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Abstract

In this thesis, we give a brief introduction to the topic of the fractional Laplacian and
present an analytical solution to the corresponding Dirichlet problem in the ball. All
the methods used to prove the result only make use of elementary methods, so no
pre-existing knowledge on the topic is necessary. We start by introducing the concept
of the fractional Laplacian and all the necessary techniques that we will make use of.
Next, we take functions that are well known from regular Laplacian analysis and rede-
fine them in the context of the fractional Laplacian. With these tools, we are able to
establish the main result, which can be found in Theorem [4.1] followed by an outlook
on how to further pursue the topic beyond the concepts of this thesis.

In dieser Arbeit werden wir den fraktionellen Laplace-Operator einfithren und eine
analytische Losung fiir das zugehorige Dirichlet-Problem im Ball présentieren. Wir
werden uns dabei auf elementare Techniken beschréanken, etwaiges Vorwissen zu diesem
Thema ist daher nicht notwendig. Nachdem wir uns mit dem Konzept des fraktionellen
Laplace-Operators vertraut gemacht haben, werden wir einige zusétzliche Konzepte
einfithren, die wir spéater benotigen werden. Danach werden wir einige Funktionen, die
aus der Analysis des reguliaren Laplace-Operators bereits bekannt sind, im Kontext des
fraktionellen Laplace-Operators definieren. Mit diesen Hilfsmitteln sind wir schliefSlich
in der Lage, das Hauptresultat, welches in Theorem formuliert wird, zu zeigen.
Abschlieflend geben wir einen Ausblick, wie die hier beschriebenen Konzepte und Ideen
itber den Umfang dieser Arbeit hinaus weiter vertieft werden kénnen.






Introduction

Over the last decade, the analysis of pseudo-differential equations involving the so-
called fractional Laplace operator (—A)® for s € (0,1) has received a lot of attention.
The applications for these kinds of equations are numerous; as a model for fractional
diffusion (see [5, 8, @, [19]) as well as an infinitesimal generator of Lévy processes (see
[13, 20]), the fractional Laplacian is used in various different topics such as electro-
magnetic fluids, ground-water solute transports, biology and finance.

In this thesis, we will consider the problem of analytically solving the equation

(—A)Yu=0

in the ball B,(0) for p > 0 with Dirichlet boundary conditions, understood in a suitable
sense.
We first point out that there are a multitude of different ways to approach introducing
(—A)® as a local operator, which are not necessarily equivalent with each other, as
is also shown in [I5]. The operator obtained by the approaches that we are pursuing
in this thesis is also referred to as Riesz fractional Laplacian or integrated fractional
Laplacian, other approaches yield the so-called spectral fractional Laplacian or the
regional fractional Laplacian. Since we will only deal with the integrated one in this
thesis, we will omit the prefix and simply refer to (—A)* as the fractional Laplacian
from now on. For a more broad introduction that showcases alternative definitions
for the global and local fractional Laplacian and the interplay between the resulting
operators, we refer to [0l (14} [15].
One of the essential differences between the Dirichlet problem involving the fractional
Laplacian as opposed to the regular Laplacian is that (—A)® is non-local. As can be
seen in [15], it is necessary to give boundary conditions not only on the sphere 05,(0),
but on the entire exterior space R"™\B,(0). So for the full problem, we consider the
equation

{(—A) u =0 %n B,(0) 0.1)

u = gin R"\B,(0)

for a sufficiently smooth given function g.

This thesis is structured as follows: In Chapter 1, we introduce some fundamental tools
that we require later on, Chapter 2 gives an introduction to the fractional Laplace
operator, showing off several equivalent definitions. Afterwards, in Chapter 3, we will
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take a look at several important functions known from regular Laplacian-analysis,
which we will then generalize in a way that allows them to be used in the framework
of the fractional Laplacian. The main result of this thesis is formulated in Theorem
[4.1] and its respective proof can be found in Chapter 4. We will see how the functions
introduced in the previous chapter are used to give an analytical solution to . As
an interesting side result, we will also obtain a way of analytically solving the global
fractional Poisson equation

(A =f (0.2)

for a sufficiently smooth function f, see Theorem

The content of this thesis follows the observations and ideas made by [2] and [7],
though we try to go a little more into detail on various statements and the respective
proofs.



1. Fundamental definitions and
concepts

For the entire thesis, let n € N be arbitrary but fixed.

Starting off, we establish various basic concepts that we are going to make use of later
on.

1.1. The Fourier Transform

One representation of the fractional Laplace operator, which we are going to use later,
relies on the concept of Fourier transformation. In order to give a proper definition,
we need the theorem of Plancherel as stated in [16, Theorem 3.12]:

Theorem 1.1 (Theorem of Plancherel). There is a unique operator F : L*(R™) —
L2(R™) with

<‘Ff7 'Fg>L2(R”) = <f7 g>L2(R”) vfa ge L2(Rn)7

such that

1 —i€-T
FNE = Gy | F)ee .

for f e LY(R") n L*(R™). It holds true that

(F ' N)@) = (FH(=2)
almost everywhere for all f € L*(R™).

The above setting is quite general, we will instead mostly work with the following
functional space:

Definition 1.2. The Schwartz space of rapidly decaying functions is defined as

S(R") = {f e C*(RY)

sup [z*Dsf(z)| < 0, Ya, [ € Ng} )

zeR”

with #*(R™) denoting the topological dual space of .7 (R").
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Remark 1.1. By equipping the Schwartz space with the family of seminorms

N L anp
ay = sup max |x°D"f(z

for every N € Ny, it becomes a locally convex topological space.

With this space, we can introduce the Fourier transform and its inverse in a well-
defined way, see [16, Chapter 3] for details.

Definition 1.3. For any f € Z(R™), we define the Fourier transform as

) aTZ - 1 —i€x
F6) = (F1O = gz | H)e e
and the inverse Fourier transform as

Fla) = (F @) = g | F©e

Remark 1.2. By substituting € = 0 and x = 0 in the respective definitions above, we
obtain the identities

g ), Tz = f0)
e |, e = 10)

1.2. The Gamma- and Beta-function

In order to solve certain integrals later on, we will need the concept of the gamma and
beta functions and their respective properties. A more detailed introduction to the
topic containing all the results below can be found in [18, Chapter 2]

Definition 1.4. The gamma function is defined for x € R as

e}
[(x) = J t" e tdt.
0

We give some elementary properties of the gamma function.
Proposition 1.5. The following identities hold:
I'(n) = (n—1)! for any n e N,
'ty = ¢t—1)I'(t—1) foranyt >0,

212 INCE
2 r = M for any t > 0,

I'(t) I'(2t)
I(s)'(l—-s) = Sinﬁws) for any s € (0, 1),
F(% = S)F(% +s) = COS7(T7TS) for any s € (0, 1).
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Definition 1.6. The Beta function is defined for any z,y > 0 as

B(z,y) :ZJ

—dt
o (L+t)=ty

The next proposition will establish a connection between the beta and the gamma
function.

Q0 txfl

Proposition 1.7. The beta function can equivalently be written as

B(x,y) = fo "1 — ) dt = —I;((?i(;/))

for any x,y > 0, see [12, page 908] for further details

1.3. Circle inversion with the center point z

An essential tool for transforming certain integrals is the so-called circle inversion. In
the following, let » > 0 and zo € B,.(0).

Definition 1.8. We define the inversion of a point x € R"\{xo} with center xq as

Koo (x) == 10 — ———— (v — x0). (1.1)

Figure 1.1.: Inversion of a point x with center x,

To obtain a better understanding on how the above transformation works, we look at
the following two observations.
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Remark 1.3. K., is an involution on R™"\{xo}. For any x € R™\{zo}, the points
xo, x, Ko (x) lie on one line, xy separates x and K,,(x) and the identity

20| + |& — 0| | Ky () — 20| = 2 (1.2)
holds.

Proof.

It is easy to see that the mapping K, is bijective. Now let x € R™\{z(} be arbitrary
and x* = K, (z). From the definition of K, it is obvious that the three points lie on
one line. To see that z( separates  and z*, we need to check that |x — zo| < |z* — x|
and |z* — x| < |2* — 2| hold. Straightforward estimation yields

e P r2 — |zol?
ool < (14 20 o) = |- ) - T )
|z = 0| |z — o
2 — |zo|
= Io—ﬁ(aj—xo)—x 2’1’*—1‘|
— T
as well as
2 — |zo|? 2 — |z
’l’*—xo|=ﬁx—$o,<<1+ﬁ |z — x| = |2* — |.
— T — T

Using the definition of K, we can easily prove identity (1.2)):

r x
]a:0|2 + |x* — x| |x — x| = ]x0|2 + |xg — | 0|2 (x — x0) — o | — z0|

|z — 2

r x
= |z |2+ | ’$0||2 |z av0|2 =72
— Xy
Finally, by using ((1.2)), we get
r? — |950|2
(Kl“o OKxo)(x) = Kxo(x*) = To — |LL’* _.TO‘Q(J;* 330)

showing that K, is also an involution. ]

Proposition 1.9. Let z* and y* be the inversions of x € R™"\{xo} and y € R™\{xo}
respectively. Then



1.3. Circle inversion with the center point xg 13

1. If x € 0B,(0), then z* € 0B,(0),
2. If x € B.(0), then z* € R"\0B,(0) and vice versa,
3.

|z — x| 1

(2 = |zoP) (2 = [a]®) |2 — 12

(1.3)

(DR, )] = () (14

|z — x|

where DK, (x) denotes the Jacobian of K, evaluated at x,

|~T—y|
ZL’*—y* = 7’2—1‘ 2 . 15
| | ( ’0|)|$—$0||y—9€0| ( )

Proof.

For the sake of simplicity and without loss of generality, we choose the center of the
point inversion at zero, meaning xo = 0. The general case can be proven by using the
Pythagorean theorem, see e.g. [7, Proposition A.3].

1. Let z € 0B,(0), meaning |x| = r. Then we have

2

2] = | =g = T =
|| ]
and therefore 2* € 0B,.(0).
2. For x € B,(0) we have |z| < r, which yields
2 2
|z*| = x_IZx = ?’ >

Similarly, it can be shown that if x € R"\B,, then z* € B,.
3. By using (|1.2), we can calculate

1 I R 1k

|:L.*|2 — 2 - ﬁ — 2 o rd—r2|z)|? o 7“2(7“2 _ |$|2)’

which shows identity (1.3)).
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4. First, we evaluate the Jacobian of Kj:

202 — |z]* 2myay ) 2012y,
2 2z1x 222 — |z|” ... 2291
D) = oy | B0 Bl )
|| : . :
2012y, 2T9%), 272 — |J;\2
where x = (21, 2s,...,2,)7 € R". Since K is invariant under rotation, we can
assume without loss of generality that © = |z|e;, which simplifies the Jacobian
to
> 0 ... 0
2o =z ... 0
DKo(Z') = T 1 . . . )
x| : - :
0 0 |z|?
yielding
r2n 1 ,r,Qn |l'*|n
det(DKy(x))| = —1)" 2P = = :
et(DEoe)] = | (1) | = e = o

,Yn) and compute

5. We write z = (21,...,2,) and y = (y1,. ..

7,.2

x ) 2
——5|=— syl -y

[

i

Z 2]yl*

2

lz* — |

yl? = yilaf?)

— 2z 2 [y|? + 2 |2]*)

Ifcl '\ S
r 2, 14 2, 2 = 2, 4
= ——q /Pyt = 202 [y Y ways + [yl |
lz|” |y i=1
=23 gt
= Yyl — TiYi T |T
|| |y Pt
_ r2 i (ZE . y)2 _ T2’x - y|
|y = 2| y|

proving the last identity.



2. The fractional Laplacian and its
framework

From now on, for this and the upcoming chapters, let s € (0, 1) be arbitrary but fixed.

As we pointed out in the introduction, there are various different ways to define the
fractional Laplace operator. Our first definition will work via the Cauchy principal
value integral:

Definition 2.1. Let u € ./ (R™). Then we define

(—A)Y’u(x) := C(n,s) p.v.f M}ffggdy (2.1)
R |2 =y
with
_2%T(% +s)
C(n,s) = m (2.2)
Remark 2.1.

e The singularity in the integral in (2.1)) is in general not integrable, which means
it has to be understood in the sense of a Cauchy principal value, namely

p-v. JR Mdy = lim M

" |.T _ y|n+23 p—0 R\ B, () |ZL’ . y|n+25
e The classical Laplacian can be expressed in a similar way, see [0, page 9.

By shifting the singularity in the above integral from an arbitrary point x to the origin
(see [I7, Lemma 3.2] for a detailed proof), we obtain the following identity:

Proposition 2.2. Let (—=A)® be the fractional Laplacian defined by (2.1) and let
ue . (R"). Then we have

2u(z) —u(r +y) —ulr —y)
ly|"

dy. (2.3)

15
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The definition of the fractional Laplacian via (2.3]) is motivated by the mathematical
problem of modeling a random walk with arbitrarily long jumps, see [20].

Additionally, one can show that the fractional Laplacian can be equivalently defined
via Fourier transformation.

Proposition 2.3. Let (—A)® be the fractional Laplacian defined by (2.1) and let
ue (R"). Then we have

(=A)u(z) = F7H (€ a(¢)) (2). (2.4)

We refer to [0, Lemma 3.1.1] for the proof. The constant C'(n,s) was chosen to guar-
antee the equivalencies between (2.1)), (2.3) and (2.4), as can also be seen in [6].

Notice that this definition gives a visible connection between the regular and the
fractional Laplacian in the following way:

Remark 2.2. Recall that for ue #(R"™), the classical Laplacian can be written as

~Bule) = ~AEF @) = A (g | aOed)

— G | P e = F (e )

which makes (—A)* a natural generalization of the classical Laplacian with the limit
cases

lim(—A)’u=—-Au and lim(—A)’u = u,

s—1 s—0

see [177] for further details about the subject.

We underline that only functions defined on the whole space R™ can be applied to the
fractional Laplacian, therefore the problem (00.1)) has to be understood in the following
way: For a function u in the ball B,, p > 0, we define the following extension:

(2) = {u(m) for x € B,(0)
0 for x € R"\B,(0).

s~

Whenever we write (—A)*u for such a function, it will be understood as (—A)*u.

The next regularity result will be useful later on. The respective proof can be found
in [19, Proposition 2.1.7].
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Proposition 2.4. Let € > 0 and u € C%**. Then the mapping

R" —- R",

r — (=A)u(z) (2.5)
15 continuous.

As is the case of many other differential equations, it will be useful to define a solution
to the problem in a weak sense. To do so, we introduce additional weighted functional
spaces.

Definition 2.5. For s € (0,1), we define the weighted L' space as

LIR") :=Jue Ll (R" J de<o®},
s( ) { loc( ) - 1+ ‘x’nJrZs

along with the weighted L*-norm

u ny s = — _dx
|| ||L§(R ) JI\RTL 1 |x|ﬂ+28

Remark 2.3. It is possible to allow the fractional Laplacian to be defined for a
broader set of functions. Indeed, for any ¢ > 0 and v € R", the term (—A)*u(x),
as given by (2.1), is well defined at x for any u € LL(R™) that is either C**5*¢
for s < 1 or CY*T71 for s = £ in a neighborhood of x. A proof can be found
in [19, Proposition 2.1.4].

Definition 2.6. For any s € (0, 1), the weighted Schwartz space is defined as

zeR™

AR = { e 0@

Va e Ny, sup {(1 + |z[*") |D*f(z)|} < oo} :

with ZF(R™) denoting the topological dual space of .75(R™).

Remark 2.4. By equipping the weighted Schwartz space with the family of seminorms

(115 gy == sup (1 + [a"**) |D* f ()]

zeR™

for every o € Nij it becomes a locally convex topological space.

In order to establish a well-defined framework for a weak solution, we need the following
statement:

Lemma 2.7. Let u e ./ (R™). Then (—A)°u € .Z,(R").
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Proof.
We will prove the statement via induction over |a| for a € Njj. Starting with the basis,
let @ = 0, which means we need to prove

(1+ 2" ") |[(=A)*u(x)| < o
for any x € R™. This follows by showing that for any fixed z € R™\ B;(0), the bound

(—A)*u(w)| < —m

~ ’I_|n+25
holds. To see this, we first use a Taylor expansion of u to obtain

w(e ) = ul@) + Vul@) oy T D) -y

u(e—y) = ula) = Vul@) -y + oy Dul@) -y

where D?u(§;) is the Hessian matrix of u evaluated at & € B, (x) for i € {1,2}. We
can now estimate

[(=A) u(z)]
<J |2U($)—U(l’+y)—U(I—y)|dy+2f |U($)—U(I+y)|dy
<! Jy "+ I
|D2u(§)| 1 2n+2s+1 f
< — + 2 |u(z dy + u(z —y)| dy
Jyoi e 2o | gt T [ ko=
2n+25+1
< ) |D*u(€)| + ) Ju(z)| + WHUHLl(Rn)
n+2s n+2 n+2 n+2s+1
y (|2l (1 +[¢]) 2 2 (1+ [z]) 2
<) (H) T | D?u(€)| + Cg,lw| (2)] WHUHD(Rn)a

where § € Bjy(x). We see that

> x| = |y = 2] — = = =

and therefore
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which ultimately yields
|(=A) u(z)]

1
< R (Cnl,?szn+28(1 + [61)"* [D*u(€)| + ngg,?s(l +2)" 7 Ju(z)] + 2”+23+1||u||L1(Rn))

~
Cn,s

S (s%p {4120 (D2} + sup {(1+[2)"* u()]} + HuHLl(R"))
ZER™ Z€R™

_ Cngs
- |x|n+2s7

where we have made use of the fact that u € ./ (R").
With the basis proven, we now assume that

(1 + [2""*) |D(=A)*u(z)| < 0

for a fixed o € Nj and let k € {1,...n} be also fixed. Since dyu € . (R"), this estimate
also holds true for dyu. Additionally, by making use of (2.4]), we have that

On(=A)'u(r) = 0n T (17 0() (0) = F7" (i €17 () ()
= 7 (16 0u()) (@) = (~A) 2y u(x),
which results in
(1+ \:c]””s) 0, D (—A)u(z)| = (1+ \:c]””s) |D*(—A)?Oru(z)| < o0,
finishing the induction. L]

The Poisson problem ((0.2)), which we will solve along the main result in Chapter
4, can now be considered in a distributional sense.

Definition 2.8. Let f € /*(R™). We say that u € L*(R") is a solution of (0.2)) in
the distributional sense if

(u, (=A)¢) = . f(@)e(z)dz  for any ¢ € S (R"),

where -, -) is the duality pairing of .ZF(R™) and Z5(R™).
In addition, we want to keep the following estimate in mind:

Remark 2.5. For any u € L} (R") and v € .,(R"), we have

ol < [ @l b@ldr= [ DL @ o) o) de

1+ ||+
u(z)|
< su 1+ |z|™ ) Ju(x —l dx
xeRIz{( | | )| ( )|} .. 1+|l,|n+23

[U]gﬂs(Rn)HU Li(Rr) <






3. Important functions and
properties

In this chapter we are going to give an introduction to three functions along with some
of their most important properties. All the gathered results are going to be applied in
Chapter 4.

3.1. The s-mean value property

The first function that we want to discuss will be a very useful tool in showing if a
function is s-harmonic.

Definition 3.1. For any p > 0 fized, we define

2s

p —_—
c(n,s)  — for x € R™\B,(0)
Ap(r) = 2" (| = p?)° ’
0 for x € B,(0),
for all x € R™, where
sin(ms)I'(%)
c(n, s) = # (3.1)

1s a dimensional constant.

The choice of the constant ¢(n, s) will become apparent in the following normalization
property.

Lemma 3.2. For any p > 0, we have

J Ay(z)dx = 1. (3.2)
lz[=p

21
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Proof.
We first use the transformation r = ®(x) := |z| to change to polar coordinates
~ pQS
J Ay(z)dr = c(n,s) TR
jal>p Jafzp |2[" ([2]” = p?)*
(~C 2s
p 1
= . d
), meE =y o)
[ 2s S
= ¢(n,s) P L
rn 7”2 —p ) rl-n

Jp

= nsSnlj dr,

where S,,_; is the measure of the (n — 1)-dimensional unit sphere. By plugging in the
values of both S,,_; and ¢(n, s), we further get

si L2y 272 (® 2s
/> e @) J, r(r?=p?)
2 si @ 1
_ sm(ws)J . r
T p T(5— 1)
Substituting ¢ = % — 1 along with (A.3) yields

sin(ms) foo 1
Ay(z)dx = dy =1
Jx|2p p( ) ™ 0 (t+1)t5 y
[

One might recall that a function is harmonic with respect to the regular Laplacian if
and only if the so-called mean value property holds true. We now want to introduce a
suitable counterpart for the fractional Laplacian.

Definition 3.3. Let xz € R™ be arbitrary but fived and u € LL(R™) be continuous in a
neighborhood of x. We say u has the s-mean value property at x if

u(z) = (A, = u) ()

holds for any p > 0 arbitrarily small. If this property holds true for any x € Q) < R",
then w is said to have the s-mean value property in Q.

The upcoming theorem is vital since it shows us that a sufficiently smooth function
that has the s-mean value property, is also s-harmonic, which will give us a great
alternative method for showing s-harmonicity of a function.

Theorem 3.4. Let € > 0 and x € R™. In addition, let u € L{(R™) and the following
hold:
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1. uwe C%** in a neighborhood of x € R™ for s < %,
2. u e CH271¢ in a neighborhood of v € R™ for s > %
If u has the s-mean value property at x, then we have
(—A)*u(x) = 0.
Proof.

Let x € R™ and p > 0 be arbitrarily small. Then the s-mean value property of u along

with yields
[ vy,
\

uizp [yI" ([y)> = p2)"

_ 1 u(x) J re dy — J p2s u(r —y)dy
P> wize [yl (lyl* = p?)” wize [yl" (Jy1* = p?)°

S - (u@) [ A - j RCOICE y)dy)
1

= ()% (u(z) — (A, = u)(x)) = 0.
If we can show
lim

P20 Jly1=p |y

then we’re done since

u(@) —ulz—y) J u(z) —u(z —y)
y—hr% d

e wiz Lyl (Jy* = p?)"

(CAY uz) = Clns)lim [ YO ==y,

P20 lylzp |?J|n+28
= C(n,s)lim u(i) — Z(x — ys)
=0tz lyl” (ly” = 0?)
Let R > pv/2 be fixed. We split the right hand side of (3.3)) into two parts:
u(z) —u(z —y)
n 2 2 Sd
wize [y[" (lyI” = p?)
B ST P B
n 2 n 2
wi=r [y (lyI” — p?) o<ti<r [y[" (lyI" = r?)
=: I,(z) + I,(x).

We need to compute

. u(z) —u(z —y)
lim I,(z) = J P o dy,
p=0 " >R ly"**

lim Tp(a:) = lim uz) = ;ﬂfi —Y) Yy
p—0 p—0 p<\y|<R ’y‘

(3.4)

(3.5)
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to prove identity ([3.3). For |y| = R > pv/2 > 0, using |y|> > 2p%, we can estimate

> 1 1
2 2 R 1
lyl” —p* 1 1-3

lyl* 2

which implies
1 - 2°
s 25"
(lyl* =02

This, along with the fact that v € L!(R"), allows us to obtain

ul@) —uw = y) o ul@) = u@ =yl ¢ e o), ay).
" (Isf* — ¢?) ™

The dominated convergence theorem now proves ([3.4).
For p < |y| < R we define

e

1 1
= u\xr) —ulxr — s 2s d
L ) =) (W AT ) y

and claim that lim, o J,(x) = 0. To show this, we consider two cases: For s < %, we
use that u € C%*%¢ to estimate

1 1
)| < u(x) —u(r — = — 5 | d
@ < [ ) y>|<,y‘n(,y‘2_p2) e ) y

1 1
< CJ |y|28+€ n s ni2s dy
p<lyl<R " (jyl* = p2)"  |y["

For s > 1/2 and u € C1?*717¢ we use that

dt

u@) - u(e —y) — y - Vulz)| = \—foiu@—w)dt—y-ww)

fl y (Vu(x —ty) — Vu(z)) dt‘

0

1
< \y!f |Vu(z — ty) — Vu(x)| dt
0

< ose)
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y-Vu(z)

Miis are odd functions and hence

and

This, together with the fact that %

vanish when integrated on the symmetrical domain Bg\B,, yields

) u(e) —uz—y)  ulz) - ulz—y)
(@) = j sy

<wi<r [yI" (lyI* = p2)° ly

" (Jy* = p?)° ly|"

1 1
< os9) f e [ — S
p<lyl<R ™ (Jy* = p2)"  y™*

Since we end up with the same estimate for both s < 1/2 and s > 1/2, we obtain that

_ J w(z) —u(z—y) —y-Vulz) u(x) —u(z—y) —y-VU(x)dy
p<lyl<R

2s 1 1
@l < e | P o | dy
p<|yl<R Y| (|y| -p ) Y

holds for all s € (0,1). By passing to polar coordinates and making the change of
variables ¢ := r/p, we can further estimate

( 25+ 1 1 1
J < y S, e s — "d
| Jp()] c(n, s, ) I r (7’” (r2 — p2) Tn+2s) r r
rR 2s
_ 2s+¢ r 1
= c(n,s,¢) ), r (7“1*25 2 — 2 7~1+23> dr
rR 1 7,,25
= ¢(n,s,¢) ), ((r2 — 1) dr
e 1 t 2s
= ¢(n,s,¢) — ( (2'0) 5~ 1) rdt
Ji ()= \((tp)* — p?)
71 $2s
= ¢(n, s,e),oej1 - ((t2 1y 1) pdt
R 1 t s t S
= € : - 1 dt
s [ ((755) (7))
R 1 ¢ s
p
< € —— ] —1)dt
o () )
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The first integral is finite since

vz t\* V2
f ) —1)dt < J ! ! S—i dt
L =\ -1 L e \ (= 1) ¢

N V2o 1
< ¢(n,s) —— — —dt < .
1

For the second integral, we use that for all ¢ > v/2

t \° s
) - 1< —
(t_1> t<1_L)S+1
\/7

which yields

o1 t\* © 1

P
lim ((—) - 1> dt < ¢(s) J dt < oo.
p—0 J 5t t—1 N

With this we have shown the claim lim, o J,(x) = 0, which proves (3.5) and thus
(3.3), concluding the proof of the theorem. O

3.2. The Poisson Kernel

The Poisson Kernel is a well-known tool in potential theory to analytically solve the
Laplace equation with Dirichlet boundary conditions in the ball. We will again give a
more generalized definition that works for the context of the fractional Laplacian.

Definition 3.5. Let p > 0, x € B,(0) and y € R™\B,(0). We define the Poisson-

Kernel P, by
P,(z,y) c(n, s) 102 - |:L”2 ) (3.6)
x,y) = .
AN

where c(n, s) is the same dimensional constant chosen in (3.1)).

As it was the case with A, in the last section, the constant c(n, s) was chosen for the
sake of normalization.

Lemma 3.6. For any p > 0 and x € B,(0), we have

J' N P,(z,y)dy = 1. (3.7)
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Proof.

In order to compute the integral, we will use hyperspherical coordinates with radius

r > 0 and angles ¢1 € [0,27], ¢9,...¢,_1 € [0,7]. Any y € R™\B,(0) can then be
written as
Yo = 1cos(Pn 1)
Yp—1 = T Sin(¢n—1) COS(¢n—2)
Yn—2 = T Sin(¢n—1) Sin(¢n—2) COS(¢n—3)

yo = rsin(p,_1)sin(@n_o)sin(¢,_3) ... sin(¢q) cos(¢y)
y1 = rsin(¢,_1)sin(dn_o)sin(¢,_3) ... sin(¢q)sin(epy),

with the absolute value of the Jacobian given by

oy:) T
det Yol = ] sinf (orga)
‘ 5(T’ ¢J) ]!_[1 ’
Since x € B,(0), we can make use of the spherical symmetry of B,(0), so we can
assume without loss of generality that © = |z|e,. Then by the law of cosines, the

identity
|z — y|2 = |x\2 + 7% —2r |z cos ¢n_1

holds, see for an illustration.

Rnfl

Figure 3.1.: Law of Cosines in R"
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Also note that we have |y| = r, which can easily be seen by factorizing and making
use of the Pythagorean trigonometric identity. Using the above change of coordinates,
we further obtain

j Py(z,y)dy
lyl=p

) () |

wze (Jy° = p2) |z — |

c(n, s) (p* — |2|) J f%f f - IHZ 2 sin®(¢p41)dpn 1...dprdr

|x| + r2 — 2r|z| cos (;Sn_l)% '

We rename the integration variables and further calculate
f Py(x, y)dy
ly[=p

ame(n, s)(p? — |2]°) ﬁj sin ¢d¢ff "2 ¢ dedr

|x| + 72— 2r |z| cos ¢)

st G Tl o[ [ e e

|.Z" — ’ ‘ _ 2rcos¢ %
|$\2 | ||

V|3

Substituting 7 = i| and p = ﬁ yields

|z
f P,(z,y)dy
lyl=p

n—3 n"- 2
, iy \ 6 do o] d7
me(n, 8) ,0 Pl IJ s g gbf J |z|" ( 72 — 27 cos @)

— 2re(n, s) (7 — 1) Hjsmkqbdgbf - J Hdi‘w’ .

— 2Fcos ¢)?

w3

Renaming 7 and p back to r and p, respectively, further results in

f P,(z,y)dy
lyl=p

n—3 g 0 n—1 ™ 1 n72
} N PR ° g
2mc(n, s) (p* — 1) IHL sin” ¢ ¢L (r2 — p?)° (L (14 r2—2rcos <;5) (b)

now with 7 > 1 and p > 1. We can now use (A.1)), (A.4) and (A.5) along with the
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definition of ¢(n, s) from (3.1) to finally calculate

JI | Py(z, y)dy
yl=p
n—3 00 n—1 u
_ 2 1\ -k r 1 . p—2
= 27c(n, s)(p* — 1) IHJ; sin” ¢ dqu 2= ) (= Dy (L sin"™“ ¢ dqb)dr

o (T ) (00 )

3.3. The fundamental solution

The third and last function that we want to discuss in the framework of the fractional
Laplace operator is the fundamental solution. As we are going to see, the interplay
between this function and A, as well as P, yields a handful of useful properties.

Definition 3.7. Let n # 2s. Then for any x € R™\{0}, the fundamental solution is
defined by

va) = 0,
where
_ PG -9
a(n,s) := WP(S) (3.8)

Remark 3.1. The case n = 2s is only possible, if n =1 and s = % For this specific
case, we define the fundamental solution as

W(r) = a(1, ) log(|)
with

1 1
a(l, 5) = —;

We recognize that ¥ is a weighted L!-function.
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Lemma 3.8. For anyn € N and s € (0,1), we have ¥ € LL(R™).

Proof.
It is easy to see that W e L], (R"). Now let n # 2s. We split the integral

loc
‘If 2s—n
J —‘ (le%dx = a(n, S)J —m s d
re 14 || re (1 + [2["77)

into two parts:

|V ()] J " J "
———dz = a n,s ———dz + ————dx
J;Rn 1 + |x|n+25 ( ) 2|<1 1 + |x’n+25 2|>1 1 + |x‘n+2s
=: a(n,s) (I + I5) .

n+2s

For the first integral, we use the estimate 1+ |z| > 1 and pass to polar coordinates

to get
2s—n
1
jaj<1 1 + [z jal<1 |]

by making use of Lemma . For the second integral, the estimate 1+|z[*"** > |z|*™**
along with a polar transformation an again Lemma [A ] yields

I J ™" d <J L d f L i < oo
5 = ———dz ——— dx = ——dx :
jafz1 1+ [ T e P =1 "

For the case n = 2s = 1, using similar techniques yields

[y, _ L st

1+ |z e 1+ |z

1 ! “ 1

_ 1 QJ IOg(x)|dx+2J log()] ,
T o 1+ a2 1 1+ a2
1 ! “

< —<2J |log(:p)|dx+2J ’Og—(f)‘d:v)
T 0 x

1
1
= —(242) <.

N

Just as for the regular Laplacian, a global solution for the problem

() = f

for a sufficiently smooth function f can be established via convolution with W. The
next lemma will establish that the fractional Laplacian can be applied to the resulting
function .
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Lemma 3.9. Let f € C.(R™) be a continuous function with compact support, then
f=UeLl(R").

Proof.
Since f € C.(R™), there exists R > 0 such that supp f < Bg(0). Now with the use of
the Fubini Theorem, we can estimate

W) o ( ) )
Luﬂﬂ””sdm s fRn1+|x\"+25 L<R|f(y)|!\1’(:c y)ldy ) dx
Wz —y)l| )

J;y|<1'% ’f(y)| (J;Rn 1+ |x|n+23dx dy
Y@ —y)| )
lergery | (] L) ay

= 1l j L(y) + L(y)dy,

lyl<R

N

with

() = fl @ =yl 4,

yl<2r 1+ ||
\I} _
f U (z —y)| i
|

JI>2R 1+ |x‘n+25

L(y) =

The usage of the Fubini Theorem is justified since we are going to show that the above
term is finite.
We will focus on the first integral. For n # 2s, we can estimate

1
iy = ats) [ (] S —
L|<R i<k \Jpei<2r [z — y[" > (1 + ||"*)
r 1
< a(n,s)f ( ﬂdx> dy
i<k \Jjz|<2R [T — Y|
r 1
i<k \Jjz+y|<2R |T|
r 1
(I(?’L, S)J ( md%) dy
i<k \Jjz|<2R+]y |T]|
2R+y| ,’,,n—l
= Cn,sf J —-dr | dy
lyl<k \Jo r
2R+y| 1 c
= Cps dr ) dy = ”J 2R + |y))* dy
L,|<R (Jo i ) 28 Jy<r

R
= E/n,sj (2R + p)28 pnildp < 0,
0

N
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while for n = 2s = 1 we can use the triangle inequality to get

f o = [ (et

R /s (2R 2R
< J (J llog(|z| + R) d:v) dy = QRJ llog(z + R)| dx < co.

-R —2R —2R

2R
f log (|| + |y|>|d:v) dy

2R

For the second integral, we will have to treat 3 separate cases. For n > 2s, we use the
reverse triangle inequality and the fact that 1+ |z|""* > |2|"** to obtain

1
Ldy = |a(ns)| | L S
flyl<R i<k \J&/Baro) |2 — y[" 7 (1 + |27

1
<ttt [ (] e ) dy
wl<k \JR/Bar() (|| = [y[)" ™ [2]

R 0 7,,n—1 1
= Cps p— dr | p" “dp
fo <LR (r — p)" 2 pnt2s >

R 1 8} 1

< Cps " d J — dr

' L P P or (r— R)" 28 1425

@ 1

< C"’S’RJ s ~dr
oR (T . R) 2 (T' . R)1+2
i

= Cp,sR —ndr < 00.
9R (T _ R) +1

For 2s > n = 1, we can again use the triangle inequality to get

f o —y* !
L(y)dy = |a(n,s J j ——;dr | dy
JR 2(9) ) z|=2r 1+ |:17|1Jr2
25—1
a(n, s |f f (lz] +1’ng dx | dy
jwlz2r 2]
R 0 25—1
_ En,sf J RN
o \Jer 777
~ * 1 R 2s5—1
= Cns o (r+p)* " dp)dr<oo.

A
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And in the case n = 2s = 1 we can estimate

R R log(|x —
wtf L(y)dy = Jw (J~ L_gﬁL__ﬁngdx) dy
-R —rR \Jjg|=2r 1+ ||

R
< [U([ | lestelruily),
—r \Jjz|>2R ||

1 “ Jlog(t
o MlElrRl, [ lesten,
|z|=2R |$| 2R t

In any case, we have shown that there exists a constant ¢, s r > 0 such that

\[ (f = ¥)(z)

dr < ¢, o (eny << 0O 3.9
o1+ ‘x|n+23 ; ,RHfHL (R™) ( )

holds, which proves f =W e LI(R"™). ]

Another fundamental property motivating the definition of W is the following:

Theorem 3.10. In the distributional sense, we have
(—A)" ¥ = dy, (3.10)
where &g is the Dirac delta centered at zero.

Proof.
See Chapter 4, page 46. L]

With the basic framework of U established, we will now focus on the important inter-
play between the fundamental solution and the two integral kernels A, and FP,.

Lemma 3.11. For any p > 0 and any v € R"\B,(0) we have

W(a) - fl Ay (3.11)

Proof.
Let p > 0 and = € R"\B,(0) be arbitrary but fixed. Now we first consider the case
n # 2s. Plugging in the definitions of the fundamental solution and A,, we get

2 ° 1 1
[ aee—par=amseons [ (L)
lyl=p lyl=p ’y| —p |:c—y| ’y|

Before we continue with the above term, we will focus solely on the integrand. For
any y € R"\B,(0), we set y* = Ky(y) as well as z* := Ky(x), where K is the point
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inversion at zero as defined in . From Proposmon we know that 2*, y* € B,(0),

and by using . ) and ({ . . ) and then again , we can calculate
2 s
p 1 1 -
(s ) e (et(DE)] )
yl" = p*/ | ]

x —yl
B P> ° 1 1
- (IyIQ—/ﬂ) z— g™ [
B ! 1
- <p2—\y*!2> oz —y[" 7y
_ ( Pl )( s ) 1
P2 — > ) \lzllyllz* —y*| ly*["

B 1 1 ( pg )7123
"7 (0% = 1y* ) o =y \ylly?]
1 1

"0 = y]?) | — |

|I| n—2s°
Using this, we can simplify the above integral using a change of variables given by the
point inversion transformation and obtain

a(n,s)c(n, s 1 .
A -y = IRy
1yl ] wri<p (P2 = y*[°) % —y*|

a(n, s)

nl2s = \I/(I) )

]

where we have also used identity (A.6)) at the end. For the case n = 2s = 1, assuming
without the loss of generality that p = 1, we need to calculate

J'NAp(y)\D( J)dy = 1 fl 10g(|$—y| log( Iw—yl

vzt [yl A/ y® — Wizt y2, /1 — L

We substitute u := % and v = i and obtain

1 log }l_l{
|y|>1A ( ) (I'—y)dy - _7T2 . v_2 1—'[}2 U2
1 1 log(} ‘)

= — ——"dv
-1 \/1—1)2

o [ o= gl + b,
2 1 v1 — 2
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To solve these integrals, we use (A.2)) and the fact that |u| < 1 to finally get
1

! 1
jy>1 A, (¥ (x—y)dy = = <—7rlog(2) + mlog(2) + log(|z]) » ﬁdv)

= —%log(m)w = —%10g(|$|) = U(z).

On the other hand, we get the following identity for the Poisson kernel:

Lemma 3.12. For any p > 0, let x € B,(0) be fized. Then for any z € R"\B,(0), the
equality

V-2 = | e )W)y (3.12)

holds.

Proof.

Let p > 0 and both x € B,(0) and z € R™\B,(0) be arbitrary but fixed. We again first
consider the case n # 2s. Plugging in the definitions of the fundamental solution and
the Poisson kernel, we obtain

2 2\ ° 25—n
— |z —z
J P,(z,y)V(y — 2)dy = a(n, s)c(n, S)J (p 5 | ’2> v | —dy.
Iyl >p Wiz \ Jy|” = p |z —yl

Starting with focusing on the ﬁrst integrand, we set y = K, (y) as well as z* := K,(z),
where K, is deﬁned as in From Proposition we know that z*,y* € B,(0),

and by using . . ) and ( . we can calculate
p* — |xo| 1 1 _
( 2 ) n—2s _ y’n (|det(DKZ(y))‘) '

> =p? ) ly—z"""

(AP 1 1
> =p2 ) ly— =" ly* ="
2 s
_ (p* - |a:|2) 1 1
ly—” (02 = ly**) ) |y —=2""%ly* —af"

s n—2s
(=l P = laf |
p* — |y*|? ly — ||z — x| Jy* — 2*| ly* — |

n—2s
_ 1 1 pr— x|’
2 — 2" (02 — |y ?) [y* — 2" \ |y — [ |y* — 2]
1 1

2 —a|" 2 (p2 = |y ?) fyr — 2"
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Applying a change of variables and using (|A.6|) yields

fR Py, 9)U(z — y)dy

"\B,(0)
a(n,s)c(n, s 1 .
= ( ) 57,—28) J 2 212\ |, % % nf2sdy
|2 — 2 wr<p (0% = [y*°) " ly* — 2*]
= —a(n, fLZ% = U(z — 2).
|z — 2|

For the case n = 2s = 1, we need to calculate

L[ log(ly—2) [1—a?
Py y)U(y — 2)dy = —— j a.
f|y>1 g us ly|=1 ly — y? —1

We substitute u := % and v := =L and obtain

z— y—x

f' . Py(z,y)¥(y — z)dy

10 o vrg—1  uwe —1 1— a3 1 o
- 2 8 _ _ (vzo—1)2—(v—x0) —
™ J lv|<1 (% Zo u Zo 0202 (% Zo

1 [ 10g<v—u—x3(v—u)

lv]<1

1 v
=—— log
™ J|<1

VUV — X
1 f‘

2
™ Jpl<1

3
[\]
o

[

By observing that |u| < 1 as well as |z¢| < 1, and applying (A.2]), we finally get

1 1
f|y|>1 P,(z,y)V(y — z)dy = —ﬁ(—wlog@) + mlog(2) + log(|x — z|) L)'Q \/1—_71}2&))
1

1
z—plogﬂm —z))m = —;log(|m —z|) =¥(z — 2).



4. An analytical solution in the ball

Now that all the necessary concepts have been introduced, we are able to formulate
the main theorem of this thesis:

Theorem 4.1. Let p > 0, g € LY(R") n C(R™) and P, be the Poisson kernel defined
by (3.6). Then the function

4y (z) = Lw Py(x,y)g(y)dy  if |z| <p
g9(x) if |z] =p

15 the unique pointwise continuous solution of the problem

(—A)’u =0 1in B,(0),
{ u =g in R™\B,(0). (4.1)

Before we are able to prove this formula, a few additional statements are necessary.
Starting off, the following proposition shows how the Fourier transform of the funda-
mental solution can be expressed.

Proposition 4.2. Let n > 2s, let g € C(R") n LY(R") with § € Ss(R"). Then the
equality

(2m) J R :f 9(@) 4. (4.2)

2s
R ||
holds, where ¥ is the fundamental solution given by Definition [3.7.

Proof.

We will start by showing that identiy (£.2)) is indeed well-defined. From Lemma [3.8]
we know that ¥ e L!(R"), which shows that the left hand side of (4.2) is finite thanks
to Remark [2.5] The right hand side is also finite since

J \g(SZZIdx _ J |g(~2!dm+f \g(ngIdw
rr |7 Bi(0) |7] wl>1 ||

1
< swp @) | e+ f l9(a)] da
2€B1(0) Bi(0) || jo[>1
< Cns sup |g(@)] + (9]l i ey < 00
xEB1(0)

37
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by Lemma [A.1] Next, we define

i(n,s) = —aés(n, ) ,
(2m)™ as(n, s)
with
© n
ai(n,s) = J t2 5 le ™dt,
0

e @]
as(n,s) = J t5 e dt.
0

Both constants ai(n, s) and ay(n, s) are finite since § —s —1> —l and s —1 > —1.

Additionally, by using the change of variables 7 = 7t, we have

N3

0 T—s—1 1 ©- N
&1(”,5) = f (I) 2 e Tldr = 15 2 J 7'57871677(17' — 71.8*51'\(2 _ 8),
0 m m 0 2

as well as

0 s—1 1 Q0
as(n,s) = J (Z) e’T;dT = WSJ e Tdr = 7 °T(s),

o T 0

which yields the identity

N B WS_%F(%—S) B (5 —s) _ aln.s
“““S)“‘(2wysnfﬂxs)"z%w%r(g = afn.s).

With this in mind, we can rearrange (4.2) to get

(27_‘_)% a1(n, 3) J\Rn E]/(l’) dr — CLQ(n, S) J;Rn g(x)dl’ (43)

(27’(')28 $|n72s :1:’28

We will now prove identity (4.3) by changing the left hand side. Using the change of
variable 7 = ¢/ |z|*, we compute

oyt 0] [ 5

(27_[_)28 N |x’n72s
(oo ~
= (2m)2 > tgs%ﬂﬁf|%zﬂ
JO R» |
noos [ ” onE=s=1 o (@) 2
= (27)2 i (7 ]z|%) e W |z|” dr ) dz
JR" 0
n s n 2
= (2m)z | 73l <J e ™l §($)d:£> dr. (4.4)
JO n




39

We now use the fact that the Fourier transform of the Gaussian distribution is given
by

9’(6’””'3 = e nr

for any 7 > 0. Applying the Plancharel identity for f := e and h = g now yields

n _le?

e S () de = x)h(z)dr = Fla)h(z)de = L T 2e 4 g(x)dx.
JooH @ = | g@nr = | foh@a = ot | o(w)d

B

Inserting this identity into (4.4) and using the change of variable t = ||/ (47%T)
finally yields

(27)% ay(n, ) J gfj’i)%dm = (2m)E fo rEosl < J ne”|x2§(;ﬂ)dx> dr

re |2 0

1 ®© o|?
= —(27r)25 JRn (L TSleLde) g(x) dx

1 ©(eP\ " L
a (27r)25 n 0 472t € 47T2t2dt g(x) de

s+1
_ 1 (47T2) i JOO tslewtdtf g(il?) dr
R ‘:U’ZQ

(2m)*  4n? )y

= as(n,s) J-]R g(x)d:v,

N ‘x|28

which concludes the proof. O
The last proof relied on the fact that n > 2s. If n < 2s, it is no longer guaranteed
that (4.2)) and (4.3]) are well defined. Therefore, additional properties are necessary.

Proposition 4.3. Letn =1, and s > 3, let g € C(R) nC* ((—o0,0) U (0,0)) n L*(R)
with g € Ss(R). If there exist constants ¢y, ¢z, c3, ¢4 > 0 such that

g(x)] < alz[®  forzeR,
Co
l9(z)] < Tl for |z| > 1,
C3
g'(2)] < P for 0 <z| <1, (4.5)
Cy
9'(2)] < Tl for |z| > 1,

then equality (4.2)) holds.
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Proof.
It follows again from Lemma that the left hand side of (4.2)) is well defined. For
the right hand side, we make use of (4.5)) and obtain

1
|g(€z_| dr = J l9(@ )‘d + J 9 22|d3? < 201 + (|9l gy < o0
R |z| 1|7 jal>1 |2]

In addition, the constant a(1,s) can be rewritten as

2B -T(3—s) TE+s)T(5—s) 1
all,s) = [(s)- 27 B 27I'(25) ~ 2cos(ms)T(2s)’ (46)

where we have made use of the properties of the Gamma function, see Proposition [I.5]
Now let s > % We have to prove

R
U (z)g(x)dx = a(1,s) lim 2> j(a)de = — ~d
J, it = a0 i [ s = o [ Sl

Therefore, for R > 0 we estimate

[ et s@ar =

-R

o

A

R
—)* 1g(x )dm—i—L 2* 7 1g(z)dx

=

S
o
@
—

“(G(=2) + §(x)) dz

(R 2! ( JR g(&) (e7™¢ + &™) d§) dz

0

[)R a7 (JR 9(£)2 cos(wf)df) dzx
[R 9(§) <JR D cos(xg)dx> de.

Focusing on the inner integral for any £ € R, integration by parts and the change of
variables t = [¢| z yields

S T
=

[

9l 5~ 5l
3 3 3
(&

[

. R '
JR xgsfl COS(ﬂff)dw _ $2571 Sln(xf) _ (25 B 1) J‘R x2572%d1’
0 5 0 . 5
_ 2s—1 Sin(l’g) R B - R|¢| (i) 25—2 Mi
= z < (2s — 1) L €] : g dt

B 12—2s

; RIE| o
RQS_lsm(Rf) 2s —1 sin(t)
3 i J
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which yields

R e 2R2s—1 in(R
[ e gan = 2 [ oo™

2(2s = 1) [ g(&) [ [ sin(®)
-2 JR o (L tQ—QSdt> de.  (47)

We will proceed by evaluating both terms as R tends to infinity. We claim that

sin{ R¢)

e dE=0 (4.8)

lim B> ng@)

R—

as well as

[ 9© (M sin(®) 9(&)
I%l_r)rgo fu@ W (Jo 752f%dt) d¢ = —T'(2s — 1) cos(ms) JR ’£|25d§. (4.9)

Starting with the first identity, we use integration by parts to estimate

Z9(©) . 9§ ¢ £9'(§) — 9(§) cos(RS)
L Tsm(Rf)df‘ = ’T R J 7 dé'
19(6)] \COS(Rﬁ)I “1g'(€ )I [cos(RE)|
< e TR +L : o
o |g§2)| oSO g —. 1,(R) + L(R) + L(R).

By using (4.5)), we get

o 19O cos(ROL _ 1€ _

2s—1
£50 g R §~>0R 5 |§| - 7

\

5»0 R

since 2s — 1 > 0. For all £ with || > 1 we have

9O [cos(RO| _ >
3 R

hence

. [g(©)] |cos(RE)|
i ¢ R

=0.

This implies [;(R) = 0 for every R > 0. For the second and third term, by changing
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variables ¢t = £ R, we estimate

_ 19| “ g€l
L) = 4 ([ eostreyde + [ LE s )
1 1 0
< (o] & & eos(GR) ¢+ [ eos(e)
1 © 1
- - (R2S - 55 |cos(t ]dt—i—qRJR t—zlcos(t)\dt)
< l( e ) <=
R\2s—1 R
and
nw) = 5 ([ oo ae + [ )|\COS(R€)Id£>
1
1 0
< = ( J 52 55 |cos(RE)[ dE + ¢z g \COS(R§)|d§>
1 © 1
= - (R2 0 t2 5- lcos(t)| dt + ¢, R? L t—3|cos(t)|dt)
< l( N _2) <L
T R\2s—1 R

Similar estimations can be made for

U ; 5 sm (RE) df‘

which means there exists a constant & > 0 such that

sin(R¢) k
| so™as < 4.

sin( R¢)

9(=¢)
5

This now yields

sin( R€)

k
d < lim R* 15 = lim o5 = 0

R— R— R2_25

hmR%lkﬂa

R—

which proves (4.8)). In order to show (4.9), we first show that

29[ ) [0 ([0
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We use integration by parts to estimate the difference

J 81211—(23) dt _J S1211—(25) dt = J S1211(25) dt’
ot o 1 Rl ¢
O1* ® t
BT T T
|t] RI¢| Rle| |t]
- 1 1 2

RIENTE T (RIEDTE T (RIS

and thus there exists a & > 0 such that

g(&) * sin(t) BIEl sin (¢
‘ JR W (J;) t2725 dt — L t2 25 df‘
2 19(§)]
R )y e

2 f 1 f > k
— (o | —5dt + d¢
Rz ( F e =1 |5|3 R22

which vanishes as R goes to infinity, thus showing (4.10). This, together with Lemma
[A-8, now yields

0 () - [ ()

= —T'(2s — 1) cos(ms) JR fg(fgzd

implying (4.9)). By using (4.6, (4.7), (4.8) and (4.9), we finally obtain

JR\IJ(x)ﬁ(a:)dx = a(l,s) Jim J 171 G(x)dx

2s—1
Rg}oQ (1\‘/9—}_{ Rg(f) m(gRg) d§

_ lim 2&(1, S) (25 - 1) f ( 2 szl 2525—2 sin(t)dt) d§

~

Y

e o €’

B 2a(1,s)(2s — 1) B s

= W ['(2s — 1) cos( J |§’28

_ a(l, s) _

— Wor 2T°(2s) cos(ms) JR |£|28d§' = _\/ﬂ fR —|€|2Sd§,
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which proves the result for all s > %
Now let s = % Similar to our calculations to obtain (4.7)), we get

JR log(|z])g(z)dx = \ﬁf U log(x)cos(ﬁx)dx) de.

Using integration by parts, we can observe that
LS| f R sin(¢x)
- = —dx
0 5 0 z

f R sin(&x)
§
sin RIE| gin
) L[ )

0

log(z) cos(x)dxr = log(x)
£

which implies

R 5  2log(R) sin(¢R) | el sin(t)
JRlog(x)g(x)dx = JRQ(f) ¢ \/ﬂf |5‘ <J n >d§

We now show that

im [ o)) ge _ g (4.11)

R—0 R f

Splitting the integral yields

fjg(&)sm £8) 4 = f N R OR

The first term vanishes as R goes to infinity since by using (4.5 we get

1 1
R sin((R R
[Fo@™E g < ["igten Fag < f 6l <
0 3 0
while for the second term, we use integration by parts to obtain

19(E)] [cos(ER)|

) ﬂsm 2" g(©)] ]cos( R)|
L A D P L &
+ Jl \g’éﬁ)’ |Cosl(DfR)’ _R(R) 1 TR+ TR,

R

For ¢ sufficiently large, we have that

9Ol [cos(€R)| _ e
3 R " R
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which vanishes as £ goes to infinity, while for all |£| > 0, we have

19(E)] |cos(ER)| _a
3 R R

Altogether, this yields
6]

) log(R) .. co _
};ltl_r)rgo log(R) - I;(R) = l_)oo (T gh—{g 52) hm log(R)R =0.

Next we use the change of variables t = ¢ R to obtain

_ ls(B) 1 l9(©)] Ccos “lo©)l Ccos
( o (sR)\duL o (@)\d&)

rl [e'e) gR
(ClJ \Cos(f )’d“CQL \cosé(ﬁ )yd€>

* eos(?)]

[ |cos (D)) 2
C1 / dt + R Co JR 3 dt

1
rR [e'e]
Ol g, [0,

N
=y
D:J ==

R

J1
log?(R log(R
£AR) o)

N
=
e

N
=

N
Q
=y

and hence

Similarly, we obtain
g (©)] =gl
|, i eostemag + [ TE feosteRy] g

! cos(¢R)] * Jcos(§R)|
Cgf ¢ —d¢ + C4£ e df)

R o
C3J |Cos(t it + Re f |COS )
1

R 0
c3j |COS(t>|dt+Rc4f |COS( )|dt)
1 R t?

log(R) - I3(R) = R

N
=

N
=

V/A\
=
N TN T N T

N

&
Ay

Ay
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and thus
lim log(R) - I3(R) =0,
R—w
which ultimately shows (4.11]) since the same bounds also hold for

0 sin(§R) . (7 . sin(éR)
| st~ | o™ e

We have now shown that

H&J_Zlog('x') (z )da:—}%l_{r;o_\/_grf /0 (JRlﬁ Slr;(t)> d

Observe that (4.9) can also be applied for s = % in the following sense:

20 (84005 2

This finally yields

JR\I/(x)E(:U)d:U = Lm0 t0g(e)i@)de

T R—o R

12 WJQ@

T V2r 2 ) [€] mf e

which concludes the proof. O

With the help of identity (4.2]), we are now able to give the proof to the claim
(=AW = ¢

stated in the previous chapter.

Proof of Theorem [3.101
In order to show (3.10)) in the distributional sense, we have to check that

W, (=A)" @) = ¢(0)
holds for any ¢ € Z(R™). Let ¢ € .#(R") be arbitraribut fixed and choose g(z) :=

|:1:|2S p(x). For n > 2s, we want to apply Proposition to g. It is easy to see that
g € C(R™). Straightforward computation alongside the usage of Lemmal[A.1]also yields

| @l < | jp@ldet | a6 de
n B1(0) |z|>1

< sup (B | el ) o
.Z’GBl(O) ‘x|>1

o . 1
< sup ‘90( )’ + [ ]5;%]%@)[ md.ﬁli < 00,
zeB1(0) lz=1 |7
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which shows that g € L'(R"). In addition we have F~'g = Z ' (|¢[* 3(€)) =
(—A)° p e L, (R") (see Chapter 1).
For 2s = n = 1, we will check the additional conditions from Proposition [4.3}

28 | ~ ~ 2s 2s
lg(@)] < |27 18(@)] < NPl gy 2] = cr[a]™ for z € R,

~ ~13
2’ 18(z)] _ [Plo@ _ e
9(z)] < P < P < m for |z| > 1.

Since ¢ € .7(R), we have g € C'(R) and we can estimate

d 1~ sl d .
Do) < 2s)a* 1B + 2P| L 5)
< (251800 + 2l | 20 !
“(R) dr Lo (®)
2SH(:BHL'/-‘(R) + HE@HLZ(R) C3
< 1-2s = 1-2s
] ]
for 0 < |z| <1 and
d 2s—1 | ~ 2s d ~
—- < 2 —-
Lg)| < 2slaP T B@)] + [ | ()
d
21~ 3 ~ 25—3
< (2slel B + lf* | 80|l
_ 25215 &) * [Pl5@) .

‘I|3_25
for |x| > 1.

Since the conditions from Proposition [4.2] and Proposition [4.3] are met for n > 2s
and n < 2s respectively, (4.2)) holds for all n € N and s € (0, 1) which finally yields

W87, = | W@F (¢ 30) @ = [ W@ita)de
1 f g(x) 1 f ~
n sdr = - p(x)dxr = p(0
2m)2 Jpo |zf? (2m)2 Jgr (@) ®
for all n € N and s € (0, 1), where the last equality followed from Remark [1.2] O

From Proposition [4.2] we can also derive how the Fourier transform of the convo-
lution between ¥ and a smooth function f can be established for n > 2s.
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Proposition 4.4. Let n > 2s, let f € CP(R") and let g € C(R™) n L*(R™) with
g € Ss(R™). Then the equality

J(f*lll)(x)ﬁ(x)dxz f@)g@) . (4.12)

2s
me |7
holds.

Proof.
We start by applying Fubini’s theorem to the left hand side of (4.12)) to obtain

[ w@iwa = [ ([ fe-pema) i
- [ v ([ stz ) ay
_ f () < @it + y)dm) dy.  (4.13)
For u e C% and v € .%,(R") we define the operation
wiv(y) f ulaula + g (4.14)

This operation is obviously well defined and the identity

~

U-0

NE

F(urv) = (2m)
holds since

F((ui) @) = — | (i) (o) s

We now define
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which allows us to write (4.13)) as

| ¢ m@a@is - en? [ e

n

We will show that h € L'(R") nC(R") and F ~'h = fig € .#,(R") so that Proposition
can be applied. As a product of continuous functions, we obviously have h € C'(R").
Additionally, we can estimate

f R©lde = | 17 (fg)()]ds < fRn\f@Hg(s)rdK 171 e oy N9 1y < 0

which shows i € L'(R"). To show the last claim, let R > 0 such that supp f < Bg(0).
We show that (1 + |z[*"**)|(f * §)(x)| < o for all € R. For |z| < 2R, we have that

(141" 2) (D@ < (1+QR™) f @ —)5()| dy

Bg(z)

< Cn,S,RHfHL‘f‘(BR(O))H\g/HL‘"f-(ng(O)) <X

since both f and g are bounded on a bounded domain. Now let |z| > 2R, and observe

that for §j € S;(R"), we have the bound (1 + |z|""*) [g(z)| < [9]%, gy and therefore
also (1 + |z +y["**) |§(z + y)| < [9]%, (mny for every y € R”. This yields the bound

e

gz +y)| < —5 < - 4.15
R T PR e
for every y € R". We can now estimate
1+ ) (D] < o™ | 1f@) )l dy
lyl<R
1
L T 2
LS wi<r |z +y["

It is easy to see that for y € Br(0), we have 2|y| < 2R < |z|, which further yields

||

|z +y| = |z| — |y| = 5 and therefore

U+ ™Y (D@ < 1 e o 715 f 2 dy < .

lyl<R

In the same way it can also be proven that (1 + |2|""*) |(f » D°§)(z)| < oo for all
a € NI since D®f#g = fxD*g and DG € Sy(R"™). Applying Proposition finally
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yields

[ w@i@a = [ v ([ st i)

_ - 2s 7 — (27 2s h(I)
= o [ vy = oot |t
[ fww),

R |x’28 .

We treat the case n < 2s separately as it will make use of Proposition instead.

Proposition 4.5. Letn =1 and s > %, let f € C*(R) and let
g€ CR) nC((—0,0) U (0,0)) n L'(R) with § € Ss(R). If there exist constants
dl, dg, d3, d4 > 0 such that

lg(x)] < dy|z)*®  forzeR,
ds

()] < Tl for |z > 1,
l d3
l9'(2)] < P for 0 <z| <1
' d4
()] < Tl for |z| > 1,
then equality (4.12) holds.
Proof.
The proof is very similar to the proof of Proposition [4.4, We again set

where # is the operation defined in (4.14]), and now we seek to apply Proposition
instead. We notice that h € C(R) n C* ((—00,0) U (0,0)) " LY(R) and F *h = fije
Zs(R™) as was shown in the last proof. This means we only need to check to
finish the proof. For z € R we have

h(@)| < 1F @) 19(@)] < 1Flle@yds e[ =: e |2

while for x with |z| < 1 we can estimate

d ~ > _ s
@) < |f@)g' (=) + ‘—f(x)g(l’) < llze@ds [+ 1EF ()l gyde |2

i
< (@l Fllme + IRl o) o = e[
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For x with |z| > 1, we have

~ - d
@) < F@lg@) < Iflepy = 1
and
’ 7 ’ d x 7 dy N dx
W (@) < [f(@)]lg'(@)]+ \@f(l’)g(ﬂ?)\ < [f(z) ] + JR f(E)(i§)e™ dE| [g(z)|
< dy dy da| fll =) + €S () 11 ay L
< Hf||L"fv(R>m + Hff(é“)“p(mm = 2] =l
This concludes the proof. L]

The next result is really important in itself as it shows how the fundamental solution
can be used to solve the global Poisson equation involving the fractional Laplacian.

Theorem 4.6. Let € > 0 and f € CY*7¢(R"™). Then the function u := f = ¥ belongs
to LY(R™) n C%*7<(R™) and solves

(—A)'u =, (4.16)
both in the distributional sense as well as pointwise for all x € R™.

Proof.

We have shown in Lemma [3.9 that u € L1(R"). And thanks to [21, Theorem 9.3], we
have v € C%%*¢(R"). This ensures that is well defined both in a distributional
and pointwise sense. We will now prove that u is the distributional solution of
by showing that

u, (=A)° 9, = {fr ) 12gam)

holds for every ¢ € #(R"). We will start by proving this identity for f € CP(R").
Let ¢ € .7(R™) be arbitrary but fixed and define g(¢) := |z|* $(¢). Then f and g
satisfy the conditions of both Proposition and (see the proof of Theorem m
for further details). Thus, by ([4.12)), we get

WA, = | @A @ = [ (W@ F (€ 5(0) do

- | v w@iea - | W‘l:f J

<]\C/7 @>L2(Rn> = <fa §0>L2(Rn)a

where we used Plancherel’s identity for the last equality, which is assured since f, f
and ¢ are sufficiently smooth. This shows that u is indeed the distributional solution
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of (4.16) for f e C*(R").
Let now € > 0, f € C%*7¢ and ¢ € .#(R") be arbitrary but fixed. Then there exists a

sequence of functions (fy), © CZ(R") with |[fi — f| = gn) £2%, 0, which also implies

khi{.lo (S 90>L2(Rn) =/, 90>L2(R")'
In addition, the functions defined by u; := ¥ = f; all satisfy

Qug, (=A)* 0y, = {f, <P>L2(Rn)' (4.17)

Additionally, by using both Remark and (3.9)), there exists a constant ¢, s such
that

(u—up, (=A)°p), < [(-A) (10],09”3(11&”) e = wll £ ey
- LA el ([ )

1+ |z 1
- A el ([ )

k—a0

s 0
< Cnsr[(=8) @lg @ If = fill po gy — 0.
Together with (4.17)), this yields
i, (~A)' ), = lim G, (~A)'g), = Tim (o @yagany = ( DDpaay

hence we have proven that wu solves in the distributional sense for all f €
CY25t¢(R™). To obtain pointwise solvability, we will first recall that Remark en-
sures that (—A)%u is well defined since u € C%*T¢(R") n L'(R"). Moreover, thanks
to Proposition we have that (o, (—A)*u(z)p(x)dz is well defined. In addition, by
using Fubini’s Theorem and changing variables, we obtain that for any ¢ € (R")

u(a)(—A) () dr = f (—A)u(z)p(x)d.

n n

Il - |

Since both f and (—A)®u are continuous, we conclude that (4.16|) holds pointwise in
R" O

As an immediate consequence, we obtain another representation of a function be-
longing to C*(R").

Corollary 4.7. For any u € CP(R") there exists a function f € C*(R") such that

(f » ¥)(z) = u(x)
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holds for all x € R™. Additionally, there exists a constant ¢, s > 0 such that
Cn,s

Proof.
Let u € CP(R™) be arbitrary and define f := (=A)’u € C®(R"). Then applying
Theorem [4.6] yields

(f =+ U)(x) = (=A) u= V) (z) = u(z)
pointwise for all x € R™. The bound (4.18) is shown in the proof of Lemma O

We now have all the tools necessary to prove of the main result of this paper.

Proof of Theorem 4.1l
We will divide the proof into multiple steps:

Step 1: The solution is unique.

Step 2: u, € C(R").

Step 3: u, € LL(R™).

Step 4: u, has the s-mean value property in B,(0) for g € C°(R").

Step 5: u, has the s-mean value property in B,(0) for any g € L:(R™) n C(R").

We will prove all these steps one after another, which will ultimately prove the theorem.

Step 1: Let uy,us € C(R™) be two solutions of the Dirichlet problem (4.1). Then
u; —ug =: u € C(R™) is a solution of the problem

(=A)’u  =01in B,(0),
u = 01in R™\B,(0).

By [0, Theorem 3.3.3], the solution is constant, and since u continuous and
zero in R™\ B, we have u; = uy everywhere.

Step 2: Since u, is obviously continuous in B,(0) and in R™\B,(0), we need to check
the continuity at the boundary 0B,. Therefore, let yo € 0B, and € > 0
arbitrarily small but fixed. By the continuity of g, there exists a d. such that

l9(y0) —9(y)| < ¢
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for any y € Bs_(yo). We fix p > 0 arbitrarily small such that p < % as well as
R > 2p. Our aim is to show that

lim (ug() — ug(yo)) = 0, (4.19)

z€B,.(y0)nB,(0)

as is shown in Figure [4.1]

Figure 4.1.: Framework for proofing continuity
Now let = € B, (yo) n B,(0) and estimate

[tg () = 114 (30)]

lep P,(z,9)g(y)dy — g(yo) J

lyl=p

Pp(xvy)dy‘
<J N Py(x,y) |9(y) — 9(yo)| dy

<J Py(z,y) l9(y) — 9(yo)| dy +f Py(z,y) l9(y) — 9(yo)| dy

ly|=p lyl=p
ly—yo|<de [y—yo|=de
< c|  Rlewdrs] P (9] + o)y
lvl>o ly—yo|=0e
- W)SJ l9(y)] + 19(yo)|
ly|> 2 _ 2 e — gyl
pmes (Wl =p%) |z =yl
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where we have made use of (3.7) twice. Before we continue with the above
term, we observe that for any = € B,(0) and y € R"\Br(0) we have

1 < 2n+3
(lyl> = p2) o —y[* — |y["™

since by using the inequality |z — y| = |y| — p, we can estimate

n+2s n 2 $
jy"* _ ( [yl ) 1yl
(Iy)* = p2) |x —y|" |z —y| ly[* — p?

n 4 s
( ‘y’ ) <_> S 2n . 28 — 2n+s‘
ly[—p/ \3

Pt —1z|* = (p+ |=]) (p = |2]) < 2p|yo — @[ < 2pp.

By using this, (4.20) and the fact that |z —y| > 6. — p > %5 for any y €
R™ \Bs(yo) with p < |y| < R, we obtain

(4.20)

Additionally, we notice that

|19 () = 114 (30|

s lg()] + g(vo)] lg(y)] + 1g(vo)]
<e+ (2pp) J G —dy + SRS —
petyl<r(lUl” = p?) |z =yl wizr ([yI° = p?) |z =y
‘y—y0|>55
2" + +
_nf Ig(y)l2 Iggyg)\dy +2n+sf l9(y)] M\;qs(yo)!
p<|yl<R (!y\ —P) lyI=R |yl

€
ly—yo|=dc

2" nts LR
<e+ (2p) (570(;0, R, s,9) + 2|9l yany + 19(10)] QSRQS) .

<e+ (2pp)°

= e+c(n,s, R, p,g,0.)11°,

where S,,_; is the measure of the (n — 1)-dimensional unit sphere. This shows
that the term |uy(2) — ug(yo)| tends to zero as both p and € tend to zero,
which proves that the limit on the left hand side of exists and is in fact
zero, thus showing the continuity of w,.

The aim of the next 3 steps is to show that all the requirements for Theorem
are met for any z € B,(0). Theorem [3.4] then implies that (—A)* uy(z) =0
for all x € B,(0).

Step 3: In order to show that u, € LL(R"), we need to show that

[l [l [ O

w1+ || sl<p 1+ |27 oz 1+ |2
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is finite. The latter integral is finite since g € L}(R"), so we now show that u,
is bounded in B,(0) to prove the finiteness of the former integral. Let R > 2p
and = € B,(0), then by using (4.20), we can estimate

W@l < [ Beylld+ | P lowldy
p<ly|<R lyl=R
n+s $ g\y
< swp o) +2 ) (A - o)’ [ 2Ly
p<|y|<R ly|=R ’y|
< suplg(y)| + 2" c(n, s)stf |g(nzi)2|s dy < o0.
p<lyl<R wl=R Y]
This shows that both terms in (4.21)) are finite.
Step 4: Let g € C*(R") and x € B,(0) be arbitrary but fixed. We will show that w,

has the s-mean value property at x, meaning that for all 0 < r < p — |z|, the
identity

(Ar *ug) () = ug() (4.22)

holds. By Corollary , there exists a function f € C*(R") such that for all
y € R"™\B,(0) we have

9ly) = . f(2)¥(y — z)dz
_ J PROL RS WL R
z|<p t|>p
Using identity we obtain

o) = [ s (] neove—na)es | oue-na
_ LW <L|<pf(z)Pp(z,t)dz) Wy 0ds | @y -
_ pr (L|<pf(z)Pp(z,t)dz + f(t)) U(y — )t
_ L|>ph(t)\lf(y—t)dt.

This together with (3.12)) allows us to rewrite u, as

P (| - D) dy

r

ug(r) = P,(z,y)9(y)dy = f

ly|>p ly|>p

[

[

< J ([ peso o)
e (4.23)

J|t|>p
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Step 5:

The use of Fubini’s Theorem is justified since we have shown in step 3 that
lug(x)] < oo for x € B,(0). Now we can prove that u, has the s-mean value
property at x. Since for r < p — |x| we have that |x — t| > |t| — |x| = r, which
allows us to use and obtain

~

(Ar = ug) (x) = " Ar(y)ug(r —y)dy

_ Am»(Lwhmwm—y—wﬁ)@

ly|>r

[

[

r

= h(t) ( y A (y)V(x —t — y)dy) dt

[tI>p

[

_ h(t)U(x — t)dt = uy(x),

J|t|>p

where we have also made use of equation (4.23) twice. This proves identity
(4.22) holds for every g € C°(R").

Now let g € L:(R™) n C(R™) and r > 0 be arbitrarily small. Our aim is that
identity still holds for this setting. In order to do so, let (Vg)reny S
CP(R™) be a sequence of functions with vx(x) € [0,1], vy = 1 in Bg(0) and
v, = 0 in R"\B(0), and By & Bgi1. Then g := vpg € CP(R™) converges
towards g pointwise in R™, uniformly on compact sets and in the Lj (R™)-norm.
Now, thanks to step 4, we know that

(A = ug, ) (7) = ug, (z) (4.24)

for any k € N. Moreover, we will show that

lim w,, (z) = uy () (4.25)
and
lim (4, + uy,) () = (A, ) (2) (4.26)

k—o0

for any x € B,(0). By using these 3 identities, we have that

g (2) = lim g, () = lim (A, v u,) (1) = (A, o) (1), (427)

k—o0 k—o0

proving that g indeed has the s-mean value property.
Starting with proving (4.25)), let = € B,(0) and choose R > 2p. Then by again
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making use of (3.7) and (4.20) , we have that
‘ug(:c) - ugk(x)‘

| B o) - o)l dy

— (ns) (0 — W)J 9(y) — 9 (v)]|

wer (ly]> = p2)" o —y|"

N

N f Py(x,y) l9(y) — gk (v)| dy
p<lyl<R

2 3e(n, s) (9 — W)J l9(y) —gk(y)|dy

wer |yt

N

+  sup  g(y) — gk(y)] Py(z,y)dy
yeBR(0)\B,(0) p<|y|<R

s 9(y) — grly
< 2" p%c(n, S)J loty) — 9:(y)] n+23( )‘dersup 19(y) — k(Y]
wi=r |yl p<lyl<R

which vanishes as k approaches infinity by the convergence in L.(R") norm
and the uniform convergence on compact sets of g to g.

The next step is to prove ([£.26)), so let z € B,(0) and choose R > 2r. Plugging
in the definitions of A, and P, results in

‘Ar Uy () — Ay * ug, (55)‘

< jy>r A (y) ‘ug(x —y) - ugk(x —y)ldy

< f ier AW 9 =) = ge(z —y)ldy

e~y
| e ( j Bl 9lole) - i) =) dy

=: L(z) + L(z).

We estimate the first integral by using (3.2) and (4.20]), obtaining

C el ey 9(z —y) — gr(z = y)|
W) = s |y

< sup [g9(z —y) — gr(z —y)| A, (y)dy

r<|y|<R r<|y|<R

+2"%5¢(n, 5)r* J 9tz —y) —n+g2ks(56 — y)|dy,
lyl>R ly|

lz—yl=p
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which again vanishes as k approaches infinity by the convergence in L!(R™)
norm and the uniform convergence on compact sets of gi to g. For the second
integral, we choose an R > 2p, then by using the bound (4.20) as well as

identities (3.2)) and (3.7)), we estimate
@) = [, A0 [ Pl u)lee) - o) ds dy

<|z|<R
lz—yl<p Pl

[ e A0 | Pl =2 l0) — o)l dz dy

>R
lz—y|<p
< sw o) -al) [, AW [ Py dy
p<|z|<R ‘x§y|<p p<l|z|<R
Z) — z
—i—C(Tl, S)Jl - Ar(y)p%f 5 ‘9(2 )s gk( )| ndz dy
e al=r (217 = p?) (@ —y) — 2]

9(2) ~ 0 2)]

< s lgle) = ()] + 2 pPeln,s) | i
AR

p<|z|<R

which vanishes as k goes to infinity by the same argument we used for 1. This
proves (4.20]), finishing the proof of step 5. Therefore u, has the s-mean value
property, which immediately implies the claim of the theorem.






5. Conclusion and further results

With the main result now proven, we have seen that many of the tools known from reg-
ular Laplacian analysis can be also used in the setting of the solution of the fractional
Laplace operator. We were able to establish an analytical formula for the according
Dirichlet problem for a sufficiently smooth given function on the exterior space. A
reasonable next step would be to ask for the related Neumann problem and a suit-
able Dirichtlet-to-Neumann operator, though this comes with a few difficulties. In
particular, the definition of a nonlocal fractional normal derivative has to be carefully
introduced, a method of doing so was proposed by Dipierro, Ros-Oton, and Valdinoci
in [I0] and was further studied in [1].

Furthermore, we recall that there are other ways of defining the fractional Laplacian
depending on the respective physical approach taken. While all these definitions turn
out to be equivalent when looking at the operator in a global sense, these equivalencies
no longer hold true when looking at the operator on a bounded domain €2. Even though
the fractional Laplacian turns out to be non-local no matter which definition is used,
it turns out that for the Dirichlet problem with respect to the spectral fractional
Laplacian (—A)% and the regional fractional Laplacian (—A)%, it is sufficient to specify
the boundary values. This means that for these operators, the well-posed Dirichlet
problem takes the more familiar form of

(-A)Yu =0in
u = g on 0,

for a sufficiently smooth given function g, where » € {S, R}. This results in very dif-
ferent analytical and numerical solving strategies from the beginning. The following
paper goes into more detail about the analytical aspects of these operators: [11].

As one might expect, the studies on numerical solutions for semi-differential equations

involving any type of the fractional Laplacian are vast. The definition of the integrated
fractional Laplacian in particular allows the introduction of a fitting Sobolev space in

a straightforward way as
2
[ [ iy, )
ado [r—y

61

H%Qp:{ueL%Q)




62 5. Conclusion and further results

This makes the operator amenable to a number of variational techniques, and we refer
to [3, 5] for further information on the topic.
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A. Useful integral identities and
estimations

Lemma A.1. Let k,p > 0. Then, if k <n, it holds that

1
je<p ||

On the other hand, if k > n, we have that

1
jal>p |2]

Proof.
For any k < n, we use the substitution |z| = r to obtain

1 P pn—l
[T
jal<p || o T

where S,,_ is the measure of the (n —1)-dimensional unit sphere. Since k—n+1 < 1,
the above integral is obviously finite. The case for k > n can be shown analogously.

|
dr = Sn_lJ:) mdr,

[
The next lemma is found and proven as identity (A.25) in [7].
Lemma A.2. For any r > 1, we have that
T Sinn—? ¢ 1 Jvr
dp = ————— | sin" %¢ do Al
L (1472 —2rcos¢)? (r2 = 1)rm=2 Jy (A1)
The proof of the next result can be found in [4, page 549].
Lemma A.3. For any z € B1(0), we have
" log(]z —v])
——"dv = —mlog(2). A2
e 5(2) (A2)
Lemma A.4. For any s € (0,1), we have that
o0
1
f S — (A.3)
o t(1+1) sin(7s)

65
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Proof.

We make use of the fundamental properties of the Gamma and Beta-function and get

0 0 t(lfs)fl
J ;dtzj L gt=B(1—s,s) =T(1—s)(s) = —

o t(1+1) o (14 ¢)d=s)ts sin(rs)

Lemma A.5. For any p > 1, we have that

2 s * 2r - — e
(v =1) L (r2 = p?)° (r? - 1)d sin(7s)’ (A4)

Proof.
We use the change of variable ¢t = r22_p12 along with (A.3) to calculate

p2—

2 1y o or . © 1 _ s
(0* = 1) L (2 — p2)° (r? — 1)d L ts (t+ 1)dt sin(ms)’

L]
Lemma A.6. The identity
n—2 pr 71'%
an sin® ¢ dp = ——. (A.5)
w1 J0 I'(%)
holds
Proof.

We first start by calculating the integral on the left hand side for every k£ € N*. We
set

I = fr sin® ¢ do

0

and notice that Iy = 7 and [, = 2. Then, using integration by parts, we have that

’ +(k—1) Jﬂ sin®2(¢) cos?(¢) d¢

0 0

= (k—1) r sin® ?(¢) (1 — sin®(¢)) dg

0

= (=) ([t 20 a0 [ sini o)

= (k-1 (Ik: —Iy),

I, = fﬂ sin* (@) sin(¢) dp = —sin* () cos(¢)

0
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resulting in the recursion

k —

1
2 Ik_Q,I(]:?T,Ilzz.

I, =

Solving this recursion gives

Eo
I = T 12 1 2l if k even,
2 ]_L 1 2L if k odd,

2141

for every k € N\{1}. We will now solve (A.5) for the case that n is even. Elementary
computations then yield

n—2 ar F-1p—1 5 k-1
NIERTE anknzk—zg—lmnn T A
k=10 k=2 i= 122"’_1 k=2 i=1 24

k odd keven

oy w32k \EET R rop o1\
= 925 1p3 .
s (2k4—1) ( 2k )

k=1 k=1
2l 2 2
= 925713 n — = 7nT = Wn )
i 26 11k TG
and very similar calculations show the same result for the case that n is odd. ]

The next lemma is used to prove the identities and ( -
Lemma A.7. Let r > 0 and x € B,(0). Then we have

1
c(n, S)J - ——dy =1, (A.6)
wler (P2 = 1yl*) o —y|" >

where ¢(n, s) is the constant defined by ([3.1))

Proof.
Let 7 > 0 and z € B,(0) be arbitrary but fixed. For any y € R™\B,(0), we set
y* = K (y), where K, is the point inversion at x as defined in (1.1)). By making use

of { and ( . we obtain
1 — s 1
e )

. —= ( 7
(r2—y[*)" |z —y|" —|y*) |z =y

=) B!
=2 ) e =y
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which, together with (3.7)), gives us

( )J ! d ( )J i 0 W S
cn, s 5 50y = c(n,s - —dy
wier (2 = [y*)" |2 =" ez \Jy[F =72 ) e =y

ly*|=r

Lemma A.8. For any s € (0,1) we have that

J t* 2 sin(t)dt = — cos(ms)['(2s — 1).
0

Proof.
The proof will be using some complex analysis. First, by using Euler’s formula, we
get

J t* 2 gin(t)dt = —J 572 (e dt = -3 (

0 0

J t25—2e—“dt) . (A7)

0

To evaluate the integral on the right hand side, let » > 0 be arbitrary but fixed and
define the domain Q, := ([0,r] x [0,7]) n B.(0). Then we have that the contour
integral {,, 2% ?e ?dz is 0 by Cauchy’s Theorem since 2, is a star domain with no

poles in its interior. By setting ~, := 0B,(0) n ([0,7] x [0,7]) (see |Figure A.1|), we can

then split the contour integral into

0 = J 2257202y
o0,

= J 572 dt + J 222 dy — ZJ (it)* " 2e~"dt. (A.8)
0 Yr 0
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&l

o
Figure A.1.: Contour integration along 02,

Sending r to infinity will yield an important correlation between (A.7) and (A.§).
Therefore, we need to estimate the absolute value of S% 2272¢7*dz. By using polar

coordinates z = re'? and then changing variables to ¢t = cos ¢, we estimate

J 2257207y
.

/2
-2 4 — —_ret® - 4
_ J 7“28 2614,0(23 2)6 re zewdgo
0

/2
_ J T2s—lez(<p(25—1)—r sin w)e—r cos @dw
0

I /2 o1 1 e—rt
< reT f e dp| = retT J —dt‘
0 oV 1-— t2
9y2s—1 JI/Q 1 1
< et + ¥ leT/2 J —dt
V3 0 12 V11—t
2

W(efrﬂ . 1) + 7,2371677'/2\/5'

The first term obviously tends to 0 as r goes to infinity. The same holds for the second
term, though L’Hospital’s rule is needed for s € (1/2,1). Therefore, we have
lim | 2% 2e *dz =0.

r—00
r

Now we pass to the limit in (A.8]) as r goes to infinity and obtain

a0 o0 )
0 = J 5 2etdt — i J (it)* 2 " dt

0 0

e}
= I(2s—1)—i*! f 25 2t
0
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which yields the identity

0
J > 2e™"dt = i'*T(2s — 1).
0

By inserting this into (A.7)) and using the fact that
1-2s
it = (COS (g) + isin (g)) = cos (g(l — 23)) + isin (g(l — 23))
7r T

= cos <§ = 7TS> + isin (5 — 7rs) = sin (7s) + i cos (7s) ,

we finally get

0
J t* Zsin(t)dt = —%(

0

0
f t%?e“dt) = -3 ("I (2s - 1))

0

= —%((sin (ms) + icos (WS)))F(ZS — 1) = —cos(ms)['(2s — 1).

[
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