art approaches.

The PhD thesis of Eric Plourde [42], submitted at the McGill University in Montreal
in 2009 is entitled “Bayesian short-time spectral amplitude estimators for single-channel
speech enhancement” and can be seen as an attempt to generalize spectral amplitude
estimators for speech enhancement. As indicated in the title, this thesis does not explic-
itly deal with incorporating any knowledge about the spectral phase. However, Plourde
develops an analytical unification of the cost function structure of Bayesian spectral
amplitude estimators and further generalizes them to the multidimensional case, which
allows for modeling correlations of the speech and noise expansion coefficients along fre-
quency. The latter contribution is specifically interesting in the context of Chapter 6 of
the present work, where we illustrate that in the case of multidimensional estimators, the
statistics of the spectral phase play an important role, even for magnitude-only speech
enhancement. Besides the development of algorithms, Plourde’s thesis, in its analysis of
the proposed estimators, also aims to yield a better understanding of Bayesian spectral
amplitude estimators and their parameters.

Finally, the dissertation of Michael M. Goodwin [43], entitled “Adaptive Signal Mod-
els: Theory, Algorithms, and Audio Applications“, submitted at the University of Cali-
fornia, Berkeley in 1997 does not consider the speech enhancement problem but explores
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signal-adaptive representations of audio signals. A special focus is put on sinusoidal
signal models, more specifically on the analysis and synthesis of signals represented
by such a model. Further, Goodwin investigates nonstationary signal representations,
multiresolutional sinusoidal models in conjunction with adaptive time segmentation,
and illustrates that both the sinusoidal model and the wavelet transform benefit from
pitch-synchronous segmentation if the analyzed signal is pseudo-periodic. The notion
of physically reasonable partials [43] in the context of time-frequency analysis, intro-
duced in Goodwin’s thesis, is particularly relevant for the contributions in Chapter 4
and Chapter 5 of the present work.

1.3 Contributions

The main body of this thesis is primarily based on the following works:

• [1] J. Stahl and P. Mowlaee, “Iterative harmonic speech enhancement,” in Proc.
ITG Symposium on Speech Communication, Oct 2016, pp. 1–5.

• [2] J. Stahl and P. Mowlaee, “A pitch-synchronous simultaneous detection-estimation
framework for speech enhancement,” IEEE/ACM Trans. Audio, Speech, and Lan-
guage Processing, vol. 26, no. 2, pp. 436–450, Feb 2018.

• [3] J. Stahl and P. Mowlaee, “A simple and effective framework for a priori SNR
estimation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 2018,
pp. 5644–5648.

• [4] J. Stahl, S. Wood, and P. Mowlaee, “Overcoming covariance matrix phase sensi-
tivity in single-channel speech enhancement with correlated spectral components,”
in Proc. ITG Symposium on Speech Communication, Oct 2018, pp. 286–290.

• [5] J. Stahl and P. Mowlaee, “Exploiting temporal correlation in pitch-adaptive
speech enhancement,” submitted to Speech Communication, 2018.

• [6] J. Stahl, S. Wood, and P. Mowlaee, “Single-channel speech enhancement with
correlated spectral components: Limits - potential,” submitted to IEEE/ACM
Trans. Audio, Speech, and Language Processing, 2018.

For the sake of reproducible research, all implementations that contributed to the main
results reported in this thesis and the respective publications are publicly available on
https://gitlab.com/johannesstahl.

Besides the publications that (partially) became part of this thesis, the author also
contributed to the following publications:

• [7] J. Stahl, P. Mowlaee, and J. Kulmer, “Phase-processing for voice activity de-
tection: A statistical approach,” in Proc. European Signal Processing Conf., Aug
2016, pp. 1202–1206.
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• [8] P. Mowlaee, J. Kulmer, J. Stahl, and F. Mayer, Single Channel Phase-Aware
Signal Processing in Speech Communication: Theory and Practice. John Wiley
& Sons, Ltd, 2016.

• [9] J. Fahringer, T. Schrank, J. Stahl, P. Mowlaee, and F. Pernkopf, “Phase-aware
signal processing for automatic speech recognition,” in Proc. Interspeech, 2016,
pp. 3374–3378.

• [10] M. Pirolt, J. Stahl, P. Mowlaee, V. I. Vorobiov, S. Y. Barysenka, and A. G.
Davydov, “Phase estimation in single-channel speech enhancement using phase
invariance constraints,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, March 2017, pp. 5585–5589.

• [11] P. Mowlaee, J. Stahl, and J. Kulmer, “Iterative joint MAP single-channel
speech enhancement given non-uniform phase prior,” Speech Communication, vol. 86,
pp. 85 – 96, 2017.

1.4 Outline

The rest of this thesis is structured as follows.

Chapter 2 shortly reviews important fundamental concepts in STFT-based single-channel
speech enhancement and concludes which assumptions, besides perceptually motivated
reasoning, justify the noisy spectral phase as the optimal reconstruction phase.

Chapter 3 presents a literature review on phase processing, introduces important con-
cepts based on harmonic signal modeling that are relevant throughout this thesis, and
illustrates how knowledge about the (harmonic) phase has been incorporated into single-
channel speech enhancement strategies in the literature.

In Chapter 4, based on the publications in [1,2], a simultaneous detection-estimation ap-
proach under the harmonic plus noise model for speech is presented. A pitch-synchronous
analysis-synthesis stage is used to enable more accurate estimation of harmonic signal
components, and the rather general detection-estimation step fuses estimates obtained
from different signal models.

Chapter 5, following the work in [5], is focused on modeling the correlations of the speech
spectral coefficients along time by using the statistics of the phase progression along time.
In order to facilitate the estimation of the signal model parameters, a pitch-adaptive
short-time Fourier transform as proposed in [3] is used. In addition to an analysis of the
inter-frame correlations in the pitch-adaptive short-time Fourier transform, as a result of
the simplified statistics within this domain, a complex-valued Kalman filter, that relies
on the statistics of the spectral phase, is proposed.

Chapter 6 includes and extends the work presented in [4, 6], focused on analyzing the
spectral phase’s role when correlation w.r.t. frequency is incorporated into the speech
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coefficient estimation. The phase of the covariance matrix is found to play a key role in
such speech enhancement approaches. Since this quantity is hard to estimate, a linear
multidimensional spectral amplitude estimator is proposed, circumventing the need to
estimate the covariance phase from the noisy speech data.

Finally, Chapter 7 concludes on the work presented in this thesis and explains in what
way it generalizes and extends existing work, with a special focus on the five PhD theses
presented in Section 1.2. Further, an attempt to answer the research question based
on the results of the present work is made and possible future research directions are
discussed.

This thesis is supplemented with five appendices that serve two primary purposes. First,
lengthy derivations are outsourced to appendices. Second, some appendices present
theoretical and practical background on concepts that need detailed explanations but
are not directly relevant to the problems discussed in the main body of the thesis.
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2
Single-Channel Speech Enhancement in the

STFT Domain

This chapter gives an introduction to single-channel speech enhancement and some of the
concepts used therein. Since a myriad of problem formulations and proposed solutions
exists, we will mainly focus on a subclass of algorithms formulated in the STFT domain.
Within this class of algorithms, a variety of signal models, optimization criteria, and
implementation variants exists. This chapter therefore focuses on works that are relevant
w.r.t. the contributions of the author. This chapter also aims to determine the conditions
the statistical model of speech must fulfill such that the spectral phase information can
be neglected for the estimation of the speech STFT coefficients.

2.1 Overview

Most speech enhancement algorithms are derived on the basis of the additive signal
model

yt(n) = xt(n) + dt(n), (2.1)

where n ∈ Z is the discrete-time index, the subscript t indicates time domain signals,
xt(n) is the (clean) speech signal, dt(n) the additive noise, and yt(n) is the noisy, observed
signal. In single-channel speech enhancement, we aim to retrieve an estimate x̂t(n) of
the clean speech signal from the observation yt(n), where the hat symbol, i.e. ·̂, denotes
estimates in this thesis.

According to [44], speech enhancement algorithms can be coarsely divided into 4 main
classes

1. Spectral subtraction-based algorithms, e.g. [12, 20],

2. Statistical model-based algorithms, e.g. [13–15], .

3. Subspace decomposition-based algorithms, e.g. [45],

4. Binary mask-based algorithms, e.g. [46].
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Given recent advances, the above list appears incomplete, as for example end-to-end
approaches such as the SEGAN method [37], based on generative adversarial learning,
are not represented by any of the above algorithm classes.

A key problem of single-channel speech enhancement algorithms is that they typically
only improve the perceived quality of the noisy signal, while the intelligibility is degraded
[44]. An exception are binary mask-based algorithms, which have been demonstrated
to be capable of improving speech intelligibility as well [44]. The main focus of this
thesis lies on the class of statistical model-based algorithms, known to balance a trade-
off between speech quality improvement and intelligibility degradation. In this regard,
incorporating spectral phase information has been reported to improve the capabilities
of these algorithms [8, 33].

2.1.1 Analysis, Modification, and Synthesis

Throughout this thesis, the processing chain of speech enhancement algorithms will be
divided into three stages, namely the analysis (A), modification (M), and the synthesis
(S) stage. We will refer to this high-level model as AMS system [47], described in the
following.

The analysis stage serves two purposes. First, it divides the input signal yt(n) into
overlapping segments ` of length N by multiplying it with a sliding analysis window
function w(n) with support on n ∈ [0, N − 1]

yt(n, `) = yt(n+ `L)w(n), (2.2)

where ` denotes the segment (or frame) index, and L is the frame shift. Second, the
frames are optionally transformed into a domain other than the time domain, e.g. via
the DFT.

The modification stage represents the specific noise reduction scheme that is applied
either in the time or transform domain. The modification often relies on a signal model in
conjunction with an optimization criterion such as the mean-square error (MSE).

The synthesis stage typically consists of the inverse of the analysis operations. This
means that it transforms the processed segments back to time domain if needed and
recovers a signal stream by using overlap-add.

In this thesis, we focus on speech enhancement algorithms that operate in the STFT do-
main. Such approaches specify the analysis and synthesis stage of the overall algorithm,
discussed in the following. The modification stage, i.e. the the core of many speech
enhancement algorithms, is subsequently discussed in more detail.
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2.1.2 The Short-Time Fourier Transform

The discrete Fourier transform of a signal xt(n) is defined as [48]

X(k) =
1

NDFT

NDFT−1∑
n=0

xt(n)e−jωkn, (2.3)

where

ωk =
2πk

NDFT
(2.4)

is the normalized angular DFT frequency with discrete-frequency index k ∈ [0, NDFT−1]
and NDFT is the DFT length. Applying the DFT on every segment obtained from
Equation (2.2) yields the STFT

Y (k, `) =
1

NDFT

NDFT−1∑
n=0

yt(n, `)e
−j 2πk

NDFT
n

(2.5)

and due to the linearity of the DFT, the STFT representation of the signal model in
Equation (2.1) is

Y (k, `) = X(k, `) +D(k, `), (2.6)

where capital letters indicate the frequency domain representations of the respective
time domain signals, indicated by lower-case letters. The STFT is perhaps the most
prominent analysis stage in speech enhancement systems. Among the reasons for the
STFT’s predominance are the following facts.

1. It can be implemented efficiently by means of the fast Fourier transform (FFT).

2. The resulting DFT expansion coefficients can be considered to be approximately
uncorrelated, enabling straightforward optimization of distortion criteria such as
the MSE in many cases.

3. Its spectral content may be linked to physical properties of the speech production
system [47], making observations in the STFT easy to interpret.

The DFT can be interpreted as a sampled version of the discrete-time Fourier transform
(DTFT), given by [48]

X(ejω) =
∞∑

n=−∞
xt(n)e−jωn, (2.7)
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with normalized angular frequency

ω = 2π
f

fs
, (2.8)

where f is the continuous linear frequency in Hz and fs is the sampling frequency. In this
thesis, the DTFT will be of special interest for conceptual, non-numerical considerations,
e.g. when we have an explicit mathematical signal model available and want to analyze
the underling signal beyond the DFT “picket fence”.

For a signal of length N , the DTFT is a polynomial of order N . Hence, any N samples
of the DTFT specify the DTFT and the corresponding time domain signal exactly [43].
Choosing NDFT ≥ N ensures the DFT to be a complete representation of the time
domain signal. From this completeness property [49], it follows that yt(n, `) and Y (k, `)
contain the same information as long as NDFT ≥ N , hence, xt(n, `) can be estimated
from Y (k, `) benefiting from the properties of the STFT.

The DFT represents the special case of NDFT uniformly spaced samples of the DTFT,
facilitating the numerical computation of the signal’s spectrum. Alternatives to the DFT
include the discrete cosine transform (DCT) [50], wavelet transforms [51], and subspace
approaches such as the Karhunen-Loève transform (KLT) [45]. However, subspace-based
methods do not ensure the completeness of the resulting representation, which is why
we will stick to DFT-like transformations throughout this thesis. This does not prevent
us from applying signal-adaptive transformations, which will be of particular interest in
Chapter 4 and Chapter 5.

By modification of Y (k, `), described in the following section, we obtain estimates of
the clean speech STFT expansion coefficients. Since in many applications, we aim to
reconstruct the time domain signal from these samples, we first apply the inverse DFT
and subsequently reconstruct the time domain signal by overlap-add [52]. A large part
of the speech enhancement literature is focused on the modification stage, i.e. on the
task of finding a suitable model for the observed data and formulating estimators that
are optimal w.r.t. this model.

2.2 The Modification Stage

This section focuses on modification paradigms that are based on statistical model-based
approaches, i.e. point 2 in the list on page 9. In order to derive optimal estimators of
the speech STFT coefficients, two key ingredients are needed [53].

• First, a criterion that represents our definition of optimality is indispensable. This
optimization criterion can be mathematically motivated, such as the MSE or the
maximum a posteriori (MAP) criterion for example. It may also reflect specific
properties of the receiver, e.g. peculiarities in human speech perception in the case
of human listeners at the receiver end.
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• Second, statistical models for the speech and noise data are needed.

A significant amount of research has explored statistical models for speech and noise,
e.g. [17, 54–56]. A seminal work w.r.t. statistically modeling the speech signal in the
STFT domain is the work of Ephraim and Malah in [15], which includes assumptions and
strategies that are still relevant in very recent publications on speech enhancement, e.g.
[57]. In order to emphasize the key differences between the various methods proposed
in the literature and those discussed in this thesis, we proceed to explain this very
generic statistical model in more detail. This will facilitate the presentation of the main
differences between the various methods presented subsequently. Further, due to the
generality of this model, the insights w.r.t. to the spectral phase might be relevant to
other fields of research employing a similar statistical model.

In [15], we also find the following quote that encompasses what follows in this the-
sis:

..., we note that since the true statistical model [of speech, author’s note]
seems to be inaccessible, the validity of the proposed one can be judged a pos-
teriori on the basis of the results obtained here. In addition, the optimality of
the estimators derived here is of course connected with the assumed statistical
model. [15]

2.2.1 The Statistical Model

In attempting to find suitable statistical models for the speech and noise signals, we face
the problem that neither speech nor noise can be considered to be stationary or ergodic
processes, rendering the meaning of long term statistics to be a controversial topic [15].
Though, several distributions based on histograms have been proposed in the literature,
it is important to note that such empirically obtained distributions represent relative
frequencies of STFT expansion coefficient appearance rather than their probability den-
sity function (pdf). This is why often asymptotic properties of the DFT are used to
model speech.

Following [15], we can model the discrete-time speech signal as a sequence of statistically
independent, zero-mean random variables (RV) {xt(n, `)}N−1

n=0 . Hence, in Equation (2.3),
for each DFT bin k, we obtain the corresponding coefficient by a summation of inde-
pendent RVs. The central limit theorem (CLT) states that the distribution of the sum
over independent RVs approaches a Gaussian distribution as the number of RVs that is
summed over increases [58]. This Gaussian distribution is characterized by a mean and
a variance that both correspond to the (weighted) sum of the means and the variances
of the RVs that are summed over. As a result, the asymptotic model yields mutually
independent, zero-mean, complex-valued, isotropic Gaussian distributions for the speech
STFT coefficients.
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The above approximation is only valid if (i) N in the analysis stage approaches infinity
and further, if (ii) N is much larger than the correlation span of xt(n, `) [59]. Clearly,
both prerequisites cannot be met in practice as an infinite frame length is impossible
and also the correlation span is not necessarily much smaller than N , as for example in
the case of periodic signals [59]. Although this indicates that the CLT might not be a
perfect fit, it comes with the benefit that the resulting statistical model is mathematically
tractable and it has proven to be a powerful model in terms of speech enhancement.
This is why we will build upon the asymptotic model throughout large parts of this
thesis.

The Fourier transform, as an orthogonal transform, asymptotically decorrelates spectral
components. In the case of jointly Gaussian distributed RVs, uncorrelatedness implies
independence. Hence, the real and imaginary parts of the STFT expansion coefficients
are modeled by mutually independent, zero-mean Gaussian RVs. Further we assume that
the time domain variances split equally on the real and the imaginary part,3 meaning
that the speech spectral variance is given by

σ2
x(k, `) = E

(
X2

R(k, `) +X2
I (k, `)

)
= 2E

(
X2

R(k, `)
)

= 2E
(
X2

I (k, `)
)

= E
(
|X(k, `)|2

)
,

(2.9)

where E
(
·
)

denotes the expectation operator and the subscripts “R” and “I” indi-
cate real and the imaginary parts, respectively. The same conjectures can be made for
the noise signal, hence, analogously for the noise STFT coefficients we have σ2

d(k, `) =
E
(
|D(k, `)|2

)
. Relating the variance to the expected value of the sampled periodogram,

i.e. E
(
|·|2
)
, means that if we are to estimate the spectral variance, we are estimating

the power spectrum of the respective signal [48].

It is important to note that mutual independence of the STFT coefficients is a rather
strong assumption, considering that the analysis segments are overlapping, the analyzed
signals are far from being stationary, the analysis time spans are chosen correspondingly
short, and the speech production itself of course prohibits independent excitation of
frequency channels, as all spectral components share the same airflow through the vocal
tract. Modeling dependencies w.r.t to time and/or frequency has for example been
addressed in [60–64] and will also be of interest in this thesis, specifically in Chapter 5
and Chapter 6. However, in the classical setup, as a consequence of modeling the STFT
coefficients to be mutually independent, they are also processed independently. Hence,
for the sake of readability, we will drop the frame and the frequency indices wherever
possible.

3 Except for ωk ∈ {0, π}, since for for real-valued signals, the imaginary part is zero at these frequencies.
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Following the above argumentation, the pdfs of the real and imaginary parts of speech
and noise are given by4

p (XR) =
1√
πσ2

x

e
−X

2
R
σ2
x , p (XI) =

1√
πσ2

x

e
−X

2
I

σ2
x ,

p (DR) =
1√
πσ2

d

e
−D

2
R
σ2
d , p (DI) =

1√
πσ2

d

e
−D

2
I

σ2
d .

(2.10)

Hence, using the independence of the real and imaginary parts, the model for the
complex-valued speech STFT coefficients in Cartesian coordinates is simply

p (X) = p (XR, XI) = p (XR) p (XI) =
1

πσ2
x

e
−X

2
R+X2

I
σ2
x =

1

πσ2
x

e
− |X|

2

σ2
x , (2.11)

and accordingly for the noise STFT coefficients

p (D) =
1

πσ2
d

e
−D

2
R+D2

I
σ2
d =

1

πσ2
d

e
− |D|

2

σ2
d (2.12)

Given the noise model, the likelihood of the noisy observation is given by

p (Y |X) =
1

πσ2
d

e
|Y−X|2
σ2
d =

1

πσ2
d

e
−Y

2
R+Y 2

I +X2
R+X2

I −2(YRXR+YIXI)
σ2
d . (2.13)

We refer to the above distributions as complex normal distributions. We will further use
the short notation q ∼ CN

(
µ, σ2

)
in order to indicate that a quantity q is modeled by

a RV that follows a complex normal distribution with mean µ and variance σ2.

Transforming the above pdfs from Cartesian to polar coordinates yields an explicit model
for the spectral magnitude, which is arguably more perceptually relevant than consider-
ing the real and imaginary parts separately. Expressing X and Y in polar coordinates,
i.e. in terms of amplitude and phase, yields

X = Aejφ,

Y = Rejϑ = Aejφ + |D| ej∠D.
(2.14)

Here, A is the speech short-time spectral amplitude (STSA), φ is the speech short-time
spectral phase (STSP), R is the noisy STSA, and ϑ is the noisy STSP. Hence, it follows
that the joint distribution of speech magnitude and phase is [58]

p (A, φ) =
A

πσ2
x

e
−A2

σ2
x if A ≥ 0, 0 ≤ φ < 2π (2.15)

4 For details on the notation used in this context see Appendix A.2.
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where by marginalization we obtain the well-known Rayleigh distribution for the mag-
nitude pdf, i.e. [15]

p (A) =

2A
σ2
x

e
−A2

σ2
x A ≥ 0,

0 otherwise.
(2.16)

For the phase, marginalization yields the uniform distribution

p (φ) =

{
1

2π 0 ≤ φ < 2π,

0 otherwise.
(2.17)

It is important to note that we can factorize Equation (2.15) into the above marginals
of the magnitude and phase, i.e.

p (A, φ) = p (A) p (φ) (2.18)

indicating that the two RVs are independent. This property results from the circularity
and unimodality of the pdfs in Equation (2.11) and Equation (2.12).5 However, in the
more general case, where the mean of the distribution is non-zero and/or dependencies
between real and imaginary part exist, the distributions are non-circular and magnitude
and phase are not necessarily independent anymore.

2.2.2 MMSE Estimators for the Classical Gaussian Model

In this section, we shortly present estimators of the complex-valued STFT coefficients,
the magnitudes, and the phase, derived from the zero-mean Gaussian signal model. The
minimum mean-square error (MMSE) optimal estimate of the STFT coefficient in case
of the Gaussian model is the posterior, i.e. conditional, mean

X̂W = E
(
X|Y

)
=

σ2
x

σ2
x + σ2

d

Y. (2.19)

It will be useful later on to express estimators in terms of gain functions that are multi-
plied with the noisy observation. The specific gain function resulting from the zero-mean
Gaussian model is the ubiquitous Wiener filter [66], i.e.

GW =
σ2
x

σ2
x + σ2

d

=
ξ

1 + ξ
, (2.20)

5 Circularity in the context of complex-valued RVs means that its moments are invariant w.r.t. a
rotation of the underlying RV in the complex plane [65].
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where

ξ =
σ2
x

σ2
d

(2.21)

is the so-called a priori signal-to-noise ratio (SNR). It is important to note that since
GW ∈ R, the phase of the noisy coefficient is not affected by the gain function, only the
magnitude is as a function of the a priori SNR.

Motivated by the relative perceptual importance of the spectral amplitude compared
to the spectral phase, Ephraim and Malah in [15] proposed to formulate the MMSE
criterion in terms of the spectral magnitude directly instead of the complex-valued STFT
coefficients. The posterior of the magnitude given the zero-mean Gaussian model from
Section 2.2.1 is a Rician distribution [67], i.e.

p (A|Y ) = 2
A

σx|y
e
−A

2+G2
W|Y |

2

σx|y I0

(
2
AGW |Y |
σx|y

)
, (2.22)

where Iν (·) is the modified Bessel function of νth order and the posterior variance σ2
x|y

is given by [68]

σ2
x|y =

σ2
dσ

2
x

σ2
x + σ2

d

. (2.23)

The posterior variance can be interpreted as the variance of the Wiener filter estimate
[68]. The expected value of the Rician distribution yields the MMSE-STSA estimator
[15]

ÂEM = Γ

(
3

2

)√σ2
x|y
σ2
dζ

1F1

(
−1

2
; 1;−

√
GWζ

)
R

= Γ

(
3

2

) √
GWζ

ζ
e−

GWζ

2

(
(1 +GWζ) I0

(
GWζ

2

)
+GWζI1

(
GWζ

2

))
R

= GEMR

(2.24)

where Γ (·) is the gamma function, 1F1 (·; ·; ·) is the confluent hypergeometric function,6

GEM refers to the Ephraim-Malah weighting rule, and ζ is the a posteriori SNR defined
as

ζ =
R2

σ2
d

. (2.25)

We cannot reconstruct the time domain signal from the spectral magnitude only, hence,
a spectral phase estimate is also needed. For the posterior of the phase we have [69]

6 For definitions of special functions appearing in this thesis we refer to Appendix D.
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p (φ|Y ) = e
−R

2GW
σ2
d

(
1

4π2
+
R
√
GW

2π
3
2σd

cos (ϑ− φ) e
R2GW
σ2
d

cos(ϑ−φ)2

Q

(√
2
R
√
GW

σd

))
, (2.26)

where Q (·) is the Q-function. The expected value of the posterior is the MMSE-optimal
phase estimate, which is in this case the noisy phase

φ̂MMSE = ϑ. (2.27)

This means that independent optimization of the amplitude and phase yields

X̂EM = GEMY, (2.28)

where GEM ∈ R. Hence, although the Wiener filter and the MMSE-STSA gain yield
different magnitude estimates, the noisy phase is the optimal estimate in both cases.
This is the result of both the chosen prior distributions and the fact that only one
observation Y is taken into account in the estimator. As neither the likelihood nor the
prior distribution promote any directional orientation in the complex plane, the noisy
phase is also optimal w.r.t. the MAP and the ML criterion.

It is often said that the noisy phase is the (MMSE/MAP/ML) optimal choice in the
literature. However, from the above discussion we note that this statement should
always be accompanied by the statement this is the case only for a very specific signal
model, which is at its core not even designed on the basis of knowledge about the speech
production process but only relies on asymptotic properties of DFT coefficients. Clearly,
changing the magnitude prior pdfs does not change this result either, as the likelihood
and the joint prior of magnitude and phase remain symmetric around the origin in the
complex plane in this case. If however we were to consider more than one observation,
the likelihood would be non-circular and hence promoting a certain orientation in the
complex plane. We will consider such scenarios in Chapters 4-6.

2.2.3 Noise and Speech PSD Estimation

So far, we assumed all parameters of the distributions under consideration to be known.
However, they are not known a priori, hence, they have to be estimated from the noisy
mixture. It is common practice to decouple the noise PSD estimation from the actual
speech estimation task [18]. Therefore, we find dedicated noise PSD estimators in the
literature, developed independently from the subsequent algorithmic steps of the speech
enhancement framework.

The most important concepts for noise PSD estimation include methods relying on
voice-activity detection (VAD), minima tracking [70], estimators incorporating speech
presence probability [71], MMSE estimation [18, 72], or methods relying on subspace
decomposition of the DFT representation [73].
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Once a noise PSD estimate is obtained, there is still the speech PSD, or spectral variance
[48], which is not known and has to be estimated. In practical implementations, it has
proven to be advantageous to estimate the a priori SNR than directly estimating the
speech PSDs. This is mainly since the a priori SNR is invariant to signal scaling and
its range can be expected to lie within the interval [−20, 30] dB for most noise reduction
applications [59].

Given the a posteriori SNR estimate, the ML estimate of the a priori SNR is given by
[15]

ξ̂ML(k, `) =
R2(k, `)

σ2
d(k, `)

− 1 = ζ̂(k, `)− 1. (2.29)

A second estimate of the a priori SNR can be obtained from the preceding frame’s
speech estimate [15]

ξ̂`−1(k, `) =
|X̂(k, `− 1)|2
σ̂2
d(k, `− 1)

. (2.30)

As a very prominent approach, the decision-directed (DD) estimator linearly combines
the two estimates as follows [15]

ξ̂DD(k, `) = αDDξ̂`−1(k, `) + (1− αDD) max[ξ̂ML(k, `), 0], (2.31)

where αDD is typically chosen in the range 0.9 ≤ αDD < 1, depending on the chosen
analysis and modification stage parameters. The specific choice of αDD determines the
trade-off between tracking-delay and the variance of the estimator. The larger the choice
of αDD, the less musical noise artifacts occur at the cost of larger tracking-delay that may
be perceived as reverberation in the processed signal. Although the DD approach is an
inconsistent estimator [47], it is widely used since it performs well while being simple to
implement. It has been thoroughly analyzed in [16, 74] and alternatives or adaptations
of the DD approach are presented in e.g. [4, 60,75–83].

2.2.4 Extensions to the Classical Gaussian Model

The independence of magnitude and phase in Equation (2.18) enables to independently
model the prior pdfs of magnitude and phase. The circularity of the joint distributions,
i.e. the uniform prior for the phase, has only begun to be questioned in e.g. [24, 27,
84–86]. Meanwhile, a lot of effort has been put in finding prior distributions for the
spectral magnitude beyond the Rayleigh model. Prominent examples include the works
in [17,54,55,77,87–89].7

7 Appendix D lists some relevant prior distributions.
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Further, in [90] an estimator of the logarithmically compressed magnitude, termed log
spectral amplitude (LSA) estimator, has been proposed. The reasoning behind esti-
mating the logarithm of the magnitude rather than the magnitude itself is to take into
account the compressive characteristics of the cochlea. As a generalization of estimat-
ing compressed magnitudes, the work in [91], suggests so-called β-order MMSE-STSA
estimators, derived from evaluating E

(
Aβ|Y

)
. The work in [92] fuses a parameteriz-

able amplitude prior with the β-order distortion measure, yielding a flexible class of
estimators that includes many preceding approaches as special cases.

Most importantly for this thesis, independent from the estimation criteria, the amplitude
distributions chosen, and the specific distortion measure, the noisy phase remains the
optimal estimate, as long as the underlying models do not reconsider the prior phase
distribution.

2.3 Conclusion

In this chapter, we have reviewed classical STFT based single-channel speech enhance-
ment algorithms. Particularly, we have also brought to the surface under which con-
ditions, i.e. under which signal model, the noisy phase is the optimal estimate of the
speech phase. To summarize, the noisy phase is optimal from an estimation theoretic
perspective if

1. The prior distributions of the complex-valued speech STFT coefficients are modeled
to be circular.

2. The prior distributions of the complex-valued noise STFT coefficients are modeled
to be circular.

3. The signal model implies independence between the STFT coefficients w.r.t. time
and frequency.

It is important to note that the above criteria assess the validity of the assumption
that the noisy phase is optimal only in terms of mathematical reasoning. Perceptual
considerations may yield a different result. In the following, we will explicitly present
and investigate signal models that violate some of the above conditions.
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3
Phase Estimation in Single-Channel Speech

Enhancement

This chapter reviews single-channel speech enhancement approaches that incorporate
knowledge about the spectral phase into optimal estimation of the STFT coefficients.
While on the one hand, estimates of the STFT coefficients’ phase may be used for signal
reconstruction, i.e. replacing the noisy STFT phase, it is also possible to refine amplitude
estimates by incorporating knowledge about the spectral phase. Both approaches can be
found in the literature. We overview this topic and further introduce concepts such as the
harmonic phase decomposition that will be used throughout the rest of this thesis.

3.1 Overview and Motivation

Chapter 2 concluded on why the classical signal model for STFT-based speech enhance-
ment and many of its adaptations yield the noisy phase as the optimal phase estimate.
As explained, the assumptions that lead to this result are rather restrictive. Besides the
statistical modeling, it is important to note that a spectrogram corresponds to a time
domain signal which is segmented by means of overlapping frames. Hence, overlapping
segments are redundant, i.e. by definition of the STFT they have the same content if the
weighting of the time domain samples due to the window function is compensated. An
STFT representation that fulfills this redundancy constraint is called consistent. The
independently estimated magnitudes in conjunction with the noisy phase will in general
not yield a consistent STFT.

The problem of finding consistent phase functions from magnitude spectrograms is com-
monly termed phase-retrieval or spectrogram inversion and can also be seen as the prob-
lem of reconstructing a time domain signal from a given STFT magnitude. The literature
on phase retrieval is widespread, as the underlying problem arises in many diverse scien-
tific fields, e.g. in optics [93], astronomical imaging [94, 95], and X-ray crystallography
[96]. The work in [97] investigates conditions under which a signal is uniquely defined by
its STFT magnitude and proposes algorithms that can be applied to reconstruct signals
from their magnitude spectra. Alternating projection algorithms that iteratively recon-
struct the time domain signal and recompute a STFT phase function from the resulting
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time domain signal are particularly popular. Such methods typically rely on the work
of Griffin and Lim in [52] and are often also referred to as Griffin-Lim (GL) algorithms.
Various variants of the GL algorithm have been proposed, aiming to make it real-time
compatible [98,99], to improve its initialization and convergence speed [100–102], to omit
the necessity to repeatedly compute the STFT [103], or to fit the algorithm to specific
signal classes [101]. In the context of source separation, the consistency constraint has
also been used in conjunction with Wiener filtering in [104].

For Gaussian analysis windows, the log-magnitude and the phase of the STFT are con-
nected by their derivatives along time and frequency, resulting in a coupled pair of first
order linear partial differential equations [105,106]. Recently, based on this connection,
the works in [107, 108] propose non-iterative phase reconstruction algorithms that in-
tegrate estimates of these derivatives over time and frequency to reconstruct the phase
function. This procedure is referred to as Phase Gradient Heap Integration. An overview
on recent developments in phase retrieval can be found in [109].

We note that many of the above mentioned phase retrieval algorithms rely on a known
spectral amplitude. However, in speech enhancement, we only have estimates of the
STFT magnitude available, meaning that finding a consistent STFT phase does not
necessarily mean that this phase estimate is perceptually beneficial or is closer to a
reasonable STFT phase of speech signals. Most importantly, a consistent STFT phase
ensures that the optimal magnitude estimate is preserved throughout the overlap-add
reconstruction [104]. However, as the magnitude estimate is only optimal w.r.t. the un-
derlying statistical model, it is also not evident that it is advantageous to ensure the ex-
act preservation of the independently obtained magnitude estimates, as the overlap-add
re-introduces correlations due to the implicit averaging of overlapping segments.

The present thesis does not explicitly consider approaches relying on the (in)consistency
principle. Instead, this thesis employs the harmonic plus noise model for speech [110–
112] in many places, resulting in a mathematical model for the spectral phase that
can be exploited for speech enhancement. The harmonicity of voiced speech is a well
established property and has been incorporated into speech enhancement in various ways,
e.g. in [77, 113, 114]. The recent literature on phase estimation for speech enhancement
almost exclusively relies on representing voiced parts of the speech signal as a sum
of harmonically related sinusoids, e.g. [24, 28, 115]. Notable work on exploiting the
harmonic or more generally speaking, sinusoidal characteristics of voiced speech sounds
for speech enhancement is also presented in [116].

The rest of this chapter is organized as follows. First, we introduce the harmonic plus
noise model together with the concept of phase normalization that will be important
throughout this thesis. Further, we explain recently proposed methodologies that ex-
ploit the harmonic plus noise model for single-channel speech enhancement, resulting in
optimal phase estimates that are not necessarily equal to the noisy phase.
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3.2 The Harmonic plus Noise Model

Originally proposed for speech-synthesis in [112], the harmonic plus noise model for
speech is the basis for many speech enhancement algorithms relevant for this thesis.
Here, speech is represented as (i) the sum of harmonically related sinusoids xt,H(n),
particularly suitable for voiced speech sounds, and (ii) noise-like contributions xt,S(n),
which represent all components that are not captured by the harmonic model. Hence,
the speech signal may be represented as

xt(n) = xt,H(n) + xt,S(n)

=

NH∑
h=1

A′h(n)cos

(
2π

∫ n/fs

t=0
fc,h(t)dt+ α′h(n)

)
+ xt,S(n),

(3.1)

where h ∈ [1, NH] is the harmonic index, NH is the order of the harmonic model, A′h(n)
is the harmonic amplitude, fc,h(t) is the continuous-time harmonic frequency trajectory,
and α′h(n) is the harmonic phase. The harmonic plus noise model is also referred to
as stochastic-deterministic model in the speech enhancement literature [56,86,117]. We
note that for the noise-like (stochastic) contributions we stick to the zero-mean Gaussian
model presented in Section 2.2. However, the structure of the harmonic components is
not captured by such models.

The purely harmonic signal representation for speech by means of xt,H(n) is highly
compact compared to the DFT, as it concentrates a large amount of signal energy into
a relatively small fraction of coefficients, i.e. NH � N . However, speech does not only
comprise of harmonic content and a good representation of xt,S(n) is needed, otherwise
the harmonic plus noise representation is not complete in the sense that the underlying
signal can be perfectly reconstructed from the corresponding coefficients. Among other
properties presented earlier, it is the completeness of the DFT that motivates us to stay
faithful to the STFT, which is why we will investigate the mapping of the harmonic
parameters amplitude, phase, and frequency to the STFT domain in the following.8

Further, this also enables us to combine any estimation scheme for the harmonic content
with classical STFT speech enhancement strategies. Throughout what follows we will
assume the fundamental frequency to be given from some dedicated estimator.

8 The notion of compactness and completeness used here is based on [118], where compact speech
representations for speech synthesis are investigated.
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3.2.1 Harmonic Signals in the STFT

The windowing of the harmonic components in Equation (3.1) according to Equa-
tion (2.2) yields

xt,H,w(n, `) = w(n)

NH∑
h=1

A′h(n+ `L)cos

(
2π

∫ (n+`L)/fs

t=0
fc,h(t)dt+ αh(n+ `L)

)
. (3.2)

At this point, we will assume that the frame length is chosen such that the harmonic
parameter triplet {A′h(n), f ′h(n), α′h(n)} can be considered to be constant within this time
span. Hence, we will only consider sub-sampled versions and substitute for n ∈ [0, N−1]

Ah(`) = A′h(n+ `L),

αh(`) = α′h(n+ `L),

ωh(`) = 2π
fh(`)

fs
= 2π

fc,h

(
n+`L
fs

)
fs

.

(3.3)

Note that this simplification renders model mismatches that are not stochastic in nature
to be a contribution to the stochastic term xt,S(n, `) in Equation (3.1), e.g. in case of
nonstationary voiced speech. Recently, approaches for enhancing voiced speech coping
with the non-stationarity of the signal parameters have been proposed in [119, 120].
In this thesis, due to its simplicity and applicability, we stick to the stationary (or
constant) model. The notation ωh(`) allows for an arbitrary choice of the hth partial’s
frequency. However, in this thesis we implicitly assume a harmonic relationship between
the respective partial and a fundamental frequency ω0(`), i.e. ωh(`) = hω0(`).

By using the sub-sampled harmonic parameters in Equation (3.3), we can rewrite Equa-
tion (3.2) as

xt,H,w(n, `) = w(n)

NH∑
h=1

Ah(`)cos

(
2π

(∫ `L/fs

t=0
fc,h(t)dt+

∫ (n+`L)/fs

t=(`L)/fs

fc,h(t)dt

)
+ αh(`)

)
(3.4)

where, if the fundamental frequency is constant within a frame’s time span, we have

2π

∫ (n+`L)/fs

t=`L/fs

fc,h(t)dt = 2πfc,h

(
n+ `L

fs

)
·
(
n+ `L

fs
− `L

fs

)
= ωh(`)n.

(3.5)
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By substituting the harmonic phase progression due to the past fundamental frequency
trajectory, i.e.

ψh(`) = 2π

∫ `L/fs

t=0
fc,h(t)dt, (3.6)

we have

xt,H,w(n, `) = w(n)

NH∑
h=1

Ah(`)cos (ωh(`)n+ φh(`))︸ ︷︷ ︸
xt,H(n,`)

, (3.7)

with the instantaneous harmonic phase given by

φh(`) = ψh(`) + αh(`). (3.8)

While ωh(`) and ψh(`) are determined by the frequency trajectory of the respective
harmonic, αh(`) represents its initial orientation w.r.t. the analysis window, i.e. it is
connected to the onset of the harmonic. Therefore, we will refer to αh(`) as the initial
phase [120] for the rest of this thesis. The initial phase has also been termed unwrapped
phase in [24, 115]. Due to its close connection to the onset of the respective harmonic,
which is a constant, αh(`) itself can be considered to be slowly time-varying, i.e. we
assume the harmonic phase to be coherent over the duration of one voiced syllable.
Hence, it is mostly this part of the phase which is processed in one way or the other in
the literature that deals with phase-processing for speech enhancement.

Inserting the model of Equation (3.7) into the definition of the DTFT yields

XH(ejω, `) =
∞∑

n=−∞
xH(n, `)w(n)e−jωn

=
∞∑

n=−∞
w(n)e−jωn

NH∑
h=1

Ah(`)cos (ωh(`)n+ φh(`))

=

NH∑
h=1

Ah(`)
∞∑

n=−∞
w(n)e−jωn

1

2

(
ej(ωh(`)n+φh(`)) + e−j(ωh(`)n+φh(`))

)
(3.9)

which, by applying the modulation theorem [48], can be rewritten as

XH(ejω, `) =

NH∑
h=1

Ah(`)

2
ejφh(`)W

(
ej(ω−ωh(`))

)
e−j(ω−ωh(`))N−1

2

+

NH∑
h=1

Ah(`)

2
e−jφh(`)W

(
ej(ω+ωh(`))

)
e−j(ω+ωh(`))N−1

2

(3.10)
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Here, W (ejω) is the DTFT of the non-causal, zero-phase window function. Hence,
assuming that w(n) is symmetric around N−1

2 , which is the case for the window functions
considered in this thesis, we have the linear phase window

∞∑
n=−∞

w(n)e−jωn = W (ejω)e−jω
N−1

2 . (3.11)

By decomposing the instantaneous harmonic phase according to Equation (3.8), we have

XH(ejω, `) =

NH∑
h=1

Ah(`)

2
ejαh(`)W

(
ej(ω−ωh(`))

)
e−j((ω−ωh(`))N−1

2
−ψh(`))

+

NH∑
h=1

Ah(`)

2
e−jαh(`)W

(
ej(ω+ωh(`))

)
e−j((ω+ωh(`))N−1

2
+ψh(`)).

(3.12)

Given the analysis window together with the harmonic parameters, the DTFT (and
hence the DFT) of the harmonic signal components is completely determined. The
parametric representation in terms of the harmonic model is in general more compact
than the time domain samples or the DFT expansion coefficients. Therefore, estimating
the harmonic parameters is of special interest in many areas of speech processing. In
speech enhancement, many approaches imposing the harmonic model are formulated as
a parameter estimation task, relying on the hypothesis that estimating the harmonic
parameters facilitates enhancing the noisy speech.

Without any approximations, the joint estimation of all harmonic parameters is in gen-
eral a difficult task. Due to the interaction of the sinusoids, direct optimization is not
possible [121], and iterative procedures have therefore been proposed in e.g. [1,122,123].
An alternative approach that simplifies the harmonic model substantially is to neglect the
negative-frequency partials, implicitly modeling the speech signal as a complex-valued
time domain signal, e.g. [124]. The works in [28, 86, 115] additionally assume that at a
specific frequency, only one partial is present. In this case, once the harmonic frequen-
cies are given, estimating the amplitude and phase of each partial can be carried out
separately.

Rewriting Equation (3.12) under the above considerations means that each ω is assigned
one dominant partial h̄(ω, `) only, i.e.

XH(ejω, `) ≈
Ah̄(ω,`)(`)

2
ejαh̄(ω,`)(`)W

(
ej(ω−ωh̄(ω,`)(`))

)
e−j((ω−ωh̄(ω,`)(`))

N−1
2
−ψh̄(ω,`)(`)).

(3.13)
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Figure 3.1 illustrates the effect of the approximations culminating in Equation (3.13) in
the frequency domain for NH ∈ {1, 2} and for two different window choices, namely the
rectangular and the Blackman window. The discrepancy between the dashed and the
solid lines in both magnitude and phase indicates that the approximations do not even
hold for the case of a signal consisting of a single real-valued sinusoid due to the mutual
impact of negative and positive frequency components. However, within the mainlobe
of the window around the center frequency, the approximation is accurate. Choosing an
analysis window with high sidelobe attenuation, such as the Blackman window, reduces
the error introduced by the harmonic approximation.

3.2.2 Phase Decomposition in the STFT

So far, we analyzed the DTFT of a harmonic signal. In practice, by using the FFT we
obtain the DFT of the signal, meaning that we only access samples of the DTFT, given
at sampling points ωk = 2πk

NDFT
, i.e.

XH(k, `) = XH(ejω, `)|ω=ωk

≈
Ah̄(ωk,`)

(`)

2
e
jαh̄(ωk,`)

(`)
W
(

e
j(ωk−ωh̄(ωk,`)

(`))
)

e
−j((ωk−ωh̄(k,`)(`))

N−1
2
−ψh̄(ωk,`)

(`))
.

(3.14)

From the approximate DFT representation of the harmonic signal components in Equa-
tion (3.14) we see that given the parameter triplet {Ah̄(ωk,`)

(`), αh̄(ωk,`)
(`), ωh̄(ωk,`)

(`)},
we can expect a certain structure along frequency and time in the STFT coefficients.
On the one hand, we see that phase differences along time are governed by the fun-
damental frequency trajectory, which determines ψh̄(ωk,`)

(`). On the other hand, the
chosen window function will contribute to the phase-progression along frequency. Due
to the wrapping of the spectral phase to its principal interval [−π, π), the structure in
the phase is not directly accessible from the DFT. We therefore decompose the phase by
subtracting the harmonic phase progression due to the fundamental frequency and the
linear phase of the window function. By defining

Ψ(k, `) = e
−j((ωk−ωh̄(k,`)(`))

N−1
2
−ψh̄(ωk,`)

(`))
, (3.15)

we have

X̃H(k, `) = XH(k, `)Ψ∗(k, `)

=
Ah̄(ωk,`)

(`)

2
W
(

e
j(ωk−ωh̄(ωk,`)

(`))
)

e
jαh̄(ωk,`)

(`)
(3.16)

where the tilde sign ·̃ indicates the phase-normalized STFT coefficient, a term originally
proposed in [86]. A similar principle is referred to as phase unwrapping, linear phase
removal, and phase decomposition in [8, 24,115,125].
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Figure 3.1: The effect of the approximation in Equation (3.13). Black curves: Spectrum of
the (sum of) real-valued sinusoid(s). Dashed red and blue curves: individual,
complex-valued sinusoids. Left Panels: spectral phase. Right panels: spectral
magnitude. Upper panels: rectangular window. Lower panels: Blackman
window.
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Since |Ψ(k, `)| = 1, the STFT magnitude is not affected by the phase-normalization. In
regions where the approximation in Equation (3.13) is valid, i.e. in the close vicinity of
harmonic frequencies, we expect the STFT phase to correspond to the initial phase of
the dominant harmonic instead of taking on random values. Further, in the presence of
additive noise, depending on the SNR, this structure will be deteriorated. As discussed
in Section 3.2.1, the initial harmonic phase can be associated to the initial alignment of
the harmonic to the analysis window. While the initial alignment itself is completely
random, hence adequately modeled by a uniform distribution, it is reasonable to assume
that it does not change rapidly since we consider the harmonic phase to be coherent over
the duration of a voiced syllable.

The Linear Phase Window

In the signal analysis stage throughout this thesis, we use linear-phase window func-
tions as in Equation (3.11). Although the linear phase is represented by the term

e−j(ωk−ωh̄(k,`)(`))
N−1

2 , the linear phase term does not represent jumps of ±π at the roots of

the non-causal window’s DTFT. To this end, it is important to keep W
(

e
j(ωk−ωh̄(ωk,`)

(`))
)

instead of
∣∣∣W (

e
j(ωk−ωh̄(ωk,`)

(`))
)∣∣∣, in Equation (3.16). Figure 3.2 illustrates the discon-

tinuities in the window phase function.

If we reconsider the approximation that there is only one dominant harmonic per DFT
bin, we may restrict the region associated to a specific partial to the mainlobe width of
the analysis window around its center frequency. Hence, we consider a DFT bin to be
dominated by a harmonic only if it is “noteworthy” influenced by a harmonic. Figure 3.2
also shows that this approximation is especially reasonable within the mainlobe around
a harmonic’s frequency. It is important to note that within the mainlobe, we have

∠W
(

e
j(ωk−ωh̄(ωk,`)

(`))
)

= 0, yielding ∠X̃H(k, `) = αh̄(ωk,`)
(`) in this case.
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Figure 3.2: The discontinuities of the phase function of a non-causal, symmetric, i.e. zero-
phase, window function. Blue: Phase of the window function. The magnitude
has been scaled to have a maximum value of π and ωh has been chosen with
ωh = 1000 · 2 · π/16000 ≈ 0.3927.

The Harmonic Phase Progression

Reconsidering Equation (3.6) and taking into account that in practice, we only have
a sampled version fh(`) = fh,c(`L/fs) of fh,c(t) available, we can compute the phase
progression term ψh(`) recursively under the assumption that it can be approximated
by a piece-wise linear function from one frame to the next, i.e.

ψh(`) = 2π

∫ t1=
(`−1)L
fs

0
fh,c(t)dt︸ ︷︷ ︸

ψh(`−1)

+2π

∫ t2= `L
fs

t1=
(`−1)L
fs

fh,c(t)dt

= ψh(`− 1) + 2π

∫ t2

t1

(
fh,c(t1) + (t− t1)

fh,c(t2)− fh,c(t1)

t2 − t1

)
dt

= ψh(`− 1) +
L

2

(
ωh(`) + ωh(`− 1)

)
.

(3.17)

Given the assumption that (i) Equation (3.17) accurately models the harmonic phase
progression along time and (ii) harmonics dominate DFT bins around their center fre-
quency, we can expect the speech signal to follow a certain structure along time and
frequency. In the following, we will review relevant literature that makes use of this
structure to estimate a reconstruction phase from the noisy observation.
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3.2.3 Exploiting Harmonic Phase Decomposition for Speech Enhancement

A recent approach to impose the aforementioned phase structure for signal reconstruction
was proposed in [28]. The method known as STFT phase improvement (STFTPI) [28]
aims to retrieve the harmonic phase structure in voiced speech under the assumption
that

h̄(ωk, `) = arg min
h

|ωk − ωh(`)|2 , (3.18)

where we recall h̄(ωk, `) to be the dominant harmonic at DFT bin k and frame `. T
Therefore, each DFT bin is assigned the phase of the closest harmonic, in this case the
phase of the noisy signal evaluated at ωh̄(ωk,`)

(`). This procedure is termed “phase re-
construction along frequency” in [28]. The authors of [28] also propose a temporal phase
reconstruction routine that aims to reconstruct the harmonic phase progression along
time in Equation (3.6). Starting from an initial phase that is set equal to the noisy
phase at the beginning of a voiced speech sound, the harmonic frequency is numerically
integrated from one frame to the next, aligning the phases of harmonic components
over consecutive segments. In [126], the STFTPI method was combined with a least
squares (LS) estimate of the initial phase, replacing the noisy initial phase. The “phase
reconstruction along time” is conceptually very similar to the algorithms proposed in
[127, 128] for sinusoidal signal analysis/synthesis and low bit rate audio coding, respec-
tively. In principle, one could interpret the phase reconstruction along frequency as a
method that retrieves a typical group delay (GD) function of speech, while the recon-
struction along time algorithm aims to enhance the instantaneous frequency (IF) of the
noisy signal.

The works in [25, 129] model the initial or unwrapped harmonic phase as a directional
random variable.9 Under the assumption that additive noise contributes to increased
circular variance, the variance of the initial phase is reduced by temporal smoothing
of the noisy initial phase. In [115], this approach is extended by formulating a MAP
estimator of the initial harmonic phase that enables the phase statistics, i.e. its cir-
cular variance, to be incorporated as a parameter that controls the smoothing depth.
Following the same argumentation as in Section 3.2.2, the resultant harmonic phase es-
timates are assigned to DFT bins lying within the mainlobe width around the harmonic
frequency.

To summarize, in reconstruction phase estimation, it is particularly important to retrieve
a specific phase structure imposed by the harmonic model, rather than the exact absolute
value of the phase. The next section will present methods that use estimates of the
spectral phase, potentially obtained using methods discussed in this section, to refine
the estimation of the speech STFT coefficients in general.

9 For an overview on directional/circular statistics see Appendix C.
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3.3 Phase-Sensitive MMSE Estimators

In this section, we assume that some a priori information φµ about the spectral speech
phase φ is available. Starting from the independence assumption of magnitude and
phase in Equation (2.18), a straightforward approach to incorporate this knowledge into
statistical model-based speech estimators is to assume a distribution with pdf p (φ|φµ),
modeling the uncertainty about this a priori information. In conjunction with β-order
compression together with a χ-distribution for the spectral amplitudes we obtain the
(C)omplex spectral speech coefficients given (U)ncertain (P)hase information (CUP)
estimator proposed by Gerkmann in [27]

X̂
(β)
CUP = E

(
Aβejφ|Y, φµ

)
=

Γ (2µ+ β)

Γ (2µ)

(
ξσ2

d

2 (µ+ ξ)

)β
2
∫ 2π

0 ejφ+ ν2

4 D−2µ−β (ν) p (φ|φµ) dφ∫ 2π
0 e

ν2

4 D−2µ (ν) p (φ|φµ) dφ
,

(3.19)

where D· (·) is the parabolic cylinder function, µ is the shape parameter of the χ-
distribution,10 and

ν = −
√

2ζ
ξ

µ+ ξ
cos (φ− ϑ) . (3.20)

The final estimate is obtained by compensating for the β-order compression, i.e.

X̂CUP =
∣∣∣X̂(β)

CUP

∣∣∣ 1−β
β
X̂

(β)
CUP. (3.21)

The feasibility of solving the integral in Equation (3.19) analytically heavily depends
on the choice of p (φ|φµ). In the original work in [27], a von Mises distribution was
proposed11 and in this case, the integral has to be solved numerically as an analytical
solution could not be found. The standard assumption of choosing p (φ|φµ) to be a
uniform distribution again yields the noisy phase as the optimal estimate [29]. Assuming
the prior phase information is deterministic, by inserting p (φ|φµ) = δ (φ− φµ) into
Equation (3.19) and using the sifting property of the delta distribution we obtain [29]

X̂
(β)
CDP =

Γ (2µ+ β)

Γ (2µ)

(
ξσ2

d

2 (µ+ ξ)

)β
2 D−2µ−β

(
−
√

2ζ ξ
µ+ξ cos (φµ − ϑ)

)
D−2µ

(
−
√

2ζ ξ
µ+ξ cos (φµ − ϑ)

) ejφµ . (3.22)

10 For details we refer to Appendix D.
11 The von Mises distribution together with other relevant circular distributions is discussed in further

detail in Appendix C.
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Interestingly, the magnitude of the above estimator is also the result of optimizing for
the spectral magnitude under the assumption of deterministic knowledge about the clean
speech spectral phase proposed in [26]. Further, the case β = 1 and µ = 1 has already
been considered in [130] in 1983, which is surprising considering that the other estimators
discussed in this subsection have been proposed rather recently.

Spectral amplitude estimators derived under the assumption of a non-uniform p (φ|φµ)
have been further investigated in [29]. Typically, the prior phase information is obtained
using harmonic signal modeling and mapping the harmonic phase pattern to the STFT
domain as explained in Section 3.2.3. A thorough analysis of the estimators resulting
from Equation (3.19) in terms of a subjective listening test can be found in [30], where
increased noise reduction performance compared to phase insensitive approaches was
reported.

Apart from directly estimating the STFT coefficients, phase-sensitive amplitude estima-
tors have also been incorporated in iterative estimation schemes of the complex STFT
coefficients. These estimators rely on a (harmonic) model-based phase estimate. This
magnitude estimate is then used to refine the phase estimate and vice versa. While the
work in [23] relies on iteratively applying MMSE estimators, the work in [11] aims to
approximate a joint MAP solution of the amplitude and phase under the assumption of
a von Mises distribution for the spectral phase and a gamma distribution for the spectral
amplitudes.

3.4 MMSE Estimators Incorporating the Harmonic Model

The harmonic plus noise model not only provides information about the structure of the
spectral phase, but intrinsically assumes harmonically spaced maxima in the spectrum.
Hence, the independence of the coefficients w.r.t. frequency is particularly questionable
in the case of voiced speech [131]. In [56], a stochastic-deterministic (SD) signal model
is proposed, where the deterministic signal components correspond to the summation of
harmonically related, complex-valued sinusoids, i.e. the positive frequency components
of xt,H(n) only, and the stochastic components correspond to xt,S(n) in Equation (3.1).
While in [56], hard- and soft-decision estimation schemes are derived under the SD
signal model, the work in [132] shows how to combine the two signal models (and po-
tentially more) following the minimum-variance distortionless response (MVDR) filter
design principle.

In the literature, the SD signal model is presented in conjunction with the following
statistical assumptions. The linearity of the DFT preserves the summation of the com-
ponents in the frequency domain yielding the stochastic-deterministic model, where the
speech STFT coefficients are modeled by RVs that are circularly distributed around the
“spectral mean” XH, i.e. X ∼ CN

(
XH, σ

2
x

)
. Here, the variance around the mean value

represents the stochastic signal components, i.e. σ2
x = E

(
|X −XH|2

)
.
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Under the light of the previous section, where p (φ|φµ) was incorporated into MMSE
estimation of the speech STFT coefficients, it is interesting to note that the distribution
of φ conditioned on |X| is a von Mises distribution [27]

p (φ|φµ) = p
(
φ| |X| ,∠XH, |XH| , σ2

x

)
=

1

2πI0 (κ)
eκcos(φ−φµ) (3.23)

with mean phase φµ = ∠XH and concentration parameter

κ =
2 |XH| |X|

σ2
x

. (3.24)

This result is a justification for using harmonic phase estimates in combination with the
estimator in Equation (3.19) [27], as the von Mises distribution can also be seen as a result
of harmonic signal modeling. However, the selection of the concentration parameter κ
in [27] was not based on Equation (3.24) but on a voicing probability estimate. The
connection of a directional RV’s concentration, i.e. circular variance, and the voicing
probability has also been exploited in [7] for formulating a voice-activity detector.

The Stochastic-Deterministic Wiener Filter

Formulating the posterior speech distribution given the prior as CN
(
XH, σ

2
x

)
, yields the

MMSE estimator of the complex-valued STFT coefficients, termed the SD Wiener Filter
in [117]

X̂SDW = GWY + (1−GW)XH

=

(
GW + (1−GW)

XH

Y

)
︸ ︷︷ ︸

GSDW

Y. (3.25)

The Stochastic-Deterministic MMSE-STSA Estimator

Similar to the case of the circular complex normal distribution, in [86], a MMSE-STSA
estimator under the assumption of a non-zero spectral mean has been proposed,

ÂSD = Γ

(
3

2

) √
νSD

ζ
e−

νSD
2

(
(1 + νSD) I0

(νSD

2

)
+ νSDI1

(νSD

2

))
︸ ︷︷ ︸

GSD

R,
(3.26)
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with

νSD =
1

1 + ξ

(
ξζ +

A2
H

σ2
d

+ 2

√
A2

H

σ2
d

ζcos (φH − ϑ)

)
. (3.27)

Note that the scaling of magnitude estimates by cos (φH − ϑ) can also be found in Equa-
tion (3.19) and Equation (3.22). However, in the stochastic-deterministic case, additional
terms that account for the harmonic magnitude are introduced.

One possibility to reconstruct the time domain signal is to combine the magnitude
estimate in Equation (3.26) with the noisy phase for reconstruction. The authors of [86]
took a different path by evaluating the ML estimator of the phase given the non-circular
model, resulting in the phase of SD Wiener filter estimator, i.e.

φ̂SDML = ∠X̂SDW. (3.28)

Hence, the final, complex-valued STFT coefficient estimator is obtained by

X̂SD = ÂSDejφ̂SDML . (3.29)

The SD MMSE-STSA estimator has been reported to be highly sensitive to estimation
errors in XH [86]. To compensate for the effects of estimation errors in the deterministic
components, signal presence uncertainty (SPU) was incorporated. Under the assumption
of two hypotheses: speech presence denoted by H1 and speech absence H0, this can be
achieved by the following weighting [15]

X̂ =
Λ(Y )

1 + Λ(Y )
E
(
X|Y,H1

)
(3.30)

with the generalized likelihood ratio (GLR) defined as

Λ(Y ) =
p (H1) p (Y |H1)

p (H0) p (Y |H0)
, (3.31)

where p (H0) and p (H1) represent the prior probability of speech absence and presence,
respectively. Since speech is either present or not, we have p (H0) = 1− p (H1). In this
thesis, alternatives to the SPU considerations under the harmonic plus noise model and
to the harmonic signal component estimation that come with increased accuracy will be
discussed.

3.5 Conclusion

This chapter reviewed approaches in single-channel speech enhancement that leverage
phase-aware processing of the STFT coefficients. The harmonic plus noise signal model
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is particularly relevant in this thesis. Therefore, we specifically focused on methodologies
that rely on harmonic signal modeling and introduced the concept of phase decomposi-
tion or phase normalization [86] in Section 3.2.2. The latter concept reveals structure
in the STFT phase and will be a key concept throughout this thesis. The estimators
presented in this chapter heavily depend on knowledge about the harmonic signal com-
ponents, which are of course not known a priori. However, the presented estimators are
highly sensitive to estimation errors of the harmonic components. Hence, it will be of
special interest throughout this thesis to investigate approaches to refine the harmonic
signal components’ estimates and to find ways to incorporate the resultant insights into
speech enhancement methods.
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4
Simultaneous Detection-Estimation under

the Harmonic plus Noise Model

This chapter presents a simultaneous detection-estimation approach under the harmonic
plus noise model for speech. We will show that such an approach necessarily includes
a harmonic retrieval problem, which will be of special interest throughout this chap-
ter. All derivations and simulations included in this chapter have been conducted by
the author. The idea of exploiting the benefits resulting from pitch-synchronous seg-
mentation was motivated by discussions with Josef Kulmer and Pejman Mowlaee, who
used the pitch-synchronous segmentation in the context of harmonic phase estimation
for speech enhancement in [24, 115]. Simultaneous detection-estimation approaches are
a well known strategy in speech enhancement, e.g. [133, 134], however, extending them
to the harmonic plus noise model has been proposed by the author. Large parts of the
text in this chapter have been published in [3].

4.1 Overview and Motivation

This chapter consists of three parts.

• The first part presents a rather general explanation of a simultaneous detection-
estimation approach that facilitates fusing different signal models for the purpose
of speech enhancement. Further, the more specific case of the harmonic plus noise
model is considered and the corresponding optimal estimation and decision rules
are derived. The statistical model that forms the basis of these derivations has
also been used by other authors [40, 56, 132], however, the detection-estimation
perspective on the problem was part of the original work in [3]. The derived
estimator may be applied to any signal model that relies on the decomposition of
a signal into stochastic and deterministic components.

• The second part of this chapter is focused on the estimation of the harmonic signal
components from a noisy observation, subsequently needed in the simultaneous
detection-estimation procedure. We show that the analysis stage of an AMS sys-
tem as discussed in Chapter 2 impacts on the achievable accuracy of the harmonic
estimators. We find that under certain assumptions, a pitch-synchronous signal
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segmentation ensures that the approximations made in Section 3.2.1 hold. We
therefore propose to use this segmentation paradigm in the signal analysis stage.
Since the pitch-synchronous signal representation comes with interesting proper-
ties, explained in Section 4.4.1, we illustrate how they could be exploited in terms
of an empirical Bayes approach.

• The third part is dedicated to evaluating the combination of the detection-estimation
approach and the pitch-synchronous signal analysis stage in terms of instrumental
metrics as well as a subjective listening test. The results indicate that the quality of
harmonic signal component estimates may affect the intelligibility improvement ca-
pabilities of a speech enhancement system. Further, slight improvements in terms
of perceived speech quality are achieved by the pitch-synchronous simultaneous
detection-estimation (PSDE) framework.

The block diagram in Figure 4.1 illustrates the proposed speech-enhancement proce-
dure, where we also highlight the three main modules, i.e. analysis, harmonic retrieval,
and detection/estimation. Each of the stages can in general be replaced by alternative
approaches solving the same task.

Pitch-
Synchronous
Framing

DFT

f0-
Estimation

Noise PSD
Estimation

Mean
Estimation

Detection

Estimation
Select

Estimate

Synthesis

y(n)

f0(n)

f0(n)

σ̂2
d(k, `)

y(n, `) Y (k, `) XH(k, `)

Signal Analysis Harmonic Retrieval Detection/Estimation

X̂b(k, `) X̂1(k, `)

X̂2(k, `)

X̂3(k, `)

X̂bopt (k, `)

x̂(n)

Figure 4.1: Block diagram of the proposed estimation scheme. Areas highlighted in gray
indicate separate modules which can be replaced by any other method perform-
ing the tasks of signal analysis, harmonic retrieval, or detection/estimation.

4.2 Signal Model

As discussed in Section 3.2, the speech signal xt(n, `) can be decomposed into a harmonic
and a noise part, denoted by xt,H(n, `) and xt,S(n, `), respectively. The harmonic part
xt,H(n, `) is often referred to as deterministic part of the speech signal, e.g. in [40,56,110].
The noise part xt,S(n, `), which is also called stochastic part [40, 56, 110], is represented
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by a zero-mean Gaussian process. Empirical evidence for this signal model was analyzed
in [40] and originally, it has been proposed for speech synthesis in [110]. The harmonic
model is especially appropriate for modeling voiced speech. In the case of unvoiced
speech, the stochastic signal components can compensate for the model misfit that results
from only considering xt,H(n, `). Considering additive noise and taking the DFT of the
noisy input frames yields

Y (k, `) = XS(k, `) +XH(k, `) +D(k, `). (4.1)

A common problem of speech enhancement algorithms that rely on the harmonic model
for voiced speech is that they tend to fit artificial higher order harmonics to the noise
signal. By artificial we mean that they are not present in the underlying clean speech
signal. To reduce such artifacts, in the following, we derive an MMSE estimator of
the complex speech DFT coefficients conditioned on the three hypotheses voiced speech
(H2), unvoiced speech (H1), and speech absence (H0). This means that we want to
detect to which class an observed signal component belongs to and accordingly choose
an estimator that is designed to handle the underlying signal class.

Given that we have three distinct hypotheses for the observed signal, each of the hy-
potheses can be considered to represent a signal model. For each of the hypotheses
we may design a dedicated estimator. For the observation model in Equation (4.1) we
can summarize the three hypotheses, together with the corresponding signal models as
follows.

H0 : Y (k, `) = D(k, `),

H1 : Y (k, `) = XS(k, `) +D(k, `),

H2 : Y (k, `) = XS(k, `) +XH(k, `) +D(k, `).

(4.2)

In the following, we will introduce the detection-estimation framework, and afterwards,
we will address the harmonic retrieval problem. In the following, for the sake of read-
ability, frequency and frame indices are dropped.

4.3 Simultaneous Detection and Estimation

To jointly optimize for detection and estimation, each decision is associated with a risk,
determined by the chosen estimator X̂b and the true underlying hypothesis Hb′ . The
combined risk for detection and estimation under multiple hypotheses R is given by
[133,135,136]

R =
∑
b∈B

∫
DY

∫
DX

Cb(X, X̂|Hb′)p(ηb|Y )p(Y |X)p(X)dXdY, (4.3)
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where B denotes the set of all hypotheses (in our case B = {0, 1, 2}), Cb(·|Hb′) is a
weighted cost function (chosen dependent on the underlying hypothesis Hb′), and DY
and DX denote the domains of the respective variable in the subscript. The term p(ηb|Y )
corresponds to the probability of decision ηb, given the observation Y .

We are interested in minimizing the joint risk by means of (i) the chosen signal model
and (ii) the accordingly selected estimator. Hence, we are searching for{

bopt, X̂opt

}
= arg min

b,X̂

R. (4.4)

The above optimization can be carried out in the style of a grid search by means of a
three stage procedure [133,136] that consists of the following three steps.

1. Compute estimates for all hypotheses.

2. Evaluate the corresponding risks.

3. Choose the estimate that yields the minimum risk.

Below, the assumptions and derivations that yield the applicability of this rationale are
explained in more detail.

From the above formulation, it is clear that we consider a binary decision framework,
meaning that p(ηb|Y ) is either 0 or 1. Hence, based on the decision that is made, an
estimator, derived from the underlying signal model, is applied. Since we have

p(X) =
∑
b′∈B

p(Hb′)p(X|Hb′) (4.5)

we can rewrite Equation (4.3) as

R =

∫
DY

∫
DX

p(Y |X)

2∑
b=0

p(ηb|Y )
(
Cb(X, X̂|H0)p(H0)p(X|H0)

+ Cb(X, X̂|H1)p(H1)p(X|H1) + Cb(X, X̂|H2)p(H2)p(X|H2)
)
dXdY.

(4.6)

By introducing sub-risks of the form

rb(Y |Hb′) =

∫
DX

Cb(X, X̂|Hb′)p(Y |X)p(X|Hb′)dX, (4.7)

40



which are always associated to one pair of decision ηb and true hypothesis Hb′ , we can
rewrite Equation (4.6) as

R =

∫
DY

p(η0|Y )(p(H0)r0(Y |H0) + p(H1)r0(Y |H1) + p(H2)r0(Y |H2))

+ p(η1|Y )(p(H0)r1(Y |H0) + p(H1)r1(Y |H1) + p(H2)r1(Y |H2))

+ p(η2|Y )(p(H0)r2(Y |H0) + p(H1)r2(Y |H1) + p(H2)r2(Y |H2))dY

(4.8)

Since the hypotheses exclude each other, the joint risk can take three different forms

R =


∫
DY
∑2

b′=0 p(Hb′)r0(Y |Hb′)dY if p(η0|Y ) = 1,∫
DY
∑2

b′=0 p(Hb′)r1(Y |Hb′)dY if p(η1|Y ) = 1,∫
DY
∑2

b′=0 p(Hb′)r2(Y |Hb′)dY if p(η2|Y ) = 1.

(4.9)

Hence, the optimal decision can be found as follows

bopt = arg min
b
{p(H0)rb(Y |H0) + p(H1)rb(Y |H1) + p(H2)rb(Y |H2)} . (4.10)

Analogously, for each decision ηb we can find an optimal estimate of the speech DFT
coefficient X by evaluating

X̂b = arg min
X̂

{p(H0)rb(Y |H0) + p(H1)rb(Y |H1) + p(H2)rb(Y |H2)} . (4.11)

Following the description of the three stage procedure, we compute all solutions to
Equation (4.11) and subsequently choose X̂bopt according to Equation (4.10).

Applying Equation (4.10) and Equation (4.11) sequentially in order to obtain optimal
estimates with respect to both detection and estimation is a very general procedure
and has been applied to speech enhancement in [133] under the two hypotheses speech
absence and presence. Arbitrary signal models and cost functions may be used in the
definition of the sub-risks in Equation (4.7). In the following we will have a closer look
on the harmonic plus noise model for speech in order to find a statistical model that
facilitates the speech estimation task.

4.3.1 Statistical Model

In Section 4.2, we assumed the stochastic speech components xt,S(n) and the noise signal
dt(n) to be independent zero-mean Gaussian processes. As explained in Chapter 2, their
frequency domain representations are often assumed to follow a zero-mean, second order
circular, complex Gaussian distribution [15]. The STFT domain representation of the
speech signal is given by X = XS +XH, i.e. the distribution of X is centered around XH.
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Hence, incorporating XH, as discussed in Section 3.4, introduces the notion of a spectral
mean value [86]. This mean value reflects the voicing state. We model the speech DFT
coefficients by the following class-dependent prior distributions

p(X|H0) = δ(X), (4.12)

p(X|H1) = p(XR, XI|H1) =
1

πσ2
x

e
−X

2
R+X2

I
σ2
x , (4.13)

p(X|H2) = p(XR, XI|H2) =
1

πσ2
x

e
− (XR−X̄2,R)2+(XI−X̄2,I)

2

σ2
x , (4.14)

where X̄2,R = Re (XH) and X̄2,I = Im (XH) are the real and imaginary parts of X̄2,
respectively.

4.3.2 The Estimation Stage

According to Equation (4.14), in contrast to the scenario with two hypotheses in [133],
we have a third hypothesis, namely the scenario of voiced speech corresponding to con-
sidering a non-zero spectral mean value. As shown in Section 3.4, when formulating
optimal estimators under such models, opposed to the zero-mean model, the resulting
phase estimators differ from the noisy spectral phase.

An important component of the sub-risks in Equation (4.7) is the weighted cost function
Cb(X, X̂|Hb′) that consists of weights λbb′ , penalizing misclassifications dependent on

the pair {b, b′}, multiplied with the actual cost function Eb(X, X̂|Hb′). In this work,
estimation of the complex-valued DFT coefficients is of special interest. As a logical
consequence, the cost function is formulated on the squared error of the complex-valued
DFT coefficient estimates, i.e.

Eb(X, X̂|Hb′) =

{
(X − X̂b)

∗(X − X̂b), b′ = 1, 2

(GminY − X̂b)
∗(GminY − X̂b), b′ = 0,

(4.15)

Setting Gmin to zero means applying the maximum noise suppression, i.e. G = 0,
whenever the algorithm decides for speech absence. This might yield audible artifacts
like musical noise in practice because of spectral peaks resulting from the possibly highly
selective harsh suppression. To avoid these outliers, the spectral gain is often floored by
selecting Gmin > 0 [16].
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Inserting Equation (4.15) into Equation (4.11) results in

X̂b = arg min
X̂

p(H0)λb0

∫
DX

(GminY − X̂)∗(GminY − X̂)p(Y |X)p(X|H0)dX

+ p(H1)λb1

∫
DX

(X − X̂)∗(X − X̂)p(Y |X)p(X|H1)dX

+ p(H2)λb2

∫
DX

(X − X̂)∗(X − X̂)p(Y |X)p(X|H2)dX.

(4.16)

Considering a multiplicative gain for each class such that the estimated complex-valued
STFT coefficients are given by

X̂b = GbY, (4.17)

the criterion in Equation (4.16) results in the following class-dependent gain function12

Gb =
λb0Gmin + Λ1(Y )λb1GW + Λ2(Y )λb2GSDW

Λ1(Y )λb1 + Λ2(Y )λb2 + λb0
, (4.18)

The Wiener filter GW in Equation (2.20) is the optimal gain under hypothesis H1, the
stochastic-deterministic Wiener filter GSDW [117] from Equation (3.25) is optimal under
hypothesis H2, and accordingly, the optimal gain under hypothesis H0 is Gmin. These
gain functions are combined according to the respective likelihood ratios

Λb(Y ) =
p(Hb)
p(H0)

p(Y |Hb)
p(Y |H0)

, (4.19)

with

p(Y |H0) = p(YR, YI|H0) =
1

πσ2
d

e
−Y

2
R+Y 2

I
σ2
d ,

p(Y |H1) =
1

π(σ2
d + σ2

x)
e
−Y

2
R+Y 2

I
σ2
d

+σ2
x ,

p(Y |H2) =
1

π(σ2
d + σ2

x)
e
− (YR−X̄2,R)2+(YI−X̄2,I)

2

σ2
d

+σ2
x .

(4.20)

For the case where ∠Y 6= ∠XH, Equation (3.25) and hence also Equation (4.18) result
in a complex-valued gain, indicating that ∠X̂b 6= ∠Y . This effect results from the non-
circular prior distribution of the speech STFT coefficients, as they have a non-zero mean
in the presence of harmonic signal components.

12 See Appendix E.1 for the detailed derivation.
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The class-dependent estimate X̂b is parameterized by the weighting factors λbb′ . Setting
them all equal renders the detection operation to be obsolete, the estimators are simply
mixed according to their respective a posteriori probabilities

p(Hb|Y ) =
Λb(Y )

1 + Λ1(Y ) + Λ2(Y )
(4.21)

which is the same weighting as in the soft-decision estimator derived in [56]. In the
case of two classes only, i.e. speech presence/absence, this reduces to the well known
SPU considerations in [13]. In [86], SPU was incorporated in the estimation of the
spectral amplitude under a stochastic-deterministic signal model. For unequal λbb′s, we

need to choose from a set of alternative values for X̂b based on the detection criterion in
Equation (4.10). The detection-estimation procedure gives us more flexibility in terms of
parameterizing the estimator to not only fulfill estimation theoretic optimization criteria
but also take into account perceptual requirements.

4.3.3 The Detection Stage

The detection problem as formulated in Equation (4.10) requires us to solve Equa-
tion (4.7) for the sub-risks rb(Y |Hb′) for all b′ ∈ {0, 1, 2}. The particular outcomes are
given by

rb(Y |H0) = λb0p(Y |H0)|Gmin −Gb|2|Y |2, (4.22)

rb(Y |H1) = λb1p(Y |H1)(GWσ
2
d + |GW −Gb|2|Y |2), (4.23)

and

rb(Y |H2) = λb2p(Y |H2)(GWσ
2
d + |GSDW −Gb|2|Y |2), (4.24)

The corresponding derivations are given in Appendix E.2. Given the above equations,
Equation (4.10) can be used to evaluate the final decision, i.e. which estimator to
choose.

Given estimates of the speech and noise PSDs together with knowledge about the har-
monic components, one could apply the above estimation and detection rules right away
in any STFT-based speech enhancement framework. A variety of approaches to esti-
mating all three quantities exist, however, in the following, we will have a closer look on
retrieving the harmonic components from the noisy observations.
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4.4 Estimation of the Harmonic Signal Components

The detection-estimation procedure in Section 4.3 requires us to know XH(k, `) before
estimating the speech STFT coefficient itself. Hence, we need to retrieve an estimate
of the harmonic components directly from the signal mixture in Equation (4.1). A
vast amount of approaches to solve this task exists, many of them aim to estimate the
harmonic parameters magnitude, phase, and frequency followed by mapping them to
the desired domain, e.g. the time domain. From Equation (3.12) it is obvious that the
individual sinusoidal components interact with each other due to the window function.
This means that we cannot retrieve the parameters of harmonic h without knowing all
other harmonics’ parameters. There exist several approaches to overcome this problem,
e.g. by using an iterative procedure like the expectation-maximization algorithm [1,
122]. However, starting from the assumption that a fundamental frequency estimate is
available from some dedicated estimator, we take a different path. The proposed solution
intrinsically also solves the problem of interacting sinusoids for the given signal model,
although derived from a different perspective.

4.4.1 A Pitch-Synchronous Signal Representation

Considering additive noise and taking the DTFT of the noisy input signal gives us

Y (ejω, `) = XH(ejω, `) +XS(ejω, `) +D(ejω, `). (4.25)

Given the interpretation of the DFT as a sampled version of the DTFT, one may ask
if there exists a set of sampling points that facilitates the estimation of XH(k, `). Con-
sidering the observed data Y (k, `), the stochastic speech components and the additive
noise may mask the harmonic spectrum XH(k, `). We capture the amount of masking
by a measure similar to the SNR, termed the harmonic to stochastic-plus-noise ratio
(HSNR)

HSNR(k, `) =
E
(
|XH(k, `)|2

)
E
(
|XS(k, `)|2 + |D(k, `)|2

) =
|XH(k, `)|2

σ2
x(k, `) + σ2

d(k, `)
. (4.26)

The higher the HSNR(k, `), the more reliably we can estimate XH(k, `) from Y (k, `).
Under the assumption that the noise and speech variance are sufficiently flat across
frequency, maximizing |XH(k, `)|2 is equivalent to maximizing HSNR(k, `).

Following the definition of the DFT in Equation (2.3), the spectral sampling points
are determined by the choice of NDFT. Therefore, if we stick to the DFT, maximizing
HSNR(k, `) w.r.t. the spectral sampling points is equivalent to finding

NDFT,opt = arg max
NDFT

|XH(k, `)|2 . (4.27)
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Neglecting the negative frequency components in Equation (3.10) and setting N = NDFT

we have

XH(k, `) ≈
NH∑
h=1

Ah(`)

2
ejφh(`)W

(
e
j( 2πk
NDFT

−ωh(`))
)

e
−j( 2πk

NDFT
−ωh(`))N−1

2 (4.28)

we can use Jensen’s inequality for convex functions of sums to define an upper bound
for |XH(k, `)|2

|XH(k, `)|2 ≈
∣∣∣∣∣
NH∑
h=1

Ah(`)

2
ejφh(`)W

(
e
j( 2πk
NDFT

−ωh(`))
)

e
−j( 2πk

NDFT
−ωh(`))N−1

2

∣∣∣∣∣
2

≤
NH∑
h=1

∣∣∣∣Ah(`)

2

∣∣∣∣2 ∣∣∣∣W (
e
j( 2πk
NDFT

−ωh(`))
)∣∣∣∣2 .

(4.29)

Hence, maximizing the above upper bound w.r.t. NDFT means maximizing the DTFT
of the window function. In this work, we consider window functions that belong to the
Blackman-Harris family [137]. These windows, when modulated with a complex-valued
sinusoid, have their maximum at the DFT frequency that is closest to the modulator’s
frequency, i.e.

arg max
NDFT

|XH(k, `)|2 = arg min
NDFT

∣∣∣∣ 2πk

NDFT
− ωh(`)

∣∣∣∣2 , (4.30)

Rendering NDFT a function of frame index `

NDFT(`) =
2πk

ωh(`)
=

kfs
hf0(`)

= K
fs
f0(`)

. (4.31)

By selecting a fixed ratio K = k/h ∈ Z, we ensure that the maxima of
∣∣XH(ejω, `)

∣∣2
are sampled by every Kth DFT bin. Further, we have to ensure that NDFT(`) ∈ Z by
rounding to the next integer and we have

NDFT(`) = round

(
K

fs
f0(`)

)
= round(KfsT0(`)) . (4.32)

Hence, by choosing the DFT lengths as multiples of the fundamental period we ensure
that the harmonic frequencies are a subset of the DFT frequencies and hereby that
the maxima of the upper bound as formulated in Equation (4.29) are sampled. By
selecting the window length equal to the DFT length, i.e. N(`) = NDFT(`), we obtain
a pitch-synchronous signal representation which comes with the additional benefit that
the inequality in Equation (4.29) is an equality, ensuring that under the given signal

model the maxima of
∣∣XH(ejω, `)

∣∣2 are sampled. This property results from the chosen
class of window functions, which ensures that the windows are DFT-even [137], i.e. if
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they are modulated by a sinusoid and the observation length is an integer multiple of the
fundamental period T0 of this sinusoid, the only nonzero samples of their DFT are within
the bandwidth of the window’s mainlobe around the modulation frequency.13

It is important to note that now the window length N(`) is a function of the frame
index since it depends on the fundamental frequency trajectory. By oversampling the
signal before segmentation, we can refine the approximation in Equation (4.32) since the
difference between the actual optimal window length and its rounded value decreases
with increasing sampling rate. The theoretical result that outside the window’s main-
lobe around the modulation frequency, the DFT of a sinusoid is zero also renders the
approximations made in Equation (3.14) exact. Therefore, under the assumption of
(i) perfectly known fundamental frequency and (ii) perfect harmonicity of the signal,
DFT bin k is always dominated by one harmonic only. Hence, the noisy observation in
Equation (4.1) can be represented as

Y (k, `)=XS(k, `)+D(k, `)+
Ah̄(k)(`)

2
ejφh̄(k)(`)W

(
e
j( 2πk
N(`)
−ωh̄(k)(`))

)
e
−j( 2πk

N(`)
−ωh̄(k)(`))

N(`)−1
2 ,

(4.33)

where h̄(k) denotes the harmonic index corresponding to the sinusoid which is closest
to k. Note that a fundamental property of the resulting representation is that harmonic
h̄(k) is always associated to frequency bins occupying the mainlobe width around k =
h̄(k)K+1. Therefore, depending on the integer factor K, a fixed mapping from frequency
bin k to harmonic h̄(k) is possible. This property is fundamentally different to an analysis
stage with fixed window lengths.

The Phase Decomposition Stage

The harmonic magnitude and the corresponding initial phase can be considered to be
stationary for short time intervals. Later on, we want to make use of this assumption. In
order to access the initial harmonic phase, we apply the phase normalization as explained
in Section 3.2.2 by multiplying the pitch-synchronous DFT noisy observation with the
phase-normalizer Ψ(k, `) in Equation (3.15), i.e.

Ỹ (k, `) = Y (k, `)Ψ∗(k, `)

= X̃H(k, `) + X̃S(k, `) + D̃(k, `),
(4.34)

13 For frame lengths of 32 ms and a sampling frequency of 16 kHz, this results in a spacing of 31.25 Hz
between adjacent DFT bins. In case of a Hamming window, with a mainlobe width of 3 DFT bins
[137], this corresponds to a minimum fundamental frequency of 93.75 Hz for Equation (4.29) being
an equality, which is a reasonable assumption.
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with

X̃H(k, `) =
Ah̄(k)(`)

2
ejαh̄(k)(`)W

(
e
j( 2πk
N(`)
−ωh̄(k)(`))

)
, (4.35)

X̃S(k, `) = XS(k, `)Ψ∗(k, `), (4.36)

D̃(k, `) = D(k, `)Ψ∗(k, `). (4.37)

Note that according to Section 3.2.2 the phase of the window function is zero within the
mainlobe width around its center frequency (theoretically the only non-zero samples of
X̃H(k, `) in the pitch-synchronous DFT), i.e. we have

X̃H(k, `) =
Ah̄(k)(`)

2
ejαh̄(k)(`)

∣∣∣W (
e
j( 2πk
N(`)
−ωh̄(k)(`))

)∣∣∣ , (4.38)

if all model assumptions are fulfilled.

Figure 4.2 illustrates the DFT after phase normalization for the conventional case, i.e.
the window length is not an integer multiple of the fundamental period, as well as the
case of a pitch-synchronous frame length. The stochastic signal components are set to
zero to emphasize on the impact on XH(k, `) only. For the conventional case, the DFT
does not always sample the DTFT at its maxima. An amplitude estimate obtained by
simple peak-picking results in a biased estimate due to the interaction of the individual
harmonics, even if the fundamental frequency is known and the harmonics are well
separated. The plots (c) and (d) also indicate that the true sinusoidal phase cannot
be obtained in case of the conventional windowing. In the pitch-synchronous case, the
interaction of the sinusoids at the harmonic frequencies is minimized, hence, the correct
phase value is sampled by the DFT. This is indicated by the common intersection of the
DTFT of the fundamental, the DTFT of the sum of all three sinusoids, and the DFT
sampling point.

The phase normalization in Equation (4.36) and Equation (4.37) only rotates the DFT
coefficients in the complex plane, hence does not affect the respective distributions since
they are circular, i.e. their moments are invariant with respect to a rotation in the com-
plex plane [65]. Thus, we have X̃S(k, `) ∼ CN (0, σ2

x(k, `)) and D̃(k, `) ∼ CN (0, σ2
d(k, `)).

In contrast, given X̃H(k, `) 6= 0, Ỹ (k, `) follows in general a non-centered and hence non-
circular [138] distribution, i.e. Ỹ (k, `) ∼ CN (X̃H(k, `), σ2

d(k, `) + σ2
x(k, `)) [40,86].

In the following, we will illustrate how to exploit the phase-normalization in conjunc-
tion with the properties of the pitch-synchronous segmentation to obtain estimates of
XH(k, `). In contrast to the voiced speech model, the conventionally assumed statistical
properties of the stochastic signal components, i.e. unvoiced speech and noise, are not
affected by the non-uniform segmentation as long as we keep the segment lengths short
enough for stationarity assumptions to hold and long enough for the application of the
CLT to be reasonable.
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Figure 4.2: Impact of the analysis window length on the DFT representation of three har-
monically related sinusoids. The left panels (a) and (c) illustrate the case
where N(`) 6= K fs

f0(`)
, hence, the DTFT is not sampled at its maxima and the

sinusoids leak in all frequency bands. Panels (b) and (d) refer to a pitch-
synchronous segmentation with K = 4 where the leakage problem at the
DTFT sampling points is reduced. The gray lines in (a) and (b) represent
the individual harmonics, the dashed black line is the summation of the three
harmonics, and the black circles are the DFT sample points. In (c) and (d),
the gray line is the original phase of the first harmonic.
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4.4.2 The Prior Distributions

Since each harmonic h̄(k) in the pitch-synchronous analysis framework is assigned to a
fixed set of DFT bins Kh̄(k), not every frequency bin is equally likely to contain (voiced)
speech components. The number of DFT bins |Kh̄(k)| in the setKh̄(k) is determined by the
frequency estimation accuracy and the window choice. However, we neglect the frequency
estimation accuracy’s impact in the following, assuming the fundamental frequency to
be perfectly known. As a result, each harmonic theoretically only affects frequency bins
within the mainlobe width around the respective DFT bin, which is a generic parameter
of the chosen window function. Further, it is reasonable to assume that higher order
harmonics contain less energy than lower order harmonics. This was taken into account
in related previous works such as [28,33,86] by introducing a maximum voicing frequency,
e.g. 4 kHz. For frequencies exceeding this threshold, no harmonic structure was expected.
This step was needed to prevent the respective algorithms from fitting harmonic structure
to high frequency broad-band noise, resulting in a buzzy sound-quality. In this work,
rather than setting a fixed threshold, we incorporate the knowledge about the specific
structure of the pitch-synchronous transform into the speech estimation task by means
of prior distributions for the harmonic signal components.

In the following, as one possibility to modeling the prior information, we will deploy
an empirical Bayesian approach for obtaining and incorporating the prior distributions.
In order to follow the nomenclature in Section 4.3, we consider two classes of speech
sounds, unvoiced speech, indicated by H1 and voiced speech, indicated by H2. Further,
due to the statistical assumptions made in the following, we will formulate the priors of
the harmonic components in polar coordinates instead of Cartesian ones.

It is reasonable to speculate that without further information, the initial harmonic phase
αH(k, `) = ∠X̃H(k, `) is arbitrary, hence, uniformly distributed. However, this is not true

for the magnitude AH(k, `) =
∣∣∣X̃H(k, `)

∣∣∣. We therefore assume AH(k, `) to come from

a delta distribution around zero in unvoiced time frequency regions while we expect
heavy tailed pdfs14 in voiced parts, putting more weight on higher magnitudes where we
expect the harmonic signal components to contribute to the overall signal energy. We
thus select the Gamma distribution [55] to model the amplitude pdf for voiced speech,
i.e.

p(AH(k, `);Hb) =

δ(AH(k, `)), b = 1,

µ(k)ν(k)

Γ(ν(k)) AH(k, `)ν(k)−1e−µ(k)AH(k,`), b = 2,
(4.39)

where ν(k) and µ(k) denote the frequency dependent shape and inverse scaling param-
eter, respectively. The joint prior, under the assumption of independent amplitude and

14 See Appendix D, Equation (D.10).
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phase [55], is hence given by the multiplication of the individual pdfs

p(AH(k, `), φ(k, `);Hb) =


1

2π δ(AH(k, `)), b = 1,

µ(k)ν(k)

2πΓ(ν(k))AH(k, `)ν(k)−1e−µ(k)AH(k,`), b = 2.
(4.40)

Following the empirical Bayes methodology, the parameters ν(k) and µ(k) are obtained
by fitting the distributions in Equation (4.40) to empirical distributions obtained from
real speech data, explained in the following.

4.4.3 Obtaining the Prior Parameters

For empirically evaluating the frequency dependent parameters of the Gamma distribu-
tion we used the TIMIT [139] core database train set containing 72 utterances together
with the annotation from [140]. The annotation includes voicing states as well as a fun-
damental frequency trajectory. For each frequency bin k we estimate µ(k) and ν(k). As
a consequence of the pitch dependent frame length N(`), it is important to normalize
the amplitude values by dividing A(k, `) by N(`) in order to achieve compatible values
along time.

It is important to note that although we are dealing with clean speech data and an an-
notation of the voicing states is available, we cannot access the purely harmonic content
directly, since we still observe the mixture

X̃(k, `) = X̃H(k, `) + X̃S(k, `), (4.41)

as by construction we let the stochastic components model all intrinsic model misfits,
explained in Section 3.2.1. Since X̃S(k, `) is modeled as zero-mean, we obtain an ap-
proximation of X̃H(k, `) by averaging out X̃S(k, `), i.e. for each frequency bin k we take
the mean of all frames whose center time fits inside the range [t(`)− 20 ms, t(`)], where
the center time of frame ` is given by

t(`) =
N(`)/2 +

∑`−1
`′=0 round(HF ·N(`′))

fs

= t(`− 1) +
1

fs

(
round(HF ·N(`− 1)) +

N(`)−N(`− 1)/2

2

)
,

(4.42)

with hop factor (HF) defined as L/N(`). Hence, we have

AH(k, `) ≈
∣∣∣∣∣ 1

No

No−1∑
u=0

X̃(k, `− u)

∣∣∣∣∣ . (4.43)

The number of observations considered for the averaging is termedNo, which corresponds
to the cardinality of the set of frames that are within the assumed stationarity interval
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of 20 ms. Following these considerations, a set of observations is obtained which can be
used to fit the parameters of the Gamma approximation.

Although we have variable frame lengths, dependent on f0(`) and K, we still want
to ensure that they approximately correspond to 30 ms, i.e. resemble the stationarity
interval of speech. To this end, we limit the fundamental frequency estimates to the
interval [90, 350] Hz and choose K = 6, which yields frame lengths around the desired
value for a sampling frequency of fs = 16 kHz. We set the overlap of the sliding windows
to 87.5% of the corresponding frame length.

To ensure independence of the fitted distributions from overall signal level, it is important
to also take into account the variations in signal level. We therefore evaluate the empirical
distribution of the spectral magnitude, divided by the constant

C(`) =
1

N(`)

N(`)/2∑
k=1

|X(k, `)| , (4.44)

which is proportional to the signal level.

Although not considered to be Gamma distributed in Equation (4.40), we also con-
ducted the same analysis for unvoiced speech in order to compare the resulting Gamma
distribution parameters for both classes. For unvoiced speech, we expect the resulting
distributions to put more emphasis on magnitudes close to zero. The outcome of this
procedure is illustrated in Figure 4.3 for both parameters and both classes. The peaky
character of the inverse scaling parameter µ(k) in case of voiced speech is due to har-
monics. Whereas µ(k) tends to be larger for DFT bins dominated by harmonics, it takes
lower values between harmonics and in unvoiced speech, i.e. putting more weight on
smaller amplitudes as illustrated in Figure 4.3 (b).

By combining the resulting prior distributions with the observed noisy data by means of
the MAP principle, the prior knowledge can be incorporated into the estimation of the
harmonic signal components, or, to stick with the nomenclature we used in Section 4.3.1,
the spectral mean value.

4.4.4 MAP Estimation of the Spectral Mean

Merging the aforementioned models and using Bayes’ theorem to formulate the posterior
of the spectral mean, we obtain

p(AH(k, `), αH(k, `)|ỹ(k, `);Hb) =
p(ỹ(k, `)|AH(k, `), φH(k, `))p(AH(k, `), φH(k, `);Hb)

p (ỹ(k, `);Hb)
(4.45)
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Figure 4.3: (a) and (c): The dependency of the prior distribution parameters on frequency
bin k. (b): Inserting the parameters from (a) and (c) for frequency bin k =
7 (solid lines, corresponding to harmonic 1) and k = 5 (dashed lines) into
Equation (4.39) illustrates the dependency of the priors’ shape on the DFT
bin considered.

with No observations stacked into the vector

ỹ(k, `) =
[
Ỹ (k, `) Ỹ (k, `− 1) . . . Ỹ (k, `−No + 1)

]T
.

Considering the observations to be independent and assuming the mean to be stationary
within the observed time span, from the statistical model in Section 4.3.1 we have the
likelihood

p (ỹ(k, `)|AH(k, `), αH(k, `)) =

No−1∏
u=0

e
− |Ỹ (k,`−u)−AH(k,`)ejαH(k,`)|2

σ2
d

(k,`−u)+σ2
x(k,`−u)

π(σ2
d(k, `− u) + σ2

x(k, `− u))
. (4.46)
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Note that the length of the averaging filter in Equation (4.43) should be consistent with
the number of observations No in Equation (4.46). For the sake of readability we drop the
frequency index in the following derivations, however, the dependency of all parameters
on k maintains.

Finding the MAP estimates of AH(`) and αH(`) means maximizing Equation (4.45), or
alternatively, the log

(
·
)

of Equation (4.45) :

Âb,MAP(`) = arg max
AH(`)

log
(
p (AH(`), αH(`)|ỹ(`);Hb)

)
,

α̂b,MAP(`) = arg max
αH(`)

log
(
p (AH(`), αH(`)|ỹ(`);Hb)

)
.

(4.47)

For unvoiced speech and frequency bins between harmonics, the spectral mean estimate
is equal to zero since we assume the amplitude to follow a delta distribution in this
case.

For voiced speech, the MAP phase estimate is:

α̂2,MAP(`)=arctan2

No−1∑
u=0

∣∣∣Ỹ (`− u)
∣∣∣ sin(∠Ỹ (`− u)

)
σ2
d(`− u) + σ2

x(`− u)
,

No−1∑
u=0

∣∣∣Ỹ (`− u)
∣∣∣ cos

(
∠Ỹ (`− u)

)
σ2
d(`− u) + σ2

x(`− u)

 .

(4.48)

For No = 1, this estimate degenerates to the noisy phase, which is expected from the
discussion in Section 2.3, as the prior distribution for the harmonic phase is uniform and
for the case No = 1 we only take one observation for the estimation of the phase into
account. The corresponding MAP amplitude point estimate is given by

Â2,MAP(`) = v(`) +

√
v2(`) + (σ2

d(`) + σ2
x(`))

ν(k)− 1

2No
, (4.49)

with

v(`) =
σ2
No

(`)

2

No−1∑
u=0

∣∣∣Ỹ (`− u)
∣∣∣ cos

(
∠Ỹ (`− u)− αH(`)

)
σ2
d(`− u) + σ2

x(`− u)
− µ(k)

2C(`)

 (4.50)

and

1

σ2
No

(`)
=

No−1∑
u=0

1

σ2
d(`− u) + σ2

x(`− u)
. (4.51)

The detailed derivations of Equation (4.48) and Equation (4.49) can be found in Ap-
pendix E.3. Note that αH(`) in Equation (4.50) is not directly accessible. However,
since it can be estimated from the noisy observation directly, it is replaced by α̂2,MAP.
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Further, whereas Ỹ (`) is the observation and No is a fixed parameter, all other param-
eters of this estimator are in principle unknown. For obtaining estimates of σ2

d(`) and
σ2
x(`) we make use of standard approaches from Chapter 2, adapted to our framework,

as explained in Section 4.5.1 and Section 4.7. The estimation of C(`) will be discussed
in Section 4.5.2.

Now, given an estimate of the spectral magnitude and the spectral phase, by re-wrapping
the phase again, we can construct a complex-valued STFT, representing the spectral
mean value that is needed for the gain function in Equation (4.18)

X̂H(`) = Â2,MAP(`)ejα̂2,MAP(`)Ψ(`). (4.52)

4.5 The Pitch-Synchronous Simultaneous
Detection-Estimation Framework

Once having obtained the spectral mean estimate according to Equation (4.52) it can
be plugged into any estimation scheme relying on a harmonic model for voiced speech,
e.g. [56, 86, 117, 132]. Here, we will use the estimation scheme that has been derived in
Section 4.3, resulting in the overall framework pictured in Figure 4.1.

Until now, we considered the variances of the DFT coefficients and the normalization
constant C(`) to be given. In practice they are not. For noise PSD estimation, we use the
estimator from [18] throughout this thesis, and the estimation of the other parameters
is explained in the following.

4.5.1 Speech Variance Estimation

For the estimation of the speech variance we seek an approach similar to the decision-
directed method [15]. As the signal model is different we need to adopt it to our proposed
framework. We can express the variance by its definition and by means of the noisy
observation resulting from the complex Gaussian model, yielding two expressions:

σ2
x(`) = E(|XS(`)|2) = E(|X(`)−XH(`)|2),

σ2
x(`) = E(|Y (`)−XH(`)−D(`)|2) = E(|Y (`)−XH(`)|2)− σ2

d(`).
(4.53)

In practice, the noise variance is unknown and approximated by an estimate σ̂2
d ob-

tained by, e.g. [18]. By introducing a smoothing constant αDD ∈ [0, 1] we can mix
approximations of both terms in Equation (4.53) as follows,

σ̂2
x(`) =αDD|X̂bopt(`− 1)− X̄2(`− 1)|2

+ (1− αDD)max
[
|Y (`)− X̄2(`)|2 − σ̂2

d(`), 0
]
,

(4.54)
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The estimate of the speech variance in Equation (4.54) differs from the modified decision-
directed approach in [86] in subtracting the noise variance estimate σ̂2

d(`) in the second
term.

4.5.2 Estimation of the Normalization Constant

The normalization constant C(`) is needed to obtain the harmonic amplitude estimates
at frame `. Since we clearly do not have access to |X(k, `)|, we assume that C(`)

changes slowly over time, i.e.
∑N(`)/2

k=1
|X(k,`)|
N(`) ≈

∑N(`−1)/2
k=1

|X(k,`−1)|
N(`−1) . Using estimates of

|X(k, `− 1)| we obtain

Ĉ(`) =

N(`−1)/2∑
k=1

|X̂bopt(k, `− 1)|
N(`− 1)

. (4.55)

If no previous speech estimates are available, we initialize Ĉ(1) = 1.

4.6 Evaluation with Synthetic Data

In order to gain insights into the potential of the proposed method we first evaluate
the proposed estimation scheme by conducting experiments with synthetic data. This
includes investigating the maximum achievable performance when all model assumptions
are fulfilled as well as the possible impact of model misfits. In a second step, we test
the overall algorithm corresponding to the block diagram in Figure 4.1 with real speech
data and examine its capability in a speech enhancement scenario. This is achieved by
instrumental metrics as well as by a subjective listening test.

The core of this chapter is the combination of a pitch-synchronous sliding window DFT
with a detection and estimation framework that takes into account the different char-
acteristics of voiced and unvoiced speech. To evaluate the impact of each component
on the estimation performance separately, we conducted Monte-Carlo simulations with
synthetic harmonic signals.

We generated the synthetic data as follows. We used 10 cosines, harmonically related
with a fundamental frequency of f0 = 133.0561 Hz. The amplitudes and phases of the
harmonics were both picked from uniform distributions such that Ah ∈ [0.5, 1.5] and
αh ∈ [−π, π). The frame lengths were chosen up to 30 ms at a sampling frequency of
fs = 16 kHz in order to resemble a typical setup for speech enhancement. To evaluate the
impact of the window length we varied the window length from 11 to 481 samples, where
N = 481 = 4fs/f0 for the given fundamental frequency. Since we apply a Hamming
window for the analysis in the subsequent experiments with real speech data, we use
the same window function for this experiment. As additive noise we chose white noise
and mixed it at global SNRs ∈ {−5, 0, 5, 10, 15} dB. The stochastic components of the
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speech signal were simulated by sampling from a zero-mean Gaussian distribution with
fixed variance σ2

x = 1. For each experiment, we averaged results over NMC = 1000
Monte-Carlo runs.

4.6.1 Harmonic Signal Component Estimation Accuracy

Since in Section 4.4.1, we argued that the achievable accuracy in the harmonic retrieval
problem is a function of the chosen segment length, we want to enquire how estimation
errors in the harmonic signal components are affected by the window length and how
these errors propagate through the processing chain. To this end we define the error-to-
signal ratio (ESR) for the harmonic components

ESR = 10log10

( 1

|L|
∑
`∈L

∑N(`)
n=1 (xt,H(n, `)− x̂t,H(n, `))2∑N(`)

n=1 xt,H(n, `)2

)
, (4.56)

where L denotes the set of all frames considered and |L| corresponds to its cardinality.
We obtain x̂t,H(n, `) by sampling the DTFT at known harmonic frequencies, indicated
by “DTFT(yt(n, `)) @ fh” in the results, and using the resulting amplitude and phase
to synthesize the signal according to Equation (3.1). This procedure corresponds to
the approximate maximum likelihood solution to the harmonic retrieval problem [121]
given that the fundamental frequency is known. Further, since we average over mul-
tiple observations to obtain the MAP estimate of XH(k, `) in Equation (4.52), we also
vary the length of the averaging filter in order to assess its impact on the ESR. Since
the fundamental frequency is known, the ESR is influenced only by the additive noise,
the possibly inadequately chosen window length, and the smoothing filter length No (in
samples). We also report the ESR results for the case where no noise is present, i.e.
the clean signal’s DTFT is sampled, indicated by “DTFT(xt,H(n, `)) @ fh”. Figure 4.4
illustrates the results for this simulation. The pitch-synchronous framing helps to im-
prove the ESR, especially if additional smoothing across observations is employed. Even
if the clean signal’s DTFT is sampled, the ESR can further be improved by choosing a
pitch-synchronous setup.

4.6.2 Impact of the Harmonic plus Noise Model

In order to evaluate the estimation performance resulting from different model assump-
tions, we use the normalized mean-square error (NMSE) of the estimated time domain
signals. We define the NMSE as follows

NMSE = 10log10

( 1

|L|
∑
`∈L

∑N(`)
n=1 (xt(n, `)− x̂t(n, `))

2∑N(`)
n=1 xt(n, `)2

)
. (4.57)
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Figure 4.4: ESR dependency on the window length averaged over global SNRs ranging
from −5 to 15 dB. (b): illustrates the dependency of the ESR on the window
length for the case where the clean signal’s DTFT is sampled.

We report the results in Figure 4.5. We note that if harmonic components exist in
the signal, the stochastic-deterministic Wiener filter outperforms the purely stochastic
Wiener filter for a wide range of ESRs.

4.7 Evaluation

In the previous section we analyzed the first two stages of our algorithm, the signal
analysis together with the harmonic retrieval for synthetic data. In the next step we seek
to assess the whole framework in terms of its speech enhancement performance.

4.7.1 Benchmark Algorithms

As benchmark algorithms we chose the Wiener filter, the MMSE LSA estimator [90]
and the stochastic deterministic MMSE-STSA (SD MMSE-STSA) algorithm from [86],
which employs the estimator presented in Section 3.4.15 In order to additionally assess
the impact of the harmonic retrieval block, we combine the mean estimates obtained

15 I would like to thank Matthew McCallum for sharing his implementation of [86].
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Figure 4.5: An insight into the NMSE performance for the stochastic Wiener filter (GW)
compared to the stochastic-deterministic Wiener filter (GSDW) for different
accuracies, i.e. values of ESR, of the spectral mean estimate.

from our proposed scheme together with the SD MMSE-STSA algorithm. Since tak-
ing into account SPU considerations degraded the performance of the LSA and the
Wiener filter in our experiments, we did not include it for these benchmarks. The SD
MMSE-STSA algorithm takes into account SPU and the a priori speech absence prob-
ability was set to 0.65. Further, the maximum occurring harmonic frequency in the SD
MMSE-STSA algorithm was restricted to be below 3 kHz, as recommended in [86]. The
proposed algorithm does not need such a restriction, since amplitudes of higher order
harmonics are already penalized by the frequency bin dependent Gamma-distribution
parameters.

In all derivations, we relied on a given fundamental frequency. This prerequisite cannot
be met in practice since we in general do not have access to a ground truth regarding
the fundamental frequency. We therefore additionally report results for our proposal
employing the annotation of the fundamental frequency from [140] as fundamental fre-
quency estimate. This scenario is a performance upper bound w.r.t. the algorithm’s
sensitivity on the fundamental frequency estimation accuracy. We use this annotation
as a ground truth for the f0-estimation, hence termed as “oracle f0” in Figure 4.8 and
Figure 4.7.

In the blind scenario, we chose the PEFAC [141] algorithm for estimating the fundamen-
tal frequency. The noise variance estimator used in all experiments was the MMSE-based
noise estimator from [18]. For the pitch-synchronous methods we chose frame lengths
corresponding to K = 6 times the fundamental period, consistent with the preceding
experiments. The overlap was set to 87.5% of the corresponding frame lengths.

In the detection-estimation step, we set the prior probabilities as follows. The prior
probability of voiced speech is set to zero in those frequency regions where we do not
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expect any influence of harmonics, i.e. all frequency bins outside the mainlobe of the
window function around frequency bins k = hK + 1, elsewhere we set p(H2) = 1

6 and
equally distribute the remaining share on H0 and H1,

p(H1) = p(H0) =
1− p(H2)

2
. (4.58)

The overlap-add synthesis in case of the pitch-synchronous framework needs an addi-
tional division by the summation of the overlapping synthesis windows to compensate
for the varying overlaps. In our experiments we achieved a reconstruction error in the
same order as the reconstruction error of a regular overlap-add synthesis using the same
window function.

Since we are interested in the impact of each individual step, we report results for the
following two variants of our algorithm; i) the stochastic-deterministic Wiener filter
applied on the proposed sliding window DFT with pitch-synchronous frame lengths (PS
SD Wiener filter), and ii) the full proposal as the outcome of eventually applying the
detection and estimation framework (PSDE).

The recommendation in [86] for the SD MMSE-STSA is a Hamming window function,
which we consequently selected. For the pitch-synchronous methods we also used the
Hamming window function for analysis and synthesis. For the speech variance estimation
we employed the adapted DD estimator in Equation (4.54) for the methods which addi-
tionally consider the harmonic model. The smoothing constant was set to αDD = 0.98.
This standard choice is known to perform well with the benchmark algorithms and also
turned out to yield reasonable performance for the proposed method. The mainlobe
width of the chosen window function (Hamming) is 3 DFT bins. For the estimation of
the spectral mean value we selected the number of observations No such that it includes
frames within the interval [t` − 20 ms, t`] (which corresponds roughly to the stationarity
interval of speech). The values for λbb′ are listed in Table 4.1.

Table 4.1: Assignment of λbb′ .

b′
b

0 1 2

0 1 1.1 1.1

1 0.9 1 0.9

2 0.9 1 1
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Figure 4.6: Proof-of-concept: Demonstrating the impact of the proposed estimation
scheme on a noisy speech signal mixed at 0 dB global SNR with white noise.
The clean speech signal is a recording of a female speaker taken from TIMIT
saying “By the look of him he wasn’t that far gone.”. (a) Clean speech sig-
nal, (b) noisy speech, (c) conventional Wiener filter, (d) Wiener filter in a
pitch-synchronous framework, (e) stochastic-deterministic Wiener filter in the
pitch-synchronous domain, (f) applying the simultaneous detection-estimation
procedure.
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4.7.2 Proof-of-concept

Figure 4.6 depicts spectrograms of a speech signal processed by different algorithms. The
conventional Wiener filter results in numerous artifacts such as isolated peaks in the spec-
trogram representing musical noise, the Wiener filter applied in the pitch-synchronous
setup reduces these effects drastically. We attribute this effect to the fact that the
DD a priori SNR estimator benefits from the property that harmonics and DFT share
a fixed mapping, independent of the frame index.16 However, when compared to the
clean speech signal, in both cases low energy harmonics are not very well preserved
(see rectangle “1”). The stochastic-deterministic Wiener filter on the other hand intro-
duces artificial harmonics (rectangle “2”) resulting in a buzzing residual noise. Applying
the detection-estimation step helps dealing with these unwanted components while pre-
serving important but low SNR time-frequency regions. Furthermore, lower frequency
harmonics are well retrieved using the proposed method.

4.7.3 Objective Evaluation of Speech Enhancement Performance

Databases and Evaluation Metrics

We used speech utterances from the test set from the TIMIT core database [139] and
corrupted the signals with babble, factory, and pink modulated taken from the NOISEX-
92 [142] database, as well as a recording of rain drops on a roof, as a noise type with
impulsive characteristics, taken from [143]. We mixed the speech signals with noise at
global SNRs of −5 to 15 decibels in 5 dB steps, where we follow the SNR definition from
[144]. The TIMIT core test set contains 192 utterances and comes with an annotation
of the fundamental frequency and the voicing states [140], used as ground truth in our
experiments. The signals were sampled at 16 kHz. As evaluation criteria we chose
the perceptual evaluation of speech quality (PESQ) [145] and the short-time objective
intelligibility (STOI) [146] measure as instrumental predictors of perceived speech quality
and speech intelligibility, respectively.17 We report both PESQ and STOI in terms of ∆
improvement over the noisy signal performance.

Results

Figure 4.8 and Figure 4.7 illustrate the results in terms of instrumental metrics. The
following observations are made:

• In terms of STOI, in all noise scenarios improvement can be expected for input
SNRs up to 10 dB from the proposed methods.

16 This hypothesis will be examined and explained more thoroughly in Section 5.2.
17 For an overview on the instrumental evaluation metrics used throughout this thesis we refer to Ap-

pendix B.
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Figure 4.7: Summary of the final results in terms of ∆STOI versus global SNR.

• We observe that the detection step helps to further improve the algorithm’s per-
formance in PESQ while intelligibility is slightly decreased. The PSDE even out-
performs the oracle f0 implementation of the PS SD Wiener filter in PESQ for
modulated pink noise and performs equally good for factory noise at SNRs above
0 dB.

• Employing the harmonic model estimate of our proposal as spectral mean value for
the SD MMSE-STSA improves the algorithm’s performance in STOI but degrades
the PESQ at SNRs above 0 dB. This demonstrates that different harmonic model
estimates may affect intelligibility and perceived quality differently. Hence, the
specific choice of these estimates is an important design step in speech enhancement
algorithms that take into account the harmonic model.

• The improvement from the proposed speech enhancement procedure is particularly
pronounced at low SNRs. The detection-estimation step helps to retain the PESQ
performance also at high SNRs for factory, modulated pink, and babble noise while
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Figure 4.8: Summary of the final results in terms of ∆PESQ versus global SNR for the
LSA [90], Wiener filter, SD MMSE-STSA [86], SD MMSE-STSA with mean
value estimated from Equation (4.52), PS SD Wiener filter, and the PSDE
algortihm.

decreasing the performance gain in STOI at low SNRs. In general, at 15 dB SNR,
all methods approximately perform the same. In rain noise, the SD MMSE-STSA
estimator [86] together with the pitch-synchronous estimate of the spectral mean
performs best (neglecting the oracle f0 scenarios) in terms of PESQ and STOI for
SNRs up to 15 dB.

• In case of non-stationary noise types such as babble noise, the oracle f0 scenario
indicates that improved performance can be achieved if more reliable f0-estimates
are available. This is reasonable, considering that the algorithm in its individual
steps strongly relies on accurate f0-estimation, known to be a difficult task at low
SNRs and non-stationary noise [141].
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4.7.4 Subjective Evaluation of Speech Enhancement Performance

For the subjective evaluation of the proposed method we followed the Multiple Stimuli
with Hidden Reference and Anchor (MUSHRA) standard [147]. We included one anchor,
obtained by filtering the clean signal by a lowpass filter with a cutoff frequency of 3.5 kHz.
15 listeners participated in the test, which took place in a quite office. As transducer we
used AKG-K271 MKII headphones. The listening excerpts were structured as follows; 8
gender balanced randomly selected utterances were taken from the TIMIT core database
test set. These were corrupted by factory and babble noise at SNRs of 5 dB and 15 dB
each. Each signal was then processed by the LSA [90], SD MMSE-STSA [86], and PSDE
algorithms, yielding 6 test signals per utterance together with the noisy utterance, the
hidden reference and the anchor. After a training phase, the participants were asked to
rate the overall sound quality on a scale from 0 to 100 with the Matlab GUI adapted
from [148]. The participants were presented all 6 processing variants of each utterance
at once and were allowed to listen to each of the sound files as often as they wanted.
The results of this evaluation, averaged over SNRs, are shown in Figure 4.9.

0 20 40 60 80 100

LSA [90]

SD MMSE-STSA [86]

Proposed

Noisy

Factory

0 20 40 60 80 100

LSA [90]

SD MMSE-STSA [86]
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Noisy

Babble

bad poor fair good excellent

bad poor fair good excellent

Figure 4.9: Results of the subjective listening test averaged over all participants. The
reported confidence interval corresponds to a confidence level of 95%.

Although all participants reported that the algorithms differed in the type of artifacts
and the amount of noise reduction they introduced, the three algorithms perform close
when averaged over all participants. Pairwise two-tailed t-tests among the methods give
the following insights:
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• For factory noise, representing a rather stationary real-life noise type, the differ-
ences between the algorithms are not significant for a significance level of p = 0.05.

• For babble noise, as a non-stationary noise scenario, the preferences of the PSDE
algorithm and the LSA algorithm over the SD MMSE-STSA are indicated by p-
values of p = 0.01 for the LSA and p = 0.0002 for the PSDE. The preference of
the PSDE over the LSA is quantified by a p-value of p = 0.04.

4.8 Conclusion

This chapter presented a pitch-synchronous simultaneous detection-estimation frame-
work under the harmonic plus noise model for speech. The detection-estimation stage
is an alternative to existing soft-decision approaches to speech enhancement under the
harmonic plus noise model, the pitch-synchronousity is a result of optimizing the signal
analysis stage to the estimation of the harmonic signal components. We exploit the
specific characteristics of the signal analysis stage by incorporating an empirical Bayes
approach for estimating the harmonic components. The resulting scheme is modular, i.e.
each of the three steps (i) analysis, (ii) harmonic retrieval, and (iii) detection/estimation
can in principle be replaced by any other method performing the respective task.

Methods relying on the same signal model such as [40] or [27, 28] typically solve the
problem of harmonic overfitting by incorporating speech presence uncertainty and/or
a fixed threshold that limits the maximal harmonic frequency. The empirical Bayes
approach circumvents the necessity to explicitly define a maximum voicing frequency, as
the prior distribution puts less weight on higher order harmonics. The proposed method
positively affects both, the predicted speech quality as well as the speech intelligibility
compared to the noisy signal and reference algorithms at low SNRs for the reported
noise types.

In the light of the research question posed in Chapter 1, this chapter illustrates that
the statement “the noisy phase is optimal” is in fact a result of a commonly used sta-
tistical model enforcing circularity of the complex-valued speech DFT coefficient’s prior
distribution. If we incorporate the harmonic plus noise signal model, this condition is
not fulfilled, resulting in MMSE optimal phase estimates that are not equal to the noisy
phase.

The results indicate an overall preference for the PSDE method compared to the bench-
marks, in particular the oracle f0 scenarios perform well in terms of instrumental predic-
tors of perceived speech quality and intelligibility. Also the improved STOI performance
of the SD MMSE-STSA [86] in conjunction with the proposed MAP harmonic retrieval
scheme is an interesting result, indicating the importance of the harmonic spectrum for
intelligibility enhancement. However, the fact that all listening test participants reported
that the algorithms were distinguishable but did not decide significantly in favor of the
PSDE or the SD MMSE-STSA [86] algorithm compared to the computationally less ex-
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pensive LSA algorithm poses the question if it is the instantaneous harmonic spectrum
that is the key to improved overall single-channel speech enhancement.
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5
Exploiting Phase Structure along Time for

Single-Channel Speech Enhancement

This chapter is dedicated to analyzing and exploiting correlation of complex-valued
STFT coefficients along time for single-channel speech enhancement algorithms. We will
present a frequency domain Kalman filter that exploits the simplified statistics resulting
from harmonic signal modeling together with a slight modification to the classical STFT
framework, termed pitch-adaptive STFT. More specifically, we extend a complex-valued
subband Kalman filter by using circular statistics in combination with harmonic signal
modeling for the estimation of the corresponding state transition model. All deriva-
tions and simulations included in this chapter have been conducted by the author. The
complex-valued Kalman filter is part of the submitted work in [5]. The idea of using a
pitch-adaptive zero padding was originally intended to improve the DD a priori SNR
estimator and has been published in [3]. Parts of the text in this chapter have been
published in [3].

5.1 Overview and Motivation

The vast majority of speech enhancement algorithms performs the speech estimation
step separately for each frame, but there also exist various approaches that exploit inter-
frame correlations of STFT coefficients for speech enhancement. The main motivation
behind such approaches is that the signal frames are typically correlated since they are
overlapping [61]. The amount of correlation however highly depends on the frame shift
of the analysis stage. In the context of linear filtering, subband inter-frame correlations
have been exploited in [62, 63, 149], where MVDR filters and multiframe Wiener filters
have been proposed. These concepts, specifically the task of estimating the inter-frame
correlations of speech and noise, have been revisited in [150,151] and were demonstrated
for speech enhancement. Highly relevant for this chapter, the methods presented in [152],
[153], and [154] formulate modified Kalman filters based on an AR model along time
for STFT coefficients. A Kalman filter that tracks the speech phase in the modulation
domain has been proposed in [155].
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Interestingly, all the aforementioned works formulate their optimization criteria in terms
of the complex-valued STFT coefficients. Independent of the strategy chosen, the pa-
rameters, whether they are coefficients of a linear filter or describing an AR model, are
not known. Hence, they are either assumed to be known from isolated clean speech
data, or they are estimated from some pre-enhanced data. This is problematic, as we
will show in Section 5.4 that the low correlation in the spectral phase along time renders
the overall correlation of the complex-valued STFT coefficients insignificant.

Given the harmonic plus noise model for speech together with a fundamental frequency
estimate, an explicit expression for the phase progression from one frame to the next
is available as given in Equation (3.17). However, as the harmonic frequency changes
across time, knowledge of the window function is needed to successfully map the har-
monic signal components to the STFT. In general, if there is no analytic expression
for the window given, this can be obtained by interpolation strategies. This chapter
illustrates how a simple zero padding in the time domain may be exploited to align
DFT bins that are dominated by the same sinusoid along time, yielding a simple sta-
tistical model for the inter-frame correlations that makes the application of a subband
Kalman filter straightforward. In order to distinguish the zero padding strategy from
the pitch-synchronous method in Chapter 4 we refer to the resulting time-frequency
representation as pitch-adaptive short-time Fourier transform (PASTFT). The proposed
(P)itch-(A)daptive (Co)mplex-valued Kalman filter (PACO) is evaluated by means of
instrumental metrics and a subjective listening test, the latter indicating improved noise
reduction performance while preserving the amount of speech distortions.

This chapter consists of three parts:

• First, we introduce, analyze, and explain the features of the PASTFT framework.
This analysis also investigates temporal correlation of the spectral phase when
harmonic signal modeling is taken into account.

• In a second step, we present an extension of the complex-valued Kalman filter
originally proposed in [152]. Specifically, we (i) incorporate harmonic signal mod-
eling into the state-transition model and (ii) further propose a way to estimate the
corresponding parameters that exclusively relies on the statistics of the signal’s
spectral phase.

• Finally, the third part of this chapter presents the objective and subjective evalu-
ation of the proposed method compared to relevant benchmarks.

The idea of applying a pitch-adaptive STFT was originally intended to improve the DD a
priori SNR estimator. In the following we will sketch the line of thinking that results in
the PASTFT and subsequently will go on to analyze its properties w.r.t. the correlations
of the PASTFT coefficients along time.
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5.2 The Decision-Directed A Priori SNR Estimator: Revisited

Let us recall the DD a priori SNR estimator as explained in Section 2.2.3. At its core,
it linearly combines two estimates of the a priori SNR as follows [15]

ξ̂DD(k, `) = αDDξ̂`−1(k, `) + (1− αDD) max[ξ̂ML(k, `), 0]. (5.1)

From Equation (5.1), we note that the estimate of the a priori SNR for specific k= k′

and `= `′, ξ̂DD(k′, `′) strongly relies on ξ̂`−1(k′, `′), which is obtained from the speech
estimate X̂(k′, `′−1) of the preceding frame. However, particularly in the case of larger
frame shifts, DFT bin k′, which is dominated by speech at frame `′, is not necessarily
dominated similarly by speech at frame `′−1 and vice versa.

This has two reasons. First, onsets and offsets induce a change in speech presence/ab-
sence from one frame to the next (which is addressed in, e.g., [61, 156]). Second, con-
sidering voiced speech as the summation of harmonically related sinusoids has similar
consequences. As illustrated in Figure 5.1 (a) and (b), one harmonic does not dominate
the same frequency bin for all time instants, since the fundamental frequency changes
over time. Hence, assuming that the a priori SNR is approximately constant along
harmonic trajectories, it is not necessarily ξ̂`−1(k′, `′) which approximates ξ(k′, `′) best
but potentially any other ξ̂`−1(k, `′) with k close to k′ that is dominated by the same
harmonic as k′. These considerations are in line with the justification of overcomplete
bases given in [43], following the idea of analyzing, and in this case combining, the en-
ergy at physically relevant partials. Further, it is the same rationale that motivates the
harmonic noise PSD tracker developed in [157].

5.3 A Pitch-Adaptive Analysis Stage

Following the above discussion, we aim to recursively smooth the a priori SNR estimates
along harmonic trajectories instead of fixed DFT frequency bins. Hence, for successive
frames, we seek for frequency bins that are dominated by the same harmonic. In order
to find potential candidates, we define kh(`), representing the frequency bin k which is
closest to the hth harmonic with frequency fh(`) = hf0(`), i.e.,

kh(`) = arg min
k

∣∣∣∣k −NDFT(`)
hf0(`)

fs

∣∣∣∣ . (5.2)

We can simplify Equation (5.2) by choosing NDFT(`) dependent on the fundamental
frequency

NDFT(`) = round

(
K

fs
f0(`)

)
, (5.3)
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Figure 5.1: (a): Spectrogram of a speech snippet uttered by a female speaker taken from [139].
(b) Zoom into a voiced time-frequency region where the fundamental frequency
changes over time. The red solid line indicates the trajectory of harmonic 14. The
green arrows indicate the DD smoothing path. (c) The same speech snippet as in (a)
analyzed with the PASTFT (K = 12 in Equation (5.5)). (d) Now the DD smoothing
path at frequency bin k = 168 and the trajectory of harmonic 14 coincide.

where K is an integer constant similar to Equation (4.32). The factor K controls the
amount of zero padding in the DFT. Inserting Equation (5.3) into Equation (5.2) renders

kh(`) to be independent of NDFT(`). Further, using K fs
f0(`) ≈ round

(
K fs

f0(`)

)
, we obtain

kh(`) = arg min
k

∣∣∣∣k − round

(
K

fs
f0(`)

)
hf0(`)

fs

∣∣∣∣
≈ arg min

k
|k −Kh|

= Kh.

(5.4)
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By applying a pitch-adaptive zero padding, kh(`) becomes a constant that does not
depend on the frame index ` anymore. Hence, kh(`) is always closest to the same
harmonic h and its argument ` becomes redundant, which is why we drop it.

One harmonic h not only impacts on frequency bin kh but on all other frequency bins as
well. Under the assumption that the speech signal is perfectly harmonic and we know its
fundamental frequency, the amount of leakage depends on the chosen window function
only. This means that ideally, not only all frequency bins kh, but also those in-between
harmonics are affected similarly by the harmonics at all time instances. By applying
the decision-directed approach as defined in Equation (2.31) in the PASTFT framework,
obtained by using Equation (5.3) in Equation (2.5), we automatically average along
harmonic trajectories instead of fixed frequencies as illustrated in Figure 5.1, panels (c)
and (d). The resulting estimator is termed pitch-adaptive decision-directed (PADDi) in
[3].

Note that in the pitch-synchronous case in Section 4.4.1, the assumption that each DFT
bin is dominated by only one harmonic is true if (i) the signal is perfectly harmonic,
(ii) the fundamental frequency is high enough, and (iii) the optimal window length,
determined by the pitch period in Equation (5.3) is an integer already before rounding.
In the pitch-adaptive case, this is only true if by chance the optimal DFT length NDFT(`)
is an integer multiple of the fixed frame length.

5.3.1 The factor K

We can refine the resolution of the DFT by increasing the factor K. However, we cannot
select the DFT lengths arbitrarily long if we want to keep the computational effort
reasonable. Further, to assure that no non-zero samples in yt(n, `) are neglected for the
computation of Y (k, `), the DFT length is lower bounded by N . Choosing the window
length N = NDFT(`) results in a pitch-synchronous representation of the signal, while
in the pitch-adaptive case, the window length itself is fixed.

Assuming that the fundamental frequency of speech signals lies within the interval
[f0,min; f0,max], we can express the following bounds for NDFT(`)

max
[
N,K

fs
f0,max

]
≤ NDFT(`) ≤ K fs

f0,min
. (5.5)

For the sake of computational efficiency, we select the minimum possible value for the
factor K, given by

K = df0,max

fs
Ne, (5.6)

where d·e denotes the ceiling operation.
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5.3.2 Signal Reconstruction

Given some speech estimate X̂(k, `), the time domain frames of the estimated speech
signal are computed by applying the inverse DFT

x̂t(n, `) = w(n)

NDFT(`)−1∑
n=0

X̂(k, `)e
j 2πk
NDFT(`)

n
, (5.7)

where the multiplication with the window w(n) ensures that the support of x̂t(n, `)
is on [0, N − 1]. This operation is necessary, as the filtering in the frequency domain
corresponds to a circular convolution in the time domain, implying that the support of
the filtered signal is in general longer than the support of the original signal. Afterwards,
a standard overlap-add routine can be applied.

5.3.3 Phase Decomposition in the PASTFT

Similar to Section 3.2.2 and Section 4.4.1, we can decompose the PASTFT phase into
an initial and a progression part yielding the phase normalized observation Ỹ (k, `).
Note that the approximation that each DFT bin is dominated by one harmonic only, as
opposed to the pitch-synchronous case, is only exact if NDFT(`) obtained from Equa-
tion (5.3) happens to be an integer multiple of the fixed segment length N , which is
in general not the case. Further, in contrast to the classical STFT framework, there
is a fixed mapping between h and k. This means that in the close vicinity of a strong
harmonic h, if its phase αh(`) and magnitude Ah(`) vary slowly over time, this is also
true for α(k, `) and A(k, `).

Figure 5.2 shows scatter plots of successive PASTFT coefficients’ instantaneous and ini-
tial phases. The instantaneous phase does not reveal any correlation between successive
frames. However,the initial phase estimates exhibit high correlation. Motivated by this
observation, we suspect that for lag m, the correlation between X̃(k, `) and X̃(k, `−m)
is now in general increased compared to the correlation between X(k, `) and X(k, `−m)
or even the standard STFT framework. Further, we expect to see significant correla-
tion in the initial phases α(k, `) and α(k, ` − m), not only in the magnitudes A(k, `)
and A(k, ` −m) as, e.g. reported in [61] for the standard STFT. We will justify these
conjectures by experiments in the following.

5.4 Inter-Frame Correlation Analysis

In this section we compare the temporal correlation of DFT coefficients resulting from
the PASTFT framework to the classical STFT. Besides the increased temporal correla-
tion of the spectral magnitude compared to the standard STFT, we can incorporate the
phase progression model to access estimates of the initial phase. This provides insights
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Figure 5.2: Scatter plot of successive PASTFT coefficients’ phase, i.e. phase at frame ` versus
frame `−1 with k = 36, corresponding to harmonic 3 for K = 12. (a) Instantaneous
phase, (b) initial phase estimate.

into the correlation along time of the spectral phase. We quantify the amount of corre-
lation between successive DFT bins by means of the normalized sample autocorrelation
sequence (ACS). We evaluate the ACS for A(k, `), φ(k, `), X(k, `), α(k, `), and X̃(k, `).
We compute the ACS of a quantity q(k, `) at lag m as follows

rqq(m) =

∑
`∈L(q(k, `)− q̄(k))(q(k, `+m)− q̄(k))∗∑

`∈L(q(k, `)− q̄(k))(q(k, `)− q̄(k))∗
, (5.8)

where L is the set of frames that is considered for the computation of the ACS, and q̄(k)
denotes the sample mean of q(k, `), given by

q̄(k) =
1

|L|
∑
`∈L

q(k, `), (5.9)

with |L| being the cardinality of L. To ensure that we only take into account DFT bins
that contain speech, we define the set of frames L by thresholding the magnitude as
proposed in [61]

L = {`|A(k, `) ≥ 10−30/20 max
`

[
A(k, `)

]
}. (5.10)

For the following analysis, as for the rest of Section 5.4, we closely followed the procedure
in [61], which presents a similar analysis for the standard STFT. As speech data we
concatenated seven randomly selected sentences from the TIMIT database [139]. The
fundamental frequency estimate needed for choosing the DFT lengths was obtained
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from the PEFAC estimator [141]. The sampling frequency is 16 kHz, the frame length
was chosen with 32 ms, and the frame shift was set to 16 ms, if not noted otherwise.
Although of course the fundamental frequency trajectory used for phase decomposition
is an estimate itself, we do not use the hat symbol for the initial phase in the following
evaluation, since it serves as our ground truth.

5.4.1 Sample Autocorrelation Sequences

In Figure 5.3, we plot the ACSs of all abovementioned quantities for two frequency
bins; one, that in theory is always dominated by harmonic 3 and a second one, which
is inbetween two harmonics, where the impact of harmonic speech components is very
small in theory. For a factor K = 12 we hence chose k ∈ {36, 42}. Further, to address
our speculation that in general, successive DFT bins in the PASTFT exhibit higher
correlation than in the standard STFT, we also report the ACSs of the same quantities
for the STFT. We selected the ks in the STFT to lie within the same frequency range as
the corresponding frequency bins in the PASTFT. This is achieved by averaging over the
frequencies that are associated to these frequency bins and choosing the nearest DFT
frequencies for a fixed DFT length of 512, resulting in k ∈ {16, 19}.
Figure 5.3 indeed confirms that for DFT bins that are dominated by harmonics (i) the
correlation of successive DFT bins is higher in the PASTFT than in the STFT framework
and that (ii) decomposing the instantaneous phase by multiplying with Ψ∗(k, `) from
Equation (3.15) not only reveals correlation in the initial phase but also in the complex-
valued coefficients X̃(k, `). However, this does not hold for DFT bins that are not in the
direct vicinity of a harmonic, where the inter-frame correlations are even reduced due to
different DFT resolutions across frames.

5.4.2 Autocorrelation as a Function of Frequency

As already explained, we suspect the subband inter-frame correlations to highly depend
on the frequency bin index in the PASTFT. We illustrate the frequency bin dependent
nature of the correlation’s extent in Figure 5.4 (a) for lags ranging from m = 1 to m = 4.
Compared to the STFT, see Figure 5.4 (b), by choosing pitch-adaptive DFT lengths,
we achieve higher correlation at frequency bins in the vicinity of harmonics and the
correlation is better preserved for larger lags m.

5.4.3 Autocorrelation as a Function of Frame Shift

Finally, the latter observation motivates us to study how the frame shift L affects the
ACS. To this end, we compare the PASTFT for k = 36 with the STFT for k = 16.
Figure 5.5 depicts the corresponding results for lags m = 1 and m = 2 for frame shifts
ranging from L = 32 samples (93.75% overlap) to L = 256 samples (50% overlap). We

76



0

0.5

1

r A
A
(m

)

STFT: k = 16, PASTFT: k = 36

0

0.5

1

r φ
φ
(m

)

0

0.5

1

|r X
X
(m

)|

0

0.5

1

r α
α
(m

)

0 5 10 15

0

0.5

1

m

|r X̃
X̃
(m

)|

STFT: k = 19, PASTFT: k = 42

0 5 10 15
m

Figure 5.3: Illustration of temporal correlation of the DFT bins by their ACSs. The dotted lines
correspond to the 95% confidence limits. Black lines correspond to STFT and red
lines correspond to PASTFT, the respective DFT bins can be found in the column
titles.

77



50 100 150 200
0

0.2

0.4

0.6

0.8

1

k

|r X̃
X̃
(m

)|
(a)

50 100 150 200
0

0.2

0.4

0.6

0.8

1

k

|r X
X
(m

)|

(b)

m = 1 m = 2 m = 3 m = 4
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coefficients versus frequency bin in STFT.
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Figure 5.5: (a) Correlation coefficients for PASTFT (k = 36) and STFT (k = 16) versus frame
shift for lag m = 1. (b) Same experiment with lag m = 2.

observe that (i) the ACS’s dependency on the frame shift is lower in the PASTFT than
in the STFT and that (ii) in the PASTFT, taking into account the correlation in phase
preserves the overall correlation for larger frame shifts, even for the complex-valued DFT
coefficients (compare dashed and solid lines).

In the following, motivated by the above analysis, we present one possibility to explicitly
take into account inter-frame correlations for speech enhancement. This is achieved by
formulating a complex-valued Kalman filter, as described in the following.
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5.5 The Complex-Valued Kalman Filter

As discussed in the previous section, even for large frame shifts, successive DFT coeffi-
cients in the PASTFT are highly correlated when decomposing the phase into an initial
and a progression part. To take into account this correlation, similarly to [152], we model
DFT coefficients as a complex-valued AR process, represented by the linear state-space
description

X(k, `) = aT (k, `)x(k, `− 1) +Xin(k, `), (5.11)

where a(k, `) ∈ CNAR×1 is a vector containing the complex coefficients of the AR model
of order NAR, the previous DFT-coefficients are stacked into the vector

x(k, `− 1) =
[
X(k, `− 1) X(k, `− 2) . . . X(k, `−NAR)

]T
,

and Xin(k, `) represents the innovation, i.e. those parts that are not captured by the
AR model. In the following, we explain the pitch-adaptive complex-valued Kalman filter
(PACO) which jointly benefits from the PASTFT and AR modeling due to the simplified
statistics that arise from the PASTFT compared to the STFT in the light of harmonic
signal modeling.

From Equation (5.11) it follows the model for the observed noisy speech

Y (k, `) = aT (k, `)x(k, `− 1)︸ ︷︷ ︸
Xprop(k,`)

+Xin(k, `) +D(k, `), (5.12)

where we assume Xin(k, `) and D(k, `) to be complex, isotropic Gaussian processes with
variances σ2

x,in(k, `) and σ2
d(k, `), respectively. Given this model, we can formulate the

standard Kalman filter equations as in [152]. The Kalman filter can be divided into two
steps. The propagation step represents the interdependence of successive frames and
the update step combines information retrieved from the current observation with the
propagated state estimates.

Propagation Step

The state estimate propagation with x(k, `) ≈ x̂(k, `) is given by

X̂prop(k, `) = aT (k, `)x̂(k, `− 1), (5.13)

with previous estimates of the clean speech coefficient stacked into the vector

x̂(k, `− 1) =
[
X̂(k, `− 1) X̂(k, `− 2) . . . X̂(k, `−NAR)

]T
.
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The error covariance is propagated as follows

Pprop(k, `) = Pup(k, `− 1)aH(k, `)a(k, `) + σ2
x,in(k, `). (5.14)

Update Step

Given the propagated state estimates, we can compute the Kalman gain

GK(k, `) =
Pprop(k, `)

Pprop(k, `) + σ2
d(k, `)

. (5.15)

Now, an estimate of the innovation process is achieved by multiplying it with the residual
that results from taking into account the state estimate propagation

X̂in(k, `) = GK(k, `)
(
Y (k, `)− X̂prop(k, `)

)
. (5.16)

Given the signal model in Equation (5.11), we update the clean speech estimate and the
error covariance

X̂up(k, `) = X̂prop(k, `) + X̂in(k, `), (5.17)

Pup(k, `) = (1−GK(k, `))Pprop(k, `). (5.18)

5.5.1 Estimating the AR Coefficients

The propagation and update steps as described above are straightforward once the model
parameters, i.e. state transition model, process variance, and noise variance are given.
However, the non-stationarity of speech together with the inaccessibility of the clean
speech signal renders the problem of applying the above Kalman filter rather difficult.
In the following, motivated by the harmonic plus noise model, we include the phase
decomposition into the AR model, i.e. we assume that the fundamental frequency tra-
jectory contributes to the AR coefficients’ phase following Equation (3.8). The key
ingredient of PACO is using this model together with circular statistics to estimate the
AR parameters. Given that the concepts described in the following are equally applied
for all frequency bins, we drop the frequency index k from now on. Further, we will
use the notation convention q(u,v)(`) ≡ q(` − u, ` − v) from now on to indicate specific
inter-frame relationships of a quantity q.

Typically, the AR coefficient vector is derived from the MMSE criterion. Hence, we
have

â(`) = arg min
a(`)

E
((
X(`)−Xprop(`)

)(
X(`)−Xprop(`)

)∗)
. (5.19)
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Solving Equation (5.19) yields the well-known result

â(`) = R−1
XX(`)rXX(`), (5.20)

with autocorrelation vector

rXX(`) = E
(
x(`− 1)X∗(`)

)
∈ CNAR×1 (5.21)

and autocorrelation matrix

RXX(`) = E
(
x(`− 1)xH(`− 1)

)
∈ CNAR×NAR . (5.22)

rXX(`) and RXX(`) are unknowns in practice and need to be estimated from the signal
samples available. Since in speech enhancement we deal with noise corrupted observa-
tions, simple sample autocorrelation estimation cannot be applied. In [152], as already
proposed in [158], this problem was solved by estimating the AR coefficients from past
enhanced samples. Further, in [159] the LSA estimator [15] was used for pre-enhancing
the noisy signal before estimating the AR coefficients. In this work, we will exploit the
fact that at least for the coherent parts of the of the short-term autocorrelation’s phase,
as a consequence of harmonic signal modeling, we have an explicit expression available,
as depicted in the following.

For R
(u,v)
XX (`), representing the element in the uth row and vth column of RXX(`), we

have

R
(u,v)
XX (`) = E

(
X(`− u)X∗(`− v)

)
= E

(
X̃(`− u)X̃∗(`− v)∆Ψ(u,v)(`)

)
,

(5.23)

where following Section 3.2.2 we define

∆Ψ(u,v)(`) = Ψ(`− v)Ψ∗(`− u) (5.24)

for which we have an estimate available from Equation (3.15) in conjunction with the
recursion in Equation (3.17). Hence, inserting the estimated phase terms we have

R̂
(u,v)
XX (`) =E

(
X̃(`− u)X̃∗(`− v)

)︸ ︷︷ ︸
R

(u,v)

X̃X̃
(`)

∆Ψ(u,v)(`),
(5.25)

where R
(u,v)

X̃X̃
(`) denotes the (u, v)th entry of the autocorrelation matrix R

X̃X̃
(`). The

corresponding autocorrelation vector r
X̃X̃

(`) is constructed from the entries r
(u)

X̃X̃
(`) =
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R
(u,0)

X̃X̃
(`). By defining the diagonal matrix

Ψ̂(`) =


∆Ψ(0,1)(`) 0 . . . 0

0 ∆Ψ(0,2)(`)
. . . 0

...
...

. . .
...

0 0 . . . ∆Ψ(0,NAR)(`)

 , (5.26)

and by taking into account that we only have estimates of the autocorrelation matrix
and vector available, we can rewrite Equation (5.19) as

â(`) = Ψ̂(`)R̂−1

X̃X̃
(`)r̂

X̃X̃
(`), (5.27)

with

R
(u,v)

X̃X̃
(`) = E

(
X̃(`− u)X̃∗(`− v)

)
,

= E
(
A(`− u)A(`− v)ej(α(`−u)−α(`−v))

)
,

(5.28)

with ∆α(u,v)(`) = α(`−u)−α(`−v) and assuming that the magnitude and phase terms
are independent, we have

R
(u,v)

X̃X̃
(`) = E

(
ej∆α

(u,v)(`)
)︸ ︷︷ ︸

B(u,v)(`)

E
(
A(`− u)A(`− v)

)︸ ︷︷ ︸
R

(u,v)
AA (`)

, (5.29)

where R
(u,v)
AA (`) denotes the (u, v)th element of the magnitude’s autocorrelation matrix.

Since the phase difference ∆α(u,v)(`) is a directional random variable, B(u,v)(`) depends
on the angular spread of ∆α(u,v)(`), which in turn is determined by the accuracy and ap-
propriateness in terms of model fitness of the phase decomposition in Section 5.3.3.

In order to draw further conclusions and to represent the aforementioned uncertainties,
we model the phase difference ∆α(u,v)(`) as a random variable that follows a wrapped
Gaussian distribution, parameterized by mean direction µ(u,v)(`) and standard deviation
σ(u,v)(`) [160]

p
(
∆α(u,v)(`);µ(u,v)(`), σ(u,v)(`)

)
=

1√
2πσ(u,v)(`)

∞∑
i=−∞

e
− (∆α(u,v)(`)−µ(u,v)(`)+2πi)2

2σ(u,v)(`)2 . (5.30)

The initial phase can be approximated to be constant in case the propagation model in
Section 5.3.3 fits the observed signal well. Hence, the mean direction µ(u,v)(`) is zero, as
Equation (5.30) essentially represents the uncertainty about the harmonic propagation
model. Further, from [160] we know that in this case, the first circular moment, i.e. the
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circular mean, is given by18

B(u,v)(`) = E
(
ej∆α

(u,v)(`);µ(u,v)(`) = 0, σ(u,v)(`)
))

= e−
σ(u,v)(`)2

2 .
(5.31)

Here, the circular mean is real-valued, bounded to the interval [0, 1], and it scales the
magnitude autocorrelation in Equation (5.29) according to the angular spread of the
phase difference. If the variance of ∆α(u,v)(`) is small,

∣∣B(u,v)(`)
∣∣ is close to one, i.e.

the overall correlation is high. For large variances, the wrapped normal distribution
approaches the uniform distribution and

∣∣B(u,v)(`)
∣∣ is close to zero. We illustrate this

scaling in Figure 5.6.
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Figure 5.6: (a) The circular mean from Equation (5.31) as a function of the wrapped normal

distribution’s standard deviation. (b) The wrapped normal distribution for three

different standard deviations.

The circular moments can be approximated by the sample mean of the respective quan-
tity, implemented by e.g. a recursive averaging strategy. Hence, we linearly combine an
instantaneous estimate of the phase difference with previous circular mean estimates as
follows

B̂(u,v)(`) = αBB̂
(u,v)(`− 1) + (1− αB)ej∆̂α

(u,v)
(`), (5.32)

where αB ∈ [0, 1].

In order to obtain ∆̂α
(u,v)

(`), we need estimates of the previous phase-values, which are
easily obtained from previous speech estimates and an estimate of the initial phase of
the current frame. Under the given statistical model, the MMSE estimate of the initial
phase is given by the phase of the noisy DFT coefficient [15]. This means that we obtain

18 See Appendix C for details on circular moments.
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∆̂α
(u,v)

(`) as follows

∆̂α
(u,v)

(`) =


∠
(

Y (`−u)

X̂up(`−v)
1

∆Ψ(u,v)(`)

)
if u = 0,

∠
(
X̂up(`−u)

X̂up(`−v)
1

∆Ψ(u,v)(`)

)
else.

(5.33)

Since according to Equation (5.31), it follows that the expected value of the circular
mean’s angle is 0, we are only interested in the magnitude of Equation (5.32). Hence, we
define the matrix B̂(`) with (u, v)th entry |B̂(u,v)(`)|, as well as the vectors rAA(`) and

b̂(`), with uth entry R
(u,0)
AA (`) and |B̂(u,0)(`)|, respectively. By doing so, we can rewrite

Equation (5.20) decomposed into a real-valued part, representing the magnitude of the
coefficients in â(`), and the diagonal matrix Ψ̂(`) that represents their phase only, i.e.

â(`) = Ψ̂(`)
(
RAA(`) ◦ B̂(`)

)−1
(rAA(`) ◦ b̂(`)), (5.34)

where “◦” denotes the Hadamard product.

As already discussed, the circular mean length scales the entries of RAA(`) and rAA(`).
There exist various strategies to estimate RAA(`) and rAA(`), e.g. codebook-based
approaches similar to [161, 162] could be applied. Considering Figure 5.6, we note that
already for standard deviations of σ ≥ 3, the circular mean is close to zero, dominating
the outcome of Equation (5.34), which is why we simplify Equation (5.34) as follows

â(`) = Ψ̂(`)B̂(`)−1b̂(`). (5.35)

This means that the complex-valued Kalman filter transition model is essentially a func-
tion of the angular spread. If the sinusoidal model does not fit, the circular mean becomes
small [7] and successive coefficients are processed independently.

5.5.2 Further Algorithmic Details

So far, we assumed the process variance σ2
x,in(k, `) to be known. However, this prerequi-

site is not realistic since the variance needs to be estimated from the noisy observation.
We obtain an estimate of the innovation process variance by adapting the decision-
directed approach to the given signal model, resulting in

σ̂2
x,DD,in(k, `) = αDDσ̂

2
x,`−1,in(k, `) + (1− αDD) max[σ̂2

x,ML,in(k, `), 0], (5.36)

with the ML estimate

σ̂2
x,ML,in(k, `) = |Y (k, `)− X̂prop(k, `)|2 − σ̂2

d(k, `), (5.37)
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as well as

σ̂2
x,`−1(k, `) = |X̂in(k, `− 1)|2. (5.38)

Note that the accuracy of the noise PSD estimate together with the propagated signal
components will impact on the accuracy of the innovation variance estimate. Since
the DFT length is not constant across time, we face the problem of birth and death
processes within subbands. To cope with this problem, we set any estimate of speech
signal parameters to zero for all k ∈ {k|Y (k, `) = 0}.

To avoid outliers, it is common in speech enhancement, to floor the effectively applied
noise suppression by a minimum gain Gmin. In our case, we combine the resulting
magnitude estimate with the inherent Kalman filter phase estimate, yielding the final
speech coefficient estimate

X̂(k, `) = max
[
|X̂up(k, `)|, Gmin|Y (k, `)|

]
ej∠X̂up(k,`). (5.39)

The algorithmic in Algorithm 1 summarizes PACO by means of pseudo code.

Algorithm 1 Pseudo code depicting the individual algorithm steps of PACO.

After initialization, each signal frame yt(n, `) is processed as follows.
1: Estimate fundamental frequency from yt(n, `).
2: Estimate phase progression ψ̂h(`) recursively using Equation (3.17).
3: Compute Y (k, `) using Equation (5.3).
4: Compute â(`) using Equation (5.35), Equation (5.32), and Equation (5.33).
5: Propagate previous state estimates following Equation (5.13).
6: Estimate σ2

x,in(k, `) using Equation (5.36) and σ̂2
d(k, `) following [18].

7: Propagate error covariance Equation (5.14).
8: Compute Kalman gain Equation (5.15) and obtain X̂in(k, `) Equation (5.16).
9: Update state estimate Equation (5.17) and error covariance Equation (5.18).
10: Obtain X̂(k, `) by flooring X̂up(k, `) Equation (5.39).
11: Apply inverse DFT and windowing Equation (5.7), perform overlap-add.

5.6 Evaluation

5.6.1 Benchmark Algorithms

Since we want to illustrate the benefits resulting from (i) the PASTFT and (ii) taking
into account temporal correlation by Kalman filtering, as benchmarks we chose

• the Wiener filter, which does not exploit any of the two extensions
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• the COmplex-valued Kalman (COKA) filter in the STFT domain without phase
decomposition proposed by Esch in [152], incorporating temporal correlation in
the STFT domain,19

• the Wiener filter applied in the PASTFT, referred to as PADDi algorithm [3],

• the multiple frame MVDR filter proposed in [62, 63], incorporating the temporal
correlations by linearly filtering STFT subbands.

We summarize the chosen benchmarks in Table 5.1. This table highlights distinguishing
features of all reported algorithms, namely the domain and if and how each algorithm
incorporates knowledge about temporal correlation of DFT bins. The COKA algorithm
was implemented following [152] with a frame length of 20 ms and an AR model order
of 3. For the other algorithms, the frame length was chosen with 32 ms and we used a
square-root hamming window for all algorithms in all experiments. The works in [62,63]
do not address a fully blind implementation of the MVDR filter, i.e. the noise inter-frame
correlation is assumed to be given or estimated from isolated noise data. In order to
have a fair comparison to the other algorithms, we used the noise PSD estimate obtained
by [18] only, i.e. neglected the inter-frame correlations of the noise signal.

For computing the PASTFT, we set f0,min = 90 Hz and f0,max = 350 Hz, respectively.
According to Equation (5.6), this choice results in a zero padding factor of K = 12.
We set Gmin = 0.1 and αDD = 0.98 for all algorithms. If not mentioned otherwise,
the overlap was set to 75%. We chose αB = 0.7 and the AR model order for the PACO
algorithm was set to 1 in order to keep the computational effort low and since in terms of
speech enhancement performance the differences were rather small between the different
model orders. As fundamental frequency estimator for computing the PASTFT we used
the PEFAC algorithm from [141].

All experiments were conducted with Matlab® on a workstation equipped with an Intel®

Xeon® E5 CPU. With this setup, together with the above explained settings of the
algorithms, we measured a real-time factor [163] of 0.80 for PACO, 0.22 for the Wiener
filter in the PASTFT, 0.23 for COKA [152], and 4.90 for the MVDR approach [63].
For comparison, the classical Wiener filter results in a real-time factor of 0.03 on this
hardware.

5.6.2 Proof-of-concept

In Figure 5.7 we display spectrograms of clean, noisy, and enhanced speech files.

The following observations are made from Figure 5.7:

• As indicated by rectangle 1 in Figure 5.7, low frequency speech components are
successfully recovered by the PACO method.

19 In [152], the AR parameters are estimated from previous, enhanced speech data.
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Figure 5.7: Proof-of-concept: Male speaker uttering The carpet cleaners shampooed our oriental
rug. from the TIMIT core database [139] mixed with white noise, SNR = 5 dB.
(a) Clean speech, (b) noisy speech, (c) Wiener Filter, (d) COKA [152], (e) WF +
PADDi [3], (f) PACO, proposed.
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Table 5.1: Key properties of the tested algorithms.

Method Domain Temporal Correlation

WF STFT No

WF + PADDi [3] PASTFT No

MVDR [63] STFT Yes, MVDR

COKA [152] STFT Yes, AR

PACO PASTFT Yes, AR + Harmonic

• Artifacts such as isolated spectral peaks, traditionally associated to musical noise,
are successfully suppressed when processing the noisy speech signal via the PASTFT
(rectangle 2 in Figure 5.7).

5.6.3 Objective Evaluation of Speech Enhancement Performance

Databases and Evaluation Metrics

For all simulations in this section we used the test set of the TIMIT core database [139],
consisting of 192 utterances. All signals were sampled at 16 kHz and we added one second
of noise only at the beginning and at the end of the individual signals. The noisy test
data was obtained by mixing the speech signals with noise at SNRs between −5 dB and
15 dB in 5 dB steps following the mixing convention recommended in [164]. The specific
noise types chosen in the experiments are white noise, factory noise, and babble noise
from the NOISEX-92 database [142], and rain noise from [143]. This selection includes
stationary, impulsive, speech-like, and highly non-stationary noise types.

As evaluation criteria, we chose PESQ [145] and STOI [146] as instrumental predictors of
perceived speech quality and speech intelligibility, respectively. We report the respective
results in terms of ∆ improvement over the noisy signal. To obtain further insights
into the algorithms’ mechanisms, we conducted a black box analysis of all algorithms
compared in this chapter. Hence, additionally to ∆PESQ and ∆STOI we report the
weighted log-kurtosis ratio (WLKR) as an indicator of the amount of musical noise in

the processed signal and an analysis of P̃ESQ across NAseg.20

Impact of Fundamental Frequency Estimation Errors

The proposed algorithms heavily depend on fundamental frequency estimates. In order
to evaluate the algorithms’ sensitivity to fundamental frequency estimation errors, we
compare the performance of fully blind implementations of PACO and PADDi to a

20 In Appendix B we provide details on the evaluation metrics used in this thesis.
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scenario, where the fundamental frequency is estimated from isolated, clean speech data.
We refer to the latter case as “f0-oracle” scenario, representing a performance upper
bound w.r.t. the chosen fundamental frequency estimator.

Figure 5.8 illustrates the outcome of this experiment, averaged over all noise scenarios.
We note that more accurate fundamental frequency estimation mainly impacts on STOI
and the achievable noise attenuation. PACO comes with less noise attenuation than
the Wiener filter in combination with PADDi in both scenarios but slightly improves

∆PESQ and P̃ESQ. Further, both perform close in WLKR and in terms of ∆STOI, the
phase-sensitive PACO outperforms its counterpart in the blind as well as in the f0-oracle
scenario.

We note that the phase-aware approach PACO is naturally more sensitive to fundamental
frequency estimation errors than PADDi, which is also in line with the observations made
in Section 4.7.3 and [24,27,28]. This also indicates the potential in terms of joint quality
and intelligibility improvement by phase-sensitive approaches.
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Figure 5.8: Speech enhancement performance of PACO and PADDi with f0 estimated from
isolated speech data, averaged over all noise scenarios.

Full Evaluation Results

From the averaged results in Figure 5.9 we conclude that:
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• The two pitch-adaptive approaches PACO and PADDi outperform their non-pitch-
adaptive counterparts as well as the other benchmarks in ∆PESQ, ∆STOI, and
WLKR over the full evaluated SNR range.

• Except for ∆PESQ at SNR 15 dB, the Kalman filters in both the STFT and
PASTFT outperform their Wiener filter counterparts in the respective domain.

• The NAseg results illustrate that the noise attenuation is on average decreased by
taking into account inter-frame correlations. However, at the same time, we also

note less speech distortions, indicated by increased P̃ESQ. This effect is particu-
larly pronounced when comparing the Wiener filter and the COKA algorithm.

• The quality improvement of all reported methods comes at the cost of intelligibil-
ity degradation compared to the noisy, unprocessed signal. However, PACO and
PADDi improve the intelligibility compared to their non pitch-adaptive counter-
parts. Recent data driven approaches such as deep neural network-based methods
[165,166] enable to jointly improve speech quality and intelligibility. However, this
work is focused on non data driven methods that on the one hand do not rely
on training data and lengthy training phases but which are known to balance a
trade-off between quality improvement and intelligibility [167] on the other hand.
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Figure 5.9: Speech enhancement performance, averaged over all noise scenarios.

Figure 5.10 to Figure 5.13 report the detailed results for all noise scenarios and met-
rics.

• PACO, with few exceptions, consistently outperforms the benchmarks in terms of
∆PESQ and ∆STOI as can be seen in Figure 5.10 and Figure 5.11, respectively.
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• Further, in Figure 5.12 we note that in terms of noise reduction, the PADDi ap-
proach in conjunction with the Wiener filter is highly effective, however it comes

with slightly reduced P̃ESQ compared to PACO, COKA, and the MVDR approach.

• In Figure 5.13, we also note that the Wiener filter comes with more musical noise
artifacts than all other tested algorithms, which was expected. PADDi and PACO
are among the top performing methods for all noise scenarios.
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Figure 5.10: Speech enhancement performance in terms ∆PESQ improvement over the noisy
signal.
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Figure 5.11: Speech enhancement performance in terms ∆STOI improvement over the noisy
signal.
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Figure 5.13: Speech enhancement performance in terms of WLKR.

5.6.4 Subjective Evaluation of Speech Enhancement Performance

For the evaluation of the proposed method in terms of subjective listening quality, we
chose babble and factory noise from [142] and mixed it with 4 randomly selected speech
samples taken from the TIMIT test set [139] at SNRs 5 dB and 10 dB following [164].
Before and after each utterance, we added one second of noise only. Similar to [30], in
order to minimize the effect of noise PSD initialization errors, the signals were played to
the test subjects starting at 0.5 seconds. The noise segments themselves were selected
randomly. All test signals can be found on [168].

The algorithms were presented to the participants by means of a pairwise preference
test, i.e. the test subjects were asked to select their preference (better/worse) between
two presented methods in terms of (i) noise reduction, (ii) speech distortions, and (iii)
overall quality. The signals presented were the (i) noisy signal, (ii) the noisy signal
processed by the LSA estimator [90] as a well known benchmark, (iii) the MVDR filter
from [63], implemented as described in Section 5.6.3 and (iv) PACO. Hence, 24 pairwise
comparisons were presented to each participant. In addition to the samples under test,
the clean speech samples were presented as a reference to the participants. We random-
ized the sequence of the presented samples and the test subjects were allowed to listen
to each sample as often as they wanted. We used the framework provided from [169] to
set up the graphical user interface and the composition of the test data. The listening
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test was conducted in a quite room and the signals were presented to the participants
using Beyerdynamic DT-770 Pro headphones.

The listening test was performed with 15 self-reported normal-hearing participants, aged
between 22 and 38. The results of the listening test, averaged over all noise scenarios,
are depicted in Figure 5.14, the detailed results are reported in Figure 5.15. The results
illustrate that PACO improves the noise reduction capabilities compared to the bench-
mark algorithms, while the speech quality is preserved. In this context, it is important
to note that the MVDR method [63], as also reported in [150], sounds slightly reverber-
ated when implemented as a blind approach, which is the reason why the participants
preferred the other methods in terms of speech and overall quality.

We performed a Friedman Test with Bonferroni correction to draw conclusions about the
significance of the difference between the methods under test. We assume significance
for a p-value of p < 0.05. In terms of noise reduction, the preference of PACO over
all reference signals was significant. For speech quality, no significant preference of one
method over the others can be observed, while in terms of overall quality, the PACO
outperforms the MVDR approach significantly.
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Figure 5.14: Results of the subjective listening test in terms of preference ratings averaged
over all noise scenarios together with the corresponding standard deviations.
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Figure 5.15: Detailed results of the subjective listening test in terms of preference ratings
averaged over all SNRs together with the corresponding standard deviations.
The upper row corresponds to babble noise, the bottom row to factory noise.

5.7 Conclusion

This chapter presents an approach for incorporating inter-frame correlations into speech
enhancement. More specifically, correlations that result from the harmonic plus noise
model are exploited to facilitate the estimation of the state transition model of a complex-
valued Kalman filter. The derived estimator is simple to implement and solely relies on
the statistics of the decomposed spectral phase. In its approximations, this derivation
relies on the PASTFT, which is a pitch-adaptive STFT analysis stage that aligns DFT
bins that are dominated by the same harmonic with each other.

The PASTFT provides the potential for higher noise attenuation while preserving the
level of speech distortions compared to the standard STFT. Further, it decreases the
amount of musical noise in the processed signal. By decomposing the spectral phase
into an initial and a progression part, we reveal significant correlation of DFT coeffi-
cients along time. We showed that in the PASTFT, successive DFT bins dominated by
harmonics exhibit higher correlation along time compared to the standard STFT. Taking
into account these inter-frame correlations by Kalman filtering comes with improvement
in PESQ and STOI compared to the benchmark methods. We further conducted a
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subjective listening test that indicates that the proposed algorithm improves noise sup-
pression while preserving the level of speech distortions.
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6
Exploiting Phase Structure along Frequency

for Single-Channel Speech Enhancement

This chapter investigates single-channel speech enhancement algorithms that take into
account dependencies w.r.t. frequency. This chapter is based on the author’s insight
that the problem of estimating the phase of inter-frequency covariances is a key problem
of multidimensional STFT speech estimators. All derivations and simulations included
in this chapter have been conducted by the author. Parts of the text in this chapter
have been published in [4]. Further, some of the results in this chapter are part of the
submitted work in [6].

6.1 Overview and Motivation

The derivations presented thus far in this thesis have been based on the assumption
that the speech and noise STFT expansion coefficients are independent w.r.t. frequency.
This assumption, though omnipresent in the literature, is a strong simplification since
speech signal components, even if they are well-separated in frequency, share the same
excitation air flow [131]. Their exact interaction is of course unknown and can be seen
as a result of the excitation signal and the filtering by the vocal tract. Hence, we
may assume the correlations to depend on the specific speaker, the intended speech
sound, and some realization noise. However, even if we consider the speech signal as a
superposition of multiple independent components, the relatively short analysis segments
and the non-stationarity of speech and noise signals may also cause highly correlated
frequency bins.

Assuming statistical independence between signal components from different frequency
regions results in estimators that are functions of diagonal covariance matrices, i.e. that
do not combine observations from different time-frequency regions. Allowing dependen-
cies between DFT coefficients instead yields non-diagonal covariance matrices of speech
and noise, where off-diagonal entries are complex-valued in general. The complex-valued
nature of the off-diagonal covariance matrix elements will be of special interest in this
chapter.
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Given dependencies w.r.t. frequency, the joint minimization of the MMSE for all complex-
valued Fourier expansion coefficients yields a multidimensional Wiener filter [170] that
is a function of the speech and noise covariance matrices. In the literature, also multidi-
mensional MMSE-STSA estimators have been investigated by Plourde and Champagne
in [131,171]. Since it is difficult to solve for the optimal STSA estimator analytically, the
authors combined lower and upper bounds for the estimator, resulting in a new family
of MMSE-STSA estimators. The work in [131] not only considers correlations among
adjacent frequency bins but also among frequency bins that are well-separated. This
distinguishes it from the work in [172], where a full-band Wiener filter together with an
approximation that considers only correlations among adjacent frequency bins has been
proposed. Further, in [172], the covariance matrices of the speech and noise signals are
assumed to be known and no explicit strategy to estimate them is presented. In [173],
Momeni et al. formulated a conditional MMSE estimator that uses inter-frame as well
as inter-band correlations, where only the correlations of adjacent frequency bands are
exploited in the estimation procedure. A different approach was taken by Fingscheidt
et al., where dependencies between frequency channels were incorporated in the a priori
SNR estimator by modeling the a priori SNR as a Markov process w.r.t. frequency
[60].

The multidimensional estimators presented in the literature are optimal with respect to
known statistics of the speech and noise signal. In the case of estimators that do not
consider dependencies w.r.t. frequency21, the second order moments and the resulting
estimators are real-valued. In the case of multidimensional estimators, these quantities
are complex-valued in general. In the existing work on multidimensional single-channel
speech estimators, the second order moment matrices are estimated by approaches simi-
lar to the DD approach for a priori SNR estimation. However, it is not clear if temporal
averaging strategies are also applicable to estimating the complex-valued covariance in
the case of multidimensional estimators. In this chapter, we investigate how this may
affect a speech enhancement framework that takes into account inter-frequency correla-
tions. More specifically we will discuss

1. the role the covariance matrix phase plays in the estimators that have been derived
in the literature so far,

2. why estimation of the covariances’ phase by means of traditional approaches like
the DD method can be problematic,

3. why the spectral phases can be considered to be mutually independent w.r.t. fre-
quency,

4. an approach to circumvent this problem.

21 We will also refer to them as one-dimensional estimators.
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6.2 Multidimensional Speech Estimators

Reconsidering the signal plus noise model from Equation (2.1) in vector notation we
have

yf (`) = xf (`) + df (`), (6.1)

where the subscript f indicates frequency domain vectors of the form

yf (`) =
[
Y (0, `) Y (1, `) . . . Y (NDFT − 1, `)

]T ∈ CNDFT×1.

The covariance matrices of the speech and the noise DFT coefficients, which we assume to
be zero-mean, complex-valued, and circularly Gaussian distributed, are given by

Rx(`) = E
(
xf (`)xHf (`)

)
∈ CNDFT×NDFT ,

Rd(`) = E
(
df (`)dHf (`)

)
∈ CNDFT×NDFT .

(6.2)

If we neglect interdependencies of speech components along frequency, estimators of
X(k1, `) are a function of one observation Y (k1, `) only, neglecting any information
about X(k1, `) that might be contained in Y (k2, `) for k2 6= k1. This restriction might
be a handicap, since it prevents any estimator from benefiting from a priori knowledge
about the instantaneous spectral structure of the speech signal.

The MMSE-optimal estimate of xf (`) given the speech and noise covariances is found
by applying the multidimensional Wiener filter (MD-WF) [170] to the noisy observation

x̂f (`) = arg min
x̂f (`)

E
(
‖xf (`)− x̂f (`)‖22

)
= GW(`)yf (`)

(6.3)

where ‖ · ‖2 denotes the Euclidean norm and the MD-WF [170] is given as

GW(`) = Rx(`)
(
Rx(`) + Rd(`)

)−1

= Rx(`)Ry(`)−1 ∈ CNDFT×NDFT .
(6.4)

Assuming the DFT bins of both speech and noise to be independent w.r.t. frequency
yields diagonal covariance matrices and hence the standard Wiener filter.

In [131], the authors derived a new family of STSA estimators, taking into account the in-
terdependencies of the frequency channels in the STFT. The resulting multi-dimensional
STSA (MD-STSA) estimator of the clean speech Fourier expansion coefficients was given
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by

x̂f,m(`) = arg min
|x̂f (`)|

E
(
‖|xf | (`)− |x̂f (`)|‖22

)
=
√
|GW(`)yf (`)|+ γdiag {GW(`)Rd(`)} ◦ ej∠yf (`),

(6.5)

where γ ∈ [0, 1] is a mixing factor and diag {·} accesses the main diagonal of a ma-
trix.

Note that even if the speech magnitude is the quantity being estimated, the gain matrix
GW(`) in Equation (6.5) is in general complex-valued. Hence, the magnitude estimates
in Equation (6.5) rely on a linear combination of the complex-valued noisy speech coef-
ficients rather than on the observed magnitudes alone. This is a substantial difference
to the one-dimensional case and indicates that by taking spectral dependencies into ac-
count, the spectral phase comes into play, even if it is not the quantity one aims to
retrieve.

6.3 The Covariance Matrix

The {k1, k2}th entry of the speech covariance matrix Rx(`) is

Rx(k1, k2, `) = E
(
X(k1, `)X

∗(k2, `)
)

= E
(
|X(k1, `)||X(k2, `)|ej(∠X(k1,`)−∠X(k2,`))

)
= E

(
A(k1, `)A(k2, `)e

j(φ(k1,`)−φ(k2,`))
)
.

(6.6)

In a practical scenario, we need to estimate Rx(k1, k2, `) from the noisy data. It is com-
mon in speech enhancement to estimate second moments by using recursive averaging
strategies among which the DD approach [15], which was adapted to full covariance
matrix estimation in [131], is popular for speech variance estimation. Such temporal
averaging strategies require an approximately stationary signal. This might be a reason-
able assumption for the magnitude terms in Equation (6.6), but the phase differences
fluctuate from one frame to the next, which may yield the interpretation that the under-
lying process is non-stationary, prohibiting the use of temporal averaging in this case.
We illustrate this in Figure 6.1. If the covariance matrix is estimated by means of a
recursive smoothing approach, the fluctuations in the phase difference may yield under-
estimation of the covariance’s absolute value due to the incoherent linear combination
of successive, complex-valued estimates. Consequently, the resulting gain may substan-
tially deviate from the theoretically optimal GW(`) in both absolute value and phase,
as we show in Section 6.4.1.

Alternatively, we could model the phase differences as a stationary process with high
variance. Assuming the magnitude and phase terms in Equation (6.6) to be independent,
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Figure 6.1: Spectrogram snippet (upper panel) of a speech file taken from TIMIT [139]
together with the corresponding instantaneous values of magnitude (middle
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implying they are uncorrelated, yields

Rx(k1, k2, `) = E
(
A(k1, `)A(k2, `)e

j(φ(k1,`)−φ(k2,`))
)

= E
(
A(k1, `)A(k2, `)

)
E
(
ej(φ(k1,`)−φ(k2,`))

)
= RA(k1, k2, `)E

(
ej∆φ(k1,k2,`)

)
,

(6.7)

where we define the phase factor covariance as

Rφ(k1, k2, `) = E
(
ej∆φ(k1,k2,`)

)
. (6.8)

As explained above, we may assume that the phase difference for k1 6= k2 exhibits a large
variance, i.e. is uniformly distributed. A uniformly distributed phase is characterized
by a circular variance equal to one22, hence we have

σ2
c (k1, k2, `) =

{
1 if k1 6= k2,

0 if k1 = k2

(6.9)

22 See Appendix C.
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or equivalently, using

σ2
c (k1, k2, `) = 1− |Rφ(k1, k2, `)| (6.10)

we have

Rφ(k1, k2, `) =

{
0 if k1 6= k2,

1 if k1 = k2.
(6.11)

Since

Rx(k1, k2, `) = RA(k1, k2, `)Rφ(k1, k2, `), (6.12)

Equation (6.11) renders Equation (6.6) equal to zero for k1 6= k2, implying a diagonal
covariance matrix. This in turn would mean that the diagonal Wiener Filter is the op-
timal gain, since any dependencies in the magnitude are masked by the independence
of the phase w.r.t. frequency. Later in this chapter, we derive a speech enhancement
framework that takes into account the above observations by relying on the following
two assumptions.

Assumption 1. The amplitude and phase terms in Equation (6.6) are independent.

Assumption 2. The spectral amplitude exhibits significant dependencies w.r.t. fre-
quency, while the spectral phase does not.

6.3.1 Empirical Evidence for the Statistical Model

This section provides empirical evidence for Assumption 1 and Assumption 2. In order to
quantify the validity of the two assumptions, we first need a suitable measure of mutual
independence between random variables. We will then use this measure by evaluating
it for real speech data.

The Symmetric Uncertainty Coefficient

The symmetric uncertainty coefficient (SUC) has been used in [174] to quantify the
independence between real and imaginary parts as well as amplitude and phase of STFT
coefficients. The SUC of two discrete RVs X and Y is defined as [175]

U(X,Y ) = 2
H(X) +H(Y )−H(X,Y )

H(X) +H(Y )
, (6.13)
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where H(·) is the entropy, given by [176]

H(X) =
∑
X∈X

p (x) log2

(
p (x)

)
, (6.14)

where X is the alphabet of the RV X with probability mass function p (x) = Pr{X =
x}, x ∈ X . The numerator of Equation (6.13) corresponds to the mutual information
I(X;Y ) of X and Y . Hence, the SUC can be interpreted as a normalized mutual
information with U(X,Y ) being close to zero indicating statistical independence of X
and Y , while values closer to one indicate dependencies. This can be easily shown, as if
X and Y are independent we have the joint entropy

H(X,Y ) = H(X) +H(Y |X) = H(X) +H(Y ), (6.15)

which, by inserting Equation (6.15) into Equation (6.13), yields U(X,Y ) = 0.

In the following experiments, we use histograms obtained from clean speech data sampled
at 16 kHz from the TIMIT database test set [139] as empirical probability mass functions.
The frame length was chosen to be 32 ms, the overlap was set to 75 %, with a square-root
Hamming window. These settings were chosen such that the analysis stage corresponds
to the test setup that is used throughout this thesis.

Independence of Magnitude and Phase Terms

To assess the validity of Assumption 1, we evaluate U(RA,inst(k1, k2, `),∆φ(k1, k2, `)),
i.e.

RA,inst(k1, k2, `) = AN(k1, `)AN(k2, `), (6.16)

with subscript N indicating amplitudes that are normalized to the frame signal level
similar to Section 4.4.2, i.e.

AN(k, `) =
AN(k, `)∑NDFT/2+1

k′=1 A(k′, `)2
. (6.17)

In a second step, we divide the range of RA,inst(k1, k2, `) into 10 intervals, all containing
the same amount of samples. Thus, we group the values according to their relative
contribution to the overall signal level. The rationale behind this strategy is to group
samples that can be approximated to be realizations of the same RV. In other words, we
aim to make the samples consistent w.r.t. to the distribution model, i.e. their variance
[54]. We evaluate the SUC for each of the resulting groups.23

The SUC averaged over all groups was U(RA,inst(k1, k2),∆φ(k1, k2)) = 5.28×10−4. The
maximum SUC value achieved by a single group was 1.9 × 10−3, indicating statistical

23 An implementation of this experiment can be found on https://gitlab.com/johannesstahl.
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independence between RA,inst(k1, k2) and ∆φ(k1, k2) and hence supporting the validity
of Assumption 1. We also conducted experiments without normalization and grouping
and with alternative normalization and grouping strategies following [17] and [54], all
yielding results in the same order of magnitude.

Dependencies of Magnitude and Phase w.r.t. Frequency

To address the validation of Assumption 2, we follow the same experimental strategy as
in Section 6.3.1. Figure 6.2 illustrates the average SUC for all possible combinations of
k1 and k2. For comparison, we also illustrate the results of the same evaluation for white
noise. As we are dealing with real-valued time domain data, we only show the frequency
range from 0 to fs/2.

While the SUC for the spectral phase is close to 0 for off-diagonal elements, the speech
magnitude shows a higher SUC for k1 6= k2. Given the independence of the phase w.r.t.
frequency, the phase pdfs can be factorized, and we have

E
(
ej(φ(k1,`)−φ(k2,`))

)
= E

(
ejφ(k1,`)

)
E
(
e−jφ(k2,`)

)
. (6.18)

In Section 6.2, we assumed the DFT coefficients to be zero-mean, complex-valued, cir-
cularly Gaussian distributed, meaning that the corresponding phases are uniformly dis-
tributed. This implies that E

(
ejφ(k1,`)

)
= E

(
e−jφ(k2,`)

)
= 0, hence Rφ(k1, k2, `) = 0 in

Equation (6.11).
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Figure 6.2: Empirical SUC values for (left) spectral phase and (right) spectral magnitude.
The upper row refers to speech data while the bottom row corresponds to
noise data.

6.4 Proposed Solution to the Covariance Phase Problem

Following Assumption 1 and Assumption 2, this section presents an approach that de-
liberately neglects phase correlations by introducing a linear multidimensional STSA
estimator.

6.4.1 The LMD-STSA Estimator

To circumvent difficulties in estimating the phase of the optimal gain matrix and follow-
ing the assumption that the spectral phase is independent w.r.t. frequency, we seek a
speech estimation framework that does not rely on phase difference estimates while still
allowing correlations between frequency channels. To this end, we derive a linear multi-
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dimensional MMSE-STSA (LMD-STSA) estimator that is independent of the phase of
yf (`), i.e. we search for [4]

Gprop(`) = arg min
G(`)

E
( ∥∥|xf (`)| −G(`)

∣∣yf (`)
∣∣∥∥2

2

)
. (6.19)

In Table 6.1, we relate the above optimization criterion to similar approaches in the
literature.

Table 6.1: Summary of multidimensional estimators.

Method Optimization Criterion Additional Information

MD-WF [64] E
( ∥∥xf −Gyf

∥∥2

2

)
G ∈ CNDFT×NDFT

MD-STSA [131] E
(
‖|xf | − |x̂f |‖22

)
relies on G ∈ CNDFT×NDFT

LMD-STSA [4] E
( ∥∥|xf | −G

∣∣yf ∣∣∥∥2

2

)
G ∈ RNDFT×NDFT

The optimal gain matrix is obtained by setting the derivative of the MSE in Equa-
tion (6.19) w.r.t. G(`) to zero, resulting in

Gprop(`) = E
(
|xf (`)|

∣∣yf (`)
∣∣T )E( ∣∣yf (`)

∣∣ ∣∣yf (`)
∣∣T )−1

= R|x||y|(`)R|y|(`)
−1,

(6.20)

with {R|x||y|(`),R|y|(`)} ∈ RNDFT×NDFT , containing the second order (cross-)moments
of the quantities in the subscript. In the following, we refer to second order moment
matrices instead of covariance matrices if the corresponding random vectors are not
necessarily zero-mean.

The Optimal Phase Estimate

In order to reconstruct the time domain signal from the estimated STSA, we also need an
STSP estimate. In the context of STSA estimators, the noisy phase ∠yf (`) is commonly
used, since it is optimal if (i) no further additional a priori knowledge about the spectral
phase is given and (ii) no dependencies w.r.t. time or frequency are considered. This
chapter specifically deals with the latter case. However, since we assumed independence
of magnitude and phase terms, any estimate of the spectral phase that relies on depen-
dencies across frequency bins can only be a function of the phase correlation and we so
far assumed that this quantity is either not accessible or zero. Hence, the noisy phase is
optimal in the MMSE sense for the given signal model. The full DFT representation of
the estimated speech signal is given by

x̂f,prop(`) =
(
Gprop(`)|yf (`)|

)
◦ ej∠yf (`). (6.21)
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Theoretical Performance of the LMD-STSA Estimator

This section presents a Monte Carlo simulation to assess the theoretical performance
gain that can be achieved by the estimators in Equation (6.4), Equation (6.5), and
Equation (6.21) compared to the standard Wiener filter, assuming diagonal second mo-
ment matrices. Since the main motivation to derive the LMD-STSA estimator was its
insensitivity to covariance phase estimation errors, the impact of the covariance matrices’
phase estimation accuracy is also assessed. The true covariance matrices are assumed
to be known and their phase is perturbed with an uniformly distributed error dφ, i.e.

dφ ∼ U
(
− ∆φ

2 ,
∆φ

2

)
. In order to fit the underlying signal model of the analyzed estima-

tors, the simulated speech and noise data were sampled from 2-dimensional, circularly
complex-valued, Gaussian distributions characterized by 2×2 complex-valued covariance
matrices.

The noise components were selected to be uncorrelated, so that only one covariance
matrix phase is perturbed. Since the covariance matrices are Hermitian symmetric,
only one cross-correlation coefficient needs to be defined in the 2-D case. We chose
0.99 · ej π4 for speech, modeling highly correlated frequency channels. The absolute scal-
ing and the main diagonal entries were sampled according to the input SNR.24 To il-
lustrate the sensitivity of the different estimator’s effectiveness to SNR, we chose SNRs
∈ {−10, 0, 10} dB.

For each experiment, we performed NMC = 105 Monte Carlo runs and report the mean
square error (MSE) improvement compared to the diagonal Wiener filter estimate, de-
noted by x̂f,WF, in the complex domain and on the estimated magnitude, i.e.

∆MSEx = 10log10

( ∑NMC
i=1 ‖xf,i − x̂f,i‖22∑NMC

i=1 ‖xf,i − x̂f,WF,i‖22

)
,

∆MSE|x| = 10log10

( ∑NMC
i=1 ‖|xf,i| − |x̂f,i|‖22∑NMC

i=1 ‖|xf,i| − |x̂f,WF,i|‖22

)
.

(6.22)

The outcome of the simulation is shown in Figure 6.3. We see that the performance of the
MD-WF and the MD-STSA is hardly affected by the phase error for SNR= −10 dB, while
with increasing SNR, the impact of the phase error increases. The possible performance
gain from the multidimensional estimators compared to the diagonal Wiener filter is
more pronounced in ∆MSE|x| than in ∆MSEx. As expected, the MSE of the LMD-
STSA does not increase with the covariance phase error. Also, with increasing SNR, the
LMD-STSA outperforms the MD-WF and the MD-STSA for a wider range of ∆φ.

Despite the simplified nature of these experiments in terms of the number of frequency
channels and the independently sampled noise components, we see that even with known

24 An implementation of this experiment can be found at [177].

107



covariance magnitudes, their phases can play a crucial role and may deteriorate the
performance of the MD-WF and the MD-STSA.
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Figure 6.3: MSE improvement (the lower the better) compared to the diagonal Wiener filter as
a function of phase error.

Estimating the Second Moments of the Magnitudes

In order to apply the LMD-STSA estimator in a practical scenario, R|x||y|(`) and R|y|(`)
have to be estimated from the noisy speech signal. While we can estimate R|y|(`)
directly by temporal averaging, estimating R|x||y| requires knowledge about the exact
mixing of xf (`) and df (`), hence, about their phases. Since we lack this knowledge,
we analyze upper (ub) and lower bounds (lb) of R|x||y| in the following. These bounds
are independent of the phase of xf (`) and we subsequently use them to formulate an
estimate of R|x||y|(`) by linearly combining them as follows

R̂|x||y|(`) = αRRub
|x||y|(`) + (1− αR)Rlb

|x||y|(`), (6.23)
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where αR ∈ [0, 1]. We can find the upper bounds of the entries of R|x||y| by applying the
triangle inequality

R|x||y|(k1, k2, `) = E
(
|X(k1, `)||X(k2, `) +D(k2, `)|

)
≤ E

(
|X(k1, `)||X(k2, `)|

)
+ E

(
|X(k1, `)|

)
E
(
|D(k2, `)|

)
= R|x|(k1, k2, `) + µ|x|(k1, `)µ|d|(k2, `).

(6.24)

We then obtain lower bounds by using Jensen’s inequality, i.e. E
(
|z|
)
≥ |E

(
z
)
|

R|x||y|(k1, k2, `) ≥ |Rx(k1, k2, `)|. (6.25)

We can rewrite the above upper and lower bounds in matrix-vector notation as

Rub
|x||y|(`) = R|x|(`) + µ|x|(`)µ|d|(`)

T , (6.26)

and

Rlb
|x||y|(`) = |Rx(`)|. (6.27)

Following the discussion in Section 6.3, we assume Rx(`) to be diagonal, i.e. its absolute
value is also diagonal. This is reasonable, considering that cross-moments equal to zero
represent a lower bound of the off-diagonal elements of R|x||y|(`) in general. Under this

assumption, the ML estimate of Rlb
|x||y|(`) is given by [15],

R̂lb
|x||y|,ML(`) = max

[
(R̂y(`)− R̂d(`)) ◦ INDFT×NDFT

, 0
]
, (6.28)

where I·×· is the · × · identity matrix and the noise covariance R̂d can be estimated in
speech pauses or by standard approaches like the minimum statistics method [70] and
the MMSE-based noise PSD estimator from [18]. The restriction, that the latter two
alternatives are only applicable for the case of a diagonal R̂d(`), is not critical for the
lower bound of the covariance matrix, as it is anyway a diagonal matrix.

Given the lower bound in Equation (6.28) and an estimate of Rd, we obtain a preliminary
speech estimate by applying the standard, diagonal Wiener filter. This pre-filtered speech
is then used to estimate the second moment matrix of the speech magnitude by means
of a recursive smoothing strategy as follows

R̂|x|(`) = α|x|R̂|x|(`− 1) + (1− α|x|)|x̂′f (`)||x̂′f (`)|T , (6.29)

with α|x| ∈ [0, 1] and x̂′f (`) = (GW(`) ◦ INDFT×NDFT
)yf (`).
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The second moment matrices of the noisy observation are obtained via recursive aver-
aging as well,

R̂y(`) = αyR̂y(`− 1) + (1− αy)yf (`)yHf (`),

R̂|y|(`) = α|y|R̂|y|(`− 1) + (1− α|y|)|yf (`)||yHf (`)|,
(6.30)

with {αy, α|y|} ∈ [0, 1]. Note that since R̂y(`) is only used for computing the diagonal

matrix R̂lb
|x||y|,ML, the (complex-valued) off-diagonal elements are not required for further

computations. Therefore, recursive averaging, unlike for the case of full, complex-valued
covariance matrices discussed in Section 6.3, is applicable here. Since we have to invert
R̂|y|(`) in the LMD-STSA estimator, we perform diagonal loading [178] in order to
regularize the matrix,

R̂|y|(`) = R̂|y|(`) +
δreg

NDFT
Tr{R̂|y|(`)}INDFT×NDFT

, (6.31)

where Tr{·} is the trace operator and δreg is a parameter that scales the amount of
diagonal loading.

The vectors µ|x|(`) and µ|d|(`) are obtained by means of the respective second moment
matrices’ main diagonals. In Section 6.1, we assumed the Fourier expansion coefficients
to be zero-mean, complex-valued, circularly Gaussian distributed. Hence, their magni-
tudes are Rayleigh distributed [15]. The variance of a Rayleigh distributed RV X is
given by

E
(
X2
)
− E

(
X
)2

= σ2 4− π
2

, (6.32)

and its expected value is

E
(
X
)

= σ

√
π

2
. (6.33)

Isolating σ yields

σ =

√
E
(
X2
)

2
, (6.34)

and inserting Equation (6.34) into Equation (6.33) gives us

E
(
X
)

=
1

2

√
πE
(
X2
)
. (6.35)
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We then obtain estimates of µ|x| and µ|d| as follows

µ̂|x|(`) =
1

2

√
πdiag

{
R̂|x|(`)

}
,

µ̂|d|(`) =
1

2

√
πdiag

{
R̂d(`)

}
.

(6.36)

6.5 Evaluation

In the following, we evaluate the proposed LMD-STSA estimator in terms of single-
channel speech enhancement performance.

6.5.1 Databases and Evaluation Metrics

For all simulations in this section, we used the test set of the TIMIT core database
[139], consisting of 192 utterances. All signals were sampled at 16 kHz and we added
one second of noise at the beginning and end of the individual signals. The noisy test
data was obtained by mixing the speech signals with noise at SNRs between −5 dB and
15 dB in 5 dB steps following the mixing convention recommended in [164]. The specific
noise types chosen in the experiments are white noise, factory noise, and babble noise
from the NOISEX-92 database [142], and rain noise from [143]. This selection includes
stationary, impulsive, speech-like, as well as highly non-stationary noise types.

We report P̃ESQ as a function of NAseg, following the proposal in [179], explained in
detail in Appendix B.2. Both, proof-of-concept and informal listening tests suggested
that musical noise is effectively reduced by using multidimensional estimators when
compared to their one-dimensional counterparts.25 To quantify this observation, we
report the WLKR [181] as described in Appendix B.3. Further, we report STOI [146]
and PESQ [145] both in terms of ∆-improvement over the noisy speech signal.

6.5.2 Benchmark Algorithms

As benchmark algorithms, we present the Wiener filter, the MMSE-STSA estimator
from [15], the MD-WF [172], and the MD-STSA estimator [131]. The intention be-
hind this selection is to juxtapose the multidimensional estimators with their respective
one-dimensional counterparts. For noise covariance matrix estimation, the estimates
obtained from the MMSE-based noise PSD estimator in [18] were used to construct a
diagonal matrix R̂d, thus neglecting possible correlations across frequency in the noise.
For all methods, we used a square-root Hamming window and set the frame length and
the frame shift to 32 ms and 8 ms, respectively. The speech covariance matrices for the

25 Listening examples be found on [180].
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MD-WF [172], and the MD-STSA [131] were estimated following [131]. Table 6.2 lists
the parameter settings used throughout the following evaluation. For all algorithms, the
overall noise suppression was limited to −20 dB.

Table 6.2: Parameter settings for the MD estimators.

αR αy α|y| α|x| δreg γ

0.5 0.9 0.998 0.5 0.04 0.5

6.5.3 Performance Limits and Potential of the Multidimensional Estimators

We analyze the potential performance gain provided by multidimensional estimators
compared to their one-dimensional counterparts. In this section, we are interested in
scenarios where the second order moment matrices of the speech STFT coefficients can
be assumed to be known. We thus estimate the second moment matrices from isolated
clean speech data by means of the DD approach. Similar to the blind experiments, we set
αDD = 0.98. However, for the multidimensional estimators, this choice of the forgetting
factor resulted in audible reverberations. We therefore adapted the DD approach for the
multidimensional estimators as follows

R̂x,oracle(`) = αDD

(
x̂f (`− 1)x̂f (`− 1)H

)
◦INDFT×NDFT

+(1−αDD)xf (`)xf (`)H , (6.37)

and

R̂|x|,oracle(`) = αDD

(
|x̂f (`− 1)| |x̂f (`− 1)|T

)
◦INDFT×NDFT

+(1−αDD) |xf (`)| |xf (`)|T .
(6.38)

Note that this approach ensures that for all estimators in this experiment, the main
diagonals of the second order moment matrices are computed in the same manner,
with the same αDD. Since we further used the noise PSD estimate as explained in the
previous section, any improvement by the multidimensional estimators will necessarily
be a result from taking into account the inter-frequency dependencies of the speech
STFT coefficients.

Figure 6.4 illustrates the results of this evaluation, averaged over all noise scenarios. In
terms of ∆PESQ and ∆STOI, we see the high potential of the multidimensional estima-
tors, as they outperform both the Wiener filter and the MMSE-STSA estimator.
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Figure 6.4: Speech enhancement performance of multidimensional and corresponding one-
dimensional estimators with second order moments estimated from isolated speech
data, averaged over all noise scenarios.

6.5.4 Proof-of-concept

In Figure 6.5, we show spectrograms of clean, noisy, and enhanced speech files. We note
that all MD approaches successfully preserve onsets and suppress isolated spectral peaks.
Although the MD-STSA estimator [131] and the MD-WF filter [172] are implemented
with the same covariance matrix estimation procedure, the MD-STSA estimator better
preserves broadband signal components.26 In this context it is important to recall how-
ever that the MD-WF also processes the spectral phase, while the MD-STSA estimator
and the LMD-STSA estimator both use the noisy phase for reconstruction. We specu-
late that the phase estimates resulting from the MD-WF approach lack coherency and
hence, the individual spectral components do not add up constructively. This effect has
been used under the term phase-randomization [182] for example to reduce auto-focus
noise recorded by camera microphones. We also note that compared to the benchmarks,
the LMD-STSA estimator better preserves unvoiced parts of the speech signal.

26 We tried different settings for the DD smoothing constant used for estimating the covariance matrix,
all resulting in similar observations.
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Figure 6.5: Proof-of-concept: Female speaker uttering In wage negotiations the industry bargains
as a unit with a single union. from the TIMIT core database [139] mixed with white
noise, with SNR = 5 dB. (a) Clean speech, (b) Noisy Speech, (c) Wiener Filter, (d)
MD-WF [172] + [131], (e) MD-STSA [131], (f) LMD-STSA, proposed.
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6.5.5 Objective Evaluation of Speech Enhancement Performance

The ∆PESQ results shown in Figure 6.6 demonstrate that the proposed approach im-
proves the robustness of the multidimensional estimators in a fully blind scenario. Sur-
prisingly, the one-dimensional estimators outperform their multidimensional counter-
parts in terms of ∆PESQ, except for babble noise, where the LMD-STSA estimator

performs best. However, evaluating P̃ESQ instead of ∆PESQ yields a different picture.

Figure 6.7 illustrates the evaluation in terms of NAseg and P̃ESQ. We note that

• the multidimensional speech estimators outperform their one-dimensional counter-
parts for a large range of noise and SNR scenarios and

• the LMD-STSA estimator results in increased noise reduction compared to the
benchmarks in all scenarios while preserving the level of speech distortions, as

indicated by P̃ESQ.

The STOI results are shown in Figure 6.8. In low SNR conditions, the LMD-STSA
estimator improves the predicted intelligibility compared to the benchmarks, except for
rain noise, where the MMSE-STSA estimator performs best. However, compared to the
multidimensional benchmarks, the LMD-STSA estimator consistently performs best in
terms of STOI, indicating improved robustness in a fully blind scenario.

Informal listening tests suggested that the residual noise floor of the proposed method
sounds more natural compared to the reference methods though slight reverberation is
introduced. In particular, musical noise was barely perceivable, which is also indicated
by the WLKR results in Figure 6.9. All multidimensional estimators seem preferable
in terms of musical noise artifacts compared to one-dimensional methods. This is due
to the fact that taking into account dependencies w.r.t. frequency intrinsically prevents
isolated spectral peaks.

The results averaged over all noise scenarios are depicted in Figure 6.10, summarizing
the observations made in this section. In terms of STOI and WLKR, the LMD-STSA
estimator performs best among all tested algorithms.
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Figure 6.6: Speech enhancement performance of the LMD-STSA algorithm in terms of ∆PESQ-
improvement over the noisy input speech for segmental SNR.
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Figure 6.8: Speech enhancement performance of the LMD-STSA algorithm in terms of ∆STOI-
improvement over the noisy input speech.
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musical noise.
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Figure 6.10: Speech enhancement performance of multidimensional and corresponding one-
dimensional estimators, averaged over all noise scenarios.

6.6 Conclusion

This chapter presents an analysis of speech enhancement algorithms that take inter-
frequency channel correlations of the speech signal into account. An important result
is that such approaches typically also imply a phase estimation task, since the covari-
ance matrices of speech and noise are complex-valued. In terms of speech enhancement
performance, the estimation of the full covariance matrices is a critical task that is not
adequately solved by standard approaches like the DD method. The estimation of the
covariances’ phase is particularly problematic. The contributions contained in this chap-
ter are threefold: (i) we analyze the impact of the covariance phase on spectral coefficient
estimation performance, (ii) we illustrate that it is reasonable to assume that the spec-
tral phase is independent w.r.t. frequency while the spectral amplitude is not, and (iii)
we propose a linear multidimensional MMSE-STSA estimator that is independent of the
covariance phase. Further, the proposal is compared to relevant benchmark methods,
indicating improved noise reduction while preserving both speech quality and intelligi-
bility. In an oracle scenario, where the second order moment matrices are computed
from isolated speech data, we demonstrate the significant potential of multidimensional
estimators w.r.t. joint speech intelligibility and quality improvement. The results indi-
cate that the proposal of neglecting inter-frequency phase dependencies helps to improve
the robustness of the multidimensional approaches in a fully blind scenario. However,
it is the belief of the author that data-driven approaches to estimating the second order

118



moments have the potential to further push the performance of the proposed multidi-
mensional estimator towards its ideal performance. In this respect, an advantage of the
proposed multidimensional estimator is that only a positive-valued quantity has to be
learned from the data, compared to existing approaches, where complex-valued covari-
ance matrices would have to be learned. In this respect, an advantage of the proposed
multidimensional estimator is that only positive-valued quantities have to be learned,
thus opening the door to compositional model learning.
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7
Conclusion

This thesis presented three scenarios in STFT-based speech enhancement, where the
spectral phase needs to be considered in a different way than in classical speech en-
hancement. More specifically, we studied the impact of (i) incorporating the harmonic
signal model, (ii) correlations of STFT coefficients w.r.t. time, and (iii) correlations of
STFT coefficients w.r.t. frequency.

Chapter 4 illustrates that given an estimate of harmonic speech signal components, the
MMSE-optimal gain is complex-valued in general. A joint detection-estimation approach
under this premise is derived and a pitch-synchronous signal analysis stage is shown to
be beneficial for estimating the harmonic signal components, a problem that has to
be solved prior to the detection-estimation stage. To avoid a fixed choice for the maxi-
mum harmonic frequency, an empirical Bayesian approach that facilitates parameterizing
the prior probability of harmonics being present in a specific time-frequency region is
derived. The pitch-synchronous detection-estimation framework comes with slight per-
ceived speech quality improvements, indicated by subjective and objective tests, and the
instrumental intelligibility predictor STOI yields promising results, particularly in low
SNR conditions. Further, the intelligibility performance of the benchmark proposed in
[86] is improved by replacing the originally proposed harmonic retrieval stage with the
proposed Bayesian pitch-synchronous approach, indicating that the specific harmonic
retrieval approach chosen may impact dramatically on the speech enhancement perfor-
mance of estimators relying on the harmonic plus noise model.

In the context of the PhD theses relevant to the present thesis it is worth noting that
the proposed simultaneous detection-estimation approach generalizes the stochastic-
deterministic Wiener filter presented in [40]. Further, the pitch-synchronous harmonic
retrieval block has been shown to improve the speech-enhancement performance of the
SD MMSE-STSA estimator from [40]. In this respect, it is important to note that the
harmonic retrieval approach presented in Chapter 4 benefits from incorporating empir-
ical priors, as they circumvent the need to set a fixed maximum harmonic frequency,
which was needed in [39,40].

In Chapter 5, we consider a signal representation that aligns harmonic frequencies
in the time-frequency plane. This representation facilitates modeling temporal corre-
lation in the STFT coefficients. By representing the instantaneous spectral phase as
the composition of a linear phase progression part plus a zero-mean wrapped Gaussian
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stochastic phase component, the state transition model of a subband Kalman filter can
be obtained by applying circular statistics. Instrumental metrics indicate that the pitch-
adaptive signal analysis stage in conjunction with the Kalman filter comes with increased
noise reduction and preserves the speech distortion level at the same time. We confirmed
this conjecture by a subjective listening test which shows a significant preference of the
proposed method in terms of noise reduction compared to the benchmark methods. The
speech distortion level is rated similarly across the tested algorithms.

The complex-valued Kalman filter extends the work in [41], as it provides an explicit
analytical model for the AR parameters in voiced speech and further uses this model to
formulate the propagation step of the Kalman filter. Further, the departure to pitch-
adaptive and pitch-synchronous signal representations can be seen as an extension of
general considerations w.r.t. sinusoidal signal models presented in [43], applied to the
problem of single-channel speech-enhancement.

Chapter 6 investigates the role of the spectral phase in modeling inter-frequency correla-
tions in speech and noise signals. Existing multidimensional estimators rely on complex-
valued covariance matrices for the estimation of the speech STFT coefficients. Without
any further assumptions, the phases of the covariance matrices are challenging to esti-
mate. We therefore derive a linear multidimensional STSA estimator which circumvents
the need to estimate them. Further, we show that it is reasonable to assume that the
spectral phase is independent w.r.t. frequency, which is not the case for the spectral
magnitude. The proposed linear multidimensional STSA estimator facilitates incorpo-
rating inter-frequency correlations into a classical STFT speech enhancement framework.
When the speech second order moment matrices are estimated from isolated speech data,
all multidimensional estimators outperform their one-dimensional counterparts in terms
of instrumentally predicted speech quality and intelligibility. The experimental results
indicate that in a fully blind scenario, focusing on the magnitude improves the robustness
of the multidimensional estimators.

The results of Chapter 6 are particularly interesting in the context of the related PhD
theses in Section 1.2. In the conclusion of his PhD thesis [42], Plourde points out that
he observed the complex-valued STFT coefficients to be less correlated w.r.t. frequency
than their magnitudes. As a consequence, he mentions the possibility to derive an
estimator under the assumption of correlated magnitudes but uncorrelated phases. The
LMD-STSA estimator and the corresponding phase estimate in Chapter 6 are, although
motivated differently, derived from this statistical model.

In the light of the research question(s) posed in Chapter 1, Chapter 4 exemplifies
that from a mathematical point of view, any non-circular statistical model for the STFT
coefficients renders the noisy phase to be a suboptimal estimate of the clean speech
spectral phase. Incorporating harmonic signal modeling is one source of non-circularity
in the STFT coefficients’ distributions. However, estimators derived from such a sig-
nal model heavily rely on the accuracy of the respective parameters’ estimates. For
the harmonic model, tools such as iterative algorithms, e.g. [1], or adaptations to the
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signal analysis stage as in [2] are needed to increase the accuracy compared to directly
optimizing criteria such as the least squares, ML, or MAP criteria. An essential goal of
phase-sensitive speech enhancement strategies is the preservation or the retrieval of spec-
tral phase structure along time and frequency. The harmonic model can indicate what
structure to expect in voiced speech segments. Further, the STFT coefficients are highly
interdependent w.r.t. time and frequency due to the speech production process itself, the
finite window length, and the overlapping signal frames. As illustrated in Chapter 5 and
Chapter 6 estimating the cross-moments of the respective complex-valued coefficients is
the key problem to solve before speech enhancement algorithms can profit from the in-
terdependencies w.r.t. time and frequency. While again the harmonic signal model may
be used to simplify this task, we also show that specific spectral phase properties render
the estimation of its cross-moments unreliable. This is why under such circumstances it
can be beneficial to resort to magnitude-only solutions.
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A
Some Remarks on the Notation in this

Thesis

A.1 Continuous-Time and Discrete-Time Signals

While this thesis mainly deals with discrete-time signals, for certain considerations,
continuous-time signals will be of interest. The discrete-time signal is obtained by sam-
pling the corresponding continuous-time signal xc(t) with sampling rate fs, i.e.

x(n) = xc(nTs), (A.1)

where n ∈ Z is the discrete-time index, Ts = 1/fs is the sampling period, and the
continuous-time is t ∈ R. While in the literature, e.g. [48], we often find [ ] to enclose
the independent variable of discrete-variable functions and ( ) to enclose the independent
variable of continuous-variable functions, in this thesis we leave the task of distinguishing
between the two cases solely to the subscript “c”.

A.2 Random Variables

Conceptually it is of course important to distinguish random variables and realizations
of random variables. While in many works, this is done by using notation indicators
such as capital and lowercase letters, in this work, we follow [121], where such a notation
convention is omitted and hope that the meaning will be clear from the context. By
using this notation, we also omit the subscript that identifies the RV that corresponds
to the pdf under consideration. We leave this task to the pdf argument only.
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B
Evaluation Metrics

In this appendix, we shortly review the instrumental metrics we chose for the assessment
of the speech enhancement performance of the algorithms discussed in this thesis.

B.1 Objective Speech Quality and Speech Intelligibility
Predictors

Speech Quality

As objective measures for perceived speech quality prediction, we report the perceptual
evaluation of speech quality (PESQ) measure [144, 145, 183]. The implementation was
taken from [44]. It is important to note that the PESQ metric was originally proposed
for the evaluation of speech coding algorithms. Hence, it is not designed for handling
artifacts that are specific to speech enhancement such as musical noise. Nevertheless, it
is widely used and has been found to be highly correlated to the human rating of the
processed signals’ overall quality [184]. An alternative, that is also based on the PESQ
measure is presented in Section B.2.

Speech Intelligibility

For instrumental prediction of speech intelligibility, we used the short-time objective
intelligibility (STOI) measure proposed in [146, 185], which has been proposed for in-
telligibility prediction of time-frequency weighted noisy speech. In order to map the
STOI values to word accuracy rates (WAR), we applied a nonlinear mapping function
as proposed for the English database in [146]. This strategy has, for example, also been
used in [29, 132]. Since this mapping strongly depends on the speech database under
test, the so-obtained values should be seen as an indicator of relative potential of the
evaluated methods.
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B.2 The Black Box Approach

To obtain insights into details of the tested noise suppression mechanism, we analyze how
an algorithm affects both the speech and noise components individually. One possibility
to achieve this is to log the weights that are applied to the noisy speech and separately
apply them to the isolated speech and noise signals. Such a methodology is called white
box approach in the literature [186–188]27 and suffers from the disadvantage that it
is highly intrusive in the sense that it is applicable only if the parameters of speech
enhancement system are perfectly known [189]. The black box methodology does not
suffer from this drawbacks and emulates the system under test by approximating it as
a spectral gain function that is computed as follows [190]

Ĝ(k, `) = min


∣∣∣X̂(k, `)

∣∣∣
|Y (k, `)| , 1

 e
j∠ X̂(k,`)

Y (k,`) , (B.1)

where limiting the amplitude gain to a maximum value of 1 has been introduced in
[190] for the sake of increased robustness of the above approximation. By applying
Ĝ(k, `) separately on the isolated clean speech and noise STFTs and transforming the
resulting STFTs back to time domain we obtain x̃t(n, `) and d̃t(n, `), respectively. To
then quantify the impact of the system under test on the noise signal only, we analyze
the segmental noise attenuation (NAseg) given by [179]

NAseg = 10log10

 1

|LNA|
∑
`∈LNA

∑N−1
n=0 d

2
t (n, `)∑N−1

n=0 d̃
2
t (n, `)

 , (B.2)

where LNA corresponds to the set of frames that is considered in the evaluation and
|LNA| denotes its cardinality. The speech distortions can be evaluated by means of the
segmental speech to speech distortion ratio (SSDRseg) that is computed framewise by
[179]

SSDRseg =
1

|LSSDR|
∑

`∈LSSDR

min (SSDR(`), 30) , (B.3)

with

SSDR(`) = 10log10

( ∑N−1
n=0 x

2
t (n, `)∑N−1

n=0 (x̃t(n, `)− xt(n, `))
2

)
, (B.4)

and LSSDR = {`|SSDR(`) > −10 dB} [179].

27 The term “white” thus refers to a scenario where the internal processing of the noise reduction scheme
is exactly known.
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To investigate the perceptual relevance of the introduced speech distortions, we can
construct the time domain signal x̃t(n) and evaluate it by means of the PESQ score

[190]. We denote the resulting values by P̃ESQ. Note that in the context of speech

enhancement, evaluating P̃ESQ is better justified than directly evaluating the PESQ of
the filtered noisy signal, since the PESQ metric originally has been proposed for the
purpose of evaluating speech codecs and is not designed to handle residual noise as it
occurs in the case of speech enhancement algorithms [191].

B.3 Musical Noise Assessment

Besides the speech component quality and the level of noise suppression, a further mea-
sure one may be interested in is the quality of the residual noise floor. A well known
artifact of speech enhancement algorithms is so-called musical noise [16], a phenomenon
that results from isolated peaks in the spectrogram, perceived as highly fluctuating tones.
In order to quantify the amount of musical noise, the works in [192–194] consider the
change in kurtosis of the (residual) noise before and after processing the noisy speech
signal. The rationale behind these approaches is that the kurtosis, i.e. the “tailedness”,
of an empirical distribution indicates the sparseness of the underlying data [195]. Low
kurtosis means that events scatter uniformly while high kurtosis represents less frequent
but more extreme events. Hence, high kurtosis of the residual noise after processing
compared to the kurtosis of the unprocessed noise can be interpreted as an indicator
for musical noise artifacts. The works in [192–194] perform the musical noise analy-
sis of noise reduction algorithms analytically by means of a white box scenario that is
only applicable to a highly limited number of algorithms. In contrast, the works in
[181, 196, 197] consider a black box approach that can be applied to any system whose
internal processing does not need to be known. In this thesis, we use the weighted log
kurtosis ratio (WLKR) as proposed in [197]

WLKR = log

(
WKd̃

WKd

)
, (B.5)

where WKd̃ and WKd are the weighted kurtosis values of d̃t(n) and dt(n), respectively.
Here, the kurtosis of a signal refers to the sample kurtosis of its (weighted) spectral
magnitudes, calculated from the STFT. The overall WK values are obtained by averaging
the kurtosis over frames that are not dominated by speech, as proposed in [196].

B.4 Summary

Table B.1 lists all metrics that have been used to assess the performance of the speech
enhancement algorithms presented in this thesis. Please note that the variety of metrics
used throughout this thesis is a result from discussions at conferences and reviews that
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the author received throughout the past years. These steadily helped to improve the
instrumental evaluation framework.

Table B.1: Summary of the evaluation metrics used in this thesis.

Metric Evaluated Quantity Reference(s)

PESQ Perceptual speech quality of processed noisy speech [44,144,145,183]

STOI Intelligibility of the processed noisy speech [146]

NAseg Noise attenuation of the algorithm under test [179]

P̃ESQ Perceptual speech quality of the filtered speech signal only [144,190]

WLKR Extent of musical noise [197]
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C
Circular Statistics

The spectral phase can be seen as directional data in the complex plane. To statistically
describe and analyze the spectral phase, we hence use circular/directional statistics
in parts of this thesis. This appendix explains fundamental concepts such as circular
moments and selected circular distributions.

C.1 Measures of Location and Dispersion - Circular Moments

Representation of Circular Data

We define circular data points as data points on the unit circle, i.e. we may represent a
random angle φ by means of a complex exponential with unit length

z = ejφ. (C.1)

The angle of this complex exponential is measured in degrees or, e.g. in this thesis, in
radians. The usefulness of the representation in Equation (C.1) becomes clear when we
consider the problem of taking the sample mean of observed data. Given for example
two angles φ1 = π+ ε and φ2 = π− ε with 0 < ε < π/2, the result of taking the the two
angles’ sample mean directly will strongly depend on the chosen principal interval, i.e.
the interval that angle measurements are wrapped to. We denote the wrapped angle as
the pincipal value, which is accessed by applying the ARG (·) operator. If we define the
principal value of an angle to lie within the interval [0, 2π), for the sample mean we have

φ̄a =
ARG (φ1) + ARG (φ2)

2
=
π + ε+ π − ε

2
= π. (C.2)

In contrast, defining the principal interval on [−π, π) yields

φ̄b =
ARG (φ1) + ARG (φ2)

2
=
−π + ε+ π − ε

2
= 0. (C.3)
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Clearly, the first result φa is a much more reasonable (or at least practically more rele-
vant) mean value for the observed data, since it gives us an indication about a directional
preference in the observed data.

The representation as a complex exponential according to Equation (C.1) is much more
practical in this context. We define the sample mean resultant vector as

z̄ =
1

N

N∑
i=1

zi. (C.4)

While the angle of z̄ corresponds to a mean direction, its absolute value (or length) gives
us information about the concentration of the data around the mean direction, i.e. the
larger |z̄|, the higher the concentration, with maximal concentration indicated by |z̄| = 1
if all data points come from the same direction. For the aforementioned measurements,
we have φc = ∠z = φa.

The above discussion is especially relevant in the context of optimization criteria, as
in the case of circular data, they should not be formulated on φ but on ejφ, since it
enables to straightforwardly take into account the wrapping around the unit circle. In
the following, we will present measures of population location and dispersion of circular
data.

The First Circular Moment

The mean resultant (vector), or first circular moment, of a random angle φ is defined as
[160]

B = E
(
z
)

= E
(
ejφ
)
. (C.5)

It is the population-equivalent to Equation (C.4).

The Mean Direction

The mean angle (or direction) of the random angle φ is the angle of the first circular
moment, i.e.

µ = ∠B. (C.6)

The Mean Resultant Length

The mean resultant length of the random angle φ, i.e. the absolute value of the first
circular moment, represents the concentration of φ around the mean direction µ and is
given by |B|. The closer |B| is to one, the more concentrated φ is around µ.
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The Circular Variance

The circular variance is closely connected to the mean resultant length and is defined as
[160]

σ2
c = 1− |B| . (C.7)

Hence, similar to |B|, it is bounded to the interval [0, 1]. However, as it is a variance,
φ can be considered to be maximally concentrated if σ2

c = 0. If σ2
c = 1, φ is uniformly

distributed.

C.2 Selected Distributions

According to [160], the pdf p (φ) of an absolutely continuous circular distribution fulfills
the following constraints

1. p (φ) ≥ 0 almost everywhere on (−∞,∞),

2. p (φ+ 2π) = p (φ) almost everywhere on (−∞,∞),

3.
∫ 2π

0 p (φ) dφ = 1.

C.2.1 The Uniform Distribution

The uniform distribution on the unit circle has the pdf

p (φ) =
1

2π
. (C.8)

An important property of the uniform distribution is that the sum of two random vari-
ables φ1 and φ2 is uniformly distributed if one of the two is itself uniformly distributed,
independent of the other random variable’s distribution [160].

Circular Moments

For the uniform distribution, no direction in the complex plane is promoted, i.e. for the
circular variance we have

σ2
c = 1. (C.9)
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C.2.2 The Wrapped Gaussian Distribution

By wrapping any distribution around the circumference of the unit circle, we obtain the
corresponding wrapped distribution. For the case of the normal distribution, we hence
can compute the pdf of the wrapped normal distribution as [160]

p (φ;µ, σ) =
1√

2πσ2

∞∑
k=−∞

e−
(φ−µ+2πk)2

2σ2 , (C.10)

with mean direction µ and variance σ2. For any random variable on the line that has a
pdf, the above principle can be used to formulate the pdf of the corresponding wrapped
distribution [160].

Circular Moments

The first circular moment of the wrapped normal distribution is given by [160]

B = e−
σ2

2 ejµ, (C.11)

hence, the mean direction is µ and the circular variance is given by [160]

σ2
c = 1− e−

σ2

2 . (C.12)

C.2.3 The Von Mises Distribution

The pdf of a von Mises distributed random variable is given by [160]

p (φ;µ, κ) =
1

2πI0 (κ)
eκcos(φ−µ), (C.13)

with mean direction µ and concentration parameter κ. Iν (·) is the modified Bessel
function of νth order as defined in Equation (D.5). For large κ, the von Mises distribution
can be approximated by a normal distribution with variance σ2 = 1/κ [198].

Circular Moments

The first circular moment of the von Mises distribution is given by [160]

B =
I1 (κ)

I0 (κ)
ejµ, (C.14)

136



the mean direction is µ and the circular variance is given by [160]

σ2
c = 1− I1 (κ)

I0 (κ)
. (C.15)
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D
Special Functions and Probability Density

Functions

The Gamma Function

The Gamma, or factorial, function can be expressed by Euler’s integral [199, Eq. 6.1.1]

Γ (z) =

∫ ∞
0

tz−1e−tdt, with Re (z) > 0. (D.1)

For n ∈ N, it fulfills [199, Eq. 6.1.5]

Γ (n+ 1) = n!. (D.2)

Bessel Functions

The Bessel function of the first kind is defined by the series [200, Eq. 8.402]

Jν (z) =
zν

2ν

∞∑
k=0

(−1)k
z2k

22kk!Γ (ν + k + 1)
, with |∠z| < π. (D.3)

The modified Bessel function of the first kind is given by [200, Eq. 8.406]

Iν (z) = e−j
π
2
νJν

(
ej

π
2 z
)
, with − π < ∠z ≤ π

2
, (D.4)

with integral representation [200, Eq. 8.431]

Iν (z) =
1

π

∫ π

0
cos (νφ) ezcos(φ)dφ− sin (νπ)

π

∫ ∞
0

e−zcosh(t−νt)dt, (D.5)

with |∠z| ≤ π/2 and Re (ν) > 0.
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Arctan2

The four-quadrant inverse tangent is defined as

arctan2 (zI, zR) =



arctan

(
zI

zR

)
if zR > 0,

arctan

(
zI

zR

)
+ π if zR < 0 and zI ≥ 0,

arctan

(
zI

zR

)
− π if zR < 0 and zI < 0,

π

2
if zR = 0 and zI > 0,

−π
2

if zR = 0 and zI < 0,

indeterminate if zR = 0 and zI = 0.

(D.6)

The Parabolic Cylinder Function

D−2µ (ν) =
e−

ν2

4

Γ (2µ)

∫ ∞
0

e−xν−
x2

2 x2µ−1dx (D.7)

The Confluent Hypergeometric Function

The confluent hypergeometric function is defined by the series [200, Eq. 9.210]

1F1 (α; γ; z) = 1 + α
γ
z
1! + α(α+1)

γ(γ+1)
z2

2! + α(α+1)(α+2)
γ(γ+1)(γ+2)

z3

3! + . . . (D.8)

In the context of this thesis it is relevant for solving integrals including Bessel functions
such as [200, Eq. 6.631]

∫ ∞
0

xµe−αx
2
Jν (βx) dx =

βνΓ
(
ν+µ+1

2

)
2ν+1α

µ+ν+1
2 Γ (ν + 1)

1F1

(
ν+µ+1

2 ; ν + 1;−β2

4α

)
, (D.9)

with Re (α) > 0 and Re (µ+ ν) > −1, occurring in STFT magnitude estimators.

The Generalized Gamma Distribution

The pdf of the generalized Gamma distribution is given by [55]

p (A) =
γµν

Γ (ν)
Aγν−1e−µA

γ
µ > 0, γ > 0, ν > 0, A ≥ 0. (D.10)
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Dependent on the parameter pair {γ, ν}, special cases of the generalized Gamma distri-
bution can be found. For {γ = 2, ν = 1/2}, Equation (D.10) corresponds to a Rayleigh
density as in [15] and for {γ = 1, ν} we have the Gamma density that has been used in
[3, 201] and in Equation (4.39) in this thesis.

The χ-Distribution

The pdf of the χ-distribution is given by [27]

p (A) =
2

Γ (µ)

(
µ

σ2
x

)µ
A2µ−1e

− µ

σ2
x
A2

. (D.11)
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E
Derivations for Chapter 4

E.1 Derivation of the Estimates and Wirtinger Calculus

Inserting Equation (4.15) into Equation (4.11) results in

X̂b = arg min
X̂

p(H0)λb0

∫
DX

(GminY − X̂)∗(GminY − X̂)p(Y |X)p(X|H0)dX

+ p(H1)λb1

∫
DX

(X − X̂)∗(X − X̂)p(Y |X)p(X|H1)dX

+ p(H2)λb2

∫
DX

(X − X̂)∗(X − X̂)p(Y |X)p(X|H2)dX.

(E.1)

In the following we will make use of Wirtinger calculus for minimizing Equation (E.1)
with respect to the complex variable X̂ [202]. By doing so, we avoid considering the real
and imaginary part of X̂ separately, yielding the same result but a much more straight-
forward derivation. Since the cost function f(ẑ) = (z − ẑ)∗(z − ẑ) with {z, ẑ} ∈ C is a
real-valued function, its derivative and its conjugate derivative are complex conjugates
of each other, i.e.,

(∂f
∂ẑ

)∗
= ∂f

∂ẑ∗ [138]. Consequently, we can compute stationary points

of f by simply setting either ∂f
∂ẑ or ∂f

∂ẑ∗ to zero, both yielding the same result for ẑ. This

is why we minimize Equation (E.1) by setting its partial derivative with respect to X̂∗

to zero while treating X̂ as a constant:

p(H1)λb1

∫
DX

(X − X̂)p(X|H1)p(Y |X)dX+

p(H2)λb2

∫
DX

(X − X̂)p(X|H2)p(Y |X)dX+

p(H0)λb0

∫
DX

(GminY − X̂)p(X|H0)p(Y |X)dX = 0,

(E.2)

where the integral over DX corresponds to integrating over the real and imaginary parts
of X. Further, by using

∫∞
−∞

∫∞
−∞ p(X|H0)p(Y |X)dXRdXI = p(Y |H0) and p(X|H0) =
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δ(X) we obtain

X̂b

[
Λ1(Y )λb1 + Λ2(Y )λb2 + λb0

]
=

Λ1(Y )λb1

∫∞
−∞

∫∞
−∞Xp(X|H1)p(Y |X)dXRdXI

p(Y |H1)︸ ︷︷ ︸
E(X|Y,H1)

+ Λ2(Y )λb2

∫∞
−∞

∫∞
−∞Xp(X|H2)p(Y |X)dXRdXI

p(Y |H2)︸ ︷︷ ︸
E(X|Y,H2)

+ λb0GminY,

(E.3)

with likelihood ratios

Λb(Y ) =
p(Hb)
p(H0)

p(Y |Hb)
p(Y |H0)

. (E.4)

The conditional expectations E(X|Y,H1) and E(X|Y,H2) can be solved by inserting the
distributions resulting from the statistical model in Section 4.3.1:

p(X|H1) = p(XR, XI|H1) =
1

πσ2
x

e
−X

2
R+X2

I
σ2
x , (E.5)

p(X|H2) = p(XR, XI|H2) =
1

πσ2
x

e
− (XR−X̄2,R)2+(XI−X̄2,I)

2

σ2
x , (E.6)

p(Y |X) = p(YR, YI|XR, XI) =
1

πσ2
d

e
− (YR−XR)2+(YI−XI)

2

σ2
d , (E.7)

where the subscripts “R” and “I” denote the real and imaginary part of a complex-valued
variable z = zR + jzI and X̄2 = XH in the case where the mean value is introduced due
to harmonic components. In the case of unvoiced speech, we have circularly complex
Gaussian distributed speech DFT coefficients known to result in the noisy signal, filtered
by the Wiener Filter (GW) [14], as the conditional expectation value:

E(X|Y,H1) =
σ2
x

σ2
x + σ2

d

Y = GWY. (E.8)

In case of H2, the conditional expectation value is the noisy observation times the
stochastic-deterministic Wiener Filter [40, 117] from Equation (3.25), which also takes
into account the harmonic components of the signal

E(X|Y,H2) = GSDWY. (E.9)
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Solving for real and imaginary parts separately, finally yields the solution of Equa-
tion (E.3) for the complex-valued DFT coefficients,

X̂b =
λb0Gmin + Λ1(Y )λb1GW + Λ2(Y )λb2GSDW

Λ1(Y )λb1 + Λ2(Y )λb2 + λb0︸ ︷︷ ︸
Gb

Y. (E.10)

E.2 Derivation of the Subrisks

In the following, we derive the subrisk for a general Hb′ with b′ ∈ {1, 2} and subsequently
insert the correpsonding class-specific parameters to obtain the individual subrisks. This
is possible because they share the same cost function. Inserting the cost function together
with the distributions into Equation (4.7) yields

rb(Ỹ |Hb′) =

∫ ∞
−∞

∫ ∞
−∞

λbb′(X̃ − ˆ̃Xb)
∗(X̃ − ˆ̃Xb)

× 1

πσ2
d

e
− Ỹ

2
R+Ỹ 2

I +X̃2
R+X̃2

I −2(ỸRX̃R+ỸIX̃I)

σ2
d

× 1

πσ2
x

e
−
X̃2

R+X̃2
I +X̄2

b′,R+X̄2
b′,I−2(X̃RX̄b′,R+X̃IX̄b′,I)

σ2
x dX̃IdX̃R

=
λbb′

π2σ2
dσ

2
x

e
− Ỹ

2
R+Ỹ 2

I
σ2
d

−
X̄2
b′,R+X̄2

b′,I
σ2
x

×
∫ ∞
−∞

∫ ∞
−∞

λbb′
(
X̃2

R + X̃2
I + ˆ̃X2

b,R + ˆ̃X2
b,I − 2(X̃R

ˆ̃Xb,R + X̃I
ˆ̃Xb,I)

)
× e
−(X̃2

R+X̃2
I )
σ2
d+σ2

x

σ2
d
σ2
x

+2X̃R

ỸRσ
2
x+X̄b′,Rσ

2
d

σ2
d
σ2
x

+2X̃I

ỸIσ
2
x+X̄b′,Iσ

2
d

σ2
d
σ2
x dX̃IdX̃R

(E.11)

For brevity we substitute:

p =
σ2
d + σ2

x

σ2
dσ

2
x

, qR =
ỸRσ

2
x + X̄b′,Rσ

2
d

σ2
dσ

2
x

, ζ =
Ỹ 2

R + Ỹ 2
I

σ2
d

,

qI =
ỸIσ

2
x + X̄b′,Iσ

2
d

σ2
dσ

2
x

, γ =
X̄2
b′,R + X̄2

b′,I

σ2
x

.
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Hence, after multiplying out we have

rb(Ỹ |Hb′) =
λbb′

π2σ2
dσ

2
x

e−ζ−γ

×
[ ∫ ∞
−∞

e−X̃
2
I p+2X̃IqI

∫ ∞
−∞

X̃2
Re−X̃

2
Rp+2X̃RqRdX̃RdX̃I

+

∫ ∞
−∞

e−X̃
2
Rp+2X̃RqR

∫ ∞
−∞

X̃2
I e−X̃

2
I p+2X̃IqIdX̃IdX̃R

+ ( ˆ̃X2
b,R + ˆ̃X2

b,I)

∫ ∞
−∞

e−X̃
2
Rp+2X̃RqR

∫ ∞
−∞

e−X̃
2
I p+2X̃IqIdX̃IdX̃R

− 2 ˆ̃Xb,R

∫ ∞
−∞

e−X̃
2
I p+2X̃IqI

∫ ∞
−∞

X̃Re−X̃
2
Rp+2X̃RqRdX̃RdX̃I

− 2 ˆ̃Xb,I

∫ ∞
−∞

e−X̃
2
Rp+2X̃RqR

∫ ∞
−∞

X̃Ie
−X̃2

I p+2X̃IqIdX̃IdX̃R

]

(E.12)

From [200] (3.323, 3.462) we have:∫ ∞
−∞

e−px
2+2qxdx =

√
π

p
e
q2

p∫ ∞
−∞

xe−px
2+2qxdx =

q

p

√
π

p
e
q2

p∫ ∞
−∞

x2e−px
2+2qxdx =

1

2p

√
π

p
(1 + 2

q2

p
)e

q2

p

Since all integrals we have to solve take one of the above forms we can simply insert the
solutions:

rb(Ỹ |Hb′) =
λbb′

π2σ2
dσ

2
x

e
−ζ−γ+

q2R+q2I
p

π

p

×
[1

p
(1 +

q2
R + q2

I

p
)− 2

(
ˆ̃Xb,R

qR

p
+ ˆ̃Xb,I

qI

p

)
+ ˆ̃X2

b,R + ˆ̃X2
b,I

]
= λbb′

1

π(σ2
d + σ2

x)
e
− |Ỹ−X̄b′ |

2

σ2
x+σ2

d︸ ︷︷ ︸
p(Ỹ |Hb′ )

×
[ 1

p
(1 +

q2
R

p
+
q2

I

p
)︸ ︷︷ ︸

GWσ2
d+|GWỸ+GDWX̄b′ |2

−2
(

ˆ̃Xb,R

qR

p
+ ˆ̃Xb,I

qI

p

)
+ | ˆ̃Xb|2

]
(E.13)
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with qR/p = GWỸR +GDWX̄b′,R (analogously for qI/p) we have

rb(Ỹ |Hb′) = λbb′p(Ỹ |Hb′)
(
GWσ

2
d + |GWỸ +GDWX̄b′ − ˆ̃Xb|2

)
= λbb′p(Ỹ |Hb′)

(
GWσ

2
d + |GW +GDWGb′,mean −Gb|2|Ỹ |2

)
.

(E.14)

By inserting b′ = 1 and b′ = 2 we have G1,mean = 0 as well as GSDW = GW +GDWG2,mean

and obtain Equation (4.23) and Equation (4.24), respectively.

E.3 MAP Estimates of Mean Amplitude and Phase

For the sake of a clearer notation, in the following we will again drop the frequency
index k, while of course the dependency of all distribution parameters on this quantity
remains. First, using Bayes theorem and the fact that the evidence is independent of
the parameters we optimize together with the independence assumption of amplitude
and phase we search for

arg max
{AH(`),αH(`)}

p (ỹ(`)|AH(`), αH(`)) p (AH(`), αH(`);H2) , (E.15)

i.e.

arg max
{AH(`),αH(`)}

µ(k)ν(k)

2πΓ(ν(k))
AH(k, `)ν(k)−1 e−µ(k)AH(k,`)

2π

No−1∏
u=0

e
− |Ỹ (k,`−u)−AH(k,`)ejαH(k,`)|2

σ2
d

(k,`−u)+σ2
x(k,`−u)

π(σ2
d(k, `− u) + σ2

x(k, `− u))
.

(E.16)

E.3.1 Mean Amplitude

Taking the logarithm of Equation (E.16), differentiating with respect to AH(`), and
setting the so-obtained expression to zero yields

0 =
∂log

(
p(AH(`), αH(`)|ỹ(`);H2)

)
∂AH(`)

0 = −
No−1∑
q=0

2AH(`)− 2
∣∣∣Ỹ (`− q)

∣∣∣ cos
(
∠Ỹ (`− q)− αH(`)

)
σ2
d(`− q) + σ2

x(`− q) +
ν − 1

AH(`)
− µ

C(`)

0 = − A
2
H(`)

σ2
No

(`)
+AH(`)

No−1∑
q=0

∣∣∣Ỹ (`− q)
∣∣∣ cos

(
∠Ỹ (`− q)− αH(`)

)
σ2
d(`− q) + σ2

x(`− q) +
ν − 1

2
−AH(`)

µ

2C(`)

(E.17)
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where

1

σ2
No

(`)
=

No−1∑
q=0

1

σ2
d(`− q) + σ2

x(`− q) (E.18)

By defining

2u(`) = σ2
No

(`)

No−1∑
q=0

∣∣∣Ỹ (`− q)
∣∣∣ cos

(
∠Ỹ (`− q)− αH(`)

)
σ2
d(`− q) + σ2

x(`− q) − µ

2C(`)

 , (E.19)

we obtain

A2
H(`)− 2AH(`)u(`)− σ2

No
(`)

ν − 1

2
= 0, (E.20)

which is a simple quadratic equation to solve forAH(`), resulting in Equation (4.49).

E.3.2 Mean Phase

Similarily we can maximize the posterior for αH(`), i.e.

0 =
∂log

(
p(AH(`), αH(`)|ỹ(`);H2)

)
∂αH(`)

, (E.21)

using the identity

sin (x− y) = sin (x) cos (y)− cos (x) sin (y) (E.22)

we have

No−1∑
q=0

2A(`)
∣∣∣Ỹ (`− q)
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d(`− q)+σ2

x(`− q)
(
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(
∠Ỹ (`− q)

)
cos (αH(`))−cos

(
∠Ỹ (`− q)

)
sin (αH(`))

)
=0,

(E.23)
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since both αH(`) and AH(`) are independent of q we can rewrite the above equation as

cos (αH(`))

No−1∑
q=0

∣∣∣Ỹ (`− q)
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|Ỹ (`−q)|sin(∠Ỹ (`−q))
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,
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q=0

|Ỹ (`−q)|sin(∠Ỹ (`−q))
σ2
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x(`−q)

,

(E.24)

which is easily solved for αH(`) by applying arctan2 (·, ·) on the right hand side of Equa-
tion (E.24).
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