
Pascal Stadlbauer, BSc

Streaming Primitive Tessellation for
High-Performance Software Rendering

Pipelines

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Steinberger, Markus, Ass.Prof. Dipl.-Ing. Dr.techn. BSc

Institute for Computer Graphics

Graz, January 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

A need for mesh refinement at run time led to tessellation stages being
added to hardware pipelines. Applications that require specific rendering
techniques, that are not implementable or efficient on hardware pipelines,
often use software rendering pipelines. These software rendering pipelines
usually consist of various stages, that in the end produce an image. This the-
sis shows an implementation of a Primitive Tessellation stage for a Streaming
Software Rendering Pipeline executed on the GPU. The pipeline this imple-
mentation is designed for uses a megakernel with dynamic load balancing
to increase GPU utilization. Therefore this thesis shows a Tessellation stage,
that is able to handle batches of data and redistribute work in between. To
get a comparison to hardware rendering, the tessellation procedure orients
itself on the OpenGL specification.

v

Contents

Abstract v

1. Introduction 1
1.1. NVIDIA GPU . 3

2. Related Work 7
2.1. Software Rendering Pipeline 7

2.2. Tessellation . 9

3. Tessellation Procedure 11
3.1. Edge Tessellation Level Conversion 12

3.2. Edge division . 12

3.3. Primitive Tessellation Sections 14

3.4. Quad Inner Tessellation . 16

3.4.1. Specific Implementation 17

3.5. Triangle Inner Tessellation . 19

3.5.1. Specific Implementation 20

3.6. Outer Tessellation . 22

3.6.1. Specific Implementation 22

4. Implementation 25
4.1. A look at openGL . 25

4.2. Stage Implementation . 27

4.3. Tessellation Control Stage . 28

4.3.1. Number of Vertices and Triangles 28

4.3.2. Subpatch division . 28

4.4. Tessellation Evaluation Stage 31

4.4.1. Global index calculations 31

vii

Contents

5. Evaluation 35
5.1. Results . 35

5.1.1. Tessellation Results . 35

5.1.2. Subpatches . 38

5.1.3. Models . 39

5.2. Comparison . 44

5.3. Testing . 46

5.4. Conclusion . 47

A. Algorithms 51

B. Lists 65

Bibliography 71

viii

1. Introduction

Nowadays graphics applications need to perform various specific tasks.
Traditional implementations rely on the hardware rendering pipeline to
generate graphics. These pipelines are interacted with via an API like
OpenGL, Direct3D or Vulkan. Primitive data is handed to the pipeline
and then processed by multiple sequential stages. Due to the sequential
processing by fixed stages and the user sending instructions through an
API, adaption to special rendering needs is often not possible.

Because of these drawbacks the focus shifts to software rendering pipelines,
when specific applications are needed. Software rendering pipelines have
the advantage of giving the developer more possibilities to implement
applications. Their whole pipeline can be designed to fit a specific purpose.
Software rendering pipelines can be implemented to exploit both benefits of
the CPU and the GPU. The GPU is used in compute mode to process high
amount of data in a parallelized way. The main aspect to consider is that
data needs to be efficiently processed on hardware, that was traditionally
designed for hardware pipelines.

One of the stages in hardware rendering pipelines is called the Tessellation
stage. This stage is used to divide the primitives to smaller primitives during
run time. Because of this stage memory consumption is kept lower and a
finer subdivision is only created, when it is intended and needed. Because
of more subdivisions, it is possible to make the model seem smoother, and
give it more detail for example through a displacement map.

To create these smaller primitives, vertices are interpolated and then con-
nected. For the interpolation and connections multiple techniques exist. The
technique this thesis takes a closer look at is the one specified by OpenGL.
An OpenGL tessellation example can be seen in Figure 1.1

1

1. Introduction

Figure 1.1.: Tessellation illustration

For this thesis a tessellation stage is created, that can be integrated into
a software rendering pipeline, that is written in CUDA [4]. The software
rendering pipeline is assumed to have a streaming architecture and therefore
a technique will be shown to divide the workload and distribute the work
on the GPU. An illustration of how individual subpatches build a tessellated
quad primitive can be seen in Figure 1.2.

Figure 1.2.: Subpatching illustration

2

1.1. NVIDIA GPU

To get acquainted with the targeted pipeline and the work it builds on,
the previous and related work are shown first. After that the tessellation
procedure and the needed requirements to be conform to the OpenGL
specification are explained in detail. The implementation, in terms of specific
adaption to the streaming pipeline is mentioned afterwards. At last results of
the tessellation process are shown in the evaluation section and a conclusion
is drawn.

1.1. NVIDIA GPU

The concept of parallelism on the GPU consists of multiple parallel threads
calling the same kernel function. These threads are grouped together into
blocks. Individual threads in these blocks can be identified by a one-, two-
or three-dimensional identifier. An example of this would be, one using
a two-dimensional id for image processing, or a three-dimensional id for
real world simulations. Figure 1.3 shows an illustration of two-dimensional
identification.

Figure 1.3.: Nvidia Thread-Block Structure

3

1. Introduction

Thread blocks are given to an array of streaming multiprocessors (SM) for
execution. In order for a single SM to manage its assigned blocks, it groups
it into warps of 32 threads. Warps are handled by the warp scheduler, which
schedules and executes them.

SM are built as a SIMT(Single Instruction - Multiple Thread) architecture,
which is based on the SIMD (Single Instruction - Multiple Data) architecture.
This means efficiency is high when all threads execute the same code at the
same time. If threads within a warp choose different code paths, then the
multiprocessor is forced to execute these paths serially. Only when all taken
code paths are finished, the threads converge back together. This is why
branching inside a warp should be kept at a minimum.

GPU
Block (0,0)

Registers

Thread 0

Local Memory

Registers

Thread 1

Local Memory Shared
Memory

.

.

.

Global Const Textu.

Block (0,1)

CPU

Figure 1.4.: Nvidia Memory Model

Another major influence on efficiency is data transfer. The time to transfer
data can outweigh the time for computation. Especially transfers between
Host and Device have an large impact on performance. This is why there are

4

1.1. NVIDIA GPU

multiple memory spaces, with different storage capabilities and access times.
Threads have registers and local memory for their own. These memory
spaces can only be accessed by the thread its owned by. A whole block
owns shared memory, which can be accessed by all threads in the block and
can be for example used to exchange data between individual threads. For
its lifetime the application itself has persistent global, texture and constant
memory. Memory access is slower the farther the memory is away from the
actual thread.

5

2. Related Work

2.1. Software Rendering Pipeline

In Software Rendering Pipelines various stages process data in order to
generate an image. The first pipelines used the CPU to process data, which
has limited efficiency, due to the limited parallelism of the CPU. Parallelism
is a key part for this kind of graphics processing, because a lot of data has to
be processed in the same manner in a short amount of time. After a compute
mode for GPUs became available, implementations for the GPU started to
emerge. These implementations benefit from the parallel processing that is
done on the GPU.

One of the early software rendering architectures was Larrabee [15]. It used
multiple x86 CPUs augmented by a wide vector processor unit. An early
GPU based architecture was FreePipe [7]. Problems with this approach
are the non-linear sorting complexity, that is getting higher with depth
complexity.

CudaRaster [6] then showed high-performance highly-optimized Rasteri-
zation on GPUs. It executes the pipelines stages in a sequential order. One
of the latest architectures, that also uses sequential stages, is Piko [13].
Piko uses spatial locality to implement a binning approach. Primitives are
grouped into bins, to be further processed.

These traditional approaches consist of simply executing one stage after the
other. This means that every multiprocessor executes the same stage, at the
same time, as seen in 2.1. As a result the workload is not evenly distributed
over time and high computational needs lead to a bottleneck.

7

2. Related Work

Figure 2.1.: Traditional Pipe

The persistent threads approach as introduced by Aila et al. [1] creates a
more efficient work distribution. To bypass the normal scheduler, the whole
GPU is filled with threads once. Every thread fetches work from a global
work queue. This global work queue can also be a bottleneck.

A persistent mega kernel, as described by Steinberger et al. [16], uses the
same concept of filling up the GPU. But in this approach every multiproces-
sor chooses individually, which stage to execute next. The work is fetched
from a procedure specific queue.

(a) Persistent Threads

(b) Persistent Mega-kernel

Figure 2.2.: Scheduling approaches

8

2.2. Tessellation

Target Pipeline

The target pipeline, introduced in ”A high-performance software graph-
ics pipeline architecture for the GPU” [5], that the tessellation could be
integrated into, implements a persistent mega-kernel. As explained above
scheduling of the processing steps is done by the multiprocessor according
to a specific pattern. The primitives need to go through the following steps
in this order. First Geometry Processing projects the triangles and sorts
out the ones, that are hidden. After that the triangles are redistributed for
Rasterization, based on which screen region they cover. Each rasterizer then
processes the triangles in its screen bin. At last the fragments are transferred
into the framebuffer.

2.2. Tessellation

There are only a few general Tessellation approaches, that only depend on
the GPU. To overcome the hardware limitation of non-existent geometry
generation in 2005, Tamy Boubekeur and Christophe Schlick [3] used the
GPU to create a general simple mesh refinement. After the geometry shader
was introduced, “Generic mesh refinement on GPU.”[2] showed a more
flexible and adaptive mesh refinement. This mesh refinement adapts to the
distance to the camera.

A parallelized tessellation on the patch level was implemented as CudaTess
introduced by Schwarz et al. [14] . For CudaTess to work efficiently on
the GPU many patches, with a low number of subdivisions are needed to
exploit the parallelized architecture.

Sometimes a combination of CPU, GPU computation and hardware is used
to create a tessellation. A mixture of these is used by Matthias Nießner et al
[11] to create adaptive Catmull-Clark surfaces. Pixar’s OpenSubdiv API [17]
uses this algorithm and became a popular approach for these problems.

As Tessellation became more popular, it was integrated as a new stage
in hardware pipelines. This stage was introduced with DirectX11[10] and
OpenGL4.0[8].

9

2. Related Work

After hardware tessellation became available, the focus of the work on tes-
sellation shifted from the concrete implementation itself, to using hardware
tessellation efficiently. An overview over the various techniques is given in
”Real-Time Rendering Techniques with Hardware Tessellation” [12].

10

3. Tessellation Procedure

The goal of tessellation is to divide primitives, in this case quads and trian-
gles, into smaller sections. Both primitive types are divided into triangles, so
that further processing by the rendering pipeline, can be done uniformly.

The tessellation process is done according to the OpenGL specification [9],
to produce similar results. Following sections will summarize the procedure
given by OpenGL and explain parts, that are implementation specific.

Customization of the tessellation is achieved by choosing values and a type.
These parameters define the number of subdivisions, that are made and are
referred to as tessellation levels and tessellation type.

To divide quads and triangles, it is first shown how tessellation levels are
converted. After that the individual edge subdivision, that is consistent for
every edge, is discussed. Then it is shown how the inner quads and triangles
are tessellated. Due to the similarities of the outer sections of quads and
triangles, the tessellation for the outer section is summarized in the last
section.

11

3. Tessellation Procedure

3.1. Edge Tessellation Level Conversion

Tessellation levels and the spacing type are usually chosen based on a
specific purpose. Sometimes these levels are chosen at run time, to adapt to,
for example the distance to the camera. This means that the levels calculated
may not match the requirement of the tessellation spacing type and may not
be processable by the succeeding tessellation stages. Therefore a conversion
is needed to make sure, that the requirements are met. This is done as
specified in the OpenGL documentation [9].

First all chosen tessellation levels(f) are clamped. After this these values
are rounded and stored as the converted levels(n). The specific clamping
boundaries and the rounding target are chosen, based on the spacing type
as seen in 3.1.

type clamp round
equal spacing 1,max up to n, n ∈N

fractional even spacing 2,max up to n, n
2 ∈N

fractional odd spacing 1,max-1 up to n, n+1
2 ∈N

Table 3.1.: Clamping and rounding specification

3.2. Edge division

Each edge of the original primitive has its own two tessellation levels. One
level (f) is chosen and the other one (n) is computed from f. The tessellation
level n indicates in how many segments the edge is divided. While the levels
vary between edges, the procedure stays the same.

In the simplest case, the level is one and therefore the edge will not be
divided. If it is two, two segments with equal length exist. Otherwise
the edge is split into n− 2 segments of equal length. The remaining two
segments, referred to as ”short segments”, have equal length and are placed
symmetrically.

12

3.2. Edge division

In this implementation short segments are placed on the second outermost
position, on each side. Except, when n equals 3, then the shorter segments
are placed on both sides of the single normal segment. The lengths of the
segments, for this implementation, are computed as follows,

lnormal =
1
n

lshort =
n− f

2
∗ 1

n

(a) (n=1,n=2,n=3) (b) (n=6,n=8)

Figure 3.1.: Special edge division levels are shown in a, and some normal cases in b, . Red
indicates short segments and orange, normal segments

13

3. Tessellation Procedure

3.3. Primitive Tessellation Sections

Different primitives can have different tessellation levels. To get a uniform
transition between primitives with different tessellation levels, the outer
edges have to have the same number of vertices. Otherwise this would lead
to a non-manifold mesh and possible gaps in the model. Therefore there
exists an inner and an outer tessellation level, such that a smooth transition
is ensured and different tessellation levels for primitives are made possible.
This results in two sections for a primitive, as seen in Figure 3.2 and Figure
3.3.

Figure 3.2.: Inner and outer section of a triangle

Figure 3.3.: Inner and outer section of a quad

The inner tessellation will be discussed individually for each primitive type
in Section 3.4 and Section 3.5 . Each outer edge, with its inner section edge
counterpart, can be viewed as an individual section, as seen in Figure 3.4.
Due to the similarities of the individual outer sections across the primitive

14

3.3. Primitive Tessellation Sections

types, the generation procedure is the same and can be found in Section
3.6.

In addition to coordinates, vertices can have multiple properties. This is
why in the following sections, the interpolation values, rather than the
coordinates, are discussed.

Figure 3.4.: Visualization of an outer section part of a quad and a triangle

15

3. Tessellation Procedure

3.4. Quad Inner Tessellation

To construct the inner section of a quad, one can imagine the outer edges
divided by the inner tessellation levels. Inner level two is used for outer
edge one and three, and inner level one for outer edge two and four.

Perpendicular lines are then drawn from the edge segment borders. At the
intersections the inner vertices are created, as seen in Figure 3.5a. The inner
triangles are then created by taking two vertices of one row and one vertex
of the next/previous row as seen in Figure 3.5b. This results in a simple
grid like structure.

(a) Inner vertices (b) Inner triangles

Figure 3.5.: Example of inner quad tessellation (inner1 = 6, inner2 = 4)

16

3.4. Quad Inner Tessellation

3.4.1. Specific Implementation

The enumeration for vertices and triangles is done in a procedural row-like
manner. Generated vertices from the first to the second vertex, of the original
primitive, are defined as the first row.

0 1 2 3

4 5 7

8 9 10 11

6

0 2 4

6 8 10

1 3 5

7 9 11

(a) Enumeration Example (6,4)

idx

startIdx + numColumns startIdx + 1 + numColumns

startIdx startIdx + 1

(b) Relative Triangle Vertices

Figure 3.6.: Triangle and Vertex Enumeration

Triangle indices

The indices calculation for the quad triangles in the inner section is trivial.
Row and column index are calculated and based on these values the orien-
ation of the triangle can be determined. Then the indices of the vertices on
the surrounding vertex rows can be easily computed.

Algorithm 1 CalculateQuadInnerTriangle
1: pointingDown← idx mod 2
2: row← idx

numColumns∗2
3: startIdx ← idx

2 + row
4: vertex.x ← startIdx
5: vertex.y← startIdx + (numColumns + 1) + 1− pointingDown ∗ (numColumns + 1)
6: vertex.z← startIdx + (numColumns + 1) + pointingDown

17

3. Tessellation Procedure

Vertices

For the new vertices the interpolation value is calculated by, first computing
the normal and the short edge segment step size. After that the number
of short and normal steps are determined. Adjustments are then made for
the two special cases, where no outer tessellation exists on a side. The new
vertices are computed by a simple linear interpolation between the original
ones.

Algorithm 2 CalculateQuadEdgeFactor

1: normalStep← 1.0
inner

2: shortStep← normalStep ∗ 2−(convertedInner−inner)
2

3: numShorts← (1− (int) convertedInner−columnIdx
convertedInner) + (int) columnIdx+1

convertedInner−1
4: edgeStep ← normalStep ∗ columnIdx + normalStep + numShorts ∗ (shortStep −

normalStep)
5: if convertedInner == 3 then
6: edgeStep← normalStep ∗ columnIdx + shortStep
7: end if
8: if convertedInner == 1 then
9: edgeStep← columnIdx

10: end if

18

3.5. Triangle Inner Tessellation

3.5. Triangle Inner Tessellation

The inner section of a triangle is in principal done like the quad inner section.
All outer edges are divided by the only inner tessellation level. Orthogonal
lines are drawn from the division points. When we view the inner section as
triangle rings, the corners of these inner triangle rings are given by the first
intersection of the lines, that are drawn from the i-th outer subdivision, as
seen in Figure 3.7a. The rest of the vertices are generated by the intersection
of the lines drawn from the outer edge, with its corresponding inner ring
triangle edge.

In this thesis, triangles are placed as seen in Figure 3.7b. On each of the
three sides, triangles are placed symmetrically and the edges are oriented
towards the center, when possible.

(a) Inner vertices (b) Inner triangles

Figure 3.7.: Example for inner triangle tessellation (inner = 6)

19

3. Tessellation Procedure

3.5.1. Specific Implementation

For more efficient computability on the GPU, the inner section is viewed
as a L-shaped grid, as shown in Figure 3.8a. The upper left vertex is the
vertex closest to the third original vertex and the lower right vertex is
the vertex closest to the second original vertex. This restructuring to a L-
shaped-grid has benefits, because of data locality, when building subpatches.
Subpatching will be further discussed in 4.3.2.

(a) Even Division (b) Uneven Division

Figure 3.8.: Vertex-Mapping

If the tessellation level is uneven, the L-form is preserved by splitting off a
strip. This strip includes triangles in the middle of the side located between
original vertex one and original vertex two, as seen in Figure 3.8b. In this
case the implementation for the outer section is handling this strip. The
enumeration of the vertices and the triangles starts at the lower left vertex,
continuous to the lower right one and proceeds row-wise.

Triangle Indices (Algorithm: 3)

For the triangle primitive the procedure to generate inner triangle indices
is only marginally more complex, than for quads. The difference is caused
by the L-shape of the inner triangle tessellation, which results in a different
calculation for the start index of the subdivided quad. If the subdivided
quad is outside of the lower left section, either above h or to the right of h’,
the first triangle, in that quad, gets two vertices on the lower vertex row.

20

3.5. Triangle Inner Tessellation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17

18 19 20

0 2

1 3 4

5

6

7

15

14

13

1211

10

9

8

16

17

18

19

20

21

22

23

h

h'

(a) Inner Triangle Example

V1 V2

V3

(b) Inner Vertex Calculation Ex-
ample

Figure 3.9.: Inner Tessellation Examples

Vertices (Algorithm: 4)

For the vertex interpolation values the calculation starts at v1 with steps
to the center, as seen in Figure 3.9b. After that, steps on the current
”ring” are added, either to the left(v3− v1) or to the right(v2− v1), un-
til the line between v2 and the center or v3 and the center is reached.
At last steps along the v2+v3

2 − center direction are taken.

21

3. Tessellation Procedure

3.6. Outer Tessellation

For the outer tessellation all sides of the primitive are generated in the
same manner. The outer edge is split according to the corresponding outer
tessellation level. Triangles with two vertices on the outer side (a), are
connected symmetrically and equally across the inner vertices (b). Each
inner vertex then has at least k = f loor(a

b) triangles connected to it. Then
the left and rightmost l

2 inner vertices have an additional triangle connected
to it, where l = a− k ∗ b. If l is uneven, the first inner vertex from the center
to the right has another additional triangle connected to it. Triangles with
two inner vertices fill the gaps, in a way such that triangles do not intersect
and the whole area is covered.

(a) inner=5, outer=6 (b) inner=5, outer=5

Figure 3.10.: Outer Tessellation Examples

3.6.1. Specific Implementation

Triangle Indices (Algorithm: 5)

The outer tessellation is split into two symmetrical parts and a center part,
that contains triangles, that could not be placed symmetrically. The special
case of the inner tessellation level beeing one, is handled first. After that the
middle section is computed.

The majority of the cases, where the triangle is on one of the sides, are
computed afterwards. Therefore the triangle’s side and its placement on
that side are calculated. At last the triangles are generated, based on their
orientation and the values calculated before.

22

3.6. Outer Tessellation

Vertices (Algorithm: 6)

To avoid precision errors between corresponding vertices on edges shared
between two primitives, the interpolation for the outer vertices is done in a
coherent manner. The UVW calculation for the triangle is shown here. For
the quad it is a similar process, but with four sides.

The calculation starts by determining on which edge the vertex is placed.
After that the edge vertices are ordered coherently. This is done by flipping
the edge, if v1’s coordiantes are greater than v2’s. The ordering could be
based on different attributes, but coordinates are sure to exist.

Then the edge interpolation value, which interpolates between the edges
vertices, and its opposite are calculated. If the edge was flipped before, then
these values are swapped. At last, based on the edge interpolation values,
the general interpolation values are calculated.

23

4. Implementation

This chapter gives an overview over the implementation and explains steps
necessary to realize the tessellation procedure, explained in the previous
chapter.

To show the differences between openGL and the CUDA implementation
presented here, the first section will explain how tessellation in openGL
works from the developers perspective. The stage implementation is ex-
plained afterwards, before looking at the individual stages.

4.1. A look at openGL

OpenGL lets the developer control the tessellation through the Tessellation
Control Shader (TCS) and the Tessellation Evaluation Shader (TES). These
two shaders are non-mandatory and can be skipped if tesselation is not
required.

Figure 4.1.: OpengGL Tessellation Primitive Generation

In the TCS the developer chooses the tessellation levels. This shader is
executed for every vertex of a triangle. An example can be seen in Figure
4.2. In this example the levels are set through uniform variables, that were

25

4. Implementation

set outside the shader. Also the levels are only set if it is the first vertex of
the triangle, that calls this shader.

1 # vers ion 430

2

3

4 layout (v e r t i c e s = 3) out ;
5

6 uniform f l o a t T e s s e l l a t i o n I n n e r ;
7 uniform f l o a t T e s s e l l a t i o n O u t e r 1 ;
8 uniform f l o a t T e s s e l l a t i o n O u t e r 2 ;
9 uniform f l o a t T e s s e l l a t i o n O u t e r 3 ;

10

11

12 void main ()
13 {
14 i f (g l Invoca t ionID == 0)
15 {
16 gl Tes sLeve l Inner [0] = T e s s e l l a t i o n I n n e r ;
17 gl TessLevelOuter [0] = T e s s e l l a t i o n O u t e r 1 ;
18 gl TessLevelOuter [1] = T e s s e l l a t i o n O u t e r 2 ;
19 gl TessLevelOuter [2] = T e s s e l l a t i o n O u t e r 3 ;
20 }
21 g l o u t [g l Invoca t ionID] . g l P o s i t i o n = g l i n [g l Invocat ionID] . g l P o s i t i o n ;
22 }

Figure 4.2.: TessellationControlShader

The TES is then invoked for every old and every newly created vertex.
Through the tessellation coordinate input the developer is able to interpolate
the vertex attributes. An example for position interpolation can be seen in
Figure 4.3. The shader also specifies the spacing type and the primitives,
that are used.

1 # vers ion 430

2

3 layout (t r i a n g l e s , equal spacing , cw) in ;
4

5 void main (void)
6 {
7 g l P o s i t i o n =(gl TessCoord . x∗ g l i n [0] . g l P o s i t i o n
8 +gl TessCoord . y∗ g l i n [1] . g l P o s i t i o n
9 +gl TessCoord . z∗ g l i n [2] . g l P o s i t i o n) ;

10 }

Figure 4.3.: TessellationEvaluationShader

26

4.2. Stage Implementation

This system limits the developer in several aspects. The triangulation and
exact vertex placement can not be chosen by the developer. If we consider tes-
sellations, that do not conform to the openGL specification many alterations
would be possible.

4.2. Stage Implementation

Before the tessellation can be done, preceding stages process the primitives.
These primitives are then handed to the Tessellation phase. The Tessellation
phase is split into two main stages, the Tessellation Control Stage, and the
Tessellation Evaluation Stage. One can see in Figure 4.4, the distribution
of primitives across multiprocessors and after that the work redistribution,
after the Tessellation Control Stage.

Figure 4.4.: Tessellation steps (red)

27

4. Implementation

4.3. Tessellation Control Stage

The purpose of Tessellation Control Stage is to determine the tessellation
levels and distribute work for the next stage, that constructs the new trian-
gles.

In the control stage, a Tessellation Control Shader - function (TCS) is
executed, ones for every primitive. The TCS usually sets the edge tessellation
levels, based on a specific purpose. These parameters are then converted
according to the edge tessellation conversion 3.1, to get processable levels.
In addition, the number of subpatches is computed, to determine how much
work is needed and therefore to how many multiprocessors the workload
can be distributed. Further the number of vertices and triangles, that need
to be generated, are calculated.

4.3.1. Number of Vertices and Triangles

Every thread theoretically executes the same code at the same time. There-
fore one thread has in general no knowledge of how much data is generated
by other threads. To store data in an array the place to store it needs to
be determined, before the thread generates the data. Because of this the
Tessellation Control Stage calculates the number of vertices and triangles.
Prefix sums then serve to produce the offsets into the array for the kernel,
that calculates the data, in the Tessellation Evaluation Stage.

4.3.2. Subpatch division

To efficiently compute the vertex coordinates and triangle indices after the
Tessellation Control Stage, the workload is redistributed across the multi-
processors. It is necessary to create smaller patches, that can be computed
individually. A maximum subpatch size is defined, to keep the number
vertices/triangles, that need to be processed lower or equal to the number
of threads handled by a multiprocessor. Subpatches are formed in a way,
that all vertices and triangles, belonging to a subpatch can be computed on

28

4.3. Tessellation Control Stage

a multiprocessor, the amount of triangles is maximized and no unessential
vertex is calculated.

The division into subpatches is done by dividing the inner and outer section
individually. This is because of a different layout and thus a different
calculation procedure.

Inner Subpatch division

The inner segment is split into rectangles, because of a good triangle to
vertex ratio. If the subpatch size is large enough, the number of triangles is
the limiting factor. Figure 4.5a shows how the inner quad is divided and
Figure 4.5b shows how the inner L-structure of the triangle is divided.

(a) Inner Quad Subpatches (b) Inner Triangle Subpatches

Figure 4.5.: Inner Subpatching

Outer subpatch division

Outer subpatches are formed by simply splitting the triangle strip. The
limiting factor to the subpatch size are the number of vertices. Three vertices

29

4. Implementation

are needed to form a basic triangle. If we add another triangle, we also need
to add another vertex. This implies numVertices = 2+ numTriangles, which
indicates a outer subpatch size of SUBPATCHMAX - 2.

Figure 4.6.: Outer Subpatches

For triangles with uneven inner tessellation the leftover triangle strip, that
was not covered with the L-shaped grid, is also handled like an outer
subpatch. Because of this, the worst case for outer triangle subpatches are
two interrupted triangle strips as seen in Figure 4.7 . Which concludes
numVertices = 4 + numTriangles, and therefore a subpatch size of SUB-
PATCHMAX - 4.

0 1

2

3

4

5

6 7

0

1

2

3

5

4

6

7

0

1

2

3

4

56

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6 7

0

Figure 4.7.: Outer Triangle Subpatches

30

4.4. Tessellation Evaluation Stage

4.4. Tessellation Evaluation Stage

Each block in the tessellation evaluation stage generates a subpatch. Because
of this, the global vertex index and the global triangle index are calculated
first. Based on these indices, the vertex coordinates and the indices for the
triangles are then calculated, according to the specification defined in the
previous chapter. Following are the calculations of the global indices for the
triangle indices and the vertices.

4.4.1. Global index calculations

Subpatch id, local(thread) id and the converted parameters are handed to
the functions to determine the global indices. ”Out of bounds”-checks are
done to ensure, the validity of those parameters. The index calculations are
mainly split into an outer and and inner part for both the triangle indices
and the vertices, which are discussed below.

Global Triangle Index

To determine the triangle index, the subpatch offset is calculated and then
added to the local offset. For the inner subpatches this means computing
the position of the subpatch in the grid. From this position the offset of
triangles for the subpatch is determined. After that, the same procedure is
followed for the local id to produce the local offset. Local and global offset
are then added and result in the global index.

The calculations for the triangle primitives are only marginally more compli-
cated compared to the quad primitives. The L-structure causes a few more
calculations to be needed, due to the changed subpatch grid, as seen in
Figure 4.5b. Outer subpatches can be viewed as a triangle strip and therefore
results in,

global Id = (subpatchId− numInnerPatches) ∗ subpatchOuterSize
+id + numInnerTriangles

(4.1)

31

4. Implementation

For more detailed algorithms, see Algorithm 7 and Algorithm 9.

Figure 4.8.: Quad subpatch index calculation

Global Vertex Index

The calculation of the inner subpatch vertex indices is done similar to the
triangle index calculation. The global index is a result of adding the local
vertex offset to the subpatch vertex offset.

One needs to keep in mind, that a subpatch needs to generate all vertices for
all triangles, that are produced by the subpatch. Outer subpatch indices are
computed in a more sophisticated manner, than the inner ones, due to the
reuse of inner vertices, as seen in Figure 4.9. Outer vertices are calculated
first. After that, the outermost inner ring is traversed to generate the rest of
the vertices.

32

4.4. Tessellation Evaluation Stage

Figure 4.9.: Example of an outer subpatch

For both triangle and quad primitives, exist special cases, that need to be
considered. If one of the inner tessellation levels is equal to one, one inner
side of a quad vanishes. Therefore the global index for the inner vertices is
calculated in a different way.

Unequal tessellation modes used on triangle primitives cause a strip beeing
left out by the inner subpatches. The strip is generated by the first few outer
subpatches, if necessary, which adds this special case to the vertex index
generation. In this case, the left side and after that the right side of the strip
are generated first.

For more detailed algorithms, see Algorithm 8 and Algorithm 10.

33

5. Evaluation

The test system used here, was running Windows10 and consisted of an
Intel i7-4790K@4.00GHz CPU, 16 GB RAM and a Nvidia GTX1070. Cuda
compute capability 6.1 and OpenGL version 4.6 were used.

The following sections show the results of the tessellation process. To get
an overview over the differences to a specific openGL implementation a
comparison is done afterwards. In the end the testing process is mentioned
shortly.

5.1. Results

In this section the results of the tessellation process are shown. First the
different inner tessellations for lower levels can be seen. Different models,
at different tessellation levels, are listed after taking a look at subpatch
examples.

5.1.1. Tessellation Results

Inner Triangle Tessellations

Figure 5.1 and Figure 5.2 show the inner tessellation from one to five, with a
step size of 0.5 and outer tessellation level one, for the different tessellation
types.

35

5. Evaluation

1.0 1.5 2.0 2.5 3.0

equal

fractional
even

fractional
odd

Figure 5.1.: Inner Tessellation 1 - 3 , 0.5 step

3.5 4.0 4.5 5.0

equal

fractional
even

fractional
odd

Figure 5.2.: Inner Tessellation 3.5 - 5 , 0.5 step

36

5.1. Results

Inner Quad Tessellations

Shown here are inner quad tessellation for some lower tessellation levels.
In Figure5.3 one can see equal tessellation and in Figure 5.4 fractional
tessellation.

1 2 3 4 5

1

2

3

4

5

Figure 5.3.: Equal quad tessellation 1 - 5

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

Figure 5.4.: Fractional even tessellation (left) and fractional odd tessellation (right) 1 - 3

37

5. Evaluation

5.1.2. Subpatches

Figure 5.5a and 5.5b show a visualization of the primitives being subdivided
into subpatches. An example for the whole model can be seen in Figure 5.6a
and Figure 5.6b.

(a) Triangle Subpatches (b) Quad Subpatches

Figure 5.5.: Example Subpatches

(a) Subpatches shown for the
bunny

(b) Close view of the subpatch

Figure 5.6.: Bunny Subpatches (inner=14.5,outers=8.5/8.25/9.5)

38

5.1. Results

5.1.3. Models

Figure 5.8 shows the number of triangles, that are generated by some
common test models shown in Figure 5.7. The execution time for these
models is shown in Figure 5.9. One can see in figure Figure 5.10, that the
execution time of the TES outweighs the execution time of the TCS, as
expected. For models with a high number of triangles, tessellation level 64

was not possible, due to the memory consumption of the generated triangles
and was therefore left out.

4 8 16 32 64

Figure 5.7.: Suzanne, Utah Teapot

Suzanne Utah Teapot Stanford Bunny
No Tess 697 6320 69,630

TL 4 25,208 151,680 1,671,120

TL 8 92,832 606,720 6,684,480

TL 16 371,328 2,426,880 26,737,920

TL 32 1,485,312 9,707,520 106,951,680

TL 64 5,941,24 38,830,080 427,806,720

Figure 5.8.: Number of triangles for different tessellation levels. Note that TL 64 for the
Stanford Bunny was not doable, due to memory limitation.

39

5. Evaluation

Suzanne Utah Teapot Stanford Bunny
TL 4 3.4167 3.4155 11.5264

TL 8 3.5122 5.181 22.5825

TL 16 4.2880 9.4816 55.5980

TL 32 6.3266 25.0572 153.0488

Figure 5.9.: Execution time (ms) for common test models

Suzanne Utah
Teapot

Stanford
Bunny Suzanne Utah

Teapot
Stanford
Bunny

TL 4 0.7947 0.4688 0.9889 2.6220 3.1243 10.5375

TL 8 0.4644 0.5671 1.4340 3.0478 4.4863 21.1485

TL 16 0.4681 0.8869 2.7621 3.8200 7.6251 52.8359

TL 32 0.7871 1.3049 4.1788 5.5395 13.6864 148.8700

Figure 5.10.: Execution time (ms) for common test models. TCS(left), TES(right)

To get a better overview of how execution time behaves at different tessella-
tion levels, with different amounts of triangles, sphere meshes are compared.
Figure 5.11 shows the combined tessellation time, Figure 5.12 and Figure
5.12 the TCS and the TES execution times.

S. 1 S. 2 S. 3 S. 4 S. 5 S. 6
Triangles 960 3840 8640 15360 34560 61440

TL 4 3.4566 3.6407 3.7252 4.8328 7.5002 10.6713

TL 8 3.6001 4.9040 5.8589 8.9251 12.9689 20.3741

TL 16 4.4136 6.8195 10.5898 15.4263 30.2714 47.9148

TL 32 6.5311 12.233 23.8071 37.9889 81.8656 135.0185

Figure 5.11.: Execution time (ms) for spheres with different numbers of triangles

40

5.1. Results

S. 1 S. 2 S. 3 S. 4 S. 5 S. 6
TL 4 0.8183 0.5622 0.4914 0.4892 0.5932 0.5797

TL 8 0.4839 0.5280 0.5044 0.5545 0.9212 1.2742

TL 16 0.4868 0.5453 0.5219 0.9753 1.4078 2.1398

TL 32 0.8454 0.9003 1.3219 1.5258 2.7776 3.2504

Figure 5.12.: TCS execution time (ms) for spheres

S. 1 S. 2 S. 3 S. 4 S. 5 S. 6
TL 4 2.6382 3.0784 3.2338 4.3436 6.9070 10.0916

TL 8 3.1162 4.3760 5.3545 8.3706 12.0477 19.0999

TL 16 3.9268 6.2742 10.0679 14.4510 28.8636 45.7750

TL 32 5.6856 11.3333 22.4852 36.4631 79.0880 131.7680

Figure 5.13.: TES execution time (ms) for spheres

41

5. Evaluation

Height map

One practical example of Tessellation is a height map, as seen in Figure 5.14.
Normals and texture coordinates are interpolated during the tessellation
process along with the vertex coordinates. The texture coordinates are used
to look up an offset value stored in a height map image. After that, the
vertex coordinates are offset by the interpolated normal times the offset
value.

(a) tessellation level = 1 (b) tessellation level = 4

(c) tessellation level = 8 (d) tessellation level = 16

(e) tessellation level = 32

Figure 5.14.: Heightmap Example

42

5.1. Results

LOD

A very simple example for a LOD adaption is shown in 5.15. The TCS
changes the inner tessellation level with the distance to a point, which is
moved in from the camera to the lower vertex. In practical examples this
point is usually the camera, to apply a finer tessellation only to the closest,
most visible, regions.

Figure 5.15.: LOD Example

43

5. Evaluation

5.2. Comparison

Due to the freedom that is given to the developer in some parts of the
OpenGL specification, the results can vary between OpenGL implementa-
tions. This is why in general an exact comparison is difficult.

The main differences between this CUDA tessellation implementation and
the OpenGL version, that is running on the test system are mentioned here.
One difference is the edge placement. This OpenGL version starts placing
short edges as the k = f loor(n

2)− 1 edge, counted from the center outside.
For every new placed edge, k is decremented by one until it reaches zero.
After that the process starts anew, as seen in Figure 5.16.

2.5

4.5

6.5

8.5

10.5

12.5

Figure 5.16.: Edge Tessellation Comparison

One can also see the difference in the edge lengths. The approach presented
in this thesis uses simple division by the converted tessellation level to
calculate the normal edge length, unlike the OpenGL version.

44

5.2. Comparison

For efficiency reasons this behavior mentioned above was not imitated in
this CUDA tessellation implementation. The same logic is the reason for
the difference in the triangulation. Computing the vertices and triangle
indices in a way to imitate OpenGL, would yield no obvious aesthetic
improvement, but would complicate the program. This would obviously
cause more branching and as an effect reduce efficiency for computations
on the GPU.

(a) OpenGL Subpatches (b) Implemented Subpatches

Figure 5.17.: Subpatch Comparison

OpenGL also seems to split the subpatches for primitives into approximately
the same sections. The difference is the strip that was added to the outer
section in this implementation, when uneven tessellation levels are set, as
described in Section 4.3.2. This allows OpenGL always to generate SUB-
PATCHMAX - 2 triangles for the outer subpatches. One can see in Figure
5.17 the different subpatching techniques for outer subpatches. The darker
subpatch is the second outer subpatch, which is in the right case 5 triangles
longer(3 for the strip + 2 for the subpatch length difference).

Figure 5.18 shows a comparison between triangles and Figure 5.19 between
quads. For the subpatch visualization an extension(NV shader thread group)
of OpenGL was used. The streaming multiprocessor id is displayed as a
grey value. The inner subpatching of primitives in OpenGL was not further
analyzed in detail due to complexity. For the inner subpatches OpenGL
chooses a maximum of 32 vertices (42 triangles).

45

5. Evaluation

(a) OpenGL Subpatches (b) Implemented Subpatches

Figure 5.18.: Subpatch Comparison for Triangles

(a) OpenGL Subpatches
(b) Implemented Subpatches

Figure 5.19.: Subpatch Comparison for Quads

5.3. Testing

To confirm that every triangle and every vertex are generated by the sub-
patches, all combinations of converted tessellation levels are tested and the
result of all subpatches is checked for completeness.

Different operation execution orders cause different results in the last bits.
Neighboring primitives share the same edge, but usually in inverted order,

46

5.4. Conclusion

due to the same winding order, as seen in Figure 5.20. Precision checks are
done to confirm consistent calculation results.

Figure 5.20.: Shared edge, different orientation

5.4. Conclusion

The thesis shows an implementation of a Tessellation stage, that can be
integrated into a streaming software rendering pipeline. To make the process
stream able, this thesis explains a way to subdivide and redistribute the
work between stages.

This thesis also showed a way to implement the OpenGL tessellation proce-
dure in CUDA. Because this implementation fulfills the OpenGL specifica-
tion for tessellation, some not entirely efficient procedures for the GPU had
to be implemented. Therefore some performance improvements could be
made, if diverging from the OpenGL specification is acceptable.

The performance evaluation has shown, that this implementation is run-able
in real time and therefore usable for the targeted pipeline. Some models,
with a high number of primitives, show long run times, at high tessellation
levels. One should keep in mind, that these cases generate a high amount of
triangles, which may be not viable for real time applications.

47

5. Evaluation

This implementation for a streaming software rendering pipeline illustrates,
that in general, stages, that implement standard hardware solutions, can be
added to this kind of pipeline without loosing to much performance.

A measurement of the exact run time of the OpenGL tessellation yielded non
conclusive results. In general due to the specific adaption of the hardware
to the procedure, the API should outperform this solution.

Less performance is obviously not wanted, but this is compared to solutions
for standard rendering. If we consider non-standard tasks, that require a
special modification of the pipeline, the performance difference can be much
different.

The next step would be to integrate this stage into the targeted pipeline.
Tests on real real-time rendered scenes could be done. Different TES im-
plementations could be tested on those scenes, to show the adaptability of
software solutions to specific situations.

48

Appendix

49

Appendix A.

Algorithms

Algorithm 3 CalculateTriangleInnerTriangle
1: pointingDown← idx mod 2

2: aboveH ← max(0, row− (numRings + 1))
3: inH ← min(numRings + 1, row)
4: aboveHPlusOne← max(0, (row + 1)− (numRings + 1))
5: inHPlusOne← min(numRings + 1, row + 1)

6: vStartLower ← inH ∗ ((numRings + 1) ∗ 2− (1− uneven))
7: +aboveH ∗ (numRings + 1) + column
8: vStartUpper ← inHPlusOne ∗ ((numRings + 1) ∗ 2− (1− uneven))
9: +aboveHPlusOne ∗ (numRings + 1) + column

10: vertex.x ← vStartLower
11: vertex.y← vStartLower + 1
12: vertex.z← vStartUpper + (!(row >= numRings||column >= numRings))
13: if !PointingDown then
14: vertex.x ← vStartUpper
15: vertex.y← vStartUpper + 1
16: vertex.z← vStartLower + (row >= numRings||column >= numRings)
17: end if

51

Appendix A. Algorithms

Algorithm 4 CalculateTriangleInnerVertexUVW

1: u← 1 +− 2
3 ∗ (normalStepToCenter ∗ (1 + numNormalStepsToCenterr)

2: +shortStepToCenter ∗ numShortStepsToCenter)
3: v← 1

3 ∗ (normalStepToCenter ∗ (1 + numNormalStepsToCenterr)
4: +shortStepToCenter ∗ numShortStepsToCenter)
5: w← 1

3 ∗ (normalStepToCenter ∗ (1 + numNormalStepsToCenterr)
6: +shortStepToCenter ∗ numShortStepsToCenter)

7: cap← convertedInner− 2− ringNr ∗ 2
8: numRingShortSteps← (1−(cap−ringSteps)

cap + ringSteps
cap) ∗ (1−min(1, ringNr))

9: numRingNormalSteps← ringSteps− numRingShortSteps
10: u← u + (−1 ∗ (numRingNormalSteps ∗ normalStep1
11: +numRingShortSteps ∗ shortStep1))
12: v← v + ((numRingNormalSteps ∗ normalStep1
13: +numRingShortSteps ∗ shortStep1)) ∗ (!le f tside)
14: w← w + ((numRingNormalSteps ∗ normalStep1
15: +numRingShortSteps ∗ shortStep1)) ∗ (le f tside)

16: numShortLe f tSteps← 0
17: if ringNr ≥ 0 then
18: numShortLe f tSteps← le f tSteps

ringNr
19: end if
20: numNormalLe f tSteps← max(le f tSteps− numShortLe f tSteps, 0)

21: u← u + (− 2
3 ∗ (numNormalLe f tSteps ∗ normalStep1

22: +numShortLe f tSteps ∗ shortStep1))
23: v← v + (1

3 ∗ (numNormalLe f tSteps ∗ normalStep1
24: +numShortLe f tSteps ∗ shortStep1))
25: w← w + (1

3 ∗ (numNormalLe f tSteps ∗ normalStep1
26: +numShortLe f tSteps ∗ shortStep1))

Algorithm 5 CalculateOuterTriangle

1: innerVerticesSide← max(1, ↓ (numberInnerVertices
2))

2: outerSegmentsSide←↓ (convertedOuter−outerUneven
2)

3: innerSegmentsSide←↓ (numberInnerSegments−innerUneven
2)

4: sec1EndIdx ← outerSegmentsSide + innerSegmentsSide
5: sec2StartIdx ← outerSegmentsSide+ innerSegmentsSide+ innerUneven+ outerUneven

// Special cases
6: if (convertedInner1 == 1) ∧ (convertedInner2 == 1||isTriangle) then

52

7: f acingSide← 1
8: vertexIdx.x ← 0
9: vertexIdx.y← 1

10: vertexIdx.z← 0
11: return
12: end if

// Compute the middle section if it exists
13: if idx ≥ sec1EndIdx ∧ idx < sec2StartIdx then
14: f acingSide← 0
15: vertexIdx.x ← innerVerticesSide
16: vertexIdx.y← innerVerticesSide− 1
17: vertexIdx.z← outerSegmentsSide
18: if idx− sec1EndIdx ≥ InnerUneven then
19: f acingSide← 1
20: vertexIdx.x ← outerSegmentsSide
21: vertexIdx.y← outerSegmentsSide + 1
22: vertexIdx.z← innerVerticesSide− (convertedInner == 2)
23: end if
24: return
25: end if

// Left or right side
26: betaFac← idx

sec2StartIdx
27: perInner ← outerVerticesSide

innerVerticesSide
28: perInnerAdditionals← outerVerticesSide mod innerVerticesSide

// position of the last additional on local side
29: lambda← (perInner + 2) ∗ perInnerAdditionals // side idx
30: aidx ← ((innerSegmentsSide+ convertedOuter)− idx− 1) ∗ betaFac+ idx ∗ (1− betaFac)
31: numLocal InnerVerts← (innerVerticesSide) ∗ betaFac
32: numLocalOuterVerts← (convertedOuter + 1) ∗ betaFac
33: lowIdx ← (aidx− lambda) mod (perInner + 1)
34: sector ← aidx−lambda

perInner+1 + perInnerAdditionals
35: isLower ← (lowIdx == perInner)

// tri is placed before last additional
36: if aidx < lambda then
37: lowIdx ← aidx mod (perInner + 2)
38: sector ← aidx

perInner+2
39: isLower ← lowIdx == (perInner + 1)
40: end if

53

Appendix A. Algorithms

// pointing outside
41: if isLower then
42: f acing← 0
43: vertIdx.x ← (numLocal InnerVerts− 1− sector) ∗ betaFac+(sector+ 1) ∗ (1− betaFac)
44: vertIdx.y← (numLocal InnerVerts− 1− (sector + 1)) ∗ betaFac
45: +(sector) ∗ (1− betaFac)
46: onLe f tSide← (sector + 1) ∗ perInner
47: onLe f tSide+ = f min f (sector + 1, perInnerAdditionals)
48: vertIdx.z← (numLocalOuterVerts− 1− onLe f tSide) ∗ betaFac
49: +onLe f tSide ∗ (1− betaFac)
50: if vertIdx.z == numInnerVerts + numOuterVerts then
51: vertIdx.z← numInnerVerts
52: end if
53: else
54: f acing← 1
55: lTIdx ← sector ∗ perInner + min(sector, perInnerAdditionals) + lowIdx
56: vertIdx.x ← (numLocalOuterVerts− 1− (lTIdx+ 1)) ∗ betaFac+ lTIdx ∗ (1− betaFac)
57: vertIdx.y← (numLocalOuterVerts− 1− lTIdx) ∗ betaFac+(lTIdx+ 1) ∗ (1− betaFac)
58: vertIdx.z← (numLocal InnerVerts− 1− sector) ∗ betaFac + sector ∗ (1− betaFac)
59: end if

Algorithm 6 CalculateOuterTriangleVertexUVW
// Calclulate the outer index

1: cidx ← minOuter + cur− numInnerTriangleVertices

// if its the last its actually the first
2: if cidx == numOuterVertices then
3: cidx ← 0
4: end if
5: cDir ← max(0, cidx− convertedOuter1− convertedOuter2)
6: bDir ← max(0, cidx− convertedOuter1− cDir)
7: aDir ← max(0, cidx− bDir− cDir)
8: side← (aDir == convertedOuter1) + (bDir == convertedOuter2)

// which edge?
9: eV1← v1 ∗ (side == 0) + v3 ∗ (side == 1) + v2 ∗ (side == 2)

10: eV2← v3 ∗ (side == 0) + v2 ∗ (side == 1) + v1 ∗ (side == 2)
11: eI ← aDir ∗ (side == 0) + bDir ∗ (side == 1) + cDir ∗ (side == 2)
12: maxE← outer1 ∗ (side == 0) + outer2 ∗ (side == 1) + outer3 ∗ (side= = 2)
13: maxEC ← convertedOuter1∗ (side == 0)+ convertedOuter2∗ (side == 1)+ convertedOuter3∗

(side == 2)

// Order the vertices coherently

54

14: if (eV1.x > eV2.x then
15: swap(eV1, eV2)
16: eI ← maxEC− eI
17: end if
18: if (eV1.y > eV2.y) then
19: swap(eV1, eV2)
20: eI ← maxEC− eI
21: end if

// Calculate number of shorts
22: dirShorts← (eI − 1 > 0)
23: dirShorts+ = (eI −maxEC + 1 + 1 > 0)
24: if maxEC == 3∧ eI > 0∧ eI < 3 then
25: dirShorts← 1
26: end if

// Calculate the value and the opposite one
27: val ← 2.0−(maxEC−maxE)

2.0 ∗ dirShorts + max(0, eI − dirShorts)
28: if maxE == 1 then
29: val ← eI
30: end if
31: val ← val

maxE
32: antiVal ← 1− val
33: if !swappedVertices then
34: swap(val, antiVal)
35: end if

36: u← (side == 0) ∗ val + (side == 2) ∗ antiVal
37: v← (side == 0) ∗ antiVal + (side == 1) ∗ val
38: w← (side == 1) ∗ antiVal + (side == 2) ∗ val

55

Appendix A. Algorithms

Algorithm 7 getGlobalQTriangleID
1: global Id = (subpatchId− numInnerPatches) ∗ subpatchOuterSize
2: +id + numInnerTriangles
3: if global Id ≥ numTriangles ∨ (id ≥ subpatchSize) then
4: return −1
5: end if
6: if subpatchId ≥ numInnerPatches ∧ (id ≥ subpatchOuterSize) then
7: return −1
8: end if

// If its an inner subpatch
9: if subpatchId < numInnerPatches then

10: subpatchI ← subpatchRow ∗ subpatchesSize2 ∗ numInnerQuadSegmentsOnSide ∗ 2
11: +subpatchColumn ∗ subpatchesSize1 ∗ 2
12: local I ← localRow ∗ numInnerQuadSegmentsOnSide ∗ 2 + localColumn
13: global Id← subpatchI + local I
14: if globalColumn ≥ numInnerQuadSegmentsOnSide ∗ 2 then
15: return −1
16: end if
17: if globalRow ≥ numInnerQuadSegmentsOnSidePlusOne then
18: return −1
19: end if
20: if (localColumn ≥ subpatchSizeX ∗ 2)
21: ∨(localRow ≥ subpatchSizeY) then
22: return −1
23: end if
24: return global Id
25: end if

Algorithm 8 getGlobalQVertexID
1: if id > subpatchSize then
2: return −1
3: end if

// First handle outer subpatch
4: global Id← minOuterVertex + id

5: if id > numPatchOuterVerts then
6: tessSide1Exists← 1
7: tessSide2Exists← 1
8: if convertedInner1 == 1 then
9: tessSide1Exists← 0

56

10: end if
11: if convertedInner2 == 1 then
12: tessSide2Exists← 0
13: end if

14: convId← minInnerIdx + id− numPatchOuterVerts− 1

15: dDir ← max(0, convId− innerSegs1 ∗ 2− innerSegs2)
16: cDir ← max(0, convId− innerSegs1− innerSegs2− dDir)
17: bDir ← max(0, convId− innerSegs1− cDir− dDir)
18: aDir ← max(0, convId− bDir− cDir− dDir)

19: global Id← aDir + bDir ∗ inVerts1− cDir− dDir ∗ inVerts1

20: if (!tessSide1Exists)||(!tessSide2Exists) then
21: global Id←
22: ((convId ≥ 0) ∗ (innerVerts1− 1)
23: +(convId > 0) ∗ innerVerts1
24: −(convId > 1) ∗ innerVerts1− 1)
25: −(convId > 2) ∗ innerVerts1) ∗ (1− tessSide2Exists)+
26: ((convId > 0)
27: +(convId > 1) ∗ ((innerVerts2) ∗ (innerVerts1)− 2)
28: −(convId > 2)) ∗ (1− tessSide1Exists)
29:
30: end if

31: if global Id < 0 then
32: global Id← −1
33: end if

34: else
35: if global Id == numInnerVertices + numOuterVertices then
36: global Id← numInnerVertices
37: end if
38: end if

39: if (global Id ≥ numVertices) ∧ (subpatchId ≥ numInnerPatches) then
40: global Id← −1
41: end if

// Handle inner subpatch
42: if (subpatchId < numInnerPatches) then
43: subpatchI ← subpatchRow ∗ subpatchesSize2 ∗ numInnerQuadVerticesOnSide
44: +subpatchColumn ∗ subpatchesSize1

57

Appendix A. Algorithms

45: local Index ← localRow ∗ numInnerVerticesSide + localColumn

46: global Id← local Index + subpatchI

47: if globalColumn > numInnerQuadVerticesOnSide then
48: return −1
49: end if
50: if globalRow > numInnerQuadVerticesOnSidePlusOne then
51: return −1
52: end if
53: if (localColumn > (subpatchesSize1 + 1)) ∨ (localRow > (subpatchesSize1 + 1))

then
54: return −1
55: end if
56: end if

57: return global Id

Algorithm 9 getGlobalTTriangleID
1: mSizeX ← numRingSegments ∗ 2 + uneven
2: mSizeY ← numRingSegments
3: hX ←↑ mSizeX

subpatchSizeX

4: hY ←↑ mSizeY
subpatchSizeY

5: le f t← mSizeX− hY ∗ subpatchSizeY
6: nX ←↑ mSizeY

subpatchSizeX

7: nY ←↑ le f t
subpatchSizeY

8: localRealColumn← localColumn
2

9: comRow← subpatchRow ∗ subpatchSizeY + localRow
10: comColumnPatch← subpatchColumn ∗ subpatchSizeX ∗ 2 + localColumn
11: comColumnReal ← subpatchColumn ∗ subpatchSizeX + localRealColumn

12: aboveH ← max(0, comRow− numVertexRings)
13: inH ← min(numVertexRings, comRow)
14: aboveTri← max(0, comRow− numRingSegments)
15: inTru← min(numRingSegments, comRow)

16: if subpatchId < numInnerSubpatches then
17: if comColumnReal ≥ mSizeX ∨ comRow ≥ mSizeX then
18: return −1

58

19: end if
20: if comRow ≥ mSizeY ∧ comColumnReal ≥ mSizeY then
21: return −1
22: end if
23: return inTru ∗mSizeX ∗ 2 + aboveTri ∗mSizeY ∗ 2 + comColumnPatch
24: else
25: if id ≥ subpatchesOuterSize then
26: return −1
27: end if

28: cidx ← (subpatchId− numInnerSubpatches) ∗ subpatchesOuterSize + id
29: if cidx ≥ numOuterTriangles then
30: return −1
31: end if

32: return numInnerTriangles + cidx
33: end if

Algorithm 10 getGlobalTVertexID
1: mSizeX ← numRingSegments ∗ 2 + uneven
2: mSizeY ← numRingSegments
3: hX ←↑ mSizeX

subpatchSizeX

4: hY ←↑ mSizeY
subpatchSizeY

5: le f t← mSizeX− hY ∗ subpatchSizeY
6: nX ←↑ mSizeY

subpatchSizeX

7: nY ←↑ le f t
subpatchSizeY

8: comColumn = subpatchStartX + localColumn
9: comRow = subpatchStartY + localRow

10: if subpatchId < numInnerSubpatches then
11: if convertedInner1 == 3∧ id < 3 then
12: return id
13: end if
14: if comColumn ≥ (2 ∗ numVertexRings− (!uneven))∨
15: comRow ≥ (2 ∗ numVertexRings− (!uneven)) then
16: return −1
17: end if
18: if comRow ≥ numRingVertices ∧ comColumn ≥ numVertexRings then
19: return −1
20: end if

59

Appendix A. Algorithms

// Number of steps below h + steps above h (L-structure)

21: return min(numVertexRings, comRow) ∗ (numVertexRings ∗ 2− (!uneven))
22: +max(0, comRow−numRingVertices) ∗numVertexRings+ comColumn
23: else

// Calculate the leftover part if we have uneven tessellation
24: innerLe f t← uneven ∗ numSectorRings ∗ 2 + uneven
25: k← numInnerTriangles + innerLe f t− 1
26: toDoNow← min(max(k− startTriangle + 1, 0), subpatchOuterSize) ∗ uneven
27: doneBe f ore← startTriangle− numInnerTriangles
28: toDoVertices← (toDoNow + 2) ∗ uneven
29: toDoVertices← toDoVertices
30: +(startTriangle == numInnerTriangles ∧ toDoNow > 0)
31: toDoVertices← toDoVertices + (doneBe f ore > 0) ∗ uneven
32: doneVerticesSideL← doneBe f ore

2 ∗ (doneBe f ore > 0)
33: doneVerticesSideR← doneBe f ore

2 ∗ (doneBe f ore > 0)
// Height of L-Structure

34: o ← (numVertexRings ∗ 2− (!uneven))

// Generate the leftover part if necassary
35: if toDoNow > 0∧ id < toDoVertices then
36: gidx ← o ∗ numRingSegments + numVertexRings− 1
37: if id == 0∧ startTriangle == numInnerTriangles then
38: return gidx
39: end if
40: if convertedInner1 == 3 then
41: if id < 3 then
42: return id
43: end if
44: return −1
45: end if
46: if convertedInner1 == 2 then
47: if id! = 0 then
48: return −1
49: end if
50: return 0
51: end if

// Generate left and right leftover side
52: if id ≤ toDoVertices−1

2 then
53: rIdx ← doneVerticesSideL + id
54: gidx ← gidx + rIdx

60

55: return gidx
56: else
57: rIdx ← doneVerticesSideR + id
58: gidx ← gidx(numVertexRings− (!uneven))
59: +(rIdx− toDoVertices−1

2) ∗ numVertexRings
60: return gidx
61: end if
62: end if

// Generate the normal outer ring

63: if toDoNow > 0 then // set the startTriangle to the first outer triangle
64: startTriangle← numInnerTriangles + innerLe f t− 1
65: end if

66: cur ← id− toDoVertices

67: if toDoNow == 0 then
68: cur ← id
69: end if
70: numHVertices← (numVertexRings ∗ 2− (!uneven)) ∗ numVertexRings

// Generate outer vertices
71: if cur <= numPatchOuterVertices then
72: cidx ← minOuter + cur− numInnerTriangleVertices
73: cidx ← cidx− (convertedInner1 == 2∧ convertedOuter1 == 1
74: ∧convertedOuter2 == 1∧ convertedOuter3 == 1)
75: if cidx == numOuterVertices then
76: cidx ← 0
77: end if

78: if cidx < numOuterVertices then
79: return cidx + numInnerTriangleVertices
80: end if
81: return −1
82: else

// Generate inner vertices
83: cur ← cur− numPatchOuterVertices + 1

84: if convertedInner1 == 3 then
85: if id < 3 then
86: return id
87: end if

61

Appendix A. Algorithms

88: return −1
89: end if
90: if convertedInner1 == 2 then
91: if id! = 0 then
92: return −1
93: end if
94: return 0
95: end if

96: inA← (startColumn == 0) ∧ (minInnerVertex! = o− 1)
97: inC ← (startRow == 0) ∗ (!inA)
98: inB← (!inA) ∗ (!inC)
99: bSteps← startColumn
100: if startColumn == o− 1 then
101: bSteps← (numVertexRings− startRow) + numVertexRings− 2
102: end if

// How far am I on the current side
103: inIdx ← startRow ∗ inA + bSteps ∗ inB + (o− startColumn− 1) ∗ inC
104: cidx ← inIdx + cur
105: crossed← cidx

o−1

// Calc new side after current thread correction
106: rSide← inB + inC ∗ 2 + crossed
107: cidx ← cidx mod (o− 1)
108: if rSide == 3∧ cidx == 0 then
109: rSide← 0
110: end if
111: if rSide > 2∧ cidxS! = 0 then
112: return −1
113: end if

// Determine the steps in each direction
114: aDir ← (rSide == 1) ∗ (o− 1) + (rSide == 12 ∗ (o− 1)
115: +(rSide == 0) ∗ cidx
116: bDir ← (rSide == 2) ∗ (o− 1) + (rSide == 1) ∗ cidx
117: cDir ← (rSide == 2) ∗ cidx
118: aFac← aDir

o−1
119: bFac← bDir

o−1
120: cFac← cDir

o−1

121: b2StepsF ← max(0, cidx− numRingSegments
122: +(!uneven) ∗ aFac ∗ bFac ∗ (!cFac))
123: b1StepsF ← cidx− b2StepsF

62

124: b2StepsFFac← b2StepsF > 0

// Calculate index by adding side offset to the ”on side steps”
125: inCorr ← aFac ∗ numInnerSegments + bFac ∗ (numRingSegments ∗ o
126: +(numRingSegments− 1 + uneven) ∗ numVertexRings + 1)
127: gidx ← inCorr+
128: cidx ∗ (!aFac) ∗ (!bFac) ∗ (!cFac)
129: +b1StepsF ∗ o ∗ aFac ∗ (!bFac) ∗ (!cFac)
130: +(b2StepsFFac ∗ numRingSegments ∗ (numVertexRings− (!uneven))
131: +b2StepsFFac− b2StepsF
132: −(!uneven) ∗ b2StepsFFac) ∗ aFac ∗ (!bFac) ∗ (!cFac)
133: −b1StepsF ∗ numVertexRings ∗ aFac ∗ bFac ∗ (!cFac)
134: −b2StepsF ∗ o ∗ aFac ∗ bFac ∗ (!cFac)
135: if gidx >= numInnerVertices + numOuterVertices then
136: return −1
137: end if
138: return gidx
139: end if
140: end if

63

Appendix B.

Lists

65

List of Algorithms

1. CalculateQuadInnerTriangle . 17

2. CalculateQuadEdgeFactor . 18

3. CalculateTriangleInnerTriangle 51

4. CalculateTriangleInnerVertexUVW 52

5. CalculateOuterTriangle . 52

6. CalculateOuterTriangleVertexUVW 54

7. getGlobalQTriangleID . 56

8. getGlobalQVertexID . 56

9. getGlobalTTriangleID . 58

10. getGlobalTVertexID . 59

67

List of Figures

1.1. Tessellation illustration . 2

1.2. Subpatching illustration . 2

1.3. Nvidia Thread-Block Structure 3

1.4. Nvidia Memory Model . 4

2.1. Traditional Pipe . 8

2.2. Scheduling approaches . 8

3.1. Special edge division levels are shown in a, and some normal
cases in b, . Red indicates short segments and orange, normal
segments . 13

3.2. Inner and outer section of a triangle 14

3.3. Inner and outer section of a quad 14

3.4. Visualization of an outer section part of a quad and a triangle 15

3.5. Example of inner quad tessellation (inner1 = 6, inner2 = 4) . 16

3.6. Triangle and Vertex Enumeration 17

3.7. Example for inner triangle tessellation (inner = 6) 19

3.8. Vertex-Mapping . 20

3.9. Inner Tessellation Examples 21

3.10. Outer Tessellation Examples 22

4.1. OpengGL Tessellation Primitive Generation 25

4.2. TessellationControlShader . 26

4.3. TessellationEvaluationShader 26

4.4. Tessellation steps (red) . 27

4.5. Inner Subpatching . 29

4.6. Outer Subpatches . 30

4.7. Outer Triangle Subpatches . 30

4.8. Quad subpatch index calculation 32

69

List of Figures

4.9. Example of an outer subpatch 33

5.1. Inner Tessellation 1 - 3 , 0.5 step 36

5.2. Inner Tessellation 3.5 - 5 , 0.5 step 36

5.3. Equal quad tessellation 1 - 5 37

5.4. Fractional even tessellation (left) and fractional odd tessella-
tion (right) 1 - 3 . 37

5.5. Example Subpatches . 38

5.6. Bunny Subpatches (inner=14.5,outers=8.5/8.25/9.5) 38

5.7. Suzanne, Utah Teapot . 39

5.8. Number of triangles for different tessellation levels. Note that
TL 64 for the Stanford Bunny was not doable, due to memory
limitation. 39

5.9. Execution time (ms) for common test models 40

5.10. Execution time (ms) for common test models. TCS(left), TES(right)
. 40

5.11. Execution time (ms) for spheres with different numbers of
triangles . 40

5.12. TCS execution time (ms) for spheres 41

5.13. TES execution time (ms) for spheres 41

5.14. Heightmap Example . 42

5.15. LOD Example . 43

5.16. Edge Tessellation Comparison 44

5.17. Subpatch Comparison . 45

5.18. Subpatch Comparison for Triangles 46

5.19. Subpatch Comparison for Quads 46

5.20. Shared edge, different orientation 47

70

Bibliography

[1] Timo Aila and Samuli Laine. “Understanding the efficiency of ray
traversal on GPUs.” In: Proceedings of the conference on high performance
graphics 2009. ACM. 2009, pp. 145–149 (cit. on p. 8).

[2] Tamy Boubekeur and Christophe Schlick. “A flexible kernel for adap-
tive mesh refinement on GPU.” In: Computer Graphics Forum. Vol. 27.
1. Wiley Online Library. 2008, pp. 102–113 (cit. on p. 9).

[3] Tamy Boubekeur and Christophe Schlick. “Generic mesh refinement
on GPU.” In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. ACM. 2005, pp. 99–104 (cit. on p. 9).

[4] NVIDIA Corporation. CUDA C Programming Guide. 2018. url: http:
//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

(cit. on p. 2).

[5] Michael Kenzel et al. “A high-performance software graphics pipeline
architecture for the GPU.” In: ACM Transactions on Graphics (TOG) 37.4
(2018), p. 140 (cit. on p. 9).

[6] Samuli Laine and Tero Karras. “High-performance software rasteriza-
tion on GPUs.” In: Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics. ACM. 2011, pp. 79–88 (cit. on p. 7).

[7] Fang Liu et al. “FreePipe: a programmable parallel rendering ar-
chitecture for efficient multi-fragment effects.” In: Proceedings of the
2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games.
ACM. 2010, pp. 75–82 (cit. on p. 7).

[8] Kurt Akeley Mark Segal. The OpenGL Graphics System: A Specification
(Version 4.0 (Core Profile) - March 11, 2010). 2010. url: https://www.
khronos.org/registry/OpenGL/specs/gl/glspec40.core.pdf (cit.
on p. 9).

71

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec40.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec40.core.pdf

Bibliography

[9] Kurt Akeley Mark Segal. The OpenGL Graphics System: A Specification
(Version 4.6 (Core Profile) - July 30, 2017). 2017. url: http://https://
www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf

(visited on 04/03/2018) (cit. on pp. 11, 12).

[10] Microsoft. Direct3D 11 Graphics. 2009. url: https://msdn.microsoft.
com/en-us/library/windows/desktop/ff476342(v=vs.85).aspx

(visited on 04/03/2018) (cit. on p. 9).

[11] Matthias Nießner et al. “Feature-adaptive GPU rendering of Catmull-
Clark subdivision surfaces.” In: ACM Transactions on Graphics (TOG)
31.1 (2012), p. 6 (cit. on p. 9).

[12] Matthias Nießner et al. “Real-Time Rendering Techniques with Hard-
ware Tessellation.” In: Computer Graphics Forum. Vol. 35. 1. Wiley
Online Library. 2016, pp. 113–137 (cit. on p. 10).

[13] Anjul Patney et al. “Piko: A Design Framework for Programmable
Graphics Pipelines.” In: arXiv preprint arXiv:1404.6293 (2014) (cit. on
p. 7).

[14] Michael Schwarz and Marc Stamminger. “Fast GPU-based adaptive
tessellation with CUDA.” In: Computer Graphics Forum. Vol. 28. 2.
Wiley Online Library. 2009, pp. 365–374 (cit. on p. 9).

[15] Larry Seiler et al. “Larrabee: a many-core x86 architecture for visual
computing.” In: ACM Transactions on Graphics (TOG) 27.3 (2008), p. 18

(cit. on p. 7).

[16] Markus Steinberger et al. “Whippletree: task-based scheduling of
dynamic workloads on the GPU.” In: ACM Transactions on Graphics
(TOG) 33.6 (2014), p. 228 (cit. on p. 8).

[17] Pixar Animation Studios. OpenSubdiv. 2013. url: http://graphics.
pixar.com/opensubdiv/docs/intro.html (cit. on p. 9).

72

http://https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
http://https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476342(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476342(v=vs.85).aspx
http://graphics.pixar.com/opensubdiv/docs/intro.html
http://graphics.pixar.com/opensubdiv/docs/intro.html

