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Abstract

Accurate knowledge of reactions is essential in chemistry. Thus, calculations of the

reaction path, which is defined as the minimum energy pathway that connects two

minima, are crucial. On this path the metastable transition state is of special interest,

since it defines the chemical reactivity and distribution of reaction products. The

nudged elastic band method allows to locate this extremum of the potential energy

surface, but since this technique typically requires many ab initio calculations, it is

computationally rather expensive, in particular for larger molecular systems.

Machine learning techniques are able to learn high dimensional scalar functions, which

makes them suitable tools to accelerate the transition state search. In order to do so,

the nudged elastic band method is applied to an approximated potential energy surface

created and gradually improved by the machine learning algorithm.

In this thesis the following four machine learning techniques are used: regularised least

squares, Gaussian process regression, iterative re-weighted least squares and a neural

network-based approach. All these methods are tested on well known benchmark

systems and compounds regarding to their predictions of the transition state and the

number of ab initio calls needed for convergence. Two fundamental structural changes

in molecules have been investigated, namely inversion and rotation.
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Zusammenfassung

In der Chemie ist eine detaillierte Kenntnis von Reaktionsprozessen und deren Teilschritte

von größter Bedeutung. Diese werden durch den Reaktionspfad, welcher als Pfad der kle-

insten Energie zwei Minima auf der molekularen Potentialenergieoberfläche verbindet,

definiert. Auf diesem Pfad liegt auch der metastabile Sattelpunkt, der sowohl die

chemische Reaktivität als auch die Verteilung möglicher Produkte bestimmt und

dadurch von besonderem Interesse ist. Mit Hilfe der ”Nudged-Elastic-Band” Meth-

ode ist es möglich, den Reaktionspfad und die Sattelpunktsgeometrie zu bestimmen;

allerdings ist dieser Ansatz für größere Moleküle sehr zeitintensiv.

Um diese Suche zu beschleunigen, kommt in dieser Arbeit maschinelles Lernen als

Konzept zum Einsatz, da derartige Verfahren in der Lage sind, auch hochdimensionale

skalare Funktionen nachzubilden. Dabei wird die ”Nudged-Elastic-Band” Methode

auf der fiktiven Oberfläche, die durch den Lernalgorithmus erzeugt wird, angewandt,

während die Oberfläche selbst in jedem Schritt weiter verbessert wird.

Vier unterschiedliche Lernmethoden werden vergleichend gegenübergestellt und näher

analysiert: ”Regularised Least Squares”, ”Gaussian Process Regression”, ”Iterative

Re-Weighted Least Squares” und ein ”Neural Network”. Diese Methoden werden auf

Molekülsystemen getestet und in Bezug auf deren Genauigkeit anhand des lokalisierten

Sattelpunktes und der Anzahl an nötigen ab initio-Aufrufen verglichen. Die Auswahl

an molekularen Systemen trägt dem Versuch Rechnung, typische Änderungen der

Geometrie, wie sie bei Reaktionen auftreten können, an möglichst kleinen, jedoch gut

bekannten Testmolekülen nachzubilden; diese umfassen Inversion und Rotation.
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1. Introduction
The chemical behaviour of molecules is completely described by the potential energy

surface, which is given as high-dimensional scalar function of the nuclear coordinates.

This landscape is like a fingerprint, and the knowledge of its shape is crucial in chemistry.

Nowadays, well established ab initio methods, such as wave-function based methods

or density functional theory, allow to explore this surface to good accuracy, but these

calculations are time-consuming, especially for larger systems.

The objective function of these calculations is the Schrödinger equation. For problems

discussed in this thesis, it is sufficient to use the time-independent Schrödinger equation,

which is given by

Hmolecular |ψ(R, r)〉 = E |ψ(R, r)〉 , (1.1)

with E as the eigenvalue, |ψ(R, r)〉 as eigenfunctions and Hmolecular as the molecular

Hamiltonian, which is given in atomic units by

Hmolecular =−
Nelec∑
i=1

1

2
∇2

i −
Nnuclei∑
A=1

1

2MA

∇2
A −

Nelec∑
i=1

Nnuclei∑
A=1

ZA
|RA − ri|

+

Nelec∑
i=1

Nelec∑
j>i

1

|ri − rj|
+

Nnuclei∑
A=1

Nnuclei∑
B>A

ZAZB
|RA −RB|

,

(1.2)

with the upper case letters denoting nuclei and the lower case ones denoting elec-

trons. This Hamiltonian describes a many-body interaction; therefore, the Schrödinger

equation can not be solved directly, but several approximations have to be employed.

The first simplification we apply to the Schrödinger equation of the total molecular

system is the Born-Oppenheimer approximation, which assumes that it is possible to

decouple the motion of electrons and nuclei. It is assumed that the nuclei are at rest

and only the electrons move. The justification for that is given by the mass ratio of

electron and nuclei mnuclei

melec
≈ 1838. In this approximation, the position variables of

the nuclei turn into parameters. The electronic Hamiltonian to be solved can then be

written as

Helec =−
Nelec∑
i=1

1

2
∇2

i −
Nelec∑
i=1

Nnuclei∑
A=1

ZA
|RA − ri|

+

Nelec∑
i=1

Nelec∑
j>i

1

|ri − rj|
+

Nnuclei∑
A=1

Nnuclei∑
B>A

ZAZB
|RA −RB|

.

(1.3)
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1. Introduction

and the total wave function is a product of electron and nuclei wave function ψ(R, r) =

ξ(R)Φ(R, r). This separates the Schrödinger equation into a nuclear and electronic

part. The latter depends only on the nuclear positions as parameters and it is obtained

by replacing the molecular Hamiltonian in Equation 1.1 with the electronic Hamiltonian.

Solving this equation yields the total electronic wave function and its corresponding

energy as a function of nuclear coordinates, which defines the potential energy surface.

Since the nuclei position are used as parameter it is possible to explore this landscape

by adapting the nuclei positions.

Knowledge about this potential energy surface also allows to simulate reactions. The

latter are described by the minimum energy path which connects a reactant with a

product state. Reaction rates and selectivities are completely defined by the meta

stable state on their minimum energy path, the transition state, see Section 1.3. This

special point determines the energy barrier between the two minima. It is possible to

manipulate the transition state with catalysts, which are additional substances that are

present during the reaction but are not consumed by it. These substances may affect

the barrier height and make reactions possible, faster or less energy intensive, but they

can also stop reactions as well. Experimentally, it is exhausting and laborious to search

for such substances by trial and error. Hence, computer experiments are a welcome

tool to reduce the effort. For reactions, these simulations focus on the transition state

search, which requires many single point ab initio calculations, making this search

computationally expensive.

The transition state search can be accelerated by machine learning algorithms. Several

different methods have been proposed to accelerate the procedure [1][2][3]. In this

thesis, an overview of selected approaches is given and the support vector machine

formalism is added. All methods are finally applied to two well known molecular

reactions and are compared with respect to the number of ab initio calculations.
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1.1. Hartree-Fock (HF)

1.1. Hartree-Fock (HF)

The Hartree-Fock method simplifies the Born-Oppenheimer approximation further

by assuming that the total electronic wave function can be written as a product of

molecular orbitals. Since electrons are fermions, a Slater determinate is used for that

purpose It ensures that the total wave function is antisymmetric and does not violate

Pauli’s principle. This allows to write the Hamiltonian as a product of one-electron

Hamiltonians and leads in the course of applying the variational principle to the

Hartree-Fock equations given by

f(1)χa(1) = εaχa(1) = h(1)χa(1)+
∑
a6=b

[∫
dx2
|χb(2)|2

r1,2

]
︸ ︷︷ ︸

J

χa(1)

−
∑
a6=b

[∫
dx2

χ∗b(2)χa(2)

r1,2

]
︸ ︷︷ ︸

K

χb(1),

(1.4)

where the subscripts a and b are the orbital index, χ is the spin-orbital function, ε is

the eigen energy of the electron and h is the one electron Hamiltonian. In this formula,

f(1) denotes the Fock operator, an effective one electron operator, on the first electron

in spin orbital χa. The Coulomb integral J and the exchange integral K describe the

interaction between the electrons, where one electron interacts with the average charge

distribution of all other electrons. Hence, the solution of this equation depends on the

solution of all the other electrons in the system. This necessitates the Hartree-Fock

equations to be solved iteratively. Solutions of the Hartree-Fock equations are obtained

by minimising the energy with respect to the molecular orbitals. In order to solve it, a

basis expansion of the molecular orbitals is introduced, typically. A convenient basis

are the atomic orbitals due to their asymptotic correctness at large distances. This

expansion is given by

χa =
K∑
µ=1

cµaφµ, (1.5)

where φ are the atomic orbitals, c are coefficients to the orbitals and K is the number

of included orbitals. The atomic orbitals are kept fixed. Therefore, the two-electron

integrals have only to be evaluated once. In order to minimise the energy only the

coefficients have to be varied. This allows to rewrite the Hartree-Fock equations in an

algebraic form. In matrix notation, one obtains,

FC = SCε (1.6)

3



1. Introduction

with F as the Fock matrix, C as the coefficient matrix, S as the overlap matrix and ε

as diagonal matrix containing the energies. The solution of the coefficient matrix can

be found by diagonalising the Fock matrix. However, the Hartree-Fock method only

approximates the ground state of a molecule within the mean field approximation and

even in the limit of an infinite number of atomic orbitals it does not reach the exact

solution, due to the lack of correlation energy. The interested reader is referred to the

book of Szabo et al. 1.

1.2. Density Functional Theory (DFT)

Density functional theory is based on the two theorems of Hohenberg and Kohn. The

first states that two different external potentials will not give the same electronic

density, as it is proven in Appendix A.2. The second theorem states that the exact

ground state is the global minimum of the universal energy functional with respect

to the electron density. In other words, the density that minimises the energy is the

correct ground state density. With these two theorems, density functional theory can

be stated as a minimisation of the energy as a functional of the density, depending on

the number of electrons in the system and the actual molecular geometry within the

Born-Oppenheimer approximation.

In order to solve the Schrödinger equation, the Hamiltonian has to be rewritten in

terms of the density. The Coulomb part and the nuclei electron interaction are the

easy parts, which can be simply written as

Ene(ρ) = −
Nnuclei∑
A

∫
dr
ZARAρ(r)

|RA − r|
, (1.7)

J(ρ) =
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r − r′|
, (1.8)

with Ene(ρ) as the nuclei electron interaction and J(ρ) as Coulomb part. Unfortunately,

the kinetic energy and the exchange part cannot be expressed in an analytical fashion

and have to be approximated. A common way to estimate the kinetic part is to

reintroduce orbitals to the formalism. This leads to the Kohn-Sham density functional

theory, where the kinetic energy is separated into two parts. The larger part describes

the non-interacting kinetic energy which can be accurately calculated with the orbitals.

The smaller part remains unknown and is added to the exchange part to give the

exchange correlation energy, which has to be guessed.

EDFT(ρ) = Ts(ρ) + Ene(ρ) + J(ρ) + Exc(ρ) (1.9)

1A full description of Hartree-Fock can be found in the book Szabo et al. [4], page 108 et sequentes.

4



1.3. Transition state search

Exc(ρ) = (T (ρ)− Ts(ρ))︸ ︷︷ ︸
kinetic correlation

+ (Eee(ρ)− J(ρ))︸ ︷︷ ︸
exchange-correlation

. (1.10)

In this equation, the exchange correlation functional Exc(ρ) collects all unknown

contributions; its actual form remains yet unknown. For further details to density

functional theory refer to the book of Burke 2 and the book of Paar 3.

1.3. Transition state search

The transition state is of special interest for chemists, because it allows to calculate

the distribution of reactants and chemical reactivities. This state corresponds to the

configuration of highest energy on the minimum energy path and is metastable. There

are several well-established methods available, such as eigenvector following techniques

[7], growing or freezing string methods [8][9][10] and nudged elastic band calculations

[11], which allow a localisation of the transition state. This thesis focuses on the nudged

elastic band algorithm, which has the advantage of approximating the minimum energy

path as well as locating the transition state.

The estimation of the minimum energy path requires two minima on the landscape. At

the beginning, these two are connected via a linearly interpolated path consisting of N

images. Each of them describes a new position on the potential energy surface. Neigh-

bouring images are connected with a fictitious spring to keep the images equidistantly

distributed along the path [12][13].

The basic formulation minimises the energy objective function, which is a sum over the

spring and landscape energy. However, this may lead to corner-cutting and sliding-down

issues, because the spring force and the negative landscape gradient are able to have

the same direction. Thus, they might cancel each other. Corner-cutting occurs if the

connecting spring is hard and the path is kinky, so that the image can not follow the

negative gradient. On the other hand if the spring is too soft, it does not preserve

equidistance between images. Also, the sliding-down issue may occur.

The problems are solved by projecting the spring forces into a parallel direction to the

band, while forces acting due to the surface are only allowed to act perpendicular to

the band. However, this does not prevent the band from overall stretching. In this

case, a reaction path of overestimated length is assumed, which might be energetically

but not entropically favourable [13]. The total force acting on each image is then given

by

Fi = −[∇iE(xi)− ([∇iE(xi)]τ̂i)τ̂i] + (F s
i τ̂i)τ̂i, (1.11)

2Fundamental explanation to density functional theory can be found in [5].
3[6] gives a detailed description of density functional theory.

5



1. Introduction

with τ̂i as tangent to the band, xi as position, F s
i as spring force and the subscript i

denoting the image. The spring force can be expressed as

F s
i = k[(xi+1 − xi)− (xi − xi−1)], (1.12)

where k is the spring constant. Since the band in general has no smooth curvature,

the tangent is estimated. In the simplest case it is sufficient to calculate the tangent

mathematically with respect to the neighbouring images [13],

τ̂i =
xi+1 − xi−1

|xi+1 − xi−1|
. (1.13)

Improvements and different estimates to approximate the tangent can be found in

Appendix A.3.

The main procedure of the nudged elastic band comprises the following steps:

1. Initialise the band with a linear interpolation between the two minima.

2. Evaluate the energy and gradient for each image on the potential energy surface.

3. Estimate every tangent, and calculate the spring and acting force of each image.

4. Move every image on the potential energy surface with respect to the acting

force.

5. Continue with step 2 until the acting force norms are below a certain threshold

and convergence is achieved.

The nudged elastic band algorithm convergences towards the minimum energy path,

but it does not deliver the transition state automatically. This feature can be added

by first converging the algorithm to the minimum energy path and then applying the

climbing image method, where the spring force of the image with highest energy is

set to zero. As a consequence, in contrast to the standard algorithm, the image with

highest energy has to follow the positive potential energy gradient without changing

the sign and moves therefore towards the saddle point [13].

The initial linear interpolation of the band is sometimes problematic because atoms can

get too close to each other or may even collide upon rearrangement. This issue can be

solved with the so called image-dependent pair potential technique [14], where the real

landscape is replaced with a well-behaved, analytical surface that is cheap to evaluate.

For that, the algorithm first calculates the pairwise distance between all atoms at each

minimum geometry. These distances are then used to linearly interpolate the pairwise

distance for each intermediate image, which gives the optimal distance between the

6



1.3. Transition state search

atoms. For each atom the deviation of the actual pairwise distances to the optimal is

calculated. The image-dependent pair potential is given as a sum over these deviations

multiplied with a weight to penalise small pairwise distances. The nudged elastic band

method can then be applied to this potential in order to estimate an initial pathway

on which atom collisions are avoided.

With this connection of the first estimation of the pathway, an unphysical proximity

of atoms of intermediate images is avoided, and the nudged elastic band algorithm

can be applied to the real potential energy surface after. For further details on the

image-dependent pair potential see Appendix A.4.

7





2. Machine Learning

In the last decade machine learning has gained a lot of popularity, due to the tremendous

increase of computer power. In machine learning, two different learning concepts can be

distinguished. One is the unsupervised learning; in this case no information about how

the prediction should look like is available. The other method is supervised learning,

where data points with the corresponding value are known. The focus of this thesis

will be on the supervised learning, because information on output values, in our case

the electronic energies, exists. For more details on unsupervised learning see the book

of Duda et al. 1.

The problems of supervised learning can be separated in two main classes: classification

and regression. Classification accepts only discrete labels, which are the corresponding

output values to the input data. This approach separates and matches data to specific

classes. On the other hand, regression accepts all possible labels or output values, and

fits the data points accordingly. A simple example is shown in Figure 2.1. This thesis

focuses on the prediction of molecular energies on a potential energy surface to reduce

the amount of ab initio calculations. Therefore, it will be concerned with regression

problems only. Further details to classification can be found in the book by Duda et al.
2.

(a) Classification [16] (b) Regression [17]

Figure 2.1.: A simple example for the two different supervised machine learning prob-
lems, solved with a support vector machine. In both cases the black line
represents the fitted plane and the two dotted black lines are the decision
boundaries.

1Details to unsupervised learning can be found in [15], page 603 et sequentes.
2An introduction to classification is given in [15] page 9 et sequentes.
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2. Machine Learning

The goal of regression algorithms is to represent training data as well as the underlying

function connecting input and output. This is achieved by minimising the prediction

error on the training data. Reducing the error to zero would represent the training

data best, but might indicate a situation of overfitting. In that case unseen data points

are not predicted correctly and the machine learning algorithm produces a wrong

representation of the underlying function, see Figure 2.2. To avoid this, a smooth

function curvature is preferred in the training process. Thus, a weight regularisation is

introduced.

(a) well fitted curve (b) over fitted curve

Figure 2.2.: Simple example for overfitting behaviour taken from the scikit-learn website
[18]

Training Data

In the following, x denotes a vector with m features and y(x) is the corresponding

function value with dimension one. The input for training the algorithm is rewritten

in matrix form as X with the dimension [N,m], which contains N row vectors x, and

the output is a column vector y(X) with N values. N is defined as the number of

samples and m represents the dimension of each sample.

2.1. Neural Network (NN)

The neural network model is inspired by the human brain. It is able to learn any kind

of continuous and smooth function mapping a high dimensional input to a scalar value.

In principle, the network consists at least of two layers: the input and output layer.

Additional layers between them are called hidden layers. Each layer contains nodes

that are equivalent to neurons in the brain. Every layer can have a different number of

nodes except for the output, layer which always has just one, and the input layer which

has to have at least the number of features as nodes. However, note that the number

10
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of nodes can only be changed before the network is trained. Each node in one layer is

connected with all nodes of the previous layer. Figure 2.3 shows the architecture of a

neural network.

Figure 2.3.: Architecture of a neural network with two hidden layer. The picture is
taken from Behler et al. [19].

Every node applies a weight to the value of each connection of the previous layer, adds

a bias vector to it and sums over all connections. This is then fed to an activation

function fa(x) before propagating the value to the next layer. Doing this for all hidden

layers and the output layer leads to a scalar output value. The evaluation function of

a network with one hidden layer is given by

E = fa(xA0 + b0)A1 + b1, (2.1)

with E as the scalar output value, x as input vector, Ai as weight matrix, bi as bias

and i as the layer index. Note that, for the output layer the weight matrix is a vector

and the bias is scalar, since only one neuron is present. In case of regression the output

layer consists of a linear activation function. The training process adjusts the weights

and biases by lowering the output error. This error is calculated by the loss function

which measures the difference between output value and input function value. After

training the network, it is tested with validation data which has not been used in the

training process. This allows to detect and prevent from over fitting, because if the

validation error remains too high the training is considered as failure.
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2. Machine Learning

Neural networks have the advantage that they do not scale with the amount of input

data, but in order to adjust all weights correctly in the network a large amount of

training data is needed. A disadvantage is that the process is sensitive to feature

scaling and that the loss function is not convex. Due to this many local minima exist

and it depends on the weight initialisation which minimum is obtained eventually.

2.2. Kernel-Based Methods

The basic algorithms of kernel-based machine learning methods use a linear function

to fit data [20][21], which is given as

f(xpred) = w̃xpred + b, (2.2)

where xpred is a single prediction point, f(xpred) is the predicted value calculated by the

algorithm, b is the intercept or bias to the predicted function, and w̃ are the weights,

given by

w̃ = αᵀX, (2.3)

with X as matrix containing the training points as row vectors like introduced in

Subsection 2 on page 2, and α as the optimised parameters. The matrix dimension is

given by N . This linear expression can be extended to non-linear data by applying a

non-linear mapping function Φ(x) that maps the input data into a high-dimensional

feature space. In this new space the input data is again linear and the known algorithms

can be applied [20]. In Equation 2.2 simply x is replaced with Φ(x), leading to the

equation

f(x) = wΦ(x) + b. (2.4)

The same transformation applies to the weights yielding,

w = αᵀΦ(X), (2.5)

However, transforming every single data point into feature space and applying the

fitting method is expensive and time-consuming. Fortunately, it is possible to avoid

single-point transformations, as kernel based algorithms depend on dot products in

feature space only which can be calculated with a so-called kernel K(xi,xj). This

allows to evaluate the dot product in feature space between every input data point

without transforming each point. In the kernel formulation, it has to be ensured that

the kernel is valid and able to calculate the dot product in feature space. In principle
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2.2. Kernel-Based Methods

this means that the kernel has to be semi-positive definite and symmetric. This is

equivalent to the constraint of satisfying Mercer’s theorem [22],∫ ∫
f(xi)K(xi,xj)f(xj)dxidxj ≥ 0. (2.6)

There are several different standard choices possible, which all satisfy Mercer’s theorem.

Most of them contain several hyper-parameters, which affect the training behaviour

significantly. Hence, these parameters have to be selected carefully, for example via

cross validation. Most popular are the radial basis function (RBF) or Gaussian [23],

the polynomial (Poly), the linear (Lin) and the Matérn (Mat) [24][25] kernel,

K(xi,xj)RBF = exp{−‖xi − xj‖
2

2γ
}, (2.7)

K(xi,xj)Poly = (γ 〈xi,xj〉+ c)d, (2.8)

K(xi,xj)Lin = 〈xi,xj〉 , (2.9)

K(xi,xj)Mat =
σ2

Γ(ν)2ν−1
(γ
√

2ν)(
‖xi − xj‖2

γ
)νKν(

√
2ν)
‖xi − xj‖2

γ
, (2.10)

with γ as a hyper parameter. The polynomial kernel also contains the parameter d,

which defines the degree of polynomial, and c, a free parameter which defines the

trade off between lower- and higher-order terms. The Matérn kernel contain the

Gamma-function Γ and a modified Bessel-function Kν . Both of them depend on the

parameter ν, which has to be positive. In the limiting case of ν → ∞ the Matérn

kernel converges to the Gaussian kernel.

It is also possible to train-kernel based methods simultaneously with function and

gradient values. In order to do so, the kernel matrix is extended and the derivative of

the kernel with respect to both input variables must exist [26][27],

∂

∂xi
K(xi,xj) = K ′(xi,xj), (2.11)

∂

∂xj
K(xi,xj) = K ′(xi,xj)

ᵀ, (2.12)

∂2

∂xi∂xj
K(xi,xj) = K ′′(xi,xj). (2.13)

Using the matrix formalism introduced in Section Training Data on page 10 of this
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2. Machine Learning

thesis for the input data, the kernel matrix can be constructed as

A =

 K(X,X) K ′(X,X)

K ′(X,X)ᵀ K ′′(X,X)

 . (2.14)

The weights have to be adapted via

w =

[
Φ(X)

Φ(X)′

] [
α

β

]
, (2.15)

where β are derivative parameters that are optimised. With this extension it is possible

to predict function and gradient values at a certain point. The prediction functions

are given by

f(xpred) =

[
K(X,xpred)

K ′(X,xpred)

] [
α

β

]
+ b, (2.16)

f ′(xpred) =

[
K ′(X,xpred)ᵀ

K ′′(X,xpred)

] [
α

β

]
. (2.17)

This gives the opportunity to give a prediction about information that is not included

in the training process. For example if the algorithm is just trained to function values

it is possible to predict gradient information. In this case the derivative weights β are

zero and can be neglected.

2.2.1. Gaussian Process Regression (GPR)

This section follows roughly the book of Rasmussen et al. 3. Gaussian processes are

stochastic procedures that consist of a random variable collection. In the case of

regression, these random variables are the different function values y(x) at position x.

Each of them is described by a multivariate normal distribution. Any finite joint set of

random variables is again a Gaussian distribution. The Gaussian process is completely

defined by the mean and covariance function over the random variable. For simplicity,

the function N (x, σ2) is introduced, which is a Gaussian function. It takes the mean x

and variance σ2 as arguments.

The procedure defines a Gaussian variable f(x) with a mean and covariance function

for each input. This covariance function measures the correlation between input

data points. In general, Euclidean distances are used for the variable X. Since the

3Taken from [21], Chapter 2, page 7 et sequentes.
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mentioned kernels measure the similarity between data points, the covariance function

can be replaced by a kernel. This allows to extend the linear model to non-linear data.

However, it should be noted that the fitting itself is still linear, but takes place in

feature space. The two functions can be expressed as

x = E[f(X)], (2.18)

σ2 = K(X,X ′) = E[(f(X)− x)(f(X ′)− x)]. (2.19)

with E as the moment-generating function. Gaussian process regression uses Equation

2.4 in a Bayesian framework, where the weights are assumed to have a Gaussian

distribution according to N (0,Σp). This function is also known as prior and can be

expressed as

E[f(X)] = Φ(X)ᵀE[w] (2.20)

E[f(X)f(X ′)] = Φ(X)ᵀE[wwᵀ]Φ(X) = Φ(Xᵀ)ΣpΦ(X ′) (2.21)

where the covariance Φ(Xᵀ)ΣpΦ(X ′) can be identified as kernel K(X,X ′). The mean

is calculated by averaging over all input function values y(X). This value is also used

for the interception term in Equation 2.4. Here the observed data points are assumed

to be noise-free, but in general, they have noise with zero mean and σ2
n variance. This

changes the covariance matrix slightly to

σ2 = K(X,X ′) + Iσ2
n, (2.22)

where I is the identity matrix with ones in the main diagonal. From now on, every

equation considers some noise which is added to the function value.

The joint prior distribution defines a confidence region where functions can be drawn

from. Without knowledge of observations this will lead to randomly distributed

functions, as it can be seen in Figure 2.4. To overcome this issue, the joint prior

distribution has to select functions which are conform with the observations. Drawing

random functions from the prior and rejecting those which are not in agreement is

inefficient and expensive, but in probabilistic terms this can be easily done with the

posterior function, which is given by

p(fpred|xpred, X,y(X)) ∼ N
(
x, σ2

n

)
,

x = K(xpred, X)[K(X,X) + Iσ2
n]−1y(X),

σ2
n = K(xpred,xpred)−K(xpred, X)[K(X,X) + Iσ2

n]−1K(X,xpred).

(2.23)
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In these equations xpred denotes new prediction points and fpred is the predicted function

value. By drawing from this distribution it is possible to make good predictions and

give an appropriate error. This can be seen in the right panel of Figure 2.4. The

posterior mean defines the predicted function value and the error is calculated by the

sum of the covariance corresponding to the given sample.

(a) (b)

Figure 2.4.: Gaussian process regression influenced by no and five observation points.
(a) Illustrates two functions randomly drawn from the joint prior distri-
bution without any observations drawn as solid lines. The dotted line
represents the true function curve. (b) Shows three functions drawn from
the posteriori, where the joint prior distribution is conditioned on the five
given data points. Pictures taken from Rasmussen [21] page 15.

Another positive aspect of Gaussian process regression is that the kernel hyper-

parameters can be optimised with the log-marginal likelihood. This function needs to

be maximised and is calculated from the integral of prior times likelihood. By taking

the logarithm of the integral the function is given by

log(p(y|X)) =− 1

2
y(X)ᵀ(K(X,X) + Iσ2

n)−1y(X)− 1

2
log |K(X,X) + Iσ2

n|

− n

2
log(2π).

(2.24)

A major issue of this procedure is that it keeps all input values and does not dispose

redundant data points, which may lead to expensive predictions.

It is also possible to extend the procedure to function and derivative value regression

[3][2]. The kernel matrix has to be adopted similar to Equation 2.14. Since any noise

in the derivative has to be different from noise in the function value, this leads to a
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slightly different posterior function,

p(fpred|xpred, X,y(X),y′(X)) ∼ N
(
x, σ2

n

)
,

x =

[
K(xpred, X)

K ′(xpred, X)ᵀ

]
K∗
[
y(X)

y′(X)

]
,

σ2
n = K ′′(xpred,xpred)(K ′(xpred, X)K∗K ′(X,xpred)),

(2.25)

where the matrix K∗ is given as

K∗ =

[
K(X,X) + Iσ2

n K ′(X,X)

K ′(X,X)ᵀ K ′′(X,X) + Iσ2
d

]−1

, (2.26)

with σ2
d as noise in the derivative.
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2.2.2. Support Vector Regression (SVR)

The support vector machine formalism was first introduced by Vapnik et al. 4. A

detailed review on support vector regression is given by Smola et al. [20], which

provided the main input for this section.

The key idea of a support vector machine is to represent the underlying function

with support vectors from the input data. This is achieved by throwing away data

points which contain redundant information. The basic formulation of a support vector

machine is a simple linear fit and similar to Equation 2.2, but since it is a kernel based

method, it is possible to extend the formalism by the introduction of kernels, which

leads to Equation 2.4 for prediction.

Support vector regression can be used in two different ways: One is to keep a certain

number of support vectors, which introduces an unknown error. The other is to keep

the fitted curve close to a specific error value on each input data point. This technique

is called ε-support vector regression. This formulation does not allow to control the

number of support vectors in the end, but it only tolerates an error ε around the fitted

curve. It looks like two parallel curves with an offset of ε above and beneath the actual

predicted curve. The error is then given by

y(X)− Φ(X)ᵀw − b− ε ≤ ξ,

−y(X) + Φ(X)ᵀw + b− ε ≤ ξ*,

ξ,ξ* ≥ 0,

(2.27)

where the lower boundary is indicated by the superscript *, ε is the insensitive region

around the fitted curve, and ξ is the upper and ξ* is the lower slack variable which

define the actual error on each side. The relation between these two parameters can

be seen in Figure 2.5.

Since two boundaries exist also the weight consists of two parameters α and α∗ which are

restricted to a positive value. This leads to a modification of Equation 2.5, yielding

w = Φ(X)ᵀ(α−α∗), (2.28)

where α is the upper and α* is the lower coefficient of support vectors. A well fitted

curve is obtained by minimising the error and squared weight norm, since minimising

only the error will lead to overfitting. This leads directly to the primal optimisation

4An introduction is given in [28] Chapter 6, page 181 et sequentes.
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Figure 2.5.: This figure shows the relation between the insensitive region ε around the
fitted curve and the slack variables ξ(*) [20].

problem of the support vector formulation, the minimisation of the Lagrangian function,

which can be expressed as

L =
1

2
wᵀw + C

N∑
i=1

(ξi + ξ*
i ), (2.29)

which is subject to Equation 2.27. The parameter C represents the regularisation

constant and defines which error has more impact on the minimisation procedure. In

most cases, the primal problem is easier to solve in the dual formulation, where all

constrains are included into the optimisation function. Solution to the dual problem is

obtained by applying the Krush-Kuhn-Tucker (KKT) condition [29], which states that

the optimal solution in the dual space is equivalent to the solution in primal space.

The result of this procedure is given by

maximise

{
− 1

2
wᵀw −

N∑
i=1

ε(αi + α*
i ) +

N∑
i=1

yi(αi − α*
i ) , (2.30)

subject to


N∑
i=1

(αi − α*
i ) = 0

αi, α
*
i ∈ [0, C]

. (2.31)

Intermediate steps from the primal optimisation problem to the dual formalism can be

found in Appendix A.5. The dual problem solution is outlined in Appendix A.6.

It is also possible to include derivative information in the formalism by introducing a

set of error variables for the derivatives [26]. Again, these split into upper and lower
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boundaries,

y(X)′ − Φ(X)′w − ε′ ≤ τ ,

−y(X)′ + Φ(X)′w − ε′ ≤ τ ∗,

τ (*) ≥ 0,

(2.32)

where τ(*) are the slack variables for the derivatives and ε′ is the insensitive width

region for derivatives. Since derivative values are included, the weight function looks

similar to Equation 2.15, but with the small difference that α consists of α − α∗.
Similar rules apply to the β of Equation 2.15. With this modification, the primal

optimisation problem can be expressed as

minimimze

(
1

2
wᵀw + C

N∑
i=1

(ξi + ξ*
i ) +D

N∑
i=1

(τi + τ *
i )

)
, (2.33)

where the optimisation is subject to Equation 2.27 and 2.32.

Transformation steps from primal to dual problem are explained in the Appendix A.5.

In Appendix A.6 is described how to obtain the solution to the dual problem. Here

only the solution to the dual problem shall be given,

maximise


− 1

2
wᵀw −

N∑
i=1

ε(αi + α*
i ) +

N∑
i=1

yi(αi − α*
i )

−
m∗N∑
i=1

ε′(βi − β∗i ) +
m∗N∑
i=1

y′i(βi − β*
i )

, (2.34)

subject to


N∑
i=1

(αi − α*
i ) = 0

αi, α
*
i ∈ [0, C] βi, β

*
i ∈ [0, D]

, (2.35)

where D is the regularisation parameter for derivatives.

Since the dual problem solution is a quadratic programming problem, there are several

methods to solve it. This thesis focuses on iterative re-weighted least squares and

regularised least squares formulation. From now on every algorithm will consider

function and derivative values.
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Regularised Least Square (RLS)

The regularised least squares procedure redefines the quadratic programming problem

in such a way that only a set of linear equations has to be solved. This was introduced

by Suykens et al. [30]. Jayadeva et al. [27] extended this approach to derivative values,

which is the main concern of this section.

The regularised least squares is a rather simple approach. It reformulates the primal

problem in such a way that a set of linear equations is obtained. The trick is to employ

equality constrains to Equation 2.33 and consider only one side of the boundary. This

is allowed, because the error can also be negative in this formulation. Therefore, only

one error variable for each value is considered, which leads to a simple primal problem

given by

minimise

(
1

2
(wᵀw) +

C

2
ξᵀξ +

D

2
τ ᵀτ

)
(2.36)

subject to

{
Φ(X)ᵀw + b− y(X) + ξ = 0

Φ(X)′ᵀw − y(X)′ + τ = 0
(2.37)

with ξ and τ as error variables. Thereby it is possible to formulate the dual Lagrangian,

see Appendix A.5. By using the Karush-Kuhn-Tucker condition, see Appendix A.6,

it is possible to eliminate the primal variables, which leads to the following set of

equations, K(X,X) + I 1
C

K ′(X,X) 1

K ′(X,X)ᵀ K ′′(X,X) + I 1
D

0

1 0 0


αβ
b

 =

y(X)

y(X)′

0

 , (2.38)

where I is an identity matrix with appropriate dimensions, 1 is a vector containing

only ones with dimension N , and 0 is the zero vector with dimension N .

This set of linear equations can be easily solved by inverting the matrix and multiplying

the whole equation from the left with it. Regularised least squares uses every input

data point as a support vector due to simplification at the beginning. Thus, it loses

the main advantage of support vector machine algorithms and is more related to the

ridged regression method. In addition to that, the regularised least squares approach

has no error-insensitive region. However, for moderate system sizes it is supposed to

give good results in a reasonable time.
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Iterative Re-weighted Least Squares (IRWLS)

The section follows roughly the proposed procedure by Lazáro et al. [26]. The procedure

is iterative and converges to the real support vector machine solution. It works well

for moderate sized problems. On larger systems it will get computationally intensive

and therefore very expensive, because the procedure has to invert a matrix in every

iteration.

The iterative re-weighted least squares approach uses Equation 2.33, where the given

constraints are restricted to be equal and the slack variable constraints are replaced

with the maximum function max(u, 0) with u = ξ, ξ∗, τ, τ ∗. The algorithm uses a

second order Taylor expansion over the slack variables. Intermediate steps to this

procedure are outlined in Appendix A.7. The maximum function has to be replaced

with a derivable approximation, given by

max(u, 0) ≈ L(u) =


0, u < 0,

K

2
u2, 0 ≤ u ≤ 1

K

u− 1

2K
, u ≥ 1

K

. (2.39)

For K → ∞ this equation tends to the maximum function. With this, the second

order Taylor expansion, also called quadratic approximation, can be written as,

1

2
wᵀw +

1

2

N∑
i=1

aiξ
2
i + a∗i ξ

∗2
i + s∗i τ

2
i + s∗i τ

∗2
i + const., (2.40)

where the constant is independent of the weights w and the interception b. Therefore,

it can be neglected. The variables ai are the upper and a*
i are the lower weights to the

function value error and equivalent to that the variables si and s*
i are defined as the

derivative error weights. These error weights follow the same definition and can be

calculated via

d
(∗)
i =


0, eki < 0

KCreg 0 ≤ eki ≤
1

K
Creg

eki
eki ≥

1

K

(2.41)

where di is the error weight, Creg is the regularisation constant to the given error, eki is

the calculated error in the k-th step and the subscript i defines the sample. For an
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arbitrarily large K the term in the middle vanishes.

Form the error definition in Equation 2.33, with equal constrains, one can see that

the upper and lower boundary error can not be positive at the same time. Also both

corresponding error weights can not be positive at the same time, but the two of them

can be zero. If both of the two related error weights are zero, ai = a∗i = 0 or si = s∗i = 0,

the sample i is not a support vector and therefore ignored in Equation 2.40.

Minimising Equation 2.40 is done by using the Karush-Kuhn-Tucker condition as

outlined in Appendix A.6. This leads to the following solution, written in matrix

form,K(X,X) + I 1
a+a∗

K ′(X,X) 1

K ′(X,X)ᵀ K ′′(X,X) + I 1
s+s∗

0

1 0 0


α−α∗β − β∗

b

 =

y(X) + a−a∗
a+a∗

y(X)′ + s−s∗
s+s∗

0

 , (2.42)

where I is an identity matrix with appropriate dimensions. It is possible to collect the

two different variables α and α∗ into a single variable α. The same applies to β and

β∗. Note that only those samples have to be considered that have a non-zero error

weight. Due to the insensitive regions ε and ε′, this reduces the size of the matrix if

redundant information is present.

The whole algorithm can be summarised as follows:

1. Initialise the error weights.

2. Solve Equation 2.42 for α, β and b by inverting the matrix.

3. Evaluate the errors and recalculate the error weights.

4. Calculate the Lagrangian of Equation 2.40 and check if the difference to the

previous step is below a certain threshold. If not, continue with step 2.
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3. Results
In chemistry the knowledge of reactions is essential. Experimentally, it is exhausting

and expensive to determine reaction rates and selectivities of chemical processes under

varying conditions. Here, computer experiments, can provide valuable information by

an efficient exploration of the underlying potential energy surface. On this landscape

the reaction is described by the minimum energy path which connects two minima,

the reactant and product. The highest point on this pathway is the transition state

which defines the reaction rate and separates the two minima. Several methods are

well-established for the transition state search, but they all rely entirely on ab initio

calculations. Thus, such a search is time-consuming, especially in case of larger systems.

Obviously, these algorithms would operate much faster if the number of ab initio calls

could be reduced somehow.

3.1. Preliminary Work

A necessary pre-requisite for the intended acceleration of the transition state search

is a method which is capable of locating the transition state. For this the nudged

elastic band method is implemented, since it allows to approximate the minimum

energy path and is able to locate the transition state as well. Additionally, to test

implemented algorithms, a two-dimensional test surface is introduced. In the following,

this landscape will be described first. After that, the nudged elastic band technique is

discussed.

3.1.1. 2D-Test Surface

The two-dimensional test surface represents a fictitious potential energy landscape

defined by an analytic function, which allows for a quick evaluation of the energy at

any point. In the literature, the Müller-Brown potential energy surface is typically

used for that purpose [31]. The function for this landscape is given by

E(x, y) =
4∑
i=0

Ai e
ai(x−x̄i)2+bi(x−x̄i)(y−ȳi)+ci(y−ȳi)2 , (3.1)

where x and y are the coordinates and E is the energy value at specific coordinates.

All other parameters (Ai, ai, bi, ci, x̄i, ȳi) are kept fixed and are listed in Table 3.1.

The Müller-Brown surface consists of three minima and two transition states. The

coordinates of these special points are tabulated in Table 3.2. It should be noted that
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Table 3.1.: Parameters for the Müller-Brown potential energy surface.

i A a b c x̄ ȳ

1 −200 −1.0 0 −10 1 0
2 −100 −1.0 0 −10 0 0.5
3 −170 −6.5 11 −6.5 −0.5 1.5
4 15 0.7 0.6 0.7 −1 1

the Müller-Brown surface consists only of two minimum energy paths, because the

third pathway is equivalent to the connected path of the other two by construction.

Table 3.2.: Analytically calculated coordinates of the three minima and two
transition states on the Müller-Brown potential energy surface.

Name x y

Minimum a −0.558 224 1.441 730
Minimum b −0.050 010 0.466 694
Minimum c 0.623 499 0.028 037
Transition state α −0.822 002 0.624 313
Transition state β 0.212 487 0.292 988

Since the landscape is analytically derivable it allows to calculate both minimum energy

paths exactly. In Figure 3.1 the Müller-Brown surface is illustrated with the minima,

transition states and the minimum energy pathways. There it can be seen that the

first minimum energy path connects minimum a and b via the transition state α. The

second path starts at minimum b and ends at minimum c. In between lies the transition

state β. Both pathways touch each other in minimum b, so that the minimum energy

path from a to c is equivalent to the two connected pathways.

3.1.2. Nudged Elastic Band Tests

The transition state search is done via the nudged elastic band method, which is

capable of approximating the minimum energy path as well as the transition state.

Note that the algorithm first converges to the minimum energy path and then it locates

the transition state on that pathway. Different states on the potential energy surface

are referred to as images.

At the beginning of the nudged elastic band algorithm both initial minima are connected

via a linear interpolation in coordinate space, which consists of N equidistant images

along the path. Increasing the number of intermediate images will improve the minimum

energy path approximation, but also increases the number of energy and gradient
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(a) 2D perspective contour (b) 3D perspective

Figure 3.1.: Müller-Brown potential energy surface with the minimum energy path
that connects all three minima (a, b, c) and the two transition states α, β.
The coordinates of them are given in Table 3.2.

evaluations per iteration. Typically an uneven number is used, as the transition

state can be assumed to be located in the middle of the minimum energy pathway in

general.

Another important parameter is the optimisation method which affects the speed

of convergence and the stability of the algorithm significantly. Even if the nudged

elastic band is a standard minimisation problem, it is not possible to use every

optimisation method, because gradient evaluations on the potential energy surface are

computationally expensive and shall therefore be avoided. The simplest optimisation

algorithm is the steepest decent 1, but it is known that this algorithm has a slow

convergence and tends to oscillations near the minimum. Thus, two other optimisation

methods have been implemented, namely the fast inertial relaxation engine (Fire) [33]

and Quick-Min [34] using the velocity verlet algorithm [35]. Preliminary tests, which

are not explicitly presented here, have shown that both methods are comparable with

respect to stability and convergence speed. Thus, for all further calculations the fast

inertial relaxation engine is used.

Additionally, the nudged elastic band convergence and stability is also affected by the

tangent estimation method, which in turn might change the obtained minimum energy

path approximation. Figure 3.2 shows the minimum energy path obtained by the

improved mathematically-motivated and the energy-weighted tangent estimation. Both

calculations are done with the same set of parameters, which is listed in Table 3.3. The

mathematical derivations of the tangent estimations are outlined in Appendix A.3. As

1For a description of steepest descent see Jensen [32], page 383.
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it can be seen in Figure 3.2b, the energy-weighted method neglects some of the positive

effects of projecting the spring force into parallel and the gradient perpendicular to

the band. Thus, it allows non-equidistant images. This effect can be seen at the upper

minimum a, where the band is stretched. Additionally, it allows the nudged elastic

band method to underestimate sharp curves of the minimum energy path.

The mathematically-motivated approach, on the other hand, keeps the images at equal

distances. However, it should be mentioned that this tangent estimation approach

tends to a kinky path in cases where the parallel component of the gradient is large

compared to the perpendicular component and, furthermore, is does not converge to

the minimum energy path but starts to oscillate [11].

(a) Mathematically-motivated tangent estima-
tion

(b) Energy-weighted tangent estimation

Figure 3.2.: Approximation of the minimum energy path with two different tangent
estimation methods. (a) The mathematically-motivated estimation keeps
the distances between the images better at equal distances. (b) The
energy-weighted tangent estimation neglects some positive effects of the
gradient and spring force projection. Thus, it allows to stretch the band.
Additionally, corner-cutting becomes possible, see the upper minimum and
the neighbouring image.

Table 3.3.: Nudged elastic band parameters on the Müller-Brown surface for the
mathematical-motivated and energy-weighted tangent estimation method
using the fast inertia relaxation engine.

Search ∆T ∆Tmax rtrust spring conv. grad.

Mep 3.5 7.0 0.001 0.001 0.01
Ts 3.5 7.0 0.001 0.001 0.005
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After approximating the minimum energy path, the nudged elastic band method is

able to locate the highest transition state on that pathway. In order to do so, the

image with the highest energy has to climb uphill by following the positive gradient.

This will directly lead the image to a maximum, hence, the image follows the parallel

gradient component. Furthermore, the spring force for this image is set to zero, so that

gradient and spring force do not cancel each other and the image can move freely.

Both tangent estimations are able to locate the transition state, as can be seen in

Figure 3.3. Figure 3.3a shows the complete minimum energy path, while Figure 3.3b

zooms into the vicinity of the transition state. Additionally, the graphs further contain

the minimum energy path approximation before application of the climbing image

to illustrate differences. In it can be seen that both tangent estimation methods are

capable of locating the transition state, even if the minimum energy path approximation

differs slightly. All nudged elastic band parameters for the calculations are listed in

Table 3.3.

(a) Overview over the whole climbing minimum
energy path.

(b) Vicinity of the transition state.

Figure 3.3.: Locating the transition state with the nudged elastic band method for the
two different tangent estimation methods. The left graphics (a) shows
the complete minimum energy path. The right graphic (b) illustrates the
vicinity of the transition state. Additionally, it shows the path from that
the climbing algorithm starts. As aspected, the climbing image climbs
uphill.

29



3. Results

3.2. Machine Learning

Machine learning techniques are able to represent high dimensional scalar functions.

Thus, these algorithms can be used to mimic the molecular potential energy surface and

to accelerate transition state searches. With this, the question arises which information

can be provided without further ab initio calculations and which data should be used

in the training process. Transition state search via the nudged elastic band method

uses energy and gradient information of the molecular potential energy surface. Thus,

these data can be used in the training process of the machine learning technique, but

using energy and gradient values will also increase the training effort.

That does not answer the question which information should be used to train the

algorithm. Normally, providing more data points should lead to a better prediction

result. Thus, it has to be proved that including gradient information in the training

process is worth the effort. For that purpose, a one-dimensional scalar function is

used and the regularised least squares algorithm is trained exclusively, since all other

implemented algorithms will show a similar behaviour The training parameters are

summarised in Table 3.4. The one-dimensional scalar function is given by

f(x) = 3 sin (x) e−
x2

225 + 2. (3.2)

Table 3.4.: Regularised least squares parameters for the training on
the one-dimensional function.

available information kernel σ value reg. grad. reg.

value RBF 0.8 103 -
value and gradient RBF 0.8 103 103

The training set is split into two regions with different training point density, but in

both regions the points are linearly distributed. Region A is dense, starts at -20, ends

at -10 and contains 15 training points. The second region B has only 3 training points,

starts at -5 and ends at 10. In Figure 3.4 these two regions A and B are shaded in

grey.

First, the regularised least squares method is trained only with energy values, with the

result shown in Figure 3.4a. It can be seen that in region A the underlying function and

its derivative are well represented by the machine learning technique. When looking

at region B, it can be seen that the training point values are well reproduced by the

machine learning prediction, but the actual functional behaviour is not captured at all.

Outside of both regions the machine learning algorithm predicts a constant value.

30



3.2. Machine Learning

Figure 3.4b shows the machine learning prediction after training with energy and

gradient information. There it can be seen that the machine learning technique

represents the function curve well in region A, similar to the training with only energy

information. In region B it reproduces the function values at the training points

reasonably, but now also the correct functional behaviour in the vicinity of these points

is provided by the machine learning algorithm.

(a) Value information (b) Value and gradient information

Figure 3.4.: Comparison between the available information in the regularised least
squares training process. In both the same training points are used, which
are linearly distributed in two regions. Region A starts at -20 and ends
at -10 with 15 training points. The second region B consists of 5 training
points and starts at -5 and ends at +10. (a) shows the training with
only value information. (b) illustrates training with value and gradient
information.

By comparing the two training techniques it is obvious that both show a similar

behaviour in region A and on the outside of both regions. Furthermore, it has shown

that including gradient information allows to reproduce curvatures more accurate than

by training the algorithm just with energy values. Outside of both regions, where no

information is present in the training set, both training techniques predict a constant

value. From this it can be concluded that machine learning techniques interpolate well,

but are not able to extrapolate. Furthermore, the machine learning method needs less

training points to represent the underlying function, if gradient information is included

in the training process.

Additionally, it should be mentioned that training with only gradient information would

be also possible in principle, but gives rise to two major issues: First, the predicted

curvature of the machine learning algorithm will not be able to represent the function

value due to the offset. Second, amplitudes will be dramatically wrong, since gradient
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information defines only the curvature slope. Thus, this training method is neglected

and not shown explicitly. In the following, all training processes use both energy and

gradient information.

3.2.1. Reaction Path Search Via Machine Learning

Although the training of the machine learning technique implies some computational

overhead, it is possible to accelerate the reaction path search by reducing the number

of ab initio calculations needed. This is possible because predictions based on the

machine learning technique are cheap compared to ab initio evaluations.

For that, the reaction path search is done on a fictitious potential energy surface

provided by the machine learning technique. The transition state search process is

shown schematically in Figure 3.5. After convergence on the predicted fictitious surface,

new geometries are obtained. However, in order to guarantee that the reaction path of

the molecular potential energy surface is correctly approximated, gradient and energy

of each newly obtained geometry are calculated on the real molecular potential energy

surface. If the convergence criteria are also met on the latter the real reaction path is

located. If not, these new geometries are added to the training set in order to improve

at least the next prediction. However, for the reaction path search via machine learning

the following steps are necessary:

1. Initialise a linear interpolated path between the two minima.

2. Calculate energy and gradient of each image on this initial path.

3. Store the geometries together with calculated energy and gradient values.

4. Train the machine learning algorithm with all stored values.

5. Start from the initial path and apply the nudged elastic band method by using

the energy and gradient of the assumed potential energy surface of the machine

learning technique.

6. Calculate energy and gradient on the ab initio potential energy surface for each

new obtained geometry.

7. Check if all gradients are below a given threshold, otherwise go to step 3 add the

new values and gradients to the training set, and continue with the algorithm

until convergence.

A similar procedure applies to locating the transition state, which can be done after

the minimum energy path has been approximated. For that the spring force of the

geometry with the highest energy is set to zero to make it move freely. It now follows

the parallel gradient component with respect to the band instead of the perpendicular
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component. Additionally, the initial pathway is set to the minimum energy path. For

a detailed example calculation on the Müller-Brown surface the reader is referred

to Appendix A.8, where predicted fictitious potential energy landscapes during the

reaction path search process are shown.

Figure 3.5.: Scheme of the reaction path search process via machine learning techniques.

3.2.2. Müller-Brown Test Surface

The machine learning techniques are tested on the two-dimensional Müller-Brown

surface. Note that the neural network approach is excluded from this study, because

it uses descriptor functions as proposed by Behler et al. [19], which take molecular

symmetries into account. Hence, the neural network approach can only be applied to

three-dimensional structures and can not be applied to the Müller-Brown surface.

All calculations in this subsection are done with the same nudged elastic band parameter

set which is listed in Table 3.5. All machine learning parameters used are tabulated in

Table 3.6. Additionally, it should also be noted that the same convergence threshold is

used for the nudged elastic band method on the predicted fictitious landscape as on

the Müller-Brown surface.

Table 3.5.: Nudged elastic band parameters used on the fictitious machine learning
surface.

Search tangent method ∆T ∆Tmax rtrust spring conv. grad

Mep math. motivated 3.5 7.0 0.005 10−5 0.01
Ts math. motivated 3.5 7.0 0.005 10−5 0.005
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Table 3.6.: Machine learning parameters for the Müller-Brown surface.

method kernel σ Cvalue Cgrad restarts norm. y ε ε′ eps

RLS RBF 0.196 1010 1010 - - - - -
GPR RBF 0.196 1010 1010 5 No - -
IRWLS RBF 0.196 107 107 - - 10−5 10−5 10−6

In the following, the result of each kernel method is discussed first. At the end of this

section, all of them are compared with each other.

Regularised least squares

The regularised least squares method can be easily implemented. It uses all training

points for the training and predictions. Therefore, the computational expenses rise

for both with increasing training set size. Furthermore, in this method the kernel

hyper-parameter is a constant value and does not change during the transition state

search process. Optimisation of this parameter is expensive and can be done for

example via a grid search. However, a non-optimal hyper-parameter does not affect

the algorithm stability, but slows down the convergence speed of the transition state

search, since qualitatively representation of the potential energy surface suffers. The

algorithm stability is mostly influenced by the two regularisation parameters. In order

to represent the training data well these two parameters have to be larger, but at

about a value of 1012 the algorithm gets unstable due to the matrix inversion. All used

machine learning parameters are listed in Table 3.6.

In Figure 3.6 the Müller-Brown surface is compared with the predicted landscape by

the machine learning technique after it has located the transition state. It can be

seen that the minimum energy path as well as the transition state are reasonably

well located and a path similar to that obtained with the plain nudged elastic band

method is obtained, see Figure 3.6a. The predicted fictitious surface is shown in Figure

3.6b. It also contains all training points calculated until the minimum energy path is

obtained, which represents the training set necessary to obtain the minimum energy

path. Further evaluations which are needed to obtain the transition state are skipped

in the graph as they are too close together and therefore undistinguishable.

By comparing the Müller-Brown surface to the predicted fictitious landscape it is

obvious that the vicinity of the minimum energy path is well represented by the

machine learning algorithm. Outside, where no information about the real surface

is available, the algorithm predicts a constant value. The regularised least squares

method has approximated the minimum energy path within 5 iterations and located

the transition state after 8 further iterations.

34



3.2. Machine Learning

(a) Müller-Brown surface (b) Fitted surface

Figure 3.6.: Comparison between the Müller-Brown surface and the predicted fictitious
landscape by regularised least squares technique. (a) Comparing the
reaction path of the plain nudged elastic band with the obtained path
with the regularised least squares approach. (b) Illustrates the predicted
surface after climbing. There are only these training points visible which
are needed to obtain the minimum energy path.

Gaussian process regression

The implementation of Gaussian process regression takes more effort than the regu-

larised least squares approach. However, Gaussian process regression implements a

procedure to optimise the kernel hyper-parameter. Therefore it uses the derivative of

the kernel with respect to the hyper-parameter. For the optimisation the first training

set is used always, because it has shown that the optimisation with another training

set leads to a similar kernel hyper-parameter. Hence, to reduce computation time

the hyper-parameter is optimised only once with the smallest possible training set.

The optimisation restarts five times with different hyper-parameter values to obtain

the global minimum. Initial hyper-parameter values are randomly drawn from the

range -11.513 to 11.513. Table 3.6 lists the Gaussian process regression parameters

with the optimised kernel hyper-parameter. It should be noted that the Gaussian

process regression formalism does not employ regularisation, but contains noise (see

Section 2.2.1). Since these two parameters are inversely related to each other, only the

regularisation is listed in Table 3.6.

Figure 3.7 shows the potential energy landscape comparison between the Müller-Brown

surface and the predicted fictitious landscape. It can be seen in Figure 3.7a that the

nudged elastic band method based on Gaussian process regression obtains a similar

minimum energy path as the plain nudged elastic band method does. Both methods

identify the same transition state. The predicted fictitious surface after locating the
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transition state is shown in Figure 3.7b, where all training points to obtain the reaction

path are again included. As before, further training points used to locate the transition

state are not shown, as they lie very close together

A comparison of both potential energy surfaces shows that the Müller-Brown surface is

well represented close to the minimum energy path by the machine learning prediction.

Where no training data is available, the algorithm predicts a value of zero, because

the offset is not taken into account during the training process. However, Gaussian

process regression has used 6 iterations to approximate the minimum energy path and

needs 9 iterations additionally to obtain the transition state.

(a) Müller-Brown surface (b) Fitted surface

Figure 3.7.: Comparing the Müller-Brown surface with the predicted landscape of
Gaussian process regression after locating the transition state. The left
figure (a) shows the minimum energy path approximation obtained by
applying the nudged elastic band method directly to the surface and by
using the machine learning procedure. The right figure (b) illustrates
the predicted surface of the machine learning algorithm after locating the
transition state can be seen. There are only those training points are
drawn which are used to approximate the minimum energy path.

Iterative re-weighted least squares

This approach is an implementation of a support vector machine with an insensitive

region ε around the predicted curve. Hence, it introduces a tolerated error, see

Section 2.2.2. The training process of the iterative re-weighted least squares method

relies on matrix inversion in each iteration and it stops if the Lagrangian is minimised

and changes of it are below a given threshold. This makes the iterative re-weighted

least squares method computationally more expensive then the other two approaches.

However, during the training process it disposes training points containing redundant

information about the problem. As a consequence, predictions are computationally
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cheaper compared to the other two kernel methods. Furthermore, the iterative re-

weighted least squares method uses a constant kernel hyper-parameter. Similar to the

regularised least squares method the optimisation can be done via a grid search. Also

for the iterative re-weighted least squares method a non-optimal hyper-parameter has

only a minor effect on the stability of the algorithm, but affects the representation

quality. Furthermore, iterative re-weighted least squares method is sensitive to high

regularisation values, because they increase the error contribution in the Lagrangian

which rises the probability of oscillations of the Lagrangian. It should be noted for

the transition state search that the introduced error is smaller than the convergence

criteria for the transition state search itself. The machine learning parameters for the

iterative re-weighted least squares approach are summarised in Table 3.6.

Figure 3.8 shows a comparison between the predicted fictitious landscape of the iterative

re-weighted least squares approach and the Müller-Brown surface. It can be seen from

Figure 3.8a that the minimum energy path as well as the transition state are well

approximated and that a path similar to the plain nudged elastic band method is

obtained. The training points to approximate the minimum energy path are drawn in

Figure 3.8b. All further training points that are used to localise the transition state

are not shown, because they are hardly distinguishable.

By comparing both potential energy surfaces it is obvious that the fictitious predicted

landscape represents the Müller-Brown surface very well near the reaction path. At

the outside, where the algorithm has no information about the real surface, it predicts

a constant value. The minimum energy path was approximated by the iterative re-

weighted least squares method within 5 iterations and it took 8 further iterations to

locate the transition state.

Kernel method comparison

All three machine learning techniques have found the minimum energy path as well

as the transition state reasonably and the obtained pathway is similar to the plain

nudged elastic band method. Furthermore, the vicinity of the minimum energy path

is well represented by all kernel methods, although the choice of training points

differs significantly. In regions where the algorithms have no information about the

Müller-Brown surface they predict a constant value. To improve the landscape in

unknown territories further training points in these regions are needed. Similar to

above this shows that the algorithms are able to interpolate very well, but extrapolation

capabilities are very limited.

All three algorithms use a similar kernel hyper-parameter which defines the width for

the radial basis functions. Thus, it is assumed that this parameter is a property of the

surface. Tests with a larger hyper-parameter (σ = 1.0) have shown that the machine
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(a) Müller-Brown surface (b) Fitted surface

Figure 3.8.: Comparing the Müller-Brown surface with the fictitious predicted surface
by the iterative re-weighted least squares technique after it has located
the transition state. The left figure (a) shows the minimum energy path
obtained by applying directly the nudged elastic band to the Müller-Brown
surface and by using the machine learning procedure. The right figure
(b) illustrates the predicted landscape via the iterative re-weighted least
squares technique after locating the transition state.

learning algorithms have difficulties representing the Müller-Brown surface. A reason

could be that the landscape features are small compared to the width of the radial

basis function. On the other hand, a smaller hyper-parameter (σ = 0.1) slows down the

convergence of the transition state search process, but it is still possible to represent

the landscape. Additionally, it has revealed that using lower convergence criteria for

the nudged elastic band on the predicted fictitious landscape than for convergence on

the Müller-Brown surface does not improve the convergence speed. Maybe this is due

to the rapid function value change on the Müller-Brown surface.

Figure 3.9 shows the minimum energy path approximations of all three kernel methods.

It can be seen that all methods provide a similar path and locate the same transition

state. As seen in the Figures 3.6a, 3.7a and 3.8a this path is the same path as the plain

nudged elastic band method locates. In comparison to a direct plain transition state

search, all machine learning techniques investigated in this thesis reduced the number

of calculations on the Müller-Brown surface. This suggests that machine learning

techniques are a highly useful tool to accelerate the transition state search.

38



3.3. Molecular test systems

Figure 3.9.: Comparing the obtained minimum energy path after locating the transition
state of all three machine learning algorithms with the real minimum energy
path.

3.3. Molecular test systems

In this section the machine learning algorithms are tested on more realistic systems.

For that purpose two molecules are selected, which have well known transition states

and represent different structural transitions. These molecular systems are tabulated

in Table 3.7 and their equilibrium structures are illustrated in Figure 3.10 (ammonia)

and 3.11 (ethane).

Table 3.7.: Molecular test systems

Molecule chem. formula chemical reaction Exchange Basis set

ammonia NH3 Geometry inversion Hartree-Fock aug-cc-pvdz [36][37]
ethane C2H6 CH3 group rotation Hartree-Fock STO-3G [38]

All ab initio calculations are done with the QChem [39] package at the Hartree-Fock

level of theory. The suggested method for transition state searches with QChem utilises

the freezing string technique to approximate the transition state and applies a local

gradient-following technique to locate it. However, for the sake of a direct comparison,

a plain nudged elastic band method has been coded and is directly applied to the

molecular potential energy surface as provided by the QChem routines. In the following,

the pre-optimised path refers to the path that is obtained after the nudged elastic band

method is used with the image-dependent pair potential.
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Every machine learning method uses the same parameter for each molecular test system.

Table 3.8 lists all parameters for each kernel method, except the kernel hyper-parameter

which is assumed to be a surface parameter. Thus, it is given for each molecular test

system separately. The neural network approach uses the parameter set of Peterson [1]

and Artrith [40]. The network structure consists of two hidden layers with five neurons

each. The hyperbolic tangent is used as activation function. Details can be found in

the supplementary material of Peterson [1] and Artrith [40].

Table 3.8.: Machine learning parameters for the molecular systems

method value reg. grad. reg. restarts norm. y ε ε′ eps

RLS 1010 1010 - - - - -
GPR 1010 1010 5 No - -
IRWLS 107 107 - - 10−5 10−5 10−5

Figure 3.10.: Molecular structure
of ammonia

Figure 3.11.: Molecular structure of ethane

3.3.1. Ammonia

The investigated structural rearrangement of ammonia is an inversion. The nitrogen

passes through the hydrogen plane to the other side. During this process, the bond

length between the two atom species is compressed, see Figure 3.12. This leads to a high

energy barrier which is on the order of bond breaking. Since the gradient component

parallel to the band is high compared to the gradient component perpendicular to it,

the images tend to slide down towards the minima with the mathematically-motivated

tangent estimation. This happens even if a high spring constant value is chosen. Thus,

the energy-weighted tangent estimation is used here.

In Table 3.9 all nudged elastic band parameters are summarised. The optimised kernel

hyper-parameter for Gaussian process regression is σ = 0.565 for a linear initial path
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Figure 3.12.: Ammonia inversion geometries obtained by using the nudged elastic band
method.

guess and σ = 1.18 for the pre-optimised initial pathway. The regularised least squares

and iterative re-weighted least squares technique use a kernel hyper-parameter value of

σ = 0.4. However, it is assumed that the kernel hyper-parameter is specific for every

surface. This deviation might stem from the fact that Gaussian process regression does

not fit the offset during the weight optimisation process.

Table 3.9.: Nudged elastic band parameters used for the transition state search calcu-
lation of the inversion of ammonia.

Search tangent method ∆T ∆Tmax rtrust spring conv. grad

IDPP energy weighted 3.5 7.0 0.05 0.001 0.005
MEP energy weighted 3.5 7.0 0.05 0.0001 0.001
TS energy weighted 3.5 7.0 0.05 0.0001 0.0005

Since the atoms do not collide on the linearly interpolated path, there is no need

to pre-optimise the latter with the image-dependent pair potential, which allows to

use both paths for the tests. As before, all algorithms approximate the minimum

energy path first, and then localise the transition state starting from the approximated

reaction path.

By choosing convenient cuts through the potential energy surface it is possible to

compare the calculated minimum energy paths visually; see Figure 3.13. For that, two

intrinsic coordinates are defined, the distance between nitrogen atom and the hydrogen
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plane, and the mean bond length between nitrogen and hydrogen. In Figure 3.13a it

can be seen that the linearly interpolated path deviates significantly from the actual

minimum energy path. Even the pre-optimised path is off the real reaction path, but

is at least somewhat closer than the linearly interpolated initial pathway. All machine

learning techniques obtain a similar minimum energy path as the plain nudged elastic

band method does.

(a) Overview (b) Transition states

Figure 3.13.: Cut through the potential energy surface of ammonia with the intrinsic
coordinates, mean bond length of H to N as y-axis and the distance from
N to the H3 plane as x-axis. As energy reference is the QChem calculated
transition state used, with -1529.21 eV.

Only a very close look at the transition state reveals some minimal numerical differences,

see Figure 3.13b. For comparison, the transition state properties are calculated and

listed in Table 3.10 and 3.11. There it can be seen that all transition states are close

to the reference state calculated with QChem. All machine learning techniques have

reduced the number of ab initio calls significantly, in particular the neural network

approach, which seems superior to the kernel methods in the tested setup. This was

expected since the neural network takes molecular symmetries such as rotational and

translational invariances into account. Hence, the neural network does not have to

learn these invariances but can use them right away. Since the molecular potential

energy surface for that transition is symmetric this reduces the number of ab initio

calls significantly. Interestingly, by looking at the plain nudged elastic band method

calculation, one can see that the linear path needs less ab initio calls than the pre-

optimised pathway to converge. This is a very unusual behaviour since the initial

optimised guess is closer to the actual reaction path, see Figure 3.13a. However,

one explanation might be that the perpendicular gradient component of the linearly
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interpolated guess is large compared to the pre-optimised band, which makes the

optimisation method take smaller steps in case of the pre-optimised initial guess.

Table 3.10.: Transition state properties of ammonia for the linearly interpolated path.
As reference, the calculated values of QChem are used with an energy of
-1529.21 eV and a frequency of -873.39 cm−1.

Method ∆Energy /µeV Frequency / cm−1 ab initio calls

MEP TS

NEB 8.882 -872.80 149 168
RLS 9.102 -872.67 37 7
GPR 8.378 -872.72 44 14
IRWLS 8.444 -873.02 51 7
NN -14.909 -871.67 16 7

Table 3.11.: Calculated transition state properties of ammonia for the pre-optimised
path guess. As reference the calculated values of QChem are used with an
energy of -1529.21 eV and a frequency of -873.39 cm−1.

Method ∆Energy /µeV Frequency / cm−1 ab initio calls

MEP TS

NEB 215.332 -871.96 282 196
RLS 9.600 -874.93 23 7
GPR 9.611 -871.97 37 7
IRWLS 9.216 -872.24 44 14
NN -243.427 -871.98 16 7
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3.3.2. Ethane

Ethane is a very common test system for transition state searches. The investigated

structural rearrangement is given by the rotation of both methyl groups (CH3). One

rotates clockwise, while the other one rotates counterclockwise. Both rotate by 60◦,

as illustrated in Figure 3.14. On the minimum energy path the bond lengths change

slightly, which leads to a low barrier height.

Figure 3.14.: Geometries of the ethane rotation obtained by using the nudged elastic
band method.

All parameters for the nudged elastic band calculation are listed in Table 3.12. The

kernel hyper-parameter was set to σ = 0.4 for the iterative re-weighted least squares

and regularised least squares approach. Gaussian process regression optimises the

hyper-parameter value to σ = 1.62 for the linearly interpolated initial path guess and

to value of σ = 3.8 when starting from the pre-optimised path as initial guess.

Table 3.12.: Nudged elastic band parameters used for the transition state search calcu-
lation of the methyl group rotation of ethane.

Search tangent method ∆T ∆Tmax rtrust spring conv. grad

MEP math. motivated 3.5 7.0 0.05 0.0001 0.001
TS math. motivated 3.5 7.0 0.05 0.0001 0.0005

Since atoms do not collide on the linearly interpolated initial pathway, it is possible to

use it for testing as well as the pre-optimised path. This reaction has more degrees

of freedom, hence, it is hard to define two intrinsic coordinates that represent the

transition from one minimum to the other. Hence, the principle component analysis

of SciKit-Learn [41] is utilised to define two coordinates that allow for a convenient
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cut through the potential energy surface, see Figure 3.15. Note that each coordinate

describes a molecular motion of several atoms. In order to get a higher energy resolution

around the reaction path all energy values above 375 meV are neglected in the figure.

Figure 3.15a compares the different minimum energy paths. It is obvious to see that the

linear initial band guess lies far from the actual reaction path, while the pre-optimised

linear path is already close to the final minimum energy path. Moreover, all machine

learning techniques have approximated a reaction path that is similar to the obtained

pathway with the plain nudged elastic band method.

(a) Overview (b) Transition states

Figure 3.15.: Cut through the potential energy surface of ethane by using a principle
component analysis. As energy reference is the calculated transition state
energy of QChem used which is -2130.69 eV.

The obtained transition state energies show only minimal numerical variations as it

can be seen in Figure 3.15b. Thus, the transition state properties are calculated and

compared to the QChem reference, see Table 3.13 and 3.14. This comparison shows

that all transition states are well located. Looking at the number of ab initio calls,

it is obvious to see that all machine learning techniques reduce the number of calls

in case of the linear initial band guess. Also in case of the pre-optimised initial path

these methods are able to reduce the amount of ab initio calls. Again, the neural

network approach is superior to the kernel methods, most likely due to the fact that

it takes molecular symmetries into account. The iterative re-weighted least squares

approach showed some convergence problems in case of the pre-optimised initial path,

where it got stuck in the weight-optimisation process and had to be terminated after a

few days of calculation time. This issue might have been caused by oscillations of the

Lagrangian due to small variations of the energy values.
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Table 3.13.: Transition state properties of ethane for the linearly interpolated initial
path. The transition state obtained with QChem is used as reference with
an energy of -2130.69 eV and a frequency of -309.48 cm−1.

Methods ∆ Energy / µeV Frequency / cm−1 ab initio steps

MEP Ts

NEB -51.394 -312.21 275 245
RLS -147.820 -311.68 72 14
GPR -27.565 -309.03 72 7
IRWLS -14.659 -312.61 65 7
NN -78.306 -313.62 16 7

Table 3.14.: Transition state properties of ethane for the pre-optimised initial path.
The obtained transition state by QChem is used as reference with an
energy of -2130.69 eV and a frequency of -309.48 cm−1.

Methods ∆ Energy / µeV Frequency / cm−1 ab initio steps

MEP Ts

NEB -59.498 -308.56 219 168
RLS -48.344 -310.24 44 14
GPR -28.703 -309.88 37 7
NN -27.505 -302.64 16 7
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In this thesis different machine learning techniques were investigated which are able to

accelerate transition state searches based on the nudged elastic band method. A neural

network approach and three kernel methods were implemented. First, these techniques

were tested for their capability of approximating the minimum energy path on the

two-dimensional Müller-Brown surface. Second, all machine learning methods were

used to approximate reaction paths and to locate transition states in two molecular

systems with well known reaction paths. The number of necessary ab initio calls was

compared to that obtained with the plain nudged elastic band method; in this case

also for different initial pathways.

In the first test only the kernel methods were used exclusively, since the neural network

approach transforms the input values with descriptors operating in three-dimensional

space in order to take molecular symmetries into account. Thus, the latter can be only

applied to molecules. All kernel methods were capable of approximating the minimum

energy path and of locating the transition state as well as the plain nudged elastic band

method does. The tests further showed that the kernel methods were able to represent

the vicinity of the reaction path very well, which suggests large benefits for structure

evaluations for example in the course of molecular dynamics simulations on an ab initio

surface. Interestingly, all kernel methods use a similar kernel hyper-parameter. Thus,

it is suspected that this parameter is a property mostly determined by the potential

energy surface. Additionally, all kernel methods reduce the number of evaluations on

the Müller-Brown surface needed to locate the transition state.

In a second test, the molecular systems ammonia and ethane have been selected. In

the case of a linearly interpolated initial band guess all machine learning algorithms

were capable of locating the transition state within chemical accuracy. A similar result

could be found when using the pre-optimised initial band path, except for the iterative

re-weighted least squares method, which had some difficulties with weight-optimisation

for ethane. This might have been caused by the initial path being close to the actual

reaction path and the minimal changes during update. The algorithm got stuck in the

weight-optimisation process due to an oscillation of the Lagrangian and the calculation

was stopped manually after a few days. Thus, it may be useful to implement a

sequential minimisation method [42][43] which reduces the computational burden of

the weight-optimisation since it does not rely on a matrix inversion.

Furthermore, the molecular tests have shown that the optimised kernel hyper-parameter

of Gaussian process regression differs significantly from the two other kernel method
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approaches. This might be due to the fact that Gaussian process regression did not fit

the offset during weight calculation.

Compared to the plain nudged elastic band method the number of ab initio calls was

significantly reduced by all machine learning techniques. The neural network had the

highest impact on the evaluation number, most likely because it makes use of molecular

symmetries, which seems to make this technique superior to the kernel methods in the

current setup.

From this it can be concluded that also kernel methods would benefit significantly

from similar information. The smooth overlap of atomic positions kernel [44] might

be a useful ansatz for a future implementation. Future studies of reaction pathways

need to be extended towards bond-breaking, which has not been treated within this

work. Particularly interesting in this context are reactions of molecules in gas phase

on metallic surfaces, where the calculation of realistic potential energy surfaces is very

costly but needed to estimate catalytic activities and selectivities.
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A. Mathematical Derivations

A.1. Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is an essential approach in quantum chemistry.

It decouples the electron motion from the nuclei motion and assumes that the total

molecular wave function can be written as a product of electron and nuclei wave

functions. Qualitatively this is allowed due to the fact that the mass ratio between

electron and nuclei is mnuclei

melec
≈ 1835. The following derivations follow roughly the book

of Combs 1.

The approximation starts with the molecular Schrödinger equation

H |ψ(R, r)〉 = E |ψ(R, r)〉 , (A.1)

using the molecular Hamiltonian in atomic units, which is given by

H =−
Nelec∑
i=1

1

2
∇2

i︸ ︷︷ ︸
Te

−
Nnuclei∑
A=1

1

2MA

∇2
A︸ ︷︷ ︸

TN

−
Nelec∑
i=1

Nnuclei∑
A=1

ZA
|RA − ri|︸ ︷︷ ︸

VeN

+

Nelec∑
i=1

Nelec∑
j>i

1

|ri − rj|︸ ︷︷ ︸
Vee

+

Nnuclei∑
A=1

Nnuclei∑
B>A

ZAZB
|RA −RB|︸ ︷︷ ︸

VNN

,

(A.2)

with Te as kinetic energy of the electrons, TN as kinetic energy of the nuclei, VeN as the

electron-nuclei interaction potential, Vee as the electron-electron interaction potential

and VNN as the nuclei-nuclei interaction potential. In the molecular Hamiltonian upper

case letters denote nuclei variables and the lower case letters electron variables. The

Born-Oppenheimer approximation assumes that the nuclei are at rest and do not move

within the calculation period. Thus, the nuclei coordinates R turn into a parameter and

the nuclei kinetic energy vanishes from the Hamiltonian. This leads to the electronic

Schrödinger equation given by

(−Te − VeN + Vee + VNN − εm(R))ψ(R, r) = 0, (A.3)

1Proven in [45] page 1 et sequentes.
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where εm denotes the eigen energy of the m-th electron. In addition, the total solution

of the Schrödinger equation is expanded into electronic coordinates which leads to

ψ(R, r) =
∞∑
m=0

ξm(R)φm(R, r). (A.4)

Through that, the Schrödinger equation can be written as

(−Te − TN − VNe + Vee + VNN)
∞∑
m=0

ξm(R)φm(R, r) = E

∞∑
m=0

ξm(R)φm(R, r). (A.5)

Multiplying this from the left by φ∗n(R, r) and integrating over the electron coordinates

r gives

∞∑
m=0

∫
drφ∗n(R, r) (−Te − TN − VeN + Vee + VNN − E) ξ(R)φ(R, r) = 0. (A.6)

With the orthogonality condition
∫

drφ∗n(R, r)φm(R, r) = δnm and by using Equa-

tion A.3 this equation can be expressed as

∞∑
m=0

(∫
drφ∗n(R, r)(−TN)φ(R, r) + (εm(R)− E)δnm

)
ξ(R) = 0. (A.7)

The first part of this equation contains the differential operator TN. Applying this

operator to the two wave functions ξ(R) and φ(R, r) leads to

∫
drφ∗n(R, r)TNφm(R, r)ξm =

Nnuclei∑
A=1

1

2MA

3∑
d=1

∫
drφ∗n(R, r)

∂2φm(R, r)

∂R2
A,d

ξm(R)

+ 2

Nnuclei∑
A=1

1

2MA

3∑
d=1

∫
drφ∗n

∂φm(R, r)

∂RA,d

∂ξm(R)

∂Rd

+

Nnuclei∑
A=1

1

2MA

3∑
d=1

∂2ξm(R)

∂R2
d

δnm︸ ︷︷ ︸
TNξmδmn

(A.8)

Plugging this into Equation A.7 leads to a coupled differential equations system, which
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is given by[Nnuclei∑
A=1

1

2MA

3∑
d=1

∂2

∂R2
A,d

+ εm − E
]
ξn(R) =

∞∑
m

Nnuclei∑
A=1

1

MA

3∑
d=1

∫
drφ∗n

∂φm(R, r)

∂RA,d

∂ξm(R)

∂RA,d

+

∞∑
m

Nnuclei∑
A=1

1

2MA

3∑
d=1

∫
drφ∗n(R, r)

∂2φm(R, r)

∂RA,d

ξm(R).

(A.9)

By defining coupling matrix elements

Λmn =
∞∑
m

Nnuclei∑
A=1

1

2MA

3∑
d=1

∫
drφ∗n(R, r)

[
2
( ∂

∂RA,d

φm(R, r)
) ∂

∂RA,d

+

∂2

∂R2
A,d

φm(R, r)

]
,

(A.10)

The coupled differential equation system can be written as

[TN + εn(R)− E] ξn(R) =
∞∑
m

Λmnξm(R). (A.11)

The Born-Oppenheimer approximation assumes that the electronic wave function

φ(R, r) does not depend on the nuclei coordinates R as a variable, but as a parameter.

Thus in this approximation the Λnm vanishes, leading to

[TN + εn(R)− E] ξn(R) = 0 (A.12)

ψnν(R, r) = φn(R, r)ξν(R), (A.13)

where the total molecular wave function expansion reduces to one term. In order

to be a valid assumption, the Born-Oppenheimer approximation has to satisfy the

condition
| 〈ξnν |Λnm |ξmν′〉 |
|Enν − Emν′|

� 1 for everyn 6= m, ν 6= ν ′, (A.14)

which means that the energy difference has to be large between different states compared

to the matrix elements. If the energy difference is on the same order of magnitude as

vibronic frequencies the whole algorithm breaks down. Exceptions are the states where

Λnm is zero for symmetry reasons.
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A.2. Hohenberg-Kohn Theorem

The first theorem states that two different external potentials do not give the same

density. We start from the molecular Hamiltonian which is given by

Helec =−
Nelec∑
i=1

1

2
∇i2 −

Nelec∑
i=1

Nnuclei∑
A=1

ZA
|RA − ri|

+

Nelec∑
i=1

Nelec∑
j>i

1

|ri − rj|
+

Nnuclei∑
A=1

Nnuclei∑
B>A

ZAZB
|RA −RB|

.

(A.15)

The proof consists of a comparison between two Hamiltonians with different eigenfunc-

tions and eigenvalues which are given by

〈ψ|H |ψ〉 = E0, (A.16)

〈ψ′|H′ |ψ′〉 = E ′0. (A.17)

Applying a different wave function to the Hamiltonian leads to an eigenvalue that is

higher than the ground state energy, so are obtaining the inequalities

E0 < 〈ψ′|H |ψ′〉 = 〈ψ′|H′ |ψ′〉+ 〈ψ′|H −H′ |ψ′〉 , (A.18)

E ′0 < 〈ψ|H′ |ψ〉 = 〈ψ|H |ψ〉+ 〈ψ|H′ −H |ψ〉 . (A.19)

Combining these two lines leads to

E0 + E ′0 < E ′0 + 〈ψ′|H −H′ |ψ′〉+ E0 + 〈ψ|H′ −H |ψ〉 , (A.20)

where the ground state definition of Equation A.17 has been used. The two other

terms on the right can be rewritten as an integral over the external potential. From

that the proof can be completed as follows

E0 + E ′0 < E ′0 +

∫
drρ(r)(Vext − V ′ext) + E0 +

∫
drρ(r)(V ′ext − Vext), (A.21)

which leads to

E0 + E ′0 < E ′0 + E0. (A.22)

Since such an inequality is not possible this enforces that an external potential is

uniquely connected with the electron density.
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A.3. Tangent estimation to the nudged elastic band

Improved nudged elastic band calculations are based on the estimation of the tangent

for each image. The simplest case is to use the direction of the neighbouring images,

given by

τ̂i =
xi+1 − xi−1

|xi+1 − xi−1|
, (A.23)

where the subscript i defines image of which the tangent is calculated. This equation

can be improved by including also the image in between. The tangent for the image in

the middle is calculated by

τ̂i =
xi+1 − xi
|xi+1 − xi|

+
xi − xi−1

|xi − xi−1|
. (A.24)

Here, it should be noted that the tangent must be of unit length. Therefore, all of

them have to be normalised before applying them in the nudged elastic band procedure.

However, the two mentioned tangent estimations are mathematically-motivated and

in some cases problematic, especially if the path is very kinky. Another approach,

physically motivated, is to weight the tangent with the energy of neighbouring images

[11]. For this estimation auxiliary tangents are used:

τ̂+
i = xi+1 − xi,
τ̂−i = xi − xi−1.

(A.25)

The estimated tangent to the band is then given by

τ̂i =


τ̂+
i if Ei+1 > Ei > Ei−1

τ̂−i if Ei+1 < Ei < Ei−1

τ̂+
i ∆Emax

i + τ̂−i ∆Emin
i if Ei+1 > Ei−1

τ̂+
i ∆Emin

i + τ̂−i ∆Emax
i if Ei+1 < Ei−1

. (A.26)

Here the energy value is used for a smooth switching between the two auxiliary tangents.

The weight is calculated from the energy via

∆Emax
i = max(Ei+1 − Ei, Ei−1 − Ei),

∆Emin
i = min(Ei+1 − Ei, Ei−1 − Ei).

(A.27)

Through this, the energy-weighted tangent can be calculated. However, it should be

noted that the force projection is no longer exactly aligned with the band direction
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and some positive effects, which are employed by introducing tangents to the nudged

elastic band formalism, are neglected.

A.4. Image-Dependent Pair Potential

The image-dependent pair potential was proposed by Smidstrup et al. [14]. This

method improves the initial band guess for the nudged elastic band. It has a lot in

common with the linear synchronous transit method proposed by Halgren et al. [46],

but with the advantage that it produces a continuous path and is more robust.

To start with the image-dependent pair potential all pair distances for each atom in

both minimum geometries have to be calculated. Geometries are given in Cartesian

coordinates and the direction can be evaluated with the Euclidean metric. Through

this, an ideal distance for each intermediate image can be calculated [14]:

dκi,j = dαi,j + κ
dβi,j − dαi,j

N
, (A.28)

where dκi,j is the distance in image κ from atom i to atom j. α and β denote the two

minimum geometries and N is the number of images. The objective function for the

image-dependent pair potential can be stated as

Sκidpp =
N∑
i=1

N∑
j>i

w(di,j)
(
dκi,j − |xi − xj|

)2
, (A.29)

with w as a weight function that represents a penalty term for too short distances.

Minimisation of this function by variation in x directs the atoms into a configuration

where all distances are close to the interpolated distances of Equation A.28. This

optimisation can be achieved by applying the nudged elastic band algorithm which

requires knowledge of the gradient of the objective function.

F κ
idpp = (∇iw(di,j))|xi − xj|+ w(di,j)

2(xi − xj)(dκi,j − |xi − xj|)
|xi − xj|

. (A.30)

With this equation it is possible to improve the nudged elastic band initial guess

for the real calculation. However, it should be noted, that the initial guess for this

improvement is still the linearly interpolated in Cartesian coordinates.
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A.5. Primal To Dual

The primal optimisation problem is given as a function called f(x) which has to

match certain conditions. These are expressed as equalities hj(x) and inequalities

gi(x) constraints. Optimisation can be restricted to minimisation since it is possible

to obtain maximisation simply by changing the sign of the objective function 2. The

primal problem can then be stated as

optimise f(x)

subjected to

{
gi(x) ≤ 0 i = 1, . . . , p

hj(x) = 0 j = 1, . . . , q

. (A.31)

First, the dual Lagrangian is constructed from the primal problem by including all

constrains with Lagrangian multipliers into the objective function,

L = f(x)−
p∑
i=1

λigi(x)−
q∑
j=1

µjgj(x),

subjected to λi, µj ≥ 0,

(A.32)

where λi and µj are the dual variables. This equation contains primal and dual variables.

It is possible to dispose the primal variables by minimising the Lagrangian with respect

to them and eliminate subsequently all primal variables. This leads directly to the

dual objective function, but in order to keep generality it is still stated as a function of

both variables.

maximise
x,λ,µ

f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

µjgj(x),

subjected to λi, µj ≥ 0.

(A.33)

The solution is then obtained by maximising the dual objective function with respect

to the Lagrangian multipliers. This is turned into a minimisation by changing the sign

of f(x) in equations A.32 and Equation A.33.

2A documentation about the Lagrangian multiplier can be found in [47], page 195 eq sequentes.
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A.6. Karush-Kuhn-Tucker Condition

The Karush-Kuhn-Tucker (KKT) condition [29] is applied to solve constrained opti-

misation problems. It uses the dual Lagrangian, see Equation A.32. However, note

that the condition is only valid if all functions are differentiable. The condition allows

to calculate the optimal solution to the primal and dual problem. Therefore the

Lagrangian is derived with respect to each primal and dual variable. This leads to a

set of equations

∂

∂x
L ≤ 0

∂

∂λi
L ≤ 0

∂

∂µj
L ≤ 0 x, λ, µ ≥ 0. (A.34)

The KKT condition is completed with the complementary slackness, which states that

at the optimal solution all products between dual variables and constrains have to

vanish, i. e.

λigi = 0, (A.35)

µjhj = 0. (A.36)

By substituting these equations into the original Lagrangian a set of equations is

obtained. The solution to this set is also the optimal solution to the primal and dual

problem.

A.7. Second-Order Taylor Expansion Of The

Lagrangian

The iterative re-weighted least square (IRWLS) process, proposed by Lázaro et al. [26]

uses a quadratic approximation to the Lagrangian, because each step in the IRWLS

procedure relies on the previous solution. First the Lagrangian function is introduced.

L =
1

2
wᵀw + C

N∑
i=1

(L(ξi)− L(ξ∗i )) +D

N∑
i=1

(L(τi)− L(τ ∗i )) (A.37)

which is similar to Equation 2.33. This expression gets modified with the first-order
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Taylor expansion, which leads to

L′ = 1

2
wᵀw+C

(
N∑
i=1

L(ξki ) +
dL(u)

du

∣∣∣
ξki

[ξi − ξki ]

)

+ C

(
N∑
i=1

L(ξ∗ki ) +
dL(u)

du

∣∣∣
ξ∗ki

[ξ∗i − ξ∗ki ]

)

+D

(
N∑
i=1

L(τ ki ) +
dL(u)

du

∣∣∣
τki

[τi − τ ki ]

)

+D

(
N∑
i=1

L(τ ∗ki ) +
dL(u)

du

∣∣∣
τ∗ki

[τ ∗i − τ ∗ki ]

)
, (A.38)

where L′ = L and ∇L′ = ∇L. To obtain a quadratic approximation one has to take

the second-order Taylor expansion. It has to be imposed that L′′ = L and ∇L′′ = ∇L,

so that the quadratic approximation is still a solution to the original problem. This

leads to

L′′ = 1

2
wᵀw + C

(
N∑
i=1

L(ξki ) +
dL(u)

du

∣∣∣
ξki

(ξi)
2 − (ξki )2

2ξki

)

+ C

(
N∑
i=1

L(ξ∗ki ) +
dL(u)

du

∣∣∣
ξ∗ki

(ξ∗i )
2 − (ξ∗ki )2

2ξ∗ki

)

+D

(
N∑
i=1

L(τ ki ) +
dL(u)

du

∣∣∣
τki

(τi)
2 − (τ ki )2

2τ ki

)

+D

(
N∑
i=1

L(τ ∗ki ) +
dL(u)

du

∣∣∣
τ∗ki

(τ ∗i )2 − (τ ∗ki )2

2τ ∗ki

)
, (A.39)

By using the definition for error weights

ai =
C

ξki

∣∣∣∣
ξki

,a∗i =
C

ξ∗ki

∣∣∣∣
ξ∗ki

,si =
D

τ ki

∣∣∣∣
τki

,s∗i =
D

τ ∗ki

∣∣∣∣
τ∗ki

, (A.40)

the quadratic approximation of the Lagrangian can be stated as

L =
1

2
wᵀw +

1

2

N∑
i=1

aiξ
2
i + a∗i ξ

∗2
i + s∗i τ

2
i + s∗i τ

∗2
i + const., (A.41)

which is the final approximation.
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A.8. Training Example

This example shows the process to approximate the minimum energy path by using a

machine learning technique. For that the regularised least squares method is used. The

search is done on the Müller-Brown surface. Figure A.1 shows the predicted fictitious

energy landscape as well as the obtained minimum energy path after one and after

three iteration steps.

(a) Contour after one iteration (b) surface after one iteration

(c) Contour after three iterations (d) Surface after three iterations

Figure A.1.: Predicted fictitious potential energy surface after different iteration steps.

From Figure A.1a it is obvious to see that the machine learning algorithm is only able

to represent the vicinity of the training point reasonably well. After the nudged elastic

band converges on the fictitious surface (or even if it exceeds the maximum number of

steps) new points are obtained which are then evaluated on the real surface and added

to the training set. This is illustrated in Figure A.2. The difference of the two surface

in figures A.3 and A.2 nicely denotes the step-wise learning process.
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A.8. Training Example

(a) Contour after convergence (b) Surface after convergence

Figure A.2.: Predicted fictitious potential energy surface after convergence of the
minimum energy path is achieved.

(a) Contour (b) 3D structure

Figure A.3.: For comparison, the real Müller-Brown surface.

59





Bibliography
[1] A. A. Peterson, “Acceleration of saddle-point searches with machine learning”,

The Journal of Chemical Physics, vol. 145, no. 7, p. 074 106, 2016. doi: 10.1063/

1.4960708. eprint: https://doi.org/10.1063/1.4960708. [Online]. Available:

https://doi.org/10.1063/1.4960708 (cit. on pp. 2, 40).
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