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Abstract

Surface Polymorph Prediction using Bayesian Learning:
To Monolayer Coverage and Beyond

Alexander Egger
Institute of Solid State Physics, Graz University of Technology

Finding and synthesizing materials with tailor-made properties are central goals of material
science. Interfaces are an especially interesting area of research. In their vicinity, materials
can form vastly different polymorphs than in an extended bulk material. With those unique
polymorphs, exceptional physical properties arise. To find out which of these possible poly-
morphs actually form, one needs to calculate the Gibbs free energy of each with high accuracy.
This level of accuracy necessitates computationally expensive dispersion-corrected density func-
tional theory (DFT). At the same time, the number of possible polymorphs is basically infinite.
Consequently, conducting one DFT simulation for each possible polymorph is impossible.

SAMPLE is a machine-learning-based approach to solve this problem for commensurate phases.
By combining physically motivated coarse graining of the search space with Bayesian linear
regression we can predict the Gibbs free energy of an exhaustive set of polymorphs at reasonable
computational cost while preserving the level of accuracy of dispersion-corrected DFT.

In this work, the SAMPLE approach is applied to close-packed polymorphs of increasing cov-
erage in order to study potential structural transitions. Above the full monolayer coverage of
flat-lying (face-on oriented) molecules, the question arises whether adsorbate molecules either
switch to an upright-standing orientation (edge-on) or if they start to form a second layer.

To resolve this question, we first implement and benchmark multiple design of experiment
schemes in order to optimize the training set selection such that the desired level of accuracy
can be achieved with as few DFT calculations as possible. We then employ SAMPLE to find all
polymorphs of the first adsorbate layer up to high packing density and arrange them in a surface
phase diagram. Based on this information, selected bilayer polymorphs are built. We find that
densely-packed monolayers of upright-standing molecules have a lower Gibbs free energy than
bilayers with the same total coverage. Therefore, we predict a coverage-driven phase transition
from flat-lying to upright-standing adsorbate molecules in the first monolayer.

Finally, we calculate the vibrational spectrum and molecular orbital density of states (MODOS)
of predicted polymorphs. We find that – in contrast to current knowledge – no charge transfer
to the second adsorbate layer occurs. Consequently, the experimentally-observed singly-charged
species does not correspond to TCNE molecules in the second adsorbate layer but instead to
upright-standing TCNE molecules in the first monolayer.



Kurzfassung

Struktursuche auf Oberflächen mit Bayes’schem Lernen

Alexander Egger
Institut für Festkörperphysik, Technische Universität Graz

Die Herstellung maßgeschneiderter Materialien ist eines der großen Ziele der Materialwis-
senschaft. Ein besonders interessantes Fachgebiet sind hierbei Oberflächen und Grenzschichten:
In deren Nähe ist es möglich, dass Materialien vollkommen andere Polymorphe bilden als in
einem ausgedehnten Festkörper. Diese Oberflächenpolymorphe können wiederum außergewöhn-
liche Materialeigenschaften mit sich bringen. Um vorherzusagen, welche Polymorphe sich
bilden, muss die Gibbs-Energie jedes möglichen Polymorphs mit hoher Genauigkeit bestimmt
werden. Allerdings erfordert diese Genauigkeit die Nutzung ressourcenintensive Rechenmeth-
oden und gleichzeitig ist die Anzahl der möglichen Polymorphe im Grunde unendlich weshalb
eine direkte Simulation aller möglichen Polymorphe unmöglich ist.

SAMPLE ist ein Ansatz, um dieses Problem für kommensurable Phasen mittels maschinellen
Lernens zu lösen. Die Kombination von physikalisch motivierter Diskretisierung des Suchraums
mit Bayes’scher Linearer Regression ermöglicht uns die Gibbs-Energie eines umfassenden Sets
von Polymorphen mit vertretbaren Berechnungskosten und unter Erhaltung der Genauigkeit
von dispersionkorrigierter Dichtefunktionaltheorie (DFT) zu bestimmen.

In dieser Arbeit wird SAMPLE auf dicht gepackte Polymorphe mit ansteigendem Bedeckungs-
grad angewandt, um mögliche strukturelle Phasenübergänge zu untersuchen. Sobald Bedeck-
ungsgrade über dem einer vollen Monolage liegender Molekülen erreicht werden, stellt sich die
Frage, ob Adsorbatmoleküle entweder zu einer stehenden Orientierung wechseln oder, ob sie
beginnen eine zweite Lage zu bilden.

Um diese Frage zu beantworten, implementieren und vergleichen wir zuerst mehrere Strate-
gien aus dem Bereich der statistischen Versuchsplanung. Dies ermöglicht uns die notwendige
Genauigkeit mit einer möglichst geringen Anzahl an Trainingsdaten – und damit möglichst
geringen Berechnungskosten – zu erreichen. Anschließend bestimmen wir mit SAMPLE alle
Polymorphe der ersten Adsorbatlage bis zu hohen Packungsdichten und visualisieren diese Poly-
morphe in einem Phasendiagramm. Basierend darauf, werden ausgewählte Doppelschichten
erstellt und anhand der Gibbs-Energie mit dicht gepackten Monolagen verglichen. Dieser Ver-
gleich zeigt, dass dicht gepackte Monolagen bestehend aus aufrecht stehenden TCNE-Molekülen
energetisch günstiger sind als Doppelschichten des selben Bedeckungsgrades. Dementsprechend
ist bei steigender Bedeckungsdichte ein Phasenübergang von liegenden zu stehenden TCNE-
Molekülen in der ersten Adsorbatlage zu erwarten.

Abschließend simulieren wir die Schwingungsspektren und die Zustandsdichte der Molekül-
orbitale (MODOS) der vorhergesagten Phasen. Wir stellen fest, dass – im Widerspruch zum
bisherigen Wissensstand – kein Ladungstransfer in die zweite Adsorbatlage stattfindet. Dem-
entsprechend können auch die experimentell beobachteten Vibrationsfrequenzen einfach geladener
TCNE-Moleküle nicht mit Molekülen in der zweiten Adsorbatlage erklärt werden. Vielmehr
sind diese Vibrationsfrequenzen auf tatsächlich einfach geladene, stehende TCNE-Moleküle in
der ersten Adsorbatlage zurückzuführen.



Preamble

As often in science, every single contribution is built upon the fundament of prior work. There-
fore, I would like to clarify which parts of this study present techniques that were invented by
my colleagues and other scientists and which parts present my own work.

Chapter 1: Introduction
This chapter mainly summarizes general scientific knowledge. Used resources are noted
in the text. An exception to that is chapter 1.2.1 Calculating Gibb’s Free Energy for an
Adsorbate Layer. The model that is presented in this chapter is based on Ref. [6] as well
as Ref. [7] but it is specifically tailored to the studied system by Lukas Hörmann and me.

Chapter 2: SAMPLE – Surface Adsorbate Prediction With Little Effort
While I contribute to the current implementation of SAMPLE – which consists of several
modules of python code – the foundations of this tool were laid by my colleagues before
I started this thesis. Consequently, the first publications [8, 9] concerning this approach
were done without contributions from my side, while the latest one already contains con-
tributions done by me [10]. The studied system of TCNE on Cu(111) was previously
described by Veronika Obersteiner [11] and in a proof-of-concept of the SAMPLE ap-
proach by Michael Scherbela [12]. Therefore, I start from his local adsorption geometries.
However, I additionally optimized these geometries, as different DFT settings are used in
this study to ensure fully converged calculations.

Chapter 3: Increasing the Packing Density
This is the point where the core of my contribution starts. The test system, as well as
all evaluations for the benchmarks, were created by me. The training set selections based
on the A-, E-, G-, and V-optimality criteria are implemented solely by me, while the
D-optimality criterion was already previously implemented by Michael Scherbela [12] but
has been improved by me.

Chapter 4: Results: Predicted Polymorphs
Work and results presented in this chapter are done entirely by me.

Chapter 5: Comparison to Experiment
Apart from the presented experiment [13] itself, this chapter is based solely on my work.



Bring’ vor, was wahr ist;
Schreib’ so, dass es klar ist
Und verficht’s, bis es mit dir gar ist!

LUDWIG BOLTZMANN
Vorlesungen über die Principe der Mechanik
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1

1. Introduction

To obtain physical properties of a material it often is not sufficient to know its chemical com-
position, but also its exact structure is significant. As a simple example, diamond and graphite
have the same chemical composition – they both consist solely of carbon – but they have vastly
different properties. Such different forms of one material having different crystal structures are
called polymorphs.

In a bulk crystal – like diamond and graphite – the basis of the crystal is infinitely repeated in
all three dimensions. In adsorbate layers, however, that periodicity is broken in the direction
perpendicular to the surface. While polymorph formation in the second- and higher adsorbate
layers is mostly governed by intermolecular interactions, the adsorbates in the first layer are
strongly influenced by the molecule-substrate interactions. Consequently, each adsorbate layer
can form a specific crystal lattice and hence show distinct physical properties. An example
of such behavior is given by pentacene adsorbate layers on boron nitride (see Figure 1.1).
Right at the substrate surface pentacene adsorbs as a non-conducting wetting layer of flat-lying
molecules. Additional deposition then leads to the formation of a layer of upright-standing,
tilted molecules on top of the wetting layer. This first layer (1L) displays features of hopping
transport and a mobility of µ = 1.6 cm2/V s. On top of that forms a second layer (2L) consisting
of molecules which are less tilted then the ones in the first layer. This low tilting allows for a
consecutive overlap of π-orbital leading to a high charge carrier mobility (µ ≈ 3 cm2/V s) and
a bandlike transport mechanism [15].

Figure 1.1.: Adsorbate layers of pentacene on boron nitride. Image taken from Ref. [15].

Predicting such complicated adsorbate layers directly from first principles would be a great step
in the search for optimized materials. For now, however, making predictions for the system
presented above is out of reach as the computational cost of the necessary simulations increases
rapidly with the size of the studied system. Consequently, we choose a slightly smaller system:
TCNE (tetracyanoethylene) on Cu(111). On Cu(111) a single, isolated TCNE molecule adsorbs
in a flat-lying geometry with the four cyano groups slightly bend towards the surface. With fur-
ther deposition the interaction between the adsorbed molecules becomes more important and at
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some point, Pauli repulsion will inhibit any closer packing of flat-lying TCNE molecules on the
surface. At this point two fundamentally different scenarios are possible: A second adsorption
layer could form on top of the first layer with no major reconstruction of the first layer. In
an alternative scenario, the molecules of the first layer flip up and assume an upright-standing
orientation (see Figure 1.2). The upright-standing TCNE molecules display a much weaker ad-
sorption energy than the flat-lying ones. However, as their footprint is only approximately half
as big, the packing density can be doubled without reducing the intermolecular distances.

Increasing coverage

Figure 1.2.: Illustration of two possible scenarios upon deposition beyond the full monolayer
coverage of flat-lying molecules.

To answer that question, we first have to find all polymorphs that the first layer can assume
for a wide range of coverages. In the thermodynamic equilibrium, the polymorph that forms at
a specific coverage is that one with the lowest Gibbs free energy (see chapter 1.2.1). The main
contribution to the Gibbs free energy lies in the adsorption energy of each possible polymorph.
As the energetic differences of competing polymorphs can be in the range of a fewmeV , we need
sufficiently accurate methods like dispersion-corrected density functional theory (DFT) (see
chapter 1.3.1). Unfortunately, such simulations are computationally far too costly to simulate
every possible polymorph – even more so as there is in principle an infinite number of possible
polymorphs. Therefore, we make use of sophisticated structure search algorithms. A short
overview of structure search algorithms is given in chapter 1.1 and a more detailed look into
the chosen method (SAMPLE) is then presented in chapter 2. The SAMPLE approach allows
us to create an exhaustive set of possible polymorphs and predict their adsorption energies with
an accuracy level comparable to DFT calculations, but with far less computational costs.

With these basics, we approach the core of this study: predicting the structure of an adsorbate
layer of TCNE on Cu(111). We start from low adsorbate coverage, go via adsorbate layers of full
monolayer coverage, and then apply the SAMPLE approach on upright-standing molecules.

It turns out that especially for those densely-packed systems the choice of the training data,
which is used for the SAMPLE approach, has a major influence on the prediction accuracy.
Selecting these training points randomly is not a sufficient strategy to achieve the necessary
prediction quality at reasonably training set sizes. To tackle this problem, we implement
different training set selections strategies. These strategies are then benchmark on a simplified
version of the studied system in order to determine which one performs best (see chapter 3).

Having that, we switch back to the full surface system and fit SAMPLE’s energy model using a
D-optimally selected training set. Using this energy model, we then predict the adsorption en-
ergies of all discretized monolayer polymorphs (chapter 4.2). Based on energetically favorable
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monolayers we build bilayer polymorphs as described in chapter 4.3. In the following chap-
ter 4.4 we combine all obtained polymorphs to create a surface phase diagram which allows
us to determine how the surface structure changes with temperature and partial pressure of
TCNE in the gas phase. With that knowledge, a comparison of the Gibbs free energy of a
bilayer phase with that of a monolayer phase of equivalent coverage is conducted (chapter 4.4).
This comparison is used to determine at which external conditions (pressure, temperature) the
transition from a monolayer phase to a bilayer takes place.

To obtain additional information and enable a comparison to experimental data [13] we calculate
the vibrational modes and frequencies of selected polymorphs. (see chapter 5) We find that
the experimentally observed vibrational frequencies match those which are expected from our
predictions. However, we also find that the formerly postulated existence of charge transfer
to the second adsorbate layer conflicts with the vibrational frequencies that we calculated for
adsorbates in the second layer. To confirm this finding, we additionally calculate the molecular
orbital density of states (MODOS) for representative adsorption geometries. Again, we see that
the experimentally observed singly charged adsorbate species cannot correspond to molecules
in the second layer, but to upright-standing TCNE molecules in the first adsorbate layer.

1.1. Structure Search

As we want to find the polymorph that forms on a surface under specific conditions, we are
in the field of (computational) structure search. As the term ’structure search’ is used for two
different problems, let us clarify the differences of those:

Local Structure Search
The mathematical problem of finding a local extremum of a function is denoted as local
optimization. A local extremum is defined as a point in parameter space where all partial
derivatives are zero. Local structure search (also known as local geometry optimization)
is a special case of that problem. In this case the parameter space is spanned by the
coordinates of all atoms whose position shall be optimized and the target function is
replaced by the potential energy surface (PES). A local minimum then equates to a
geometry where each infinitely small deviation of one atom leads to an increase in energy.

Two characteristics of local optimization are important:
Firstly, potential energy surfaces usually have several local minima. Finding one of those
does not give any information about the ’quality’ of that local minimum – i.e. the energy
in that local minimum might be far from the global minimum. Secondly, the stability
and efficiency of local optimization algorithms typically depend strongly on the starting
point. Consequently, it is essential to start from a geometry that is already as close to
the minimum as possible.

The most straightforward approach for local optimization is the gradient descent al-
gorithm where the direction of each optimization step is given by the gradient of the
potential energy surface. Even this simple algorithm is guaranteed to find the minimum,
but there is no upper limit to the number of necessary steps. An improved method is
the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) [16] belonging to the class of
quasi-Newton methods. The basic idea is to locally approximate the potential energy
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surface with an harmonic function. This harmonic function is defined by a Hessian ma-
trix that is estimated at the first step and then continuously improved using the local
gradient. Within that approximation a one-dimensional line search is performed to find
the next optimization point.

Global Structure Search
When we want to find the energetically most favorable polymorph a local structure search
would only lead us to the next locally optimal polymorph. – i.e. a polymorph geometry
that cannot be improved by infinitesimally small deviations. In the general case, however,
the search space corresponds to a non-convex potential energy surface – i.e. there are
multiple local minima which are separated by energy barriers. Finding the lowest local
minimum – the global minimum – is known as global structure search. This task is
fundamentally more challenging and less straight-forward than local structure search. For
instance, there is in general no way to verify that a found minimum is indeed represents
the global minimum of the search space.

Commonly used methods like Genetic Algorithms [17] or Neuronal Networks [18] which
typically perform best with large training sets. Obtaining such large training sets of DFT
calculations for surface systems is however hindered by the high computational costs.
Therefore, we will use a more efficient method based on coarse-graining and Bayesian
linear regression which will be explained more in detail later.

In this study both types of structure search are used. The main task of finding the polymorph
that forms in thermodynamic equilibrium is a global structure search problem. In order to
find this minimum efficiently we build up the guess polymorphs out of adsorbate molecules
which are locally optimized. For that step the BFGS-algorithm is used as implemented in
FHI-aims [19]. Furthermore, local structure search is used to find optimized geometries for the
bilayer polymorphs constructed in chapter 4.3.

1.2. Physics of Surface Systems

When we want to find the best polymorph what we need first is a good definition for what is
meant by ’best’ polymorph. In the previous chapter we defined that rather mathematically as
the global minimum of some non-convex function. It might seem apparent to use the adsorption
energy of each polymorph for this no-convex function and, therefore, define the ’best’ polymorph
as that one which has the lowest adsorption energy. However, as the adsorbate layer is in
contact with the surrounding gas, the situation becomes slightly more complex. In this case,
TCNE molecules can adsorb to the surface or desorb to the gas phase. As the surrounding
gas phase is several magnitudes larger than the studied surface, we can treat it as a reservoir
of potential adsorbate molecules. Furthermore, in most experiments pressure and temperature
are approximately constant (but different from zero!). Under these conditions the relevant
thermodynamic potential is Gibbs free energy G. The polymorph that corresponds to the
global minimum of Gibbs free energy constitutes the ground state of the studied system. In this
study, we assume thermodynamic equilibrium, meaning that the adsorbate layer will always
assume its ground state – even if the corresponding global minimum is surrounded by high
energy barriers. In experiments this condition is challenging to achieve, but it can be aspired
using e.g. hot-wall epitaxy. Now that we know we are searching for the polymorph of lowest
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Gibbs free energy, we just need to know how to calculate the Gibbs free energy for the studied
surface system.

1.2.1. Calculating Gibb’s Free Energy for an Adsorbate Layer

The physics in the following section is mainly based on Rogal/Reuter [6] as well as Beret/Ghir-
inghelli [7].

To calculate the Gibbs free energy of each possible polymorph, we model the initial state before
deposition and the final state when the adsorbate layer has formed as illustrated in Figure 1.3.
The initial state is the ’clean’ system that consists of the gas phase and the substrate without
any adsorbed molecules as sketched on the left side of Figure 1.3. This initial state is identical
for all possible polymorphs. On the contrary, each possible polymorph corresponds to a different
final state. These final states are modeled as illustrated on the right side of the aforementioned
figure. The ’best’ polymorph is then the one where the Gibbs free energy decreases the most
from the initial ’clean’ state to the final state that includes the adsorbate layer. To calculate
this difference, we split up both the initial as well as the final state into three parts:

1. The gas phase above a certain height – i.e. that part of the gas phase, which is unaffected
by the adsorbate layer.

2. The lower layers of the substrate. This part is not influenced by the interface, too, and
can, therefore, be described in both states by the same Gibbs free energy Gsubst.

3. Finally, we have the vicinity of the interface. This is the only part that is changed during
the deposition (in the approximation of this model).
This part consists of Nads molecules which represent the adsorbate layer of the final state
and are part of the gas phase in the initial state. Furthermore, it holds Nsubst atoms of
the uppermost layers of the substrate. In the initial state, we can describe the chemical
potential of each of those molecules/atoms with µgas and µsubst, respectively. In the final
state, however, we cannot split the contribution of single particles that easily, but we have
to describe the Gibbs free energy of this part of the unit cell at once (Gf (Nads,Nsubst)).
With that, the difference in Gibbs free energy is given by:

∆G = Gf (Nads,Nsubst)−Nsubst µsubst −Nads µgas (1.1)

In this study, we conduct a geometry optimization for each polymorph that is plotted in the
phase diagram. In this optimization, we include the uppermost substrate layers while the lower
layers are assumed to stay constant. Consequently, the change of Gibbs free energy of the
substrate, Gf (0,Nsubst), is included in the adsorption energy of the adsorbates and, hence, we
can substitute as following:

Gf (Nads) = Gf (Nsubst,Nads)−Nsubst µsubst (1.2)

With that, we can simplify equation 1.1

∆G = Gf (Nads)−Nads µgas (1.3)
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gas phase
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Figure 1.3.: Schematic view of the studied interface system

Furthermore, for a homogeneous surface, ∆G scales linearly with the lateral system size and
so we are allowed to define the change in the free energy per area: ∆γ.

∆γ = ∆G/A (1.4)

∆γads = 1
A

(
Gf (Nads)−Nads µgas

)
(1.5)

∆γads consists two contributions: First, Gf (Nads), the Gibbs free energy of Nads adsorbed
molecules: This term depends on properties like the adsorption energy of the adsorbates,
therefore it has a different value for each possible polymorph. The other term, Nads µgas,
only depends on the external conditions pressure and temperature, but not on the specific
polymorph that forms on the surface.

Let us first have a look at Gf (Nads).
In general, Gibbs free energy G is given by:

G =
∑
i

µi ·Ni = F + p · V = U − T · S + p · V (1.6)

When we split off the configurational part F conf and the vibrational part F vib from the total
Helmholtz free energy F we are left with EDFT which denotes the ground state energy of Nads

TCNE molecules in the adsorbate layer. We will come back to that term later.

Gf (Nads) = EDFT
f (Nads) + F conf

f (Nads) + F vib
f (Nads) + p · Vf (Nads) (1.7)

Now we use equation 1.6 to split F conf and F vib further up into the inner energy (U) and the
entropic contribution (TS). For F conf the inner energy vanishes, and it therefore consists only
of the entropic part TSconf . The vibrational part F vib consists of the zero-point energy EZPE

(which is not covered in EDFT ) and the vibrational entropy TSvib [20].
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F conf = − TSconf (1.8)
F vib = EZPE − TSvib (1.9)

With that we update equation 1.5:

∆γads = 1
A

(
EDFT
f (Nads)−TSconff (Nads)+EZPE

f (Nads)−TSvibf (Nads)+p ·Vf (Nads)−Nads µgas

)
(1.10)

Now let us turn to the chemical potential µ of the molecules in gas phase. Under the assumption
of an ideal gas, the chemical potential µ at a given temperature T and pressure p is given by:

µgas(T , p) = − 1
N

(
kBT ln

(
Qtot
gas

)
+ pV

)
(1.11)

Qtot
gas = 1

N !
(
qtransqrotqvibqelectrqnucl

)N
(1.12)

Qtot
gas denotes the partition function of N indistinguishable particles. Inserting Qtot

gas into equa-
tion 1.11 and evaluating the logarithm yields the separated contributions to µgas(T , p) where
the factor 1

N ! accounting for the indistinguishable states has been moved into µtrans.

µgas(T , p) = µtrans + µrot + µvib + µelectr + µnucl − pV

N
(1.13)

qelectr leads to µelectrgas , the electronic contribution of the chemical potential, which is described
by EDFT

gas , the ground state energy of one molecule in gas phase obtained via density functional
theory. qnucl can be neglected since the nuclear states will hardly change in the studied pro-
cesses. The vibrational contribution qvib results in µvibgas and will be dealt with later.
The remaining translational and rotational contributions (µtrans and µrot) can be calculated
analytically under the assumption of an ideal gas. In the following text these two contribu-
tions will be denoted as ∆µgas(T , p) to shorten the equations. Note that the formula for Srot
(equation 1.18) is only valid for non-linear molecules like TCNE.a

µgas(T , p) = EDFT
gas + µvibgas + ∆µgas(T , p) (1.14)

∆µgas(T , p) = Etrans + Erot − T (Strans + Srot) (1.15)

Etrans + Erot = cv,trans + cv,rot + (cv − cp) = 3
2kBT + 3

2kBT + kBT (1.16)

Strans = kB ln

((2πm
h2

)3/2 (kBT )5/2

p

)
+ 5

2kB (1.17)

Srot = kB ln


√√√√ 3∏
i=1

π

σ
Ii

(
8π2kBT

h2

)3/2
+ 3

2kB (1.18)

Ii ... moments of inertia of the molecule in the gas phase
σ ... number of rotational symmetry equivalents of the molecule in the gas phase;

TCNE: point group = D2h; σTCNE = 4 (Ref. [22, table 10.1])

aA more detailed derivation of these terms can be found in Ref. [21, 22]. For the actual calculations the
implementation of the python package ASE [23] has been used.
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Inserting µgas(T , p) from equation 1.14 into Gibbs free energy per area ∆γads (equation 1.5)
leads to:

∆γads = 1
A

[
EDFT
f (Nads)− TSconff (Nads) + EZPE

f (Nads)− TSvibf (Nads) + p · Vf (Nads)

−Nads

(
EDFT
gas + µvibgas + ∆µgas(T , p)

) ]
(1.19)

In analogy to ∆G (see equation 1.1) we define the adsorption energy EDFT
ads (Nads) as the change

in the inner energy of Nads molecules upon adsorption from the gas phase.

EDFT
ads (Nads) = EDFT

f (Nads)−NadsE
DFT
gas (1.20)

∆γads = EDFT
ads (Nads)

A
+ 1
A

[
− TSconff (Nads) + EZPE

f (Nads)− TSvibf (Nads) + p · Vf (Nads)

−Nads

(
µvibgas + ∆µgas(T , p)

) ]
(1.21)

To estimate the maximal size of the work term 1/A · p ·Vf (Nads) we assume a maximal pressure
of 105 Pa and a height of the adsorbate layer of at most 1 nm. Even in this upper limit the
contribution of the work term is three orders of magnitude smaller than the typical adsorption
energies which are in the range of 1 to 10 eV/nm2. Consequently, we can safely neglect this
term.

1
A
p · Vf (Nads) ≤ 105 Pa · 1 nm = 105 · 10−9 J/m2

≤ 10−4 · 6 · 1018eV

1018 nm2

≤ 1 meV/nm2 (1.22)

Next we search for an upper limit for the configurational entropy contribution 1
A
TSconff (Nads).

To that end we model Sconff (Nads) as an arrangement of k defect sites in Nads total adsorption
sites for each unit cell. Furthermore, we make use of the Stirling formula in equation 1.23. To
find an upper limit we assume a rather high defect density of k/Nads = 0.1 (equation 1.24).

1
A
F conf
f (Nads) ≈ −

1
A
T · Sconff

≈ − 1
A
kBT · ln

(
Nads!

k! (Nads − k)!

)

≈ − 1
A
kBT ·Nads

[
k

Nads

· ln
(
Nads

k
− 1

)
− ln

(
1− k

Nads

)]
(1.23)

≈ −Nads

A
0.3 kBT (1.24)

At a room temperature this approximation results in a configurational entropy in the order of
10 meV per adsorption siteb or equivalently 10 to 40 meV/nm2. This upper limit is still a good

bAssuming a coverage in the range of 1 to 5 adsorbate molecules per nm2
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deal smaller than the adsorption energies but already in the same order of magnitude as the
numerical accuracy of DFT calculationsc – which is a level of accuracy that we do not want to
sacrifice.
However, as we are interested in differences between polymorphs, most of this contribution
cancels out. For two phases with identical defect density and identical coverage Θ = Nads/A
there is no difference in configurational entropy at all. For different coverages Θ1, Θ2 the
difference in configurational entropy can be approximated as 0.3 kBT · (Θ1 − Θ2). Hence, we
are allowed to neglect this contribution as long as we do comparisons between polymorphs of
identical or similar coverage.

Finally let us have a look at the vibrational contributions F vib
f (Nads) and µvibgas which are split

up into a zero point energy and an entropic contribution.

F vib
f (Nads)−Nads µ

vib
gas = EZPE

f (Nads)− T · Svibf (Nads)−Nads E
ZPE
gas +Nads T · Svibgas

= ∆EZPE(Nads)− T ·∆Svib(Nads) (1.25)

Calculating vibrational properties is far costlier than calculating properties like the adsorption
energy (see chapter 5.2). For the gas phase terms EZPE

gas and Svibgas this would still be possible
as we assume all TCNE molecules in the gas phase to be identical. For the adsorbate terms
EZPE
f (Nads) and Svibf (Nads), however, not only the calculations are far more costly due to the

additional substrate atoms, but most importantly these terms have different values for each
possible polymorph!

From equation 1.25 we see that only the change of the vibrational modes is relevant – therefore
it might be possible to concentrate on a few most relevant modes. Additionally, for comparisons
between polymorphs only the differences in their vibrational modes contribute and all changes
that are equal for different configurations cancel out. At the same time this means that including
only the vibrational terms of the gas phase molecules would worsen the results. All in all we
are currently forced to neglect the vibrational terms.

Applying all those considerations to equation 1.21 gives us a final approximation for the Gibb’s
free energy of adsorption ∆γads. Furthermore, we plug equations 1.16, 1.18, and 1.17 into
equation 1.15 to obtain an approximation for ∆µgas(T , p).

∆γads = EDFT
ads (Nads)

A
− Θ ·∆µgas(T , p) (1.26)

∆µgas(T , p) = −kBT ln

(2πm
h2

)3/2 (kBT )5/2

p
+
√
π

σ

√√√√ 3∏
i=1

Ii

(
8π2kBT

h2

)3/2
 (1.27)

1.2.2. Calculating the Adsorption Energy

An important aspect of equation 1.26 is that when we rank polymorphs of identical coverage
Θ by their Gibbs free energy only the adsorption energy Eads is relevant, as the contribution
of the chemical potential is identical.

In equation 1.20 EDFT
asd is defined as the difference in the inner energy of Nads molecules upon

adsorption from the gas phase. For the practical use, however, we cannot calculate the energy

cDFT settings are converged to the order of 10 meV per unit cell.
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of the adsorbed molecules directly. What we can calculate is the energy of a substrate covered
by the adsorbate layer and the same substrate without the adsorbate layer. The difference
yields the total energy of the adsorbed molecules in that unit celld.

EDFT
f (Nads) = Efull geometry − Esubstrate (1.28)

Inserting this definition in equation 1.20 gives:

EDFT
ads (Nads) = Efull geometry − Esubstrate −NadsE

DFT
gas (1.29)

Furthermore, we define the mean adsorption energy per adsorbate molecule and the mean
adsorption energy per surface area.

Eads, per molecule = EDFT
ads (Nads)
Nads

(1.30)

Eads, per area = EDFT
ads (Nads)

A
= Eads, per molecule ·Θ (1.31)

1.3. Electronic Structure Theory

The following chapter is based on Introduction to computational chemistry by Frank Jensen [24]

All good things start with the Schrödinger equation [25], more precisely the time-independent
Schrödinger equation:

ĤΨ = EΨ (1.32)

For a system of atom, nuclei, and electrons the Hamiltonian Ĥ is given by:

Ĥ = T̂n + V̂n-n + T̂e + V̂n-e + V̂e-e (1.33)

T̂n =
∑
A

−~
2mA

∇2
A (1.34)

V̂n-n = 1
4πε0

∑
A,B>A

ZAZBe
2

| ~RB − ~RA|
(1.35)

T̂e =
∑
i

−~
2mi

∇2
i (1.36)

V̂n-e = 1
4πε0

∑
i,A

−ZAe2

|~ri − ~RA|
(1.37)

V̂e-e = 1
4πε0

∑
i,j>i

e2

|~rj − ~ri|
(1.38)

As the nuclei are far heavier than the electrons we assume that the electronic problem can be
separated from that of the nuclei. I.e. we find a solution for the positions of the electrons
assuming constant positions of the nuclei. This commonly used assumption is known as Born-
Oppenheimer approximation [26]. Within that approximation the purely nuclear terms T̂n and

dWith a coverage of Nads adsorbate molecules per unit cell.
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V̂n-n can be removed from the Hamiltonian of the electronic problem as they only add a constant
contribution to the eigenvalues.

ĤBO = T̂e + V̂n-e + V̂e-e (1.39)

But still, in this many-body problem each electron adds three spatial dimensions and one
spin dimension to the problem. Therefore, for a system of N electrons we have to find a
4N -dimensional wave function.

1.3.1. Density Functional Theory

Hohenberg and Kohn [27] showed that there exists a functional EDFT [ρ] that establishes a one-
to-one correspondence between the electron density ρ(r,σ) of the many-body wave function and
its ground state properties. Hence, instead of searching for the high-dimensional ground state
wave function, one directly calculates the electron density and from there on properties like the
ground state energy EDFT . The electron density is given by the square of the wave function
summed over all electrons. Therefore, switching from the wave function to the electron density
reduces the dimensionality of the problem from 4N to 4, where N is the number of electrons.
This implies that the dimensionality does not grow with the number of electrons anymore.
This proof provides the basic principle for density functional theory (DFT). Unfortunately,
Hohenberg and Kohn only showed that there exists such a functional, but they provided no
analytical form of that functional.

In analogy to equation 1.39 the (unknown) functional EDFT [ρ] is split up into the kinetic
functional Te[ρ], the functional En-e[ρ] describing the interaction between nuclei and electrons
and the functional Ee-e[ρ] for the interaction between electrons and electrons. Ee-e[ρ] is then
further split up into a Coulombic part J [ρ] and the exchange functional K[ρ].

EDFT [ρ] = Te[ρ] + En-e[ρ] + Ee-e[ρ] (1.40)
= Te[ρ] + En-e[ρ] + J [ρ] +K[ρ]

(1.41)

En-e and J [ρ] can be described classically:

En-e[ρ] = −
∑
A

∫ ZA(~RA)ρ(~r)
|~RA − ~r|

J [ρ] = 1
2

∫ ∫ ρ(~r)ρ(~r′)
|~r − ~r′|

d~rd~r′ (1.42)

For the general case Te[ρ] and K[ρ] are still unknown. For the special case of a uniform
electron gas Thomas, Fermi and Dirac found functionals for Te[ρ] and K[ρ] (Thomas-Fermi-
Dirac model). This model works reasonably well for metallic systems but is a very poor model
for every system with abrupt changes in the electron density – like atoms and molecules.

A major step towards actual application of the DFT approach was done by Walter Kohn and
Lu Jeu Sham [28]. Their fundamental improvement was to split the kinetic functional Te[ρ] into
two parts: A major part of Te[ρ] is already covered by the kinetic energy T̂S of a auxiliary, non-
interacting electron gas which can be solved exactly. We are then left with a comparably small
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correction Exc. The price that comes with this Kohn-Sham approach is that auxiliary orbitals
φ have to be re-introduced to describe the auxiliary electrons and hence the dimensionality is
increased again.

It might seem as if this approach only shifted the problem to the new exchange-correlation
functional Exc. However, since Exc makes up only a small part of the total energy, a bad
approximation for Exc has far less influence on the result than a bad approximation for the full
kinetic functional Te[ρ].

To obtain the major contribution T̂S a special Hamiltonian operator Ĥλ is introduced that
allows to adjust the interaction strength of the electrons:

Ĥλ = T̂e + V̂ext(λ) + λV̂e−e (1.43)

λ = 1 reproduces the real system: V̂ext(λ=1) = V̂n−e whereas the other extremum λ = 0
represents a purely hypothetical system of non-interacting electrons where V̂ext(λ) is adjusted
such that the electron density stays constant. For this system of non-interacting electrons
the exact kinetic energy functional can be written using an anti-symmetrized wave function
composed of molecular orbitals (the Slater determinant):

T̂S =
∑
i=1
〈ψi| −

~
2mi

∇2 |φi〉 (1.44)

The full DFT functional can now be written as:

EDFT [ρ] = TS[ρ] + En-e[ρ] + J [ρ] + Exc[ρ] (1.45)

This expression for EDFT must be equivalent to the expression in equation 1.40 and hence we
can explicitly express the remaining exchange-correlation functional Exc[ρ].

Exc[ρ] = (Te[ρ]− TS[ρ]) + (Ee-e[ρ]− J [ρ]) (1.46)

The term in the first parenthesis of equation 1.46 corresponds to that share of the kinetic
functional Te[ρ] which is not covered by TS[ρ]. This missing kinetic correlation energy must,
therefore, be included in this exchange-correlation functional. The term in the second paren-
thesis stands for the potential correlation and the exchange energy.

To sort different models for the exchange-correlation functionals, Perdew’s ladder [29] was
introduced. This hypothetical ladder starts from the crude approximation of missing the non-
interaction electron gas to the heavenly realms of chemical accuracy. Each rung of this ladder
corresponds to one class of functionals with (typically) increasing accuracy at the cost of in-
creasing model complexity and, therefore, increasing computational cost.

Local Density Approximation (LDA)
The first rung, the Local Density Approximation, is the most basic approximation for the
exchange-correlation functional Exc[ρ]. It is based on the assumption that the electron
density varies only slowly and thus ρ(~r) can be at least locally approximated by a uniform
electron gas for which the exchange energy is given analytically (Thomas-Fermi-Dirac
model). Consequently, this approximation works well for metals but not so well for atoms
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and molecules. For the case of different electronic densities of the two spin channels, this
approach is generalized to the Local Spin Density Approximation (LSDA).

Generalized Gradient Approximation (GGA)
To model systems with non-vanishing electronic density gradients, gradient-corrected
methods were introduced. Unfortunately, simply including the gradient ∆ρ actually leads
to worse results than the Local Density Approximation. To overcome this problem func-
tionals with several parameters were introduced. These parameters are either fitted using
empirical data or such that they fulfill certain theoretical conditions.

Common examples of empirically fitted GGA functionals are the B88 exchange functional
proposed by A. D. Becke [30] and the LYP correlation functional introduced by Lee, Yang,
and Parr [31]. Often those two functionals are used in combination, which is consequently
denoted as BLYP.

Another common functional, that in contrast to B88 and LYP is not based on empiric
data but on theoretical conditions, is the PBE-functional introduced by Perdew, Burke
and Ernzerhof [32].

Meta-GGA or higher order gradient methods
The next rung corresponds to the next higher is to add higher derivatives of the electronic
density, namely, the second-order term (Laplacian, ∇2ρ) or, equivalently, the orbital
kinetic energy density τ .

Examples of meta-GGA methods are the correlation functionals B95 by Becke [33], the
SCAN functional [34], and the TPSS functional [35].

Hyper-GGA or hybrid methods
One approach to improve the approximation is to mix the exchange-correlation functional
with Hartree-Fock exact exchange. One of the simplest hybrid methods mixes one half
of the LDA functional with one half of exact exchange. Consequently, this approach it
known as Half-and-Half (H+H ) method.

The next logical step is to replace the LDA-contribution by a GGA-functional. This is
done, for instance, in the Becke three parameter functional(B3 ) which – as the name
suggests – uses three mixing parameters. One often used version of this approach is
the B3LYP approach which uses the B88 exchange and the LYP correlation functional
(equation 1.47, Ref. [24]. These functionals are then combined with exact exchange by
the three parameters a, b, and c which are empirically fitted to experiments.

EB3LY P
xc = (1− a)ELDA

x + aEexact
x + b∆EB88

x + (1− c)ELDA
c + cELY P

c (1.47)

Another commonly used hybrid functional is PBE0 [36] which mixes three parts of PBE
exchange with one part of Hartree-Fock exchange while the correlation is evaluated at
PBE level.

EPBE0
xc = EGGA

xc + 1
4(EHF

x − EGGA
x ) (1.48)

Generalized random phase approximation (RPA)
For the accurate description of several effect – for instance van der Waals interactions —
virtual (unoccupied) orbitals are necessary. Methods that include such virtual orbitals
constitute the highest rung of Jacob’s ladder.
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Another classification that can be made for exchange-correlation functionals is if the used pa-
rameters are either derived from theoretical considerations or if they are fitted to experimental
data. Those functionals that are based on experimental data (e.g. BLYP and B3LYP) typi-
cally yield best results for system which are similar to those on which they were parametrized.
Typically, these parametrization sets include molecular systems and, hence, empirically fitted
functionals are often used for such molecular systems. On the other hand, non-empirical func-
tions (e.g. PW91 and PBE) are more generally applicable and, therefore, more often used for
periodic systems like metals.

1.3.2. Charge Partitioning – Mulliken Population Analysis

For the comparison with the experimental data we need to know how the spatial charge dis-
tribution on the TCNE molecules changes upon adsorption and more specifically how these
charge rearrangements differ for different adsorption geometries.

However, all charge partitioning schemes have one big, common problem: There is no physical
observable and consequently no unique definition of how to assign the charge density of the
molecule to single atoms. Consequently, several different partitioning schemes exist, with each
of them using different definitions and each of them yielding different results. One popular
scheme is the Mulliken population analysis [37]. This scheme is a rather simple one and has
several imperfections, but still it allows at least for a qualitative analysis of charge transfer
processes and is therefore a useful tool for better understanding of the adsorption process.

In a molecule, electronic orbitals are typically not limited to just one atom, but they are spread
out over the whole molecule. Consequently, they are called molecular orbitals (MOs). The
total electron density ρ of a molecule can be split up into contributions ρi corresponding to
each of those molecular orbitals.

ρi(~r) = φ2
i (~r) (1.49)

When we expand those molecular orbitals in a set of non-orthogonal basis functions Xα with
coefficients cα, the square of the MOs is given by:

φ2
i =

Mbasis∑
αβ

cαicβiXαXβ (1.50)

The second index β had to be introduced as the square of the MOs using non-orthogonal basis
functions contains non-vanishing off-diagonal elements.

The total number of electrons Nelec of a molecule is obtained by integrating the charge density of
each MO over d~r and then summing over all MOs with weights ni accounting for the occupation
of each MO.

Nelec =
Norb∑
i

ni

∫
ρ(~r)d~r (1.51)
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Applying equations 1.49 and 1.50 yields:

Nelec =
Norb∑
i

ni

∫ Mbasis∑
αβ

cαicβiXαXβd~r (1.52)

=
Mbasis∑
αβ

Norb∑
i

nicαicβi

∫
XαXβd~r (1.53)

=
Mbasis∑
αβ

Dαβ Sαβ (1.54)

Dαβ =
Norb∑
i

nicαicβi (1.55)

Sαβ =
∫
XαXβd~r (1.56)

Here we introduced the density matrix Dαβ accounting for the occupation of basis functions
Xα and Xβ as well as the overlap matrix Sαβ accounting for the spatial overlap of that pair of
basis functions.

The elementwise(!) product Dαβ Sαβ yields a matrix that is used by the Mulliken Population
Analysis. At this point we face two challenges:
First, we have to assign the elements of that matrix to the basis functions X . The diagonal
elements Dαα Sαα are easy, they solely contribute to the basis function Xα. The off-diagonal
elements, however, indicate electrons that are shared by both basis functions Xα and Xβ. Here,
Mulliken population analysis uses the most straightforward way of assigning one half to each
contributing basis function. This is actually a rather strong simplification as it does not consider
differences in the electronegativity of the involved atoms. Additionally, this scheme does not
guarantee that the matrix elements are bound by 0 and 2 as it would be expected from a
physical standpoint.

The second decision lies in the assignment of basis function to atoms. Gladly, in the case
of atom-centered orbitals (as they are used in FHI-aims) there is a natural correspondence
between basis functions and atoms. But even in this seemingly clear case, problems can occur.
Diffuse basis functions extend by design into regions far from the nucleus they are centered
on. If there is another nucleus in that region the diffuse basis function might describe electron
density that would more reasonably be assigned to the second nucleus and not that nucleus on
which the basis function is centered. Furthermore, when we enlarge the basis set – i.e. we use
more basis functions – this effect does not vanish, but it actually becomes even worse.

With these assumptions we can formulate the Mulliken electron population ρA for an atom A.
As each off-diagonal element occurs twice in the DαβSαβ-matrix, the assignment factor of 1/2
cancels out.

ρA =
Mbasis∑
α∈A

Mbasis∑
β

Dαβ Sαβ (1.57)

The gross charge on that atom is then given by QA = ZA−ρA with ZA being the atomic number.
One final limitation should be noted on Mulliken population analysis: It does not reproduce
multipole moments (dipole, quadrupole, etc.), i.e. calculating the multipole moments of the
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molecule from the Mulliken charges will not lead to the same result as a direct integral over
the electron density ρ(~r).

There are several alternative charge partitioning schemes. A very brief overview shall be given
in the following:

Löwdin analysis
This is merely a variation of Mulliken population analysis which generalizes the multi-
plication DS to SnDSn−1 with n = 1/2. This orthogonalization step leads to a more
reasonable assignment of the electrons to the atoms which, for instance, limits the occu-
pation numbers to the range of 0 to 2. On the other hand, this scheme is not rotational
invariant anymore.

Electrostatic potential (ESP) charges
The idea of this approach is to first calculate the electrostatic potential in a region around
the studied atoms. Subsequently, point charges are placed on the positions of the nuclei
with the amount of charge chosen such that they reproduce the external electrostatic
potential. This leads directly to the strength of this approach: in contrast to other
charge partition schemes, the evaluated charges can correctly reproduce the electrostatic
behavior! A problem of this scheme can be the fitting procedure: For instance, in a close
packing of atoms, there is simply too little space between the atoms to enable a good
fitting accuracy.

Bader charges / Atoms in molecules
This analysis is based on the electron density. The boundary between two atoms is
then defined as that line where the gradient of the electronic density is zero. The electron
density inside this boundary is then integrated and assigned to the corresponding nucleus.
In the general case, this nucleus is not in the exact center of this region of electron density
and, therefore, these Bader charges do not reproduce electrostatics. A benefit of this
approach is that the evaluated saddle point of the electron density between the atoms is
also a measure for the strength of this bond.

Hirshfeld charges
In this partition scheme, electron density ρ(~r) is assigned to neighboring nuclei according
to the electron density that virtual free atoms, placed on these nuclei, would have in ~r.
The difference between this assigned charge and the charge of the free atom is then used
as partial charge of that atom. This scheme is, for instance, used for the Tkatchenko-
Scheffler van der Waals correction [38].
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2. SAMPLE – Surface Adsorbate
Prediction With Little Effort

Surface Adsorbate Polymorph Prediction with Little Effort (SAMPLE) [8, 9, 10] is an ap-
proach for global structure search that is based on Bayesian linear regression. It enables the
prediction of physical properties for an exhaustive set of candidate polymorphs with an accuracy
of the same order of magnitude as the numerical accuracy of DFT calculations.

The following chapter 2.1 collects all fundamental assumptions and limitations of the SAMPLE
approach. Chapter 2.2 then explains how the physical system is modeled, i.e., it will describe
(I) how the search space is discretized into so called configurations and (II) the energy model
that will be used for the predictions. Finally, chapter 2.3 presents how machine learning is
employed to find the best set of fitting parameters for the energy model.

For the further way from the predicted adsorption energies, via ab initio thermodynamics, to
the surface phase diagram please see chapter 1.2 as well as the results in chapter 4.2 ff.

2.1. Assumptions and Limitations

The SAMPLE approach is a powerful tool. However, to enable efficient training and prediction
of immense numbers of candidate polymorphs, it is limited to a specific range of operations.

Commensurable Structures
Adsorbate layers are commensurable on a specific surface if the unit cell of the adsorbate
layer can be defined using only integer multiples of the substrate unit vectors. This im-
plicates that each periodic unit of the adsorbate layer ’sees’ an identical patch of surface
below it. This characteristic is typically fulfilled if the corrugation of the potential energy
surface is high – i.e. when the energy barrier between two local adsorption geometries is
higher than the interaction energy of two molecules sitting in those local minima. Com-
mensurability of the adsorbate layer is a necessary assumption for the SAMPLE approach
as it allows us to describe the surface system with periodic unit cells.

Thermodynamic equilibrium
For evaluations like the surface phase diagram, we assume that the adsorbate layer as-
sumes the global minimum of Gibbs free energy for each combination of pressure and
temperature. However, just like mathematical optimization algorithms do not always
find the global optimum of a function, physical systems do not always assume the global
energetic optimum. Energetic barriers can separate local minima from the global en-
ergetic minimum and hence lead to the formation of kinetically trapped states. In the
SAMPLE approach such metastable states are part of the search space and hence they
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are included in the predictions. As of now, however, the heights and positions of energy
barriers between such states are unknown and therefore we must assume that always that
polymorph which corresponds to the global energetic minimum will form. Furthermore,
we do not model the detailed formation kinetics of the second layer but we assume a
layer-by-layer growth and then compare the final homogeneous bilayer polymorphs with
corresponding monolayer polymorphs.

Geometry relaxation
The candidate polymorphs are built out of building blocks named local adsorption geome-
tries (see chapter 2.2.1). The geometry of these local adsorption geometries are optimized
before they are combined to candidate polymorphs, but not after that step. Especially
when two neighboring molecules get very close (limited by dmin) strong pair interac-
tions and consequently large energy gradients occur. In that case it might be beneficial
for molecules to deviate from their local adsorption geometry to greatly lower the pair-
interaction energy at the cost of only a little increase in potential energy.

On the one hand, preliminary tests showed that this case indeed occurs and that geometry
optimizations of those candidate polymorphs can result in rather strong changes in the
geometry in which adsorbate molecules even move into different local adsorption geome-
tries. On the other hand, configurations with high interaction energies leading to such
problems are obviously energetically not particularly favorable anyway. Furthermore, if
the molecules move into different local adsorption geometries, then these polymorphs can
be neglected since that target polymorph is already included in the search space.

During the geometry optimization of local adsorption geometries, the substrate is kept
fixed as otherwise the final polymorphs could not be built out of multiple local adsorption
geometries.

For the comparison of monolayer and bilayer polymorphs a more extensive geometry op-
timization is used which is described in chapter 4.3.

Minimal distance dmin

A minimal intermolecular distance dmin is necessary since the interaction energies diverge
for small distances due to Pauli repulsion. This threshold introduces an artificial limit
to the search space and could, in principle, lead to missing relevant polymorphs. The
value for this parameter is estimated from the interaction energies of dimers in the gas
phase. In hindsight, the obtained results (see discussion of Figure 4.3) reassure the choice
of the dmin as they indicate that there are no energetically favorable polymorphs with
intermolecular distances below that threshold.

2.2. Modeling the System

2.2.1. Coarse Graining of the Search Space

If we assume rigid molecules and a fixed adsorption height, each single molecule in the adsorbate
layer would have five continuous degrees of freedom (two spatial and three rotational ones).
When we further assume that the adsorbate molecules form commensurate structures consisting
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of unit cells with up to N molecules in the basis we would end up with 5 N continuous degrees of
freedom in total. If we would now attempt a straight forward discretization using only 10 steps
for each degree of freedom, we would get 105N distinct combinations. Allowing for a maximum
number of three different molecules per unit cell, this would result in 1015 combinations. For
the presented system one DFT calculation takes around 100 core hours. Consequently, even
with a very low rate of 0.01 €/hcore, conducting a brute force calculation of all combinations
would cost roughly 1 quadrillion € – definitely unfeasible!

Fortunately, in the studied system the potential energy surface for single molecules is strongly
corrugated. This means that there are adsorption positions and -orientations which are ener-
getically far more favorable than others and those favorable geometries are separated by energy
barriers. Each single molecule aims to assume one of these local adsorption geometries which
can be found using local geometry optimization from different starting points.

For the system of TCNE on Cu(111) there are three local adsorption geometries that are
oriented flat-lying (face-on oriented) and eight local adsorption geometries in which the TCNE
molecule is upright-standing (edge-on oriented) as can be seen in Figure 2.1

flat-lying

bridge-
hollow bridge-top top

upright-standing
C=C parallel

bridge-top bridge-
hollow

hollow-
hollow top-top

upright-standing
C=C perpendicular

top-top bridge-top top-bridge bridge-top

Figure 2.1.: Local adsorption geometries for TCNE on Cu(111) sorted by adsorption energy.
First row: flat-lying
Second row: upright-standing – central C=C bond parallel to substrate surface
Third row: upright-standing – central C=C bond perpendicular to substrate
surface. This type of local adsorption geometries is not used in this study (see
text).
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These local adsorption geometries were originally obtained by Michael Scherbela [12]. I used his
geometries as starting points, conducted a local geometry optimization and removed numerical
deviations from the symmetry axes by averaging the molecule coordinates with respect to each
symmetry axis.

For TCNE on Cu(111), the adsorption geometries with the central C=C bond orientated per-
pendicular to the surface are generally energetically less favorable than those adsorption geome-
tries where this bond is oriented parallel to the surface. This energetic difference also persists
when the pair interactions are included (for details, see Appendix A). Furthermore, the TCNE
molecule is approximately square. Hence both orientations of the upright-standing molecules
have nearly identical surface footprints and, therefore, the maximal packing density of both
orientations is nearly identical, too. Considering all those properties, it seems highly unlikely
that the local adsorption geometries with the C=C bond perpendicular to the surface are part
of relevant polymorphs. Consequently, only the flat-lying local adsorption geometries as well
as those upright-standing geometries where the central C=C bond is parallel to the substrate
surface are used in the present study.

To construct a specific polymorph, we have to define its unit cell as well as the arrangement of
the molecules inside that unit cell (see Figure 2.2). To that end, we first create all unit cells
that can be built on the chosen substrate up to a maximum area Amax. A large share of those
unit cells is equivalent due to symmetries of the substrate. Therefore, we apply all symmetry
operations of the substrate to each unit cell and compare the transformed geometries. Of all
sets of symmetry equivalent unit cells only one unique instance is kept. Further details on this
step can be found in [10, 39].

Figure 2.2.: Configurations are discretized, commensurate adsorbate layers consisting of lo-
cally optimized single-molecule adsorption geometries in a periodic repetition
unit.

Each of those unit cells then serves as one starting point to build configurations. For that
endeavor we make use of the fact that each unit cell consist of several substrate cells which
are spanned by the substrate lattice as can be seen in the first image of Figure 2.3. Due
to the translational symmetry of the substrate, all substrate cells are equivalent, and each
local adsorption geometry can be placed in each substrate cell. Therefore, the exact adsorption
geometry of one molecule can be defined using two indices: one for the local adsorption geometry
that it assumes and one for the substrate cell in which it is placed.
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Figure 2.3.: Each local adsorption geometry is proposed to be placed in each substrate cell. If
the resulting geometry contains no inter-atomic distance below dmin the proposed
configuration is added to the pool of possible configurations.

We now start with the first unit cell and put one molecule in the first substrate cell using
the first local adsorption geometry. For this first molecule all substrate cells are translational
invariant. Hence, we are allowed to place it in the first substrate cell (the one nearest to the
origin) without loss of generality. Then we take a second molecule and propose to place it in the
next substrate cell using one of the local adsorption geometries. Collisions between this new
molecule and all already placed ones are calculated using the Euclidean distances of each atom
of the first molecule with each atom of the second one. If one of these distances falls below
a predefined threshold the new geometry is rejected. This procedure yields a tree of possible
configurations. Each branch of that tree is extended until no further molecule can be placed or
until the aspired number of molecules per unit cell (nmol) is reached (whatever happens first).
All configurations that fit nmol molecules without collisions are added to the set of possible
configurations. All those configurations will later be used for prediction and evaluation. In this
study the maximal unit cell size is limited by Amax = 36 Auc with Auc = 0.0564 nm2 being
the surface area of a substrate unit cell. nmol is set to 1, 2, and 3. This way, nearly 11 million
configurations consisting of 1, 2 or 3 TCNE molecules are created in 215 different unit cells
having a surface area of up to 2.03 nm2.

2.2.2. Energy Model

Now that we have created an exhaustive set of configurations we have to introduce an energy
model that will later enable us to predict the adsorption energy of each configuration.

The total adsorption energy of a configuration can be separated into one-body terms Ei, two-
body terms Ei,j and higher order terms (equation 2.1). In the case of adsorbate layers, the
one-body terms correspond to the interaction energies between each single adsorbed molecule
and the substrate. The two-body terms account for the energy of each pairwise interaction.
Higher order terms account for all interactions which include at least three molecules, and
which cannot be described by a sum of two-body interactions.

E =
∑
i

Ei +
∑
i

∑
j,i<j

Ei,j + ... (2.1)
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In the present study this series expansion is truncated after one- and two-body terms. It should
be noted that we do not limit the two-body terms to nearest neighbors but instead include all
pairs up to a certain maximal distance dmax which typically also includes next nearest neighbors.
This cutoff parameter is chosen high enough such that pair energies above that distance can be
safely neglected.a

Epred =
∑
geoms

Ng · Ug +
∑
pairs

Np · Vp (2.2)

Figure 2.4.: Energy model for the adsorption energy of a configuration
Red lines represent interactions between molecules and the substrate (Ug)
Green lines represent interactions interactions between molecules (Vp)

The main benefit of introducing this energy model is that it limits the number of free parameters.
Without this energy model each new configuration would correspond to a new free parameter
that needs to be fitted. With this model we have one parameter for each local adsorption
geometry as well as one parameter for each distinct pair of molecules. The number of local
adsorption geometries is constant since they are predefined and as we use a maximum cutoff
distance the number of distinct pairs is limited, too. Each new configuration is build up out
of the fixed set of local adsorption geometries and molecule pairs. Therefore, the complexity
of our model – i.e. the number of free parameters – does not increase with the number of
configurations anymore!

For each configuration the fitting parameters Ug and Vp are combined into a line vector ~ω and
the corresponding coefficients Ng and Np are combined into one column vector ~N . For a whole
set of configurations these vectors ~N are then combined to the model matrix X̂ so that we can
write the energy model very compactly:

X̂ = ( ~N1, ..., ~Nnset)T (2.3)
~ω = (U1, ...,Ungeoms ,V1, ...,Vnpairs

) (2.4)
~Epred = X̂ ~ωT (2.5)

2.3. Machine Learning

2.3.1. Bayesian Linear Regression

Now we have defined an energy model for the studied system. But with that we also introduced
a set of parametersb ~ω for which we have to find the best values.

aIn this study dmax = 1.6 nm is chosen. The fitted interaction energies for pairs of such a distance are around
or below 1 meV .

bIn this study, seven fitting parameters are used for the one-body interactions (one for each local adsorption
geometry) and 502 fitting parameters for the two-body interactions.
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So what are ’best values’?

The property that we want to predict is the adsorption energy obtained via density functional
theory EDFT . For the training of the model we calculate this energy for a set of configurations
(the training set) which has the model matrix X̂. If we assume any specific set of fitting
parameters ~ω, we could use the energy model and predict the adsorption energies of that training
set as ~Epred = X̂~ωT . The difference between these predictions and the actual, calculated DFT-
energies Etrain of the training set could then be minimized.

However, DFT calculation always include some amount of numerical uncertainties. Trying to
fit the DFT energies exactly could lead to overfitting, namely fitting numerical noise instead of
physical interactions. To avoid this, we simply account for the numerical uncertainties ε when
comparing the predicted energies ~Epred and the calculated energies Etrain.

~Etrain = ~Epred + ~ε = X̂~ωT + ~ε (2.6)

We model the numerical uncertainties as a Gaussian distribution N with mean 0 and variance
σ2
model. The probability for a specific set of energies ~Etrain is therefore given by a Gaussian

distributionN with mean X̂~ωT and variance σ2
model. A reasonable value for σmodel is given by the

level of accuracy to which the DFT calculations are converged. In this study, σmodel = 0.01 eV
is chosen.

~EDFT = ~Epred + ~ε = X̂~ωT + ~ε (2.7)
p( ~Etrain | ~ω, π) = p(~ε = ~Etrain − X̂~ωT | ~ω) = N (X̂~ωT ,σ2

model)

p( ~Etrain | ~ω, π) ∝ exp
−( ~Etrain − X̂~ωT )2

2σ2
model

 (2.8)

In principle, one could now take the derivative of p( ~Etrain | ~ω, π) with respect to ~ω and equal it to
zero to find the set of parameters which fit best with the ’measured’ values ~Etrain – this would be
a linear regression fitted with a maximum likelihood estimation. There is just one big problem:
Since density functional calculations are computationally so costly, we typically have fewer
training points then fitting parameters and consequently the system is under-determined.

This is where Bayesian comes into linear regression. Actually, even before we consider the train-
ing data we have some prior knowledge about the fitting parameters. As an example, we know
that interactions between molecules are typically stronger for close pairs than for pairs which
are farther apart. When we account for this, and several other, physically motivated, assump-
tions, some sets of fitting parameters ~ω are more likely than others. Mathematically speaking,
we have prior knowledge π that is encoded as a prior probability distribution p(~ω | π).

Bayesian linear regression now makes use of the Bayesian theorem (2.9) to combine this prior
knowledge p(~ω | π) with the likelihood stemming from the training data p( ~Etrain | ~ω, π).

posterior︷ ︸︸ ︷
p(~ω | ~Etrain, π) =

prior︷ ︸︸ ︷
p(~ω | π)

likelihood︷ ︸︸ ︷
p( ~Etrain | ~ω, π)

p( ~Etrain | π)︸ ︷︷ ︸
model evidence

(2.9)
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The combined posterior probability distribution p(~ω | ~Etrain, π) tells us which set of parameters
is most reasonable from a physical perspective (enforced by the prior) AND at the same time
fit the training data well (enforced by the likelihood). Figure 2.5 illustrates this characteristic:
First, the prior knowledge is used to localize the range of possible values within a comparably
broad range. This step is crucial since it allows us find reasonable fitting parameters even for
interactions that never show up in the training data! For all interactions that show up in the
training data – and those interaction that are similar to them – we then further narrow down
the range of interaction energies using the likelihood of the training data.

Figure 2.5.: Schematic, one-dimensional illustration of the learning process
ω∗0 and ω∗1 denote the most likely interaction energies of the prior / posterior
probability distribution.

Let us have another look at the Bayes’ theorem (equation 2.9). It includes two new terms which
we have not yet defined. First, there is the model evidence p( ~Etrain | π) in the denominator.
This factor becomes relevant if we want to compare different models. In the current use case,
however, it cancels out as it yields the same value for all ~ω.
The second new term, p(~ω | π), is important as it accounts for the prior knowledge. In general,
we model the prior probability distribution of each parameter as a Gaussian with mean value
ωp and a corresponding variance σ2. Combining these Gaussian probability distributions of
each p(ωi | π) over the full vector ~ω of interaction energies leads to a multivariate Gaussian
(equation 2.10).

p(~ω | π) ∝ exp
(
−1

2(~ω − ~ωp)T Ĉ−1
p (~ω − ~ωp)

)
(2.10)

The covariance matrix Ĉp is the multi-dimensional equivalent to the single-dimensional vari-
ances σ2

i and it additionally accounts for the correlation between different interaction energies
ωi. The covariance matrix will be explained more in detail in section 2.3.2 and 2.3.3.

Plugging this general formula for the prior into Bayes’ theorem allows us to state the full
posterior probability distribution of the fitting parameters:

p(~ω | ~Etrain, π) ∝ exp
− 1

2(~ω − ~ωp)T C−1
p (~ω − ~ωp)


︸ ︷︷ ︸

prior

· exp
−( ~Etrain − X̂~ωT )2

2σ2
model


︸ ︷︷ ︸

likelihood

(2.11)
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Now, with the prior knowledge, the system is not under-determined anymore, and we can apply
the maximum likelihood method to find that set of interaction parameters ~ω∗ that corresponds
to the maximum of the posterior probability distribution. Consequently, the derivative of
p(~ω | ~Etrain, π) with respect to ~ω must be equal to zero for ~ω = ~ω∗.

∂

∂~ω
p(~ω | ~Etrain, π)

∣∣∣
~ω=~ω∗

!= 0 (2.12)

As the posterior probability distribution consists of exponential functions, its derivative is given
by the functions itself times the derivatives of the exponents.

p(~ω∗ | ~Etrain, π) · ∂

∂~ω

−1
2(~ω − ~ωp)T C−1

p (~ω − ~ωp)−
( ~Etrain − X̂~ω)2

2σ2
model

∣∣∣∣∣∣
~ω=~ω∗

!= 0 (2.13)

The first term of equation 2.13 (the posterior probability distribution) does not become zero
for any finite argumentc. Consequently, the second term (the derivative) must become equal to
zero to fulfill the equation.

− Ĉ−1
p (~ω∗ − ~ωp) +

X̂T
(
~Etrain − X̂ ~ω∗

)
σ2
model

!= 0 (2.14)

(
Ĉ−1
p + X̂T X̂

σ2
model

)
~ω∗

!= Ĉ−1
p ~ωp + X̂T ~Etrain

σ2
model

(2.15)

~ω∗ =
(
Ĉ−1
p + X̂T X̂

σ2
model

)−1

︸ ︷︷ ︸
Ĉ−1

post

Ĉ−1
p ~ωp︸ ︷︷ ︸
prior

+ X̂T ~Etrain
σ2
model︸ ︷︷ ︸

likelihood

 (2.16)

Finally, we have found an explicit expression for ~ω∗, the best estimate for the set of interaction
energies! From the structure of that expression we can clearly see how the prior estimates ~ωp
are refined using the likelihood of the training data. Furthermore, we can identify the first
term as the inverse of the new posterior covariance matrix Ĉpost which again consists of a prior
contribution and a contribution of the training data.

Ĉ−1
post := Ĉ−1

p + X̂TX

σ2
model

(2.17)

Since both the prior and the likelihood are modeled by Gaussian functions, the posterior prob-
ability distribution can written as a multivariate Gaussian using the estimated interaction
energies and the posterior covariance.

p(~ω | ~Etrain, π) ∝ exp
(
−1

2(~ω − ~ω∗)T Ĉ−1
post (~ω − ~ω∗)

)
(2.18)

Due to this iterative structure of the learning process, we have two options if we later want
to add more training data: Either we start again from the prior knowledge and learn on all
training points at once. Alternatively, we can use the posterior probability distribution which
already includes the old training data as new prior and then update it using the likelihood of

cAssuming σ2
model 6= 0.
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the new training data. Both approaches are equivalent as can be derived from the structure
of the Bayes’ theorem (equation 2.9). The second approach in principle saves computational
time, however, as we are limited to small training sets the computational cost for the fitting
process is generally negligible.

2.3.2. Defining the Priors

In the last chapter we derived a formula for the best estimate of the interaction energies ~ω∗ as
a function of the priors and the training data (equation 2.16). The next step now is to exactly
define the priors. (The other contribution – the training data – will be discussed more in detail
in chapter 3.2.)

Since the prior is modeled as a multivariate Gaussian distribution, it is defined by two proper-
ties: the mean values ~ωp and the corresponding prior covariance matrix Ĉp.

Prior Interaction Energies ~ωp

Let us first have a look at the prior interaction energies ~ωp. This vector actually consists
of two parts: the prior one-body interactions ~ωp,1body and the prior two-body interactions
~ωp,2body (in analogy with equation 2.4).As prior of the one-body interactions ~ωp,1body we
use the adsorption energy of a single, isolated adsorbate molecule in a large unit celld.
For the two-body interactions ~ωp,2body we have no solid prior knowledge. In general, the
molecules might attract or repulse each other and we do not want to introduce any bias
at this point. Consequently we set the prior mean of the two-body interactions ~ωp,2body
to zero and allow for large variances σ2

2body around this mean value.

Prior Covariance Matrix Ĉp

Next, we need to define the prior covariance matrix Ĉp. The elements on the diagonal
of this matrix account for the variance of each interaction energy while the off-diagonal
elements account for the correlation between each set of two interaction energies.
Similar to the mean values, the covariance matrix consists of two parts: one block for
the one-body interactions and another one for the two-body interactions. The adsorption
energies of local geometries (the one-body terms) are assumed not to be correlated with
the pair interaction energies (the two-body terms). Therefore, Ĉp decomposes into a block
matrix consisting of those two blocks.

Cp =
[
Ĉ1body 0

0 Ĉ2body

]
(2.19)

Prior Covariance of One-Body Interactions Ĉ1body

The diagonal elements of Ĉ1body stand for the prior variance of the adsorption energy of
each local adsorption geometry. Or in other words, these elements encode how sure we
are about our prior guesses for the adsorption energies of single molecules.

The main uncertainty for these adsorption energies comes from an effect called charge
depolarization. Upon adsorption charge can be transferred between the substrate and

dDue to the periodic nature of the unit cells, even a single molecule is affected by the interaction energy with
its periodic replica. Therefore, ’large’ means that the lattice vectors of the unit cell must be in the order of
1 nm such that these interactions have decayed nearly to zero.
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the adsorbate molecule and the amount of this charge transfer influences the strength of
the adsorption energy. This effect is stronger for a single, isolated molecule than for a
molecule that is situated in the middle of a full monolayer as there are in the latter case
simply less substrate atoms from which each adsorbate molecule can draw charge from.

Consequently, we can use the adsorption energies of single, isolated molecules as prior,
but we have to allow for deviations between these values and the adsorption energies of
molecules in full monolayers. To this end we introduce the hyperparameter σ1body that
controls the prior one-body interaction uncertainty. We set σ1body = 0.2 eV with 0.2 eV
being approximately 10 % of the total adsorption energy. The adsorption energies of
all local adsorption geometries have approximately the same variance and there is no
correlation between different local adsorption geometries. Therefore, the prior covariance
matrix Ĉ1body of local adsorption geometries is given by a unitary matrix times σ2

1body.

Ĉ1body = σ2
1body · I (2.20)

Prior Covariance of Two-Body Interactions Ĉ2body

The diagonal elements of the prior covariance matrix again denote the variance of each
interaction. However, in contrast to the one-body interactions, assuming one identical
variance for all two-body interactions would not be optimal. As noted before, even without
training data we know that interaction energies that correspond to close pairs typically
vary much stronger than interaction energies of far separated pairs which will be always
close to zero. Consequently, we model the prior two-body variances as an exponentially
decaying function:

(Ĉ2body)i,i = σ∗2body,i · σ∗2body,i (2.21)

σ∗2body,i = σmax2body · exp
(
−di − dmin

τ

)
(2.22)

σmax2body here denotes the maximal variance which is reached at the minimal intermolecular
distance di = dmin. From there on σ∗2body,i decays with a rate that is determined by the
decay length τ . For di = dmin + τ the variance decays to 1

e
of the maximum. This way, τ

defines what is meant by close pairs and far separated pairs.
The choice of the hyperparameter σmax2body can be based on physical knowledge and ex-
perience. Pair interactions for this system are typically in the range of at most a few
hundred meV . Interestingly, bigger values for that parameter seem to lead to slightly
better predictions (see Appendix: B) and so we choose σmax2body = 1 eV as a conservative
value allowing for a broad spread.

The decay length τ has to be chosen such that it roughly follows the actual decay of the
interaction and σ∗2body should decay to the range of meV for distances near the cut-off
distance dmax. In this study, τ = 0.3 nm is chosen as the molecule-molecule interactions
in this system decay rather quickly.

Defining the prior covariance of two-body interactions will be a bit more complicated.
At the same time this part of the prior covariance is crucial for the efficiency of Bayesian
linear regression and thus the efficiency of the SAMPLE approach! Therefore, we devote
the full next section to that topic.
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2.3.3. Distinguishing Pairs – Feature Vectors and Correlation

When we discussed the covariance matrix of the one-body interactions we assumed that the ad-
sorption energies of different local adsorption geometries are uncorrelated. This means that the
off-diagonal elements of the covariance matrix Ĉ2body are all zero and so each of the adsorption
energies has to be optimized independently. This is of course not optimal with respect to com-
putational time, but for local adsorption geometries there is simply no physically meaningful
correlation between their corresponding adsorption energies.

For the two-body interaction the situation looks completely different. First of all, there are far
more fitting parameters for two-body interactions than for the one-body interactions. Conse-
quently, fitting them efficiently has a much bigger influence on the total efficiency compared to
the fitting of the one-body interactions. But most importantly, for two-body interactions there
clearly is a correlation between different interaction energies. Figure 2.6 displays two pairs of
molecules which are definitely not exactly equal. At the same time these two pairs are not com-
pletely different either and consequently their interaction energies will not be not completely
different, too. This is exactly what correlation means and what allows us to train our energy
model with as little training data as possible and still achieve good prediction accuracy.

Figure 2.6.: Similar pairs of adsorbate molecules typically also have similar interaction ener-
gies. With the help of feature vectors, we can use this characteristic to improve
the training efficiency.

However, to use this kind of knowledge, we have to define ’similarity of pairs’ in a mathematical
way. To make this possible we first need to find some kind of fingerprint to identify each distinct
pair – this ’fingerprint’ is commonly called a feature vector. With that we can then define a
measure for the similarity between pairs.

Such a feature vector should obey the following criteria:

Uniqueness
Different pairs must lead to different feature vectors. This criterion is compulsory since
otherwise we are not able to reliably distinguish different pairs which might have different
interaction energies.

Conservation of symmetries
Pairs which are physically identical should always lead to the same feature vector. E.g.
if one pair can be transformed into another one by a symmetry transformation of the
substrate, these pairs are equivalent and should be described by one common fitting
parameter. This condition is not compulsory, but it helps minimizing the number of
fitting parameter and therefore improves the efficiency of the SAMPLE-algorithm.
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Similarity
Similar pairs should lead to similar feature vectors. This is necessary to correctly account
for correlation of interaction energies.

In this study an approach similar to Coulomb matrices[40] is used. On each molecule we choose
a set of ’marker’ atoms. Choosing the outermost ones proved to be effective (for TCNE: the
four nitrogens). Then the distances dα between each of those atoms on one molecule to each of
the corresponding atoms on the second molecule are calculated as illustrated in Figure 2.7.

Figure 2.7.: Illustration of the distances used for construction of the feature vector. Shortest
distances are highlighted for visibility but for this system currently all distances
are taken into account.

A problem of Coulomb matrices is that they are not invariant with respect to rotation. If we
rotate one of the interacting TCNE molecules by 180 degrees, their interaction energy must not
change as this is a symmetry operation of TCNE. However, to construct a Coulomb matrix the
atoms of the involved molecules have to be enumerated and, consequently, the list of distances
changes if the order of the atoms is changed. We avoid this problem by sorting the obtained
distances by their length in ascending order.

At this point, it is possible to use only the first ncrop distances to save computational time.
However, for the present system, that step is not necessary and therefore all 16 distances are
used.

The pair interactions typically change far more rapidly in the range of small intermolecular
distances. Consequently, we need to have a finer resolution for such close-range features than
for features corresponding to far separated pairs. To achieve that, we model the feature values
fα as an inverse power function of the pair distance (see equation 2.23). Furthermore, the
distances are scaled by the minimal intermolecular distance dmin. This way the feature values
fα can range from one for dα = dmin to approximately zero for dα � dmin. The exponent (decay
power n) must be chosen greater than one to yield the desired effect on the feature resolution.
Higher values for n result in more aggressive scaling. Using a decay power n in the range of
two to three empirically proofed to work best (see Appendix B).

fα =
(
dmin
dα

)n
(2.23)

Using equation 2.23 each pair of molecules is now represented by vector ~f in the feature space.
The dimensionality of this feature space is determined by the number of interatomic distances
which is 16 in this study. Defining a similarity between these pairs is now rather straightforward.
We use the L1-norm, also known as Manhattan norm, to measure the distance between two
feature vectors in the feature space and then divide that distance by the correlation length ξ.
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The correlation length is a hyperparameter that scales the feature space. Small values for ξ
lead to less correlation between features whereas high values for ξ introduce correlations even
for features which are not that similar. For the diagonal elements (Ĉpair)i,i (the variances) both
features are identical, and this term becomes one.

With that the covariance of two pairs i and j can be written as the product of their stan-
dard deviations times their similarity which is given by an exponential function of their scaled
distance in feature space.

(˜̂C2body)i,j = σ∗2body,i · σ∗2body,j︸ ︷︷ ︸
variances

· exp
−||~fi − ~fj||L1

ξ


︸ ︷︷ ︸

similarity

(2.24)

If there were only flat-lying molecules, we could immediately use equation 2.24 to calculate
the covariance. However, in order to study densely-packed polymorphs, we need to include
upright-standing molecules as well. This leads to a problem which is illustrated in Figure 2.8.
Since the feature vectors depend only on the relative position of the molecules, but not on
their absolute position, they cannot distinguish a pair of flat-lying molecules from a pair of two
upright-standing molecules. This fact would violate the first criterion of the feature vectors
– the uniqueness. Flat-lying adsorbate molecules and upright-standing ones have different
electronic structures and, consequently, we cannot assume that they result in identical two-
body interactions.

Figure 2.8.: Feature vector of a pair of flat-lying molecules and a pair of standing molecules.
Note the nearly identical geometry of the distance vectors.

To overcome this problem, three different types of pairs are defined: flat, mixed and stand-
ing. The flat and standing groups contain pairs consisting of two flat-lying molecules or
two upright-standing molecules, respectively, while the mixed-type is used for interactions of
upright-standing molecules with flat-lying molecules. We then introduce a factor Bi,j and set
it to zero if the two pairs i and j have different types and one for identical types.

Bi,j = δ (typei, typej) (2.25)

This procedure removes the correlation of those pairs which cannot be distinguished by the
feature vector, or in other words: It tells the SAMPLE algorithm to learn those pairs indepen-
dently. With this modification, the prior covariance matrix splits up into three uncorrelated
block matrices corresponding to the three types of pairs (see Figure 2.9).
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(a) correlated covariance matrix
without factor Bi,j

(b) blockwise covariance matrix
including factor Bi,j

Figure 2.9.: To ensure the uniqueness of feature vectors the covariance between different types
of interactions is set to zero.

With this new factor, the covariance (Ĉ2body)i,j between each pair of two-body interaction
energies reads as following:

(Ĉ2body)i,j = σ∗2body,i · σ∗2body,j︸ ︷︷ ︸
variances

· exp
−||~fi − ~fj||L1

ξ


︸ ︷︷ ︸

similarity

· Bi,j︸︷︷︸
split types

(2.26)

One technical detail is yet missing: To obtain all features, we create all possible pairs of two
adsorbate molecules in the discretization of the adsorption sites. However, there is no point
in using different fitting parameters if two pairs are extremely similar. Therefore, if two pairs
lead to feature vectors which are separated in the feature space by less than a minimal feature
distance ∆f , both are fitted with the same two-body interaction energy. In this study a minimal
feature distance of ∆f = 0.02 is chosen. A summary of all chosen hyperparameters is given
in Table 2.1 and additional data describing the sensitivity of these parameters can be found in
Appendix B.

parameter symbol value
prior one-body interaction uncertainty σ1body 0.2 eV
prior two-body interaction uncertainty σmax2body 1.0 eV
real space decay length τ 0.3 nm
model uncertainty σmodel 0.01 eV
feature correlation length ξ 1.0
decay power n -2
feature threshold ∆f 0.02
minimal intermolecular distance dmin 0.26 nm
maximal intermolecular distance dmax 1.6 nm

Table 2.1.: Chosen set of hyperparameters
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3. Increasing the Packing Density

A central aim of this thesis is to study how the adsorbate layer changes when the coverage is
increased. To that end, we first find the adsorbate layers that form at sub-monolayer cover-
age. At such low coverage, the energetically most favorable configurations consist of flat-lying
molecules, since this is the preferred orientation of single, isolated adsorbate molecules. When
we increase the coverage, the molecules are forced into configurations with smaller intermolec-
ular distances. At some point molecules start to flip from the flat-lying orientation to an
upright-standing orientation as these standing molecules have a smaller footprint on the sur-
face than the lying ones and consequently the standing molecules can pack more densely at the
same intermolecular distances.

Unfortunately, these standing molecules are more delicate than the flat-lying ones. As a simple,
geometric example, when we place two flat-lying TCNE molecules next to other, not more than
two cyano groups – which account for the strongest interactions – can come into close range. On
the other hand, in exactly upright-standing TCNE molecules, there are always two cyano groups
exactly above each other. Consequently, when we place two standing TCNE molecules next to
other, instead of one or two cyano groups, two or four of them come into close contact. This
implies, that also the interactions of those molecules increase far more rapidly with decreasing
intermolecular distance.

To investigate and overcome this problem, a test system is built (see chapter 3.1) such that we
can cheaply create lots of training data and, based on that, study different training set selection
strategies (see chapter 3.2).

3.1. Test System ’Gas Phase’

Preliminary tests with the existing algorithm showed that the prediction quality was often not
sufficiently stable. In particular, the prediction quality fluctuated heavily find different training
sets of identical size. This is a problem, as it complicates all evaluations that rely on a stable
prediction quality. For instance, when we search for an optimal set of hyperparameters, we
need to resolve rather small changes of the prediction accuracy. When the prediction quality,
however, fluctuates heavily with different training sets, we cannot resolve those small differences
anymore. On the other hand, this problem is also a chance, as it shows that a well-chosen
training set can further improve our prediction quality.
To investigate this problem more systematically, we need to evaluate the adsorption energy via
density functional theory (DFT) for a large set of configurations. From that pool of calculated
configurations, we could then choose several different training sets and compare their resulting
prediction accuracy. However, conducting a large set of simulations on the full surface system
would result in immense computational costs. Therefore, a simplified test system is created
for these investigations: The configurations of this test system are at first build as described
in section 2.2.1 but then the substrate is removed from the final geometry before starting the
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DFT calculations. Hence this system can be seen as a two-dimensional monolayer of molecules
in vacuum. Consequently, all interactions with the surface vanish, but all molecule-molecule
interactions persist. Note that the discretization of the local adsorption geometries is still used
– i.e. each single molecule must still assume one of the local adsorption geometries that it
would assume on the substrate surface.

For all unit cells with 3 to 36 surface atoms such ’gas phase’-configurations are built using
a minimal intermolecular distance dmin = 0.26 nm. For up to two molecules, this results in
approximately 3 ·105 configurations. From those configurations, two sets of 1000 configurations
each are randomly chosen. The first set (flat) contains only flat-lying molecules (with respect
to the removed surface) and the second one (standing) contains only standing molecules.a

Each of these sets is then split up into a training pool of npool = 500 configurations from which
the training sets will be chosen as well as a test set of ntest = 500 configurations which will be
solely used to evaluate the prediction accuracy. These two sets are chosen randomly but kept
fixed throughout all further evaluations.

To compare the nature of the flat set and the standing set, we now choose ten randomly drawn
training sets from each of their respective training pools.b With each of these training sets
the energy model is fitted and with that the adsorption energy Epred,i of each configuration in
the test set is predicted. Each of those predicted energies is then compared to the adsorption
energy of that configuration evaluated directly via first principles calculation EDFT ,i. From
that difference the root mean square error (RMSE) is calculated.

RMSE = 1
ntest

√∑
i

(Epred,i − EDFT ,i)2 (3.1)

When we now compare the prediction accuracy that we obtain from training sets of those two
different types of configurations (Figure 3.1), we clearly see that the flat-lying molecules lead to
a rather small spread and stable, accurate predictions for all training sets containing more than
about 100 configurations. On the other hand, the training on the upright-standing molecules
has severe problems. Sometimes we end up with a poor prediction accuracy even with training
sets of 200 configurations! But at the same time, we see that good training sets do exist for this
type of configurations. So we need to make sure that we always choose such a good training
set.

But before that, let us quickly have a look on the interaction energies that occur in those
two different sets. A histogram of those interaction energies is shown in Figure 3.2. Most
configurations have interaction energies of less than 100 meV (the y-axis is truncated at 30
counts). However, we also see some configurations with exceptionally high interaction energies
E ≥ 200 meV and nearly all of those configurations consist of standing molecules. These
configurations contain pairs of standing molecules with minimal intermolecular distances just
slightly above the threshold dmin. As we have discussed before, the repulsion between such pairs
of standing molecules increases particularly rapidly due to the higher number of interacting
cyano groups. Additionally, due to the discretized local adsorption geometries, only specific
intermolecular distances can exist. This leads to the large energetic gaps between configurations

aA third set of 1000 configurations with each of them consisting of exactly one standing and one lying molecule
per unit cell has been chosen, too. The characteristics of this set are always somewhere between the other
two, which is why it is not further used for any of the evaluations.

bThese training sets are chosen subsequently. I.e., a training set of n configurations consists of the training set
with (n− 1) configuration plus one new configuration.
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Figure 3.1.: Comparison of prediction accuracy as a function of the training set size for con-
figurations consisting of flat-lying and upright-standing molecules, respectively.

as we see it for instance in the range of 250 meV to 300 meV . A way to deal with these problems
is to improve the training set selection such that the configurations of these training sets include
as many and as diverse interactions as possible.

Figure 3.2.: Distribution of interaction energies in the flat and standing sets of the ’gas phase’
system. Count is truncated at 30.
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3.2. Training Set Selection

The following section deals with the challenge of choosing the most efficient training set, i.e. a
training set which allows us to improve the prediction quality as much as possible while needing
as few DFT calculations as possible.

To that end, we need some indicator of the quality of a training set. Based on that indicator
we can then can rank the training sets, select the best one and then calculate their adsorption
energies using DFT.

The accuracy of the predicted energies would be the most straightforward indicator, but of
course the exact prediction accuracy is only known as soon as we have conducted the training
and checked the predictions on a test set. So, we would have to first invest a lot of cpu time
and could only afterwards see if this training set was indeed a good choice.

Fortunately, from the fitting process of Bayesian linear regression we obtain not only the set
of most likely fitting parameters (the interaction energies ω∗), but we additionally receive the
full posterior probability distribution p(~ω | ~Etrain, π) for those parameters! On top of that, the
posterior covariance depends only on the interaction which occur in the configurations of the
training set but not on the adsorption energies of these configurations - i.e. we do not need
the actual DFT calculations to know the shape of p(ω | Etrain, π)! With that in mind, we can
propose multiple training sets and calculate the posterior covariance matrix that we would gain
from each of them. Based on that posterior covariance matrix we can then choose the optimal
training set.

A schematic illustration of the posterior probability distribution for the strongly simplified case
of a single fitting parameter ω, is given in Figure 2.5. In this one-dimensional illustration the
shape of p(~ω | ~Etrain, π) is given by its variance and it is obvious that we have to minimize this
variance to maximize the accuracy of the corresponding fitting parameter. Since the variance
is a real valued scalar, there exists a well-defined order relation. Consequently, if there was
only a single fitting parameter, we would simply choose that training set which decreases the
posterior variance of that fitting parameter the most.

However, when we leave this minimal example and increase the number of parameters from
one to two, the situation immediately becomes more complicated. For two parametersc, the
posterior probability distribution becomes a bivariate Gaussian as depicted in Figure 3.3. Fur-
thermore, the scalar variance σ2 of the one-dimensional example becomes a matrix: the posterior
covariance matrix Ĉpost which we have already seen in section 2.3.1 (equation 2.17).

The diagonal elements of Ĉpost correspond to the squared variance of the posterior probability
distribution p(ωi | ~Etrain, π) of each fitting parameter. The off-diagonal elements indicate the
correlation of the fitting parameters. I.e., a positive (negative) off-diagonal element (C)1,2
implies that a large value for ω1 increases (decreases) the probability for a large value for ω2.
The reverse implication (from ω2 to ω1) is true as well since Ĉpost is symmetric. Please bear in
mind that the elements of the covariance matrix are – in contrast to the correlation matrix –
in general not normed to the range of −1 to +1.

One way to understand the covariance matrix better, is to find its eigenvalues λi and eigenvec-
tors ~νi by solving the eigenvalue problem Ĉpost ~ν = λ~ν. The eigenvectors ~ν can be understood

cThe general case of n fitting parameters does not differ substantially from the presented special case of n = 2
anymore - it just becomes harder to visualize, which is why here the two-dimensional case is presented.
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in the following way: If we would create a new parameter from a linear combination of fitting
parameters with weights defined by an eigenvector ~ν, the resulting, combined parameter would
have a variance equal to that eigenvalue λ which corresponds to ~ν. This characteristic is visu-
alized in Figure 3.3 for two different covariance matrices. The ellipses in this plot depict lines
of constant probability of the bivariate probability distribution defined by Ĉpost.

Figure 3.3.: Iso-probability contours at 1σ, 2σ, and 3σ of two bivariate Gaussian distributions
defined by different covariance matrices Ĉpost.

With that, let us go back to the original question: how can we define which posterior covariance
matrix – and therefore which training set – is the best one? As there exists no unique order
relation for matrices in general, there exists no such definition for the covariance matrix, ei-
ther. Consequently, in the multi-dimensional case, we cannot decide which is the best training
set as straightforwardly as in the one-dimensional case. However, there are some reasonable
choices (optimality criteria) to define such an order relationship which will be presented in the
following.

A minor detail is yet missing before we can dive into the zoo of optimality criteria: Up to now,
we implicitly assumed that the posterior covariance matrix Ĉpost is obtained from some fixed
training set with model matrix X̂. As we now deal with different training sets, we have to use
a more explicit notation.

Ĉ−1
post(ξt) = Ĉ−1

p + X̂T (ξt) X̂(ξt)
σ2
DFT

(3.2)

Furthermore, we will use Ψα(ξt) to denote the score of a proposed training set ξt evaluated with
a particular optimality criterion α. In all presented optimality criteria, the training set that
achieves the lowest score is considered as the best one.

A-Optimality
The A-optimality criterion aims to minimize the Average variance of the fitting param-
eters [41]. This is achieved by minimizing the trace of the covariance matrix which is
equivalent to the sum of the eigenvalues λ.

ΨA(ξt) = tr(Ĉpost(ξt)) =
d∑
i

λi (3.3)
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This criterion does not take into account the off-diagonal elements of the covariance ma-
trix. Therefore, it yields the same score for training sets where the occurring interactions
are highly correlated as for a training set with uncorrelated interactions. This is demon-
strated by by the identical A-optimality-scores of the different covariance matrices in
Figure 3.3.

D-Optimality
The D-optimality criterion aims to minimize the generalized variance of the parameter es-
timates. This is achieved by minimizing the product of the eigenvalues λ of the covariance
matrix or equivalently minimizing its Determinant [42, 43].

ΨD(ξt) =
d∏
i

λi = |Ĉpost(ξt)| (3.4)

It is therefore proportional of the area of the iso-probability curve and so this criterion
minimizes the region of possible values for the fitting parameters.

An equivalent, but maybe more comprehensible interpretation of the D-optimality can be
derived using the information matrix M(ξt) which is a direct measure of the knowledge
that we obtain from the prior and the training set combined, compared to a completely
flat prior (= a constant probability distribution). Obviously, we want to maximize this
information gain.
The information matrix M(ξt) is defined as the inverse of the covariance matrix and,
hence, the inverse D-optimality is given by the determinant ofM(ξt) (equation 3.5). Each
configuration that is added to the training set increases |X̂T (ξt)X̂(ξt)| and, therefore, the
determinant of the information matrix. In that sense, D-optimality corresponds to that
training set (of constant size) that increases the information gain, measured byM(ξt), the
most. Apart from its descriptive benefit, this formulation of D-optimality saves a costly
computational step as we directly maximize the determinant of the inverted posterior
covariance matrix Ĉ−1

post(ξt) (that we have to calculate anyway) instead of applying another
inversion just to minimize the determinant of the resulting Ĉpost. This equivalence of
maximization and minimization of the inverse is a specific property of the determinantd,
which is why this trick cannot be applied to the other optimality criteria.

Ψ−1
D (ξt) =

∣∣∣Ĉ−1
post(ξt)

∣∣∣ = |M | =
∣∣∣∣∣Ĉ−1

p + X̂T (ξt)X̂(ξt)
σ2
DFT

∣∣∣∣∣ (3.5)

E-Optimality
The E-optimality criterion minimizes the maximal or Extremal variance of parameter
estimates.

ΨE(ξt) = max
i
λi (3.6)

dCompare to equation 3.4: The eigenvalues λ′i of the inverse covariance Ĉ−1
post(ξt) are given by the 1/λi. The

determinant of Ĉ−1
post(ξt) is then given by the product of those eigenvalues λ′i = 1/λi. Furthermore, inversion

and product operator can be swapped, i.e. the product of the inverse eigenvalues is equivalent to the inverse
of the product of eigenvalues. For a sum (A-optimality) or maximum function (E-optimality) instead of the
product, this correspondence does not hold.
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Consequently, this criterion should first reduce the uncertainty of the interaction energies
of close pairs as they have the highest prior uncertainty. However, this criterion might
then underestimate the combined influence of far separated pairs, which have low prior
uncertainties but occur more often.

All the optimality presented above have in common that they aim to minimize the uncertainty
of the fitting parameters, i.e. the one-body and two-body interaction energies. However, these
parameters are just an intermediate step towards the predicted adsorption energies of full
configurations. So, we could instead directly aim to minimize the prediction uncertainty of
configurations.

The predicted adsorption energy of one configuration x is given by a sum of the interaction
energies Epred(x) = ~N(x) ~ωT . In that sense, a configuration is similar to an eigenvector of
the covariance matrix. As we have seen at the beginning of this section, the variance of an
eigenvector corresponds to the variance of the multivariate Gaussian in the direction of that
eigenvector. In analogy to that, we project the multivariate Gaussian onto the model vector
~N(x) to obtain the marginal probability distribution for a configuration x. The variance of
that probability distribution then tells us what prediction uncertainty we can expect on that
configuration x if we train on a specific training set ξt.

σ2 (ξt,x) = ~NT (x) Ĉpost(ξt) ~N(x) (3.7)

Of course, we do not want to base the training set selection on the prediction of a single
configuration. Instead, we define an evaluation set ξe on which the expected prediction accuracy
is evaluated. So we apply equation 3.7 and obtain a vector that consists of the expected
variances of each configuration of the evaluation set ξe assuming that the energy model has
been fitted on the proposed training set ξt.

−→
σ2 (ξt, ξe) =

[
σ2 (ξt,x1) . . . σ2 (ξt,xi) . . . σ2 (ξt,xNe)

]
(3.8)

In order to use these variances for the training set selection, we have to make two more deci-
sions:

1. For the full evaluation set, we obtain a vector of variances. Similar to matrices, there
are multiple, different ways to define an order relation for vectors. Possible properties to
define for such an order relation are, for instance, the sum (or equivalently, the average)
or the maximum of the variances.

2. The choice of the evaluation set ξe. The basic choice would be to use all created configu-
rations, which would consequently lead to a good prediction accuracy in the whole search
space. However, we could also choose ξe such, that the training is tailored onto a specific
range of configurations. For instance, when we are most interested in configurations of
high coverage, we would use such configurations for the evaluation set and hence end up
with a training set that leads to most accurate predictions specifically on that region of
the search space.

G-Optimality
For the G-optimality criterion, we sort the training set by the maximal prediction variance
of all configurations of the evaluation set. Hence, we aim to minimize the deviation of the
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worst prediction of that evaluation set and in that sense this criterion is the counterpart
to the E-optimality criterion.

ΨG (ξt, ξe) = max
xi∈ξe

σ2 (ξt,xi) (3.9)

V-Optimality
V-Optimality (also known as IV-Optimality) is similar to the A-optimality criterion as it
aims to minimize the Integrated Variance of the predictions. Originally, this criterion is
defined on a continuous design space R, in contrast to our discretized design space ξ [43].

ΨV (ξt,Re) =
∫
x∈Re

σ2(ξt,x) µ(x) dx (3.10)

Where µ(x) stands for the density at the point x ∈ Re. In our discrete design space these
points xi become configurations. Consequently, the continuous region of interest Re is
replaced by the evaluation set ξe and the integral becomes a sum. The V-optimality score
for a training set ξt and a discrete evaluation set ξe therefore reads:

ΨV (ξt, ξe) =
∑
xi∈ξe

w(xi) σ2(ξt,xi) (3.11)

The weights w(xi) are the counterpart to the densities µ(xi) and can be used to put
more weight on specific configurations. Furthermore, when we divide ΨV (ξt, ξe) by the
size of the evaluation set, we obtain the more intuitive average variance for that specific
combination of training- and evaluation set [41]. Of course, this does not change the
outcome of this criterion.

In combination with the choice of the evaluation set ξe, these optimality criteria could be
used together in an interesting way: One could first concentrate on exploration – i.e. to limit
the worst-case uncertainty, a first training set is chosen using the G-optimality criterion in
conjunction with a large evaluation set that is representative for all possible configurations.
Based on that, a subsequent exploitation step could be done: A second training set would
be chosen based on the V-optimality criterion in combination with a smaller evaluation set of
promising, low energy configurations. This way, one would end up with a rough estimate of the
full potential energy surface and a precise estimate in the most important range of low energy
configurations.

With all that, one should not forget that this broad exploration is actually a strength of the
SAMPLE approach. In contrast to other machine learning methods that quickly concentrate
their evaluation area around the lowest minima, the SAMPLE approach is able to predict the
whole potential energy surface. From that, one can not only find the global minimum, but also
other local minima which correspond to metastable states and can be important as well (e.g.
in the form of defects).

3.2.1. Fedorov Exchange algorithm

In principle, one could now do an exhaustive search by creating all possible training sets,
calculating the optimality of each of them using one of the presented criteria and finally use
that proposed training set which achieves the best score. However, the number of possible
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training sets having k configurations, chosen from a pool of n configurations, is given by the
binomial coefficient n!

(n−k)! k! . If we want to choose a set of 100 configurations from a pool of
300 thousand possible configurations there are approximately 5 · 10368 possible choices.e It is,
therefore, absolutely impossible to directly evaluate each possible training set.

An alternative, iterative approach by Fedorov [44] is used to overcome this problem. A sketch
of our implementation of Fedorov’s algorithm is given in Figure 3.4.

Re-initialization loop: break if nreinit reached

Improvement loop: break if no swap found OR iterationsmax reached 

For each configuration in current training set:

For each configuration in training pool:

Propose to remove current configuration

Evaluate change of optimality score 

Found beneficial swap(s)? Apply best one

End improvement loop

Found beneficial swap(s)?

yes

Repeat improvement loop

no

yes

Store optimized training set and corresponding optimality score 

Figure 3.4.: Implementation of the Fedorov exchange algorithm

To start the algorithm, we propose a randomly chosen, initial training set (re-initialization
loop). This set is now denoted as current (proposed) training set which we aim to optimize.
Furthermore, we define the training pool as the set of all configurations that can be added to
the current training set.

Now, we subsequently select each configuration from the current training set. For each
of these configurations, we then we propose each configurations of the training pool as
replacement for the selected configuration. Each of those proposed swaps is rated using the
chosen optimality criterion. As soon as we have proposed each configuration of the training
pool once, we check whether at least one of those proposed swaps would be beneficial – i.e. if
it would lead to a better score according to the chosen optimality criterion. If one or multiple

eFor the studied system there are 300 048 configurations with a maximum of two molecules in the unit cell.
Since the energy model is truncated after the two-body interactions, all interactions can be found in the
subset of those configurations which have two molecules in their unit cell.
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beneficial swaps are found, we immediately apply the best one of those This search for a
beneficial swap is repeated for each configuration of the current training set.

When we have finished the last configuration of the current training set, we check whether
beneficial swaps were found during the loop over the current training set. If at least one
beneficial swap was found – and, consequently, the current training set was improved during
that loop – the whole improvement loop is repeated. If no beneficial swap was found, the
current training set has reached a local minimum with respect to one-configuration swaps and
so we can end this loop. Additionally, we stop improving the current training set if a maximal
number of allowed iterations has been reached. In this study, the maximal number of allowed
iterations is set to 10. However, most swaps happen during the first iteration and usually the
search converged after three or four iterations, therefore this threshold is hardly ever reached.

Now, we have a training set that constitutes a local minimum as it cannot be improved any fur-
ther by swapping any single configuration with one from the training pool. It might, however,
still be possible to jump from the current locally optimized training set to a better one by swap-
ping two or more configurations simultaneously. Though, including these multi-configuration
swaps into Fedorov’s algorithm would increase the computational complexity immensely as we
would have to consider all combination of configurations: In the extreme case of swapping the
whole training set, we would be back to the original 5 · 10368 possible choices! Therefore, we in-
stead repeat the whole procedure from several randomly-chosen initial training sets and use the
best optimized training set found in those runs. The validity of this approach can be checked
immediately by comparing the outcomes of these runs. It turned out that most of the time
most runs lead to the same minimum indicating that this one is indeed the global minimum.
Moreover, even training sets that correspond to other local minima yield optimality scores far
better than almost all random initial sets – i.e. these locally optimal training set are nearly as
good as the set that constitutes the global minimum.

Apart from this re-initialization step, the algorithm is fully deterministic. This property is
highly valuable – e.g. for the comparison of different hyper parameters we have to avoid any
noise coming from randomly-chosen training sets.

3.3. Comparison of Optimality Criteria

The optimality criteria presented in chapter 3.2 were implementedf and will now be bench-
marked based on the training sets they select from the training pool. As we have seen, the
standing set as it is introduced in chapter 3.1 is the most interesting one, hence this one is used
for the following evaluation.

For each optimality criterion, sets of ntrain configurations are chosen independently with ntrain
increasing stepwise from 5 to 100. To ensure that the training set selection start from the
same initial training sets for each optimality criterion, the pseudo-random number generator
that selects these initial sets is re-seeded to the same value (42) whenever we switch to a new
optimality criterion.
As evaluation set for the G- and V-optimality criterion, we use the training pool from which
the training sets are chosen. The training pool is completely separated from the test set – on

fThe D-optimality criterion has been implemented before by Michael Scherbela [45] but, due to a bug, not all
possible swaps were considered and the resulting training sets were, therefore, not fully optimized.
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which the RMSE is evaluated – and so this choice of the evaluation set represents the general
case and does not introduce any kind of overfitting.

The evolution of the prediction accuracy that results from these training sets is displayed in
Figure 3.5. Five series of randomly drawn training sets have been added for comparison.

Figure 3.5.: Evolution of prediction accuracy for different training set selection strategies.

The main insight that we gain from this comparison, is that all optimality criteria perform
significantly better than random selection for all training set sizes ntrain ≥ 20. Furthermore,
for large training sets ntrain ≥ 60 the prediction accuracies are virtually identical for all imple-
mented optimality criteria.

For small training sets, the differences between the optimality criteria are larger. However, for
such small training sets, each new data point can shift several interaction energies at the same
time. This leads to fluctuations like the one we see in the G-optimality curve at ntrain = 20.
Consequently, we need to use larger training sets such that the prediction accuracy is nearly
converged. With that, we are back in the range of ntrain ≥ 60 where all optimality criteria
are significantly better than a random selection, but there are hardly any differences between
them. (Each of the optimality criteria leads to an RMSE of 4 to 5 meV at ntrain = 100.)

As we have to decide on one of those optimality criteria and all of them perform equally well
in the relevant range, we consider other, lesser factors. One factor that does not matter in
theory, but can matter in real life, is the computational run time of the algorithm. For all
those presented optimality criteria, the run time scales with the size of the training set to
be chosen and the size of the training pool. The effort to find a G- or V-optimal training
set additionally scales with the size of the evaluation set. Hence, for a broad search these
two algorithms might become computationally costly. From the remaining optimality criteria,
the E-optimality criterion is the slowest as it involves the maximum function which inhibits
some mathematical simplifications. The D-optimality criterion, on the other hand, can be
equivalently used in its inverse form (equation 3.5) which saves us one costly matrix inversion.
Furthermore, this criterion in principle includes A-optimality as it considers the diagonal- and
off-diagonal elements of the covariance matrix. All in all, we decide to use the D-optimality
criterion for all further evaluations, but it should be noted, that any of the other presented
optimality criteria would probably perform equally as well.
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4. Results: Predicted Polymorphs

Now that we have a machine learning approach to predict the adsorption energy of discretized
polymorphs and we know how to select a good training set, we switch back from the test system
to the actual surface system.
The following chapters 4.1 and 4.2 will describe all polymorphs of the first adsorbate layer
together with their predicted adsorption energy. These predicted energies enable us to find out
which polymorph forms in thermodynamic equilibrium at low coverages.
Having that we turn towards bilayers to resolve the question whether a monolayer of densely-
packed, upright-standing molecules or a bilayer polymorph is energetically more favorable at
an increased coverage. To that end, we calculate the Gibbs free energy as a function of the
chemical potential for all monolayer polymorphs and selected bilayers.
Finally, we compare our findings with an experiment. More precisely, this comparison will be
based on the vibrational frequencies and the density of states of the molecular orbitals which
we calculate for specific representative polymorphs.

4.1. Training on Full Surface System

From the exhaustive set of 3 · 105 configurations, 300 configurations are chosen using the D-
optimality criterion. This step results in a set consisting of 63 flat, 136 mixed and 101 standing
configurations. The apparent imbalance between the size of these sets comes from the different
number of local adsorption geometries in each of these sets. More local adsorption geometries
lead to more different interactions which necessitates larger training sets to achieve a similar
prediction accuracy. At the same time, some configurations of each type have to be spared
for the test set. Therefore, we want to make sure that the full training set contains at least
100 configurations of each of the aforementioned types. To that end, we choose another 50
standing configurations – again using the D-optimality criterion whereby we account for the
already chosen configurations.

To ensure that the one-body interactions can be learned properly, for each of the seven local ad-
sorption geometries one additional configuration is build consisting of only one molecule in that
local adsorption geometry in a large unit cell having 36 substrate surface atoms. Furthermore,
as soon as we have found the energetically most favorable flat and standing configurations we
check their adsorption energy directly via DFT calculations and then added those configura-
tions to the available DFT data. With all that we end up with a set of 359 configurations
together with the corresponding dispersion-corrected DFT calculations (settings are listed in
Appendix D). The distribution of these configurations is as following: 117 flat, 136 mixed and
106 standing.

From this source set a D-optimal subset of 300 configurations is chosen as training pool and
the remaining calculated configurations are used as test set.
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In order to monitor the evolution of the prediction accuracy, training sets of increasing size
are drawn D-optimally from that training pool. The energy model is fitted independently on
each of these training sets and for each fitted model the RMSE of the energy prediction is
evaluated on the test test (Figure 4.1). The dashed, black line indicates the thermal energy at
room temperature (kBT ), which marks the level of accuracy that the predictions should not
exceed.

The difference between the blue curve (mixed) and the orange curve (blockwise) corresponds
to the problem of distinguishing the feature vectors of flat and standing pairs of molecules as
discussed in chapter 2.3.3. For small training sets of n ≤ 30 training points the basic learner
yields in some cases better prediction accuracies. This behavior is expected, since this learner
assumes more correlations and therefore need fewer fitting parameters, leading to a higher
learning rate. However, in the most relevant range of n ≥ 50 training points the modified learner
has finally fitted most of its parameter and consistently yields a better prediction accuracy than
the other learner which is not able to completely separate the different types of interactions.

Figure 4.1.: Prediction accuracy on the full surface system.
blockwise indicates the use of the improved prior covariance matrix in which the
correlation between different types of interactions is set to zero. Note that the
RMSE is shown on a logarithmic scale.
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4.2. Adsorption Energies of Monolayers

For the actual predictions, Bayesian linear regression is trained on the whole D-optimally chosen
training set. For each of the 10 972 902 configurations with up to three molecules per unit cell,
the adsorption energy is predicted and then divided by the number of molecules. Figure 4.3
shows those energies plotted as a function of the coverage Θ. Each predicted energy is depicted
by a small horizontal dash. The colors indicate the three different types of configurations. Green
dashes (standing) depict the adsorption energy of those configurations which consist purely of
upright-standing molecules, blue dashes (flat) those of flat-lying molecules, and orange dashes
(mixed) correspond to those configurations that contain both types of adsorption geometries.
The different width of the dashes has no physical meaning; it only ensures that all markers can
be seen.

In the range of low coverage (i.e. sparse configurations), flat configurations reach the strongest
adsorption energy per molecule. This is as expected since each single, isolated molecule has
a stronger adsorption energy when it is adsorbed in a flat-lying geometry than in an upright-
standing orientation and at the same time pair interaction energies are comparably weak at
low coverage.

Going towards higher coverage (e.g. from Θ = 0.5 Nadsorbate/nm
2 to Θ = 1.5 Nadsorbate/nm

2),
the predicted adsorption energy of flat configurations decreases. Back in the energy model
we defined the adsorption energy as one-body interactions between molecules and the surface
plus two-body interactions of all pairs of molecules. Furthermore, the one-body interactions
are approximately equal for different configurations that consist of the same local adsorption
geometries. Consequently, the fact that the predicted adsorption energy decreases indicates that
the two-body interaction energies decrease – i.e. pairs of flat-lying molecules with attractive
interactions must exist.

Slightly below a coverage of Θ = 2 Nadsorbate/nm
2 the adsorption energy of those flat configura-

tions reaches a minimum and starts to rise from here on. This corresponds to the point where
the molecules are forced to lower their pair-distances below the equilibrium distance, which
leads to the increase in energy. The minimal intermolecular distance dmin = 2.6 Å limits this
trend as it is not possible to form any configuration with a coverage Θ > 2.3 Nadsorbate/nm

2

using only flat-lying molecules without undercutting this minimal intermolecular distance. The
fact that the energetic minimum occurs before this point indicates that the choice of dmin is ad-
equate. To create reasonable configurations with coverages higher than Θ = 2.3 Nadsorbate/nm

2

at least one upright-standing molecule must be used in those configurations. In an intermedi-
ate range up to 3 Nadsorbate/nm

2 the mixed configurations are the energetically most favorable
ones until even those cannot be packed any denser and only configurations consisting purely
of upright-standing molecule remain. However, in terms of the adsorption energy per molecule
the standing molecules never outperform the flat-lying ones.

As we have just seen, we can learn a lot from the energy per area of the polymorphs. However, as
described in chapter 1.2, at full monolayer coverage and under the assumption that a reservoir of
adsorbates exists, the property that is actually minimized is the Gibbs free energy of adsorption
(equation 1.26). The Gibbs free energy consists of the chemical potential µ in gas phase and the
adsorption energy per area. However, µ only plays a role when we compare configurations with
(largely) different coverages. Consequently, to find out which configuration is the energetically
most favorable one at a specific coverage, we only need the adsorption energy per area which
is shown in Figure 4.4. This transformation changes the situation completely. Due to their
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higher packing density, the mixed and standing configurations become more relevant and the
energetic minimum shifts to a configuration consisting of upright-standing molecules.

As the chemical potential µ is equal to zero at a temperature of T = 0 K, the adsorption
energy per area – as depicted in Figure 4.4 – corresponds to the Gibbs free energy of those
configurations at T = 0 K.

Using the predicted adsorption energies, we can identify three important configurations that
are described in the following as well as listed in 4.2.

Monolayer flat A This is the flat configuration with lowest energy per molecule. Both
molecules in the unit cell of this configuration assume the energetically most favorable
local adsorption geometry.

Monolayer flat B This is the flat configuration with lowest energy per area. It consists of
the same local adsorption geometries as flat A but has a smaller unit cell consisting of
just one adsorbate molecule and it is slightly denser packed. This configuration will be
later used for the flat-on-flat bilayer.

Monolayer standing The configuration with lowest energy per area of all standing configu-
rations. It will be later used for the flat-on-standing bilayer.

name Flat A Flat B Standing

Identifier (3,3,-3,3 | 1,1 | 0,5) (3,-2,1,2 | 1 | 0) (4,0,-1,3 | 12,17,20 | 0,4,5)

Coverage 1.97 Nads/nm
2 2.22 Nads/nm

2 4.43 Nads/nm
2

Epred, per mol −2.05 eV −1.98 eV −1.72 eV

Epred, per area −4.04 eV/nm2 −4.39 eV/nm2 −7.62 eV/nm2

Figure 4.2.: Selected monolayer configurations
Epred ... predicted adsorption energy (per area and per molecule)
Identifier ... internal code to describe the unit cell, the local adsorption geom-
etry, and the position of those (corresponding to the three parts of the identifier
which are separated by vertical bars).
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Figure 4.3.: Predicted adsorption energy per molecule of all monolayer-configurations of
TCNE on Cu(111). The apparent step at Θ ≈ 1 Nadsorbate/nm

2 is an effect
of the finite size of the unit cells and does not affect energetically favorable con-
figurations.

Figure 4.4.: Predicted adsorption energy per area of all monolayer-configurations.
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4.3. Building Bilayer Configurations

A central question of this study is: How does the structure of the adsorbate layers change
with increasing coverage. A major part of this question, namely how the structure of the first
adsorbate layer changes as a function of the coverage, can be solved directly from the predicted
adsorption energies that are shown in the previous section. However, to answer the question if –
and at which point – the transition to bilayer polymorphs happens we obviously have to create
such bilayer polymorphs and then compare them with densely-packed monolayer polymorphs.
This step will be described in the following section.

In general, the interaction with the substrate is much stronger in the first layer than in the
second layer and so molecules ’prefer’ to adsorb in the first layer. However, when the packing
density is increased the intermolecular distances have to shrink and with that the Pauli repulsion
between molecules starts to increase rapidly. Consequently, at some point it becomes energeti-
cally more favorable to form a second adsorbate layer instead of a densely packed monolayer.
In fact, the phase transition in the first layer (from flat-lying to upright-standing molecules)
might never be reached because the molecules already moved to the second layer before the
transition point is reached.

To resolve this question, we have to compare the Gibbs free energy of densely-packed monolayers
with that of bilayers that have the same number of molecules per substrate surface area. But
of course, this comparison only makes sense if we compare the monolayers to the energetically
most favorable bilayer polymorphs. So, we have to find them. Unfortunately, there are several
reasons why we cannot apply the SAMPLE approach straightforward to bilayer polymorphs.

The main difference between this task and that of finding the best polymorphs of the first layer
is that for the first layer we had a well-defined supporting layer: the surface of the substrate
which is kept fixed during the structure search. For the second layer the supporting layer is
given by the first layer for which lots of different polymorphs exist and which is not as rigid as
the substrate. Therefore, we face two major challenges:

1. For the first layer, it can be justified to neglect the relaxation of the substrate atoms below
it, since these atoms are limited in their movement and a relaxation of the substrate
surface leads to similar energy offsets for all local adsorption geometries. Contrary to
that, the first adsorbate layer might show major reconstructions when a second layer
is built on top of it and these reconstructions will be different for different polymorphs
of the second layer. Consequently, the first and the second adsorbate layer cannot be
evaluated independently but we have to evaluate the reconstructions of all combinations.
This means that the number of possible polymorphs is approximately squared!

2. For the first layer, the periodic unit is given by the substrate lattice, meaning that the
surface of each substrate unit cell is equivalent. For the second adsorbate layer, however,
the periodic unit is defined by the unit cell of the first layer which is typically at least an
order of magnitude bigger than the substrate unit cell. Therefore, the potential energy
surface of the unit cell is much bigger and hence finding local adsorption geometries of
the second layer needs much more computational time. On top of that, each first layer
constitutes a different surface, so we would need to find a new set of second-layer local
adsorption geometries for each first layer.

Considering those obstacles two approaches seem feasible:
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• Second-layer local adsorption geometries
Similar to the first layer, one could employ methods like Gaussian process regression to
find local minima of the potential energy surface for a single molecule in the second layer.
Once these building blocks are found, they could be added to the energy model and in
that way one could overcome the configuration explosion concerning combinations of the
first and second layer. This approach seems most promising for rather stable first layers,
like phases consisting of flat-lying molecules. It is, however, unclear how building blocks
for the second layer can be found such that they can be used with (most of) all first layer
building blocks. Furthermore, this approach does not account for reconstructions of the
first layer.

• Build second layer on top of promising first layers and conduct geometry op-
timization
In this approach, one would pick a set of most relevant first layer polymorphs – e.g. ener-
getically favorable, stable, close-packed configurations. An additional adsorbate molecule
is then placed on top of this first layer in a reasonable (guessed) second layer adsorption
geometry. From that starting point, a local geometry optimization of both adsorbate
layers has to be done. On the one hand, this approach is less systematic due to the
necessary choice of the guess geometries. But on the other hand, it allows to check for
reconstructions of the first layer.

As we need to check if reconstructions of the first layer occur in the studied system, we have
to choose the second approach.
For the first layer, we pick two very complementary configurations: The first configuration is
that one which has the lowest adsorption energy per area of all flat configurations. We choose
this configuration as it represents the most close-packed monolayer that can be built using
only flat-lying local adsorption geometries and without going below the intermolecular distance
threshold dmin. This configuration is depicted in Figure 4.2 (flat B) and it corresponds to the
lowest orange dash in Figure 4.4. It consists of one flat-lying molecule in a unit cell that contains
8 surface atoms. Therefore, it has a coverage of Θ1a = 1

8 Nads/Nsubstrate = 2.22 Nads/nm
2. Two

guess-bilayers are built from this first layer: One is denoted as flat-on-flat/vertical as the
second-layer molecule is put exactly above the molecule of the first layer. The other is named
flat-on-flat/shifted as the second-layer molecule is additionally shifted horizontally such that
the center of its central C=C-bond is situated above a nitrogen of the TCNE that is adsorbed
in the first layer. Both of these flat-on-flat bilayer geometries consist of two molecules per
adsorbate unit cell and therefore have a coverage of Θ1b = 2

8 Nads/Nsubstrate = 4.43 Nads/nm
2.

We will later compare this bilayer with a densely packed monolayer of the same total coveragea

to find out if TCNE rather forms such a densely packed monolayer or if it transforms directly
to a bilayer.

To study the behavior at even higher coverages, we additionally start from a densely packed
monolayer-configuration. Namely, we pick that configuration which reaches the lowest energy
per area of all configurations – the lowest green dash (configuration standing) in Figure 4.4.
It consists of three standing molecules in a unit cell which has twelve surface copper atoms:
Θ2a = 3

12 Nads/Nsubstrate = 4.43 Nads/nm
2. To build a bilayer from that, we place an additional

TCNE molecule right above the two molecules that stand parallel to each other (see right

aThe term total coverage here denotes the total number of molecules of all adsorbate layers divided by the
substrate surface area.
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hand side of Figure 4.5). The resulting bilayer – which will be named flat-on-standing – has a
coverage of Θ2b = 4

12 Nads/Nsubstrate = 5.91 Nads/nm
2.

As these bilayers are only guessed geometries, we have to conduct local geometry optimizations
with these configurations as starting points. To that end, we first optimize the first adsorbate
layer (before we add the second layer to the geometry). In that step we also include the two
uppermost layers of the substrate into the optimization procedure. I.e. the lower lying layers
of the substrate are constrained, but the two uppermost layers of the substrate can adapt
to the adsorbate layer above it. We then constrain the complete substrate, add the second
layer as described above and optimize the geometry of both adsorbate layers. To improve
the convergence speed for optimization of the flat-on-standing bilayer, we conduct additional
optimization runs of the second layer during which we keep the first layer fixed. Furthermore,
after twelve optimization steps it becomes obvious that the adsorption energy of the flat-on-
flat/vertical configurations converges to a level far above the flat-on-flat/shifted configuration.
Therefore, the flat-on-flat/vertical configuration is dropped and only the flat-on-flat/shifted
configuration is used in the further evaluations using the shortened name flat-on-flat.

A detail of the nomenclature should be clarified at this point: Up to now, we always dealt
with configurations – i.e. discretized polymorphs that consist of molecules in their undisturbed
local adsorption geometry. But as soon as we optimize the geometry of these configurations,
the constituting molecules are not anymore exactly in these local adsorption geometries. Con-
sequently, we will not call these optimized geometries configurations, but switch back to the
more general term polymorph.

We end up with two different, optimized bilayers polymorphs: (see Figure 4.5)

Bilayer: flat-on-flat The first layer of this polymorph is similar to the monolayer configuration
flat B, on which it is based (see Figure 4.2). During the geometry optimization, the
molecule in the second layer tilts from its flat orientation to an orientation that has an
angle of Θ ≈ 25◦ with respect to the surface plane. Furthermore, this molecule loses its
bending and assume a planar geometry.

Bilayer: flat-on-standing The first layer of this polymorph is based on the monolayer con-
figuration standing. The molecule that is adsorbed in the second layer is less tilted than
that in the flat-on-flat polymorph (Θ ≈ 18◦). This difference probably stems from the
weaker packing density of this second layer compared to the second layer of the flat-on-flat
polymorph.



Chapter 4. Results: Predicted Polymorphs 51

(a) Bilayer: flat-on-flat (b) Bilayer: flat-on-standing

Figure 4.5.: Front- and top view of the two bilayer polymorphs that are used for comparison
with densely-packed monolayer polymorphs. The red edges mark molecules of
the second layer. The unit cell of the adsorbate layer is indicated in black.

4.4. Comparing Monolayers and Bilayers –
Surface Phase Diagram

Now that we have an exhaustive set of monolayers and selected bilayers, we can calculate Gibbs
free energy for each of them as derived in chapter 1.2.1 (eq. 1.26). However, we must be careful
when comparing the monolayer configurations with the bilayer polymorphs that we just built.
The bilayers polymorphs are locally optimized. In contrast to that, the monolayer configu-
rations are built from locally optimized adsorption geometries but have not been geometry
optimized after these local adsorption geometries have been combined to configurations.

To resolve this discrepancy, we first create a separate, preliminary plot of Gibbs free energy
versus chemical potential only for the monolayer configurations. From that data, we find all
those configurations, which – at any chemical potential – yield the lowest Gibbs free energy
of all configurations. For each configuration of that subset we then conduct a local geometry
optimization that includes the adsorbates as well as the two uppermost substrate layers. These
optimized monolayers can now be safely compared to the optimized bilayers.
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Figure 4.6 shows the Gibbs free energy of the optimized mono- and bilayers as a function of the
chemical potential µ, which itself is a function of pressure and temperature. µ = 0 eV/molecule
corresponds to either infinitely high partial pressure of TCNE in the gas phase and/or a tem-
perature of 0 K. On the other hand, a more negative chemical potential corresponds to lower
partial gas pressure and/or higher temperature.

Figure 4.6.: Gibbs free energy of selected configurations
At µ = 0 eV/molecule, the Gibbs free energy is identical to the energy per area of
that configuration. The derivative with respect to µ corresponds to the coverage.

Let us start at the very left-hand side of the plot – i.e at low partial gas pressure and/or
high temperature. Below µ = −2.5 eV/molecule the chemical potential of the molecules in
gas phase is so strong that no stable adsorbate layer forms on the surface – this threshold
is indicated by the dashed horizontal line. When we then continue towards higher pressure
and/or lower temperature, the first phase that reaches a negative Gibbs free energy is one
that consists purely of flat-lying molecules (yellow, Monolayer: flat). At a chemical potential
µ ≈ −1.5eV/molecule and above, a mixed configuration (red, Monolayer: mixed) leads to a
lower Gibbs free energy than the flat configuration. Shortly after that point, a configuration
consisting purely of densely-packed upright-standing molecules becomes the energetically most
favorable one (blue, Monolayer: standing).

Turning to the two bilayer polymorphs we see that the one with the lower coverage (gray, Bi-
layer: flat-on-flat) at no point becomes the energetically most favorably polymorph. In fact, the
energetic difference to the most favorable polymorph is at all times larger than 1 eV/molecule!
Furthermore, this gray curve is exactly parallel to the blue one (Monolayer: standing). This is
no coincidence but due to the fact that we created this bilayer such that is has the same total
coverage as the densely-packed monolayer and in the chosen model the coverage Θ corresponds
to the derivative of Gibbs free energy with respect to µ. In contrast to that, the bilayer of
higher coverage (green, Bilayer: flat-on-standing) finally crosses the Gibbs free energy of the
densely-packed monolayer at weak low temperature and/or high pressure.
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From these findings we can conclude that indeed a phase transition from flat-lying to upright-
standing molecules occurs at around µ ≥ −1.5eV/molecule. Furthermore, we can eliminate
the possibility that this transition is masked by a bilayer polymorph as the studied bilayer
polymorphs are far higher in Gibbs free energy at this point. Only at a lower temperature
and/or higher pressure a transition towards bilayer polymorphs is predicted. The difference
between both evaluated bilayers indicates that possible bilayers (and multilayers) would form
on top of a first layer consisting of upright-standing TCNE molecules.

As the chemical potential is a function of partial gas pressure and temperature (eq. 1.27)
we can transform the previous plot into a more descriptive two-dimensional surface phase
diagram (Figure 4.7). Low chemical potential here corresponds to high temperature and/or
low partial pressure – i.e. the lower right corner. Going from here towards high pressure and
low temperature we can read the same progression as in the previous plot.

It should be noted here that this phase diagram is mostly of qualitative nature. It is a useful tool
to visualize the succession of predicted polymorphs. However, due to glancing intersection in
the Gibbs free energy curves, small prediction errors can shift the boundaries between surface
phases by large amounts. Furthermore, one should keep in mind that the bilayer flat-on-
standing represents the edge of the studied search area. Consequently, at low temperatures
(i.e. on the very left hand side of the phase diagram) other polymorphs which are currently
not part of the search space – for instance such with more than two layers – could potentially
replace the flat-on-standing bilayer. However, this limitation does not affect the outcome of
this study, as we do not rely on this specific range of the phase diagram.

Figure 4.7.: Surface phase diagram.
Each combination of pressure p and temperature T leads to a chemical potential
µ(p,T ). The color at each point (p,T ) corresponds to the configuration, which
has the lowest Gibbs free energy for µ(p,T ).
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5. Comparison to Experiment

To check the predicted phases, we will now compare them with an experiment. Unfortunately,
for the studied combination of substrate and adsorbate material, not a lot of experiments
exist. However, we found one by Wulf Erley and Harald Ibach [13] in which they measured the
formation of the adsorbate layers in an indirect way.
In the following we will quickly summarize the experimental setup they used. Then we discuss
the involved techniques and which simulations we can use to compare our polymorphs with
their results. Finally, we conduct those simulations and discuss the findings.

5.1. Summary of the Experiment

In the experiment [13], TCNE is deposited from the gas phase onto a cleaned Cu(111) surface
in ultrahigh vacuum (UHV) at a temperature of T = 100 K. At several points during the
deposition process, the coverage is measured using auger electron spectroscopy (AES). The
coverage at each of these deposition steps is estimated by comparing the ratio of the C272 and
the Cu920 peak of the AES measurements with reference values obtained from a monolayer
of CO on Cu(111). Additionally, electron energy loss spectra (EELS) were measured with an
electron energy of 5.0 eV and a resolution of ∆ν̃ = 30 cm−1 at each of those steps. A more
detailed explanation of the experimental setup is given in the original publication [46].

The central method of this experiment is electron energy loss spectroscopy (EELS). In this
technique a beam of well-defined kinetic energy is directed onto the material. When inelastic
scattering of the electron beam occurs, energy is transferred from that beam to the speci-
men. This energy loss of the beam can then be measured using an energy dispersive electron
detector.

An important inelastic scattering process are excitations of vibrational modes of the adsorbate
molecules. Hence, the positions of the peaks in the EELS curve indicate which vibrational
frequencies and corresponding vibrational modes can be stimulated in the specimen. At the
same time, the vibrational frequencies of a molecule depend on its geometry, its local environ-
ment and its electronic structure. Furthermore, when additional charge is accumulated on the
molecule its electronic structure changes. With all that the vibrational spectrum becomes a
function of the charge distribution of the molecule.

In the interpretation of the experiment the inverse of this relationship is used: At each depo-
sition step, the observed frequencies are compared to the literature values for neutral, singly-,
doubly- and triply-charged TCNE. This way, the experimenters estimate the electronic gross
charge of all adsorbed TCNE molecules. As the gross charge changes with the position and
orientation of an adsorbate molecule, the experimenters are able to see at which points of the
deposition process new ’types’ of adsorbate molecules appear.
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Back to the experiment: At low coverage Erley and Ibach see, among other EELS-peaks, one
at a frequency of ν̃cc ≈ 1275cm−1 (see Table 5.1). This vibration is interpreted as symmetric
stretching mode of the central C=C double bond of a doubly to triply charged TCNE molecule
(see Figure 5.1). They conclude that this multiply ionized species corresponds to flat-lying
TCNE molecules in the first adsorption layer.

Upon increasing the coverage, they observe a new peak at ν̃cc ≈ 1375 cm−1. This vibration
belongs to the same C=C stretching mode, but the frequency shift indicates that the adsorbate
molecules that lead to this vibration are roughly singly charged. From that, they conclude that
at this point – at an Auger value of C272/Cu920 ≈ 0.11 – a full monolayer coverage must have
been reached and now molecules start to form a second layer on top of the first one.

At about twice that coverage – C272/Cu920 ≈ 0.24 – another new peak with a frequency of
approximately ν̃cc ≈ 1565 cm−1 becomes visible. This peak corresponds again to the same
vibrational mode but this time under the assumption that the corresponding TCNE molecule
is neutral. This leads to the conclusion that now the second layer is filled up, too, and so
adsorbate molecules are forced into higher layers in which they interact only weakly with the
substrate and hence maintain their neutral charge state.

molecule ν̃cc / cm
−1

low coverage / first layer 1275
medium coverage / second layer 1375
high coverage / higher layers 1565

Table 5.1.: Experimental vibration frequencies of the C=C stretching mode measured via
EELS in different adsorbate geometries.

Figure 5.1.: Symmetric stretching mode of the central C=C double bond of TCNE

In a follow-up paper, the main findings of the experiment were summarized:

‘Evidence has been found that TCNE adsorbs as multiply charged species (TCNEx−,
x = 2 to 3) in the first layer, as singly charged anions (TCNE−) in the second layer,
and as neutral molecules (TCNE0) in all subsequent layers.’ (Wulf Erley [47])

5.2. Vibrational Calculations

Now that we know the experiment, we need a way to compare its results with the properties
of the polymorphs that we predict. One property that can be used for this comparison are the
vibrational frequencies. To calculate these, we must first make sure that the geometry of the
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molecules in consideration represent a local minimum of the potential energy surface. This is
achieved by a local geometry optimization. If a geometry is not in such a local minimum, but
in a saddle point or local maxima, a distortion of the geometry would lead to a lower energy
and hence to an imaginary vibrational frequency in that direction.

To actually calculate the vibrational modes the harmonic approximation is used. Within this
approximation the second derivatives of the energy of the molecule, or equivalently the first
derivatives of the forces, correspond to the molecule’s force constant matrix (Hessian matrix).

Hi,j = ∂2E

∂xi ∂xj
=
∂Fxj

∂xi
(5.1)

FHI-aims supports analytical calculation of forces, but currently not the analytical calculation
of the second derivatives (i.e. the Hessian matrix). Therefore, forces are calculated directly in
FHI-aims and the second derivatives are subsequently calculated using finite differences of the
forces.

To that end, we set up a series of DFT calculations. In each calculation one atom of the
molecule in consideration is displaced from its equilibrium position while all other atoms are
kept in their original position. For the displacement a small, constant shift of δ = ±0.0025 Å
in x-, y- or z-direction is used.

For all these distorted geometries the forces on all atoms are calculated, divided by the displace-
ment δ and then added to the Hessian matrix. The eigenmodes of that Hessian then provide
the vibrational modes of the atoms and the eigenvalues yield their vibrational frequencies.

5.2.1. Calculated Vibrational Frequencies

For the vibrational analysis we choose the following representative adsorption geometries:

First layer, flat-lying This is the adsorption geometry of the TCNE in the configurationMono-
layer Flat B which occurs at low coverage.

First layer, standing Here we use the local adsorption geometry of a single upright-standing
TCNE molecule with the central C=C bond parallel to the surface. (see geometry ’bridge-
top’ in Figure 2.1). This molecule is evaluated in a unit cell of four times four surface
atoms.

Second layer, flat-on-flat This geometry corresponds to the molecule in the second layer of
bilayer Flat-on-flat (see Figure 4.5 (a)).

Second layer, flat-on-standing This is the adsorbate molecule that forms the second layer
of bilayer Flat-on-standing (see Figure 4.5 (b)).

Gas phase As a reference, we additionally calculate the vibrational modes of neutral, singly,
and doubly charged TCNE in their relaxed geometry in the gas phase.

All vibration calculations are done in FHI-aims [19] using the PBE functional [32] and the
vdWsurf correction [38]. To compare the experiment with our predictions, we calculate the vi-
brational frequencies of the predicted configurations. We then visually inspected the calculated
vibrations in Avogadro [48] and selected that vibrational mode that corresponds to a symmetric



Chapter 5. Comparison to Experiment 57

stretching of the bond between the two central carbon atoms. Table 5.2 shows the frequencies
of these modes.

FHI-aims, PBE
Adsorbate geometry ν̃cc / cm

−1

First layer, flat-lying 1263
First layer, upright-standing 1341
Second layer, flat-on-flat 1482
Second layer, flat-on-standing 1512
Gas phase q = −2 qe 1273
Gas phase q = −1 qe 1375
Gas phase q = 0 qe 1491

Table 5.2.: Calculated vibration frequencies of the C=C stretching mode for the adsorbate
molecules as well as in the gas phase for different charge states.

A first glance at the calculated values shows that the frequency of this vibrational mode in-
creases when we go from the flat-lying, via an upright-standing to the second-layer adsorption
geometries (the first four calculations). Furthermore, the difference between the two second-
layer geometries (flat-on-flat and flat-on-standing) ∆ν̃cc = 30 cm−1 is significantly smaller then
the two steps before.

Figure 5.2 combines the calculated vibration frequencies with the experimental data. The
frequencies of the flat-lying geometry (blue, dashed) fit nicely with the experimental data of
the first-layer geometry (blue, continuous). Both frequencies are very close to the vibrational
frequency of a doubly charged molecule in vacuum (black dashed line, 1273 cm−1). This
finding supports the experimental interpretation that at low coverage TCNE adsorbs as an
approximately doubly charged species in a flat-lying orientation.

The next peak of the EELS spectrum is situated at 1375 cm−1, which is exactly the vibrational
frequency that we calculate for the singly charged molecule in the gas phase. Hence, we confirm
that this EELS-peak corresponds to a singly charged TCNE molecule.

However, there are also discrepancies: First of all, the calculated frequency of the standing
molecule (orange, dashed) is lower than the expected, experimental value (orange, continuous)
as well as the gas phase value (black, dashed). However, the difference (∆ν̃cc = 34 cm−1) lies
still within the range of error for this type of calculation.

More importantly, the experiment suggests that the singly charged species of TCNE corresponds
to adsorbates in the second adsorbate layer. But when we have a look at the vibrational
frequencies of the second-layer adsorbates (both green dashed lines) we see that they are far
from the frequency of the singly-charged species! Both, the second layer that is situated on top
of a flat layer (flat-on-flat, dark green, dashed) as well as the second layer on top of a standing
layer (flat-on-standing, light green, dashed) lead to vibrational frequencies very close to that
of a neutral molecule in the gas phase (∆ν̃cc = 9 cm−1 and ∆ν̃cc = 21 cm−1, respectively).
Consequently, a TCNE molecule that is adsorbed in the second layer appears to be nearly
neutral regardless if the first layer consists of flat-lying or upright-standing TCNE molecules.

From the vibrational data we can conclude that in contrast to the interpretation of the ex-
periment, the singly charged species cannot be explained by TCNE molecules adsorbed in the
second layer. Instead, the experimentally observed singly charged species fits the vibrational
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properties of upright-standing TCNE molecules in the first adsorbate layer which are predicted
using the SAMPLE approach.

At this point, the attentive reader certainly observed the discrepancy between the calculated
second-layer geometries (green, dashed) and the experimental value that is attributed to the
neutral species (green, continuous). Although this difference does not alter the results of
the evaluation additional calculations concerning this issue are conducted and can be found
Appendix C).

Figure 5.2.: Vibration frequencies of the central C=C double bond.
Experimental data is listed in Table 5.1
Calculated data (including gas phase) is listed in Table 5.2

5.3. MODOS

Another, alternative way to analyze the predicted polymorphs is to evaluate the molecular or-
bitals. From their occupation, we are not only able to calculate the gross charge of the adsorbed
molecule, but we can also understand why molecular bonds are strengthened or weakened upon
adsorption.

When a molecule is adsorbed onto a surface, it is possible that electrons are transferred from the
surface to the adsorbate (or vice versa). The additional electrons will then occupy molecular
orbitals of the adsorbate molecule. Two important molecular orbitals of neutral TCNE in
the gas phase are depicted in Figure 5.3: The highest occupied molecular orbital (HOMO)
contributes to the double-bond of the two central carbon atoms while the lowest unoccupied
molecular orbital (LUMO) has a node between those two carbon atoms and therefore is anti-
bonding with respect to that bond. Consequently, when the LUMO gets filled, the bond
between the central carbon atoms gets weaker and the corresponding vibrational frequency is
decreased as we have seen in the vibrational calculations.

To quantify the change of the occupation of the LUMO, we project the density of states (DOS)
of the molecule in its adsorbate state onto the molecular orbitals of the gas phase state – i.e.
the state that the molecule would assume in the gas phase. This projection is called molecular
orbital density of states (MODOS) [49] and we conduct it using a Fortran script written by
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Yong Xu (FHI, Berlin, Germany) based on the PhD thesis of Lorenz Romaner [50]. Having
done that, we integrate the DOS of each of molecular orbital from minus infinity up to the
Fermi energy EF to obtain the occupation of that molecular orbital (see Figure 5.4 and 5.5).

(a) HOMO (b) LUMO

Figure 5.3.: Highest occupied and lowest unoccupied molecular orbital of neutral TCNE in
the gas phase

5.3.1. Occupation of the LUMO

For this evaluation we took the same adsorption geometries as in the vibrational calculations
with one change: To simplify the plots only the flat-on-standing geometry is used as example
of a bilayer but not the flat-on-flat bilayer which shows similar results.

Figure 5.4 displays the molecular orbital density of states as a function of the energy. The
shading indicates the occupied states below the Fermi energy EF . The uppermost curve cor-
responds to a TCNE molecule that is adsorbed in the second layer on top of a first layer of
upright-standing molecules. The two obvious peaks in the DOS correspond to the HOMO and
LUMO of TCNE in the gas phase. A quick glance at this shaded area already reveals that the
HOMO of TCNE stays filled upon adsorption, and the LUMO stays completely empty – i.e. in
contrast to the experimental findings, we observe no substantial charge transfer to the second
layer. To quantify this observation, the occupation of each molecular orbital is calculated and
displayed in Figure 5.5. In this plot the HOMO and LUMO correspond to molecular orbitals
32 and 33, respectively. The occupation of each molecular orbital is given by the integral over
the density of states of that orbital up to the Fermi energy EF . Indeed, the occupation of the
LUMO (molecular orbital 33) of the second layer adsorption geometry is zero. a

Proceeding with the standing adsorption geometry, we see that its LUMO is approximately half
filled (0.8 of 2 possible electrons or equivalently 41 %). In contrast to that, the LUMO of the
flat adsorption geometry is nearly filled (1.6 electrons, 79 %).

An interesting effect can be seen in the molecular orbitals 20 to 30. These orbitals are fully
occupied if the molecule is in the gas phase as well as when the molecule is adsorbed in the
second layer. When the molecule is adsorbed in the first layer, however, the molecule hybridizes
with the substrate and electrons move from the metal substrate to the LUMO of the adsorbate.

aThe flat-on-flat bilayer show a very minor filling of the LUMO: 0.14 of 2 possible electrons or equivalently
7 %
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As a counter-effect electrons of lower lying molecular orbitals are pushed back into the substrate
– an effect known as back-donation.

Figure 5.4.: MODOS of a TCNE molecule in different adsorption geometries.
(a) flat-lying geometry, (b) standing geometry, and (c) adsorbate geometry in the
second layer (on top of a first layer of upright-standing molecules).

Figure 5.5.: Occupation of molecular orbitals for different adsorption geometries.
The percentage is given relative to the maximum occupation of two electrons per
molecular orbital.
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Conclusion and Outlook

In this work, the SAMPLE approach was applied to predict surface polymorphs of TCNE on
Cu(111). The main question to be answered was: Which surface polymorphs form when the
coverage is increased above the full-monolayer coverage of flat-lying TCNE molecules? Two
scenarios arise: Either a densely-packed monolayer consisting of upright-standing adsorbates
forms or a second layer forms on top of the first one. To answer the question, we first had to
find all monolayer polymorphs including densely-packed ones.

As densely-packed polymorphs show particularly high pairwise interaction energies, their pre-
diction necessitates sophisticated selection of the training data that constitutes the input for
the chosen machine learning approach. To that end, we implemented training set selection
strategies based on several different optimality criteria. Subsequently, we benchmarked these
strategies on a test system.

With that, we then employed the SAMPLE approach to predict the adsorption energies of an
exhaustive set of discretized monolayer polymorphs (named configurations). With those pre-
dicted energies and the help of ab initio thermodynamics, we are able to find those polymorphs
that are expected to form in thermodynamic equilibrium. Consequently, we created a surface
phase diagram for a wide range of partial gas pressures and temperatures.

Based on these monolayer polymorphs we created several bilayer polymorph candidates and
optimized them using local geometry optimization. Including these bilayer polymorphs into the
surface phase diagram revealed that densely-packed monolayers consisting of upright-standing
TCNE molecules are energetically more favorable than bilayer polymorphs of the same total
coverage. We, therefore, predict that a phase transition from flat-lying to upright-standing
molecules occurs in the first adsorbate layer when the coverage is increased above that of a
full monolayer of flat-lying TCNE molecules. Only at even lower temperature and/or higher
partial gas pressure – when the packing density of the upright-standing molecules becomes too
high – bilayer polymorphs form.

To verify our prediction, we compared them to an existing experiment. Therefore, we calculated
the vibrational modes and frequencies as well as evaluated the molecular density of states
(MODOS).

In accordance with the experiment, we found neutral, singly-, and doubly charged species
of TCNE in the adsorbate polymorphs. Furthermore, we found these species in the same
succession as in the experiment: doubly charged TCNE below the full monolayer coverage of
flat-lying TCNE (Θ = 2.2 Nads/nm

2), singly charged TCNE at twice that coverage and neutral
TCNE at even higher coverage.

In contrast to the experimental findings, we did not see any polymorph that contains singly
charged TCNE in the second adsorbate layer. Consequently, we do not corroborate the inter-
pretation that charge transfer to the second layer occurs in this system. Rather, we found the
singly charged species of TCNE in the form of upright-standing TCNE molecules in the first
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adsorbate layer. With these findings, we predict the existence of a phase transition in the first
adsorbate layer from flat-lying molecules to upright-standing ones.

During this study, some starting points for future improvements became clear:
Currently, the structure search for bilayers is based on several guess polymorphs which are used
as starting points for geometry optimizations. Although this was a useful approach to answer
the specific questions raised above, it is a step that could be replaced by a more systematic
approach. Namely, one could build an exhaustive set of second layer polymorphs by repeating
the local adsorption geometry approach as proposed in chapter 4.3.

Furthermore, the current feature vector that describes pairwise interactions only depends on
the relative position of molecules. In order to distinguish pairs of flat-lying molecules from
upright-standing pairs and mixed pairs, we had to introduce an additional dimension that
completely separates these feature spaces (see chapter 2.3.3). This approach works well as long
as the orientation of the adsorbate molecules is restricted to two discrete possibilities (lying
and standing). However, as soon as we include the possibility of continuously tilted adsorbates
a full decorrelation between them would not make sense anymore. Instead one would have to
include a continuous feature that accounts for the tilting angle of the adsorbate molecule with
respect to the surface.
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Appendix

A. Upright-Standing Adsorbates: parallel vs.
perpendicular

As discussed in section 2.2.1, there are in total three types of local adsorption geometries: flat-
lying ones, upright-standing ones with the bond of the two central carbon atoms parallel to the
substrate surface, and upright-standing ones where that bond is oriented perpendicular to the
surface (see Figure 2.1). As the TCNE molecule is approximately square, both upright-standing
orientations result in a similar footprint on the substrate surface (as illustrated in Figure 1.2).
Furthermore, it turned out that all local adsorption geometries with the C=C-parallel orienta-
tion have significantly stronger adsorption energies than their C=C-perpendicular counterparts.
As illustrated in Figure A1, each of the parallel orientated local adsorption geometries leads
to an adsorption energy that is at least ∆E = 270 meV lower than the perpendicular oriented
counterparts. With all those facts, there is no obvious reason why any energetically favorable
polymorph should include upright-standing C=C-parallel TCNE instead of upright-standing
C=C-perpendicular TCNE.

Still, there is one possibility that needs to be ruled out before we can safely neglect the per-
pendicular orientation: If the intermolecular interactions of adsorbates in the perpendicular
orientation are highly favorable compared to the interactions of parallel adsorbates this could
over-compensate for the weaker single-body interactions. To check the two-body interactions,
a series of geometries containing all three combinations of these two upright-standing types are
created.

Figure A2 shows the first series of such calculations. We use those two local adsorption geome-
tries of the parallel and perpendicular orientation that have the smallest energetic difference –
i.e. number 6 and 7 in Figure A1. Furthermore, we choose the positions of those molecules
on the substrate lattice such that they stand in direct opposition – i.e. all other pairs can be
expected to have even lower pair interactions. With these two choices, these pairs constitute the
edge case with the minimal difference in one-body adsorption energy and high pair interaction
energy. If the energy of none of these pairs can be decreased by using perpendicular oriented
molecules, the same should be true for all other possible pairs.

Below the illustrations, the energetic difference between each configuration and the parallel-
parallel configuration is listed. The index GO in ∆EGO indicates that these energies were
obtained after a local geometry optimization was applied to the depicted geometries. In con-
trast to that, ∆ESP is obtained without geometry optimization (single point). Both config-
urations that contain molecules with the central C=C bond perpendicular to the surface are
significantly higher in energy then the pair where both molecules are in the parallel orientation.
Consequently, even if we account for pairwise interactions the perpendicular oriented TCNE do
not become favorable.
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Figure A1.: Adsorption energy of all local adsorption geometries
Annotated is the smallest energetic difference between the two types upright-
standing molecules. The order of the local adsorption geometries corresponds to
that in Figure 2.1

To close even the last possible loophole, we created another series of calculations where the
molecules are even closer. The distance between the local adsorption geometries cannot be
chosen continuously as they are per definition restricted to specific positions relative to the
substrate lattice. In this case, both local adsorption geometries are centered directly above a
copper atom (top position). Therefore, the only pair that is closer than the one above is one
were both molecules sit on neighboring substrate atoms (Figure A3. In these pairs the minimal
distance between the molecules is only d ≈ 2.2 Å. This distance is already smaller than the
minimal distance of the predicted configurations (dmin = 2.6 Å). Furthermore, here we can
only list single point energies as this distance is so small that during geometry optimization
the molecules would simply slide into different local adsorption geometries to increase the
intermolecular distance. Even in this extreme case, the pair interactions are too weak to make
any of the pairs that include a perpendicular oriented TCNE molecule energetically favorable
compared to the parallel-parallel pair.
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name parallel-
parallel

parallel-
perpendicular

perpendicular-
perpendicular

∆ESP (reference) +180 meV +390 meV

∆EGO (reference) +170 meV +360 meV

Figure A2.: Energetic difference between pairs of the two types of upright-standing local ad-
sorption geometries calculated in the periodic unit cell indicated by the black
rhombus.
Minimal intermolecular distance: d ≈ 4.4Å

name parallel-
parallel

parallel-
perpendicular

perpendicular-
perpendicular

∆ESP (reference) +130 meV +460 meV

Figure A3.: Energetic difference between pairs of the two types of upright-standing local ad-
sorption geometries calculated in the periodic unit cell indicated by the black
rhombus.
Minimal intermolecular distance: d ≈ 2.2Å
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B. Hyperparameter Optimization

To find an optimized set of hyperparameters, sweeps over a wide range of values are done for
each hyperparameter (see Figure A4). For each value in these sweeps Bayesian linear regression
is fitted with training sets of varying size, where each training set is chosen D-optimally using
the current set of hyperparameters.

Two of these hyperparameters (Intermolecular distance cutoff dmax and model uncertainty
σmodel) show only weak changes in the prediction accuracy on variation of the parameter.
Therefore, σmodel is chosen such that it meets the convergence criterion that is used for the
DFT settings.

The Intermolecular distance cutoff is chosen such that the intermolecular interactions have
decayed to a few meV at this distance.

For the decay power n all values ≥ −2 lead to good prediction accuracies whereas more negative
values (resulting in a steeper decay) lead to far worse predictions.

The feature threshold ∆f yields best results for ∆f ≤ 0.02. For large training sets a smaller
feature threshold could deliver even slightly better performance, however, at the cost of increased
computational cost since smaller ∆f results in a higher number of features.

We observe that larger real space decay length τ result in a better prediction accuracy for the
largest training set (n = 300) while all smaller training sets yield better predictions for smaller
τ . We, therefore, use the compromise of τ = 3.0 Å.

Similarly, for the feature correlation length ξ a value of 1.0 has been chosen as it yields good
predictions in conjunction with large training sets and, at the same time, avoids the steep
increase in prediction error that occurs for smaller values of ξ with small training sets.

Finally, the prior two-body uncertainty σmax2body shows a rather flat behavior with slightly better
results for larger values. Since larger values for σmax2body correspond to a broader prior probability
density distribution for the two-body interactions, we rather use a more conservative guess of
σmax2body = 1.0 eV .
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Figure A4.: Hyperparameter optimizations for D-optimally selected training sets increasing
size. The dashed black line indicates the chosen parameters.
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C. Additional Vibration Calculations

As described in chapter 5.2.1, discrepancies are found between specific calculated vibrational
frequencies and experimentally observed frequencies. The frequencies of the two studied second-
layer adsorbates are determined as ν̃cc = 1482 cm−1 and ν̃cc = 1512 cm−1, respectively. Both
values fit well with the frequency that is calculated for the neutral TCNE molecule in the gas
phase (ν̃cc = 1491 cm−1). In contrast to that, the experimentally observed frequency that is
suspected to correspond to this adsorption geometry is significantly larger: ν̃cc = 1565 cm−1,
∆ν̃cc ≈ (50− 80) cm−1

Table A.1 summarizes the experimental data and opposes it to literature values as well as our
calculated frequencies. From the first two columns, we see that the frequencies measured in the
studied experiment match the literature values for the ν̃c−c frequencies of TCNE in different
charge states withing ∆ν̃cc ≈ 10 cm−1. These literature values also fit the calculated frequencies
for TCNE in different charge states – except in the neutral form.

Experimental Literature Calculated
(gas phase, FHI-aims, PBE)

TCNE form ν̃cc / cm
−1 TCNE form ν̃cc / cm

−1 TCNE form ν̃cc / cm
−1

Low coverage 1275 [TCNE]2− 1260 TCNE2− 1273
Medium coverage 1375 [TCNE]2−2 1364, 1385 TCNE1− 1375

High coverage 1565 TCNE 1570 TCNE 1491

Table A.1.: Experimental vibration frequencies of the C=C stretching mode measured via
EELS in different adsorbate geometries as well as literature values taken from
[51] and the corresponding frequencies calculated in FHI-aims.

To rule out problems that are specific to the used DFT code or the chosen exchange-correlation
functional, we conduct additional vibration calculations in Gaussian16 [52] using a 6-311G**
basis set and the PBE and B3LYP functionals.

To compensate systematic errors, scaling factors – that are specific for the chosen functional
and basis function – are commonly used. For full transparency, we list both the raw data,
as well as scaled frequencies (Table A.3). For the calculation based on Pople type basis sets
tabulated scaling factors are available (Ref. [53]). As there are no scaling factors specifically for
the 6-311++G** basis set, we used the equivalent factor for this basis set without the diffuse
functions (6-311G**).

XC functional Basis functions Scaling factor
PBE 6− 311G∗∗ 0.991
B3LYP 6− 311G∗∗ 0.967

Table A.2.: Scaling factors for vibrational calculations in Gaussian16 ; taken from Ref. [53]

For the numerical vibration calculations of FHI-aims, no tabulated correction factors are avail-
able. Empiric knowledge by Simon Erker (University of Technology, Graz) points to a scaling
factor of ηcc ≈ 1.02 for calculations concerning the C=C bond.
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FHI-aims
PBE

raw data

FHI-aims
PBE
scaled

Gaussian
PBE
raw

Gaussian
PBE
scaled

Gaussian
B3LYP
raw

Gaussian
B3LYP
scaled

TCNE form ν̃cc / cm
−1 ν̃cc / cm

−1 ν̃cc / cm
−1 ν̃cc / cm

−1 ν̃cc / cm
−1 ν̃cc / cm

−1

TCNE2− 1273 1298 1250 1238 1280 1237
TCNE1− 1375 1403 1382 1370 1424 1377
TCNE 1491 1521 1515 1501 1580 1528

Table A.3.: Calculated vibration frequencies of the C=C stretching mode of TCNE in the gas
phase with different charge states. ’scaled’ indicates this use of scaling factors.
Calculations done in FHI-aims use numerical atomic orbitals as listed in Appendix
D while Gaussian calculations are conducted using the 6-311++G** basis set.

Applying the assumed scaling factor to the data calculated in FHI-aims (second column) shifts
the frequency of the neutral molecule into the correct direction. However, at the same time this
scaling shifts the frequencies of the other two charge states away from the experimental values.
Looking at the frequencies calculated in Gaussian using the PBE functional, we see that the
scaled frequency for TCNE2− is too low by about 40 cm−1, the frequency for TCNE1− fits
nicely and the frequency for neutral TCNE is still too low by about 60 cm−1. When we switch
to the B3LYP functional the first two frequencies stay roughly the same. Interestingly, thou,
the frequency of the neutral TCNE molecule shifts by 27 cm−1 towards the experimental value.
Using this calculation scheme all three calculated frequencies end up within ∆ν̃ = 40 cm−1

with respect to the experimental values.

However, benchmark papers name typical errors of ∆ν̃ = 45 cm−1 for PBE and ∆ν̃ = 85 cm−1

for B3LYP (both on a 6-31++G* basis set, averaged over 32 small molecules of the Gaussian
G2 test set; see Ref. [54]). Similarly, Ref. [55] reports errors of about 4 % (corresponding to
∆ν̃ = 60 cm−1 at ν̃ = 1500 cm−1). Consequently, the error that is observed in the vibrational
frequencies of the neutral molecule is not unusual, but rather the nearly perfect agreements of
the other calculated frequencies with the experimental values are coincidental.

D. DFT Settings

For all single point calculations (i.e. no geometry optimizations) settings are used as displayed
in Listing 5.1. All surface calculations are done with seven layers of Cu. To reduce the compu-
tational costs while still describing processes like charge transfer adequately two different levels
of quality are used for the basis sets of the substrate atoms. The uppermost three layers, which
interact directly with the adsorbates, are described using more rigorous settings (see Listing
5.2). On the other hand, the lower lying substrate layers mainly serve as an electron reservoir
and, hence, can be described using more rough settings (Listing 5.3). For a more detailed pre-
sentation of this approach, please see Ref. [56]. The number of both types of substrate layers
– as well as all other significant settings – have been converged to an uncertainty in the range
of ∆E = 10 meV . For the k-points Monkhorst-Pack grids [57] with a maximal k-point spacing
of ∆k = 2π

80 are used.
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Listing 5.1: Settings used in the single point DFT calculations
# General S e t t i n g s :
xc pbe
sp in none
charge 0
r e l a t i v i s t i c atomic_zora s c a l a r
occupation_type gauss ian 0 .1
k_points_external k_ l i s t . in

# Convergence C r i t e r i a :
sc_accuracy_rho 1e−2
sc_accuracy_etot 1e−5
sc_accuracy_forces 1e−3
s c_ i t e r_ l im i t 200

# Mixer :
p r e c ond i t i on e r kerker 1 . 5
charge_mix_param 0.05

# Other S e t t i n g s :
vdw_correct ion_hirsh fe ld . t rue .
RI_method l v l_ f a s t
use_dipo l e_correc t ion . t rue .
compensate_mult ipole_errors . t rue .
c o l l e c t_e i g e nv e c t o r s . f a l s e .
vdw_pair_ignore Cu Cu

Listing 5.2: Basis set settings for species Cu
s p e c i e s Cu

hirshfe ld_param 59 10 .9 2 .4
nuc leus 29
mass 63 .546
l_hart ree 6
cut_pot 4 .6 2 .0 1 . 0
bas is_dep_cutof f 1e−3
rad ia l_base 53 7 .0
r ad i a l_mu l t i p l i e r 1

# Angular g r id d i v i s i o n s
angular_gr ids s p e c i f i e d
d i v i s i o n 0 .3478 50
d i v i s i o n 0 .6638 110
d i v i s i o n 0 .9718 194
d i v i s i o n 1 .1992 302
d i v i s i o n 1 .5920 434
outer_gr id 434

# Minimal ba s i s f un c t i on s
va l ence 4 s 1 .
va l ence 3 p 6 .
va l ence 3 d 10 .
ion_occ 4 s 0 .
ion_occ 3 p 6 .
ion_occ 3 d 9 .

# Addi t iona l b a s i s f un c t i on s
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i o n i c 4 p auto
hydro 4 f 7 . 4
hydro 3 s 2 .6
hydro 3 d 5

Listing 5.3: Basis set settings for species Cu_reallylight
s p e c i e s Cu_rea l l y l i ght

hirshfe ld_param 59 10 .9 2 .4
nuc leus 29
mass 63 .546
l_hart ree 4
cut_pot 3 .5 1 .5 1 . 0
bas is_dep_cutof f 1e−3
rad ia l_base 53 5 .0
r ad i a l_mu l t i p l i e r 1

# Angular g r id d i v i s i o n s
angular_gr ids s p e c i f i e d
d i v i s i o n 0 .3478 50
d i v i s i o n 0 .6638 110
d i v i s i o n 0 .9718 194
outer_gr id 194

# Minimal ba s i s f un c t i on s
va l ence 4 s 1 .
va l ence 3 p 6 .
va l ence 3 d 10 .
ion_occ 4 s 0 .
ion_occ 3 p 6 .
ion_occ 3 d 9 .

# Addi t iona l b a s i s f un c t i on s
i o n i c 4 p auto

Listing 5.4: Basis set settings for species C
s p e c i e s C

nuc leus 6
mass 12 .0107
l_hart ree 6
cut_pot 4 .0 2 .0 1 . 0
bas is_dep_cutof f 1e−4
rad ia l_base 34 7 .0
r ad i a l_mu l t i p l i e r 2

# Angular g r id d i v i s i o n s
angular_gr ids s p e c i f i e d
d i v i s i o n 0 .2187 50
d i v i s i o n 0 .4416 110
d i v i s i o n 0 .6335 194
d i v i s i o n 0 .7727 302
d i v i s i o n 0 .8772 434
outer_gr id 434

# Minimal ba s i s f un c t i on s
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va lence 2 s 2 .
va l ence 2 p 2 .
ion_occ 2 s 1 .
ion_occ 2 p 1 .

# Addi t iona l b a s i s f un c t i on s
hydro 2 p 1 .7
hydro 3 d 6
hydro 2 s 4 .9
hydro 4 f 9 . 8
hydro 3 p 5 .2
hydro 3 s 4 .3
hydro 5 g 14 .4
hydro 3 d 6 .2

Listing 5.5: Basis set settings for species N
s p e c i e s N

nuc leus 7
mass 14 .0067
l_hart ree 6
cut_pot 4 .0 2 .0 1 . 0
bas is_dep_cutof f 1e−4
rad ia l_base 35 7 .0
r ad i a l_mu l t i p l i e r 2

# Angular g r id d i v i s i o n s
angular_gr ids s p e c i f i e d
d i v i s i o n 0 .1841 50
d i v i s i o n 0 .3514 110
d i v i s i o n 0 .5126 194
d i v i s i o n 0 .6292 302
d i v i s i o n 0 .6939 434
outer_gr id 434

# Minimal ba s i s f un c t i on s
va l ence 2 s 2 .
va l ence 2 p 3 .
ion_occ 2 s 1 .
ion_occ 2 p 2 .

# Addi t iona l b a s i s f un c t i on s
hydro 2 p 1 .8
hydro 3 d 6 .8
hydro 3 s 5 .8
hydro 4 f 10 .8
hydro 3 p 5 .8
hydro 1 s 0 .8
hydro 5 g 16
hydro 3 d 4 .9
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