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Abstract

In this work, space-time variational formulations and their discretisations with conforming,
piecewise polynomial functions for the heat and wave equation are considered in a bounded
space-time cylinder Q with a finite time 7.

The main result for the heat equation is an unconditionally stable finite element method
of Galerkin-Bubnov type with piecewise linear, continuous functions, which is based on
a variational formulation in a subspace of an anisotropic Sobolev space. This space-time
variational formulation is analysed with the help of Fourier series, and a kind of Hilbert
transform is introduced. This leads to a symmetric and elliptic variational formulation
and hence, to a symmetric Galerkin discretisation of the first-order time derivative. For
the heat equation, unconditional stability for unstructured space-time meshes is proven.
In addition, error estimates in L?(Q), in H'(Q) and in an anisotropic Sobolev norm for
a tensor-product approach are derived. Finally, numerical examples, which confirm the
theoretical results, are presented.

For the wave equation, a space-time variational formulation in a subspace of the Sobolev
space H'(Q), which is not inf-sup stable, is used for a conforming space-time finite el-
ement method, which leads to a conditionally stable method, i.e. a CFL condition is
required. For a tensor-product approach, a stabilised finite element method with piece-
wise linear, continuous functions is investigated, where unconditional stability in L?(Q) is
proven. Furthermore, error estimates in L?>(Q) and in H'!(Q) are derived, and numerical
examples, confirming the theoretical findings, are given. In addition, existence and unique-
ness results for the wave equation as a partial differential equation in L?(Q) and in a weaker
sense than L?(Q) are proven, including isomorphic solution operators and corresponding
inf-sup conditions.



Zusammenfassung

In dieser Arbeit werden Raum-Zeit-Variationsformulierungen und deren Diskretisierung
mittels konformer, stiickweise polynomieller Funktionen fiir die Wéarmeleitungsgleichung
und Wellengleichung in einem beschrinkten Raum-Zeit-Zylinder Q mit Endzeitpunkt 7
betrachtet.

Fiir die Wiarmeleitungsgleichung ist das Hauptresultat eine unbedingt stabile Galerkin-
Bubnov-Raum-Zeit-Finite-Element-Methode mit stiickweise linearen, stetigen Funktionen
basierend auf einer Raum-Zeit-Variationsformulierung, welche in einem Unterraum ei-
nes anisotropen Sobolevraums formuliert wird. Diese Raum-Zeit-Variationsformulierung
wird mithilfe von Fourierreihen und einer Transformation, welche dhnlich zur Hilberttrans-
formation ist, analysiert. Daraus ergeben sich eine symmetrische und elliptische Variati-
onsformulierung und infolgedessen eine symmetrische Galerkin-Diskretisierung fiir die
erste Zeitableitung. Fiir die Warmeleitungsgleichung wird unbedingte Stabilitét fiir un-
strukturierte Raum-Zeit-Netze bewiesen. Weiters werden Fehlerabschitzungen in L?(Q),
inH! (Q) und in einer anisotropen Sobolevnorm fiir einen Tensorproduktansatz hergeleitet.
SchlieBlich werden numerische Beispiele, welche die theoretischen Ergebnisse bestétigen,
angegeben.

Fiir die Wellengleichung ist der Ausgangspunkt eine Raum-Zeit-Variationsformulierung in
Teilriumen des Sobolevraums H'(Q). Diese Raum-Zeit-Variationsformulierung ist nicht
inf-sup-stabil. Die Diskretisierung dieser Raum-Zeit-Variationsformulierung mittels einer
konformen Raum-Zeit-Finite-Element-Methode mithilfe von stiickweise linearen, stetigen
Funktionen fiihrt zu einer bedingten Stabilitit des Verfahrens. Das heif3t, fiir die Stabi-
litdat muss eine CFL-Bedingung zwischen der Orts- und Zeitmaschenweite erfiillt sein.
Um die CFL-Bedingung zu vermeiden, wird fiir einen Tensorproduktansatz eine stabili-
sierte Raum-Zeit-Finite-Element-Methode mittels stiickweise linearer, stetiger Funktionen
hergeleitet. Fiir diese Formulierung werden unbedingte Stabilitit in L?(Q) sowie Fehler-
abschitzungen in L?>(Q) und in H'(Q) bewiesen. Weiters werden numerische Beispiele,
welche die theoretischen Ergebnisse bestitigen, angegeben. Zu guter Letzt werden Exis-
tenz- und Eindeutigkeitssitze fiir die Wellengleichung als partielle Differentialgleichung
im L?(Q) und in einem schwicheren Sinne als L?(Q) bewiesen. Die zugehorigen Losungs-
operatoren sind Isomorphismen, welche entsprechende inf-sup-Bedingungen garantieren.
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1 INTRODUCTION

Standard approaches for the numerical solution of time-dependent partial differential equa-
tions are usually based on semi-discretisations in space and time, where the discretisation
in space and time is split accordingly, see, e.g., [150] for parabolic partial differential equa-
tions, and [32, 33] for hyperbolic problems. Interpreting such approaches in a space-time
sense, 1.e. the time variable is considered as an additional spatial variable, these methods
are related to tensor-product space-time methods, see, e.g., [16,48-50,85] for the parabolic
case, and [19,22,55,86,164] for the hyperbolic one. An alternative is to discretise the time-
dependent problem without separating the temporal and spatial variables, i.e. a space-time
discretisation. This ansatz may lead to unstructured decompositions of the space-time do-
main. The approaches of unstructured meshes are considered, e.g., in [116, 142-144] for
parabolic equations, and [42, 63,111, 130, 140] for hyperbolic ones. More references are
given in Chapter 3 for the parabolic equations, and in Chapter 4 for the hyperbolic prob-
lems. In general, the main advantages of space-time methods are space-time adaptivity,
space-time parallelisation and the treatment of moving boundaries. At a first glance, a dis-
advantage is that a global linear system must be solved at once. Therefore, fast solvers and
preconditioning are essential, which are not investigated in this work, see, e.g., [56]. In this
thesis only direct solvers and the GMRES method are used. However, space-time approx-
imation methods depend strongly on the space-time variational formulations on the con-
tinuous level. The focus of this thesis are space-time variational formulations for the heat
and wave equation, which result not only in inf-sup stable formulations but fit also very
well to conforming space-time methods with piecewise polynomial functions. In addition,
these space-time variational formulations might be useful for variational formulations and
their analysis of boundary integral equations and boundary element methods.

To motivate space-time approximation methods, space-time adaptivity is investigated in
the case of a space-time interpolation and in the case of an adaptive space-time boundary
element method for the spatially one-dimensional wave equation.

1.1 Space-Time Interpolation

For the approximation of a function u(x,t) depending on a spatial variable x € Q C R?,
d =1,2,3, and on a time variable t € (0,7) C R, where Q is a bounded Lipschitz domain
and T > 0 is a finite time, a better adaption of a sequence of arbitrary admissible and shape
regular decompositions (7y)y of the space-time cylinder Q := Q x (0,T) C R¢*! is possi-
ble in contrast to a tensor-product meshing of Q. As illustration, consider the rectangle

0=1(0,3) x(0,6) c R?
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with Q = (0,3) and T = 6 for the C?>(Q) function u;: Q — R,

1 3 3
s(t—x—2)0(x—1)°, x<tandt—x<2,
(o) = s(t—=x—=2)(x—1)°, x<tan x< (L.1)
0, else,
which is plotted in Figure 1.1, and for the piecewise smooth function uy: Q — R,
1 .
5 —t <t,
w(x,1) = { 2 [sin(zlx—=))I, x< (1.2)
0, else,

which is plotted in Figure 1.2.

un (X!t)

3

Figure 1.1: The smooth function u; of (1.1).

The given rectangle

C=

o=Tv=J%

=1

is decomposed into N uniform space-time triangles ¢, C R? with mesh size h as given
in Figure 1.3 for level 0, where M is the number of vertices {(x;,#;)}*,. The finite-

dimensional space S} (Q) = span{y;}1, C H'(Q) is the space of piecewise linear, con-
tinuous functions on these space-time triangles with the nodal basis functions yj;, and the
space-time interpolation operator I,: C(Q) — S}(Q) is defined by

Lv(x,t) =Y v(x,t)wi(x,t) for (x,t) € Q,

M=

1

1
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1.0

us(x,t) 0.

3

Figure 1.2: The piecewise smooth function u; of (1.2).

where v € C(Q) is a given continuous function, see Section 2.8 for details. Next, the
interpolation errors in ||-||;2(g) and |-|;y1 (o) for the functions uy,u, are investigated for a
sequence of uniform space-time meshes and for a sequence of adaptive space-time meshes.
The uniform refinement strategy is depicted for the levels 0, 1,2 in Figure 1.3. As adaptive
refinement strategy, Dérfler marking [41] with parameter 6 = 0.5 for the norm ||-[|2(g) is
used.

For the smooth function u, the adaptive meshing is given in Figure 1.4. The uniform
and the adaptive refinement strategies lead to optimal convergence rates with respect to
Il 72(0) and ||1(g)» see Table 1.1 and Figure 1.5. However, a comparison between the
uniform and the adaptive schemes shows that the adaptive scheme needs considerably less
degrees of freedom M for the same accuracy of the errors.

For the piecewise smooth function u;, the uniform refinement strategy results in reduced
orders of convergence, see Table 1.2. With the adaptive refinement strategy, the optimal
convergence rates are obtained, see Figure 1.7, and see Figure 1.6 for the meshes produced
by the adaptive scheme.

To summarise, a main advantage of space-time methods is the space-time adaptivity, as
depicted in Figure 1.4 and Figure 1.6, which is difficult to realise for standard approaches
based on semi-discretisations, where the discretisation in space and time is split accord-

ingly.
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Level O Level 1 Level 2
6 T T 6 T T 6 T T
5 5H 5
4 4 H 4
3 3 3
2 2 2
1 1 1
0 0 ‘ 0
0 1 2 3 0 1 2 3 0 1 2 3
X X X

Figure 1.3: Uniform refinement strategy: Starting mesh, the meshes after one and two
uniform refinement steps.

level M N lur — Iyl 2y eoc  |ug —Iyui|yig) eoc
0 15 16 5.122e-01 - 1.947e+00 -
1 45 64 2.302e-01 1.46 1.397e+00 0.60
2 153 256 5.797e-02 2.25 6.973e-01 1.14
3 561 1024 1.477e-02 2.11 3.537e-01 1.04
4 2145 4096 3.744e-03 2.05 1.788e-01 1.02
5 8385 16384 9.386e-04 2.03 8.957e-02 1.01
6 33153 65536 2.348e-04 2.02 4.481e-02 1.01
7 131841 262144 5.872e-05 2.01 2.241e-02 1.00
8 525825 1048576 1.468e-05 2.00 1.121e-02 1.00
9 2100225 4194304 3.670e-06 2.00 5.603e-03 1.00

10 8394753 16777216 9.176e-07 2.00 2.801e-03 1.00
11 33566721 67108864 2.294e-07 2.00 1.401e-03 1.00
12 134242305 268435456 5.735e-08 2.00 7.003e-04 1.00

Table 1.1: Interpolation errors for the function u; of (1.1) for Q = (0,3) x (0,6) for a uni-
form refinement strategy with the meshes of Figure 1.3.
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Level 15 Level 20 Level 25

6 T T 6 T T 6 L T
5 5F¢ 5

4 4+ 4
— -t -t

3 3 3

2 2+ 2

1 1r 1

0 0t ; 0

0 1 2 3 0 1 2 3 0 1 2 3
X X X

Figure 1.4: Adaptive refinement strategy for the function u; in (1.1).

level M N us—Ihuo|| 29y €0c  |uz —Ipuz|pyi(g)  €oc
0 15 16 7.373e-01 - 5.653e+00 -
1 45 64 7.423e-01 -0.01 5.437e+00 0.07
2 153 256 2.970e-01 1.50 4.021e+00 0.49
3 561 1024 1.044e-01 1.61 2.821e+00 0.55
4 2145 4096 3.613e-02 1.58 1.939e+00 0.56
5 8385 16384 1.257e-02 1.55 1.365e+00 0.51
6 33153 65536 4.404e-03 1.53 9.491e-01 0.53
7 131841 262144 1.549¢e-03 1.51 6.749e-01 0.49
8 525825 1048576 5.463e-04 1.51 4.717e-01 0.52
9 2100225 4194304 1.929e-04 1.50 3.364e-01 0.49

10 8394753 16777216 6.815e-05 1.50 2.355e-01 0.51
11 33566721 67108864 2.409e-05 1.50 1.681e-01 0.49
12 134242305 268435456 8.514e-06 1.50 1.177e-01 0.51

Table 1.2: Interpolation errors for the function u, in (1.2) for Q = (0,3) x (0,6) for a uni-
form refinement strategy with the meshes of Figure 1.3.
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Figure 1.5: Interpolation errors for the function u; of (1.1) for Q = (0,3) x (0,6) for the
adaptive refinement strategy with the meshes of Figure 1.4.

1.2 Boundary Element Method for the One-Dimensional Wave
Equation

As a second example, an adaptive boundary element method for the spatially one-dimen-
sional wave equation is investigated, see [161] for a summary. For details of the boundary
element method, see [70, 131, 141]. As a model problem, consider the wave equation

Ouu(x,t) — dett(x,t) = 0 for (x,r) € @ = (0,L) x (0,T),
u(x,t) = g(xt) for (x,t) € X={0,L} x[0,T], (1.3)
u(x,0) = du(x,0) = 0 forx € (0,L),

where g is a given Dirichlet datum and L > 0, T > 0. Define

[2(X):=L*(0,T) x L2(0,T) = {v = (zz) :vo € LX(0,T), v € L2(O,T)}
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Level 15 Level 20 Level 25
6 , , 61 . ; 61 . .
5 5H 5
4 4+ 4
4 -~ -~
3 3+ 3
2 2 F 2
1 1H 1
0 0 i 0
0 1 2 3 0 1 2 3 0 1 2 3
X X X

Figure 1.6: Adaptive refinement strategy for the function u in (1.2).

with the inner product

(vow)2x) = (V0. w0) 207y + (Ve W) 20y Tor viw € L2 (E)

and introduce the Sobolev space

HY (%) := {v = (:2) :vo € HY(0,T), vy € H'(0,T), vo(0) = vy, (0) = 0}

with the inner product
(v, W>Hg’(2) i= (90,9 wo) 20,7y +{9vL. OwL) 2oy forv,w e Hy (D),
see Section 2.2 for more details. In general, for w € L?(0,T), set w(t) := 0 for t < 0 or
t > T. The solution u(x,t) of the wave equation (1.3) admits the representation
u=Vdu—Wg inQ (1.4)

with the single layer potential 1 and the double layer potential WV, where d,u denotes the
unknown normal derivative of u on X. The single layer potential V is defined by

! t—|x| 1 t—|x—L|
Vw(x,t) = 5 wo(s)ds + 3 / wr(s)ds fortre€[0,T],x € (0,L)
0 0
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Figure 1.7: Interpolation errors for the function u; in (1.2) for Q = (0,3) x (0,6) for the
adaptive refinement strategy with the meshes of Figure 1.6.

for a density w = (wg,wr)' € L?>(X) with w = 0 outside of X. The single layer operator
V: L*(2) — H& (X) is given by

t —L
/wo(s)ds+ /WL(s)ds
V() :% 0 0 . reloT],
/wo(s)ds+/wL(s)ds
0 0

for a density w € L2(X). Hence, it holds d;(Vw) € L*(Z), i.e. 3;V: L*(X) — L*(X). In [7],
ellipticity and boundedness in L?(X) of the bilinear form ag(-,-): L>(Z) x L>(X) — R,

ag(w,v) := (dVw, V)LZ(Z) = <(81VW)0’V0>L2(0,T) + <(atVW)L»VL>L2(0,T)

for w, v € L*>(X), are proven. Therefore, the following variational formulation is uniquely
solvable:
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Find d,u € L*(X) for a given g € Hé’ (X) such that

1
aE(anu, V) = §<a[g, V)LZ():) + <a[(lcg>, V>L2(Z) Yv € L2<Z), (15)

where the double layer operator K is given for g = 0 outside of X by

Ke(t) = K (go) (t) = — (gL(’ _L>> for € [0,7].

gL 2 \go(t—L)

For a boundary element approximation, consider a decomposition of the lateral bound-

ary
No+NL

= T
i=1

into Ny + Nz boundary elements 7; with maximal mesh size & = max; |7;|, where N is the
number of boundary elements for x = 0 and Ny is the number of boundary elements for
x = L. The conforming ansatz space of piecewise constant functions

No+NL

2
—; CL* (%)

SH(E) =58 (0,T) x S) (0,T) = span { ¢}
is used to define an approximate solution wy, € 52(2). Then the discretisation of (1.5) to
find wy, € SY(X) C L*(X) such that
1
2

is equivalent to the global linear system

ag(wp,vy) = =(9,g, Vh>L2(Z) + <at(/Cg),vh>Lz(E) Yy, € 52(2) C LZ(Z) (1.6)

Viw=g

with the related system matrix V, € RM+N)*MNo+N) | the right-hand side g € RM+M
and the vector of unknown coefficients w € RM ™M of w), € 52(2). Note that the system
matrix V}, and the discretisation of the double layer operator K are calculated analytically,
whereas all other appearing integrals are computed by the usage of high-order integration
rules. Since the bilinear form ag(-,-): L*(X) x L*(£) — R is bounded and elliptic, the
discrete variational formulation (1.6) is uniquely solvable and unconditionally stable. By
Céa’s Lemma and standard error estimates, there follows the a priori estimate

[0t = will 25y < CB|| O]l s 5, (L.7)

for some s € [0,1] and a constant C > 0, where H*(X) = H*(0,T) x H*(0,T), see Sec-
tion 2.2. An approximate solution #i;, =~ u in the space-time cylinder Q is given by inserting
the approximate normal derivative wy, ~ d,u into the representation formula (1.4), i.e.

ip:=VYw,—Wg inQ. (1.8)
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To derive an adaptive mesh refinement on X, an a posteriori error estimator [136] is used,
which is based on the application of the normal derivative d, to the approximate represen-
tation formula (1.8),

1
Wy, i= Oplly, = Ewh -+ /C/Wh +Dg onk.
Here, the adjoint double layer operator K’ and the hypersingular boundary integral operator
D are used. Hence, the local error estimators

ni:= Hwh — Wh”Lz(Ti) ~ Han” - WhHLz(r,-)

fori=1,...,Nyg+ Np are computable, where the adjoint double layer operator X’ and the
hypersingular boundary integral operator D are calculated analytically. For an adaptive re-
finement strategy, a parameter 6 € [0, 1] is chosen and all elements 7; are refined, where

f; > 60 max ;. (1.9)
J

As numerical examples, consider L =3 and T = 6, i.e. Q = (0,3) x (0,6), for the exact
solutions u; and uy, which are given in (1.1) and in (1.2), with the smooth Dirichlet datum
g1i=1uyy € H(}, (X) and the piecewise smooth Dirichlet datum g; := uyy € H(}, (X). In the
case of the smooth Dirichlet datum g; = u; 5, the optimal order of convergence, i.e. s = 1
for the error estimate (1.7), is achieved by a uniform refinement strategy, see Table 1.3,
and by the adaptive refinement strategy (1.9), see Figure 1.8. Furthermore, the L?(Q)
error for the approximate solution (1.8) is given in Table 1.3. However, in the case of
the piecewise smooth Dirichlet datum g = uy|x, only reduced orders of convergence are
obtained, when using a uniform refinement strategy, see Table 1.4 and Figure 1.9. Note
that the full order of convergence is attained for the adaptive refinement strategy (1.9), see
Figure 1.9. A resulting sequence of adaptive meshes is depicted in Figure 1.10, where
different decompositions for x = 0 and x = 3 are used, i.e. a decomposition without time
slabs.

Remark 1.2.1. Acoustic scattering problems are often formulated in exterior domains,
i.e. in an unbounded domain. The boundary element method is suited very well for
such scattering problems, since only a meshing of the surface of the bounded interior
domain is needed. The starting point of the boundary element method is the correspond-
ing boundary integral equation. The standard approach of boundary integral equations
for the wave equation uses the Laplace transform with respect to the time variable, see
[20, 21, 71-73, 87, 132]. This Laplace transform method results in space-time varia-
tional formulations, where the related bilinear form is bounded and elliptic in differ-
ent norms, i.e. the Lax-Milgram Theorem is not applicable in the space-time domain
and related error estimates for a boundary element method are not optimal. See also
[1,57-62, 70, 121, 155, 156] for recent developments in this direction. In [6, 8, 69], an
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level No+Np ||dnuy _Wl,h”LZ(z) eoc |lug —dppllp2) e0C
0 2 1.33823e+00 - 7.26168e-01 -
4 1.14684e+00 0.22  4.49627e-01 0.69
8 1.10072e+00 0.06  3.24885e-01 0.47
16 8.06608e-01 0.45 1.46335e-01 1.15
32 4.02738e-01 1.00  3.75263e-02 1.96
64 2.04198e-01 0.98  9.55880e-03 1.97
128 1.03212e-01 0.98 2.49973e-03 1.94
256 5.17114e-02 1.00  5.95579e-04  2.07
512 2.58723e-02 1.00 1.56495e-04 1.93
1024 1.29381e-02 1.00  3.71371e-05 2.08
10 2048 6.46928e-03 1.00  9.78807e-06 1.92
11 4096 3.23467e-03 1.00  2.40515e-06  2.02
12 8192 1.61734e-03 1.00  5.99227e-07  2.00
13 16384 8.08670e-04 1.00 1.49398e-07  2.00
14 32768 4.04335e-04 1.00  3.77370e-08 1.99

O 0 1NN B~ W~

Table 1.3: Numerical results for the boundary element method (1.6) for the function u; in
(1.1) for Q = (0,3) x (0,6) for a uniform refinement strategy.

level No+Np ||dwz =woullpay)y  eoc  |ua—iippll 2y e0c

0 2 3.95477e+00 - 2.59835e+00 -

1 4 3.33217e+00 0.25 5.78383e-01  2.17
2 8 3.11643e+00 0.10 4.73586e-01  0.29
3 16 3.16575e+00 -0.02  4.10036e-01  0.21
4 32 2.37997e+00 0.41 1.77812e-01 1.21
5 64 1.66423e+00 0.52 6.10341e-02  1.54
6 128 1.15613e+00 0.53 2.28464e-02 142
7 256 8.07589¢e-01 0.52 8.15019¢e-03 1.49
8 512 5.67073e-01 0.51 3.29593e-03 1.31
9 1024 3.99491e-01 0.51 1.33215e-03 1.31

10 2048 2.81940e-01 0.50 5.98854e-04  1.15
11 4096 1.99168e-01 0.50 2.74489%-04  1.13
12 8192 1.40764e-01 0.50 1.32773e-04  1.05
13 16384 9.95104e-02 0.50 6.47539¢-05  1.04
14 32768 7.03558e-02 0.50 3.21587e-05 1.01

Table 1.4: Numerical results for the boundary element method (1.6) for the function u; in
(1.2) for Q = (0,3) x (0,6) for a uniform refinement strategy.
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Figure 1.8: Numerical results for the boundary element method (1.6) for the function u; in
(1.1) for Q = (0,3) x (0,6) for the adaptive refinement strategy (1.9).

approach without the Laplace transform is considered for a screen problem in a two-
dimensional spatial domain, see also [2-5] for further investigations. In addition, the
work [77, 132] examines the boundary integral equations via semigroup theory and their
discretisations via the convolution quadrature method [105, 106], see also [23], and [104]
for a generalisation to variable time stepping. Note that this list of references is highly
non-exhaustive. However, a complete analysis of space-time variational formulations for
boundary integral equations of the wave equation seems to be still open. This motivates the
investigations of space-time variational formulations for the wave equation in the interior
and exterior of the space-time domain, see Chapter 4, since variational formulations of
boundary integral equations are highly related to the variational formulations within the
domain.

To summarise Section 1.1 and Section 1.2, one main advantage of space-time approxima-
tion methods, i.e. the space-time adaptivity, is realisable and leads to significantly lower
numbers of the degrees of freedom for achieving a desired accuracy.
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Figure 1.9: Numerical results for the boundary element method (1.6) for the function u; in
(1.2) for Q = (0,3) x (0,6) for the adaptive refinement strategy (1.9).
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Outline

The rest of this thesis is organised as follows: In Chapter 2 notations of distributions,
Sobolev spaces and discretisation methods are fixed and their most important properties
are repeated. In Chapter 3 the heat equation is examined, whereas in Chapter 4 the wave
equation is investigated, where a more extensive overview of the literature and an outline
of the different sections are given at the beginning of each chapter. In Chapter 5 a short
summary of this thesis and an outlook for future work are given.



2 PRELIMINARIES

In this chapter, notations for function spaces, distributions and discretisation schemes are
introduced and their most important properties are repeated. Furthermore, a short summary
for variational methods is given.

In the whole thesis, Q C R4, d = 1,2,3, is a bounded Lipschitz domain and (0,7) is
a time interval with the finite time 7" > 0. The bounded space-time cylinder is defined as
Q:=Qx(0,T) C R4, L:=9Qx[0,T] € R4 is the lateral boundary, and o := ZU Qg
with Qp := Q x {0}, 7 :=XUQr with Q7 := Q x {T'} are parts of the boundary dQ of
the space-time cylinder Q.

2.1 Distributions

As areference for the theory of distributions see, e.g., [68, 138, 152]. In this work, Cy (Q)
is the set of infinitely differentiable real-valued functions with compact support in Q. The
set C5’(Q) endowed with the, usual for distributions, locally convex topology is denoted
by D(Q) and is called the space of test functions on Q. The set of (Schwartz) distributions
D'(Q) is given by all linear and sequentially continuous functionals on D(Q), see [138].
For a locally integrable function v € L| (Q), the distribution 7 : D(Q) — R, defined by

loc
T,(¢) = / V(1)@ 1)dxds  for all € D(Q),
0

is associated uniquely with that function v € L\ (Q). Hence, the function v € L\ (Q) and
the related distribution 7;,: D(Q) — R are identified. Throughout this work, [J := d;, — A,
denotes the classical (pointwise) derivative for sufficiently smooth functions. Furthermore,
letOyp: D'(Q) — D'(Q) be the distributional wave operator for distributions D’(Q), where
for a distribution T: D(Q) — R, derivatives are defined as usual:

OoT(9) =T(0e) Yo €D(Q).

In particular, for Q_ 1= Q x (=0, T) C R¥*!, let Op_: D'(Q-) — D'(Q-) be the distri-
butional wave operator for distributions D’(Q_).

The sets C5’(0,7T'), Cy’ (L) and the spaces of test functions D(0,T), D(L) are introduced
analogously.

15
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2.2 Sobolev Spaces in (0,7)

For an introduction to Sobolev spaces on intervals, see the references in the Section 2.3 and
in addition, see [13, Kapitel 5] or [96, Chapter 8]. With the usual notations, the Hilbert
space H*(0,T), s > 0, is the Sobolev space of real-valued functions endowed with the
Sobolev-Slobodeckij inner product (:,-)ys(o 7y and the induced norm ||-| (o 7. Analo-

gously, H*(R) is the usual Sobolev space on the whole real line for s > 0. Note that
H*(0,T) C C[0,T] for s > 1/2, see [64, (1.4.4.6), page 27]. Hence, for s € (%,3) one
defines the subspaces

H; (0,T) :={ve H*(0,T): v(0) =0},
Hy(0,T) :={ve H*(0,T): v(T) =0}.

In particular, for s = 1 the Sobolev spaces Hol’(O,T) and H})(O,T) are endowed with the
inner products

T
g o) = (V) b o) 1= / (1) Apv(t)dr,
0

and with the induced norm

\”|H1(0,T) = Hat”HB(o,T) =

T
/\&u(t)\zdt.
0

For s = 1/2, one defines via function space interpolation the Sobolev space

Hy*(0,T) := [H} (0,T), L2(0,T)], 2

s

with the Hilbertian norm

T 2
- 2 u(t)|
il oy = || I+ [ 22
0

which is equivalent to the interpolation norm HH[HS (0.7),12(0.T)], p* SE€ [102, Théoréme
11.7, page 72] and [102, Remarque 11.4, page 75]. Analogously, set

HY?(0,T) == [H)(0,T), L*(0,T)); 2

with the Hilbertian norm

2
e ulo)
oy = ||l + [ 2
0
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There hold the representations

1/2(0 T)= {U|(OT) U e H"Y?(—,T) withU(t) = 0 for t < 0}

T
= {uec HY0,T): /lu dr < oo @2.1)
0

and

HY(0,T) = {UKO,T): U € H'/2(0,00) with U(1) = 0 for 1 > T}

H

T
—ueH?0,T): /’” df < oo b, 2.2)
0

see [102, Proposition 5.2, page 276] and [102, Remarque 11.4, page 75]. Because the
test functions CB"(O,T) are dense in H1/2(O,T), see [64, Theorem 1.4.2.4, page 25], the

sets H&/ 2(O,T) and H})/ 2(O,T) are dense in H'/2(0,T). Note that the constant function

1(t) == 1 fort € (0,7) fulfils 1 € H'/2(0,T), 1 ¢ Hy*(0,T) and 1 ¢ Hy/*(0,T) due to the
representations (2.1) and (2.2). Because the set

Cy(0.T] = {@07: ® €C5(0,0)}

is dense in H&(O, T), it follows by interpolation arguments that the set C;’(0,7] is dense in
HY 2(O T), see [102, Chapitre 1, Section 2.1, page 11], and analogously, the set

Col0.T) = {@or): @ €Cy(—o.T)}

is dense in H,i)/z(O,T). It even holds that the set Ci’(0,7) is dense in HS’/Z(O,T) and in
1/2(0 T), see Theorem 2.2.2.

Lemma 2.2.1. Th . , d db
e norm ||l defined by
el g2 .7 mf{ |0l U € HY(R) with Ujo.py = u. U(t) = 0 for t < o}

forue Hé/z(O, T), is equivalent to ||- ||H1/z
) 0,
by

(07T).Analog0usly, the norm |||.|||H},/2(O,T)’ defined

e | W or) = 1nf{||U||H1/2 ®: UeHl/z(]R)withUKo,T):u,U(t)=0fort>T}

1/2 . .
forue H’O/ (0,T), is equivalent to ||- HH})”(O,T)‘
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Proof. The proof is given only for the case of H ; 1/2 (0,T), the other case is proven anal-
ogously. By interpolation arguments, see [102, Proof of Proposition 5.2, page 276], the

extension operator £r: H 1/ 2(O T) — H'/2(0,00), defined by

Eru(t) = {u(f), 1€ (0,7),

0, t>T,

foru € H})/ 2(0, T), and the restriction operator Ry : H'/?(0,00) — H L/ 2(0, T), given by
RrU(t):=U(t)—-UQRT —t), t€(0,7T),

for U € H'/2(0,00), are bounded. For u € H})/Z(O, T), itholds Ry Eru = u and so, it follows

= [Rr&rull 2

e < CryllErulgizo.) < CryCerllul 1

(0.7)

1.e. the norms |-
(A

(0,7) (0,1)’

and u — [|Erul| 1720 ) are equivalent. Since ||| 1729 ) is

0.7)

equivalent to the norm
W inf{ ||U||H1/2(]R) . U € H'*(R) with Uj(0,00) = w} for w € H'/2(0,00),

see [160, Satz 5.3, page 100] with a natural extension by reflection in # = 0, the assertion
follows. O

Theorem 2.2.2. The set C3(0,T) is dense in Hy/*(0,T) and Hy *(0,T).

Proof. The proof is given for H L/ 2(O T). Because of the density of the set C;’[0,7) in

HY 2(0 T), it remains to prove the density of Ci’(0,7') in Ci’[0,T) with respect to the norm

H H V20,7 Therefore, fix an element ¢ € C;°[0,T) with supp(¢) C [0,R], T > R > 0. Take

an arbltrary extension V € C3(R) € H'/?(R) with Viory =@ and V(¢) =0 fort > T,
Le. Vi) € Cg [0,00). The result [102, Lemme 11.1, page 60] yields for X =Y = R that
there exist sequences (Wy),en C C5(R) and (&,)nen C (0,7) such that y,(z) = 0 for
t € (—&€n,€y), ie. W, vanishes in a neighbourhood of = 0, and [y, — V|12 () — O as
n — oo. Consider a cutoff function y € g’ (R) satisfying 0 < x <1, o5 = 1 and (1) =0
for ¢t > H see [160, Folgerung 1.2, page 18] for the existence of such function. Note
that supp(x) (—o0,T) and hence, ((Wu - X)|(0,1))nen C C5'(0,T) is the desired sequence.
With Lemma 2.2.1 and the local property [102, Théoreme 7.2, page 36] of H 1/ Z(IR) it
follows

I 2)i0) = @l 0.y = 10 Do) =00 Pl 0
< H\ (W 2))(0.1) _%\(O,T)‘PWH,B/Z(O,T)

< Cillx(Wn = V)l g2y
< C1Cyllwn _VHHI/Z(]R) —0 asn—r oo,
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where the constant C; > 0 comes from the norm equivalence of Lemma 2.2.1 and the
constant Cy > 0 depends on the cutoff function y and therefore, on ¢. 0

The dual spaces [Hé (0,7)]" and [H})(O,T)]’ are characterised as completion of L2(0,T)
with respect to the Hilbertian norms

o gV o1
Hg“ [H(} o,7)) -— sup ’Vl
' 0#veH, (0,T) H(0,T)
and

‘(f’W>(0T)|
Aoy = swp T,
[H(0.7)] 0wer)(0.) ’W’HI(O,T)

where (-, -) o,r) denotes the duality pairing as extension of the inner product in L%(0,T), see
[160, Satz 17.3, page 258]. In other words, for [H&(O, T)) and [H})(O, T)]', there exist inner
products (-, '>[Hd’(0,T)]’ and (-, '>[H})(0,T)}” inducing the norms || - ||[H&(0’T)]/ =./(, '>[H&(0,T)}’
and || - H[H,b(O’T)]’ =./(, '>[Hb(0,T)}” i.e. with these abstract inner products, [Hj (0,7)]" and
[H})(O, T)]" are Hilbert spaces, see [158, Satz V.1.7, page 222].

Analogously, the dual spaces [H(i/ 2(O,T)]’ and [H})/ Z(O,T)]’ are Hilbert spaces charac-
terised as completion of L%(0,T) with respect to the Hilbertian norms

I8l g2y = sup Wﬂ
o 0#veHy*(0.T) Y 01)
and
Whpory = o W%T)‘ 2.3)
O#weH | *(0.T) HY2(0,7)

2.3 Sobolev Spaces in Q

For a general introduction to Sobolev spaces see, for example, the books [31,64,119,160],
and for function space interpolation, see [26, 102, 103, 153]. For s > 0, the usual Sobolev
spaces of real-valued functions H*(Q), H}(Q) are endowed with the Sobolev-Slobodeckij
inner product (-,)ys(q) and the norm ||-||;sq). For the subspace H}(Q) C HY(Q), the
inner product

<“9V>H(§ @) = (Vxit, Vav) 12 = /qu(x) Vo(x)dx, u,v€H)(Q),
Q
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and the induced norm

iy = gy = \ /ey = [ [ IV Pax. we H ().

Q

are considered. For a type of Fourier series approach in Chapter 3 and Chapter 4, the
eigenfunctions ¢; € H} (Q) with eigenvalues y; € R, satisfying

—A¢i =9 inQ, ¢ =0 ondQ, |[f2q =1 (2.4)

for i € N, are used, see [97, Theorem 4.1 in Chapter II, page 60]. Note that the eigenfunc-
tions ¢; form an orthonormal basis in L?() and an orthogonal basis in H} (Q). In addition,
the eigenvalues p; satisfy

O<uy <w<uz<... and Y —>ocasi— oo,

Hence, for a function u € L> (Q), there holds
M

u—Y uif;
i=1

ie. u=Y7" u¢in L*(Q), with the coefficients

—0 asM — oo,
L2(Q)

u = /u(x)(bi(x)dx e R,
Q
and the L?(Q) norm is given by

lullr2) = [ Y -

i=1

Analogously, for a function u € H(} (Q), there holds

—0 asM — oo,

M
Vie— Y uiVi0;
i=1 12(Q)

ie. u=Y7, u9; in H}(Q), with the coefficients

u; = /u(x)gbi(x)dx ceR
Q

and the H!(Q) seminorm is given by

’”’HI(Q) = Z“i”iz-
Vi<t
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The dual space [H}(Q)]’ is a Hilbert space characterised as the completion of L?(Q) with
respect to the Hilbertian norm

gV
8l (yp = sup -v)al (2.5)

omveny@) V(@

where (-,-)q denotes the duality pairing as extension of the inner product in L?(Q), see
Section 2.2.

2.4 Hilbert Tensor-Product and Bochner Spaces

For an introduction to the algebraic tensor-product ® and to the Hilbert tensor-product &,
see [15, Chapter 12], [157, Unterkapitel 1.6], [128, Section 11.4] or [152, Part III]. For
Bochner spaces, see also [160, Kapitel IV], [162, Chapter 23], [82, Chapter 1 and 2], [139,
Kapitel 10], [110, Chapter 2] and the recent work [12]. In this section, let H be a separable
real Hilbert space with inner product (-,-),; and let Q; C R%! and Q, C R%2 be bounded
Lipschitz domains with dy,d, € N. Consider the Bochner space LZ(Ql ;H) of classes of
measurable vector-valued functions U: Q1 — H, i.e. for each element U € L?(Qq;H) it
holds
U(y) e H foralmostallyec Q,

such that

U205 =

The Bochner space L2(Q1; H) is a Hilbert space with respect to the inner product
<U’V>L2(Q1;H) = / <U(y),V(y)>de
Q)

The dual space [L?(Q;;H)]’ and the Bochner space L?(Q;H’) are isometric, see [82,
Corollary 1.3.22, page 54] and see also [162, Section 23.3]. Furthermore, the Bochner
space L?(Q1;H) and the Hilbert tensor-product L?(Q;)®H are isometric, i.e.

L*(Q:H) ~ L*(Q))&H ~ HOL*(Q),
see [15, Theorem 12.6.1, page 304].
For m € Ny, the Bochner Sobolev space is defined by

H"(Q:H) :={U € L*(Q:H): dfU € L*(Q;H) for |ot| < m}
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where d, is the distributional derivative on Q; with respect to y for vector-valued functions
and o = (Qp,...,0,) € }Ng‘ is a multi-index. With the inner product

0V o= [ WOV Oty + T [ GV 0)
Q alsmg,

for U,V € H"(Q;H), the Bochner Sobolev space H"(;H) is a Hilbert space. Further-
more, the Bochner Sobolev space H™(Q;H) and the Hilbert tensor-product H"(Q)&H
are isometric, i.e.

Hm(.Q.l;H)ZHm(Q.l)@HZH@Hm(Q]), (2.6)

see [15, Theorem 12.7.1, page 307].

As a first special case, for m = 1 and Q| = (0, T), it holds the Sobolev embedding theorem
[110, Proposition 2.46, page 46], i.e.

H'(0,T:H) C C([0,T]:H) 2.7)
with a continuous embedding. Therefore, as in Section 2.2,
H} (0,T;H) :={V € H'(0,T;H): V(0) =0in H},
H4y(0,T;H):={V e H'(0,T;H): V(T)=0in H}
are subspaces of H'(0,T;H).
As a second special case, consider H = H?(£;) with p € Ny. Then the space
Hg’m(gz X Ql)
- {u €L2(Q x Q1): % 0% ue L2 (Qy x Q) for |o?| < p,

o 1‘ < m} ,
with the inner product

2 1 2 1
_ o o o o
<u’ V)Hg’m(szQI) - <ax ay u’ax 8y 4

) ,
|o2[<p ot [<m L2(QyxQy)

where d, and 8y denote the distributional derivatives with respect to x and y on Q; and Q,
is isometric to H™(Q; HP (L)), i.e.

Hgm(Qz X Q.]) ~ Hm(Q.l;Hp(Qz)) ’in(.Qz;Hm(.Ql)) ZHP(Qz)@)Hm(.QI), (2.8)

see [15, Theorem 12.7.2, page 308] and (2.6). Thus, for m = p = 0, the relation (2.8)
states

L2(Q x Q) ~ L2 (Q; L2 (Q))) ~ L2 (Q: L2 (Q)) ~ L*(Q) QL (L),
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see also [128, Theorem II.10, page 52] and [139, last line, page 188]. Hence, for a separa-
ble Hilbert space H C L?(Q;,), the Bochner space L*(Q;H) C L?(Q;L*(Q,)) and the L?
subspace

{ueLl*(QxQ): yu(-y) € L*(Q;H)}, (2.9)

endowed with inner product
() 1= [ (U3 0(9))
Q

are isometric by the bijective isometry ® given by u(x,y) := (®U)(x,y) := U(y)(x) for
(x,y) € Qo x Q1, U € L*(Q1; H). Therefore, for a separable Hilbert space H C L*(Q;), the
Bochner space L2(Q; H) is identified with the subspace (2.9) of L?>(Q, x Q), hence, one
writes

LX(QiH) = {uc L*(QxQ): yu(-y) € L*(Q;H)}.

Analogously, for a separable Hilbert space H C L*(Q;) the Bochner space L?(Q;;H) is
identified with a subspace of L> (Q7 x Q1), hence, one writes

L*(Qy;H) = {ue L2(Qy x Q) x> u(x,) €L2(QZ;H>},

where this subspace of L?(Q, x Q) is endowed with the inner product

Q

With these identifications, the anisotropic Sobolev spaces are defined for 0 < r € R,
0<seRas

H™(Qy x Q1) 1= L*(Q:H"(Q)) N L2 (Qy: H (Q1)) C L2(Q) x Q1) (2.10)
with the inner product
(V) prs(@, <)) ¢=/<u(-,y),V(-,y)>Hr(Qz>dy+/<u<x,-),V(x,-)>Hs(gl)dx-
Q Q

For integers r and s, simpler characterisations of the spaces H™*(Q, x ) are given. For
p e N, m=0, it holds

HPO(Qo x Q1) =du € 12(Q2 x Q1) 0% u € L2(Qa x Q) for |a?| < p
X

—HPO(Q x Q1) = L*(Q1; HP (Q))
ZHP(.Qz;L2(Q1)) >~ HP(Q2)®L2(Q.1)
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with the inner product

2 2
(u,v)Hp,O(szQI) = Z <axa u, 9y’ v>L2(

and analogously, for m € N, p = 0, it holds
HO™(Q) x Q) = {u e L2(QxQ): a;”u € L*(Q x Q) for |a!| < m}
—H2™(Q x Q1) = L2(Q; H™(Q))
ﬁHm(.Ql;Lz(Qz)) ZLZ(.Qz)@Hm(Q])

with the inner product

1 1
o o
(V) om(@, <) <8y u, 0y v>L2(szg21)'
|a1 |§m

As a last special case, consider the interval Q; = (0,7"). For 0 < s € R\ N, the space
H*(0,T;L*(€3)) is defined via function space interpolation endowed with the inner prod-
uct () grs(0,7:12(0)) 7= (") 12(@:15(0,7)) @nd with the to the interpolation norm equivalent
norm ||+[[2(q,.xs(0.7)» s€€ [103, page 8]. So, in the following, the spaces H*(0, T:L*(Q;))
and LZ(QZ;H $(0,T)) are identified, hence, one writes

L2(Q:H*(0,T)) = H*(0,T;L*(Qy)). (2.11)

2.5 Sobolev Spaces in Q

In this section, the notations and identifications of Section 2.2, Section 2.3 and Section 2.4
are used.

For an introduction to anisotropic Sobolev spaces, see [102, 103] and for a short summary
see [35, Chapter 2].

For0 <reRR,0<s € R, one defines as in (2.10), see also (2.11), the anisotropic Sobolev
space

H™(Q):==L*(0,T;H"(Q)) NH*(0,T;L*(Q)) ~ (H(Q)&L*(0,T)) N (L2 (Q)EH*(0,T)),

which is a Hilbert space with respect to the inner product

I/l V H” / H’ dt+/ Hs(o T)dx
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for u,v € H*(Q). Note that for r = s = 1, there hold
H'(Q)=H"'(0) cC([0,T];L*(Q)) (2.12)
with a continuous embedding, see (2.7). The subspace
Hy:'(0) == H'(0,T:L*(Q)) NL*(0,T; Hy (X))

is endowed with the inner product

T
() 1 ) = / / (O, ) av(x, 1) + Vau(n,1) - Vov(x0)) deds (2.13)
0 Q

and the induced norm

T d
g = [ 11 ) = / / <|a,u(x,t)|2+ le8xmu(x,t)|2> duds
0 Q "=

Note that in H(};’l(Q), the seminorm |-|;10) is a to ||| (o) equivalent norm due to the
Poincaré inequality. The subspaces

1/2

Hyjy (Q) := Hy (0.T;L7(Q)) NL*(0,T: Hy (Q)) (2.14)
and

Hyo(Q) := Hpp(0, T L*(Q)) N L*(0,T; Hy (Q))
are endowed with the inner product (2.13) and the induced norm [-[ 1) -

For functions defined in €, the standard trace operator

. HY(Q) = H'2(0Q)

is bounded, i.e. Hy(i)mZHH'/Z(aQ) < CTI-”ZHHI(Q) with a constant Ct; > 0, where the Sobolev

space H 1/ 2(89) is the usual trace space, see [34, 64, 119, 160] for more details. The
extended trace operator
b L(0.T:H' (Q)) — L(Z) (2.15)
satisfies the relation
y(if;v =vy forve L*(0,T;C(Q)),
the relation

int

by =0 <= vel*0,T;Hj(Q)),

and with the same constant Ct, > 0 as yé)m, the boundedness estimate

int
v
H Y0 L2(X)

L2(x)

< CTrHVHLZ(O,T;Hl(Q))’
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see [12, Theorem 6.13, page 21]. Hence, the representations
1,1 o 1 - |[4int, _
Ho; (Q) = {v €EH (Q): 0 L) = O},

H&;&(Q) = {v ceHY(Q): On; 2(3) = HV(',O)”LZ(Q) = 0} ,

Hh(©@) = {v e w1 @) ], = - Tliey =0

L2(%)
are valid.

The dual spaces [HO 0. (Q)] and [Hé;”lo(Q)]’ are characterised as completion of L?(Q) with
respect to the Hilbertian norms

el o = sup e
[ 0;0,(Q)] 07év€H5;’&(Q) |V‘H](Q)

and

HfH[Hl,l (Q)]/ = Sup M
0;,0 oyéwEH(};’,lo(Q) ’W’HI(Q)

b

where (-,-)o denotes the duality pairing as extension of the inner product in L*(Q), see
Section 2.2.

For s = 1/2, one defines via function space interpolation the Sobolev space
12
Hy/?(0.7:L7(Q) 1= [y (0.T:L%()). L*(0.T: ()] 2

with the Hilbertian norm

T

o 2 u(-, )HLZ(Q)
”uHH&/z(O,T;LZ(Q)) . HMHHI/Z(O’T;LZ(Q))+/fdt, (216)
0

which is equivalent to the interpolation norm, see [102, Théoreme 11.7, page 72] and [102,
(5.8), page 276]. Analogously, set

Hy*(0,7;12(Q)) = [H)(0,T;L2(Q)), L2(0,T; L2 (Q))], /2

with the Hilbertian norm

T
2 IIL2
||u||H1)/2(O,T;L2(Q)) = ||u||H1/2(O,T;L2 / t. (217)

0
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There hold the representations

HY*(0,T;17(Q)) = {V|Q: v € H'/2 (o0, T;LX(Q)) with v(-,1) = 0 in L2(Q) for 1 < 0}
T 2
ul-,t
—due HV2(0,T;12(Q)): /Mdl < oo (2.18)
0

and

HY?(0,T;L%(Q)) = {V‘Q' v € H'2(0,00,[2(Q)) with v(-,7) = 0 in L2(Q) for 1 > T}
r luC-, ||
2
= ueH'*0,T;L*(Q / PO g <o, (2.19)
0

see [102, Proposition 5.2, page 276] and [102, Remarque 11.4, page 75]. Because the test
functions
G (Q)@Cy(0,T) =span{¢ -y € (5 (Q): ¢ € (5'(Q), w € G5 (0.T)} C G5 (Q)

are dense in L2(Q)&H'/2(0,T) ~ H'/2(0,T;L*(Q)), see [64, Theorem 1.4.2.4, page 25],
[157, Satz 1.63, page 62] and for the tensor-product of functions see [ 152, Example II, page
407], the sets Hé’/z(O,T;LZ(Q)) and H’B/z(O,T;Lz(Q)) are dense in H'/2(0,T;L*(Q)).
Note that the constant function 1(x,7) := 1 for (x,r) € Q fulfils 1 € H'/2(0,T;L*(Q)),
1¢ Hl/z(O,T;Lz(Q)) and 1 ¢ HI/Z(O,T;Lz(Q)) due to the representations (2.18) and
(2.19).

The first spaces needed for the heat equation are the anisotropic Sobolev spaces

Hy*(0) = Hy/*(0.T:L3(Q)) N L*(0.T: H} (),

Hy! §7(0) := Hg > (0, T3L7(Q)) N L2 (0, T3 HY ()

endowed with the Hilbertian norms
- 2 \V/ 2
Mhgaze \/HVHH&/Z(O,T;LZ(Q)) Vel

R 2 2
Ml = \/”WHH}/2<0,T;L2(Q>) IVl o) (2.20)

The dual spaces [Héé/ 2(Q)]’ and [Hé;’}()/ 2(Q)]’ are characterised as completion of L?(Q)
with respect to the Hilbertian norms

[{g:v)l
||8||[H1_,1/2(Q)], = sup H"H—Q
" 0vergy () 1 Hy, ()
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and 1wl
W
||fH[H1_’1/2(Q)}/ = sup ||W|| g s
0:,0 04w eHl 1/2 0) H(;;’,]O/Z(Q)

where (-,-)o denotes the duality pairing as extension of the inner product in L*>(Q), see
Section 2.2.

A second space needed for the heat equation is introduced. Therefore, one defines
W(Q) :=L*(0.T: Ho (Q)) NH'(0.T: [Hy (Q))) (2.21)
~ (Hp (Q)OL*(0.7)) N ([Ho () &H'(0,7)),

which is a Hilbert space with the inner product

//Vxl/t Xt xv Xt dth+/ 8[u atv »[Hé(ﬁ)]’dt’

see [160, Satz 25.4, page 380], and the norm is given by
1/2

llly o) //|quxt ) dxdt—i—/||8,u Wpayd | -~ @2

0 Q

where the Hilbertian norm in the dual space [H}(Q)]’ is given as in (2.5) for t € (0,T)

by
du(-,1),z
o)l ey = sup M
0#£z€H} (Q) 2 (Q)

Moreover, it holds
W(Q) c C([0,T;L%(Q)) (2.23)

and this embedding is continuous, in other words, there exists a constant Cer, > 0 such
that

1/2

2
max (1)@ = max | [luenPdc) < Conlillyg forueW(o),

see [162, Proposition 23.23, page 422]. In addition, the trace map

Yo, W(Q) = L*(Q), 7yo,ulx):= ujq,(x) = u(x,0) forxeQ,

is surjective, see [102, Théoréme 3.2, page 25], and bounded due to the continuous em-
bedding (2.23) and

[v20u]| 20y = 1.0l 2 ) S max lu(-0)ll12(0) < Cem Ul (o)
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for u € W(Q) with the constant Cer, > 0. Moreover, there exists a continuous, linear right
inverse £q,: L*(Q) — W(Q), satisfying for all uy € L*(Q)

’}’QOSQOMQ =up in LZ(Q) and ||€Q0M0||W(Q) < CexHu()HLz(Q) (2.24)

with a constant Cex > 0, see [102, Remarque 3.3, page 26]. Note that also Theorem 3.1.1
in Section 3.1 gives such an extension operator £q, . Because of the embedding (2.23), the
initial condition v(-,0) = vq in L?(Q) for a given vo € L>(Q) is meaningful. Further, the
subspace

Wo,(Q) := {veW(Q): v(-,0)=0inL*(Q)} C W(Q) (2.25)

is again a Hilbert space with respect to the inner product (-, -)W(Q).

2.6 Discretisations in Time

For the given finite time T > 0, the time interval (0,7) is decomposed via the time steps
O=tn<h<n<- <ty <ty =T,

where N; denotes the number of time intervals 1, = (fy_1,#;) for £ = 1,...,N;. In addition,
the number of time steps #; is denoted by M,,i.e. M, = N, + 1, and the local mesh sizes are
given as h; gy =ty —t,_y for £ =1,...,N;. Next, the global mesh size in time is defined by
h; = maxy—1_.n, h, s, and the related finite element space

.....

83, (0.7) = span{ @i}y

of piecewise linear, continuous functions is introduced, where the usual nodal basis func-
tions @y, k =0,...,N;, satisfy @i (t;) = O for k, = 0,...,N;. In addition, the subspaces
S}lz,,o,(O’T) C S,llt(O,T) and Sfl,,,,()(O’T) C S}lz, (0,T) fulfil the homogeneous initial or end
conditions, i.e.

$h.0.(0.7) = S}, (0.7) NHY (0.T) = span{y }}"

and
Sh.0(0.T) = $},(0.7) NHb(0,T) = span{ i}y

Furthermore, 521 (0,T) is the finite element space of piecewise constant functions. The

mapping
0y L*(0,T) — Sp (0,T)

denotes the L? projection on the piecewise constant finite element space 521 (0,T), defined
for u € L*(0,T) by finding Qgru € Sgt (0,T) such that

<Q21u’vht>L2(o,T) = <M»Vh,>L2(()’T) (2.26)
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for all vy, € ng (0,T), satisfying the stability estimate
1%l 207y < el 207

For a continuous function u € C[0, T], the interpolation operator
I, : C[0,T] — S}, (0,T)
is defined by
N,
Inu(r) := Y u(te)@e(7) (2.27)
/=0

for ¢ € [0,T], which is uniformly bounded with respect to the mesh size 4, as a mapping
I, : H'(0,T) = S, (0,T), i.e.

i ull i o,y < Cllull oy Ve € H'(0.T)

with a constant C > 0 independent of /4, see [51, Proposition 1.4, page 6], and in addition,
it holds
10, ull 207y < 1Ol 207y Ve € H'(O,T), (2.28)

see [51, Proof of Proposition 1.4, page 6]. For u € H&(O, T)NH 2 (0,T), recall the standard
error estimates for the piecewise linear interpolant

1
[l =Ty, ull 20,7y < %h, 10: (s = In10) || 20,7 (2.29)
1 1
[ = Inull gy o7y = 19 (= Inu) | 20,7y < —7= he |9hutl| 20,7y < —= e | Geutl| 0,1

0 (0.T) V3 V3

(2.30)
and therefore
1 1

([ = I ul[ 20,7y < ﬁh? 19l 20.7) < ﬁhrz 19l 10,1 (2.31)

An interpolation argument between (2.30) and (2.31) yields for u € H&(O, T)NH?*(0,T)
3/2
=Tl gy < €I 90l (2.32)

where the constant C > 0 is independent of /;, but dependent on the norm equivalence
constants concerning || - [| ,1/2 (01) S€€ Theorem 3.4.2 and (3.32).
0,

.T)
For a given function u € H&(O, T), the H& projection Q}llu es }ll’o’(O, T) is defined by

<8Z‘Q}11t u, alvhl >L2(0,T) - <8l‘u9 alvhr >L2(0’T) (233)
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forall v, €S }IL,,O,(O’ T), satisfying the stability estimate

1
10:Op, ull 20,7y < Nl 9eutl| 120,1)-
In addition, it holds for s € [0, 1] the standard error estimate
Ju— Qilz,”HLZ(o,T) < Cht]+s||u||H1+~"(0,T) (2.34)
for u € Hy (0,T) NH'*™*(0,T) with a constant ¢ > 0.

Next, time stepping schemes are introduced. For a given positive integer M, € N, consider
a first-order ordinary differential equation

du
dr
where u(0) = uy, € RMx and F: [0,T] x RM* — RMx are the imposed initial condition and

right-hand side. The right-hand side F is assumed to be sufficiently smooth and Lipschitz
continuous with respect to the second argument, i.e.

(t)=F(t,u(t)) forte][0,T],

|E(t,v)) —E(t,vy)| < Crlv; —vy| forallyy,v, € Rt € 0, 7]

with a Lipschitz constant C; > 0. To approximate the function u: [0,7] — RMx, time step-
ping methods are considered. These lead to approximations

u(ty) ~U" € R™
in each time step #; for ¢ =0, ..., N;. Therefore, the 6-method for 6 € [0, 1] is defined as

U U =iy (1= 0)F (10,U") + OF (141,U") ) (2.35)

for £ =0,...,N; with U° := u;, € RMr. The §-method simplifies to the explicit Euler
method for 6 = 0 and to the implicit Euler method for 6 = 1. For 6 = 1/2, the Crank-
Nicolson method is obtained. The explicit and implicit Euler method converge with order
h;, whereas the Crank-Nicolson method converges with order h,z. Furthermore, the implicit
Euler and the Crank-Nicolson methods are A-stable. On the other hand, the explicit Euler
method is not A-stable. See [93, Section 7.4] and [75] for more details and proofs.

2.7 Discretisations in Space

Let the bounded Lipschitz domain  C R be an interval Q = (0,L) for d = 1, or polygonal
for d = 2, or polyhedral for d = 3. For this situation, different discretisations in space are
introduced as follows. The spatial domain € is decomposed as

Ny
Q= U y
(=1
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with N, spatial elements @, C R?. The sequence (7y)y of decompositions is assumed to
be admissible, shape regular and globally quasi-uniform. Here, the spatial elements @y are
intervals for d = 1, triangles or quadrilaterals for d = 2 and tetrahedra or hexahedra for
d = 3. The local mesh sizes are given as

1/d
Ty = /dx for 0= 1,...,Ny
2%

and h, = max/—;__n, hyy 1s the global mesh size. Furthermore, M, is the number of ver-
tices {x,-}?i“l of the decomposition. The space
Vi, () = span{ya}y € H'(Q)

is the space of piecewise linear, continuous functions S}lx (Q) on intervals (d = 1), triangles
(d =2), tetrahedra (d = 3), or V,_(Q) is the space of piecewise linear/bilinear/trilinear, con-
tinuous functions Q}lx (Q) on intervals (d = 1), quadrilaterals (d = 2), hexahedra (d = 3),
where the functions y; are the usual nodal basis functions satisfying y;(x;) = 0y for
i,k=1,...,M,. Recall that S}lx(O,L) = Q}ix(O,L) on intervals. In addition, the subspace
Vi0(Q) C V;, (Q) satisfies the homogeneous Dirichlet boundary condition, i.e.

Vi 0(Q) = Vi, (Q) NHy (Q).

After an ordering of the vertices {xi}?ﬁl in interior vertices {xi}?i*l C Q and boundary

vertices {xi}ﬁ‘Mx 1 C 99, this Hj () conforming subspace is written as

Vi 0(Q) = span{y;} 1%, (2.36)

A function Uy, € Vj,_o(Q) admits the representation

M,
Up,(x) = ;in,-(x)

for x € Q. In the remainder of this work, M, € RM:xMx gnd Ap, € RM:*Mx denote mass
and stiffness matrices defined via

th[i’j] = <1Vj’ I//i>L2(Q) (2.37)

fori,j=1,...,M,, and
An[i ] = (Va0 VW) 12 (2.38)

fori,j=1,...,M,. The I? projection
thi Lz(Q) — th,()(.Q.)
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on the piecewise linear, continuous functions, satisfying homogeneous Dirichlet boundary
conditions, is given as the solution of the variational formulation to find Q. u € Vj,_o(Q)
such that

<thu’vhx>L2(Q) = (u, vhx>L2(Q) (2.39)
for all v, € Vj,_o(€2), satisfying the stability estimate

HthuHL2(Q) < H”||L2(Q)’

where u € L*() is a given function.

2.8 Discretisations in Space and Time

As in Section 2.7, let the bounded Lipschitz domain Q € R¥ be an interval Q = (0,L) for
d =1, or polygonal for d = 2, or polyhedral for d = 3. Hence, the space-time cylinder
Q =Qx (0,T) c R¥*! is polygonal for d = 1, or polyhedral for d = 2, or polychoral
for d = 3. For this situation, different discretisations in space and time are introduced as
follows.

First, consider a sequence (7y)y of admissible, shape regular and globally quasi-uniform
decompositions

. L N
0=Tv=Ja
/=1

with N space-time elements g, C R4*!, where g is a triangle for d = 1 or a tetrahedron
for d = 2 or a pentatope for d = 3, see [117,142]. In addition, M is the number of vertices

.....

local mesh sizes are given by

1/(d+1)
hy = /dxdt for/=1,...,N.
qr

The space }
Sp(Q) = span{yi}iL; C H'(Q)
is the space of piecewise linear, continuous functions on triangles (d = 1), tetrahedra

(d = 2) or pentatopes (d = 3), where {llli}f-zl is the nodal basis, i.e. Wi(x, ) = &, for
k,i=1,...,M. A function u; € S} (Q) admits the representation

M
up(x,t) = Zu,-l//i(x,t) for (x,t) € Q.
i=1
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For the space S }Z(Q) the space-time interpolation operator
In: C(Q) = $,(0)
is defined by

Lu(x,t) =) u(x;,t;)yi(x,t) (2.40)

M=

I
_

for (x,t) € Q.

Second, consider for a tensor-product ansatz a sequence (7y)y of admissible decomposi-
tions

N, N
0=Tyn=Qx[0,T] = <Uw,-> X (U@) (2.41)
i=1 /=1

with N = N, - N, space-time elements, where the time intervals 7y = (fy_1,ty) are defined
via the decomposition

O=tn<h<n<---<ty_1 <ty =T

of the time interval (0,7") and where the spatial domain € is decomposed as

Here, the spatial elements @; C R? are intervals for d = 1, triangles or quadrilaterals for
d =2 and tetrahedra or hexahedra for d = 3. The local mesh sizes are h; y = t, — 1,1 for
£=1,...,N; and

1/d
hyi= /dx fori=1,...,N,.
o;

Furthermore, the global mesh size is given as & = max{hy, i } with hy = maxy—_; __n Iy
and h, = max;—1__n, hy;. It is always assumed that the sequence (7y )y of decompositions
is shape regular and globally quasi-uniform. Next, consider the finite element space

04(0) ==V, 0(Q) ®S;, (0, T) (2.42)

of piecewise multilinear, continuous functions, where Vj, o(Q) C H}(Q) is the space of
piecewise linear, continuous functions S}IXO(Q) on intervals (d = 1), triangles (d = 2),
tetrahedra (d = 3), or V;, (L) is the space of piecewise linear/bilinear/trilinear, continuous
functions Q}lx (&) oniintervals (d = 1), quadrilaterals (d = 2), hexahedra (d = 3), fulfilling
in both cases the homogeneous Dirichlet boundary conditions on the lateral boundary X,
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see (2.36). Recall that Sllzx,o (0,L) = Q}lx,o (0,L) on intervals. A function u;, € Q}(Q) admits
the representation

Ny M, Ny _
wi(xt) =Y Y ubw;(x) @u(t) = Y Uy o(x)@u(t)  for (x,1) € O, (2.43)
(=0 j=1 (=0
Z
=Up, ¢(x)

where @y is a piecewise linear, continuous nodal basis function with respect to time and
Y is a piecewise linear/bilinear/trilinear, continuous nodal basis function with respect to
space with My := dimV},_¢(Q). Furthermore, it holds U, s € V},_o(Q) for £ =0,...,N;.

The extended time interpolation operator
I,: C([0.T);L*(Q)) = L*(Q) ®S,, (0,T)

is defined by
N

Inu(x,t) = Z u(x,17)@y(t) (2.44)
=0

for (x,1) € Q.

To derive space-time error estimates, different space-time projections are needed. As a
first space-time projection, the H&.’é (Q) projection

Oh: Hyp (0) — QL(Q)NHY, (Q)

is introduced as the solution of the variational formulation to find Q}lv € Q,ll(Q) ﬂHS;’& (0)
such that

<atQ}11V’ atvh>L2(Q) + <VxQ}ILV, VxVh>L2(Q) = <an, atvh>L2(Q) + <VxV, VxVh>L2(Q) (245)

for all v, € 0}(Q) N Hyjy (Q). where v € Hy}y (Q) is given. There hold the stability esti-
mate

‘Q;ll"‘Hl(Q) < MHI(Q) Vve H(};’é,(Q)

and if Q is sufficiently regular, for s € [0, 1] the standard error estimate
lv—04vllr20) < ch'*IVlls(o) (2.46)
forv e Hé;’é, (Q)NH'*5(Q) with a constant ¢ > 0.

As a second space-time projection, the H&—H& projection Q/lz, Q,llxv € Q,IZ(Q) OHS;S, (0)
is introduced analogously to [16, Section 2], where the function v € Hé;’é’ (Q) is suffi-

ciently smooth. First, for a given function v € L?(0,T; H} (Q)), the extended H{ projection
0}V € Vi 0(Q) ®L*(0,T) is defined by

(V203 Vi) 129y = (Vs Vv ) ) (2.47)
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for all v;,, €V, 0(Q) ® L?(0,T). Note that V,_o(Q) ® L?(0,T) is, as a tensor-product of the
separable Hilbert spaces (th,o(Q), <Vx('),vx(')>L2(g)) and (LZ((), T),(, '>L2(0,T)> , again
a Hilbert space, where the inner product is given by (Vi(-),V());2(g)- Hence, by the
Lax-Milgram Theorem, it follows the well-posedness of the extended H(} projection

Q.1 L*(0,T;Hy () = Vi, 0(Q) ® L*(0,T),
satisfying the stability estimate
V205 vl 2(0) < IVevllr2(0)-
Furthermore, it holds for s € [0, 1] the standard error estimate
v =i vll20) < IVl 20781 +5(0) (2.48)

for v e L2(0,T;H}(Q)NH'™(Q)) with a constant ¢ > 0, if Q is sufficiently regular. Sec-
ond, for a given function v € Hj (0,7 L*(€)), fulfilling the homogeneous initial condition,

the extended Hé’ projection Q}hv cL?(Q)®S }lt’o’(O, T) is defined by
(% Qi v- 0V ) 29y = (O, v, ) 2 (2.49)
for all v, € L*(Q) ® S}, , (0, T), satisfying the stability estimate
HalQ}lz,VHLz(Q) < HatVHLZ(Q)’
where the well-posedness of the extended H& projection
0}, HY (0.T:L7(Q)) —» [A(Q) @), (0.T)

is shown analogously as for Q}lx. In addition, it holds for s € [0, 1] the standard error esti-
mate

[v— Qilz,VHLZ(Q) < Chtl+s||V||H1+S(0,T;L2(Q)) (2.50)

forv e Hy (0,T:L*(Q)) NH'(0,T;L*(Q)) with a constant ¢ > 0. Testing the variational
formulation (2.49) with the test function

oy = 201 for () €@ 0.1,
YT @) for (nr) € @x [1T]

with an arbitrary function z € L2(Q) for £ € {1,...,N,} yields

/ 2()0} v(x.1p)dx = / 2(x) 7 210} v(x.1)drdx = / 2(x) f Apv(x,1)dedx = / 2()v(x1p)dx
0 0

Q Q Q Q
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and hence, with the fundamental lemma of calculus of variations follows the interpolation
property
O, v(x.10) = v(x.1).

In other words, it holds Qfll, = I, for functions in Hj (0, T:L*(Q)), see (2.44).
Lemma 2.8.1. The following properties of the projection operators Q}llx and Qilz, are true:

1. For a function v € H'(0,T;HJ (Q)), it holds that Q/szv €V 0(Q)@HY0,T). If, in
addition, v satisfies v € H&(O, T;H(Q)), then it follows Q}lxv €V 0(Q) ®H&(0, T).

2. For a functionv € H&(O, T:H'(Q)), it holds that Q}IZ,V cH'(Q)® S,11 (0,T) and if,
in addition, v satisfies v € H&(O, T;HY(Q)), then Q}%v €EH}(Q)® Sht,o,(O, T).

Proof. For the first part, consider a representation for (x,7) € Q

Q) v(x.1) Z (2.51)

where {lf/j}jj‘.i*  is an orthonormal basis of Vj,, o(€2) with respect to (Vx(-), Vx(+))2(q) and
V; € L*(0,T). To show that a weak derivative of V; exists, fix an index j € {1,...,M,}.
The definition of the extended H|} projection Q}l in (2.47) for v, (x,t) = J;(x)z(t) gives

T T
/ V(1)1 / V0L V(1) Vi) 2 200l = / (V1) Vo)) o (0
0 0
(2.52)
for all z € Cy (0,T). So, the fundamental lemma of calculus of variations for (2.52) yields
fort € (0,T). For z = d,Z in (2.52), it follows
T
/ (1)9h2(1)dt = / (Vv (1), 50 1) E(0) / (Vv ). V) 1y 20
0 0
forall € C5(0,7), i.e. 9;Vj(t) = (9 V(-,1),ViV;) 2@ Furthermore, it holds with the
Cauchy-Schwarz 1nequahty
T
- 2 . 2
10Vl 20, = / <<arvx"("’)’vx‘Vj>L2(Q)> dr
0
T

< [ 100l @[Vl e = 10V )| V03] ) < o
0
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and so, the first assertion. If, in addition, v(-,0) = 0 in H(}(Q), then the continuity of
(+)12(q) and of the trace operator yields

Vj(t)\tzo = <VxV(',t)|;:0,Vxlf/j>L2(Q) = 0.
The second part follows in an analogous way. =

The next lemma shows that Q;lz, Q}lxv € Q}Z(Q) ﬂHé;’é, (Q) is well-defined under regularity
assumptions for v and that the operators in space and time commute, where the proof is
analogous to [16, Lemma 2.1, page 261].

Lemma 2.8.2. For a given function v € Hé;’& (Q) with the regularity v € L*(0,T;H} (Q))
and 0y,,v € H&(O, T;LZ(Q))for m=1,...,d, there hold

1. the relation athl;xV = Q}lxatv € Vi o(Q)®L*(0,T),
2. the relation O, Q}ltv = Q}ltc?xmv c?(Q)® S}l[,o,(O, T)form=1,...,d and

3. the relation Qflz, Q}lxv = Qilszflz,V € Q}l(Q) ﬂHé;’é (Q). In particular, the space-time
projections Qilz, Q}lxv and QllzXQ}lz,V are well-defined.

Furthermore, the error estimate
1 1 1 1
lv— ththVHLZ(Q) <|v- thVHLZ(Q) + HV_thVHLZ(Q) "‘ChxhtHathVHH(Q)

with a constant ¢ > 0 is valid.

Proof. For the proof of the first relation, recall that
9,0}V € Vi 0(Q) ®L*(0,T)

by Lemma 2.8.1. Consider (2.47) for d,v € L*(0,T;H} (Q)) and with integration by parts
follows

<VxQ}11X v, Vxth >L2(Q) = <antva VxVhX>L2(Q) = - <va, antth>L2(Q)
= - <VxQ}11xV’ an’VhX>L2(Q) = <antQ},xV’ vahx>L2(Q)
= <Vinllxat Q}llxv, vahx >L2(Q)
for all vy, € V;,0(Q) ® C(0,T). Because of the density of C(0,T) in L2(0,T), it holds
Q}lx&v = Q}lx8,Q,11xv with 9, Q}lxv € Vi 0(Q) ®L2(0,T). So, the first relation is proven.

The proof of the second relation is analogous to the proof of the first relation.
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For the third relation, note that it holds by Lemma 2.8.1 that
N;
Ohv=Y Vi e Hy(Q)®S} o (0,T) C Hy (0,T:Hy (L))
/=1
with coefficients V! € H} (Q) and so,
04 OV € Vi o(Q) ® Hy (0,T) C H (0, T3 Hy (Q))

is well-defined. With the representations as in (2.51) and in (2.53) for Q}IZ,V’ there follow
for (x,t) € Q
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and so, O} O} v € 0}(Q) NHy (Q). Analogously, 0} O} v € 0L(Q) N Hy (Q) is well-
defined. With the help of the first relation, the second relation and the definitions (2.47),
(2.49), there hold

I
_
~.

I
_

I
M=~

d
Z <8t axm Q;l,, Q;llXV, 9 axm Vh) L2(Q) <at Q;ll, axm Q;llx v, 0 axm Vh> L2(Q)
m=1

3
I

I
M=~

(04x,, O,V 910, Vi) 12(0)

3
n

I
M=~

(0,0x,,v: 010k, Vi) 2 Q)

3
[N

and analogously,

d d
Z <at axm Qh Qh v, at axm Vh L2 Z at a)Cm v, a[ axm Vh>L2(Q)

m=1

for all v, € 0} (Q) ﬂH(}.’é (Q). Hence, also the third relation is true.

The error estimate follows with the triangle inequality, the first and second relation and
standard error estimates for Q}lt and Q}lx from

ol <llv—o! Nl
V=05, CnVl200) < V=0 Vll200) + IV —Cn V12 (0)
1 1 1
+ [[(v=04v) = O, (v= 0 V)l 12(0)

<cth |0, (v=0}, V)l 2 gy Sc1e2hihe|| 9 Vvl 2 )

with constants c¢1,cp > 0 independent of /4, and h,. O
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Next, for a function v € C([0, T]; L*(Q)), investigate I, @5, v € O} (Q) OHS;] (Q). Therefore,

for a given function v € L?(Q), the extended L? projection Qp v € Vj,_o(Q) ® L?(0,T) is
defined by

(On vV )2 (0) = (Vavi)2(0) (2.54)
for all v;,, € Vj,_o(Q) ® L*(0,T), satisfying the stability estimate

HthVHLZ(Q) < ||V||L2(Q), (2.55)
where the well-posedness of the extended L? projection
QOn,: L*(Q) = Vi o(Q) ® L*(0,T)

is analysed as for the projection Q}sz given in (2.47). Furthermore, it holds for s € [0, 1] the
standard error estimate

1
v =0Onvllzzi) < he ™ IVllzaor:m+(e)

forv € L*(0,T;H (Q) NH!™(Q)) with a constant ¢ > 0. The following properties of the
projection operator Q;, are true:

Lemma 2.8.3. For a function v € C([0,T];L*(Q)), it holds that Qv € Vj, o(Q) ® C[0,T].
In addition, for a function v € H'(0,T;L*(Q)), there hold Oy, v € Vj,_o(Q) @ H(0,T) and
100Vl (0,7:22(0)) < VN o.m:0200)) for ¥ = 0. In particular, for r =k € N, the relation

8,thxv = th8tkv is valid.

Proof. The proof is analogous to the proof of Lemma 2.8.1. More precisely, take an or-
thonormal basis {%}J}/sz 1 of Vi, 0(Q) with respect to (-, )2 () and write

M,
O v(x,r) =Y Vi(1);(x) (2.56)
j=1

for (x,t) € Q with V; € L(0,T). For the first assertion, it remains to show that V; € C[0,T].
For that reason, the equation (2.54) gives for v;,_(x,1) = j(x)z(¢)

T

T
/Vj(t)z(t)dt = (On,v, W}LZ(Q) = (v, tisz>L2(Q) = /<v(-,t),1pj>L2(Q)z(t)dt (2.57)
0 0

for each z € L?(Q) and hence, the fundamental lemma of calculus of variations yields

i(0) = (00,02 = [ Ve By x)de 2.58)
Q
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fort € (0,T). Because for almost all x € Q and all t € [0, T] it holds

v(x.1) P (x)| < max. v(x,5)] -rfne%\%(i)l =: g(x)

with g € L?>(Q), the theorem of continuity for parameter integrals [47, Satz 5.6, page 147]
gives Vj € C[0,T] and hence, the first assertion.

For the last statement, an interpolation argument is used, see [102, Théoreme 5.1, page 32
in Chapitre 1]. For r = 0, the assertion is trivial. Therefore, let v € H*(0,7;L*(Q)) be
given for k € N, i.e. r = k. Because of the representation (2.56), it remains to prove that
d}V; € L2(0,T). For z = 9}Z in (2.57), it follows

T T T
k k ~
/ / P / (Q)z(t)dt
0 0 0

for all Z € C5(0,7), ie. OfV;(t) = (fv(-.1), ;) 12(q)- Furthermore, it holds with the
Cauchy-Schwarz inequality

]( >2@)2dt
< [l

0

< oo,

H‘/’JHLZ

=1

v
L2(Q)

The relation 8thhxv = O, Btkv is proven analogously to the relations of Lemma 2.8.2, and
s0, the assertion for r = k, where for the stability || Qn vl (0 7.12()) < IVl a0.7:22(0))» the

stability (2.55) is used for 9} Onv=0n, d/v,1=0,...,k. For arbitrary r > 0, the statement
follows by interpolation. [

For a given function v € C([0,T]; L*(Q)), Lemma 2.8.3 ensures that [, 0, v € O} (Q), given
by

1, Opv(x.1) Z On v (x,10) @y (1 Z Z Vi wi(x (2.59)
for (x,t) € Q, is well-defined.
Lemma 2.8.4. For a given function v € C([0,T];L*(Q)), there holds

1, 0n,v = O Inv € 04(0Q).
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Furthermore, for v € L*(0,T;H*(Q))NH"(0,T;L*(Q)) with s € [0,2] and r € (1/2,2], the
error estimate
V=10, O llr2 () < ct VIl 2 0,7:m5()) T 2 V| 0,7:2(0))

with constants cy,cy > 0 independent of hy and h; is valid.

Proof. Take an orthonormal basis {1/71-}1]‘./[:"1 of Vj, 0(Q) with respect to (-,-);2(q and write
with (2.58)

M,

M,
Op,v(x,1) Z Z Q)l/?j(x) for (x,t) € Q,

where Vj € C[0,T), see Lemma 2.8.3. With this representation, there follow for (x,z) € Q

N M,
I, Qpv(x,t) = Z Z (v(-s10), l//J>L2 () @e(t)
=0 j=1
and
M, N, M,
On I, v(x,1) Z Inv( 1) W)) 2 Wi (x) = Y ) VCat0) W7) 120 W5 (%) @ (0).
=1 =0 j=1

1.e. Ithth = thlh,V € Q;Z(Q)

The error estimate follows with the triangle inequality, standard error estimates for I, and
O, and Lemma 2.8.3 from

||V_Ithth“L2(Q) < HV—QhXVHLZ(Q) + HthV_IththHLZ(Q)
< cr vl 20,0 (0)) + 2 190 g0 7:22(02))

< caildlizorms @) bVl or2@)

with constants c1,c; > 0 independent of A, and A;. O

2.9 Variational Methods

Let X and Y be real Banach spaces endowed with norms ||-||y and ||-||,. Furthermore,
let a(-,-): X xY — R be a given continuous bilinear form and let F: ¥ — R be a given
continuous linear form. Consider the abstract variational problem to find u € X such that

a(u,v) =F(v) Yvey. (2.60)
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A continuous, linear operator A: X — Y’ is associated with a(-,-): X xY — R by set-
ting
(Au,v)yry :=a(u,v) foralueX,vey,

where (-,-)ys. .y is the duality pairing.

Theorem 2.9.1 (Necas). Let (X, ||-||y) be a real Banach space, (Y, ||-||y) be a real, reflexive
Banach space and a(-,-): X XY — R be a continuous bilinear form. Then the following
statements are equivalent:

1. For every given continuous linear form F: Y — R, there exists a unique solution
u € X of (2.60), satisfying
lullx < &llFlly:

with a constant &, > 0.

2. The continuous, linear operator A: X — Y' associated with a(,-): XxY = Ris
an isomorphism, i.e. A is bijective and A~": Y' — X is continuous.

3. For the continuous bilinear form a(-,-): X XY — R, there hold:

e There exists a constant ¢y > 0 such that

inf  sup M > Cy.

0#ueX 0£yey H”HXHVHY N

o Foreachv €Y, v #0, there exists an element u € X such that a(u,v) # 0.

Moreover, it holds ¢, = Cl
N

Proof. If X,Y are real Hilbert spaces, a proof is contained in [118, Théoreme 3.1, page
318] or in [29, Satz 3.6, page 119]. For the general case, see [51, Theorem 2.6, page
85]. ]

Remark 2.9.2. For complex Hilbert spaces X and Y, a continuous sesquilinear form
a(-,-): X xY — C and a continuous linear form F: Y — C, a proof is included in [131,
Theorem 2.1.44, page 36].






3 HEAT EQUATION

The main focus of this chapter are space-time variational formulations and conforming
discretisations for parabolic problems. First, a highly non-exhaustive list of references and
second, an overview of the sections of this chapter are given, where for each section the
relevant literature is cited. Here, the model problem for a parabolic partial differential
equation is the homogeneous Dirichlet problem for the heat equation,

du(x,t) — Au(x,t) = f(x1) for (x,1) € 0 =Q x (0,T),
w(xt) = 0 for (x,1) € £ =T x [0, 7], 3.1)
u(x,0) = wup(x) forx € Q,

where Q C R4, d = 1,2,3, is a bounded Lipschitz domain with boundary I' = dQ, T > 0
is a finite time, uq is a given initial condition and f is a given right-hand side. To compute
an approximate solution of the heat equation (3.1), different numerical schemes including
different approaches of the underlying mathematical framework are available. On the one
hand, some of them are repeated in this chapter, but on the other hand, powerful tools like
semigroup theory as in [91, 123] on the continuous part or on the discretisation side, any
kind of discontinuous Galerkin methods [48-50,56,78,85,116,134,135] or finite difference
methods [65, 97, 147] or boundary element methods are not in the scope of this work.
For boundary integral equations and boundary element methods for the heat equation,
see [14, 35,40, 120] and in addition, see [39,76, 107,109, 125,129, 149]. Furthermore, all
approaches where the heat equation (3.1) is reformulated as a first-order system also in the
spatial variables are excluded in this work, see, e.g., [25] and the references therein. In
addition, see also the approaches in [10,11,38,99,100,112,137, 154].

Outline of Chapter 3

The remainder of this chapter examines the heat equation (3.1) as follows:

In Section 3.1 a pointwise spatial variational formulation coming from a so-called Galerkin
method [36,97,98,102,160, 162] and time stepping schemes [65,74,85,93,150] are cited,
see also [9,16,17,43,54,79,108,148,151,159]. In Section 3.2 a space-time variational for-
mulation with ansatz spaces of Bochner type, analysed via the inf-sup theory and including
a stable space-time discretisation, is formulated, see [51, 137, 142—144]. In Section 3.3 an
anisotropic space-time variational formulation [35, 98, 102, 103], which is obtained by a
transposition and interpolation argument, is replied, and also an example for an unstable
numerical scheme, which is derived by the (natural) usage of conforming, piecewise linear,
continuous ansatz and test functions, is given. Nevertheless, this anisotropic formulation

45
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leads to boundary integral equations in anisotropic Sobolev spaces, where the single layer
and hypersingular boundary integral operators are elliptic, see [35,40, 120]. For the last
and main Section 3.4, see [145], a motivation is given by transmission problems. For trans-
mission problems of the heat equation a coupling of finite and boundary element methods
is a natural choice, i.e. the finite element method is used for the interior problem as in (3.1)
and the boundary element method is used for the corresponding exterior problem. For the
finite element part, the anisotropic variational formulation of Section 3.3 is not well-suited
on the discretisation level because it seems that a stable finite element method is not avail-
able. On the one hand, the Bochner type variational formulation of Section 3.2 gives a
stable finite element method, but on the other hand, from an analysis point of view, the
boundary integral equations [35,40, 120] and the variational formulation of Bochner type
in Section 3.2 do not fit, i.e. the resulting trace spaces of the Bochner spaces are different
from the anisotropic boundary spaces in Section 3.3. In other words, it seems that the anal-
ysis of a coupling of the corresponding discretisations in [35,40, 120] and Section 3.2 is
very difficult. To overcome the problem of non-fitting spaces, either the boundary integral
equations are treated in trace spaces of the Bochner spaces of Section 3.2, or a stabilised
finite element method of the anisotropic spaces of Section 3.3 is introduced. The second
approach is the motivation of Section 3.4, where the main result is a symmetric and elliptic
variational formulation and hence, a symmetric Galerkin discretisation of the first-order
time derivative, see [145]. In addition, see [37,52,101]. In Section 3.4 the key ingredient
is a type of Hilbert transform, where its fast realisation is not in the scope of this thesis.
However, Section 3.4 is completed with error estimates and some numerical examples,
which emphasise the theoretical results.
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3.1 Variational Formulation in Space and Pointwise in Time

In this section, a short overview of a pointwise in time variational formulation is given.
Furthermore, numerical examples for lowest order in space, i.e. piecewise linear, continu-
ous ansatz functions, combined with lowest order time stepping are presented.

The pointwise in time variational formulation of (3.1) is given with the notations of Sec-
tion 2 as follows:

Find u € L*(0,T;H}(Q)) with du € L*(0,T;[H}(Q))') and u(-,0) = ug in L*(Q) such
that
(Qu(-1),v) g+ (Vxu(,1),Vav) 2 ) = (f (1) v)g (3.2)

for almost all # € (0,7) and all v € HJ (Q), where f € L*(0,T;[H} (Q)]') and up € L*(Q)
are the given right-hand side and the given initial condition. Here, o} is the distributional
derivative on (0,7), i.e. equality (3.2) means that it holds

T T T
~ [0 O+ [ (V). V) 001 = [ (700000
0 0 0

for all ¢ € Cy (0,T). The variational formulation in (3.2) is examined in many books,
for example, [102, Exemple 1, Chapitre 3, page 263], [160, Beispiel 28.1, Kapitel IV,
page 409], [162, Section 23.8, Chapter 23, page 426] or [36, Mathematical Example 1,
Chapter XVIII,page 524]. In these books, the following existence and uniqueness result is
proven.

Theorem 3.1.1. For given f € L*(0,T;[H}(Q)]') and ug € L*(Q), there exists a unique
solution u of the variational formulation (3.2), satisfying

ue L*(0,T;H(Q)NC([0,T];:L2(Q)), du € L*(0,T;[H}(Q)]),

i.e. u € W(Q), and the stability estimate

H”HW(Q) = \/HM‘%}(O,T;H&(Q)) + Ha’”HiZ(O,T;[H(}(Q)}’) sc (HMOHLZ(Q) + HfHLZ(OaT;[Hd(Q)]’)>

with a constant ¢ > 0.
Proof. See the books [36,102, 160, 162] as mentioned above. ]

For a discretisation scheme, let the bounded Lipschitz domain Q C R4 be an interval
Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations
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of Section 2.8, consider a discretisation of a tensor-product type (2.41) with the finite-
dimensional space 0} (Q) = Vj, o(Q)®S flzz (0,T), see (2.42). Therefore, introduce for x € Q
and ¢ € {0,...,N;} the approximation

=

Up,o(x) := ' U,-fl//i(x) ~ u(x,ty),

~
—_

where Uf € R are the unknown coefficients of the functions U, s € V},_o(Q) C H& (Q) for
¢€40,...,N;}. Furthermore, set for (x,7) € Q

N; My N
we0) == Y. Y UIV00(0) = Y U 0)u(t) = u(or). (33)
(=0i=1 (=0

ie. uy € Q}(Q).

For the pointwise in time variational formulation (3.2), a conforming discretisation in space
with V;, 0(Q) C H(Q) in combination with a 8-method (2.35) for 6 = 1 leads to the so-
called implicit Euler Galerkin method to find Uy, ¢ € Vj, o(Q) C H} (Q) for £ € {0,...,N;}
such that

Uh,,0 = On,tto
andfor/=1,...,N;
1 1
m(Uhx,f - Uhx,efl,vh)()l}(g) + <Vthx,Z, vahx>L2(Q) = m /f(',S)dS,th (3.4
5 ” T( o

for all v;,, €V}, 0(Q), where Oy, : L*(Q) — Vj,, 0(Q) denotes the L? projection (2.39). This
method is given in [74, (2.10), page 684] or in [79, (3.5), page 508] and differs from the
methods [150, (1.47), page 16] or [65, (1.34), page 334] only in the right-hand side. The
implicit Euler Galerkin method (3.4) is equivalent to the linear systems

My U° = u

and
(M, +hy oAy ) U =M, U+ FF (3.5)

forall £ = 1,...,N;, where M), € RM+*Mx is the mass matrix (2.37), A;, € RM~Mx ig the
stiffness matrix (2.38) and the vectors u, F’ ! ¢ RMx gre defined by

ug[i] == (uo, Vi) 12()» F'li] := </f(-,s)ds,l,l/,'> (3.6)
T o

for i = 1,...,M, with the nodal basis functions y; satisfying V;,_o(Q) = span{l//i}?i*’l, see
(2.36). The matrix M;,_+ h; j/Ap_ is positive definite and hence, the linear systems (3.5)
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are uniquely solvable for all £ = 1,...,N;. Stability of the numerical scheme (3.4) holds
without any CFL condition because the implicit Euler method is unconditionally stable,
see Section 2.6.

As a second discretisation method in time, the Crank-Nicolson method is considered,
which follows from the 6-method (2.35) for 6 = 1/2. Hence, using the Crank-Nicolson
method combined with a conforming discretisation in space with V},_o(Q) C Hj (Q) for the
pointwise in time variational formulation (3.2), there follows the so-called Crank-Nicolson
Galerkin method to find Uy, ¢ € V;, 0(Q) C HL(Q) for £ € {0,...,N;} such that

Un,.0o = Onuo
andfor/=1,...,N;

1 1
—(Up, 0 — Uhx,é—lavhx>L2(Q)+§ (VaeUnt +ViUn =1, Vavi ) 2 o

ht,z
1
= m</f(-,s)ds,vhx> (3.7)
T

Q

for all v, €V}, 0(Q), where Qj,_: L*(Q) — Vj, o(Q) denotes the L? projection (2.39). This
method is given in [74, (2.11), page 684] and differs from the methods [150, (1.54), page
16] or [65, (1.34), page 334] only in the right-hand side. The Crank-Nicolson Galerkin
method (3.7) is equivalent to the linear systems

M, U° = u,

and

h h
(th + %Ahx) U= (th - %Ah)) U HES foralll=1,....N, (38

where M), € RM-*Mx ig the mass matrix (2.37), Aj,, € RM<*Mx is the stiffness matrix (2.38)
and the vectors u, F e RM: gre givenin (3.6). The matrix M), + %Ahx is positive definite
and hence, the linear systems (3.8) are uniquely solvable for all / = 1,...,N;. Stability of
the numerical scheme (3.7) holds without any CFL condition because the Crank-Nicolson
method is unconditionally stable, see Section 2.6.

Next, error estimates for the implicit Euler and the Crank-Nicolson Galerkin method are
the aim. It seems that error estimates of the quantities |lu(-,z)) — Uy, /|| 12(q) for each
¢ =0,...,N; are standard, see [150, Theorem 1.6, page 16 or Theorem 1.5, page 15]
or [65, Theorem 5.13, page 336], [85,93] and also [43, 159] for some early references.
However, here, error estimates in space-time norms ||-|| 12(0)" || HI(Q) are considered, see
the work [9,16,17,54,74,79,108, 148, 151].
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Theorem 3.1.2. Let Q be sufficiently regular and consider a constant step size h; = h;y
for all { =1,...,N; together with a sequence (Ty)n of admissible, shape regular and
globally quasi-uniform decompositions with maximal mesh size hy. Furthermore, let the
unique solution u of (3.2) be sufficiently smooth and let uy, be defined via (3.3), where the
coefficients Uy ¢ are calculated by the implicit Euler Galerkin method (3.4). Then there
holds the space-time error estimate

[ —unll 1200y < c1(he + R lull 20, 7:502)) + 2 b 1l e 0,722 (02

with r € (1/2,1], s € [1,2] and with constants c¢; > 0, ¢; > 0 independent of h; and h,.

Proof. This proof follows the ideas of the proof of [74, Theorem 3.1, page 684]. So, for
u € C([0,T];L*(L)), one defines the function I, O .u € @} (Q) as in (2.59), i.e.

Iy, Op,u(x,1) Z O, u(x,10) o(t)  for (x,1) € Q

=0y (x)
with Uy, € Vi, 0(Q) C H} (Q), satisfying
<Uhx,€»vhx>L2(Q) = (u(-.t0),vn)2q)  forallvy, €V o(Q)
for £ =0,...,N;. With the triangle inequality, it holds

Ju— uh|lL2(Q) < fu _IthhquLZ(Q) + {1, Qn 1t — uh”LZ(Q)

The first term is estimated by standard error estimates of Lemma 2.8.4 and so, it remains
to investigate the second term. Therefore, set

n[ :: Uhx,g_ljhx,é E th’O(Q) fOI‘f:O,...,Nt,

where 19 = 0. Hence, it holds
2
th,thu—uhHLz Z HIh,Qh u-— ”h“LZ (Qx1)

/ htﬁ )2+ Mot ()M (x) + 1M1 (x)%) dx

<M Z M6l 72 (3.9)
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With [74, (4.5), page 689] for o¢ = 0 and [74, (4.4a), page 688] for ¢ = & = 0, it follows
from the last inequality (3.9) that

N 1/2
||Ithhxu — ”hHLZ(Q) < (Z_Z,l ht||n£\|1%2(9)>

< ci(h+hy) H”HLZ(O,T;HS(Q)) +e htrH”HH’(O,T;LZ(Q))

with r € (1/2,1], s € [1,2] and with constants ¢; > 0, ¢; > 0 coming from standard error
estimates and inverse inequalities, see the proofs in [74] for details. [

Theorem 3.1.3. Let Q be sufficiently regular and consider a constant step size h;y = hyy
for all ¢ =1,...,N;, together with a sequence (Ty)y of admissible, shape regular and
globally quasi-uniform decompositions with maximal mesh size hy. Furthermore, let the
unique solution u of (3.2) be sufficiently smooth and let uj, be defined via (3.3), where the
coefficients Uy, ¢ are calculated by the Crank-Nicolson Galerkin method (3.7). Then there
holds the space-time error estimate

e = wnll 20y < c1 (B + ) el 20,7 (2)) + €2 hf Ntll 0,722

with r € (1/2,2], s € [1,2] and with constants c| > 0, c¢; > 0 independent of h; and hy.
Furthermore, assume for Q}I(Q) C H(;;’l (Q) the inverse inequality

Valg (o) < Cinyh ™! Vall 2y Vi € 0,(0)
with a constant ciny > 0 and h = max{hy,h,}. Then it holds
]u — uthl(Q) < Cciny h HMHH[.H—I(Q) =+ Ciny h_l ||”h - u||L2(Q)

with 1 € [0,1] and with a constant C > 0 independent of h.

Proof. For the L?(Q) error estimate, repeat the proof of Theorem 3.1.2 until (3.9). Then,
with [74, (4.5), page 689] for a = 0, see also [74, Lemma 4.4, page 690], and the first
estimate of [74, Lemma 4.3, page 690] for ¢ = & = 0, there follows from the inequality
(3.9) that

N 1/2
(14, Ont — upl 120y < (; htHrM“iZ(Q)>

< Cl(ht2+h)sc)||”||L2(0,T;HS(Q)) JrC2htrH“||1L1r(o,T;L2(Q))’

with r € (1/2,2], s € [1,2] and with constants ¢; > 0, ¢; > 0 coming from standard error
estimates and inverse inequalities, see the proofs in [74] for details.
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For the H'(Q) error estimate, consider an Hol;’1 (Q) projection to find Q}lz,ou € 0}(Q) such
that

(91Qhott:Ovh) 12 ) + (VQhott: Vivi) o) = (91t v 12(g) + (Vatts Viv) 2 )

forall vj, € Q}? (Q). Then it follows with the triangle inequality, standard error estimates for
Q,ll’0 and the inverse inequality in Q} (Q) that

|M—uh|H‘(Q) < |u_Q}l,0u‘H1(Q)+ |Q}l70”_”h‘H1(Q)
< Ch [l s ) +cine | Qhott — un] 2

< éh‘uHMHHﬂH(Q) ‘f’cinvhi1 HQ}I,,OM_ MHLZ(Q) "f’cinvhi1 Huh - MHLZ(Q)
C

Ciny I H”HH#+1(Q) +Cin b ug, — MHLZ(Q)
for u € [0,1] and hence, the assertion. O

Remark 3.1.4. Since in the proofs of Theorem 3.1.2 and Theorem 3.1.3, see [74] for more
details, regularity results of related adjoint problems are used, one expects reduced orders
for the error estimates, given in Theorem 3.1.2 and Theorem 3.1.3, if Q is less regular.

Corollary 3.1.5. Let the assumptions of Theorem 3.1.2 and of Theorem 3.1.3 be fulfilled
and let u be sufficiently smooth. Then, for the implicit Euler Galerkin method (3.4), there
holds the error estimate

Ju— ”hHL2(Q) <Ch

and for the Crank-Nicolson Galerkin method (3.7), there hold the error estimates
Hu - uh“LZ(Q) < C/’l2

and

with a constant C > 0 independent of h = max{h;,h,}.

Proof. These estimates follow immediately from Theorem 3.1.2 and of Theorem 3.1.3 for
the maximal values of r,s and u. ]

In the last part of this section, some numerical examples are presented. So, for the space-
time cylinder

0=Qx(0,7)=(0,1)x(0,2),
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consider the solutions of (3.2)

up (x,1) == sin(7x) (1 +1)e /2,

up(x,t) := sin(mx) (T —t)3/4t,

uz(x,1) = sin(7x) (12 +x2) /8,

uy(x,1) = sin(7x) ((T /4 —1)% +x2) /8

for (x,t) € Q. Note that u; € H'(Q) for i = 1,2,3,4. The spatial interval Q = (0,1) is de-
composed into Ny elements, i.e. intervals, and M, = N, + 1 vertices with the constant mesh
size hy = 1/(M, — 1) = 1/N,. For the time interval (0,2), there are M, time steps intro-
duced with the constant time step size h, = T /(M; — 1). See Section 2 for more details. The
appearing integrals for the initial condition and the right-hand side in (3.6) are calculated
by the usage of high-order integration rules, and the degrees of freedom are denoted by

dof = (M —2)- (M, — 1)

due to the homogeneous Dirichlet boundary condition and the initial condition.

In Table 3.1 and Table 3.2, the errors in ||-[| ;2 and in |-[ 1) are presented for the smooth
function u; and for a uniform refinement strategy in space and time direction, i.e. i; ~ h,.
Note that no CFL condition like &, ~ h2 is needed because the Crank-Nicolson method and
the implicit Euler method are unconditionally stable, see Section 2.6. The error estimates
of Theorem 3.1.3 and Theorem 3.1.2 are confirmed.

Table 3.3, Table 3.5 and Table 3.7 show that the position of singularities leads to differ-
ent convergence behaviours for the Crank-Nicolson Galerkin method. For the function u3,
the singularity is at (0,0) and hence, the initial condition ug € L?(Q) is less regular, i.e.
ug & H}(Q). This results in an observed convergence rate of 3/4 in ||-|| 12(g) and in no con-
vergence in || H(0) although u3 € H'(Q), see Table 3.5. If the position of the singularity
is at the end time 7, as for the solution uy, or at the time 7 /4, as for the solution u4, then
reduced orders of convergence are observed as expected, see Table 3.3, Table 3.7. For the
implicit Euler method, analogous results are given in Table 3.4, Table 3.6, Table 3.8, where
the position of the singularity for the functions u,, u3, us plays no role.
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M, M, dof hy hy lur —winllzg)  eoc  ur —uiplgig) eoc
3 3 2 0.50000 1.00000 2.5257e-01 - 1.6202e+00 -

5 5 12 0.25000 0.50000 6.3416e-02 1.54 8.2405e-01 0.75

9 9 56 0.12500 0.25000 1.5851e-02 1.80 4.1399¢-01 0.89

17 17 240 0.06250 0.12500 3.9635e-03 1.90 2.0726e-01 0.95

33 33 992 0.03125 0.06250 9.9092¢-04 1.95 1.0366e-01 0.98

65 65 4032 0.01562 0.03125 2.4773e-04 1.98 5.1836e-02 0.99

129 129 16256  0.00781 0.01562 6.1933e-05 1.99 2.5918e-02 0.99

257 257 65280 0.00391 0.00781 1.5483e-05 1.99 1.2959e-02 1.00
513 513 261632  0.00195 0.00391 3.8708e-06 2.00 6.4797e-03 1.00
1025 1025 1047552 0.00098 0.00195 9.6769e-07 2.00 3.2398e-03 1.00
2049 2049 4192256 0.00049  0.00098 2.4206e-07 2.00 1.6199¢-03 1.00
4097 4097 16773120 0.00024  0.00049 6.0215e-08 2.01 8.0996e-04 1.00

Table 3.1: Numerical results of the Crank-Nicolson Galerkin method (3.7) for the space-
time cylinder Q = (0, 1) x (0,2) and for u;.

M, M, dof hy hy |ley — ul,h”LZ(Q) eoc |up — “1,h|H1(Q) eoc
3 3 2 0.50000 1.00000 2.4176e-01 - 1.6141e+00 -

5 5 12 0.25000 0.50000 7.8469e-02 1.26 8.3436¢-01 0.74

9 9 56 0.12500 0.25000 2.8683e-02 1.31 4.2342e-01 0.88

17 17 240 0.06250 0.12500 1.2317e-02 1.16 2.1337e-01 0.94

33 33 992 0.03125 0.06250 5.8288e-03 1.05 1.0719¢e-01 0.97

65 65 4032 0.01562 0.03125 2.8627¢e-03 1.01 5.3748e-02 0.98

129 129 16256 0.00781 0.01562 1.4228e-03 1.00 2.6918e-02 0.99

257 257 65280 0.00391 0.00781 7.0988e-04 1.00 1.3470e-02 1.00
513 513 261632 0.00195 0.00391 3.5463e-04 1.00 6.7383e-03 1.00
1025 1025 1047552 0.00098 0.00195 1.7725e-04 1.00 3.3699e-03 1.00
2049 2049 4192256 0.00049  0.00098 8.8607e-05 1.00 1.6852e-03 1.00
4097 4097 16773120 0.00024  0.00049 4.4300e-05 1.00 8.4263e-04 1.00

Table 3.2: Numerical results of the implicit Euler Galerkin method (3.4) for the space-time
cylinder Q = (0,1) x (0,2) and for u;.
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M, M, dof hy hy luz —wopll2p) €0 |z —urplyig) eoc
3 3 2 0.50000 1.00000 1.7974e-01 - 1.2812e+00 -

5 5 12 0.25000 0.50000 5.3647e-02 1.35 7.0582e-01 0.67

9 9 56 0.12500 0.25000 1.5830e-02 1.58 4.0519e-01 0.72

17 17 240 0.06250 0.12500 5.4556e-03 1.46 2.5515e-01 0.64

33 33 992  0.03125 0.06250 2.2538e-03 1.25 1.7871e-01 0.50

65 65 4032 0.01562 0.03125 1.0047e-03 1.15 1.3639¢-01 0.39

129 129 16256 0.00781 0.01562 4.4819e-04 1.16 1.0957e-01 0.31

257 257 65280 0.00391 0.00781 1.9647e-04 1.19 9.0273e-02 0.28
513 513 261632 0.00195 0.00391 8.4780e-05 1.21 7.5223e-02 0.26
1025 1025 1047552 0.00098  0.00195 3.6195e-05 1.23 6.2996e-02 0.26
2049 2049 4192256 0.00049  0.00098 1.5351e-05 1.24 5.2874e-02 0.25
4097 4097 16773120 0.00024  0.00049 6.4854e-06 1.24 4.4422e-02 0.25

Table 3.3: Numerical results of the Crank-Nicolson Galerkin method (3.7) for the space-
time cylinder Q = (0, 1) x (0,2) and for u;.

M, M, dof Iy hy ||l — MZ,hHL2(Q) eoc  |ux —uppp (@) eoc
3 3 2 0.50000 1.00000 3.7057e-01 - 1.6781e+00 -

5 5 12 0.25000 0.50000 1.9478e-01 0.72 1.0367e+00 0.54

9 9 56 0.12500 0.25000 1.0549e-01 0.80 6.1865e-01 0.67

17 17 240 0.06250 0.12500 5.6371e-02 0.86 3.7187e-01 0.70

33 33 992 0.03125 0.06250 2.9435e-02 0.92 2.3356e-01 0.66

65 65 4032 0.01562 0.03125 1.5118e-02 0.95 1.5857e-01 0.55

129 129 16256 0.00781 0.01562 7.6856¢e-03 0.97 1.1747e-01 043

257 257 65280 0.00391 0.00781 3.8823e-03 0.98 9.2856e-02 0.34
513 513 261632 0.00195 0.00391 1.9533e-03 0.99 7.6028e-02 0.29
1025 1025 1047552 0.00098 0.00195 9.8032e-04 0.99 6.3241e-02 0.27
2049 2049 4192256 0.00049  0.00098 4.9126e-04 1.00 5.2947e-02 0.26
4097 4097 16773120 0.00024  0.00049 2.4596e-04 1.00 4.4444e-02 0.25

Table 3.4: Numerical results of the implicit Euler Galerkin method (3.4) for the space-time
cylinder Q = (0,1) x (0,2) and for u5.
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M, M, dof hy hy lluz — usz, ||L2(Q) eoc  |uz —uz g (@) eoc
3 3 2 0.50000 1.00000 3.8930e-01 - 2.8412e+00 -
5 5 12 0.25000 0.50000 1.5092¢-01 1.06 2.2724e+00 0.25
9 9 56 0.12500 0.25000 7.2348e-02 0.95 2.0666e+00 0.12
17 17 240 0.06250 0.12500 3.9069¢e-02 0.85 2.0819e+00 -0.01
33 33 992 0.03125 0.06250 2.2136e-02 0.80 2.2423e+00 -0.10
65 65 4032 0.01562 0.03125 1.2839¢e-02 0.78 2.5212e+00 -0.17
129 129 16256 0.00781 0.01562 7.5378e-03 0.76 2.9090e+00 -0.21

257 257 65280 0.00391 0.00781 4.4532e-03 0.76 3.4053e+00 -0.23
513 513 261632 0.00195 0.00391 2.6393e-03 0.75 4.0171e+00 -0.24
1025 1025 1047552 0.00098 0.00195 1.5668e-03 0.75 4.7577e+00 -0.24
2049 2049 4192256 0.00049  0.00098 9.3084e-04 0.75 5.6463e+00 -0.25
4097 4097 16773120 0.00024  0.00049 5.5325e-04 0.75 6.7077e+00 -0.25

Table 3.5: Numerical results of the Crank-Nicolson Galerkin method (3.7) for the space-
time cylinder Q = (0, 1) x (0,2) and for us.

M, M, dof hy hy lus —us ||L2(Q) eoc  |uz —uz | () eoc
3 3 2 0.50000 1.00000 3.1084e-01 - 2.9018e+00 -

5 5 12 0.25000 0.50000 1.7098e-01 0.67 2.2254e+00 0.30

9 9 56 0.12500 0.25000 1.0734e-01 0.60 1.7948e+00 0.28

17 17 240 0.06250 0.12500 6.2274e-02 0.75 1.4924e+00  0.25

33 33 992 0.03125 0.06250 3.4179¢-02 0.85 1.2533e+00  0.25

65 65 4032 0.01562 0.03125 1.8147e-02 0.90 1.0550e+00  0.25

129 129 16256 0.00781 0.01562 9.4412e-03 0.94 8.8824¢-01 0.25

257 257 65280 0.00391 0.00781 4.8483e-03 0.96 7.4759¢-01 0.25
513 513 261632 0.00195 0.00391 2.4686e-03 0.97 6.2902e-01 0.25
1025 1025 1047552 0.00098 0.00195 1.2498e-03 0.98 5.2914e-01 0.25
2049 2049 4192256 0.00049  0.00098 6.3032e-04 0.99 4.4507e-01 0.25
4097 4097 16773120 0.00024  0.00049 3.1707e-04 0.99 3.7433e-01 0.25

Table 3.6: Numerical results of the implicit Euler Galerkin method (3.4) for the space-time
cylinder Q = (0,1) x (0,2) and for u3.
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M, M, dof hy hy llug — g, HL2<Q> eoc  |us — uap|p (@) eoc
3 3 2 0.50000 1.00000 6.2378e-01 - 2.5520e+00 -

5 5 12 0.25000 0.50000 1.7639¢-01 1.41 2.7132e+00 -0.07

9 9 56 0.12500 0.25000 6.6921e-02 1.26 2.1509e+00 0.30

17 17 240 0.06250 0.12500 2.7324e-02 1.23 1.7729e+00 0.27

33 33 992 0.03125 0.06250 1.1359¢-02 1.24 1.4811e+00 0.25

65 65 4032  0.01562 0.03125 4.7565e-03 1.24 1.2429e+00 0.25

129 129 16256 0.00781 0.01562 1.9991e-03 1.24 1.0444e+00 0.25

257 257 65280 0.00391 0.00781 8.4227e-04 1.24 8.7808e-01 0.25
513 513 261632  0.00195 0.00391 3.5559¢-04 1.24 7.3836e-01 0.25
1025 1025 1047552  0.00098  0.00195 1.5046e-04 1.24 6.2093e-01 0.25
2049 2049 4192256 0.00049  0.00098 6.3843e-05 1.24 5.2221e-01 0.25
4097 4097 16773120 0.00024  0.00049 2.7189e-05 1.23 4.3923e-01 0.25

Table 3.7: Numerical results of the Crank-Nicolson Galerkin method (3.7) for the space-
time cylinder Q = (0, 1) x (0,2) and for uy.

M, M; dof hy hy ||l — uap HLQ(Q) €oC  |u4 — Ugp|p () ©oc
3 3 2 0.50000 1.00000 5.8329¢-01 - 2.5931e+00 -
5 5 12 0.25000 0.50000 2.5431e-01 0.93 2.9416e+00 -0.14
9 9 56 0.12500 0.25000 1.5258e-01 0.66 2.4423e+00 0.24
17 17 240 0.06250 0.12500 8.6590e-02 0.78 2.0575e+00 0.24
33 33 992 0.03125 0.06250 4.7030e-02 0.86 1.7383e+00 0.24
65 65 4032 0.01562 0.03125 2.4819¢-02 091 1.4675e+00 0.24
129 129 16256 0.00781 0.01562 1.2856e-02 0.94 1.2372e+00 0.24

257 257 65280 0.00391 0.00781 6.5804e-03 0.96 1.0419e+00 0.25
513 513 261632  0.00195 0.00391 3.3420e-03 0.98 8.7684¢e-01 0.25
1025 1025 1047552 0.00098 0.00195 1.6887e-03 0.98 7.3767e-01 0.25
2049 2049 4192256 0.00049  0.00098 8.5041e-04 0.99 6.2046e-01 0.25
4097 4097 16773120 0.00024  0.00049 4.2730e-04 0.99 5.2183e-01 0.25

Table 3.8: Numerical results of the implicit Euler Galerkin method (3.4) for the space-time
cylinder Q = (0,1) x (0,2) and for uy.
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3.2 Space-Time Variational Formulation of Bochner Type

In this section, a short overview of space-time variational formulations of Bochner type is
given and a stable space-time discretisation is formulated, see [51, 137, 142—-144].

For the heat equation (3.1), a space-time variational formulation of Bochner type for the
Hilbert space W(Q) from (2.21) with the norm |-y o) from (2.22) is given as follows:

Find u € W(Q) such that
(G, v) o+ (Vatt, Vav) 2 o) 4 (u(-,0),w) 12y = (1) o + (0. W) 2@ (3.10)

forall (v,w) € L*(0,T; H} (Q)) x L*(Q) =: Y, where f € L*(0,T; [H} (Q)]') and ug € L*(Q)
are the given right-hand side and the given initial condition. The space-time variational
formulation of Bochner type (3.10) is equivalent to the pointwise in time variational for-
mulation (3.2) because of the fundamental lemma of calculus, the density of Cy (0,T) in
L?(0,T) and so, the density of the algebraic tensor-product

Hy(Q)®CF(0,T) =span{¢ - y: ¢ € Hy(Q), y € C(0,T)}

in H}(Q)&L*(0,T) ~ L*(0,T;H} (Q)). Hence, the unique solvability of the space-time
variational formulation of Bochner type (3.10) follows from the pointwise in time varia-
tional formulation (3.2), i.e. from Theorem 3.1.1. An alternative proof of a uniqueness and

existence result for the space-time variational formulation of Bochner type (3.10) uses the
Necas Theorem 2.9.1. Therefore, define the bilinear form b(+,-): W(Q) xY — R by

b(u, (v,w)) := (0, v) g + (Vatt, Vav) 12 ) + (u(,0), W) 2 (3.11)

foru € W(Q), (v,w) €Y, where the Hilbert space Y is endowed with the inner product

T
(v, W), (5, 9))y = / / Vor(x) - Vb (x,t)duds + / wiw(x)dx  for (v,w), (5,%) € Y.
0 Q Q

Theorem 3.2.1. The bilinear form (3.11) is continuous and fulfils an inf-sup condition and
the surjectivity condition, i.e. there hold:

1. There exists a constant C > 0 such that for all u € W(Q) and for all (v,w) €Y

|b(u, (v,w))| < CH”HW(Q)”(V’W)“Y'

2. There exists a constant ¢y > 0 such that

[b(u, (v,w))|

inf sup > Cs.
0AueW (Q) ot (vw)ey |1 Ullw (o) ll(v.w)lly ’
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3. For each element (v,w) €Y, (v,w) # 0, there exists an element u € W(Q) such that

b(u,(v,w)) # 0.

Proof. For ug = 0, the proof is contained in the book [51, Proof of Theorem 6.6, page
282]. For the general case, see [137, Theorem 5.1, page 1300]. 0

The linear form F: Y — R is given by
F(v,w) = (f.v)o+ (uo,w)2q) for (v,w) €7,
where its boundedness follows with the Cauchy-Schwarz inequality by
[E ) < Nl 20700 @) Vv ll 2 ) + ol 22 Wl 22

<\ 20 gmy )+ Nollz2( 0 w)

for all (v,w) € Y. Hence, the variational formulation (3.10) is rewritten to find u € W(Q)
such that

b(u,(v,w)) =F(v,w) forall (v,w) €Y. (3.12)
There holds the following existence and uniqueness result:

Theorem 3.2.2. For each given F = (f,ug) € Y', the variational formulation (3.12) and
hence, the variational formulation (3.10) have a unique solution u € W (Q), satisfying

2 2
lullwigy < O 720 743 ey + 10l 2200
with a constant C > 0. Furthermore, the solution operator
L:Y —W(Q), LF=L(fu):=u,

is an isomorphism.
Proof. This follows with the Necas Theorem 2.9.1 from Theorem 3.2.1. [

In the remainder of this section, the initial condition u is incorporated via homogenisation.
So, the bilinear form
a(u,v) := (Gu,v) o+ (Vau, Vav) 2y foru € W(Q),v € L*(0,T;H} (Q))
is introduced. The bilinear form a(-,) is bounded, i.e.
()| < V2 ulhy ) [Vavllizg  forue W(Q).v e L2(0.T:HY ().
Next, the requirements of the Necas Theorem 2.9.1 for the bilinear form
a(-,): Wo,(Q) x L*(0,T;HY(Q)) = R

are examined, where the Hilbert space Wy (Q) is the subspace given in (2.25).
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Theorem 3.2.3. The bilinear form a(-,-): Wo (Q) x L*(0,T;H} (Q)) — R is continuous
and fulfils an inf-sup condition and the surjectivity condition, i.e. there hold:

1. Forallu € Wy (Q) and for all v € L*(0,T;Hy (Q)), there is

la(u,v)| < \/§||”||W(Q)||va”L2(Q)'

2. There holds the inf-sup condition

, 1
inf sup jau,v)|

04uW0.(0) o yer2(0,m:m @) 1w IVavllizg) — 2v2

3. For each function v € L*(0,T;HL(Q)), v # 0, there exists an element u € Wy (Q)
such that a(u,v) # 0.

Proof. The proof is contained in the book [51, Proof of Theorem 6.6, page 282]. For the
inf-sup constant, see [142, Theorem 2.1, page 5]. O]

For a given initial condition ug € L?(Q) and a given right-hand side f € L*(0,T; [H} (Q)]),
the variational formulation of the heat equation (3.1) is to find u € W(Q) with u(-,0) = ug
in L?(Q) such that

a(u,v) = (f,v)o (3.13)

forallv € L2(0,T;H} (Q)). By homogenisation, there follows the existence and uniqueness
theorem:

Theorem 3.2.4. Let the right-hand side f € L*(0,T;[HJ(Q)]") and the initial condition
uy € LZ(Q) be given. Then the variational formulation (3.13) admits a unique solution
u € W(Q) with u(-,0) = ug in L*(Q), satisfying

||”HW(Q) <2v2 (Hf||L2((),T;[H(§(Q)y) + \/ECeXHMOHLZ(Q)> +Ct:XHMOHU(Q)

with a constant Cex > 0 coming from the extension (2.24) of ug.

Proof. Consider the extension ug := Eq g € W(Q) from (2.24) with 7y (+,0) = ug in L*(Q)
satisfying |[#o||y (o) < Cex|luoll;2(q) With a constant Cex > 0. Next, investigate the varia-
tional formulation by homogenisation to find @ € Wy (Q) such that

a(u,v) = (f,v)o —aluo,v) (3.14)
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for all v € L?(0,T;HL(Q)). The right-hand side is bounded by

(£ =a(@o)| < (If 20 rmyan + V2Tl ) IVl

< (Iflzorimen + VCallolg ) IVollzg G159

for all v € L*(0,T; H} (Q)). So, the Netas Theorem 2.9.1 yields with Theorem 3.2.3 that
there exists a unique solution u € Wy (Q) of the variational formulation (3.14), satisfying
with (3.15)

[y (o) <2V2 <Hf||L2(0,T;[H(}(Q)]/) + ﬁcex”“OHU(g)) : (3.16)

Setu:=u+uy € W(Q).

Next, the independence of the extension u for u is examined. So, for a second extension
o € W(Q), satisfying iig(+,0) = up in L?(Q), there exists again it € Wy (Q), satisfying
the variational formulation (3.14). The difference (i + o) — (2 + do) € Wo,(Q) fulfils the
homogeneous variational formulation

a((@+1p) — (@+ip),v) =0 forall ve L2(0,T;H (Q)).

Because of Theorem 3.2.3 and the Necas Theorem 2.9.1, the to the bounded bilinear form
a(-,-): Wo.(Q) x L*(0,T;H} ()) — R related operator A: Wy (Q) — L*(0,T; [Hg(Q)])
is an isomorphism. Hence, A ((z+1p) — (i +p)) = 0, i.e. u+up = i+ ilp and therefore,
the solution u € W(Q) is independent of the extension # for the initial condition ug.

With the triangle inequality, (3.16) and the continuity of the extension operator for u,
there follow the stability estimate

lullw @) < lallw (o) + llHollw (g)
<2v2 <||f||L2(o,T;[H01(Q)y) + \/ECGXHMOHLZ(Q)) + Cexluoll2(q)

and hence, the assertion. O]

For a discretisation scheme, let the bounded Lipschitz domain Q C R4 be an interval
Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. As a conform-
ing space-time discretisation, consider the space of piecewise linear, continuous func-
tions S} (Q) NWo,(Q), see Section 2.8 for more details. For an arbitrary fixed extension
iy € W(Q) with 7g(-,0) = ug in L>(Q) and o]l (o) < C’ex||u0||Lz(Q) with a constant
Cex >0 independent of uy, e.g., up = Eq,up from (2.24), the discrete variational formu-
lation is to find %, € S} (Q) NWy,(Q) such that

a(up,vy) = (f, Vh>Q —a(up,vp) (3.17)
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forall v, € § }l(Q) NWy.(Q). Note that ansatz and test spaces are equal. Next, define the
approximation
up == u, +ug € W(0Q), (3.18)

where in practice u is replaced by the space-time interpolant Iug € S }l(Q) from (2.40), if
up is smooth enough, see [141, page 246] or [51, Section 3.2.2, page 124] for the elliptic
case.

The following stability and convergence theorem is contained in the work [142, Section 3,
page 6].

Theorem 3.2.5. Let the assumptions of Theorem 3.2.4 be satisfied with the unique solu-
tion u € W(Q) of (3.13). Further, let ug € W(Q) be the extension from (3.17) of ug with
iy (+,0) = ug in L*(Q) and [@ollw (o) < C"exHuoHLz(Q) with a constant Cex > 0 independent
of ug. Then there exists a unique solution u, € S} (Q) "Wy (Q) of the discrete variational
Sformulation (3.17), satisfying the stability estimate

IV ctin | 29y < 2V2 <||f||L2(o,T;[H(; @t \/ECGXHMOHU(Q)) :
Furthermore, assume u = u—1ug € H°(Q) for some s € [1,2]. Then it holds for the approx-
imation u, = uy +ug in (3.18) the error estimate
V(= un)ll 20y < CH [l s

with a constant C > 0.

Proof. The unique solvability of the discrete variational formulation (3.17) follows from
the discrete inf-sup condition

1
inf sup a(unvi)

> , (3.19)
0 €5, (Q)Wo,(Q) 0:£v,,€5] (0) W, (Q) IVatnll 200 IVavall 2y — 2v2

which is proven in [142, Theorem 3.5, page 7]. In addition, the discrete inf-sup condition
(3.19) yields with the bound (3.15) the stability estimate

VTl 2y < 2V2 <||f||L2(o,T;[H(; @)+ \/§C~ex||uo||L2(Q)> :

The error estimate follows from [142, Corollary 3.4, page 10] with

[Vl =)l 20y = V(@ —0n) [l 120

and hence, the assertion. O]

Numerical examples and further investigations are given in [142-144].
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3.3 Space-Time Variational Formulation of Anisotropic Type

In this section, a short overview of a so-called space-time variational formulation of an-
isotropic type for a homogeneous initial condition, i.e. ug = 0, is given. The motivation
comes from considering a FEM-BEM coupling for transmission problems of the heat equa-
tion. Because this variational formulation of anisotropic type arises by the treatment of
boundary integral equations for the heat equation, the usage of this variational formulation
of anisotropic type is natural for the finite element method. However, it seems that a stable
conforming discretisation of this variational formulation of anisotropic type by piecewise
linear, continuous functions is not available.

For the homogeneous Dirichlet problem of the heat equation

du(x,t) — Awu(x,t) = f(x,1) for (x,1) €0 =Qx (0,7T),
u(x,t) = 0 for (x,r) e X=Tx[0,T],
u(x,0) = 0 forx € Q,

where Q C R?, d = 1,2,3, is a bounded Lipschitz domain with boundary I = dQ and
T > 0 is a given finite time, the space-time variational formulation of anisotropic type is
given as follows:

Find u € Hé;’é,/ 2(Q) such that
(ru, V>Q + <VxM,VxV>L2(Q) = <f,V>Q (3.20)
1,1/2 L1/2 ) A\ s s . . .
forallv € Hy, ;7 (Q), where f € [Hy ;"(Q)]" is a given right-hand side, see Section 2.5 for
1,1/2 1,1/2

the notations. The bilinear form a(-,-): Hy,y'"(Q) X Hy 4" (Q) = R,
a(u,v) := (G, v) o+ (Vatt, Vav) 12 )

foru e HSZS/Z(Q), Ve H&;}()/Z(Q), is bounded, i.e. there exists a constant C > 0 such that

<
a0 < Clull gy Wi,

1,1/2

. 1,1/2
foru € Ho;o,

(Q).v € Hy 4" (Q), see [35, Lemma 2.6, page 505].

Remark 3.3.1. The bilinear form (d,u,v) ¢ for u,v € C5’(0,T) has no continuous exten-
sion to

Hy/*(0,7) x Hy/*(0,T)

or to
H'20,T) x H'/(0,T),
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i.e. the usage of the different ansatz and test spaces Hé;’é,/ 2(Q), H(;

form

;’}O/Z(Q) for the bilinear

a(-,-): Hyy2(0) x Hy'y (@) = R

is crucial. See [35, Remark 2.7, page 505] and [64, Proposition 1.4.4.8, page 32].

In [35], the following existence and uniqueness theorem is proven by a transposition and
interpolation argument as in [102, 103], see also [98].

Theorem 3.3.2. Let the right-hand side f € [Hglo/ 2(Q)]’ be given. Then the variational

formulation (3.20) has a unique solution u € H&’é’/ 2(Q), satisfying
<C

with a constant C > 0. Furthermore, the solution operator

L: [Hy' (O = Hy 2 (0), Lf:=u,

is an isomorphism. In addition, the bilinear form

a(): Hyp2(Q) x Hy (@) = R, a(u,v) = (9u.v) g+ (Vo Viv) )

is continuous and fulfils an inf-sup condition and the surjectivity condition.

Proof. The existence and uniqueness of a solution u € HS.’OI/ 2(Q) of the variational formu-

lation (3.20) and that the solution operator L : [H(i;’,lo/ 2(Q)]’ — Hé;&/ 2 (Q) is an isomorphism

follow from [35, Lemma 2.8, page 505]. The Necas Theorem 2.9.1 yields the properties

of the bilinear form a(-,-): Hé;’é’/z(Q) X Hé;}()/z(Q) — R. O

Remark 3.3.3. In Section 3.4 an alternative proof of Theorem 3.3.2 is given by the usage
of Fourier series, see Theorem 3.4.19.

For a discretisation scheme, let the bounded Lipschitz domain Q C R? be an interval
Q = (0,L) for d = 1, or polygonal for d = 2, or polyhedral for d = 3. With the notations

of Section 2.8, a conforming space-time discretisation via the space of piecewise linear,

continuous functions S} (Q) leads to the discrete ansatz and test spaces S} (Q) ﬂH&.’é/ 2(Q)

and § /11 (Q) ﬂHé;’}()/ 2(Q). Hence, the test space differs from that of the approach (3.17), i.e.

SH(Q) NHy > (0) # SH(Q) NWo,(Q).
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It turns out that the resulting finite element method, for the choice above of different ansatz
and test spaces, is not stable. Therefore, only the time component is considered. That
means, for a fixed yu > 0, the ordinary differential equation

du(t)+pu(t) = f(t) forre (0,T), u(0)=0,
and the variational formulation to find u € H&/ 2(O, T') such that

(Gu,v) o) + (. v) 200y = (f-V)01) (3.21)

for all v € H})/ 2(O,T), where f € [H %)/ Z(O,T)]’ is given, are investigated. Analogous to

Theorem 3.3.2, there exists a unique solution u € H&/ 2(O, T') of the variational formulation
(3.21), see also Theorem 3.4.10. With the notations of Section 2.6, a conforming discreti-

sation with piecewise linear, continuous functions S}lt (0,T) = span{(pk}iv’zo leads to the

discrete variational formulation to find u;,, € S }lt (0,7)N Hé’/ 2 (0,T) such that

(Orttn,»vi )20,y + Mt Vi) 20 7y = (s vmd 0.1) (3.22)

for all vy, € S,llt 0,7)NH 1)/ 2(O, T). The resulting system matrix of (3.22) is given as

1
| 0 1
K —Ll-1 0 1
ht 2 . .
-1 0 1
hy 1
2ht,1 + 2h[’2 h[’z
+ % ) 2hip+2his By (3.23)

hin—1 2MN—1+2M N hn,

and hence, unique solvability of the discrete variational formulation (3.22) follows because
K, € RM>*N: is a lower triangular matrix with positive diagonal elements.

For a uniform discretisation with mesh size &, the matrix Kj, in (3.23) can be interpreted
as a finite difference scheme

apvi =f1,
ayvi +aopva =f2,
avj_o+avj_1+agvj=f; forj>2,
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where

1 h 3 h
___l_h: + wny

o _ Auhy a.__l u_ht_—3+uht
7276 6 - 2

6 ° 2+6_ 6

ay .

with given f; € R. The essential case f; = 0 for j > 2 is examined. The solution of the
homogeneous linear recurrence relation

avjo+apvj1+apv;j=0 forj>2

is given for j > 1 by

j-1 j—1
_— <—2htu—\/9+3h,2u2> A (—thu+\/9+3ht2u2)
J »

where the coefficients Ag,A; € R are determined by fi, f, € R. Hence, in general, the
sequence (v;) jen is unbounded as j — oo independently of u and /;. In other words, the
numerical scheme of (3.22) is unstable for each u and each 4;. For the heat equation, deriv-
ing a conforming discretisation by piecewise linear, continuous functions of the variational
formulation (3.20), which results in a stable numerical scheme, is delicate and is not dis-
cussed in this thesis. On the other hand, an alternative approach with the help of a type of
Hilbert transform is given in Section 3.4.



3.4 Space-Time Variational Formulation with a Type of Hilbert Transform 67

3.4 Space-Time Variational Formulation with a Type of Hilbert
Transform

In this section, the space-time variational formulation of anisotropic type of Section 3.3
is examined with the help of a type of Hilbert transform, see [145]. Via a Fourier series
ansatz a transformation operator Hr is introduced, and existence and uniqueness of the
space-time variational formulation of anisotropic type of Section 3.3 is proven directly, i.e.
no transposition and interpolation argument is needed, see also [35, Remark 2.13, page
507]. For the resulting space-time variational formulation of this section, ansatz and test
spaces are equal. Furthermore, the used analysis is developed on a finite time interval
(0,T) instead of considering an unbounded time interval (0,e0) as in [37,52, 101]. More-
over, a conforming discretisation of the resulting variational formulation leads to an uncon-
ditionally stable finite element method, which is combinable with the boundary element
method as in [35] via a FEM-BEM coupling. In the last part of this section, unconditional
stability for unstructured space-time meshes, error estimates in L?>(Q), in H'(Q) and in

the anisotropic Sobolev space H(} /2 (0,T;L%(Q)) for a tensor-product approach are proven.
Furthermore, numerical examples, which confirm the theoretical results, are presented.

3.4.1 Characterisation of H(;’/ 2(0, T)and H ’10/ 2(O, T) via Fourier Series

In this subsection, the interpolation of functions spaces as in [102, Chapitre 1, Section
2.1, page 11] is considered. Hence, all functions are complex-valued in this subsec-

tion, i.e. H*(0,T;C) and H,, 1/ 2(O,T;(D) are the complex-valued versions of the Sobolev
spaces of Section 2.2. Wlth the notations of [102, Chapitre 1, Section 2.1, page 11] let
Y := L?(0,T;C) be the usual complex Hilbert space with inner product

T
(MVL20T<D /”
0

and let the complex Hilbert space X := H&(O, T;C) be endowed with the inner product

(V)i 01:0) = / (1) I (1)t
0

Clearly, X and Y are separable and X is a dense subset of ¥ with a compact embedding,
see [13, Proof of Satz 5.12, page 148].

Next, an unbounded operator A: Y O dom(A) — Y with domain dom(A) = X is con-
structed such that A is self-adjoint and positive in Y. Therefore, define the unbounded
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sesquilinear form a: dom(a) x dom(a) — C by

T
a(u.v) = () g 7.0 = / Syuu(r)v(0)dr
0

for u,v € dom(a) := X = Hol’(O,T;(D) C Y. The sesquilinear form a is densely defined,
symmetric, closed and lower semibounded in Y, i.e.

e dom(a) is denseinY,
* it holds a(u,v) = a(v,u) for all u,v € dom(a),
* (dom(a),(-,-)q) is a Hilbert space with the inner product (u,v)q := a(u,v),

e it holds
2

2 T 2
a(u,u) = H”HH&((),T;@) 2 mH“Hy(o,T;@)
for all u € dom(a) due to the Poincaré inequality, see Lemma 3.4.5 for the constant.

The Representation Theorem for Semibounded Forms, see [133, Theorem 10.7, page 228]
and see also [90, Theorem 2.1, page 322], [157, Unterkapitel 4.2], yields that there exists a
uniquely determined, lower semibounded, self-adjoint operator S: ¥ O dom(S) — Y such
that

e it holds dom(S) C dom(a) = X,
* it holds for all u € dom(S) and v € dom(a) that
a(u,v) = (Su.v)20.1.0)» (3.24)
* it holds
dom(S) = {u €X: Jw, €Y with a(u,v) = (Wi V) 200,7:0) Vv € dom(a)},
and the operator is given by Su := w,, for u € dom(S),

* alower bound for S is given by

(Su.)20r0) 2 7l B0y
for all u € dom(S).
Lemma 3.4.1. The unbounded operator S: Y O dom(S) — Y from above is given by
Su= —0dyu

and
dom(S) = {u € H*(0,T;C): u(0) =0,/ (T) =0}.
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Proof. Let u € dom(S) be fixed. It is shown that u satisfies u € H>(0,T;C) with u(0) =0
and ' (T) = 0, i.e. u is contained in the right-hand side. First, because dom(S) C dom(a),
it holds u € H&(O,T;C) and so, u(0) = 0. Second, for v € C5(0,T) in (3.24), it follows
with integration by parts that

(SM’V)LZ(O,T;(D) =a(u,v) = _(u’attV)B(O,T;(D)’

hence, Su = —d,u € Y and so, u € H>(0,T;C). Third, for v € C>[0,T] with v(0) = 0 and
v(T) = 1 in (3.24), it follows with integration by parts that

a(u,v) = (Su,v)201.0) = — (Ot V) 1200.1,0) = ' (TW(T)+a(u,y) <= u(T)=0
and so, u 1s contained in the right-hand side.

Now, let u satisfy u € H*(0,T;C) with u(0) = 0 and «/(T) = 0, i.e. u is contained in
the right-hand side. Hence, u € X = H&(O, T;C). The function u is contained in dom(S),
because for w, := —dyu € LZ(O, T;C), it holds with integration by parts

a(u,v) = _(aﬂu’v)Lz(O,T;(D) = (WuaV)LZ(o,T;cD)

for all v € dom(a). Thus, Su = w, = —dyu. O

The Second Representation Theorem [90, Theorem 2.23, page 331] yields that the square
root A := S8'/2: Y > dom(A) — Y fulfils dom(A) = dom(a) = X = H&(O,T;(D) and

a(u,v) = (Au,Av)2 o7,y forallu,v € X.

Recall that A: Y D dom(A) — Y is self-adjoint and positive in Y, because A is the unique
square root of the self-adjoint and positive operator S: ¥ D dom(S) — Y, see [157, Satz
8.22, page 303] or [133, Proposition 5.13, page 95].

Because of the compact embedding of X in Y, the operator S: Y D dom(S) — Y has a
purely discrete spectrum, see [133, Proposition 10.6, page 227]. A simple calculation
gives

. /4 t 1 /m 2
Vi(t) := sm(<§+k7r>f>, M= ﬁ(i +k7r) for k € Ny, (3.25)
which fulfil for £ € Ny

=9 Vi(t) = 4Vi(t) fort e (0,T), Vi(0)=0, Vi(T)=0,

i.e. SV, = AV for k € Ny. These eigenfunctions V) form an orthogonal basis in L? (0,7,C)
satisfying
T

T
/ Velt)Ve(o)d = > 8 for k. € No
0
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and in H&(O, T;C) with

1

2T< +"”> S fork, € Ny.

T
/ V(1) Velt)dr = A / Vi(t)Ve(t)ds =
0 0

Hence, by Parseval’s identity, see [157, Entwicklungssatz 1.55, page 53] and [158, Satz
V.4.9, page 254], it follows that for u € LZ(O, T;C), it holds the expansion

Z uksm<< +k7t> == / sm +k7r> T) &t (3.26)

and the norm is given by

[}

H“”U 0,7:C) Z

T o0
(u, Vi Lon(D’ = Y Il (3.27)
k=0

Furthermore, for the inner product, it follows

N|’ﬂ

T
(V) 2007:0) = /u Z Wk (3.28)
/ =0

for u,v € L*>(0,T;C) with expansion coefficients u; and v from (3.26). For a function
ue H(}’((), T;C), the expansion (3.26) converges also in H; (0,7;C), i.e.

1 [

T Z (g-l—kﬂ:)ukcos <<g -|—k7r> %)

k=0

aﬂl(t) =
converges in L2(0,T;C), and the norm is given by

2 1
e W |

—_y(Z k) . 3.29
2Tk:0<2+ ™)l 29

u, Vi) 12(0.1:C)

Before defining the interpolation space H&/ 2 (0,T;C), note that for 6 € (0,1) the powers

§9: v o dom(Se) — Y are given by the so-called Functional Calculus, see [133, Section
5.3] or [157, Unterkapitel 8.4], i.e.

dom(s?) = {MEY Z?L

Hs"u

2
(u, Vi) 2 OTC)‘ <°°}

and it holds )

2
12(0.T:C) _Zl

b

(. Vi) 2 0.1:0)
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see [133, Theorem 5.9, page 93].

Plugging these results in the definition of the interpolation spaces [102, Définition 2.1,
page 12] gives with the expansion (3.26)

Hy/*(0,T;C) = [H} (0,T;C),L%(0,T; C)], ) = dom(A'/?) = dom(s"/4)

{uELz(OT C): le/z‘ uvk)LZ(OT@)‘ <oo}

= {u e L*(0,T;C): u= i u Vi, %i (g-l-k”) g |* < °°}
k=0

k=0

with the interpolation norm for u € H,, 1/ 2(O, T;C)

2 2
HuH[H(}’(0,T;C),L2(0,T;C)]1/2 = \/||u||L2(0,T;(D) + HAI/ZMHLZ(O,T;(D)

— \/; kZ: (1 +ﬂ,1/2> ‘(M,Vk)ﬁ(o,r;@)’

=0

_ \/%I;<T+ <g+kn)> g |2, (3.30)

see also [102, Proof of Théoreme 16.2, page 112] and [15, Section 11.5] for such a con-
struction. This motivates to define for u,v € H,, 1/ 2(O,T;(D) with expansion (3.26) the

2

norm
l o /m >
HMHH&/Z(O,T;@),F = \/Ek_z‘z) (5 +k7r> ’uk’ s (331)
as well as the inner product
l & /m o
(u’V)Hé‘/z(O,T;(D),F = Ekzb <E —l—kn’) Ui Vi,

where the subscript F stands for Fourier series.

Theorem 3.4.2. There hold the norm equivalences for all u € Hl/2 0,7;0)

””HH&”(OT@)F < llulle LOT:C)2O.TC))y, S +_H”” 5 2(0.T:C).F

and

2
u(1)]
dr <C
: = 2Hu||H&/2

T

2 |

Cilll oy < || Wiy + [ oo
0
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with constants C; > 0 and C, > 0. Hence, (Hé’/z(o, T;C), () 1 0T:C).F ) is a Hilbert

space.

Proof. From [102, Théoreme 11.7, page 72] and [102, Remarque 11.4, page 75], it follows
|

dr is equivalent to the interpolation norm

that the norm u — \/ |

-] H (0.7:C).L2(0.TC)] > €€ also [102 Remarque 2.3, page 13]. It remains to prove that

the norm || -[| .1 1 and the interpolation norm |-, 1(0.7:0).L2(0.T5T)], , AT equiva-

(0,T;C),F
lent. The first mequahty ull, 200 = < |u H[Hl 0.7:C).L2(0.7:0)), , 18 trivial because of

(3.30). The second inequality follows from

H”” L0.T:C).L2(0.T:C)]y o —

+ 4
= = ¥

a3 al%’IMs

where the representation (3.30) is used again. 0

Remark 3.4.3. For the explicit calculation of boundedness constants, an interpolation
argument, i.e. the Interpolation Theorem [30, Proposition 14.1.5, page 373] or [26, Theo-
rem 3.1.2, page 40] or [153, Section 1.3] for the so-called K-Method of Interpolation with
the interpolation norm ||-|| g, (x.yy, is used. Interpolating the Hilbert spaces H&(O,T;(D)
and L*(0,T;C) with the K-Method of Interpolation yields again H&/z(O, T;C) with the to
Il L0.1:0).2(0.1:0)), , €quivalent norm ||.||KI/Z(H&(O,T;C);LZ(O,T§®))fumlling

2 T 2 2
|’uHKI/Z(H&(O,T;C);Lz(O,T;C)) =5 [H”H H, (0, T;@),LQ(O,T;C)]]/z - ||”||L2(0,T;@)

A2,

2 H L2(0,T;C)

:EHMHH&/Z(O,T;(D),F (3.32)

foru€ Hy/*(0,T;C) with (3.30), see [102, Proof of Théoréme 15.1, page 108].

Now, the result of Theorem 3.4.2 is transferred to real-valued functions. Hence, for the
real Hilbert space HS’/ 2(O, T), see (2.1), it holds the representation

1/2(0 T)= {u eL*(0,T): u= iukvk, %i (§+kn’> g <o<>}
k=0
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and |
T
e =3 X (5 4w

is a inner product, which induces a to [|-