
D
ra

ft

A case study on working with a commercial mobile robotics platform

Clemens Koza1 and Wilfried Lepuschitz2

Abstract— During a period of roughly one and a half years,
the authors had the opportunity to work with a commercial
mobile robotics platform, namely the “Apollo” platform by
Slamtec, to implement real-world use cases in the domain of
interactive entertainment installations. During the course of this
development, the authors have gained insight into the strengths
and limitations of the platform in realistic scenarios. This work
will present the use cases, and discuss the experiences with and
insights into working with the Apollo platform.

I. INTRODUCTION

In the domain of interactive multimedia entertainment
systems, there are many established forms of installations,
from ordinary touch screens, to presence and gesture sen-
sitive spaces, to multisensory “5D” cinemas. Mobile robots
present an additional form of visitor interaction. However,
entertainment installations bring their own set of challenges
for a mobile robot, including an environment with a highly
variable number of untrustworthy actors such as kids, and
generally a lack of specialized personnel for supervision and
upkeep.

II. APOLLO PLATFORM

The authors used the “Apollo” platform by Slamtec [1]
to implement two real-world entertainment use cases. The
cylindric robot weighs 40kg and has a diameter of 500mm.
It has two driven wheels and four smaller casters for support.
Payloads up to 35kg can be mounted on the circular top.

Among the robot’s sensor systems is a LIDAR with a 270°
field of view and 15m maximum scan radius, a depth sensor
and six front-facing ultrasonic distance sensors. Hardware
interfaces include WiFi and Ethernet, and a 20-25.2V 5A DC
power interface to power additional devices on the robot.

Apollo has built-in simultaneous localization and map-
ping (SLAM), path planning with obstacle avoidance, and
can dock with its charging base autonomously [1]. The
“RoboStudio” software allows to view and edit the robot’s
map, edit the position of the home dock, inspect the robot’s
sensors, and to move the robot to specific positions [2].

The robot is controlled using the “Slamware SDK” (soft-
ware development kit), which is provided as precompiled
binaries for Windows, Linux, iOS and Android. The authors
have only worked with the Linux SDK, although working
with the Windows version was attempted as well.

The authors are with the Practical Robotics Institute Austria,
Wexstraße 19-23, 1200 Vienna, Austria; 1koza@pria.at;
2lepuschitz@pria.at

III. DESCRIPTION OF USE CASES

A. Robot Swarm

In a first scenario, four robots decorated as animals were
programmed to roam a small area of 3.5m x 5m. Three sides
of the site were walled and one side open, providing clear
landmarks for SLAM. Charging docks were placed against
the three walls. Figure 1 shows a map of the space created
by Apollo’s SLAM system. The robots showed three basic
behaviors:

• When a visitor is present in the area of operation, the
robots head towards them. After a randomized timeout,
they “lose interest” in visitors and continue roaming.

• When no visitors are present, or for a minimum amount
of time after a robot “lost interest”, the robots roam
around the area in a random fashion.

• When their battery runs low, robots return to their
charging stations.

Fig. 1. A SLAM map of the robot swarm operation area. Displayed in red
are virtual walls around the area and two hard to recognize chairs, and the
first robot’s charging dock on the left wall.

B. Greeting Robot

In the second scenario, two robots were used as mobile
terminals, with touch screens mounted on top of the platform.
These robots operated outside in a roofed area, on a rough
concrete floor with some pebbles left on the ground.

Apart from some columns around the area, only the
glass walls of the neighboring building were available as
landmarks. Each robot had its own area of operation where
it executed one of three behaviors:

• When a visitor is present in the area of operation, the
robot heads towards that person and greets them.

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-19

107



D
ra

ft

• While a visitor is interacting with the touch screen, the
robot does not move at all.

• Otherwise, the robot drives along a fixed path.
Automatic charging was of no concern, as the chargers

were kept indoors and the duration of operation was short.

IV. FINDINGS

A. General findings

Some robots were found to turn in circles or sporadically
change direction for no apparent reason. Testing showed that
this happened because of faulty ultrasonic distance sensors.
Some sensors did not recognize obstacles, while others
reported false positives. False negatives did not generally
impact the robot’s behavior, as the LIDAR readings were
accurate and reliable enough for obstacle avoidance.

While Apollo incorporates a depth camera, the camera’s
data can not be accessed by client applications. It is used
solely for recognizing obstacles such as desks that are not
visible to the LIDAR, which is mounted at a height of
roughly 240mm. The depth camera would be a great tool for
obstacle identification or human pose recognition [3], which
makes it regrettable that it is not usable for these tasks.

Some features in the library turned out not to be imple-
mented. For example, movement commands support speci-
fying the desired speed. The speed option would be ignored
however; support suggested to set the system-wide speed
prior to any movement command instead.

B. Findings from the “Robot Swarm” use case

The defining requirement of this scenario was the need for
coordination between robots: with detecting visitors limited
to Apollo’s LIDAR sensor, robots had to be aware of each
other to not mistake each other for humans. An architecture
with a centralized controller was used. That controller had
an ethernet connection to a WiFi router, which would then
connect to the robots. As Apollo has two strong WiFi
antennas, this allowed for a reliable connection.

Although the Android Slamware SDK includes functions
for Domain Name System Service Discovery (DNS-SD), the
authors were not able to find robots by a service identifier
or host name on the local network. This necessitated a more
complicated design than was originally anticipated.

Apollo does not support coordinated path planning, e.g.
as proposed in [4]. There is no shared coordinate system
among robots and each robot is only aware of itself. It
was observed that two robots driving towards each other
would not recognize each other in time to prevent a collision.
This was largely addressed by avoiding “risky” goals on
the controller. Still, as Apollo’s path planner may choose a
different path from what the controller anticipated, this risk
assessment could not be perfect and additional measures had
to be taken.

While obstacle avoidance is a built-in feature of Apollo,
target tracking had to be implemented manually. The authors
first tried to let Apollo plan a path to the target. This did
not work, as each update to the target position would stop
the robot before potentially trying a vastly different path.

Instead, using direct motion commands was necessary to
track targets. For this, straight motion and stationary rotations
are available; driving circular arcs is not supported. Targeting
using direct motion commands worked very well, but these
bypass obstacle avoidance, requiring greater care in the client
code.

Finally, the presence of four robots, plus potentially mul-
tiple visitors, meant that a significant amount of stationary
SLAM landmarks were obscured at any point in time. This
impacted robot localization, which led to robots occasionally
mistaking other robots for visitors. Fortunately, the correct
location would be recovered eventually, and the swarming of
robots around another did in fact look very fitting.

C. Findings from the “Greeting Robot” use case

The greatest challenge of the second scenario was the
outdoor environment. As rough ground, pebbles and weather
are hard to predict, commercial mobile robots are generally
not advertised as suitable for outdoor operation. Apollo is no
exception, but it operated fairly well, as long as the operation
area was cleaned from pebbles every day before starting
the robots. Apollo was able to recover from getting stuck
on the rough ground fairly reliably, although getting stuck
frequently led to jagged motions. Larger casters would be
necessary to improve Apollo’s outdoor driving performance.

The adjacent buildings had glass fronts with wall de-
cals; the transparency made the fronts unsuitable as SLAM
landmarks. An opaque tape was added to the fronts, which
immediately remedied the problems.

It was observed that the low sun disturbed the operation
of the LIDAR. This was no problem during operation, as the
desired operation hours were after sundown, but limited the
realism of testing conditions during the rest of the day.

V. CONCLUSIONS

Although Apollo showed some shortcomings, especially
regarding multiple robots operating in the same space, it is
a capable platform. The authors found that the actual tasks
were relatively easy to handle, but details around the setup,
such as discovery on the local network and map management,
could be presented to application developers in an easier
fashion.

The fact that Apollo is closed-source and is not using
Robot Operation System (ROS) must be considered when
evaluating the platform, especially if Apollo is to be added
to an environment that is already based on ROS.

REFERENCES

[1] Apollo medium robot development platform parameters. [Online].
Available: https://slamtec.com/en/Apollo/Spec

[2] Robostudio extendable robot management and development software.
[Online]. Available: https://slamtec.com/en/RoboStudio

[3] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proceedings of the 2011 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE Computer Society,
2011, pp. 1297–1304.

[4] T. Siméon, S. Leroy, and J.-P. Lauumond, “Path coordination for
multiple mobile robots: A resolution-complete algorithm,” IEEE Trans-
actions on Robotics and Automation, vol. 18, no. 1, pp. 42–49, 2002.

108


