
Masterarbeit

Qualification of In-House Developed
Software Tools in Accordance with

ISO 26262

Benjamin Archan, BSc.

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: Univ.-Prof. Dipl.-Inform.Dr.Kay Römer

Betreuer und Begutachter: Dipl.-Ing.Dr. techn.Christian Kreiner
Betreuer bei Magna Powertrain: Adam Schnellbach,MSc.

Graz, im April 2014

Kurzfassung

Die Automobilindustrie ist bestrebt die Sicherheit ihrer Produkte stetig zu verbessern.
Aufgrund der hohen Komplexität moderner Fahrzeuge und Fahrzeugsysteme, wird eine
Vielzahl an Software Werkzeugen zur Unterstützung der Techniker eingesetzt. Fehlfunktio-
nen oder fehlerhafte Ergebnisse dieser Werkzeuge können jedoch zu Fehlern innerhalb des
erzeugten Produktes führen. Um dieses Risiko zu minimieren müssen Software Werkzeuge
gemäß dem Sicherheitsstandard ISO 26262-8:2011(E): Road vehicles – Functional safety –
Part 8: Supporting processes qualifiziert werden. In dieser Arbeit wird die Vorgehensweise
einer Qualifizierung von Software Werkzeugen nach ISO 26262-8:2011 analysiert. Basierend
auf dieser Analyse wird eine Methodik zur Qualifizierung von in-house entwickelten Soft-
ware Werkzeugen erarbeitet und vorgestellt. Weiters wird die empfohlene Vorgehensweise
an einem Software Werkzeug angewandt. Dabei handelt es sich um ein Verifikationswerk-
zeug, welches von Magna Powertrain entwickelt wurde. Die Anwendung der Methodik soll
als Leitfaden für die praktische Umsetzung der Anforderungen des Sicherheitsstandards
ISO 26262-8:2011 dienen.

Abstract

Automotive industry is endeavoring to increase passenger’s safety steadily. Due to the high
complexity of modern automotive products, a multitude of software tools is used to provide
support to automotive engineers. However, malfunctions or erroneous outputs of software
tools used within the development process of automotive systems can lead to safety critical
product failures. Therefore, these tools must be qualified in accordance with the safety
standard ISO 26262-8:2011(E): Road vehicles – Functional safety – Part 8: Supporting
processes, to minimize the risk of product errors caused by malfunctioning software tools.
This thesis analyzes the software tool qualification process required by ISO 26262-8:2011.
Based on this analysis a methodology for the qualification of in-house developed software
tools is derived and presented. Furthermore, the proposed qualification approach is ap-
plied on a software verification tool, developed by Magna Powertrain. The application
of the methodology shall give a guidance for the practical implementation of the require-
ments specified by ISO 26262-8:2011.

Key words: software tool qualification, ISO 26262, functional safety, automotive

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

Danksagung

Diese Masterarbeit wurde im Sommersemester 2014 am Institut für Technische Informatik
an der Technischen Universität Graz durchgeführt.

Ein herzliches Dankeschön gilt meinen beiden Betreuern Adam Schnellbach von Magna
Powertrain und Christian Kreiner vom Institut für Technische Informatik, die mich auf-
grund ihres fundierten Fachwissens und ihrer großen Hilfsbereitschaft bestmöglich un-
terstützten. Stellvertretend für alle weiteren Angestellten von Magna Powertrain, die mir
jederzeit mit Rat und Tat zur Seite gestanden sind, bedanke ich mich bei Amir Tojaga
und Michael Michaelis.

Ein großes Dankeschön richtet sich an meine Frau Stefanie. Ohne ihren Beistand und
ihre Geduld wäre meine Masterarbeit nie in dieser Form zustande gekommen.

Abschließend bedanke ich mich bei meinen Eltern Josef und Melitta, die mir durch
ihre jahrelange Unterstützung das Studium überhaupt ermöglicht haben.

Graz, im April 2014 Benjamin Archan

Contents

1 Introduction 1
1.1 Motivation and objectives . 1
1.2 Outline . 2

2 Related work 3
2.1 Software tool qualification within the automotive industry 3

2.1.1 Evaluation . 4
2.1.2 Qualification Methods . 5
2.1.3 Required Tool Information for Software Tool Qualification 7

2.2 Software tool qualification within other industrial sectors 8
2.2.1 Generic requirements for electrical/electronic/programmable elec-

tronic safety-related systems . 8
2.2.2 Railway applications . 9
2.2.3 Nuclear power plants . 10

2.3 Existing methodologies for software tool qualification 10
2.3.1 IEC 61508 Certification of a Code Generator 10
2.3.2 Qualifying Software Tools According to ISO 26262 12
2.3.3 Establishing confidence in the usage of software tools in accordance

with ISO 26262 . 12
2.3.4 Test tool qualification through fault injection 13

3 Proposed qualification approach 17
3.1 Definition of qualification methods for in-house developed software tools . . 19
3.2 Application of the qualification methods . 21
3.3 Correlation with the Standard . 27

4 Qualification of the software tool ATool 29
4.1 Tailoring of ISO 26262-6:2011 . 30

4.1.1 Initiation of product development at the software level 30
4.1.2 Specification of software safety requirements 30
4.1.3 Software architectural design . 31
4.1.4 Software unit design and implementation 31
4.1.5 Software unit testing . 32
4.1.6 Software integration and testing . 32
4.1.7 Verification of software safety requirements 32

4.2 Specification of the qualification view model 33

I

4.2.1 Premises . 33
4.2.2 Process . 35
4.2.3 Use cases . 37
4.2.4 Logical . 40
4.2.5 Development . 42

4.3 Validation and verification . 57
4.3.1 Code instrumentation . 59
4.3.2 Test suite . 67
4.3.3 Test result analysis . 70
4.3.4 Configuration and version management 70

5 Conclusion and future work 73
5.1 Conclusion . 73
5.2 Future work . 76

A Abbreviations 78

Bibliography 79

II

List of Figures

2.1 Preparation of qualification, according to [Glo08] 11
2.2 Practical Evaluation on the Universal Test Platform: Monitoring and Fault

Injection, according to [Izo12] . 16

3.1 Guideline for the qualification of software tools in accordance with [Sch11] . 18
3.2 Proposed combination of qualification methods for in-house developed soft-

ware tools . 21
3.3 Qualification view model based on Kruchten’s ”4+1 View Model” 22
3.4 Reference phase model for the SW tool development based on ISO 26262-6 24
3.5 Proposed qualification process of a software tool qualification in accordance

with ISO 26262 based on the proposed approach 26

4.1 Qualification view model applied on ATool 33
4.2 Overview on the complete module testing process 36
4.3 Graphical user interface of ATool . 38
4.4 ATool use cases . 39
4.5 Test environment created by ATool . 41
4.6 ATool package diagram . 44
4.7 Modules used by ATool GUI . 45
4.8 Modules used by module ”testCtrl.m” . 46
4.9 Data transfer within ATool concerning signal attributes 48
4.10 Overview on the usage of global variables within ATool 49
4.11 Activity diagram of MATLAB script to determine the usage of global vari-

ables within ATool . 50
4.12 Sequence diagram linked to use case ”Generate test environment” 51
4.13 Sequence diagram of module ”create TestModel.m” 52
4.14 Realization of the processes depicted in the data flow diagram 53
4.15 ATool data flow diagram . 54
4.16 Activity diagram of module ”findModelSpecs.m” 56
4.17 Data flow of ATool test suite . 58
4.18 Sequence of function calls when inserting code coverage flags 60
4.19 Activity diagram of ”prepareSyntax.m” . 62
4.20 Activity diagram of ”addCCFlags.m” . 65
4.21 Activity that analyzes each code line at ”addCCFlags.m” 66
4.22 Actions to be performed when deriving the test specification from the ex-

isting ATool documentation . 68

III

4.23 Sequence of function calls at ”atoolTestSuite.m” 69
4.24 Exemplary overall test results . 71
4.25 Exemplary excerpt of a MS Excel sheet containing analyzed untouched flags 71
4.26 Branching strategy for ATool validation 72

5.1 Structuring of the software tool qualification by means of the proposed
qualification view model . 75

IV

List of Tables

2.1 Criteria for determination of TI levels . 4
2.2 Criteria for determination of TD levels . 5
2.3 Determination of the Tool Confidence Level (TCL) 5
2.4 Qualification of software tools classified TCL3 5
2.5 Qualification of software tools classified TCL2 6
2.6 Standards for safety relevant software-intensive systems, according to [BW11] 8
2.7 Classes of software off-line support tools in IEC 61508 9

4.1 ATool environment relevant for qualification 35
4.2 Exemplary software tool safety requirements of ATool 40
4.3 Used activity diagram elements . 55
4.4 Syntax changed by ”prepareSyntax” . 61
4.5 Modifications of the ATool code caused by ”addCCFlags” 64

V

Chapter 1

Introduction

1.1 Motivation and objectives

The importance of functional safety of electrical and/or electronic systems in road vehi-
cles is continuously growing. Therefore the international standard ISO 26262 – Road ve-
hicles – Functional safety was established. In ISO 26262-8:2011(E): Road vehicles –
Functional safety – Part 8: Supporting processes ([ISO11b]) the importance is justified as
follows:

Safety is one of the key issues of future automobile development. New
functionalities not only in areas such as driver assistance, propulsion, in vehicle
dynamics control and active and passive safety systems increasingly touch the
domain of system safety engineering. Development and integration of these
functionalities will strengthen the need for safe system development processes
and the need to provide evidence that all reasonable system safety objectives
are satisfied.

With the trend of increasing technological complexity, software content
and mechatronic implementation, there are increasing risks from systematic
failures and random hardware failures. ISO 26262 includes guidance to avoid
these risks by providing appropriate requirements and processes.

Clause 11 of [ISO11b] deals with the confidence in the use of software tools and requires
a qualification of those software tools. The objective of a qualification is, as mentioned in
[ISO11b], to provide evidence that

the user can rely on the correct functioning of a software tool for those
activities required by ISO 26262.

Magna Powertrain is one of the world leading companies with focus on automotive
power train products. These products come within the scope of the functional safety
standard ISO 26262. Among other process steps the safety standard ISO 26262 requires
multiple phases of product verification. Such a level of verification is represented by the
software module testing phase. As the name suggests, at the process of software module
testing a single module of the automotive embedded software is verified. That means, it
is checked in a systematic way if the software module under test (MUT) complies with its

1

CHAPTER 1. INTRODUCTION 2

specifications. At Magna Powertrain the process of module testing is generic. That means,
for each MUT the same working steps have to be performed. Due to the high complexity
of a typical MUT, the construction of the module test environment is a significant effort.
Furthermore, the handling of test cases by the module tester implies an unnecessary risk
of inserting an error into the developed product. To increase the efficiency of the module
testing process and to reduce the risk of human error, Magna Powertrain developed a
software tool to automate the handling of software module tests. This tool is called
ATool. To provide the evidence of the correct functioning of ATool, the tool must be
qualified in accordance with [ISO11b].

Due to the lack of scientific literature concerning the performance of a software tool
qualification in accordance with ISO 26262-8:2011(E): Road vehicles – Functional safety –
Part 8: Supporting processes ([ISO11b]), the general objective of this master thesis is to
acquire knowledge at this subject area. The thesis focuses on the qualification of in-
house developed software tools. One objective is to elaborate a methodology for the
qualification of in-house developed software tools. Another objective of this thesis is to
apply this methodology on the software verification tool ATool as a best practice for
further software tool qualifications at Magna Powertrain.

1.2 Outline

Chapter 2 deals with software tool qualification required by different standards and is
divided into three parts. The first part deals with the requirements of the automotive
safety standard ISO 26262. It provides a short overview of the standard and explains the
objectives, methods and work products concerning software tool qualification required by
ISO 26262. The second part of chapter 2 deals with safety standards similar to the auto-
motive safety standard ISO 26262. It is investigated if the considered standards require
a software tool qualification. For standards that require software tool qualification, the
qualification methods are examined. Within the third part of chapter 2 already existing
methodologies for software tool qualification are investigated and presented.

In chapter 3 a guideline for software tool qualification, required by ISO 26262, is de-
scribed. Furthermore a proposal for the definition of qualification methods of in-house
developed software tools is given. In addition a proposed approach for the application of a
qualification is explained. Finally, the correlation between the requirements of [ISO11b],
clause 11 and the presented methodology is investigated.

The practical implementation of the proposed software tool qualification approach is il-
lustrated by the software verification tool ATool in chapter 4. The chapter is divided
into three parts. Within the first section of chapter 4 the tailoring of the applied safety
standard for ATool development is explained. The second part of the chapter describes
the specification of the ATool qualification view model. The last section of chapter 4
concerns the validation of the tool.

The first part of chapter 5 considers the results of this master thesis. Within the sec-
ond part of chapter 5 the open issues are discussed.

Chapter 2

Related work

2.1 Software tool qualification within the automotive indus-
try

Within the automotive industry the standard ISO 26262 – Road vehicles – Functional
safety deals with issues concerning functional safety of electrical and/or electronic systems.
Chapter ”Introduction” in [ISO11b] describes the standard as follows:

ISO 26262 is the adaption of IEC 61508 to comply with needs specific to
the application sector of E/E systems within road vehicles. (. . .) ISO 26262:

• provides an automotive safety lifecycle (management, development, pro-
duction, operation, service, decommissioning) and supports tailoring the
necessary activities during these lifecycle phases;

• provides an automotive-specific risk-based approach to determine integrity
levels [Automotive Safety Integrity Levels (ASIL)];

• uses ASILs to specify applicable requirements of ISO 26262 so as to avoid
unreasonable residual risk;

• provides requirements for validation and confirmation measures to ensure
a sufficient and acceptable level of safety being achieved;

• provides requirements for relations with suppliers;

Clause 11 of [ISO11b] specifies the requirements for the ”Confidence in the use of
software tools”. The objectives of this clause are to

provide criteria to determine the required level of confidence in a software tool
(. . .)

and to assure that

(. . .) the user can rely on the correct functioning of a software tool for those
activities or tasks required by ISO 26262

3

CHAPTER 2. RELATED WORK 4

In accordance with [ISO11b],

confidence is needed that the software tool effectively achieves the following
goals:

• the risk of systematic faults in the developed product due to malfunctions
of the software tool leading to erroneous outputs is minimized, and

• the development process is adequate with respect to compliance with
ISO 26262, if activities or tasks required by ISO 26262 rely on the correct
functioning of the software tool used.

For instance, this means for the verification tool in the focus of this paper, that the risk
of failing to detect errors in the object under test must be minimized adequately.

To determine the level of confidence in a software tool, the standardized evaluation
approach needs to be performed. Based on the results of the evaluation, an adequate set of
qualification methods needs to be applied to minimize the risk of a malfunctioning software
tool. [ISO11b] provides a set of specified qualification methods, that are recommended by
the standard. If the software tool qualification is performed based on methods not stated
by the standard a rationale has to be given. After determining the level of confidence
in a software tool and applying an adequate combination of qualification methods, a
”Software tool criteria evaluation report” and a ”Software tool qualification report” has
to be generated. These reports must be checked in a confirmation review by an external
certified institution. If this review is successful, the software tool is qualified.

2.1.1 Evaluation

To apply adequate qualification methods on a software tool, the confidence in that tool
has to be evaluated. Therefore [ISO11b] requires the evaluation of two criteria. The first
criteria concerns the impact of a possible software tool malfunction on the product being
developed. The levels of such a Tool Impact (TI) are shown in Table 2.1. The second
criteria for evaluation aims at the detection and prevention probability of an erroneous
SW tool output. The levels of the corresponding index number, the Tool error Detection
(TD), are shown in Table 2.2. When determining the TD level, it has to be considered
that measures that prevent or detect erroneous output can be external to the software
tool (e.g. process steps) or internal to the software tool (e.g. rationality checks).

After evaluating the levels of TI and TD, the Tool Confidence Level (TCL) can be
determined in accordance to Table 2.3. In case of TCL1, no qualification methods are
needed by the standard.

Level of Tool Impact Possibility of impact*

TI1 An argument exists, that there is no such possibility

TI2 All other cases

Table 2.1: Criteria for determination of TI levels (*Possibility that a malfunction of a
particular software tool can introduce or fail to detect errors in a safety-related item or
element being developed.)

CHAPTER 2. RELATED WORK 5

Level of Tool error Detection Degree of confidence*

TD1 High

TD2 Medium

TD3 Other

Table 2.2: Criteria for determination of TD levels (*Confidence in measures that prevent
the software tool from malfunctioning and producing erroneous output or detect erroneous
output of the software tool)

Tool error detection
TD1 TD2 TD3

Tool impact
TI1 TCL1 TCL1 TCL1
TI2 TCL1 TCL2 TCL3

Table 2.3: Determination of the Tool Confidence Level (TCL)

2.1.2 Qualification Methods

Recommendations

In requirement 11.4.6.1 in [ISO11b] appropriate sets of qualification methods, based on
the determined TCL, are shown. These tables from the standard are depicted in Table 2.4
and Table 2.5. To interpret Table 2.4 and Table 2.5 in the right way, the following issues
have to be considered:

• Alternative methods are indicated by a number followed by a letter (e.g. 1c)

• ”+” means a method is recommended for the correspondent ASIL

• ”++’ means a method is highly recommended for the correspondend ASIL

For instance method ”1d Development in accordance with a safety standard” is highly
recommended for ASIL C, but not oblige. If this method is not applied to ASIL C, a
rationale must be given. [ISO11b] even allows the application of appropriate methods
that are not listed, therefore also a rationale is required. However, [ISO11b] states, that

If methods are listed with different degrees of recommendation for an ASIL,
the methods with the higher recommendation should be preferred.

Methods
ASIL

A B C D

1a Increased confidence from use ++ ++ + +

1b Evaluation of the tool development process ++ ++ + +

1c Validation of the software tool + + ++ ++

1d Development in accordance with a safety standard + + ++ ++

Table 2.4: Qualification of software tools classified TCL3

CHAPTER 2. RELATED WORK 6

Methods
ASIL

A B C D

1a Increased confidence from use ++ ++ ++ +

1b Evaluation of the tool development process ++ ++ ++ +

1c Validation of the software tool + + + ++

1d Development in accordance with a safety standard + + + ++

Table 2.5: Qualification of software tools classified TCL2

Explanation

Increased confidence from use (11.4.7 in [ISO11b]): This method is suitable for soft-
ware tools that have been in use for the same purpose with an unchanged specifi-
cation and within an unchanged environment for an appropriate time. That means
that sufficient and adequate data has been collected and

the occurence of malfunctions and corresponding erroneous outputs of the
software tool acquired during previous developments are accumulated in
a systematic way.

If increased confidence from use is proven for a software tool, this proof is only valid
for the considered version of the tool. That means, for later versions of the software
tool the evidence of increased confidence from use has to be provided again.

Evaluation of the tool development process (11.4.8 in [ISO11b]): By means of an
assessment it is proven that the development process of the software tool was com-
plied with. An appropriate method for the assessment can be for instance [SIG10],
for the development process [ISO08] can be applied, for instance.

Validation of the software tool (11.4.9 in [ISO11b]): Evidence is provided, that the
software tool complies with its specification. If malfunctions of the software tool are
detected during validation, these malfunctions shall be analyzed and measures to
avoid or detect them shall be defined. Also the behavior of the software tool under
anomalous operating conditions shall be analyzed.

Development in accordance with a safety standard: [ISO11b] annotates, that:

No safety standard is fully applicable to the development of software tools.
Instead a relevant subset of requirements of a safety standard can be se-
lected.

Applicable safety standards for the application of this method are [ISO11a], [IEC10a],
[RTC11] and so forth.

CHAPTER 2. RELATED WORK 7

2.1.3 Required Tool Information for Software Tool Qualification

In subclause 11.5 of [ISO11b] the required work products for software tool qualification
are listed. For a successful tool qualification a software tool criteria evaluation report and
a software tool qualification report is needed.

Software tool criteria evaluation report: Contains a description of the applied eval-
uation methods, mentioned above, to the software tool. The description includes the
intended purpose, the inputs and expected outputs and possible environmental and
functional constraints of the software tool that has been evaluated. Also, measures
for the detection of (known and potential) erroneous output of the software tool,
identified during TCL determination should be listed. See requirements 11.4.1 to
11.4.5 and 11.4.10 in [ISO11b].

Software tool qualification report: This report gives a rationale for the applied subset
of qualification methods to the software tool. Evidence for the application of the
qualification methods is contained by this report, too (e.g. link to test results). See
requirements 11.4.1 to 11.4.10 in [ISO11b].

Both reports need at least a link to an unambiguous depiction of the software tool that
has been evaluated/qualified. Such a depiction has to include the following information
about the considered software tool:

• Version number

• Configuration

• Use cases

• Execution environment (e.g. Windows 7, MATLAB R2010b, . . .)

• Maximum ASIL that can be violated because of malfunctions of the software tool

• Features, functions and technical properties

• User manual, or similar

If applicable, the following information is also needed:

• Description of the expected behavior of the software tool under anomalous operating
conditions

• Description of known software tool malfunctions and the appropriate safeguards,
avoidance or workaround measures

CHAPTER 2. RELATED WORK 8

2.2 Software tool qualification within other industrial sec-
tors

According to [BW11], Table 2.6 lists standards that address safety relevant software-
intensive systems. The following sections examine a subset of those standards concerning
software tool qualification.

Contraction Industrial sector

IEC 61508-3 Generic

ISO/IEC 15504 Generic

ISO/IEC 12207 Generic

IEC 62304 Medical

ISO 13849 Machinery

IEC 62061 Machinery

EN 50271 Detection and measurement of gases

EN 50402 Detection and measurement of gases

IEC 61511 Process industry

EN 50128 Railway applications

ISO DIS 26262-6/-8 Automotive

DO 178B Aviation

IEC 60880 Nuclear power plants

Table 2.6: Standards for safety relevant software-intensive systems, according to [BW11]

2.2.1 Generic requirements for electrical/electronic/programmable elec-
tronic safety-related systems

The generic standard for electrical/electronic/programmable electronic (E/E/PE) safety-
related systems is [IEC10a]. It deals with software within a safety-related context. [IEC10a]
defines requirements concerning the lifecycle of safety-related software. The objective of
[IEC10a] is to reduce the risk of hazards caused by the software implemented in a E/E/PE
system to a tolerable threshold.

Requirements concerning software tools used for the development process of safety-
related software are specified in clause 7.4.4. The standard distinguishes between two cat-
egories of software tools (see [IEC10b]). All tools that influence the safety-related software
during runtime are called software online-support tools. According to [IEC10a] software
online-support tools have to be considered as elements of the safety-related system. Tools
that support phases of the software development lifecycle are defined as software offline-
support tools. These software offline-support tools are broken down in three classes, shown
in Table 2.7. The requirements concerning the software offline-support tool that have to
be considered dependent on these tool classes. Each version of a software offline-support
tool has to be qualified. [IEC10a] allows the qualification based on the confidence from
use of previous versions of the considered software tool, if evidence can be provided that
the new version of the software tool has no negative influence on the existing tool-chain
and the new version of the software tool contains no essential unknown error.

CHAPTER 2. RELATED WORK 9

Tool class Description

Tools that generate no output that contributes to
T1 the runnable code of a safety-related software

(e.g. Configuration management tools)

Tools that support the validation and/or verification
T2 of the safety-related software. Malfunctions in these

tools can disguise errors in the safety-related software

Tools that generate output that contributes
T3 to the runnable code of a safety-related software

(e.g. optimizing compiler)

Table 2.7: Classes of software off-line support tools in IEC 61508

Although [IEC10a] is mentioning software tool qualification, no concrete qualification
methods are required or recommended.

2.2.2 Railway applications

As shown in Table 2.6, [EN 11] deals with safety relevant software-intensive systems within
railway applications. Clause 6.7 addresses the usage of software tools. The objective of
this clause is providing the evidence that malfunctions of the software tool do not impact
the product to be developed. Therefore, the software tools shall be classified. When
comparing the content of [EN 11], clause 6.7 with the content of [IEC10a], it turns out,
that both standards use the same software tool classes.

An application of software tools classified as T2 or T3 must be justified. The justifi-
cation shall contain an identification of all possible errors that could impact the product.
Measures to avoid those errors shall be derived. Furthermore, a specification or a user
manual describing the behavior of these software tools shall exist.

For each software tool classified as T3, evidence must be provided that the tool’s output
is complied with its specification or that erroneous tool output is detected. This evidence
can be provided by:

• the entries within a software tool chronicle of similar applications and environments;

• software tool validation;

• applying diverse redundant code, that enables a detection of malfunctions;

• correspondence with the measures caused by the determined safety integrity level;

• or further adequate methods

Furthermore, [EN 11] specifies requirements that address the programming language
and the compiler. The programming language shall provide a detection of errors within
the code and support the method of developing the software tool. However, the used
compiler shall be validated and justified as well.

By means of a configuration management it shall be provided, that exclusively the
justified versions of software tools classified as T2 and T3 are in use. Each new version of
such a software tool must be justified before it is used.

CHAPTER 2. RELATED WORK 10

When comparing [EN 11] with [ISO11b] it turns out, that the standards are very
similar concerning their qualification methods. [EN 11] is even more severe by specifying
requirements addressing the programming language and their used compiler. However, a
more detailed specification of the software tool evaluation is given by [ISO11b].

2.2.3 Nuclear power plants

In [IEC06] clause 14 deals with the handling of software tools in nuclear power plants,
clause 15 aims at the qualification and evaluation of software tools used in nuclear power
plants. According to [IEC06] the requirements and methods mentioned in the standard
are valid for software tools that are immediately used for software development.

[IEC06] requires, that the qualification shall be performed based on a qualification
strategy. This strategy shall consider the impacts of errors in the software tool, the proba-
bility that the software tool causes an error in the safety related system and which methods
diminish the impacts of an error in the software tool. Furthermore an analysis of the de-
velopment methods of the software tool shall be performed. The tool documentation shall
be checked concerning the suitability for tool verification and concerning the description
of the tool behavior for its users. The tool shall be validated and then evaluated during
a period of application. The experiences gained from usage of the software tool shall be
considered, too.

The output of a software tool shall be verified in a systematic way. [IEC06] requires,
that the software tool shall be either developed in accordance with its requirements con-
cerning software development (clause 1 to 12 in [IEC06]) or evaluated in accordance with
clause 15 in [IEC06]. This evaluation shall determine the ability and the measures for pos-
sible adaptions of the considered software. Furthermore the quality and the experiences
gained from the usage of the software shall be evaluated. After evaluating the software a
comprehensive analysis shall be performed to clarify whether the software can be used or
not.

[IEC06] targets the qualification of software tools, but compared with [ISO11b] the
definition of the required qualified methods is less specific.

2.3 Existing methodologies for software tool qualification

2.3.1 IEC 61508 Certification of a Code Generator

In 2008, when the standard ISO 26262 was drafted, [Glo08] was written. The paper de-
scribes a software tool certification in accordance with [IEC10a]. It must be mentioned,
that within the following ”qualification” is written instead of ”certification”. The con-
sidered software tool to be qualified is a code generator called ”ASCET”. The proposed
approach can be seen as a basis for the qualification of software tools in accordance with a
safety standard. Figure 2.1 shows the compilation of safety requirements. As can be seen,
the requirements of IEC 61508 considering hardware and system aspects are rejected. The
general requirements as well as the software requirements are filtered concerning their us-
age for a software tool qualification. Special function requirements are added to consider
the specific behavior of a code generator. [Glo08] breaks down the tool qualification into
six work packages:

CHAPTER 2. RELATED WORK 11

• Project definition

• Preparation of qualification

• Preparation of documentation

• Inspection & audits

• Evaluation

• Project finish

[Glo08] describes the preparation of documentation as follows:

Process, development, and product documentation needs to be collected.
Before they are handed over to the certifying authority they need to be brought
into a suitable form to substantiate the fulfilment of the IEC 61508 require-
ments. This work package requires by far the most effort.

As already mentioned, [Glo08] can be seen as a basis for the qualification in accordance
with a safety standard. As a result, this methodology can be applied on the thesis.

IEC 61508 part 1

- General requirements

IEC 61508 part 2

- Hardware requirements

- System requirements

IEC 61508 part 3

- Software requirements

Filtering
Special function

requirements

Requirements to be met by

ASCET

Figure 2.1: Preparation of qualification, according to [Glo08]

CHAPTER 2. RELATED WORK 12

2.3.2 Qualifying Software Tools According to ISO 26262

[CMR10] describes the qualification of the MathWorks Real-Time Workshop Embedded
Coder code generator in accordance with ISO 26262 by using a so called reference workflow.
This reference workflow is explained by [CMR10] as follows:

The reference workflow describes a workflow for application-specific ver-
ification and validation of models and generated code developed using the
Simulink modeling environment and the Real-Time Workshop Embedded Coder
C code generator. (. . .) The verification and validation measures described
in this reference workflow form available means to detect or prevent potential
malfunctions or erroneous outputs of the code generator.

As a result of establishing this process, the code generator is evaluated as TCL1 and
no additional qualification methods need to be carried out. Furthermore, the qualification
of the Real-Time Workshop Embedded Coder C code generator in combination with the
PolySpace verifiers for C/C++ is mentioned. In case of this combination, the qualification
methods ”Evaluation of the development process” and ”Validation of the software tool”
are applied. [CMR10] states, that

the definition of suitable verification and validation measures to be used
in combination with the qualified tools provides practitioners with the neces-
sary guidance to successfully apply Model-Based Design and advanced code
verification tools in projects that need to comply with the requirements of
ISO/DIS 26262.

[CMR10] was one of the first papers, that dealt with software tool qualification in ac-
cordance with ISO 26262. The paper emphasizes the key role of the qualification method
”Validation of the software tool”. Nevertheless the paper does not describe how the qual-
ification methods were performed. Therefore the content of [CMR10] cannot be applied
on the thesis.

2.3.3 Establishing confidence in the usage of software tools in accor-
dance with ISO 26262

This paper presents a method to reuse and improve the processes that are related to the
software tool to be qualified. As stated in [HRM+11],

The focus of this approach is to establish a methodology that provides
guidance for systematically identifying software tool malfunctions in a specific
development project. (. . .) The methodology consists of following five phases:

• Project analysis

• Workflow analysis

• Working step analysis

• Use case determination

• Identification of Tool Errors

CHAPTER 2. RELATED WORK 13

• Analysis of Error Prevention and Detection

Each project is analyzed to obtain the workflows of a project that usually correspond
with the process steps of ISO 26262. Subsequently, the working steps of each workflow
are derived and the use cases of each working step are determined. After that, all possible
errors of each use case need to be identified and classified. Referring to the analysis of
error prevention and detection, [HRM+11] states, that

The goal of this task is to achieve a high detection probability of software
tool malfunctions. The verification measures are systematically grouped into
three categories:

• Prevention: The error can be avoided by preventive measures due to
the development process or configuration management. In an industrial
context, the analysis of prevention measures must be based on existing
documentation of process information.

• Review: The error can be detected by a review of work products. In
a rigorous analysis the review examines the availability of checklists for
specific development steps and verifies the quality and completeness of
the review protocols.

• Test: The error can be detected by a test with another software tool
within the product-specific tool chain. The analysis of tests verifies the
quality of performed tests, e.g. if test cases are generated systematically.

(. . .) In the shown example the detection probability is classified in three levels
that are directly mapped to tool error detection (TD) levels, tool impact level
(TI) and consequently tool confidence levels (TCL) defined in ISO 26262.

By deriving and applying adequate process measures, the software tool can be evalu-
ated as TCL1. As a result, the application of the recommended software tool qualification
methods can be eluded. The motivation of this thesis is to perform a software tool qualifi-
cation. However, this method represents an approach to evaluate software tools. Therefore
an application of the methodology proposed by [HRM+11] on the thesis makes no sense.
However, the benefit of applying this methodology for a software tool evaluation is, that
in case of a subsequent qualification the correspondent development processes and tool
use cases are already analyzed.

2.3.4 Test tool qualification through fault injection

A method for the qualification of software verification tools is presented by [WWI+12].
The paper assumes, that the architecture of the considered software tool uses a monitor,
as stated in section 7 ”Case Study” within [IIW12]:

We added a monitor to the testing tool, such that the monitor is developed
to ASIL D(D) and the testing tool to QM(D). The key idea behind this decom-
position is that the monitor ensures detection of testing tool failures, bringing
the tool error detection to TD1. This leads to the lowest required tool con-
fidence level TCL1, for which less qualification effort is required. While the

CHAPTER 2. RELATED WORK 14

testing tool goes through frequent changes with re-qualification correspond-
ing to TCL1, the monitor is not changed so often. Re-qualification to TCL3
through change management of an ASIL D Item is not required very often and
there is less effort when the testing tool is changed.

By considering this monitor concept, the following is recommended for the qualification
of verification tools by [WWI+12]:

When qualifying a verification tool after a modification, using a monitor
and fault injection, we iteratively apply functional stimuli that are designed
to exercise the verification tool software. In each iteration we inject a known
selected fault from a pre-defined fault list. If the injected fault is not detected
by the monitor, one of the following actions is required.

1. Eliminate ”bugs” in the verification tool, then re-start the qualification
process, or

2. If no ”bugs” can be found in the modified verification tool, analysis on
conformance to the functional safety requirements will determine the next
action as follows:

• Requirements are met and we can reduce the lists of faults to inject,
or

• Requirements are not met and modification of the monitor is neces-
sary to detect the ”bug” undetected so far, followed by re-qualification
of the monitor.

If all injected faults are detected as expected in the adapted verification
tool, no re-qualification is necessary.

When applying the verification tool on a new system-under-test, the tool
behavior is observed for each test case executed during a ”golden run” (without
fault injection) and then the tool is exercised with fault injection for the same
test cases as in the golden run. If a mismatch is observed, the test case shall
be modified.

[Izo12] explains the methodology by applying it to a verification tool, called the Uni-
versal Test Platform, testing a steer-by-wire concept classified as ASIL D. The manual
justifies the usage of fault injection for the qualification of a verification tool because of
the following reasons:

• Extensively used by the certification authorities in judging the system
functionality with respect to safety.

• Required verification method for ASIL D development.

• Simple and easy to manage and can be efficiently optimized.

• Does not depend so much on the system complexity as the other verifica-
tion methods.

• Efficiency steadily increases with the number of faults injected.

• Nondisruptive if implemented in software.

CHAPTER 2. RELATED WORK 15

Figure 2.2, shows the fundamental architecture of a verification tool implementing the
monitor and fault injection concept. The buffer is monitored to avoid data losses caused
by a buffer overflow. Also the I/O port between the test procedure and the test man-
ager is monitored. The fault injection into the ”IO Manager” and the ”Test Procedure”
represents a white box test, because of corrupting the code of the tool. However, the
fault injection considering the ”Analog generator”, the ”PWM Capture” and the ”CAN
Engine” represents a black box test, because of modifying the signals.

When analyzing this qualification methodology it turns out, that it can be applied on
the thesis partially. The considered method for a software tool qualification can be applied
solely on tools that make use of the monitor concept. Assuming a software tool that is
already qualified for ASIL B needs to be qualified for ASIL D. That means, as a first
step the software tool has to be adapted by implementing a monitor. Such a fundamental
change on a software tool is likely to be extremely time-consuming and therefore no option
for the automotive industry. In case of a software tool that has to be developed, the
monitor concept by [IIW12] and the subsequent qualification by means of fault injection
as proposed by [WWI+12] represents a smart way to design and qualify a software tool
for the automotive industry.

However, the usage of fault injection without using a monitor is integrated in the thesis
and explained in chapter 3

CHAPTER 2. RELATED WORK 16

Manager (CompactRIO)

Test Procedure

Signal Generation/Capture (FPGA)

IO Manager

CAN

Engine

PWM

Capture

Analog

Generator

Buffer

Buffer

Buffer

Timestamps

Monitoring

Steery

F
a

u
lt In

je
c
tio

n

F
a

u
lt In

je
c
tio

n

F
a

u
lt
 I

n
je

c
ti
o

n

F
a

u
lt
 I

n
je

c
ti
o

n

F
a

u
lt
 I

n
je

c
ti
o

n

Figure 2.2: Practical Evaluation on the Universal Test Platform: Monitoring and Fault
Injection, according to [Izo12]

Chapter 3

Proposed approach for the
qualification of in-house developed
software tools

As proposed in [Sch11], Figure 3.1 shows a guideline for the qualification of software tools
according to [ISO11b].

First of all an overview of all software tools used within the development process has
to be attained. That means all relevant software tools should be collected in a software
tool list. For each software tool in the software tool list, its TCL has to be determined. A
methodology to attain such a software tool list and to determine the TCL of all contained
software tools is described in [HRM+11]. It can be stated in general that tools classified
with a high TCL are applied on the top of the development V-model. Considering tools
on the top of the left side of the V-model it can be said, that errors or malfunctions of
these tools can change the content of the requirements specified by the customer or even
lead to a loss of customer requirements. However, tools applied on the top of the right
side of the V-model are the last verification units of the development process. Errors that
are not detected at this level end up directly in the product. The next step is to determine
the target ASIL. This determination considers the maximum ASIL that can be violated
by a malfunction of the considered software tool. According to [ISO11b] an assumption
of the maximum ASIL can be made when the software tool shall be used generic. Due to
the fact that a qualification of a software tool requires a big effort, the maximum ASIL
should be chosen in order to avoid further changes in an already elaborated qualification
approach caused by a changing maximum ASIL. The following considerations deal with
ASIL D as the maximum ASIL. Based on the determined TCL and target ASIL [Sch11]
recommends as next steps the definition of qualification methods and the application of the
qualification methods. These two steps are discussed in section 3.1 and section 3.2 for the
specific field of application of an in-house developed software tool. If these two steps can
be performed successfully, the qualification report can be generated. In case of an already
qualified software tool developed by an external vendor, the qualification reports should
be reviewed. A qualification for lower ASILs shall be considered, if the definition and
application of the qualification methods or the review of the existing external qualification
reports yields no successful result.

17

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 18

 act Qualification guideline

1. Identify SW tools

2. Classify SW tools

3. Define target ASIL

A.4. Define qualification methods

A.5. Perform qualificationB.4. Rev iew qualification report

Qualification report

MPT tool?

Qualified?

Success?

Generates: SW tool l ist

Generates: TCL

Generates: Target ASIL

Tool can be maybe
used for lower ASILs

ActivityInitial

ActivityFinal

[No]

[Yes]

[Yes]

[No]

[Yes]

[No]

Figure 3.1: Guideline for the qualification of software tools in accordance with [Sch11]

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 19

3.1 Definition of qualification methods for in-house devel-
oped software tools

Which qualification method may be applicable or not, depends on two main points.
First, it depends on the period of time the software tool is in use. In case of an ade-

quate long period of time without any tool malfunctions occurred, the software tool can be
qualified using the method ”Increased confidence from use”. A prerequisite for the appli-
cation of this qualification method is, that possible tool errors are recorded and remedied
in a systematic way. As mentioned in [Sch11], just the systematic recording and remedy
of tool malfunctions during the usage of the software tool is the difficulty by applying this
method. An initial qualification based on the method ”Increased confidence from use”
makes no sense, except a systematic recording and remedy of the tool malfunctions has
already been performed.

The second main point concerning the definition of qualification methods is, who devel-
oped the software tool. That means it makes a difference if the tool is developed in-house
or if the tool is developed by an external vendor.

In case of an external developed software tool a qualification based on the method
”Develop in accordance with a safety standard” is very unlikely. The method can only be
applied properly, if the tool vendor offers the whole documentation of the tool development.
Usually no tool vendor would do that. The application of the methods ”Evaluation of the
tool development process” and ”Validation of the software tool” is more likely.

In case of an in-house developed software tool the key methods for qualification are
”Develop in accordance with a safety standard” and ”Validation of the software tool”.
Developing in accordance with a safety standard includes the verification of the developed
product. According to [BM08], the verification of software shall answer the question:

Did we build the product right?

However, [BM08] claims that the validation of software shall give an answer to:

Did we build the right product?

As mentioned in section 2.1.2, only a subset of requirements specified by a safety stan-
dard can be used for software tool qualification reasonably. This means the requirements
need to be analyzed focusing on their feasibility of a software tool development at first. A
rationale should be given for all requirements or parts of requirements that are rejected.
The content of such a rationale depends mainly on the architecture of the software tool
to be qualified. Therefore, no generic statement can be made on the requirements of a
safety standard that can be rejected for a software tool development. It is proposed to use
a standard that deals with the special needs of the industrial sector. In the automotive
industry the safety standard that should be used is ISO 26262-6:2011(E): Road vehi-
cles – Functional safety – Part 6: Product development at the software level ([ISO11a]).
Generally it can be said, that all requirements of [ISO11a] that concern considerations
specific for embedded systems (e.g. tasking, hardware-software interfaces, error handling
and so forth) can be rejected or must be modified for a software tool development.

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 20

Although [ISO11b] requires a software tool development in accordance with a safety
standard for ASIL D qualifications, [ISO11b] provides no recommendations concerning
the safety classification of such a software tool development. However, the safety stan-
dard IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations ([IEE10]) recommends, that

If software tools are used during the life cycle process of safety-related
software, one or both of the following methods shall be used to confirm outputs
of that software tool are suitable for use in safety-related systems:

• The output of the software tool shall be subject to the same level of verifi-
cation and validation (V&V) as the safety-related software, to determine
that the output of that tool meets the requirements established during
the previous lifecycle phase.

• The tool shall be developed using the same or an equivalent high quality
lifecycle process as required for the software upon which the tool is being
used as described in this subclause (5.3) or commercially dedicated as in
5.17, to provide confidence that the necessary features of the software tool
function as required.

Software tools used to support the software life cycle process of safety-related
software shall be controlled under configuration management.

As a result, it is proposed to apply the target ASIL for software tool development in
accordance with [ISO11a].

The proposed application of qualification methods for in-house developed software tools
is shown in Figure 3.2. As can be seen, the qualification method ”Develop in accordance
with a safety standard” is covered in parts by the qualification method ”Validation of
the software tool”. This shall illustrate the overlap between the software tool validation
and the verification phases required by [ISO11a]. Hence, several requirements concerning
the software tool verification can be performed implicitly by the software tool validation.
As explained above, no generic statement can be made whether a single requirement of
[ISO11a] can be applied on a software tool development or not. However, it can be said
that the software tool validation covers parts of the [ISO11a] verification steps ”Software
integration and testing” and ”Verification of software safety requirements”. This is because
of the stimulation of the software tool GUI and the examination of the software tool
behavior at the validation phase.

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 21

 class Qualification methods

Develop in accordance
with a safety standard:

ISO 26262-6

Validation of the
software tool:
ISO 26262-8

Evaluation of
the tool

development
process

Figure 3.2: Proposed combination of qualification methods for in-house developed software
tools

To sum up, developing the software tool in accordance with [ISO11a] offers the following
benefits:

1. Existing tools and processes used for automotive software development can be used
or adapted for software tool development.

2. Developers and testers are familiar with those tools and processes.

3. By applying [ISO11a] a verification of the software tool is applied.1

4. Correspondences between the software tool validation and software tool verification
exist

5. The qualification method ”Evaluation of the tool development process” focuses on
the correct application of [ISO11a] and can be performed as an internal assessment.

3.2 Application of the qualification methods

When qualifying an in-house developed software tool, the relevant tool information is
spread over a multitude of documents. To provide an overview over all those documents
a structured working method is necessary. It is proposed to structure the process of a
software tool qualification based on the ”4+1 View Model” of Philippe Kruchten, described
in [Kru95]. This methodology is originally used to describe the architecture of software-
intensive systems. The idea behind the ”4+1 View Model” is to provide five different views
on a software-intensive system, to satisfy the needs of each stakeholder of the system.

1That means, that the ”inner life’ of the software tool is examined.

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 22

When describing a software tool qualification with Kruchten’s ”4+1 View Model”, the
views must be adapted. Furthermore it is very important, that only the tool package
that shall be qualified is described by the adapted ”4+1 View Model”. The adapted
”4+1 View Model” shall be called ”qualification view model”. The qualification view
model is depicted in Figure 3.3. The five views and their meaning for a software tool
qualification are given below.

 pkg 4+1 v iew - SW tool qualification

Logical

Development

Use Case

Process

Premises

Common view

Stakeholder: Process owner

Stakeholder: Tool initiator Stakeholder: Functional developer

Stakeholder: Programmer,
project manager

Figure 3.3: Qualification view model based on Kruchten’s ”4+1 View Model”

Premises The physical view in [Kru95] is replaced by the premises view. The premises
view is the common view of the qualification process and relevant for all stakeholders.
As the name suggests, this view defines the software package that is considered for
a software tool qualification. It offers the considered version of the software tool
to be qualified, the maximum ASIL and the determined TCL with a link to the
software tool evaluation report. The version numbers of the operation system and
of all supporting software tools shall be listed, too. If different versions of the
hardware components that are needed for tool execution have no influence on the
correct functioning of the considered software tool, only software aspects need to
be considered in this view. The persons who are responsible for the software tool
qualification are also listed.

Process The process view shows the development process within the the software tool is
embedded. Diagrams and documents describing the development process relevant
for the tool shall be included in the process view. The stakeholders of this view are
represented by the process owners.

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 23

Use Cases This view depicts all the use cases of the software tool to be qualified. These
use cases are derived from the content of the process view. It is proposed to show
the interactions between the user and the software tool in an use case diagram.
Furthermore, the user manual of the software tool shall be contained by this view.
The software tool initiator represents the stakeholder of this view.

Logical According to [Kru95], the logical view supports

what the system should provide in terms of services to its users.

For a software tool qualification the same meaning of this view as defined by Kruchten
is used. That means, the logical view specifies the functionalities and behavior of each
use case of the software tool. The stakeholder of this view is the functional developer
of the software tool. It is proposed to specify the software tool requirements within
the logical view.

Development The development view depicts how the functions of the software tool shall
be implemented. For the proposed approach of a software tool qualification this view
includes an architectural design and a unit design of each module of the software
tool. To depict the software tool architecture class diagrams (static description)
and sequence diagrams (dynamic description) shall be used. Each use case shall be
linked with a sequence diagram, to group the software tool modules by use cases.
In addition data flow diagrams and package diagrams shall be used to provide a
general overview on the software tool. Each process, defined in the data flow dia-
gram, shall be linked with the classes of the software tool that are implementing the
corresponding process. Furthermore it is proposed to use activity diagrams to show
the internal structure of each software tool module. [Kru95] defines, that

The development view serves as the basis for requirement allocation,
for allocation of work to teams (or even for team organization), for cost
evaluation and planning, for monitoring the progress of the project, for
reasoning about software reuse, portability and security. It is the basis for
establishing a line-of-product.

That means, the stakeholders of the development view are programmers and project
managers.

In addition to the five views, the order of specifying each view is shown in Figure 3.3,
too. It must be mentioned, that the premises view as the common view is not included
in this consideration, because it is related to all the other views. First, process view
shall be specified because it initiates the use case view. This circumstance is shown by
the dependency relationship between the process view and the use case view. This is
based on the fact, that an in-house developed software tool with its use cases is required
to support the internal development process. When all the use cases are defined, the
concrete functions of the use cases must be specified and after that the development view
shall be filled with information.

As already shown in section 3.1, the application of [ISO11a] is advantageous. Con-
sidering the qualification view model, it becomes apparent that the logical view and the
development view represent the design phases of [ISO11a].

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 24

Specification of

software tool

requirements

Software

architectural

design

Software unit

design and

implementation

Software unit

testing

Software

integration and

testing

Verification of

software tool

requirements

Verification

Verification

Verification

D
e
s
ig

n
 p

h
a
s
e
s T

e
s
t
p
h
a
s
e
s

Specification of

software tool

use cases

Validation of

software tool

use cases

Validation

Specification and

management of

safety requirements

Change

management
Verification

Configuration

management

Supporting processes

Figure 3.4: Reference phase model for the SW tool development based on ISO 26262-6

The test phases of the applied safety standard [ISO11a] are located outside of the
qualification view model. Although the test phases are not directly represented by the
model, every phase of testing is related to a specific view on the software to be qualified.
The use case view and the process view are relevant to all test cases considering the
validation of the software tool. The verification of the software tool requirements is based
on the diagrams and documents of the logical view. For software integration and testing
the class diagrams, sequence diagrams and data flow diagrams specified in the development
view are relevant. The activity diagrams specified in the development view are pertinent
to the software unit testing. Last but not least, the test results are valid for the version
and environment of the software tool to be qualified, provided by the premises view.

Beside the Kruchten ”4+1 View Model”, the applied safety standard [ISO11a] has to be
tailored for a software tool qualification, too. Figure 3.4 shows the reference phase model
including the design and test phases for a software tool qualification. As can be seen, the
first phase ”Specification of software tool use cases” and the last phase ”Validation of the
software tool use cases” represent the major extension of the safety standard. For all other
phases the basic considerations can be taken from [ISO11a]. The specification of software
tool use cases serves as an software tool specific access into [ISO11a], the validation2 of
the software tool use cases checks the tool behavior with an increased focus on anomalous
operating conditions.

2The term ”Validation” is related to the act of validation as understood by [ISO11b].

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 25

The validation of the software tool is based on [Som05]. This paper presents an ap-
proach for use case validation with scenarios. [Som05] describes a scenario as follows:

Scenarios describe interactions between systems and actors. (. . .) A sce-
nario may be ”positive” or ”negative”. A positive scenario describes interac-
tions that must be supported, while a negative scenario describes interactions
that need to be avoided. (. . .) Scenarios and use cases are related. A use case
consists of a primary scenario and 0 or more secondary scenarios.

After defining all use cases and scenarios, the tests can be executed. [Som05] proposes,
that

The requirements analyst needs to identify a deviation point in a scenario
where the behavior resulting from simulation deviates from the expected be-
havior.

• For a positive scenario that fails, the deviation point is the event at which
the simulation stopped.

• For a negative scenario that passes, the deviation point is the first event
(trigger, assertion) in the scenario that shouldn’t have been accepted,
or the first system reaction that shouldn’t have been produced by the
system.

In addition to the approach presented by [Som05], parts of [WWI+12] are applied to
the software tool validation, too. As proposed by [WWI+12], a test run without fault
injection is performed at first. After executing these test cases, a test run using fault
injection is performed. The fault injection considers the anomalous operating conditions
of the software tool.

But not only the application of [ISO11a] is proposed. Furthermore the application of
a subset of supporting processes, defined in [ISO11b], is necessary for a successful soft-
ware tool qualification, too. Besides the implicit required supporting processes ”Specifica-
tion and management of safety requirements” ([ISO11b] clause 6), ”Change management”
([ISO11b] clause 8) and ”Verification” ([ISO11b] clause 9), also the supporting process
”Configuration management” ([ISO11b] clause 7) shall be applied.

In case of a software tool qualification according to the proposed approach the work
product of the qualification is the qualification view model with its related test results.
The view model contains all the information necessary for deriving a software tool criteria
evaluation report and a software tool qualification report. Figure 3.5 shows the steps of
the proposed software tool qualification approach.

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 26

 act Proposed qualification process

ActivityInitial

ActivityFinal

Insert tool information
into v iew model

Specify and execute test
suite

Ev aluate tool
dev elopment process

[Tool development process
incomplete]

Figure 3.5: Proposed qualification process of a software tool qualification in accordance
with ISO 26262 based on the proposed approach

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 27

3.3 Correlation with the Standard

Each requirement of clause 11 in [ISO11b] shall now be analyzed to find out, if it is covered
by the proposed approach.

11.4.1.1 This requirement specifies the circumstances that make a software tool qualifi-
cation necessary. It is the reason for a qualification and automatically fulfilled by
performing the software tool qualification.

11.4.2.1 When qualifying a software tool, assumptions according to the usage of the
software tool are necessary to be made. If those assumptions are translated to
practice, this subclause is fulfilled. It must be mentioned, that this is a very tool
specific requirement and therefore not part of the proposed generic software tool
qualification approach.

11.4.3.1 The subclause requires the usage of exactly the same software tool version that
is qualified. The proposed methodology focuses on the qualification of software tools,
so this subclause is out of scope.

11.4.4.1 By deciding to perform the proposed software tool qualification approach, this
requirement is satisfied. The identification and version number and the software tool
environment as well as the maximum ASIL are considered within the premises view,
the configuration is depicted within the logical view and the qualification methods
are already defined by applying the approach.

11.4.4.2 The information for a proper usage or evaluation of the software tool is re-
quired by this subclause. All the information is provided by the adapted ”4+1 View
Model” and the application of [ISO11a]. A description of the features and functions
is given in the logical view. Furthermore the logical view contains a description of
the expected behavior of the software tool under anomalous operating conditions
(specification of the error handling). Information concerning the correct use of the
tool is provided by the process view. The applied change management, required by
[ISO11a], contains the description of known (detected) tool malfunctions and their
avoidance by commissioning a change in the code lines responsible for the malfunc-
tions. The proposed approach provides a verification and a validation of the software
tool. Thus, the information on the measures for the detection of malfunctions of the
software tool identified during TCL determination is provided.

11.4.5 This subclause specifies the correct evaluation of the software tool to be quali-
fied. For the application of the proposed approach for qualification, the resulting
TCL from software tool evaluation is not relevant. Due to the applied qualification
methods, the approach can be used for TCL 2 as well as for TCL 3.

11.4.6.1 The applied qualification methods are adopted from this subclause and represent
a combination of the methods 1b, 1c, and 1d. As a result, the considered requirement
is fulfilled. The proposed qualification procedure is designed to comply with the most
stringent safety requirements for a software tool qualification (ASIL D) and thus can
be used for all maximum ASIL classifications.

CHAPTER 3. PROPOSED QUALIFICATION APPROACH 28

11.4.6.2 The proper documentation of a software tool qualification is described by this
requirement. The unique version number of the software tool and the determined
TCL with a link to the software evaluation report are given in the premises view.
The maximum ASIL that can be violated by malfunctions of the software tool,
the configuration environment and the persons who carried out the qualification
are also listed in the premises view. A description of the proposed approach, as
given in section 3, complies with the demands on the documentation of the applied
qualification methods. The measures applied to qualify the software tool are the
verification and the validation of the tool. By applying [ISO11a] the results of the
measures applied to qualify the software tool are documented within the applied
change management process. However, the detected malfunctions are documented
in the corresponding test cases.

11.4.7 Method not applied.

11.4.8 The proposed methodology assumes, that the compliance of the qualification pro-
cess with ISO 26262 is evaluated. The specification of the evaluation criteria is out
of scope of this thesis.

11.4.9.1 The qualification method ”Validation of the software tool” is applied, as recom-
mended by [ISO11b].

11.4.9.2 By applying the safety standard [ISO11a], it is verified if the software tool
complies with its specified requirements. Furthermore the detected software tool
malfunctions are analyzed and proper measures to correct them are derived by the
applied change management process. As mentioned above, the validation of the soft-
ware tool focuses intensively on the anomalous operating conditions. That means
the proposed approach complies with this subclause.

11.4.10 This subclause addresses the review of the software tool qualification performed
by an external organization. Thus, it is out of scope of the proposed approach.

When analyzing the proposed approach for the qualification of in-house developed soft-
ware tools, it becomes apparent that the approach covers all requirements of [ISO11b]
concerning a software tool qualification.

Chapter 4

Qualification of the software tool
ATool

At Magna Powertrain functional software is developed by a model-based approach. The
modules of an automotive embedded software are implemented by means of dSpace Tar-
getLink blocks within Mathworks Simulink. For each change and configuration manage-
ment checkpoint of a software module implementation, c-code is generated based on the
correspondent Simulink module. To comply with [ISO11a], each Simulink module as well
as its generated c-code must be verified on the module (= unit) level, in accordance with
[ISO11a], clause 9. At Magna Powertrain the generation of test environments used for soft-
ware module testing is a generic process. Individual software module test environments
differ in using different software modules under test (MUTs). As a result the handling of
module tests follows a generic process, too.

A manual creation of test environments and a manual handling of the specified test
cases would be extremely time-intensive. Furthermore, the risk of implementing errors
into the test environment is relatively high, same for test case handling. To increase the
efficiency of software module testing and to minimize the risk of human error, the software
verification tool ATool was developed by Magna Powertrain.

The tool is implemented within MATLAB and supports the handling of module-in-the-
loop (MIL) tests and software-in-the-loop (SIL) tests as well as the handling of an observer
function (OBS) implemented by the module tester. Result evaluation is automatically
performed for MIL against OBS as well as for MIL against SIL.

ATool features seventeen use cases to a module tester. These use cases are realized by
thirty-one MATLAB modules that are implemented by approximately ten thousand lines of
code. ATool communicates with MS Excel, Mathworks Simulink, MKS Source Integrity
and dSpace TargetLink.

For a correct usage of ATool according to ISO 26262:2011(E), the software tool is
qualified based on the qualification approach described in chapter 3.

29

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 30

4.1 Tailoring of ISO 26262-6:2011

As explained in chapter 3, the applied safety standard [ISO11a] must be tailored for a
software tool development. In this section the tailoring of [ISO11a] for the ASIL D devel-
opment of ATool shall be discussed. To keep this section simple, only the requirements
that are not or not completely applied for the development of ATool are shown and
explained in the following subsections.

4.1.1 Initiation of product development at the software level

5.4.4 Adapted; no hardware development phase is applied to the development of ATool.
Instead of applying a system development phase, software tool use cases are defined.

5.4.6 Adapted; support for embedded real time software is not necessary.

5.4.7 Adapted;

• 1b, Use of language subsets: Not applied. There are no defined and established
language subsets applicable for a software tool development within MATLAB
available.

• 1c, Enforcement of strong typing: Not applied. ATool is no embedded soft-
ware. According to MATLAB Help all numeric values are stored as double-
precision floating point by default (default type and precision cannot be changed).
Any number, or array of numbers, can be chosen to store as integers or as single-
precision. Integer and single-precision arrays offer more memory-efficient stor-
age than double-precision. In case of ATool a memory-efficient storage of data
is not required.

4.1.2 Specification of software safety requirements

6.4.1 Adapted; the term ”software safety requirement” is replaced by the term ”software
tool safety requirement”. Instead of ”technical safety requirements” software tool
use cases shall be considered.

6.4.2 Adapted; the hardware aspects of this requirement can be rejected for ATool
development, as explained in section 4.2.1. Also timing constraints don’t need to be
considered, because of the fact that ATool is not a real-time application.

6.4.3 Not applied; no ASIL decomposition is performed.

6.4.4 Not applied; no hardware-software interface is considered, as explained in sec-
tion 4.2.1.

6.4.7 Not applied; for explanation see section 4.2.1

6.4.8 Adapted; a compliance and consistency with the ATool use cases shall be reached,
instead of a compliance with a system design and with technical safety requirements.
The hardware-software interface is not considered (see section 4.2.1).

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 31

4.1.3 Software architectural design

7.4.3 Adapted;

• 1f, Appropriate scheduling properties: Not applied; ATool is not a real time
system.

• 1g, Restricted use of interrupts: Not applied; ATool is no embedded software.
Furthermore, MATLAB offers no interrupts.

7.4.8 Not applicable; the entire software tool has to be qualified in accordance witch
[ISO11b], clause 11.

7.4.13 Not applied since:

• Each software module is treated as safety-related without differentiation.

• No safety mechanisms are intended to cover failure modes of ATool itself.

7.4.14 Strategical decision: not applied. The relatively low complexity of ATool com-
pared to automotive embedded software, and the fact that ATool is not a real-time
software support this decision.

7.4.15 Strategical decision: not applied. The relatively low complexity of ATool com-
pared to automotive embedded software, and the fact that ATool is not a real-time
software support this decision.

7.4.17 Not applicable; this is an embedded software specific requirement.

7.4.18 Adapted; considerations on target hardware as explained in section 4.2.1. Inspec-
tion of the software architetural design will be applied.

4.1.4 Software unit design and implementation

8.4.4 Adapted;

• 1a, One entry and one exit point in subprograms and functions: Not applied
only if necessary due to complexity and error handling reasons.

• 1e, Avoid global variables or else justify their usage: Avoided whenever pos-
sible. Necessary due to MATLAB variable handling purposes and to avoid
unnecessary complexity.

• 1g, No implicit type conversions: In MATLAB not necessary.

• 1h, No hidden data flow or control flow: See remarks to 1a and 1e.

8.4.5 Adapted; due to the complexity and the programming language only a code inspec-
tion is applied.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 32

4.1.5 Software unit testing

Unit level testing has the following two advantages:

1. Proper testing of the behavior in equivalence classes and at the boundary values.

2. High code coverage

Boundary values and equivalence classes are needed only in rare cases for ATool. The
tool provides a test environment for modules and stores results. No internal calculation is
performed. Branch coverage is measured on the integration testing level. The target code
coverage is 100%.

4.1.6 Software integration and testing

10.4.1 Adapted; instead of an embedded software, ATool is considered. Therefore the
dependencies between the software integration and the hardware-software integration
are not applied (see section 4.2.1)

10.4.3 Adapted; the software-hardware interface is not considered (see section 4.2.1).

• 1b, Interface test: No interface tests necessary due to the low complexity and
due to the variable type handling of MATLAB interfaces are tested in the
validation phase implicitly.

• 1d, Resource usage test: Not necessary. Validation is performed on each target
hardware.

• 1e, Back-to-back comparison test between model and code: Model-based soft-
ware development is not applied on ATool

10.4.7 Adapted; instead of an embedded software, ATool is considered.

10.4.8 Validation is performed for each target hardware seperately

4.1.7 Verification of software safety requirements

11.4.2 Not applicable.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 33

4.2 Specification of the qualification view model

The following sections detail the five views explained in chapter 3. An overview on the
qualification approach applied on ATool is depicted in Figure 4.11.

 pkg 4+1 v iew - ATool

Logical

DevelopmentProcess

Use Case

Atool Function Specification

Premises

Use Case Model : Use Case Model

4+1 view : Software Architectural Design

4+1 view : Software Unit Design

Atool Environment

Module Tester Manual Atool

SW Tool Qualification List

ATool 2.1

ASIL D, TCL 2

Process : Module testing process

Figure 4.1: Qualification view model applied on ATool

4.2.1 Premises

First of all, the unique software version of the software tool to be qualified must be
defined. Furthermore, the persons responsible for the qualification need to be stated.
When speaking of ATool, the following sections consider ATool 2.1 as version to be
qualified. The persons who perform the qualification are Adam Schnellbach and Benjamin
Archan.

ATool evaluation

As a next step, the software tool must be evaluated. The conclusions concerning the
software tool evaluation of ATool stated in the module tool list are given below.

• Inputs:

– Developer module

– Correspondent data dictionary

– Observer function realized in a m-file and/or in a mdl-file

– Test specification sheet

1All UML diagrams were created with Enterprise Architect 9.3.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 34

• Outputs:

– Test environment in Simulink

– Output signal vectors

– Test status

– Code coverage report

– Test log

The purpose of ATool is to generate test environments for automated testing of soft-
ware modules developed with model-based development using a tool chain consisting of
MATLAB, Simulink, Stateflow and TargetLink. ATool is executed within this tool chain
environment, too. The test tool features comprise MIL/SIL comparison, MIL/OBS com-
parison, open/closed loop testing, C1 code coverage measurement, automatic test result
evaluation and test report generation. As a result, possible failure modes are malfunctions
or errors in

• test environment creation

• test case execution

• test result evaluation

That means, that the tool has to be classified as TI2, because wrong measurement
results can hide malfunctions.

ATool is not used in the last verification phase. Wrong measurement results remain
undetected on module level. The software of the product is tested later on the Hardware-
in-the-loop (HIL) test rig and in the vehicle using different tools. TD2 is given because
the test depth of that HIL and vehicle tests is worse than of the module tests.

Based on this considerations ATool is evaluated conservatively as TCL2.

Maximum ASIL

A multitude of modern vehicle components use the advantages of E/E systems with an
increasing trend. Therefore, software module tests will be required for a long term period.
Due to the complexity of ATool, its qualification is a protracted process. Therefore, the
determination and application of another time intensive qualification approach caused by
a maximum ASIL that changed to a higher level shall be avoided. As a consequence the
maximum ASIL for ATool is chosen as ASIL D.

Considered environment for qualification

As explained in section 3.2, the qualification relates solely on the specified tool version
and tool environment. The environment of ATool is given in Table 4.1. The entries in
Table 4.1 shall be called as environment software. The validation step of the qualification
also includes the testing of the software and hardware environment of ATool. This step
will be repeated on each host PC after an installation of ATool. In this way the separate
qualification of the software and hardware environment can be omitted.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 35

Vendor Operating system Version

Microsoft Windows XP Professional 2002 SP3,
32-bit

Vendor Supporting tool Version

Mathworks MATLAB 7.11.2.1031 (R2010b) SP2,
32-bit

Mathworks MATLAB Compiler Settings Lcc-win32 C 2.4.1*

Mathworks Simulink 7.6.2 (R2010bSP2)

Mathworks Stateflow 7.6.2 (R2010bSP2)

dSpace MATLAB Integration Main 2.0.3

dSpace TargetLink Data Dictionary 3.4p2

dSpace TargetLink Production Code Generator 3.4p2

Microsoft Office Excel 2007 (12.0.6665.5003)
SP2 MSO (12.0.6662.5000)

PTC MKS Integrity Client 2009 Build 4.10.0.9049,
SP 006-01

Table 4.1: ATool environment relevant for qualification
*located in C:\PROGRA˜1\MATLAB\R2010B˜1\sys\lcc

4.2.2 Process

Figure 4.2 shows the part of the module testing process at Magna Powertrain relevant for
ATool. This process is embedded within the engineering process landscape. A profound
examination on the engineering process landscape at Magna Powertrain is provided by
[Spo11].

The first step is to create a module test environment. This test environment is realized
by means of a Simulink model.

After that, the test cases for module testing are developed. A test case can be consid-
ered as developed, when the module input signal vectors, the output signal tolerances, the
used parameter set and the usage of signal feedbacks are specified within a test definition
MS Excel sheet. Furthermore, the specified test cases must be synchronized with MKS
RM and linked with its corresponding requirements. In addition to the test specification,
an observer function must be created. The observer function implements the functional
specification of the MUT as understood by the module tester and is represented by a m-file
or by a mdl-file.

Before starting the automated test run, the test specification and observer function
must be reviewed. Detected defects of the test specification or observer function must be
eliminated.

The test case specifications and the observer function are applied to the test environ-
ment by performing an automated test run. The test results produced by the automated
test run must be checked into MKS SI.

The last step of the module testing process is the analysis of the test results. Depending
on the output of the analysis, the test case status in MKS RM has to be set. In case of

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 36

 act Module testing process

Test environment (.mdl)

Test specification (.xls +
MKS RM) and observer

function (.m or .mdl)

Test result documentation
in MKS SI

Change Issues in MKS RM

Test environment creation

Test case development

Automated test run

Test result analysis

[Review]

Figure 4.2: Overview on the complete module testing process

expected test case results, the status in MKS RM shall be set to ”TC Completed”. In case
of unexpected test case results this must be documented by means of a Change Issue in
MKS RM. The cause and a possible fix shall be handled according to the defined change
process, which may lead to a new model version requiring a re-test. In addition the test
case status in MKS RM must be set to ”TC Failed” and the Change Issue must be linked
to the TC.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 37

4.2.3 Use cases

Based on the module testing process, the use cases of ATool are derived. Figure 4.4
shows the use case diagram of ATool. The elements of the diagram shall be understood
as follows.

Generate new test environment As the name suggests, this use case considers the
creation of a test environment for a new or modified MUT. The necessary information
concerning the MUT is gathered from the project’s development directory. In case
of a new MUT the corresponding test definition sheet and the observer function
template are generated, too. In case of a modified MUT, the existing test definition
sheet and observer function may be reused and adapted. The name of the MUT
is inserted into the module test overview sheet, that lists all MUTs of a considered
software component. If the test environment already exists, the updated developer
module is integrated and all necessary information is updated.

Edit test case The support for developing test cases is realized by this use case. When
specifying a test case, the module tester performs changes within the test definition
sheet. Dependent on the test case to be developed, changes within the observer
function2 could be necessary too. ATool provides the ability to open the test defi-
nition sheet in MS Excel for editing input signals/parameters, the observer function
in MATLAB Editor for changing the behavior of the observer function, as well as
the test environment in Simulink for checking the MUT. To provide compatibility to
projects performing an older module testing process, the evaluation against observer
function outputs can be disabled within the observer function.

Run single test case This use case considers the execution of a single test case including
a MIL/Obs and a MIL/SIL comparison. To provide a step-by-step development of
a test case, the use case can be extended in multiple ways. First, the test case can
be aborted after the set up (no simulation and evaluation is performed). This makes
it possible for the user to ensure that the test case inputs are specified and loaded
correctly. If needed, a simulation of the test case that has been set up can be done
manually. Second, the MIL/SIL comparison can be disabled by the user. This use
case extension can be selected, if the observer function is in the focus of the user.
Thereby, the time intensive code generation is disabled. Third, the evaluation of
test results can be disabled. This feature can be used for code coverage tests, where
the results can be ignored. Finally, the user-defined parameter set (if existing) can
be overridden by the default parameter set. This is a feature for the tester, to check
the impact of a changed parameter set on the test results while keeping the values
of the user-defined parameter set.

Run all test cases The considered use case differs slightly from the use case ”Run single
test case”. The only difference is, that here all test cases of the selected MUTs are
executed. It uses the same extensions except for ”Only set up TC”. This is due to
the fact, that the check of test case inputs can only be performed properly when a
single test case is considered.

2NOTE: Within the ATool GUI the observer function is called ”reference function”.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 38

Figure 4.3: Graphical user interface of ATool

Analyze test results The analysis of test results includes the analysis of the output
signal vectors within the test definition sheet. As already mentioned, ATool pro-
vides the ability to open the test definition sheet in MS Excel. The analysis of code
coverage is also included within test results analysis. That is why an HTML-report
containing code coverage data is generated when performing a MIL/SIL comparison.
This use case is extended by the ability of analyzing input/output signal character-
istics3. Therefore, ATool provides the plotting of signals within MATLAB.

For the sake of completeness, Figure 4.4 depicts the use case ”Synchronize test results”.
This use case is not realized by ATool, it is realized by means of an Excel macro within
the test definition sheet. The graphical user interface (GUI) of the tool, depicted in
Figure 4.3, visualizes the use cases.

3Note: The analysis of signal characteristics is a special feature of the tool. In case of deviances between
the signal plot and the values contained by the test definition sheet, the latter are valid.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 39

 uc ATool Use Cases

ATool

Generate new test
env ironment

User

The System Boundary shows the logical
interface between users and the system
being described.

Run single Test Case

Analyze test results

Only set up the TC

Disable code
generation

Use default
parametersNo ev aluation of test

results

Edit Test Case

Run all Test Cases

Check MUT
Edit input

signals/parameters

Edit observer function

Analyze signal
characteristics

Analyze signal v alues

Analyze Code
Coverage

Ev aluation against
expected results in

testDef sheet

Synchronize test results
w ith MKS SI/RM

Disables SIL testing
(SIL path in test
environment)

Test environment is loaded with the
specified test vectors/tolerances etc.
Execution of the test case has to be
done manually.

The user-defined parameter
set (if existing) is overridden
by the default parameter set.

Feature to create Test Cases only
for Code Coverage purposes
(functional results are ignored
and status 'TCresults' is set to OK)

Instead of evaluation against
observer function outputs

No ATool Use Case (not part of ATool);
integration with product l ifecycle
management tool chain (MKS SI/RM)
belongs to the module testing process.

Realized by
'Summary' sheet of
correspondent testDef

«extend»

«include»

«extend»

«extend»

«extend»

«include»

«extend»
«extend»

«include»

«include»

«extend»

«extend»

«extend»

Figure 4.4: ATool use cases

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 40

4.2.4 Logical

This view contains the function specification of ATool in MKS RM. The linking of the
requirements within MKS RM is described in section 5.2. The ATool function specifi-
cation is complied with the adapted requirements of [ISO11a], clause 6 (see section 4.1).
An exemplary subset of detailed ATool safety requirements as formulated in MKS RM
is shown in Table 4.2. Instead of a detailed specification of ATool, a general overview on
the functionality of ATool shall be given in this section.

The execution error handling shall be test case specific.

Means a list of all errors/warnings/notes shall be generated for each of the test cases.
This list should be written back into the test definition sheet to the affected
test case section and it should be saved as mat-file to the testData <TCx>.mat file.

The errors should be separated into test case control and test case execution
errors.

Table 4.2: Exemplary software tool safety requirements of ATool concerning the error
handling

ATool is implemented in MATLAB and provides a test framework for MIL tests and
SIL tests in Simulink. An exemplary test environment is depicted in Figure 4.5.

The MUT is linked from the development directory within a project into the test
environment and all additional necessary data concerning the MUT is gathered from the
correspondent TargetLink data dictionary. The observer function represents the MUT
requirements implemented as a MATLAB script or Simulink model. This observer function
is linked into the test environment, too. The created test environment provides a possibility
for test case execution with previously specified test vectors. The evaluation of the test
results is done by performing a MIL/OBS and a MIL/SIL comparison. Hereby, the outputs
of the observer function and the outputs of the MUT after code generation (SIL) are
evaluated based on the outputs of the MUT before code generation (MIL).

Furthermore ATool handles the specification and execution of MIL/SIL test cases as
well as the depiction of the test case results. By means of a so called test definition sheet
in MS Excel, the test cases are specified. This includes the definition of the MUT’s input
signal vectors, MIL/SIL deviance tolerance values, the specification of signal feedbacks,
used parameter sets and the simulation time. The possibility to specify multiple test cases
to be executed is provided by the test definition sheet, too. By using an interface to MS
Excel, the test case specifications from the test definition sheet are loaded into MATLAB
workspace and after simulation in Simulink, the test results are written back into the
test definition sheet. The test results contain the output signal vectors of the MIL path.
Furthermore, the output signal vectors of the SIL path and of the observer function as
well as their deviations from the output signal vectors of the MIL path are contained by
the test results as well as a generated code coverage report. If these deviations exceed
the specified tolerances, the correspondent output signal vector is highlighted in the test
definition sheet. If the deviations of the output signal vectors don’t exceed the specified
tolerance values, the status of the test case is set to ”OK”, else the status is set to ”NOK”.
In case of detected test case execution errors, a test run is aborted and the error message
is written into the test definition sheet. In addition to the export of test results to MS

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 41

test_MainC10_SIM

SIMULINK
Function

test_MainC10_REF

MATLAB
Function

test_MainC10_MIL

Bus Inport Bus Outport

TargetLink
Model−

in−the−loop
mode

test_MainC10

Bus Inport Bus Outport

TargetLink
Model−

in−the−loop
mode

input_cfg

Inputs

MIL_res

SIL_res

OBS_res

Bus_out

DD Manager

TargetLink Main Dialog

TargetLink

TC_results_evaluation

MIL_Results

SIL_Results

Observer Results

Observer Results_SIM

In1 Out1

In1 Out1

MIL Handler

In1

Inputs MIL

Inputs SIL

Inputs OBS

IN_V_TrqModC10_stTrqRamp

Signal Management

IN_V_T010ms_stSetPos

Signal Management

IN_V_T010ms_stRngChng

Signal Management

IN_V_T010ms_stInitPos

Signal Management

IN_V_T010ms_stCal

Signal Management

IN_V_T010ms_dltphiCal

Signal Management

IN_V_SvcJobC10_stCmdSvcJob

Signal Management

IN_V_InputC10_trqCluReq

Signal Management

IN_V_InputC10_trqCard

Signal Management

IN_V_InputC10_stTrqCluReq

Signal Management

IN_V_InputC10_enSkipPDCal

Signal Management

IN_V_InputC10_enCC

Signal Management

IN_V_InputC10_cmdSvcJob

Signal Management

IN_V_InputC10_cmdReqService

Signal Management

IN_V_InputC10_cmdBackupFcn

Signal Management

IN_V_DTWindupC10_dltphiClu

Signal Management

IN_V_DRPCC10_stReqDRPC

Signal Management

IN_EE_MainC10_cntEfficiencyMode_In

Signal Management

Ground9

Ground8

Ground7

Ground6

Ground5

Ground4

Ground3

Ground2

Ground18

Ground17

Ground16

Ground15

Ground14

Ground13

Ground12

Ground11

Ground10

Ground1

IN_V_T010ms_stCal

IN_V_T010ms_stInitPos

IN_V_T010ms_dltphiCal

IN_V_T010ms_stSetPos

IN_V_T010ms_stRngChng

IN_V_SvcJobC10_stCmdSvcJob

IN_V_InputC10_enCC

IN_V_InputC10_cmdBackupFcn

IN_V_InputC10_cmdReqService

IN_V_InputC10_stTrqCluReq

IN_V_InputC10_trqCluReq

IN_V_InputC10_trqCard

IN_V_InputC10_cmdSvcJob

IN_V_InputC10_enSkipPDCal

IN_V_DTWindupC10_dltphiClu

IN_V_TrqModC10_stTrqRamp

IN_EE_MainC10_cntEfficiencyMode_In

IN_V_DRPCC10_stReqDRPC

Figure 4.5: Test environment created by ATool

Excel a logging of the executed test cases is performed, by storing all input and output
signal vectors as well as the used parameter set and test results in a mat-file. If the test
catalog specified in test definition sheet is executed, the test logs are stored in this case in
a tar-file.

Another feature of ATool is to provide support in test result analysis to the module
tester. Input and output signals can be plotted in MATLAB to gain a better overview on
signal characteristics. Furthermore, the tool determinates the reached code coverage and
generates a code coverage report in HTML. This report can be used for analysis of MUT’s
test coverage.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 42

4.2.5 Development

The development view addresses the implementation of the requirements contained by
the logical view. The following deals with the architectural design and the software unit
design of ATool. For the generation and review of the diagrams [Sys] was consulted.

Software architectural design

Figure 4.6 depicts the packages of ATool considered for qualification. Each package
represents a folder within the ATool development project in MKS SI. These project fold-
ers contain all ATool modules. As already mentioned, ATool is implemented within
MATLAB. Experience has shown that fundamental changes between different MATLAB
versions are very likely. To consider that circumstance, ATool utilizes MATLAB ver-
sion dependent packages. That means, all modules that had to be adapted because of
a changed MATLAB version are stored in a version dependent package (see Figure 4.6,
package ”ML 7.11.2”). When ATool is started, the corresponding version dependent
package is loaded. All modules whose content did not change over different versions are
located within the ”Run” and ”ModelCreation” package. As the names suggest, within
”ModelCreation” all necessary templates for the creation of a new test environment are
stored and within ”Run” all modules used for the execution of test cases are stored.
The orange package shown in Figure 4.6 is not a package of ATool. However, it con-
tains all dSpace functions called by ATool modules and is depicted to provide a better
understanding of ATool. Another abstract package is ”Startup”, it is executed when
MATLAB starts and calls ATool. The dependencies between the depicted packages are
indicated by usage relationships. For instance, package ”ML 7.11.2” uses package ”Run”,
package ”ModelCreation” as well as package ”dSpace Functions”. That means, that some
modules contained by ”ML 7.11.2” call some modules of the used packages (”use” their
functionality).

Each module is realized by a MATLAB function stored in a m-file. These modules are
represented in the UML model as a class stereotyped as module. The general description
of the functionality of a module is contained by the notes field of its corresponding class.
The main function of a module is specified as a public operation of the class. If a module
contains subfunctions, they are specified as private class operations. The input parameters
of a class operation represent the input parameters of the corresponding function within
the considered module. The specification of an input parameter is composed of its name,
data type and a short description of the input parameter. The same attributes are used
for the specification of the function return values. However, the return values are not
specified as parameters of an operation, their specification is inserted into the notes field
of their correspondent operation. Additional, operations representing subfunctions contain
a functional description of the subfunction within their notes field. Inputs and outputs of a
module that cannot be captured by the input parameters and return values of its functions
are specified within the class’ notes field. For instance, loaded mat-files or generated files
are listed as ”Additional inputs” or ”Additional outputs” by the notes field of a class
representing an ATool module.

The module dependencies that are indicated by the usage relationships in Figure 4.6,
are shown in detail by a set of linked composite structure diagrams. In these static di-
agrams a function call is represented by a usage relationship. If the used module uses

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 43

another set of modules, a link to the corresponding composite structure diagram is given.
The link is represented by the diagram frame of the target diagram. In that way a ”module
usage tree” is generated. The information concerning the module usage tree is gathered
by applying the MATLAB function fdep.m provided by [Mat07]. Figure 4.7 depicts all
modules used by the ATool GUI and represents the root of the module usage tree. One
can recognize, that the module ”AnalysisWindow” contains no operations or attributes.
This is because of the fact, that all test results are visualized in the test definition sheet in
MS Excel. The test definition sheet represents the valid output document of the software
module test. However, ”AnalysisWindow” provides the depiction of the signal character-
istics and can be seen as an additional feature to the module tester. As a result, a detailed
description of ”AnalysisWindow” can be neglected. In Figure 4.8 a main branch of the
module usage tree is shown. As can be seen in Figure 4.8, ”testCtrl.m” uses modules
provided by TargetLink. These modules are highlighted in orange and are solely depicted
for a better understanding of the tool behavior.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 44

 pkg Atool Package Diagram

ML_7.11.2

+ AnalysisWindow.m

+ Atool.m

+ calcTolerance.m

+ Create_testDef.m

+ create_TestModel.m

+ findModelSpecs.m

+ loadPS.m

+ split.m

+ test_code_coverage.m

+ testCtrl.m

+ testExec.m

+ Module usage - activateCC

+ Module usage - AnalysisWindow

+ Module usage - check_error

+ Module usage - Create_testDef

+ Module usage - create_TestModel

+ Module usage - findModelSpecs

+ Module usage - getMKSWorkingFileRevision

+ Module usage - loadParam

+ Module usage - loadPS

+ Module usage - registerInSummary

+ Module usage - testCtrl

+ Module usage - testCtrl

+ Module usage - testExec

+ Module usage - write2XLS

Run

+ activateCC.m

+ check_error.m

+ checkMKSConnection.m

+ error_catalogue.m

+ expandSignal.m

+ Format_DD.m

+ getMKSWorkingFileRevision.m

+ getSignal.m

+ getVal

+ initPlot.m

+ loadActx.m

+ loadParam.m

+ makeWritable.m

+ makeWritableMKS.m

+ mat2exl.m

+ selectBox.m

+ setVal

+ sortResults.m

+ write2XLS.m

+ Run/dSpace

+ Module usage - check_error

+ Module usage - registerInSummary

dSpace Functions

+ ds_msgdlg.m

+ dsdd.mex32

+ dsdd_manage_application

+ dsdd_manage_project.m

+ tl_build_host

+ tl_code_coverage.m

+ tl_get.m

+ tl_pref.m

+ tl_set.m

+ tl_set_sim_mode

ModelCreation

+ registerInSummary.m

ATool

Startup

+ getVersion.m

+ setpaths.m

+ startup.m

«use»

«use»

«use»«use»

«use»

«use»

Figure 4.6: ATool package diagram

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 45

 c
o

m
p

o
s

it
e

 s
tr

uc
tu

re
 M

o
d

ul
e

 u
s

a
g

e
 -

 A
to

o
l

 M
o

d
u

le
 u

sa
g

e
 -

 A
n

a
ly

s
is

W
in

d
o

w

 M
od

u
le

 u
s

a
g

e
-

te
s

tC
tr

l

 M
o

d
u

le
 u

s
a

g
e

 -
 c

re
a

te
_

Te
s

tM
od

e
l

«
m

o
d

u
le

»
A

to
o

l.
m

+

a
rc

h
F

il
e

:S

tr
in

g
+

li

st
_

in

:C
e

ll
-

m
d

l_
fi

le

:C
e

ll
-

m
d

l_
fi

le
s

 :
C

e
ll

-
si

n
g

le
T

C

:S
tr

in
g

-
si

n
g

le
T

C
s

 :
C

e
ll

+

a
n

a
ly

se
_

p
b

_
C

a
ll

b
a

ck
(S

ca
la

r,
 S

tr
u

ct
,

S
tr

u
ct

)
 :

vo
id

+

A
to

o
l(

)
 :

vo
id

+

a
to

o
l_

O
p

e
n

in
g

F
cn

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
,

S
tr

in
g

)
 :

vo
id

+

ca
ll

S
e

le
ct

B
o

x(
)

 :
V

e
ct

o
r

+

cl
o

se
O

p
e

n
W

o
rk

b
o

o
ks

()

:v
o

id
+

d

e
fP

a
ra

m
s_

C
a

ll
b

a
ck

()

:v
o

id
+

e

xi
t_

p
b

_
C

a
ll

b
a

ck
(S

ca
la

r,
 S

tr
u

ct
,

S
tr

u
ct

)
 :

vo
id

+

g
e

n
C

o
d

e
_

C
a

ll
b

a
ck

()

:v
o

id
+

g

e
n

e
ra

te
_

p
b

_
C

a
ll

b
a

ck
(S

ca
la

r,
 S

tr
u

ct
,

S
tr

u
ct

)
 :

vo
id

+

g
e

tn
a

m
e

s(
)

 :
vo

id
+

n

o
E

va
l_

C
a

ll
b

a
ck

()

:v
o

id
+

o

p
e

n
F

u
n

c_
p

b
_

C
a

ll
b

a
ck

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
)

 :
vo

id
+

o

p
e

n
M

o
d

e
l_

p
b

_
C

a
ll

b
a

ck
(S

ca
la

r,
 S

tr
u

ct
,

S
tr

u
ct

)
 :

vo
id

+

o
p

e
n

T
C

_
p

b
_

C
a

ll
b

a
ck

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
)

 :
vo

id
+

o

p
e

n
X

L
S

(S
tr

in
g

,
S

tr
in

g
)

 :
vo

id
+

p

o
p

u
p

_
m

o
d

e
l_

C
a

ll
b

a
ck

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
)

 :
vo

id
+

p

o
p

u
p

_
si

n
g

le
T

C
_

C
a

ll
b

a
ck

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
)

 :
vo

id
+

re

se
t_

p
b

_
C

a
ll

b
a

ck
(S

ca
la

r,
 S

tr
u

ct
,

S
tr

u
ct

)
 :

vo
id

+

ru
n

_
p

b
_

C
a

ll
b

a
ck

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
)

 :
vo

id
+

se

a
rc

h
M

D
L

s(
S

tr
u

ct
)

 :
vo

id
+

se

a
rc

h
S

in
g

le
T

C
s(

S
tr

in
g

,
S

tr
u

ct
)

 :
S

ca
la

r
+

se

tO
p

ti
o

n
s(

S
tr

u
ct

,
S

tr
in

g
)

 :
vo

id
+

se

tU
p

_
C

a
ll

b
a

ck
(S

ca
la

r,
 n

o
n

e
,

S
tr

u
ct

)
 :

vo
id

+

sw
it

ch
C

o
n

te
xt

_
p

b
_

C
a

ll
b

a
ck

(S
ca

la
r,

 S
tr

u
ct

,
S

tr
u

ct
)

 :
vo

id
+

u

n
p

a
ck

()

:v
o

id

«
m

o
d

u
le

»
A

n
a

ly
si

s
W

in
d

o
w

.m
«

m
o

d
u

le
»

c
re

at
e

_
Te

s
tM

o
de

l.
m

-
co

n
fi

g
_

p
a

ra
m

(S
tr

in
g

)
 :

vo
id

-
cr

e
a

te
_

sl
_

tr
ig

()

:v
o

id
+

cr

e
a

te
_

T
e

st
M

o
d

e
l(

b
o

o
le

a
n

)
 :

S
tr

in
g

/S
ca

la
r

-
cr

e
a

te
F

u
n

fi
le

(S
tr

in
g

)
 :

S
tr

in
g

-
fi

n
d

In
D

D
(S

tr
in

g
,

S
tr

in
g

)
 :

vo
id

-
si

g
n

a
ls

b
u

sr
e

c(
C

e
ll

)
 :

S
tr

in
g

«
m

o
d

u
le

»
te

s
tC

tr
l.

m

+

C
o

d
e

C
o

ve
ra

g
e

O
ve

ra
ll

:S

tr
u

ct
-

fi
le

n
a

m
e

:S

tr
in

g
+

M

E
_

ct
rl

:M

E
xc

e
p

ti
o

n
-

ts
t_

id

-
g

e
tT

C
L

is
t(

S
tr

in
g

)
 :

C
e

ll
-

sa
ve

2
m

a
t(

S
tr

in
g

,
b

o
o

le
a

n
)

 :
vo

id
+

te

st
C

tr
l(

S
tr

in
g

,
S

tr
in

g
,

b
o

o
le

a
n

,
b

o
o

le
a

n
,

b
o

o
le

a
n

,
b

o
o

le
a

n
)

 :
vo

id

«
m

o
d

u
le

»
s

p
li

t.
m

+

sp
li

t(
S

tr
in

g
,

S
tr

in
g

)
 :

S
tr

in
g

 A
rr

a
y

«
m

o
d

u
le

»
R

u
n

::
lo

ad
A

c
tx

.m

+

lo
a

d
A

ct
x(

S
ca

la
r)

:S

ca
la

r

«
m

o
d

u
le

»
R

u
n

::s
e

le
c

tB
o

x
.m

+

li
st

_
o

u
t

 :
C

e
ll

+

o
k_

p
b

_
C

a
ll

b
a

ck
()

:v

o
id

+

se
le

ct
B

o
x(

)
 :

vo
id

+

se
le

ct
B

o
x_

O
p

e
n

in
g

F
cn

()

:v
o

id
+

se

le
ct

B
o

x_
O

u
tp

u
tF

cn
()

:v

o
id

+

tc
L

is
tB

o
x_

C
a

ll
b

a
ck

()

:v
o

id
+

tc

L
is

tB
o

x_
C

re
a

te
F

cn
()

:v

o
id

«
m

o
d

u
le

»
R

u
n:

:F
o

rm
a

t_
D

D
.m

+

F
o

rm
a

t_
D

D
()

:v

o
id

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

Figure 4.7: Modules used by ATool GUI

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 46
 c

o
m

p
o

s
it

e
 s

tr
u

c
tu

re
 M

o
d

u
le

 u
s

a
g

e
 -

 t
e

s
tC

tr
l

 M
o

d
u

le
 u

s
a

g
e

 -
 g

e
tM

K
S

W
o

rk
in

g
F

il
e

R
e

v
is

io
n

 M
o

d
u

le
 u

s
a

g
e

 -
 a

c
ti

v
a

te
C

C

 M
o

d
u

le
 u

s
a

g
e

 -
 c

h
e

c
k

_
e

rr
o

r

 M
o

d
u

le
 u

s
a

g
e

 -
 f

in
d

M
o

d
e

lS
p

e
c

s

 M
o

d
u

le
 u

s
a

g
e

 -
 w

ri
te

2
X

L
S

 M
o

d
u

le
 u

s
a

g
e

 -
 t

e
s

tE
x

e
c

«
m

o
d

u
le

»
te

s
tC

tr
l.

m

+

C
o

d
e

C
o

ve
ra

g
e

O
ve

ra
ll

:S

tr
u

ct
-

fi
le

n
a

m
e

:S

tr
in

g
+

M

E
_

ct
rl

:M

E
xc

e
p

ti
o

n
-

ts
t_

id

-
g

e
tT

C
L

is
t(

S
tr

in
g

)
 :

C
e

ll
-

sa
ve

2
m

a
t(

S
tr

in
g

,
b

o
o

le
a

n
)

 :
vo

id
+

te

st
C

tr
l(

S
tr

in
g

,
S

tr
in

g
,

b
o

o
le

a
n

,
b

o
o

le
a

n
,

b
o

o
le

a
n

,
b

o
o

le
a

n
)

 :
vo

id

«
m

o
d

u
le

»
R

u
n

::
m

a
k

e
W

ri
ta

b
le

.m

+

m
a

ke
W

ri
ta

b
le

(S
tr

in
g

)
 :

vo
id

«
m

o
d

u
le

»
R

u
n

::
w

ri
te

2
X

L
S

.m

-
ti

m
e

V
e

c
 :

V
e

ct
o

r

-
g

e
tL

(S
tr

in
g

)
 :

S
ca

la
r

-
g

e
tO

ff
L

a
n

g
(S

ca
la

r)

:S
tr

in
g

-
g

e
tS

ig
L

is
t(

S
tr

in
g

,
S

tr
in

g
)

 :
M

a
tr

ix
-

o
p

e
n

A
n

d
R

e
a

d
(S

ca
la

r,
 S

tr
in

g
,

S
tr

in
g

)
 :

V
e

ct
o

r
-

se
tM

e
ss

a
g

e
s(

S
tr

in
g

,
S

ca
la

r,
 S

ca
la

r,
 M

E
xc

e
p

ti
o

n
,

M
E

xc
e

p
ti

o
n

,
M

E
xc

e
p

ti
o

n
)

 :
b

o
o

le
a

n
-

u
p

d
a

te
O

ve
rv

ie
w

(S
ca

la
r,

 S
tr

in
g

,
S

tr
u

ct
 A

rr
a

y,
 b

o
o

le
a

n
)

 :
vo

id
+

w

ri
te

2
X

L
S

(S
tr

in
g

,
S

tr
in

g
,

S
ca

la
r,

 b
o

o
le

a
n

,
S

tr
in

g
,

C
e

ll
)

 :
vo

id

«
m

o
d

u
le

»
s

p
li

t.
m

+

sp
li

t(
S

tr
in

g
,

S
tr

in
g

)
 :

S
tr

in
g

 A
rr

a
y

«
m

o
d

u
le

»
R

u
n

::
g

e
tM

K
S

W
o

rk
in

g
F

il
e

R
e

v
is

io
n

.m

+

g
e

tM
K

S
W

o
rk

in
g

F
il

e
R

e
vi

si
o

n
(S

tr
in

g
,

S
ca

la
r)

:S

tr
in

g

«
m

o
d

u
le

»
R

u
n

::
a

c
ti

v
a

te
C

C
.m

+

a
ct

iv
a

te
C

C
(S

tr
in

g
)

 :
vo

id

«
m

o
d

u
le

»
fi

n
d

M
o

d
e

lS
p

e
c

s
.m

+

B
lk

D
ig

_
ty

p
e

:b

o
o

le
a

n
+

In

p
o

rt
S

p
e

cs

:S
tr

u
ct

+

in
p

u
t_

si
g

:C

e
ll

+

m
a

in
_

m
d

l_
n

a
m

e

:S
tr

in
g

+

m
d

l_
n

a
m

e

:S
tr

in
g

+

m
o

d
e

l
 :

S
tr

in
g

+

n
o

_
in

p
u

t
 :

S
ca

la
r

+

n
o

_
o

u
tp

u
t

 :
S

ca
la

r
+

O

u
tp

o
rt

S
p

e
cs

:S

tr
u

ct
+

o

u
tp

u
t_

si
g

:C

e
ll

+

ts
t_

m
d

l
 :

S
tr

in
g

+

w
a

it
b

a
r

 :
S

ca
la

r

+

fi
n

d
M

o
d

e
lS

p
e

cs
(b

o
o

le
a

n
,

S
tr

in
g

)
 :

S
tr

in
g

/S
ca

la
r

«
m

o
d

u
le

»
te

s
t_

c
o

d
e

_
c

o
v

e
ra

g
e

.m

-
i_

A
n

a
ly

se
D

a
ta

()

:S
tr

u
ct

-
i_

F
in

d
C

C
M

a
rk

s(
S

tr
u

ct
)

 :
S

tr
u

ct
-

i_
G

e
t_

d
sD

D
_

D
a

ta
()

:S

tr
u

ct
+

te

st
_

co
d

e
_

co
ve

ra
g

e
()

:v

o
id

«
m

o
d

u
le

»
R

u
n

::
c

h
e

c
k

_
e

rr
o

r.
m

+

ch
e

ck
_

e
rr

o
r(

S
tr

in
g

,
S

tr
in

g
,

S
ca

la
r,

 S
tr

in
g

,
S

tr
in

g
)

 :
M

E
xc

e
p

ti
o

n

«
m

o
d

u
le

»
te

s
tE

x
e

c
.m

+

<
In

p
u

t/
O

u
tp

u
t

S
ig

n
a

l>

:M
a

tr
ix

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
IL

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
O

_
A

B
S

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
O

_
A

B
S

_
E

R
R

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
O

_
R

E
L

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
O

_
R

E
L

_
E

R
R

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
S

_
A

B
S

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
S

_
A

B
S

_
E

R
R

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
S

_
R

E
L

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

M
S

_
R

E
L

_
E

R
R

:V

e
ct

o
r

+

<
O

u
tp

u
t

S
ig

n
a

l>
_

R
E

F

:V
e

ct
o

r
+

<

O
u

tp
u

t
S

ig
n

a
l>

_
S

IL

:V
e

ct
o

r
+

C

o
d

e
C

o
ve

ra
g

e

:S
tr

u
ct

+

m
d

lF
il

e

:S
tr

in
g

+

M
E

_
E

xe
c

 :
M

E
xc

e
p

ti
o

n
+

M

E
_

m
e

ss
a

g
e

s_
tl

:M

E
xc

e
p

ti
o

n
+

m

il
_

o
b

s_
a

b
s_

to
le

ra
n

ce

:S
ca

la
r

+

m
il

_
o

b
s_

re
l_

to
le

ra
n

ce

:S
ca

la
r

+

m
il

_
si

l_
a

b
s_

to
le

ra
n

ce

:S
ca

la
r

+

m
il

_
si

l_
re

l_
to

le
ra

n
ce

:S

ca
la

r
+

p

a
ra

m
L

is
t

 :
C

e
ll

+

ra
w

:C

e
ll

+

si
m

T
im

e

:V
e

ct
o

r
-

st
o

p
T

im
e

:S

ca
la

r
+

ta

sk
T

im
e

:S

ca
la

r
+

tc

E
va

l
 :

V
e

ct
o

r
-

ti
m

e

:V
e

ct
o

r

-
re

a
d

S
ig

n
a

l(
S

ca
la

r,
 S

tr
in

g
,

S
tr

in
g

,
S

ca
la

r)

:M
a

tr
ix

-
se

tW
o

rk
sp

a
ce

S
ig

n
a

l(
S

tr
in

g
,

M
a

tr
ix

)
 :

vo
id

+

te
st

E
xe

c(
S

tr
in

g
,

S
tr

in
g

,
S

tr
in

g
,

b
o

o
le

a
n

,
b

o
o

le
a

n
,

,
b

o
o

le
a

n
,

S
tr

in
g

,
S

tr
in

g
)

 :
V

e
ct

o
r

«
m

o
d

u
le

»
d

S
p

a
c

e
 F

u
n

c
ti

o
n

s
::

d
s

d
d

_
m

a
n

a
g

e
_

p
ro

je
c

t.
m

+

d
sd

d
_

m
a

n
a

g
e

_
p

ro
je

ct
s(

S
tr

in
g

,
S

tr
in

g
,

S
tr

in
g

)
 :

vo
id

«
m

o
d

u
le

»
d

S
p

a
c

e
 F

u
n

c
ti

o
n

s
::

d
s

_
m

s
g

d
lg

.m

+

d
s_

m
sg

d
lg

(S
tr

in
g

,
S

tr
in

g
,

S
tr

in
g

)
 :

vo
id

«
m

o
d

u
le

»
d

S
p

a
c

e
 F

u
n

c
ti

o
n

s
::

tl
_

c
o

d
e

_
c

o
v

e
ra

g
e

.m

+

tl
_

co
d

e
_

co
ve

ra
g

e
(S

tr
in

g
,

C
e

ll
)

 :
vo

id

«
m

o
d

u
le

»
d

S
p

a
c

e
 F

u
n

c
ti

o
n

s
::

tl
_

g
e

t.
m

+

tl
_

g
e

t(
S

tr
in

g
,

S
tr

in
g

)
 :

A
rr

a
y

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

«
u

se
»

Figure 4.8: Modules used by module ”testCtrl.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 47

In parts data transfer within ATool is realized by means of global variables and base
workspace variables. Within MATLAB the assignment of variables to base workspace
and the evaluation of these base workspace variables is basically equal to the usage of
global variables. Therefore, when speaking of global variables within the following, base
workspace variables shall be considered as well. Within ATool each global variable is
written exclusively by a single class. A global variable that is written by its class is
represented by an attribute of this class. The data type and a short description of the
global variable’s content are contained by the notes field of the corresponding attribute.
If the variable is read by more than one class, the attribute is specified as public. If
the variable is just used by the subfunctions of a single class, it is specified as private.
The usage of all public global variables is documented by means of multiple composite
structure diagrams. It is ensured, that the depiction of a global variable is exclusive to
a single diagram. Within a composite structure diagram each global variable transfer is
represented by a port at the writing class, a port at the reading class and an assembly
relationship. Figure 4.9 shows a data transfer realized by global variables. In case of an
input port, a short description of the global variable and of its usage within the considered
class is given in the notes field of the input port. The notes field of an output port contains
only a remark on the class that sets the global variable.

A MS Excel sheet provides an overview on all global variables as well as all ”eval”
and ”assign” commands4 that are used within ATool. The usage of global variables is
documented as follows. All functions contained by the ATool modules are listed in the
first row of the MS Excel sheet. The second row of the sheet lists all subfunctions contained
by the ATool functions. The first column lists all global variables. Global variables that
are written by a function or subfunction are indicated by a ”w” within the appropriate cell
of the sheet. Global variables that are read by a function or subfunction are indicated by a
”r” within the appropriate cell of the sheet. Figure 4.10 shows a screenshot of the MS Excel
worksheet that provides an overview on the global variables of ATool. Global variables
that are highlighted in yellow are only used within a single module. A global variable that
is highlighted in grey is never read by any ATool module. Global variables that appear
in green are written by a single function or subfunction and are read by more than one
module. All functions or subfunction that are highlighted in blue use global variables.
Compared with the documentation of global variables, the usage of ”eval” and ”assign”
commands is documented in less detail. The usage of ”eval” and ”assign” commands is
listed in a separate worksheet. In each line of the first two columns of that worksheet all
functions and subfunctions of ATool are listed. For each function and subfunction the
numbers of used ”eval”, ”evalin”, ”evalin base”, ”assign”, ”assignin” and ”assignin base”
commands are listed.

4Datatransfer via the MATLAB base workspace is realized by means of ”assignin” commands (write)
and ”evalin” commands (read).

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 48

 composite structure Data transfer - Signal attribu tes

InportSpecs

OutportSpecs

input_sig

output_sig

no_input

no_output

mdl_name

tst_mdl

main_mdl_name

model

wait_bar

BlkDig_type

«module»
ML_7.11.2::findModelSpecs.m

+ BlkDig_type :boolean
+ InportSpecs :Struct
+ input_sig :Cell
+ main_mdl_name :String
+ mdl_name :String
+ model :String
+ no_input :Scalar
+ no_output :Scalar
+ OutportSpecs :Struct
+ output_sig :Cell
+ tst_mdl :String
+ waitbar :Scalar

+ findModelSpecs(boolean, String) :String/Scalar

InportSpecs

OutportSpecs

input_sig

output_sig

no_input

no_output

mdl_name

tst_mdl

main_mdl_name

model

wait_bar

BlkDig_type

input_sig

output_sig

no_input

no_output

mdl_name

model

tst_mdl

wait_bar

BlkDig_type

sigDiffs

«module»
ML_7.11.2::create_TestModel.m

- config_param(String) :void
- create_sl_trig() :void
+ create_TestModel(boolean) :String/Scalar
- createFunfile(String) :String
- findInDD(String, String) :void
- signalsbusrec(Cell) :String

input_sig

output_sig

no_input

no_output

mdl_name

model

tst_mdl

wait_bar

BlkDig_type

sigDiffs

input_sig output_sig no_input no_output

«module»
ML_7.11.2::testExec.m

+ <Input/Output Signal> :Matrix
+ <Output Signal>_MIL :Vector
+ <Output Signal>_MO_ABS :Vector
+ <Output Signal>_MO_ABS_ERR :Vector
+ <Output Signal>_MO_REL :Vector
+ <Output Signal>_MO_REL_ERR :Vector
+ <Output Signal>_MS_ABS :Vector
+ <Output Signal>_MS_ABS_ERR :Vector
+ <Output Signal>_MS_REL :Vector
+ <Output Signal>_MS_REL_ERR :Vector
+ <Output Signal>_REF :Vector
+ <Output Signal>_SIL :Vector
+ CodeCoverage :Struct
+ mdlFile :String
+ ME_Exec :MException
+ ME_messages_tl :MException
+ mil_obs_abs_tolerance :Scalar
+ mil_obs_rel_tolerance :Scalar
+ mil_sil_abs_tolerance :Scalar
+ mil_sil_rel_tolerance :Scalar
+ paramList :Cell
+ raw :Cell
+ simTime :Vector
- stopTime :Scalar
+ taskTime :Scalar
+ tcEval :Vector
- time :Vector

- readSignal(Scalar, String, String, Scalar) :Matrix
- setWorkspaceSignal(String, Matrix) :void
+ testExec(String, String, String, boolean, boolean, , boolean, String, String) :Vector

input_sig output_sig no_input no_output

input_sig

output_sig

no_input

no_output

mdl_name

InportSpecs

OutportSpecs

main_mdl_name

sigDiffs

«module»
ML_7.11.2::Create_testDef.m

+ sigDiffs :Scalar

+ Create_testDef(String) :void
- showMissing(Cell) :void

input_sig

output_sig

no_input

no_output

mdl_name

InportSpecs

OutportSpecs

main_mdl_name

sigDiffs

Datatransfer v ia v ariable
declaration 'global'

Figure 4.9: Data transfer within ATool concerning signal attributes

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 49

Figure 4.10: Overview on the usage of global variables within ATool

The content of the global variables overview Excel sheet is generated by means of
two MATLAB scripts. The script ”globalVariablesUsage.m” analyzes the code of ATool
concerning the usage of global variables, ”evalUsage.m” browses the code by ”eval” and
”assign” commands. Both scripts utilize the same principle. The principle of ATool code
analysis is described as follows:

• Define the packages of ATool considered for the code analysis

• Walk through all considered packages and get all contained m-files

• Open each gathered m-file

• Load each code line of an opened m-file

• Perform actions based on the content of a code line. Therefore use regular expres-
sions.

The activity diagram of ”globalVariablesUsage.m” is depicted in Figure 4.11.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 50

 act Activ ity globalVariablesUsage

Initialization

ActivityInitial

Define considered folders

Perform actions for each considered folder

Perform actions for each module in current folder

Analyze each code line of current module

Initialize v ariables

Delete xls-file

Add path of current folder

Gett all m-files of current
folder

Open current module

Insert function name into
usage matrix

'globalVariablesUsage.m'
differentiates between a function
definition with or without
parentheses. However, the procedure
is in both cases the same.

Get all global v ariables
declarated in current

code line

Perform actions for each global v ariable

Insert a 'x' into usage
matrix to depict function
where global v ariable

was found

Insert global v ariable
name into usage matrix

Insert a 'x' into usage
matrix for each found
global v ariable in last
found function (loop)

Allocates global variable to last
found function in usage matrix

 last found function
 |
 fun1 fun2 fun3
var1 x x
var2 x
var3 x
var4 x

FlowFinal

ActivityFinal

Close current moduleWrite results to MS Excel

[Code line contains no declaration of global variables]

[Current code line contains no
function definition]

[Code line contains a function definition]

[Code line contains a declaration of global variables]

[Actions performed for all global variables in current code line]

[Global variable is
contained by usage matrix]

[globalVariablesUsage.xlsx exists]

[globalVariablesUsage.xlsx
does not exist]

[Each code l ine of current module is analyzed]

[Actions performed for each module in current folder]

[Actions performed for each considered folder]

[Global variable is not
contained by usage matrix]

Figure 4.11: Activity diagram of MATLAB script to determine the usage of global variables
within ATool

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 51

 sd Generate test env ironment

User

(from Actors)

«module»

Atool.m

cd «module»

create_TestModel.m

opt Update 'popup_model' and 'popup_singleTC'

[Return value of 'create_TestModel' is a String]

generate_pb_Callback(Scalar, Struct, Struct)

create_TestModel(boolean) :String/Scalar

searchMDLs(Struct)

getnames()

cd(...\modules\)

searchSingleTCs(String, Struct) :Scalar

Figure 4.12: Sequence diagram linked to use case ”Generate test environment”

The logical sequence of data processing is depicted by means of sequence diagrams.
Each use case of ATool is linked with a sequence diagram that describes the series of
called operations when performing a use case. Furthermore, each ATool class is linked
with its own sequence diagram. As a result, the static module usage tree is replicated
dynamically by the sequence diagrams. Figure 4.12 shows the sequence diagram linked to
the use case ”Generate test environment”. In Figure 4.13 the linked sequence diagram of
the ATool module ”create TestModel” is depicted. To provide a better overview on the
behavior of ATool, lifelines of some MATLAB functions as well as lifelines of TargetLink
functions are depicted, too. MATLAB lifelines appear in turquoise and TargetLink lifelines
appear in orange to provide an unambiguous distinction to all lifelines of ATool modules.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 52

 sd create_TestModel.m

«module»

Atool.m

«module»

findModelSpecs...

msgbox.m

(from Sequence
Diagram Elements)

«module»

Create_testDef.m

«module»

tl_set.m

«module»

dsdd.mex32

«module»

tl_pref.m

«module»

create_TestModel.m

opt Check findModelSpecs return v alues

[User canceled action]

[Invalid fi le selected or unable to find module specification]

[Return values OK]

opt Check if model under test is stored as 'model'

[BlkDig_type == 0]

AUTOSAR not
considered.

generate_pb_Callback(Scalar, Struct, Struct)

create_TestModel(boolean) :
String/Scalar

findModelSpecs(boolean, String) :
String/Scalar

msgbox(err)

signalsbusrec(input_sig) :String

signalsbusrec(output_sig) :String

createFunfile(Sample_time) :String

Create_testDef(Sample_time)

create_sl_trig()

tl_set(Scalar, String, String) :Custom

tl_pref(String, String, String)

config_param(tst_mdl)

msgbox(success)

Figure 4.13: Sequence diagram of module ”create TestModel.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 53

 dfd Data Flow Process Realization

Analyze Test
Case results

Create test
environment

Handle test run
results

Prepare test
run

«module»
ML_7.11.2::testCtrl.m

+ CodeCoverageOverall :Struct
- fi lename :String
+ ME_ctrl :MException
- tst_id

- getTCList(String) :Cell
- save2mat(String, boolean) :void
+ testCtrl(String, String, boolean, boolean, boolean, boolean) :void

«module»
ML_7.11.2::AnalysisWindow.m

«module»
ML_7.11.2::create_TestModel.m

- config_param(String) :void
- create_sl_trig() :void
+ create_TestModel(boolean) :String/Scalar
- createFunfile(String) :String
- findInDD(String, String) :void
- signalsbusrec(Cell) :String

Figure 4.14: Realization of the processes depicted in the data flow diagram

The external interfaces of ATool are described in a data flow diagram. Therefore, tool
processes are defined. It must be mentioned, that the defined tool processes and the tool
use cases are not the same. However, the ATool processes represent overall tool functions
that are implemented in MATLAB. To provide consistency over all diagram types, the
classes that realize the defined ATool processes are shown in Figure 4.14. Software tools
that support ATool are depicted as solid blocks, datastorages are represented by two
parallel lines. The data flows are visualized by arrowed lines. The labels of those lines
contain the data that is sent or received, respectively.

Figure 4.15 shows the external data flow of ATool. As can be seen, each process is
linked with a note element. Within a note element the sequence of the processes is de-
scribed. Furthermore it can be seen, that ATool sets Simulink parameters when creating
a test environment and preparing a test run. An overview on all Simulink parameters
set by ATool is contained by a MS Excel sheet called ATool parameter list. This file
provides a worksheet for each Simulink layer where parameters are modified by ATool.
For each parameter modified by ATool the parameter name, the parameter value, the
ATool module that assigned the parameter value and additional comments concerning
the considered parameter are given. The working steps that need to be performed when
updating the ATool parameter list are given in worksheet ”Methodology”.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 54

 d
fd

 D
a

ta
 F

lo
w

 D
ia

g
ra

m

C
re

a
te

 t
e

st
e

n
vi

ro
n

m
e

n
t

S
im

u
li

n
k

M
K

S
 S

I

P
re

p
a

re
 t

e
st

ru
n

A
n

a
ly

ze
 T

e
st

C
a

se
 r

e
su

lt
s

te
st

D
a

ta
.t

a
r

T
a

rg
e

tL
in

k
D

D
 o

f
M

U
T

T
a

rg
e

tL
in

k
S

im
u

li
n

k
L

ib
ra

ri
e

s

E
rr

o
r

ca
ta

lo
g

u
e

H
a

n
d

le
 t

e
st

ru
n

 r
e

su
lt

s

te
st

D
e

f
E

xc
e

l
sh

e
e

t

m
o

d
u

le
T

e
st

O
ve

rv
ie

w
E

xc
e

l
sh

e
e

t

O
b

se
rv

e
r

fu
n

ct
io

n
 i

s
co

m
p

le
te

d
 b

y
th

e
 u

se
r.

te
st

D
a

ta
_

<
T

C
x>

.m
a

t
A

ll
 k

n
o

w
n

 e
xc

e
p

ti
o

n
s

d
e

te
rm

in
e

d
 b

y
th

e

d
e

ve
lo

p
e

r.

In
p

u
t

si
g

n
a

l
va

lu
e

s
a

n
d

 p
a

ra
m

e
te

r
va

lu
e

s
a

re
 i

n
se

rt
e

d
 b

y
th

e
 u

se
r.

D
a

ta
 f

ro
m

 'S
u

m
m

a
ry

' s
h

e
e

t
is

sy

n
ch

ro
n

iz
e

d
 w

it
h

 M
K

S
 R

M

1
)

In
it

ia
l

p
ro

ce
ss

3
)

F
in

a
l

p
ro

ce
ss

2
.1

)
F

ir
st

 p
a

rt
 o

f
te

st
 r

u
n

2
.2

)
S

e
co

n
d

 p
a

rt
 o

f
te

st
 r

u
n

T
a

rg
e

tL
in

k
b

lo
ck

s

R
e

q
u

ir
e

d
 B

lo
ck

s
a

n
d

S
im

u
li

n
k

p
a

ra
m

e
te

rs

N
e

w
 M

U
T

 n
a

m
e

In
p

u
t/

O
u

tp
u

t
si

g
n

a
l

n
a

m
e

s
a

n
d

 P
a

ra
m

e
te

r
n

a
m

e
s

O
u

tp
u

t
si

g
n

a
l

va
lu

e
s

a
n

d
te

st
 r

u
n

 s
ta

tu
s

si
g

n
a

ls

W
o

rk
in

g
 f

il
e

re
vi

si
o

n
 o

f
M

U
T

In
p

u
t

si
g

n
a

l
va

lu
e

s,
p

a
ra

m
e

te
r

va
lu

e
s

a
n

d
S

im
u

li
n

k
p

a
ra

m
e

te
rs

R
e

su
lt

s
o

f
T

C
 t

o
b

e
 a

n
a

ly
ze

d

M
U

T
 S

ig
n

a
l

a
tt

ri
b

u
te

s
a

n
d

 p
a

ra
m

e
te

r
va

lu
e

s

K
n

o
w

n
 e

xc
e

p
ti

o
n

s

K
n

o
w

n
 e

xc
e

p
ti

o
n

s

T
e

st
 r

u
n

 r
e

su
lt

s
o

f
a

 s
p

e
ci

fi
c

T
C

O
u

tp
u

t
si

g
n

a
l

va
lu

e
s,

 C
C

a
n

d
 t

e
st

 r
u

n
 s

ta
tu

s
si

g
n

a
ls

T
e

st
 C

a
se

 s
ta

te
s,

C
C

,
w

o
rk

in
g

 f
il

e
re

vi
si

o
n

 o
f

M
U

T

T
e

st
 r

u
n

 r
e

su
lt

s
o

f
a

ll
 T

C
s

co
n

ce
rn

in
g

 t
h

e
 M

U
T

In
p

u
t

si
g

n
a

l
va

lu
e

s
a

n
d

p
a

ra
m

e
te

r
va

lu
e

s

R
e

su
lt

s
o

f
T

C
 t

o
b

e
 a

n
a

ly
ze

d

M
U

T
 S

ig
n

a
l

a
tt

ri
b

u
te

s
a

n
d

 p
a

ra
m

e
te

r
va

lu
e

s

Figure 4.15: ATool data flow diagram

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 55

Software unit design

The software unit design is realized by means of activity diagrams. Each ATool module
is related to an activity diagram that describes the behavior within the module. However,
no activity diagrams are created for modules that show a low complexity. The unit design
of those modules is represented by an informal description within the class’ notes field. A
special case is given for the module called ”Atool”. This module handles the ATool GUI.
No activity diagram is created for ”Atool” because of the fact, that an activity diagram
for a GUI handling is too much effort by providing less overview. Instead of a semi-formal
description of the GUI handling, an informal explanation is given within the notes field of
each operation of ”Atool”.

The symbols that are used for the ATool activity diagrams and their meaning within
an ATool m-file is described in Table 4.3. It must be mentioned that actions elements
can represent parts of the code that includes for instance if-else commands. To provide
clear and expressive activity diagrams, less important parts of the documented code are
summarized to action elements. However, the behavior of the summarized code is described
within the notes field of its corresponding action element.

Activity diagram elements Meaning within a m-file

Action Functional unit

Activity Set of actions that have a logical context
(e.g. init actions, for-loops, while-loops, . . .)

ActivityInitial ”function” command

ActivityFinal return

Decision if-elseif-else, swich-case-otherwise

Interruptible activity region try-block

Exception handler catch-block

Receive Exception that causes the execution
of the catch-block

Table 4.3: Used activity diagram elements as understood for the documentation of a m-file.

An exemplary activity diagram is given in Figure 4.16. It shows how ATool gathers
signal specific information from the TargetLink data dictionary.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 56

 act Activ ity findModelSpecs

ActivityInitial

Variable declaration

Get MUT path and check it

Set DD path to
corresponding

'Dev elopment' branch

Get MUT path v ia GUI
Get MUT path v ia input
parameter 'model' and
DD dev elopment path

Get MUT name

ActivityFinal

ActivityFinal

InterruptibleActiv ityRegion2

Collect model data

Open MUT

Get Block Diagram
Type and spcecify
global v ariables

'main_mdl_name' and
'mdl_name'

Set current directory to
testfolder

Create waitbar

Get input and output
signal names from TL

Inport and Outport
blocks

Get number of input
and output signals

Collect information of
TL Inport blocks

Collect information
from TL Outport blocks

Close MUT

Add prefix to signal
names

Exception
occurs

Exception

ExceptionHandler2

Exception

Display signal names
in command window

Close all Simulink
system windows

Display status
message in command

window

Close waitbar

ActivityFinal

[mdl-file]

[No mdl-file]

[User cancels]

[Test run][Test environment creation]

[User selects
a fi le]

[Test environment creation]

[Test run]

Figure 4.16: Activity diagram of module ”findModelSpecs.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 57

4.3 Validation and verification

Compared with an automotive embedded software ATool shows a low complexity. There-
fore, most of the applicable verification steps required by [ISO11a] are covered by the val-
idation process. The verification step that must be performed in addition to the ATool
validation is a design and code inspection. All ATool defects and errors can be detected
by stimulating the GUI and modifying the inputs of ATool’s modules. The validation
is realized by checking the output of ATool for each ATool scenario. The validation
is composed of two phases. First, a test run without any provoked errors is performed.
At this phase the inputs of the ATool modules are not modified. After that, the second
phase of validation starts. By means of fault injection tests each known error is provoked.
This is performed, by corrupting the inputs of the ATool modules. The error handling
of ATool must detect all inserted faults and as a result ATool has to be stopped. These
two phases of tool validation are contained by the ATool test suite. To avoid negative im-
pacts on ATool caused by the configuration of the workstation, the test suite is executed
after each installation.

The data flow of the ATool test suite is shown in Figure 4.17. Again, the circles repre-
sent the processes performed for an ATool validation. Data stores external to MATLAB
are represented by solid blocks and internal MATLAB data stores are represented by two
parallel lines. The arrowed lines show the transferred data. A description of the process
and its sequence is given by a yellow comment, a gray comment signalizes the path of
stored data. As can be seen in Figure 4.17, the ATool validation is performed according
to the following steps:

1. Automatic insertion of code coverage flags

2. Execution of test cases specified in MKS RM (test suite)

3. Test result analysis

The subsequent sections deal with those validation steps and explain them in detail.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 58

 d
fd

 D
a

ta
 F

lo
w

 o
f A

To
o

l T
e

s
t S

u
ite

In
se

rt
 c

o
d

e
co

ve
ra

g
e

 f
la

g
s

M
o

d
u

le
 i

n
 c

o
n

si
d

e
re

d
 t

o
o

l
p

a
ck

a
g

e

cc
F

la
g

sP
e

rM
o

d
u

le
.x

ls
x

P
lo

t
te

st
 r

e
su

lt
s

E
xe

cu
te

 t
e

st
 s

u
it

e

cc
F

la
g

sP
e

rM
o

d
u

le
.m

a
t

(1
):

 P
ro

ce
ss

 i
s

p
e

rf
o

rm
e

d
 f

o
r

e
a

ch

m
o

d
u

le
 i

n
 c

o
n

si
d

e
re

d
 p

a
ck

a
g

e
.

re
su

lt
s_

<
m

o
d

u
le

n
a

m
e

>
.m

a
t

(2
):

 P
ro

ce
ss

 e
xe

cu
te

s
te

st
 c

a
se

 s
p

e
ci

fi
e

d
 i

n

M
K

S

(3
):

 S
u

p
p

o
rt

s
te

st
 r

e
su

lt

a
n

a
ly

si
s

P
a

th
:

'<
V

a
li

d
a

ti
o

n
 s

a
n

d
b

o
x>

\T
e

st
S

u
it

e
\T

e
st

R
e

su
lt

s'

P
a

th
:

'<
D

e
ve

lo
p

m
e

n
t

sa
n

d
b

o
x>

\P
re

p
a

re
T

e
st

S
u

it
e

\O
u

tp
u

t'

P
a

th
:

'<
D

e
ve

lo
p

m
e

n
t

sa
n

d
b

o
x>

\P
re

p
a

re
T

e
st

S
u

it
e

\O
u

tp
u

t'

G
e

t
u

n
to

u
ch

e
d

fl
a

g
s

u
n

to
u

ch
e

d
F

la
g

s_
<

m
o

d
u

le
n

a
m

e
>

.x
ls

x

P
a

th
:

'<
V

a
li

d
a

ti
o

n
 s

a
n

d
b

o
x>

\T
e

st
S

u
it

e
\T

e
st

R
e

su
lt

s'

P
a

th
:

<
D

e
ve

lo
p

m
e

n
t

sa
n

d
b

o
x>

C
o

d
e

 c
o

ve
ra

g
e

 v
e

ct
o

r
n

a
m

e
,

si
ze

 o
f

co
d

e
 c

o
ve

ra
g

e
 v

e
ct

o
r

C
o

d
e

 c
o

n
ta

in
in

g
co

d
e

 c
o

ve
ra

g
e

 f
la

g
s

C
o

d
e

 c
o

ve
ra

g
e

 v
e

ct
o

r
n

a
m

e
,

si
ze

 o
f

co
d

e
 c

o
ve

ra
g

e
 v

e
ct

o
r

M
K

S
 I

D
 o

f
co

rr
e

sp
o

n
d

e
n

t
T

C
,

cc
 v

e
ct

o
r

n
a

m
e

,
cc

 v
a

lu
e

 [
%

],
 c

c
ve

ct
o

r
va

lu
e

s,

m
o

d
if

ie
d

 d
a

te

C
o

d
e

 c
o

ve
ra

g
e

 v
e

ct
o

r
n

a
m

e
,

si
ze

 o
f

co
d

e
 c

o
ve

ra
g

e
 v

e
ct

o
r

C
o

d
e

C
C

 v
e

ct
o

r
n

a
m

e
,

cc
 v

e
ct

o
r

va
lu

e
s

C
C

 v
e

ct
o

r
n

a
m

e
,

u
n

to
u

ch
e

d
 v

e
ct

o
r

in
d

ic
e

s

M
K

S
 I

D
 o

f
co

rr
e

sp
o

n
d

e
n

t
T

C
,

cc
 v

e
ct

o
r

n
a

m
e

,
cc

 v
a

lu
e

 [
%

],
 c

c
ve

ct
o

r
va

lu
e

s

Figure 4.17: Data flow of ATool test suite

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 59

4.3.1 Code instrumentation

As already mentioned, before executing the ATool test suite the code of ATool has
to be prepared. That means, measures to provide the determination of test coverage
must be taken. Therefore, the ATool code is instrumented to establish function coverage
and branch coverage. The code of ATool is modified by inserting code coverage flags.
Therefore, a global vector containing elements of type boolean is added to each ATool
module. The name of such a global vector is composed of the prefix ”atoolCC ” and
the corresponding module name (e.g. atoolCC testExec). These vectors are called code
coverage vectors, the vector elements represent the code coverage flags. The code coverage
flags are initialized with zero. After a key word within the ATool code a code line is
added, that sets a code coverage flag to one.

The key words signalizing the different types of code coverage:

• Function coverage:

– function

• Branch coverage:

– if

– elseif

– else

– case

– otherwise

– try

– catch

The vectors must be declared as global variables, because then the code coverage
information is available for the test suite. This is ensured, even when the execution of a
module is stopped because of an exception occurred. Furthermore, the insertion of global
variables into the ATool code reduces the necessary changes of the code to a minimum.

In Figure 4.18 the sequence of function calls when inserting code coverage flags is
depicted. Again, lifelines representing MATLAB functions that are shown for a better in-
terpretation of the diagram are highlighted in turquoise. As the name suggests, the module
”insertCodeCoverageFlags.m” inserts the code coverage flags to each module contained by
a folder of the considered ATool package. In addition an overview list in MS Excel called
”ccFlagsPerModule.xlsx” is generated (see Figure 4.17). This list contains the names of
all created code coverage vectors and their size.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 60

 sd Interaction insertCodeCov erageFlags

«module»

insertCodeCoverageFlags

«module»

prepareSyntax

«module»

addCCFlags

cd

loop Perform for each module in folder

loop Perform for each folder of consideredPackage

cd([sandboxAtoolDevelopment'\PrepareTestSuite\Output']])

removeOldData()

cd('..')

cd(consideredPackage)

prepareSyntax(String, String)

replaceOriginal(String, String)

addCCFlags(String, String, String)

updateResults(String, Scalar, String)

replaceOriginal(String, String)

generateOverviewList()

cd([sandboxAtoolDevelopment'\PrepareTestSuite\Output']])

Figure 4.18: Sequence of function calls when inserting code coverage flags

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 61

Before executing After executing

if(condition) %MODIFIED. . .
if(condition);statement;end statement;

end

if(condition) %MODIFIED. . .
statement;

if(condition); statement; else; statement; end else
statement;

end

try %MODIFIED. . .
statement;

try; statement; catch; statement; end catch
statement;

end

catch %MODIFIED. . .
catch; statement; end statement;

end

Table 4.4: Syntax changed by ”prepareSyntax”

As can be seen in Figure 4.18, the function ”prepareSyntax” is called before adding
the code coverage flags to a module of ATool. This function ensures that a line break
appears after a key word in a code line. Table 4.4 lists code lines before and after exe-
cution of ”prepareSyntax”. Only the key words if, else, try and catch are concerned by
”prepareSyntax”. All other key words are indicators for a higher complexity, hence an
implementation within a single code line will not be performed by a programmer. The
modified code of the input file of ”prepareSyntax” is stored in an output file. Deviations
between the input and the output file are signalized by comments at the end of a modified
line. Figure 4.19 and Figure 4.3.1 show the activity diagrams of ”prepareSyntax”.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 62

 act Activ ity prepareSyntax

Generate return values

Generate output file

Initialization

Define RegEx match
strings containing
syntax types to be

modified

Reset inv alid line
counter

Open input file and
empty output file

Display status
message in command

window

Analyze each code line of input file and modify appropriate lines

Close input file and
output file

ActivityInitial

Specify return struct

ActivityFinal

[Each code line is analyzed]

Figure 4.19: Activity diagram of ”prepareSyntax.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 63

 act Analyze each code line of input file (prepare syntax)

Increase inv alid line
counter by one

Get tab steps at the
beginning of current code

line

Create multiple code
lines out of current code

line (delimiter: ';')

Add comment to first
created code line

Add tabs and line break
after key word in created

code line

Add tab steps to
remaining created code

lines (loop)

Insert created code lines
into output file

ActivityInitial

ActivityFinal

Code lines to be modified contain:

• 'i f' and 'end' commands
• 'try' and 'end' commands
• 'catch' and 'end' commands

Insert current code line
into output file

[Current code line contains
syntax to be modified]

[Code line contains no syntax to be modified]

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 64

Before executing After executing

function statement function statement
global atoolCC <module name>
atoolCC <module name>(<counter value>) = 1;

if(condition) if(condition)
statement; atoolCC <module name>(<counter value>) = 1;

elseif(condition1 && . . . statement;
condition2) elseif(condition1 && . . .

statement; condition2)
else atoolCC <module name>(<counter value>) = 1;

statement; statement;
end else

atoolCC <module name>(<counter value>) = 1;
statement;

end

switch switch
case(condition) case(condition)

statement; atoolCC <module name>(<counter value>) = 1;
otherwise statement;

statement; otherwise
end atoolCC <module name>(<counter value>) = 1;

statement;
end

try try
statement; atoolCC <module name>(<counter value>) = 1;

catch statement;
catch

end atoolCC <module name>(<counter value>) = 1;
end

Table 4.5: Modifications of the ATool code caused by ”addCCFlags”

Figure 4.18 shows, that after preparing the syntax of a module the original module of
ATool is replaced by the generated output file of ”prepareSyntax”. The prepared module
of ATool is used as the input file of ”addCCFlags”. The behavior of ”addCCFlags” and
”prepareSyntax” is similar. Instead of inserting line breaks after a key word, a code line
that sets a code coverage flag is inserted to the prepared code by ”addCCFlags”. Table 4.5
lists exemplary code lines before and after execution of ”addCCFlags”. Furthermore, the
structure of a code coverage flag is shown in the table. As a result of the correspondence
between these two modules Figure 4.19 showing the activity diagram of ”prepareSyntax”
and Figure 4.20 showing the activity diagram of ”addCCFlags” are similar. The two main
differences are the execution of different actions when analyzing a code line (compare
Figure 4.3.1 with Figure 4.21) and the actions performed at the generation of return
values. The return values differ, because ”addCCFlags” updates the size of an added code
coverage vector within ”ccFlagsPerModule.mat” (see Figure 4.17).

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 65

 act Activ ity addCCFlags

Initialization

Generate output file

Open input file and
empty output file

Close input file and
output file

Generate return v alues

Display status message
in command w indow

Specify return struct

ActivityFinal

ActivityInitial

Define RegEx match
strings containing

'keyWords'

Initialize remaining
v ariables

Analyze each code line of input file and modify app ropriate lines

Update mat-file containing
CC vector data

(addCCFlags::updateResults)

[Each line of code is analyzed]

Figure 4.20: Activity diagram of ”addCCFlags.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 66

 act Analyze each code line of input file (add CC flags)

ActivityInitial

ActivityFinal

Insert CC v ector declaration
into output file

Set addFlagToNextLine =
true

Increase counter by one

Generate code line that sets
appropriate CC flag

Set addFlagToNextLine =
false

Insert CC flag set command
into output file

Insert current code line into
output file

[addFlagToNextLine = true]

[Code line contains a
function declaration]

[Code line contains wheter a 'i f' or
'elseif' command and a '...']

[Code line contains a
branch coverage key word]

[Current code line contains
no key words]

[Current code line contains
already a CC vector declaration

OR a CC flag]

[Code line contains a '...']

[Code line contains no '...']

Figure 4.21: Activity that analyzes each code line at ”addCCFlags.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 67

4.3.2 Test suite

The ATool test suite is controlled under configuration management. That means, within
MKS SI a project is created for the purpose of ATool validation. This validation project
in MKS SI contains the ATool test suite and the ATool test environment. The test
environment containing the MUTs is based on a real development project at Magna
Powertrain. As a result, the input test vectors for ATool validation are represented
by real MUTs.

Figure 4.22 shows the steps to be performed to attain the test specification of the
ATool test suite. The document is based on the content of the UML model. Therefore,
the first step is to generate a class report that addresses all ATool modules. Within the
report a short description of the module functionality as well as all inputs and all outputs
are listed for each module. This means the report shall contain the class notes as well as
the embedded elements, operations and attributes of a class. For the next step the use
case diagram has to be considered. A set of scenarios has to be defined for each use case
of ATool. The defined scenarios can be positive as well as negative (error handling) and
represent an ATool test case. The appropriate scenario path has to be followed within the
corresponding sequence diagrams for each scenario. By doing this, the sequence of called
ATool modules of a scenario is determined. By consulting the class report, the inputs
and outputs of a called module are used to specify a test case. The expected behavior
of an ATool module is represented by its output. To specify the first test run only the
module outputs and their sequence have to be considered. However, the module inputs
that shall be corrupted have to be considered for the fault injection tests as well.

The module ”atoolTestSuite” handles the execution of a test case for the purpose of
ATool validation. The sequence of function calls of ”atoolTestSuite” is shown in Fig-
ure 4.23. As can be seen, first the generic commands concerning an initialization of the code
coverage vectors are performed. The commands address the global variable declaration of
each code coverage vector as well as the initialization of each code coverage vector with
zero. The required information for the generation of those generic commands is gathered
from ”ccFlagsPerModule.mat” (see Figure 4.17). After that, the ATool startup modi-
fied for ATool test environment is called. The difference between the original ATool
startup and the test environment startup is, that the original ATool startup is automati-
cally called after a MATLAB start. However, the test environment startup must be called
after code coverage vector initialization. Furthermore, all variables of test environment
startup used for ATool initialization must be assigned to base workspace explicitly to
provide a correct functioning of ATool at the test environment. It is mentioned, that the
test environment startup contains code coverage flags. The test environment startup opens
the ATool GUI within the test environment. Subsequently, a test case of the ATool test
suite is performed by the tool tester. When a test case is finished the tool tester presses
any key and the results of the executed test case are saved. Each code coverage vector
that contains code coverage flags set to one is stored in its corresponding mat-file. The
name of the mat-file is composed of the prefix ”results ” and the corresponding module
name (see Figure 4.17).

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 68

 act Deriv e test suite from documentation

Perform actions for each use case to be v alidated

Perform actions for each scenario

Generate report containing
class information

Follow scenario path in
linked sequence diagrams

Add expected outputs of
called modules to test

catalogue

ActivityInitial

ActivityFinal

Class information consists of:

• General description
• Inputs
• Outputs

Define scenarios for
validation

Expected outputs are based on
class information.

FlowFinal

[Actions performed for each scenario]

[Actions performed for each use case]

Figure 4.22: Actions to be performed when deriving the test specification from the existing
ATool documentation

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 69

 sd Interaction atoolTestSuite

«module»

atoolTestSuite

ATool tester

cd startupTestEnvrionment

Atool within test
env ironment

alt Check cc v ector

[find(ccVector,1)]

loop Perform actions for each ccVector

atoolTestSuite(String)

getGenericCCVectorCommands(String) :Struct

cd(testEnvironment)

startupTestEnvironment()

[Execute test case]:

[Any key is pressed]:

saveTestCaseResults(String, String, Vector, String)

Figure 4.23: Sequence of function calls at ”atoolTestSuite.m”

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 70

Each mat-file representing the test results of an ATool module contains a test case
specific struct including the following fields:

mksTcId: MKS ID of executed Test Case

ccVectorName: Name of code coverage vector

ccPercent: Code coverage in percent

ccVector: Values of code coverage vector (value type: boolean)

modifiedOn: Output of MATLAB command datestr(now)

In case of a repeated test case execution, the existing test results are overridden by the
results obtained from the last executed test run.

4.3.3 Test result analysis

The MATLAB functions ”viewTestResults” and ”getUntouchedFlags” support the result
analysis of an executed test case.

The code coverage vectors of all executed test cases of an ATool module are or linked
and plotted by ”viewTestResults”. An exemplary result plot is shown in Figure 4.24.
Code coverage flags that are set appear as a blue bars, code coverage flags that are not
set appear as red bars. The target of the ATool validation is to reach a code coverage
of 100%. An indicator for an incomplete scenario definition is given, when an 100% code
coverage is not reached by all executed test cases. It is noted that the code coverage
provides no testimony concerning the test result. The test result depends exclusively on
the deviation of the expected outputs from the real outputs of a module.

Code coverage flags that remain set to zero are called untouched flags. All code
coverage flags of a single ATool module that are not touched by any of the executed test
cases are gathered by ”getUntouchedFlags”. This MATLAB function generates a MS Excel
sheet providing a framework to analyze the reason of an untouched flag. The MS Excel
sheet name is composed of the prefix ”untouchedFlags ” and the name of the considered
module. When calling ”getUntouchedFlags” multiple times, the existing MS Excel sheet
is replaced by the new generated one. To avoid losses of the analysis of untouched flags,
flag analysis data is copied to a separate xlsx-file. Figure 4.25 shows an excerpt of the
untouched flags list corresponding to the test results plot shown in Figure 4.24.

4.3.4 Configuration and version management

Figure 4.26 shows the project structure within MKS SI. The validation is performed for
each major version of the tool. Changes of ATool caused by the insertion of the code
coverage flags are checked in as a new branch of the project (”Tool preparation branch”).
This ensures, that no code coverage flags are contained by the code of the ATool devel-
opment main branch. As a result, the readability of the code located at the development
main branch is provided. The ATool version containing code coverage flags is shared
into the test environment located at the validation project. After each performed ATool
validation a checkpoint on the validation project is set.

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 71

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
findModelSpecs; Code coverage: 39.29%

O
ve

ra
ll

re
su

lt

Figure 4.24: Exemplary overall test results

Figure 4.25: Exemplary excerpt of a MS Excel sheet containing analyzed untouched flags

CHAPTER 4. QUALIFICATION OF THE SOFTWARE TOOL ATOOL 72

 act Branching strategy

Tool preparation branch

Tool preparation branch

Development project

Tool v ersion 1.0.0

Tool v ersion 1.0.1

Tool v ersion 1.0.2

Tool v ersion 1.x.x

Tool v ersion 2.0.0

Tool v ersion 1.0.0.1.1,
prepared for test suite

Tool v ersion 2.0.0.1.1,
prepared for test suite

Tool v ersion 1.0.0.x.x,
prepared for test suite

Tool v ersion 2.0.0.x.x,
prepared for test suite

ActivityInitial

ActivityFinal

FlowFinal

FlowFinal

pkg Content of ATool dev elopment project

PrepareTestSuite

+ addCCFlags

+ insertCodeCoverageFlags

+ prepareSyntax

ATool Implementation

Code Analysis

+ evalUsage

+ globalVariablesUsage

+ fdep

Tool Documentation

Validation project

Test suite v ersion
1.x.x

Test suite v ersion
2.x.x

ActivityInitial

ActivityFinal

pkg Content of ATool v alidation project

TestSuite

+ atoolTestSuite

+ getUntouchedFlags

+ viewTestResults

+ TestResults

Test Env ironment

+ Shared prepared ATool

«share»

«share»

Figure 4.26: Branching strategy for ATool validation

Chapter 5

Conclusion and future work

The objective of this master thesis is to acquire knowledge concerning the qualifica-
tion of software tools in accordance with ISO 26262-8:2011(E): Road vehicles – Func-
tional safety – Part 8: Supporting processes ([ISO11b]). The approach is to perform a
rigorous qualification of ATool to check which qualification actions are necessary and
which are too stringent. Due to this approach, not all specified activities for a software
tool qualification in accordance with [ISO11b] have been performed. The following sec-
tions deal with the findings from this thesis and the open issues concerning a successful
qualification of ATool.

5.1 Conclusion

The applied combination of the qualification methods ”Development in accordance with
a safety standard” and ”Validation of the software tool” is inevitable for an ASIL D
qualification. When applying a safety standard on the development of the software tool,
an application of the qualification method ”Evaluation of the tool development process”
is obvious. It is in the interest of the tool developer to ensure that the safety standard has
been applied in a proper way for the software tool development.

As mentioned by [ISO11b], no safety standard is fully applicable to a software tool
development. Due to the broad range of software tools no software tool safety standard is
available at the moment. That means, a profound analysis of the applied safety standard
cannot be avoided. However, each requirement of the safety standard has to be analyzed
concerning its applicability on the software tool development.

It is proposed to apply [ISO11a] on the development of a software tool used in the au-
tomotive industry. This provides manifold advantages. First, existing tools and processes
used for automotive software development can be used/adapted for software tool develop-
ment. Second, developers and testers are familiar with those tools and processes. Third,
the qualification method ”Evaluation of the tool development process” can be performed
as an internal assessment. Last but not least, it is possible to cover several verification
requirements of [ISO11a] by applying the qualification method ”Validation of the software
tool”.

The verification of a software tool is represented by the testing phases required by
[ISO11a]. A software tool validation stimulates the tool only at the GUI. That means, the

73

CHAPTER 5. CONCLUSION AND FUTURE WORK 74

validation is performed as required in the [ISO11a] verification step ”Software integration
and testing”. Furthermore, the behavior of the software tool is examined at the validation
phase. As a result, the software tool validation covers the [ISO11a] verification step
”Verification of software safety requirements”, too.

Nevertheless, a successful application of [ISO11a] for a software tool development re-
quires a software tool specific access into the V-model of the standard. Such an access
is provided by means of a specification of software tool use cases. The testing of those
use cases represent the validation of the software tool. It must be ensured, that the re-
quirements of [ISO11b] concerning the ”Validation of the software tool” are satisfied for
the validation of the software tool use cases. In-house developed software tools as well as
off-the-shelf software tools can be validated. However, only in-house developed software
tools can be verified.

ATool shows a low complexity compared to an automotive embedded software. As a
result of the low complexity, the validation of ATool in addition to the target of 100%
function coverage and branch coverage represents a software integration and testing as well
as a verification of software tool safety requirements described in [ISO11a]. As a result of
the functionality of ATool, no calculations are performed within the tool. Thus, explicit
module testing is not required for ATool.

To ensure that the hardware and software configuration of the used workstation has
no impact on the correct functioning of the software tool, the test suite representing the
software tool validation must be performed for each installation or update of the software
tool. However, it is questionable if the tool execution environment including the hardware
and the software (e.g. operating system) is relevant for the software tool qualification. The
additional risk implied by the different execution environment seems to be significantly
lower than the risk due to the development failures of the tool.

The structuring of the software tool qualification by means of the proposed qualification
view model represents a clear way to gather all the required tool information (Figure 5.1
shows the qualification view model). This procedure represents the most time consuming
activity of the qualification and therefore a structured way of working is useful. In case of
a reverse engineered specification of the qualification view model, the stakeholders of each
view represent the interview partners to allocate view specific information.

In chapter 2.3 a methodology to establish confidence in the usage of software tools
([HRM+11]) is discussed. Due to the scope of this master thesis an application of the
methodology proposed by [HRM+11] on this thesis makes no sense. However, an applica-
tion of the methodology proposed by [HRM+11] and the usage of the qualification view
model is advantageous. The benefit of applying [HRM+11] for a software tool evaluation
is, that in case of a subsequent qualification the processes view, the use case view and
parts of the premises view are already specified.

The documentation of ATool by means of an UML-model contributes to an increased
comprehensibility of the tool behavior. Furthermore the generation of the test specification
is facilitated by the existing classes and sequence diagrams. For the testing of the error
handling, the activity diagrams are helpful. However, by implementing code coverage
flags and providing a framework to analyze those code coverage flags after a test run,
the creation of activity diagrams provides no significant advantages for tools like ATool.
Tools that are designed to perform calculations or similar activities require explicitly
performed module tests and as a result activity diagrams for such tools are necessary.

CHAPTER 5. CONCLUSION AND FUTURE WORK 75

Use case

Stakeholder: Tool Initiator

Logical

Stakeholder: Functional

Developer

Process

Stakeholder: Process owner

Development

Stakeholder: Programmer,

Project Manager

Premises

Common view

S
W

 T
o
o
l
V

e
ri
fi
c
a
ti
o
n

SW Tool
Validation

Figure 5.1: Structuring of the software tool qualification by means of the proposed quali-
fication view model

The application of a SW FMEA on a software tool development is possible in principle.
In case of ATool no ASIL decomposition and no software partitioning is performed and
no further safety measures are intended to be derived. Therefore the SW FMEA was
not finished. However, the methodology used for the SW FMEA shall be applied at the
concept phase of the software tool if possible. Hence, the failure risks of the software tool
can be determined at this early development phase and as a result the monitor concept
proposed by [IIW12] can be applied.

As already explained, in-house developed software tools can be validated and verified.
However, in case of off-the-shelf tools the user has only one option: validation. As a
result, the qualification of an off-the-shelf tool cannot be performed adequately by the
tool user because only the tool vendor knows the source code of the software tool. Hence,
only the tool vendor is able to determine the test coverage when qualifying the tool.
Some use the argument, that only the tool customer is able to perform a software tool
qualification, because only the tool customer knows about the applied use cases of the
tool. This argument might be true for complex and generic software tools like MATLAB
or MS Excel. In fact, most of the software tools used for the development of automotive
embedded software are very specific (e.g. vector CANalyzer). Due to the standardized
development approach within the automotive industry, the use cases of off-the-shelf tools
applied at different tool customers are nearly identical. This circumstance is also known
by the software tool vendors. It is proposed that the software tool vendor determines a
typical set of use cases for which the standard qualification applies. The tool user has to
ensure that its development process complies with this typical set of use cases.

CHAPTER 5. CONCLUSION AND FUTURE WORK 76

5.2 Future work

ATool has already been developed when the decision for a qualification was made. As
a result, the specification of the qualification view model is reverse engineered. ATool
is composed of about ten-thousand lines of code, multiple interfaces to external software
tools exist and global variables are used. Hence, the specification of the qualification
view is extremely time-consuming. The following describes the open issues that must be
implemented for a successful ATool qualification.

Initialization of all variables: The initialization of variables must be guaranteed for
all modules of ATool. Therefore, the modules must be reviewed. All variables
that are used in a MATLAB function must be initialized at the beginning of the
corresponding MATLAB function.

Inspection: The design description and the code of ATool must be reviewed by means
of an inspection as required by [ISO11a].

Software tool development: The target ASIL for the qualification of ATool is ASIL D.
Therefore the methods of [ISO11a] required for an ASIL D development are consid-
ered for ATool development. This procedure must be called into question. Al-
though [ISO11b] requires a software tool development in accordance with a safety
standard for ASIL D qualifications, [ISO11b] makes no statement on the classifica-
tion of the development. That means, theoretically an application of [ISO11a] in
compliance with an ASIL A classification would be possible. However, the appropri-
ate classification of the software tool development shall be considered with respect
to the TCL of ATool.

Documentation within PTC Integrity: A ”SOW Requirement Document” document-
ing the ATool use cases has to be created in MKS RM. The existing MKS Document
representing the ATool function specification has to be reviewed to ensure that the
content of the function specification deals with the ATool version to be qualified.
Furthermore, the function specification has to be adapted to comply with [ISO11b],
clause 6. Each requirement defined in the function specification has to be linked with
its corresponding use case within MKS RM. Function specification requirements that
are linked to a use case have to be classified as functional. Requirements that cannot
be allocated to a single use case (e.g. requirements concerning the error handling)
have to be classified as non-functional.

Furthermore, the existing test specification in MKS RM has to be adapted in two
ways. First, the test specification has to be reviewed to ensure that the content
addresses the ATool version to be qualified. Second, the reviewed test cases have
to be linked with the appropriate requirements in MKS RM.

Linking between enterprise architect and MKS RM: A linkage between the ele-
ments in Enterprise Architect and the requirements in MKS RM has to be estab-
lished. A possibility to establish such a linkage is to add the MKS ID as a tagged
value of the corresponding element in Enterprise Architect. Remark: Tagged values
can be made visible in a diagram by selecting them at ”Feature Visibility”.

CHAPTER 5. CONCLUSION AND FUTURE WORK 77

Evaluation of the tool development process: An evaluation of the ATool develop-
ment process has to be performed. The evaluation shall be complied with [ISO11b].
Possible adaptions of the development process resulting from the evaluation must
be considered.

Generation of the qualification report: Based on the content of the qualification view
model the qualification report has to be generated.

In order to optimize the process of a re-qualification of ATool the following points
shall be considered:

Automation of the test suite: At the moment all test cases contained by the ATool
test suite have to be executed manually. Therefore, the MATLAB function ”atoolTest-
Suite” shall be extended with code representing the execution of the specified test
cases. User inputs can be reproduced by calling appropriate ATool GUI callback
functions. The error handling shall be tested by using intentionally corrupted inputs.
The environment that provides a corrupted ATool input shall be stored within the
validation project. The extensions of ”atoolTestSuite” shall be documented in En-
terprise Architect.

The need for a verification of the automated test suite shall be considered.

Simplify unit design: To increase the maintainability and readability of the ATool
code, the unit design shall be adapted (e.g. remove global variables of ”load-
Param.m”).

Appendix A

Abbreviations

ASIL Automotive safety integrity level
E/E system Electrical and/or electronic system
E/E/PE system Electrical/electronic/programmable electronic system
FMEA Failure mode and effects analysis
GUI Graphical user interface
HIL Hardware-in-the-loop
MIL Model-in-the-loop
MKS RM MKS Requirements Management
MKS SI MKS Source Integrity
MPT Magna Powertrain
MS Microsoft
MUT Module under test
OBS Observer function
SIL Software-in-the-loop
SOW Statement of work
SW Software
TC Test case
TCL Tool confidence level
TD Tool error detection
TI Tool impact
UML Unified modeling language

78

Bibliography

[BM08] Graham Bath and Judy McKay. The Software Test Engineer’s Handbook.
Rocky Nook, June 2008.

[BW11] Andreas Bärwald and Doris Wild. Softwarewerkzeuge für sicherheitsgerichtete
Entwicklungen - Anforderungen und Lösungsansätze. TÜV Süd Automotive
GmbH, Garching, Germany, November 2011.

[CMR10] Mirko Conrad, Patrick Munier, and Frank Rauch. Qualifying Software Tools
According to ISO 26262. In MBEES, pages 117–128, 2010.

[EN 11] EN 50128:2011: Railway applications – Communication, signalling and pro-
cessing systems – Software for railway control and protection systems. Stan-
dard, European Committee for Electrotechnical Standardization, Brussels, B,
2011.

[Glo08] Tilman Gloetzner. IEC 61508 Certification of a Code Generator. In 3rd In-
ternational Conference on System Safety 2008, pages 134–137, 2008.

[HRM+11] Joachim Hillebrand, Peter Reichenpfader, Irenka Mandic, Hannes Siegl, and
Christian Peer. Establishing Confidence in the Usage of Software Tools in
Context of ISO 26262. In SAFECOMP 2011, pages 257–269, 2011.

[IEC06] IEC 60880:2006: Nuclear power plants – Instrumentation and control systems
important to safety – Software aspects for computer-based systems performing
category A functions. Standard, International Electrotechnical Commission,
Geneva, CH, April 2006.

[IEC10a] IEC 61508-3:2010: Functional safety of electrical/electronic/programmable
electronic safety-related systems – Part 3: Software requirements. Standard,
International Electrotechnical Commission, Geneva, CH, April 2010.

[IEC10b] IEC 61508-4:2010: Functional safety of electrical/electronic/programmable
electronic safety-related systems – Part 4: Definitions and abbreviations. Stan-
dard, International Electrotechnical Commission, Geneva, CH, April 2010.

[IEE10] IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear
Power Generating Stations. Standard, IEEE Power & Energy Society, New
York, USA, August 2010.

79

BIBLIOGRAPHY 80

[IIW12] Viacheslav Izosimov, Urban Ingelsson, and Andreas Wallin. Requirement De-
composition and Testability in Development of Safety-Critical Automotive
Components. In Computer Safety, Reliability, and Security, 31st International
Conference, SAFECOMP2012, Magdeburg, Germany, pages 74–86, 2012.

[ISO08] ISO 12207:2008(E): Systems and software engineering – Software lifecycle pro-
cesses. Standard, International Organization for Standardization, Geneva, CH,
February 2008.

[ISO11a] ISO 26262-6:2011(E): Road vehicles – Functional safety – Part 6: Product
development at the software level. Standard, International Organization for
Standardization, Geneva, CH, November 2011.

[ISO11b] ISO 26262-8:2011(E): Road vehicles – Functional safety – Part 8: Supporting
processes. Standard, International Organization for Standardization, Geneva,
CH, November 2011.

[Izo12] Viacheslav Izosimov. Qualification of Test Tools for Safety Critical Systems
with Fault Injection and a Monitor. EIS By Semcon AB, Stockholm, Sweden,
March 2012. URL: http://www.kth.se/polopoly fs/1.300633!/Menu/general/
column-content/attachment/EIS SlavaIzosimov.pdf, visited on July 16th
2013.

[Kru95] Philippe Kruchten. Architectural Blueprints – The ”4+1” View Model of
Software Architecture. In IEEE Software 12 (6), pages 42–50, 1995.

[Mat07] Mathworks. www.mathworks.com/matlabcentral/fileexchange/17291-fdep-a-
pedestrian-function-dependencies-finder, November 2007. Visited on Septem-
ber 11th 2013.

[RTC11] RTCA DO-178C: Software Considerations in Airborne Systems and Equip-
ment Certification. Standard, Radio Technical Commission for Aeronautics,
Washington DC, USA, December 2011.

[Sch11] Adam Schnellbach. Qualification of SW tools - Guideline. Magna Powertrain,
Lannach, Austria, December 2011.

[SIG10] Automotive SIG. Automotive SPICE R© Process Assessment Model. Guideline,
The SPICE User Group, May 2010.

[Som05] Stephane S. Some. Use Cases based Requirements Validation with Scenarios.
In Proceedings 13th IEEE International Conference on Requirements Engi-
neering (RE 2005), pages 465–466, 2005.

[Spo11] Gunther Spork. Efficient Requirements Management Considering Automotive
Standards: Best Practice Sharing of Mechatronic Engineering within MAGNA
Groups. Master’s thesis, Institute of Production Science and Management,
Graz University of Technology, 2011.

[Sys] Sparx Systems. http://www.sparxsystems.eu/resources/project-development-
with-uml-and-ea/. Visited on March 17th 2014.

BIBLIOGRAPHY 81

[WWI+12] Q. Wang, A. Wallin, V. Izosimov, U. Ingelsson, and Z. Peng. Test tool qualifi-
cation through fault injection. In 17th IEEE European Test Symposium (ETS),
2012.

	Introduction
	Motivation and objectives
	Outline

	Related work
	Software tool qualification within the automotive industry
	Evaluation
	Qualification Methods
	Required Tool Information for Software Tool Qualification

	Software tool qualification within other industrial sectors
	Generic requirements for electrical/electronic/programmable electronic safety-related systems
	Railway applications
	Nuclear power plants

	Existing methodologies for software tool qualification
	IEC 61508 Certification of a Code Generator
	Qualifying Software Tools According to ISO 26262
	Establishing confidence in the usage of software tools in accordance with ISO 26262
	Test tool qualification through fault injection

	Proposed qualification approach
	Definition of qualification methods for in-house developed software tools
	Application of the qualification methods
	Correlation with the Standard

	Qualification of the software tool ATool
	Tailoring of ISO 26262-6:2011
	Initiation of product development at the software level
	Specification of software safety requirements
	Software architectural design
	Software unit design and implementation
	Software unit testing
	Software integration and testing
	Verification of software safety requirements

	Specification of the qualification view model
	Premises
	Process
	Use cases
	Logical
	Development

	Validation and verification
	Code instrumentation
	Test suite
	Test result analysis
	Configuration and version management

	Conclusion and future work
	Conclusion
	Future work

	Abbreviations
	Bibliography

