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Abstract

The production processes of metallic parts usually consist in a succession of thermal
and mechanical steps that transform the material at its very core, at a microscopic
level. The induced changes directly impact the material properties at a macro-
scopic level. Hence, understanding the micro-mechanisms involved in the shaping
of metallic parts has become a major concern for the manufacturers.

Upon straining, some metallic materials, such as aluminium alloys, tend to self-
harden, owing to interaction of microscopic defects with the other constituents of
the microstructure. The evolution of the density of dislocations, of the grain size,
the size and volume distribution of second-phase particles, among others, are all
determinant when trying to assess the strength of metallic alloys.

In a previous work, Dr. P. Sherstnev had developed a model for high-temperature
deformation and dynamic recrystallization of an industrial grade aluminium alloy
6082, featuring the dislocation density as single internal variable. Owing to its
design, the model was unable to account for the work hardening at temperatures
below 400 ◦C. In this thesis, the flow stress of the same alloy 6082 was measured by
means of plane strain compression tests, for strain rates ranging from 10−2 s−1 to
10 s−1 and temperatures ranging from 25 ◦C to 400 ◦C. A subsequent constitutive
model featuring two internal variables was developed in order to represent the
observed work hardening. When the deformation temperature is decreased, the
plane strain experiments showed that the yield stress deviates from the classically
reviewed linearity. This was explained by stating that the flow stress must saturate
to a maximum value when lowering the deformation temperature, corresponding
to the maximum stress required to free moving dislocations from the attractive jog
junctions they form on their way through the crystal.

Additionally, annealing experiments were conducted at 300 ◦C and 400 ◦C, after
room temperature deformation. The observation of the induced kinetics of nucle-
ation and growth of recrystallized grains served as basis to develop a recrystalliza-
tion model. The latter takes as input the same microscopic variables as the ones
used in the constitutive model. As such, it was designed with the objective to
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complement it, and the equations describing the microstructure evolution in the
constitutive model could be re-used. A custom nucleation criterion was expanded
in order to make the model predict the time of beginning of recrystallization. The
nucleation and the growth models are made aware of the competitive static re-
covery that tends to inhibit the recrystallization kinetics, thus the output of the
model revolves entirely around this competition.

Finally, both the constitutive model and the recrystallization model were suc-
cessfully implemented as subroutine in a finite element code, which was in turn
used to model an industrial multi-pass rolling process followed by a continuous
recrystallization step.
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Zusammenfassung

Der Herstellungsprozess von metallischen Bauteilen besteht gewöhnlich aus einer
Abfolge von thermischen und mechanischen Schritten, welche die Mikrostruktur
des Materials umwandeln. Die induzierten Veränderungen wirken sich direkt auf
die makroskopische Materialeigenschaften aus. Daher ist das Verständnis der
Mikromechanismen, die bei der Formgebung von Metallteilen beteiligt sind, für
die Hersteller ein Hauptanliegen geworden.

Während der Verformung neigen einige metallische Materialien, wie Aluminium-
legierungen, aufgrund der Wechselwirkung von mikroskopischen Defekten mit an-
deren Bestandteilen der Mikrostruktur dazu, sich selbst zu verfestigen. Die Fes-
tigkeit von Metalllegierungen wird von der Versetzungsdichte, der Korngröße, der
Größenverteilung und der Volumenverteilung von Partikeln der Sekundärphasen
bestimmt.

In einer früheren Arbeit hat Dr. P. Sherstnev ein Modell für die Hochtemper-
aturverformung und die dynamische Rekristallisation einer industriellen Alumini-
umlegierung 6082 entwickelt, das die gesamte Versetzungsdichte als einzelne in-
terne Variable darstellt. Aufgrund seines Designs konnte das Modell die Kaltver-
festigung bei Temperaturen unter 400 ◦C nicht berücksichtigen. In der vorliegenden
Arbeit wurde die Fließspannung dieser Legierung mit Hilfe von biaxialen Verfor-
mungsversuchen für Dehnraten von 10−2 s−1 bis 10 s−1 und Temperaturen von
25 ◦C bis 400 ◦C festgestellt. Ein nachfolgendes Materialmodell mit zwei internen
Variablen wurde entwickelt, um die beobachtete Verfestigung darzustellen. Bei ab-
nehmender Verformungstemperatur zeigten die experimentellen Ergebnisse, dass
die Fließspannung von der klassischen Betrachtung der Linearität abweicht. Dies
würde bedeuten, dass die Fließspannung einen Sättigungswert erreicht, sobald die
Vervormungstemperatur gesenkt wird. Dieser Sättigungswert entspricht der max-
imal Spannung, die erforderlich ist, um die beweglichen Versetzungen aus der
Attraktivität der Jog Junctions zu lösen.

Nach der Verformung bei Raumtemperatur wurden Wärmebehandlungen bei 300 ◦C
und 400 ◦C durchgeführt. Die Untersuchung des dabei autretenden Rekristalli-
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sationprozesses diente als Grundlage für die Entwicklung eines Rekristallisations-
modells. Dieses Model wurde als Erweiterung des oben erwähnten Materialmodells
konzipiert, wobei die internen Variablen sowie die Gleichungen für die Mikrostruk-
turentwicklung weiterverwendet werden können. Ein spezifisches Keimbildungskri-
terium wurde erweitert, damit das Modell den Zeitpunkt des Rekristallisationsbe-
ginns vorhersagen kann. Das Rekristallisationsmodell berücksichtigt die Keimbil-
dung und das Kornwachstum in Abhängigkeit von der Erholung der Mikrostruktur.

Schließlich wurden beide Modelle erfolgreich in einem Finite Elemente Code für ein
industrielles Durchlaufwalzverfahren mit anschließender Wärmebehandlung imple-
mentiert.
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Introduction

Nowadays, aluminium and its alloys rank second in consumption volumes among
all the metals, surpassed only by steel [1–3]. From packaging to transportation in-
dustries, in structural parts and façades or for decorative purposes, in the chemical
industry, in constructions, aluminium has become a key component in all kinds
of applications. Its low density, corrosion resistance, low temperature formabil-
ity and recyclability help to reduce the energetic costs. Especially, its excellent
strength-to-weight ratio has been the primary factor for the development of the
aeronautic and automotive industries.

The 6xxx series alluminium alloys have magnesium and silicon as main alloy-
ing elements. They are high strength alloys that are subjected to precipitation
strengthening. Although they do not reach the same strength level as alloys from
the 2xxx (copper alloyed) and 7xxx (zinc and magnesium alloyed) series, their
good weldability and machinability make them very good general purpose alloys.
Among them, the 6061 and 6082 alloys are two of the most commonly used, es-
pecially in the automotive industry. They are usually found as sheets or extruded
products.

The production process of 6xxx series aluminium sheets consists in a succession of
thermo-mechanical steps (figure 1) designed to improve the strength of the final
product while reaching the desired geometry. The initial billet with its specific
chemical composition is produced by continuous or batch casting. Each subse-
quent step brings irreversible changes in the microstructure that affect directly
the mechanical properties of the material.

I An initial annealing step can be applied in order to homogenize the chemical
composition of the billet. The diffusion of solute elements is driven by chemical
gradients in the workpiece.

II After being brought to the working temperature, the billet is hot rolled several
times between 550 ◦C and 450 ◦C down to a thickness of a couple of centime-
tres. At this point, the rolling passes are bidirectional to limit the accumulated
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Figure 1: Typical industrial rolling schedule. I: homogenization. II: hot
rolling. III: air cooling. IV: cold rolling. V: solution annealing. VI: cold
storage. VII: ageing.

strain in the slab. The combination of mechanical work and high temperature
induces dynamic recovery and static recrystallization between passes, which
preserves the ductility of the material.

III The plate is then coiled and slowly cooled down in air, leaving enough time for
diffusional processes to happen. The occurences of recovery, recrystallization
and grain growth result in a coarse grained microstructure. The particles
of second phases, if any, also have time to grow and stabilize, depleting the
matrix of solid solution atoms.

IV The unidirectional multiple passes of cold rolling at room temperature, down
to a thickness of a couple of millimeters, strengthen the material by strain-
hardening. If necessary, they can be alternated with recrystallization treat-
ments. During cold rolling, the energy of the material is maximized, strength-
ening it but also reducing its ductility.

V A solution annealing step at ∼580 ◦C is used to dissolve the second phase par-
ticles. During this step, the highly strained material recrystallizes. Because of
the energy stored during cold deformation, many grains nucleate simultane-

2



ously and then impinge upon each other during growth. The final grain size is
a function of the strain accumulated during cold deformation, the annealing
temperature and the annealing time. A recrystallized but finely grained mi-
crostructure brings a good balance of mechanical strength and ductility to the
material. At the end of the solution annealing, the plate is water quenched in
order to keep the alloying elements in solid solution.

VI After solution annealing and water quenching, the sheet is coiled and stored
at room temperature for a couple of days. In alloys 6061 and 6082, diffusional
processes happen readily at room temperature. The storage provokes the
precipitation of metastable clusters that reduce the ageing potential in the
next step.

VII The final ageing step at temperatures between 150 ◦C and 250 ◦C for a couple
of hours is designed to promote diffusion. The temperature is sufficient for
the nuclei that precipitated in the previous step to slightly coarsen and to
form new nuclei, but low enough to keep the second phase particles finely
disperse. This ageing step is crucial in hardening the material. The chemical
composition of the alloy, the temperature and the time of ageing govern the
phase transformations in the material, which in turns governs the precipitation
strengthening.

A combination of recrystallized, finely grained and precipitation hardened mi-
crostructure brings the best mechanical strength to the sheet while preserving a
reasonable ductility for further shaping processes. It is also possible to shape the
plate after step V or after step VI, before ageing. This is usually the case for deep
drawing in the automotive industry [2].

It is now a well established practice to model the industrial processes with finite
element methods. Such models require flow data as an input, i.e. the flow stress of
the material with its strain, strain rate and temperature dependency. The strain-
stress curves can either be obtained experimentally with simple deformation tests
— plane strain compression tests to simulate rolling — over the desired range of
temperatures and strain rates, or they can be calculated on the run, either by
phenomenological approaches or with physically based models.

Modelling in general can be a powerful tool. It allows to roughly calculate the
properties of the final product, which is a great help for designing and improving a
production process. Yet, as models can only be as good as our understanding of the
physical phenomena they are meant to represent, no model is so far self-sufficient,
and an experimental investigation is always needed to validate their output.

Phenomenological approaches consist in setting up a constitutive equation linking
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the flow stress to the strain, the strain rate and the temperature, and optimizing
it so that it best represents the main features of the flow curves. The equation
usually features a power law dependency for the strain and the strain rate, and an
activation energy for the thermal dependency. Such models present the advantages
of being easy to set up and requiring almost no computational power, but they do
not provide any insight on the physics of the problem at hand.

Physical approaches are more deeply connected to the microstructure evolution. It
is well-known that during straining and annealing, the microscopic state of the ma-
terial is modified. This modification depends essentially on the material itself, its
initial state and its thermomechanical history. Dislocation multiplication, recov-
ery, recrystallization, phase transformations. . . All those microstructural changes
affect directly the resistance of the material, hence its flow stress.

Typically, finite element codes are used to predict the strain, strain rate and tem-
perature distributions in a workpiece during thermomechanical processing, and
a routine is called at each time step and each node to calculate and return the
microscopic state to the main code.

The present work first deals with modelling the flow stress of an industrial grade
Aluminium Alloy 6082 during deformation at room to high temperature, for strain
rates ranging from 0.01 s−1 to 10 s−1, and based on a microscopic approach. Sec-
ond, a model for static recrystallization during annealing after cold deformation
was developed. It takes the microscopic variables of the constitutive model as
input, therefore it is the continuity of the first part. Finally, both models are
implemented in the finite element code DEFORM2DTM where they are used to
characterize multiple rolling and subsequent recrystallization.

This document is divided into 6 chapters. Chapter 1 reviews the state of the
art regarding constitutive microstructure based modelling and recrystallization
modelling. From this chapter, the open questions are identified, and the objectives
of the present work are elaborated. Chapter 2 concerns the characterization of the
alloy used for this study. The methodology for microscopy and some experimental
results are presented here. Chapter 3 introduces the constitutive model and its
results. The results of the mechanical tests are presented in this chapter, in parallel
with those of the model. Chapter 4 deals with recrystallization. A model for
calculating the recrystallized grain size and volume fraction is developed. The
numerical results are presented together with the experimental measurements for
direct comparison. In chapter 5, both models are implemented in the FEM engine
DEFORM2DTM. Finally, chapter 6 discusses the yet unaddressed points raised in
the previous chapters.
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Chapter 1

State of the art

Microstructure based models used to describe material flow and recrystallization
behaviour require a certain insight on relevant microscopic features and mecha-
nisms.

The first part of this chapter summarizes the knowledge necessary to further dis-
cuss and model the concepts of flow stress and recrystallization.

The second part is a review of the most relevant literature on flow curve modelling.

The third part deals with the microscopic approaches to boundary migration and
recrystallization modelling.

1.1 Generalities on dislocations

From this point onward, it is assumed that the reader is familiar with the concepts
of dislocations in crystalline materials and deformation by slip. Comprehensive
introductions can be found in [4,5]. Section 1.1.1 summarizes the concepts relevant
to this thesis.

1.1.1 Dislocations, slip and plastic deformation

Plastic deformation in metallic materials can be achieved in two ways: slip or twin-
ning. Both modes of deformation occur along given crystallographic planes and
directions. The stacking fault energy of the material is the determining property
in favoring one or the other mode of deformation. Wrought commercial aluminium
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alloys with a magnesium content below 3–4 w% possess a high stacking fault en-
ergy, which favours deformation by slip.

Slip mode is achieved by the movement of line defects in the microstructure, called
dislocations, under the application of a shear stress. Dislocations deform the crys-
tal structure elastically. As such, they carry an elastic strain field and an elastic
energy. There are two kinds of dislocations: edge and screw. The Burgers vector
of a dislocation determines its unit displacement. The Burgers vector of an edge
dislocation is perpendicular to the dislocation line, and that of a screw dislocation
is parallel to the dislocation line. The plane formed by a dislocation line and its
Burgers vector is called a slip plane; it is the plane in which the dislocation can
glide. Consequently, edge dislocations are confined to one plane, whereas screw
dislocations are free to glide in any plane containing the dislocations line. In the
general case, the dislocations have mixed edge and screw characters.

When a crystal is stressed, the component of the applied stress resolved on a
particular slip plane is necessarily a shear stress. Only the resolved shear stress
acts on the dislocations and contributes to their motion. The applied stress is
related to the resolved shear stress by the Schmid factor (section 1.1.2). When
the resolved shear stress reaches a critical value, the dislocations start moving and
plastic deformation occurs. In a single crystal, the resolved shear stress is usually
larger on a particular slip system, called the primary slip system. It is the slip
system on which dislocations glide preferentially. The other slip systems are called
secondary slip systems.

Dislocations located on secondary slip planes intersect the primary slip plane; they
are called forest dislocations with respect to the primary slip system. The intersec-
tion of mobile dislocations with forest dislocations leads to the formation of jogs,
which are steps in the dislocation lines. Those jogs effectively increase the length
of the dislocations, thus they increase the energy of the material. In addition, the
jogs exert an attractive force on the mobile dislocations. In consequence, the stress
required to create a jog and break the mobile dislocation free from them is greater
than the shear stress needed for unhindered dislocation glide.

When a mobile mixed dislocation encounters an obstacle on its slip plane, for
example an unshearable second-phase particle, its screw character can overcome
the obstacle by gliding in a secondary slip plane. This phenomenon is called cross-
slip. It plays a primordial role in the plastic deformation and the strain-hardening
behaviour of commercial aluminium alloys.

The mechanisms of jog formation and cross-slip can both be eased with thermal ac-
tivation. In other words, the stress required to create jogs or move edge dislocation
out of their slip plane can be reduced by increasing the working temperature.
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Mobile dislocations can be immobilized in several ways. They can encounter an
obstacle that they cannot bypass. This leads to dislocation pile-up and stress
localization. Upon applying a higher shear stress, the obstacle might be overcome
by cross slip. Mobile dislocations can also reach a configuration of lower energy
by forming a dipole with another dislocation of opposite sign, initially gliding on
a parallel slip plane but in the opposite direction. When a dipole forms, both
dislocations stop gliding and get stored in the microstructure.

In high stacking fault materials, the stored dislocations have been shown to re-
arrange in dislocation entanglements, forming regions of high dislocation density
and leaving the rest of the matrix almost depleted of stored dislocations. Those
peculiar structures are called dislocation cells [6]. Upon further deformation, the
dislocations within the cell walls organize into a regular structure of even lower
energy. The cells turn into subgrains, whose walls are called low angle grain
boundaries (LAGBs) because they delimit regions of a grain misoriented by a small
angle — of the order of 1 – 15°. In contrast, grain boundaries in polycrystals have
a misorientation greater than 10 – 15°and are called high angle grain boundaries
(HAGBs).

Mobile dislocations get absorbed by grain boundaries when they arrive into one,
but not necessarily by subgrain boundaries. In fact, the main trapping mechanism
is dipole formation. The mobile dislocations can travel across several subgrains
before being stored in the microstructure. Nes [7] demonstrated statistically that
the mean free path L of a moving dislocation varies inversely as the square root
of the dislocation density ρ:

L ∝ ρ−1/2 (1.1)

The dislocation density in crystalline materials is usually defined as the length of
dislocation line per unit volume, and it is expressed in m m−3, or m−2.

During deformation, not only do the dislocations travel and get stored, but they
also multiply and annihilate. The Frank and Read mechanism, where a dislocation
segment pinned at both ends by two obstacles is bent until it emits a dislocation
loop, depicts a self regenerative source of mobile dislocations. Annihilation hap-
pens when two edge dislocation segments of opposite signs meet each other on the
same slip plane. It can happen by glide when the two opposite dislocations travel
readily on the same slip plane where they eventually meet, or by climb. Climb is
a diffusive process that allows dislocations to travel between parallel slip planes
by emission or absorption of vacancies. Because of its diffusive nature, climb is a
strongly time and temperature dependent process. Although Nes [7] argued that
room temperature climb cannot be completely disregarded, it is widely accepted
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that dislocation annihilation at room temperature occurs almost exclusively by
glide. This means that plastic deformation is necessary at room temperature for
dislocation annihilation. At higher temperatures, the diffusional barriers for va-
cancy migration vanish and both annihilation by glide and by climb are permitted.
One must however take into account the deformation rate. When dealing with
creep, the strain rate is so low (typically 10−12 to 10−10 s−1 for dislocation creep)
that climb is often considered the main annihilation process. In industrial rolling,
where strain rates can be greater than 100 s−1, annihilation happens almost only
by glide, even at high temperatures.

Dislocations are line defects whose that deform the crystal lattice elastically. As
such, they carry an elastic strain field and an elastic energy. When dislocations
exit the crystal or annihilate, either by glide or by climb, their strain energy is
removed from the microstructure. When they re-arrange in a subgrain structure,
their strain fields interfere with each other to reduce the stored energy. A reduction
in stored energy, whether it comes from dislocation annihilation or re-arrangement
in subgrain boundaries, is called recovery. Cross-slip and climb greatly promote re-
covery in that they increase the chances for dislocations to meet other dislocations
and annihilate, or to re-arrange to form subgrains.

1.1.2 Taylor factor

As mentioned before, dislocations glide under the effect of an applied shear stress,
in planes of given orientations. A slip system is defined as a set of symmetrically
identical slip planes associated with a slip direction. In FCC crystals such as
aluminium, there is a total of 12 slip systems, of whom a minimum of 5 must be
active to accommodate any arbitrary deformation [5].

Single crystals can be sheared on a single slip system. The applied stress however
is not necessarily parallel to the slip system. The component τk of the applied
stress resolved on a given shear system is related to the applied macroscopic stress
σ by the Schmid factor m [5]:

σ = τk/m (1.2)

In polycrystals, the macroscopic applied stress σ cannot be related to the resolved
shear stress on a given slip system. Instead, it has to be related to the average
resolved shear stress τ in all the active slip systems [8, 9]. The Taylor factor M
replaces the Schmid factor:
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σ = Mτ (1.3)

Let us call γk the total slip on a given slip system k and ε the macroscopic strain.
For infinitesimal deformation steps, the Taylor factor is defined as:

M =

∑
k dγk
dε

(1.4)

In FCC polycrystals with randomly oriented grains, the Taylor factor is equal to
3.06. Equation (1.3) is often rewritten as [7, 10]:

σ = σ0 +Mτ (1.5)

Where σ0 is a practical constant serving as a buffer for all contributions to the
yield stress of the material that are not addressed specifically when defining τ . σ0
is not always explicitly defined, in which case it can be taken equal to 0.

1.1.3 Orowan equation

Let us consider a single crystal populated with uniformly distributed mobile dis-
locations of density ρm and sheared with an applied resolved shear stress τ . The
total shear strain γ resulting from the movement of the dislocations across the
crystal is given by the Bailey-Orowan equation [11]:

γ = ρmbl̄ (1.6)

The dislocations move a distance l̄ in average. Note that l̄ is not necessarily equal
to the mean free path L of dislocations. It is the average distance traveled by
mobile dislocations to achieve the plastic strain γ. At very small strains, l̄ < L.
At larger strains, l̄ is not bound. b is the norm of the Burgers vector, usually taken
equal to the lattice parameter. The time derivative of equation (1.6) reads:

γ̇ = ρ̇mbl̄ + ρmbv̄ (1.7)

Where γ̇ is the shear strain rate and v̄ the average dislocation velocity. The rate
of variation of the mobile dislocation density is usually believed to be slow in
front of the variation of the average slip distance, therefore equation (1.6) is often
simplified as:
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γ̇ = ρmbv̄ (1.8)

Note that equation (1.8) assumes implicitly that the density of mobile dislocation
remains constant during deformation (∂ρm/∂t = 0).

1.2 Flow stress and the stages of hardening

The level of stress necessary to start deforming plastically metallic materials is
called the yield stress. As deformation proceeds, the level of stress necessary to
keep the material flowing is called the flow stress. When deformation occurs by
glide, the yield stress is the stress that needs to by applied to set the mobile
dislocations in motion, and the flow stress is the stress required to keep them
moving.

During deformation, the multiplication and the storage of dislocations lead to an
increase in the flow stress called strain hardening (or work hardening). The gliding
dislocations interact with the surrounding stored dislocations which hinder their
motion. The densification of the network of stored dislocations leads to strain
hardening. At a given deformation temperature T and a given resolved shear rate
γ̇, the strain hardening is defined as:

Θ :=
∂τ

∂γ

∣∣∣∣
γ̇, T

(1.9)

In opposition, recovery, whether it comes from dislocation annihilation or cell and
subsequent subgrain formation, tends to soften the microstructure by releasing its
stored energy of deformation and to balance the strain hardening.

The flow stress is often plotted with respect to the macroscopic strain, at a given
temperature and a given strain rate. Such a plot is known as a flow curve. Another
useful representation is that of the strain hardening as defined in equation (1.9)
with respect to the shear stress of the material, which is referred to as a Kocks-
Mecking plot [7]. Because the shear stress / strain of a polycrystalline material is
related to its macroscopic stress / strain by only the Taylor factor, and because M
is often taken as a constant, it makes no qualitative difference whether we use the
shear or the macroscopic stress / strain in the flow curves, or in the Kocks-Mecking
plots.
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Typically, the strain hardening of cell forming face centred cubic alloys such as
aluminium alloys can be divided in four main stages (figure 1.1). Descriptions of
the stages of work hardening can be found in [12,13].

• Stage I, also called “easy glide”, corresponds to the glide of mobile disloca-
tions on a single slip system in single crystals. It occurs only in well recovered
single crystals, when the microstructure is still very much free of stored dis-
locations. Therefore the mobile dislocations can glide almost unhindered,
leading to quite large strains, up to 0.6. The hardening in stage I is low, on
the order of 2 × 10−4µ, where µ is the shear modulus. It is mostly due to
the formation of dislocation dipoles. Stage I cannot be observed during the
deformation of polycrystals, thus will not be given further attention here. It
is however of great importance when modelling creep hardening [14].

• Stage II onsets right after stage I in single crystals, and at the beginning
of plastic deformation in polycrystals. The accumulation and pile up of
dislocations on the primary slip system build up a resolved shear stress on
secondary slip systems. When that shear stress becomes greater than a
critical value, dislocations can then cross slip and glide on the secondary slip
systems. Secondary slip presumably relaxes the stress concentration on the
primary slip system, but leads to the formation of jogs as a result of the
interactions of dislocations gliding on different slip systems. The hardening
rate in stage II is constant and rather large, on the order of µ/200 [7, 12],
and depends weakly on the temperature or the strain rate [15]. This results
in a linear increase in flow stress as the deformation proceeds.

• Stage III onsets as the flow stress deviates from linearity with respect to
the strain. It is associated with dynamic recovery and the formation of dis-
location cells (and eventually subgrains). The strain hardening decreases
monotonically with increasing stress. In contrast to stage II, stage III be-
haviour is strain rate sensitive and highly temperature sensitive. At high
deformation temperatures, the hardening eventually cancels and stage III
ends with a flow stress saturation. The subsequent deformation at constant
flow stress is called steady-state.

• Stage IV was intensively reviewed in [12, 16]. It typically characterizes the
behaviour at room temperature after stage III, where the flow curves present
a constant and low hardening of about 2×10−4µ, much like in Stage I. Several
causes have been proposed for the sustained hardening, such as grain or
subgrain size refinement, plastic instabilities, stress induced transformations,
etc. The mechanisms responsible for the stage IV behaviour are however still
unclear. At high temperatures, a steady-state is reached at the end of stage

11



III and stage IV is not achieved. At moderate temperatures, an intermediate
state between stage IV and steady-state is achieved.

Zehetbauer and Seumer reported systematic flow stress saturation at room tem-
perature at very large strain, typically greater than 4 – 5 [17]. That is sometimes
understood as the onset of a fifth stage followed by a steady-state at room temper-
ature. When the deformation temperature increases, diffusional mechanisms such
as dislocation climb are promoted, and part of the energy necessary for mobile
dislocations to overcome the local obstacles they meet on their way through the
crystal is provided by heat. The overall hardening decreases in intensity, leading
to the onset of a steady-state regime at high temperatures.

Typical examples of a) flow curves and b) Kocks-Mecking plots for increasing tem-
peratures are given in figure 1.1, after [7]. In this figure, τi is the yield stress of
the material. τIII to τS, respectively γIII to γS, are the critical resolved shear
stresses, respectively resolved shear strains, for the onsets of stages III to satu-
ration. Those critical stresses have been thoroughly investigated [7] and decrease
with the temperature.

1.3 Flow stress modelling

In 1934, Taylor introduced the movement of dislocations as a mechanism for plastic
deformation and formulated the expression of the shear stress of the material [18].
His theory is supported by experimental evidence [19, 20] and has been used as
basis for all subsequent models. One of the most successful flow stress models was
developed by Kocks in 1976 [21]. It sets a model structure that has since been
used as a standard. Typically, a flow stress model consists in:

1. A set of independent internal variables used to describe the microstructure.

2. A constitutive equation relating the flow or the shear stress of the material
to the microscopic variables and the processing conditions.

3. A set of rate equations for the internal variables.

1.3.1 The Taylor equation

Edge dislocations of opposite signs gliding on parallel slip planes exert an attractive
force on each other that is inversely proportional to the distance between the slip
planes. In [18], Taylor argued that single crystals deform plastically when the
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Figure 1.1: The stages of work-hardening, after [7]. Typical a) flow curves
for increasing temperature and b) corresponding Kocks-Mecking plots.
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resolved shear stress is sufficient to break two edge dislocations free from each
other’s attraction. The Taylor equation reads:

τ = τath =
α1µb

λρ
(1.10)

α1 is a stress constant in the range 0.1–1 and λρ is the distance between stored
dislocations, usually written as:

λρ = ρ−0.5 (1.11)

The shear stress is labeled athermal to emphasize the fact that it is almost inde-
pendent of the deformation temperature, except for the small variations in µ. b
also varies with the temperature, but its variation is negligible compared to that
of µ [13]. Because the flow stress actually depends on the processing conditions, a
more useful form of equation (1.10) should include a temperature and strain rate
dependent term.

1.3.2 The model of Kocks

In his model [21], Kocks features the stored dislocation density ρ as single internal
variable in an attempt to model saturating flow stresses in stage III hardening.
The shear stress is given by:

τ = τaths (T, ε̇) (1.12)

Recalling equation (1.3), the constitutive equation reads:

σ = Mτaths (T, ε̇) (1.13)

The function s (T, ε̇) accounts for the processing conditions, namely the tempera-
ture T and the strain rate ε̇. The expression structure parameter has been used
by Estrin in e.g. [22] to refer to the microstructure contribution to the flow stress,
i.e. to τath in equation (1.13). The deviations from the intrinsic material strength
due to the process conditions are all accounted for by s. The latter describes the
ratio of flow stress for a fixed microstructure at different temperatures and strain
rates. Kocks only writes that:
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s = s

(
kBT ln

(
ε̇

ε̇0

))
(1.14)

With kB the Boltzmann constant and ε̇0 a normalization strain rate. The argument
of s is the combination expected from the thermal activation theory. Estrin in [22]
relates s to the strain rate sensitivity m∗ of the material via:

s =

(
ε̇

ε̇0

)m∗
, m∗ =

∂ lnσ

∂ ln ε̇

∣∣∣∣
T,ε

� 1 (1.15)

Where m∗ is generally a function of the temperature, as is ε̇0. This approach
clearly separates the effects on the flow stress of the microstructure from those of
the processing conditions.

At given processing conditions, the hardening in stage III decreases linearly with
the shear stress. One can write:

∂τath
∂γ

= K −K ′τath (1.16)

K and K ′ being model constants. Recalling equation (1.10), it comes:

∂ρ

∂γ
=

2K

α1µb

√
ρ− 2K ′ρ (1.17)

Or equivalently:

∂ρ

∂t
= γ̇

(
2K

αµb

√
ρ− 2K ′ρ

)
(1.18)

Equation (1.18) can be reformulated in the more general form:

∂ρ

∂t
=

(
∂ρ

∂t

)+

−
(
∂ρ

∂t

)−
(1.19)

The + identifies a storage term and the − an annihilation term. Note that Kocks
did not introduce any specific mechanism for those two phenomena. Rather, he
reached the same expression as in equation (1.17) by stating that the mobile dislo-
cations would statistically become stored after traveling their mean free path, and
that some of the stored dislocations would annihilate when contacting a recovery
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site. In any case, the evolution rates are temperature and strain rate independent
(except for the small thermal variations of b and µ). They represent the evolution
of an ever similar microstructure with respect to the deformation conditions.

1.3.3 Second phase strengthening

A common addition to almost every model dealing with multiple-phase alloys
[5, 9, 23–25] is the contribution of second-phase particles to the flow stress of the
material. It comes under the form of an extra shear stress τd:

τ = τath + τd (1.20)

The expression of τd varies from one model to another, but it is always based on
the well known Orowan stress:

τd =
χµb

λd
(1.21)

Where χ is a constant of the order of unity and λd is the inter particle spacing
in the slip plane. Nes et al. [24] and Kabliman and Sherstnev [25] use another
expression based on the calculation of Ashby [26]:

τd =
χ′µb

1.24× 2π

1

λd
ln

(
λd
b

)
(1.22)

With χ′ a constant of the order of unity.

If the particles are arranged on a square lattice, then λd is:

λd = N
−1/2
S (1.23)

NS is the surface density of particles intersecting the slip plane.

1.3.4 Solid solution strengthening

Point defects, i.e vacancies, self-interstitial atoms and alloying elements in solid
solution distort the surrounding matrix elastically and can interact with nearby
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dislocations. Spherical point defects and edge dislocations have an interaction
energy EI given by [5, 27]:

EI =
4

3
µbr3aη

1 + ν

1− ν
sin θ

r
(1.24)

Where (r, θ) are the polar coordinates of the point defect relative to the dislocation
line, θ being measured from the slip direction, ν is the Poisson coefficient of the
matrix, and ra and ra (1 + η) are the atomic radius of the matrix and the radius of
the point defect. η is then seen as a misfit parameter between the two radii. It is
found to be maximized for interstitial atoms, falling in the range 0.1 – 1.0 [5]. The
sites of minimum interaction energy, i.e. maximum binding energy, are within the
dislocation core at θ = 3π/2 and r ≈ b. Thus interstitial atoms tend to segregate
in the dislocation cores, provided that they have time to diffuse. The equilibrium
defect concentration c near the dislocation of a dilute solution of point defects
reads [27]:

c = c0 exp

(
− |EI |
kBT

)
(1.25)

c0 being the concentration of solutes far away form the dislocation. Assuming
that each interstitial in the dislocation core exerts a local pinning force (local-
force model in [5]), an additional shear stress τss needs to be applied to unlock the
dislocations:

τss ≈ 0.13µ
√
c (1.26)

And the resolved shear stress becomes:

τ = τath + τd + τss (1.27)

Several remarks have to be done here. First, we have only considered one type
of interstitial, i.e. one alloying element. Each type of interstitial atom has its
own misfit parameter and its own interaction energy with the dislocations. In a
commercial alloy, the different kinds of solute atoms do not have the same pinning
effect on the dislocation, and τss must take into account the concentrations of all
solute elements. Second, τss is directly linked to τd for the former decreases in
magnitude when the atoms in solutions migrate toward the second phase parti-
cles. In general, τss << τd [5], thus τss only needs to be included in equation (1.27)

17



when the matrix is depleted of second-phase particles, like after solution anneal-
ing. Finally, when dislocations break free from the solute atoms and glide away,
equation (1.25) does not hold any more unless the temperature is high enough
and the strain rate low enough to allow the solute atoms to diffuse faster than the
dislocations move and repeatedly lock them.

1.3.5 Softening due to static recovery

One inconvenient of the model of Kocks is that it is limited to the description of
dynamic phenomena. Indeed when γ̇ = 0, equation (1.18) cancels out. Thus, no
static recovery by climb is allowed. This might not be a problem during deforma-
tion, where all dynamic effects prevail, but needs to be addressed after deformation
at high temperature for example, when a non negligible fraction of dislocations an-
nihilate. Recovery softens the material and reduces the yield stress as the latter
depends explicitly on the dislocation density. A static recovery coefficient Cr can
be added to the evolution rate:

∂ρ

∂t
= γ̇

(
2K

α1µb

√
ρ− 2K ′ρ

)
− Cr (1.28)

Estrin [23] advises to use a coefficient with the general form:

Cr = C0
r exp

(
− Q0

kBT

)
sinh

(
β0
√
ρ

kBT

)
(1.29)

Where C0
r , Q0 and β0 are constant parameters to be optimized by comparison

with experiments. Considering that any annihilation event occurring after defor-
mation must be driven by climb mechanisms acting on the edge component of the
dislocation stored during deformation, one can calculate another recovery coeffi-
cient based on the climb forces acting on the dislocation segments [5]. Caillard
and Martin [28] studied intensively the thermally activated mechanisms in crystal
plasticity and came up with a coefficient of the form:

Cr = C1
r

µb3

π (1− ν)

D

kBT
ρ2 (1.30)

C1
r is a constant to be optimized andD is the diffusion coefficient with an Arrhenius

form:
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D = D0 exp

(
Qdiff

kBT

)
(1.31)

D0 being the Arrhenius coefficient. This form was used by Kabliman and Sherstnev
in [25]. Note that the diffusion coefficient can be that of bulk diffusion or that of
pipe diffusion, according to the dominant mechanism for the diffusion of vacancies.

1.3.6 Processing conditions

Another issue that has to be properly addressed is the influence of the strain rate
and the temperature on the flow stress of the material — dealt with by the function
s (T, ε̇) in equation (1.13).

With equation (1.15), Kocks, Mecking and Estrin include the strain rate sensitiv-
ity in the expression of the flow stress [21–23, 29]. Such an approach has proven
successful to model high temperature deformation and creep. It is however unsat-
isfactory in that is does not ensue from any physical mechanism, but rather follows
on from phenomenological features in the flow curves.

[7, 9, 30, 31], among others, make use of the concept of local obstacles to the
dislocation movement. This concept is broken down in [5]. It is born from the
idea that the flow stress results i) from long range interactions between mobile
and stored dislocations through their elastic field (Taylor, equation (1.10)), and
ii) from the necessity for mobile dislocations to bypass local, short range obstacles
when they encounter them physically. The short range obstacles present energy
barriers that can be overcome by thermal activation, thus their contribution to
the flow stress is highly temperature dependent.

Suppose that a dislocation segment moving in the x direction is stopped at a
position x1 by some local obstacle. The obstacle exerts a resisting force F on the
dislocation line. In order for the dislocation to move to a position x2 after the
obstacle, it must overcome the energy barrier Qact presented by the obstacle :

Qact =

∫ x2

x1

Fdx (1.32)

Part of this energy, the Gibbs energy of change ∆G between positions x1 and
x2, can be provided by thermal activation. The remainder has to be supplied by
mechanical work, i.e. an extra shear stress τeff has to be applied, which produces
a force τeffb per unit length on the dislocation line. Figure 1.2 presents the simple
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Figure 1.2: Profile of the resistance force F versus distance x for a square
barrier opposing the dislocation motion. The shaded area is the energy
provided by the long range stresses. To travel from x1 to x2, the disloca-
tions need some extra energy. The hashed area is the energy provided by
the effective stress, and the white area is the thermal energy.

case of a square energy barrier, when the obstacles oppose a constant resisting
force to the dislocation motion. Let λ be the spacing of the obstacles along the
dislocation line, the effective forward force on the line per obstacle is τeffbλ, and
the work done by τeff when the dislocation moves from x1 to x2 is τeffbλ (x2 − x1).
bλ (x2 − x1) has the dimension of a volume and is called the activation volume Vact
for convenience. Qact reads:

Qact = ∆G+ τeffVact (1.33)

Or equivalently:

∆G = Qact − τeffVact (1.34)

If the dislocation line vibrates at the attack frequency νatt (it “attacks” the obstacle
at that frequency), its probability to successfully overcome the energy barrier of
the obstacle at temperature T is given by the Boltzmann factor exp (−∆G/kBT ),
provided that ∆G� kBT . Therefore the dislocation velocity v̄ reads:

v̄ = d̄vatt exp

(
−Qact − τeffVact

kBT

)
(1.35)
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νatt is often assimilated to νD, the Debye vibrational frequency of the atoms near
the dislocation line (νD ≈ 1.5× 1013 s−1 for aluminium), although Granato et al.
[32] argue that the attack frequency can differ from the Debye frequency by several
orders of magnitude. Roters et al [9] use the value 7.8× 109 s−1. d̄ is the average
distance moved for each obstacle overcome. The following phenomenological form
is often preferred to equation (1.35) [7, 9, 23]:

v̄ = d̄vatt exp

(
−Qact

kBT

)
sinh

(
τeffVact
kBT

)
(1.36)

Note that since the energy barrier stops at position x2, once a dislocation arrives
at x2, it is then free to move until the next obstacle. Thus d̄ is usually larger than
x2 − x1. If we assume that:

1. The forest of stored dislocations is the major obstacle to mobile dislocations.

2. The distance d̄ is a lot larger than (x2 − x1).

3. It takes a lot more time to overcome the obstacle than to travel the distance
d̄.

Then d̄ is equal to the spacing of forest dislocations in the slip direction and is
inversely proportional to

√
ρ. If the dislocations intersect the slip plane randomly,

then d̄ = λ.

Combining equations (1.3), (1.8) and (1.35), the effective shear stress is given by:

τeff =
Qact

Vact
+
kBT

Vact
ln

(
Mε̇

ρmbd̄νatt

)
(1.37)

Since the logarithmic part is negative, the effective stress decreases when the tem-
perature increases. This means that the more the energy provided by heat in-
creases, the less need there is for mechanical energy to be provided to overcome
Qact. Therefore there is a critical temperature above which τeff cancels out. If the
strain rate increases however, the logarithmic part increases closer to 0 and τeff
rises.

The total shear stress becomes:

τ = τath + τd + τss + τeff (1.38)

All the information related to the deviations of the microstructure resistance to
plastic straining due to temperature and strain rate is now included in τeff . There
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is no need for the processing function s(T, ε̇) any more.

1.3.7 Grain and subgrain sizes

The major limitation of saturating one-variable models is precisely that they are
designed to saturate. The modelling of stage III hardening inevitably leads to a
flow stress saturation because the strain hardening eventually cancels out (equa-
tion (1.16)). In effect, all one-variable models based on the Kocks design are bound
to follow the same trend, making them suitable for high temperature deformation,
but unable to represent the persistent stage IV hardening at moderate to low tem-
peratures. The way to get around this problem is to introduce additional internal
variables having their own evolution rates. At least two variables must be inde-
pendent, otherwise the problem remains. It is important for the variables to have
saturating kinetics, because we do not want the material to harden indefinitely.
However their kinetics should be different in order to account for the multi-stage
hardening seen in figure 1.1.

It is common to use the subgrain equivalent diameter as second internal variable
[7, 33–35]. Gil Sevillano et al. [16] assembled subgrain size measurements during
deformation at room temperature from various authors (figure 1.3). They found
that a wide range of pure metals exhibited a similar behaviour. Let us call δ the
subgrain size and δ1.5 the subgrain size at a strain of 1.5. [7] gives the relationship:

1

δ
= (0.7 + 0.09γ) δ1.5 (1.39)

Of course this relationship holds only at room temperature. At moderate to high
temperatures, it is necessary to set up an evolution rate similar to equation (1.18).
Alternatively, the subgrain size during steady-state deformation can be related to
the Zener-Hollomon parameter [34]. The subgrain size must then be included in
the constitutive equation as an additional contribution to the shear stress τδ:

τδ =
α2µb

δ
(1.40)

α2 being a proportionality constant.

If the grain size δg is comparable to the subgrain size, the contribution of grain
boundaries to the shear stress τg can be defined in a similar fashion:
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Figure 1.3: Cell/subgrain size evolution during deformation of Al, Cu,
Ni, Fe, Cr and Nb, from [7], adapted from [16]. The subgrain size is
normalized by the subgrain size at a strain of 1.5.

τg =
α3µb

δg
(1.41)

α3 being a proportionality constant. The evolution rate for the grain size however
is far from trivial and will not be reported here. In order to be assessed correctly,
it requires a texture model [36–38], seeing as the grains in a polycrystal do not
deform homogeneously.

The total shear stress becomes:

τ = τath + τd + τss + τeff + τδ + τg (1.42)

In the general case where the grains are much bigger than the subgrains, τg can
be neglected in front of τδ (assuming that α2 and α3 do not differ too much).

23



1.3.8 Additional dislocation densities

A second common way to introduce additional internal variables is to divide the
dislocations in several types, each having its own density and its own kinetics.
Since the work of Mughrabi [39], it is common to represent the microstructure
by a juxtaposition of subgrains, whose interiors and walls are populated with
dislocations of respective densities ρi and ρw [9,30,31]. Let us emphasize that those
are the densities of dislocations within the subgrain interior (respectively walls).
They have to be multiplied by the volume fraction of interiors (respectively walls)
to give the actual volume densities.

Additionally, according to the Orowan equation (1.8), almost all the models feature
the mobile dislocations of density ρm to account for the plastic deformation, even
though ρm is not always considered as a variable.

With several types of dislocations, the definition of the athermal stress becomes
less trivial. Let us call fw the fraction of walls (0 < fw < 1), the stored dislocation
density now reads:

ρ = (1− fw) ρi + fwρw (1.43)

Thus combining equations (1.10), (1.11) and (1.43) yields:

τath = α1µb
√

(1− fw) ρi + fwρw (1.44)

Even though there is experimental evidence that the Taylor model holds for cell
forming alloys, it describes mobile dislocations traveling in the vicinity of isolated
stored dislocations. Thus it is not adapted to the interaction with cell wall dislo-
cations. Argon [40] uses the following equation instead:

τath = α1µb ((1− fw)
√
ρi + fw

√
ρw) (1.45)

It is also sometimes considered that the Taylor model holds only for the cell inte-
riors, and that the contribution of wall dislocations has to be treated completely
differently [7, 41]. In that case, τath becomes:

τath = α1µb
√

(1− fw) ρi (1.46)

With that last expression for ρi, Nes and co-workers tend to link the wall disloca-
tion density to the subgrain size with an equation of the type ρw ∝ δ−1/2 and use
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equations (1.39) and (1.40). Sandström and Lagneborg [42] use equation (1.46)
with fw = 0 — effectively the Taylor equation in which ρ is replaced by ρi, arguing
that the wall dislocation density does not contribute to harden the material. This
might hold at high deformation temperatures, but cannot be retained at low and
moderate temperatures where stage IV hardening is promoted by the subgrain
refinement.

Gottstein, Roters and co-workers argue that there are much more obstacles to
mobile dislocations within the cell walls than within the cell interiors. Therefore
they use a hybrid model [9] consisting of two shear stresses τi and τw , one for each
region, defined as:

τx = α1µb
√
ρx + τeffx (x = i, w) (1.47)

τeffx is obtained by replacing d̄ in equation (1.37) by dx, the forest dislocation
spacing in the region of interest (typically, dx ∝ ρ−0.5x ). The shear stress is then
given by:

τ = (1− fw) τi + fwτw + . . . (1.48)

Where the ellipsis stands for other contributions that are not related to the dislo-
cations.

Estrin and co-workers use a processing function as defined in equation (1.13) and
Kocks’ or Argon’s approaches for the athermal stress [22, 43], depending on the
number of variables their models feature.

In general, the shear stress is expressed as a combination of the expressions men-
tioned above. The expressions of the flow stress according to several authors are
reported in table 1.1. In that table, the variables evolve during deformation, thus
they are assigned an evolution rate.

Other kinds of internal variables are also worth being mentioned. Rollet and
Kocks [13] use the concept of dislocation debris that are stored as dipoles and loops,
and correspond to the dislocations stored in the cell interiors. The Geometrically
Necessary Dislocations (GND) introduced by Ashby in [45] were used by Sellars
and Zhu [33], Duan and Sheppard [10] and Ma et al [46]. Pantleon [47] relates
stage IV hardening to the misorientation between subgrains.
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Authors Variables Flow stress

Kocks [21] ρ σ = Mτaths (T, ε̇)

Duan* et al [10] ρ (ρi, δ) σ = σ0 +Mτath

Duan et al [10] ρi, δ σ = σ0 +M (τath + τδ)

Estrin et al [22] ρ σ = Mτath

(
ε̇
ε̇0

)1/m∗
Estrin et al [43] ρi, ρw σ = Mα1µb

(
(1− fw)

√
ρi + fw

√
ρw
) (

ε̇
ε̇0

)1/m∗
Kabliman et al [25] ρ σ = σ0 +M (τath + τss + τd)

Nes [7] ρi, δ σ = σ0 +M (τath + τδ)

Nes et al [24] ρi, δ σ = σ0 +M (τath + τδ + τg + τd)

Roters et al [9] ρm, ρi, ρw σ = M ((1− fw) τi + fwτw) + τd

Roters** [44] ρ, ρm σ = M (α1µb
√
ρ+ ρm + τeff )

* In this model, ρ is a function of ρi and δ, so the model effectively features 2 variables.

** In that last model, ρm is a variable but has no evolution rate. Instead ρm is optimized
on the run to best match the experimental results.

Table 1.1: Expression of the flow stress according to various authors. The
internal variables evolve during deformation, thus they are assigned an
evolution rate. τath in this table is always given by equation (1.10).
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1.3.9 Evolution rates

The general form of the evolution rates consists in combining one or several produc-
tion term(s) with one or several reduction term(s) (equation (1.19)). The challenge
is to find the physical mechanisms behind the evolution of the internal variables
and to translate them mathematically. Good examples on that practice are given
in [9, 14], among others.

In their 3-internal-variable model (3IVM) for example, Roters et al [9] consider
the following mechanisms for the evolution rate of ρm, ρi and ρw. First, the mobile
dislocations cannot travel a distance longer than their mean free path. Considering
equation (1.6) at large enough strains, l̄ must be replaced by L and the velocity
term in equation (1.7) cancels out:

γ̇ = ρ̇+mbL (1.49)

ρ̇+m is a production term, hence the + mark. In addition, segments of dislocations
can annihilate spontaneously by glide, be stored as dipoles, or be locked, meaning
that they cannot glide any more. The formation of jogs for example leaves behind
an edge dislocation segment whose Burgers vector is collinear with the dislocation
line, thus that segment cannot glide. Each of those mechanisms reduces the density
of mobile dislocations and their evolution rate reads:

ρ̇m = ρ̇+m (Orowan)− ρ̇−m (glide)− ρ̇−m (dipoles)− ρ̇−m (lock) (1.50)

The dislocation locks are stored in the cell interiors. They can annihilate by climb,
and their evolution rate reads:

ρ̇i = ρ̇−m (lock)− ρ̇−i (climb) (1.51)

It is a common assumption that all dipoles eventually end up in the subgrain walls,
and they can also annihilate by climb. It proceeds:

ρ̇w = ρ̇−m (dipoles)− ρ̇−w (climb) (1.52)

The detailed expressions of all the terms in the last three equations are derived
in [9]. The expression of the evolution rates depends on which mechanisms are con-
sidered. In opposition, equation (1.28) does not explore the mechanisms. Rather
it settles for dynamic and static phenomena, without entering the details of dislo-
cation interaction.
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More recently, Kabliman and Sherstnev [25] developed a single variable model for
work hardening during hot deformation of Al-Mg-Si alloys. Instead of detailing the
mechanisms of dislocation interaction, their approach of the dislocation evolution
rate consists in summing a dynamic production term with a dynamic and a static
softening term:

∂ρ

∂t
= ε̇

((
∂ρ

∂t

)+

dynamic

−
(
∂ρ

∂t

)−
dynamic

)
−
(
∂ρ

∂t

)−
static

(1.53)

In equation (1.53), when ε̇ = 0, only static recovery can occur, which allows the
model to deal with static recovery between deformation passes.

Other microstructure based models have been developed. Some values of the
dislocation density and subgrain size evolution are given hereafter as basis for
comparison. Starting with a well recovered Al-1%Mg, Duan et al [10] predict a
rapid increase (from 1011 to 4 × 1013 m−2) in dislocation density during rolling
at 500 ◦C and 2 s−1, followed by a small decrease during static recovery. They
also predict a dynamic drop in subgrain size from 9 to 6 – 7 µm. Roters et
al [9] predict a similar rapid increase for both ρi and ρw (from 1010 to 2 – 9×1013

m−2) during deformation of two aluminium-copper alloys at 350 ◦C and 10−3 s−1.
Nes and Marthinsen [48] predict a stabilization of ρi at 2.5 – 8×1013 m−2 during
deformation at room temperature of two aluminium alloys 1050 and 3207. They
also predict a continuous decrease of the subgrain size from 3 to 0.5 µm, for a
deformation grade of 2.

In general when a model includes several kinds of dislocations, it is assumed that
those are all edge dislocations, with corresponding mechanisms. Prasad et al. [49]
tried to introduce a screw character, but this evolution was not retained in the
later models.

1.4 Recrystallization modelling

At high temperature, whether during or after deformation, two phenomena are
known to happen: recovery and, if the deformation grade and the temperature are
large enough, recrystallization. Both have been reviewed intensively by Humphreys
and Hatherly in [6]. From a modelling point of view, recovery is dealt with by the
reduction term in the evolution rates of the internal variables (equation (1.19)).
Recrystallization is usually dealt with by a Johson-Mehl-Avrami-Kolmogorov type
model, the content of which is detailed below.
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Recrystallization is a two-phase process: first a non classical nucleation of new
grains, i.e. without pre-nucleation clusters, and second their growth. The former
remains not fully understood because it happens at very short times, making it
difficult to observe. Growth however is a pretty straightforward, diffusion driven
process.

At this point, it is necessary to introduce the concepts of stored energy of defor-
mation and pressure on a boundary.

1.4.1 The energy of deformation

During cold deformation, the quantity of dislocations increases in the material.
Dislocations are line defects that deform the microstructure elastically. As such,
they carry an elastic strain field and an elastic energy. The energy per unit length
of dislocation line Edisl reads [5]:

Edisl = Ec + Eel (1.54)

Ec is the energy of the dislocation core itself, which is often neglected. Eel is
the strain energy arising from the matrix distortion, which depends on the type of
dislocation. The elastic field of a mixed dislocation can be seen as the superposition
of the fields of its edge and screw components. They yield the line energy:

Eel =
µb2

4π

1− ν/2
1− ν

ln

(
R

R0

)
(1.55)

R is the upper cut-off radius of the dislocation, i.e. the outer reach of the strain
field, proportional to ρ−0.5. R0 is the inner cut-off radius of the dislocation, within
which the dislocation core is located, and usually taken equal to a couple of times
b.

Assuming a negligible interaction between the dislocations, the volume energy ED
of the material is given by:

ED = ρEdisl (1.56)

Which is often approximated by:

ED = αµb2ρ α ≈ 0.5 (1.57)

29



Sandström and Lagneborg [42] argue that the wall dislocation density being much
higher than the cell interior dislocation density, equation (1.57) should rewrite:

ED = αµb2fwρw (1.58)

It is however more generally accepted that, when the dislocations re-arrange in a
cell/subgrain structure, their elastic fields are brought in a configuration of lower
energy. The volume energy of the material reads:

ED ≈
1.5γsg
δ

(1.59)

Where γsg is the surface energy of the subgrain boundary.

1.4.2 Pressure on a boundary

Let us consider a grain or a subgrain boundary separating two crystals or two
regions of a crystal. If the latter have not been subjected to the same deformation,
their respective volume energies differ from an amount ∆ED. In order to minimize
∆ED, the lowly strained crystal must grow into the highly strained crystal. This
gives rise to an effective pressure on the boundary PD:

PD = ∆ED (1.60)

PD is called the driving pressure for recrystallization. It is involved in both the
nucleation and the growth processes.

Because the grains have boundaries, and those boundaries have a surface energy,
they are subject to capillarity effects, which translate into a capillarity pressure
PC :

PC =
3γg
D

(1.61)

Where γg is the surface energy of the grain boundaries and D the grain diameter.
During nucleation, the capillarity pressure tends to shrink the newly formed nuclei
and opposes the driving pressure for recrystallization. Once the nuclei have reached
a critical size, capillarity assists their growth and PC adds to PD.
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When the microstructure is populated with second-phase particles, those particles
have a retarding effect on the moving grain boundaries. That phenomenon is
the so-called Zener pinning. For a homogeneous distribution of spherical particles
with a volume fraction FV and uniform radii Rp, the number of particles per unit
volume NV reads [6]:

NV =
3FV
4πR3

p

(1.62)

The number of particles intersecting a unit area of the boundary NS reads:

NS = 2RpNV =
3FV
2πR2

p

(1.63)

The Zener pressure opposing the driving pressure is defined as:

PZ =
3FV γg
2Rp

(1.64)

The total pressure on a grain boundary resulting from the stored dislocations, the
capillarity and the Zener pinning, reads:

P = PD ± PC − PZ (1.65)

The Zener pinning arises from boundaries moving in the field of second-phase
particles. Thus, it applies only to moving boundaries; the grains do not shrink
because of it when the driving pressure is less than PZ , but recrystallization /
grain growth ceases.

1.4.3 Nucleation

When dealing with static recrystallization after cold deformation, two processes
are usually held responsible for the nucleation of new grains. First, second-phase
non-shearable particles leave a zone of high deformation in their wake. The larger
the particles, the larger the deformation zone and the deformation gradient. New
grains of random orientation can nucleate from this highly deformed zone. This
process is named Particle Stimulated Nucleation (PSN). The second process, called
Strain Induced Boundary Migration (SIBM), was introduced by Bailey in [50, 51]

31



and will be detailed more thoroughly here. In aluminium alloys, it is generally
recognized that SIBM is the dominant nucleation mechanism.

During deformation, the grains do not undergo the same amount of slip because of
their different orientations, thus they do not all store the same quantity of energy.
Let us consider a fraction of a boundary separating two grains of different stored
energies. If the pressure on the boundary is large enough, the latter can bulge
into the grain of higher energy, leaving a crystal free of dislocations in its wake,
hence a recrystallized grain. Bulging is a diffusion driven process. Atoms from
the highly deformed grain have to jump into the new grain trough the boundary.
Burke and Turnbull calculated the jump frequency of an atom trough a boundary
in [52] using the absolute reaction rate theory. Bailey used it in [50] to define the
critical radius Rb that a semi-spherical bulge must have in order to start growing:

Rb >
2γg
P

(1.66)

Note that Bailey wrote ∆ED instead of P , because he worked with pure metals
and neglected to consider the Zener opposing pressure.

1.4.4 Grain growth

When stable, the nuclei start growing. The rate of growth Ṙg is related to the
driving pressure on the boundary through the mobility of the boundary Mb:

Ṙg = MbP (1.67)

Where Mb is assumed to have an Arrhenius form.

At the beginning of recrystallization, the microstructure consists entirely of highly
energetic deformed material. After an incubation time, Rg > Rc the nuclei grow
rapidly. Recrystallization stops either when the microstructure is fully recrystal-
lized, or when the deformed material becomes highly recovered, i.e. P = 0. When
recrystallization is complete, only the capillarity effects remain to promote grain
growth. PC being usually much lower than PD, grain growth following recrystal-
lization, if it happens, extends on a much longer time scale.
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1.4.5 Recrystallized fraction

The original theory of Avrami [53, 54] has been extensively reviewed, used and
modified. We will only report it in its most general form here, taken from [6, 55].
Let us assume a uniform nucleation rate Ṅ per unit volume. Assuming that all the
nuclei grow unhindered by each other, meaning that they can overlap each other,
the extended volume of recrystallized material Vext at time t reads:

Vext (t) =

∫ t

0

Ṅ (t′)V (t, t′) dt′ (1.68)

Note that Vext is a dimensionless quantity. V (t, t′) is the volume at time t of a
grain nucleated at time t′:

V (t, t′) = f

(∫ t

t′
Ṙg (z) dz

)a
(1.69)

f is a shape factor, equal to 4π/3 for equiaxed grains. a is the Avrami exponent,
whose value depends on the growth dimension. a = 3 for three dimensional growth.

The evolution of the fraction of recrystallized material χRX is then given by:

χRX = 1− exp(−Vext) (1.70)

Ideally, the recrystallization model is built in such a way that it makes use of
the microscopic variables defined in the flow stress model to calculate the stored
energy of deformation. Vatne et al. [56] use this approach for deformation at high
temperature and subsequent static recrystallization, with the stored dislocation
density as single internal variable. Their model predicts a decrease of the recrys-
tallized grain size with the stored energy of deformation and is able to keep track
of the fraction of cube textured grains fed as an input.

1.5 Problem formulation

In the course of his Ph.D. thesis [25, 57], P. Sherstnev developed a model dealing
with physically based constitutive modelling at high temperatures in an aluminium
alloy 6082 provided by the company AMAG, Austria Metal1. His model was

1https://www.amag.at
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designed to predict the flow behaviour above 400 ◦C, where a steady-state is rapidly
reached, based on the evolution of the total dislocation density as single internal
variable. One strong point of his model was the introduction of static recovery
between passes in addition to dynamic recovery during deformation. Below 400 ◦C
however, the persistent strain hardening cannot be captured by the model. The
model also lacked the ability to predict the yield stress of the material as a function
of temperature and strain rate. The output of the constitutive model was then
used as input in a semi-empirical model for static recrystallization, in order to cover
phases II and III in figure 1. The flow and recrystallization models represented
a whole package for simulating multipass hot rolling with static recrystallization
happening between passes and during subsequent cooling.

In order to cover a wider range of their production process and better understand
the microscopic features involved, the model of Sherstnev was extended to lower
deformation temperatures, and the recrystallisation model was reviewed accord-
ingly. The resulting model is aimed to be used in a multipass rolling process where
hot and cold rolling as well as heat treatments are involved, using only one physical
model.

In view of the literature reviewed above, it seems that the approach proposed by
Sherstnev can be extended to lower temperatures by adding extra variables into the
model. The use of ρi and ρw (section 1.3.8) based on the structure of cell forming
alloys showed great results and shall be further expanded here. The evolution rates
however shall remain simple enough in order to ease their integration in a finite
element engine. In order to account for the deformation, it also seems reasonable to
make use of the mobile dislocation density ρm. However, because the kinetics of ρm
are much slower than that of industrial deformation, it is the author’s opinion that
ρm should remain constant during deformation, as supported by equation (1.8).

Regarding the constitutive equation, the use of an effective stress (section 1.3.6),
in addition to capturing the effects of the conditions of deformation on the work
hardening, links those effects to microscopic features and therefore shall be re-
tained. It will be showed in chapter 6 that relating τeff to the overtaking of local
obstacles by cross-slip cannot account for all deformation temperatures. A new
hybrid approach combining the formation of jogs and cross-slip is developed, that
offers a better comprehension of the microscopic mechanisms involved in deforma-
tion at low temperature, and allows for a better grasp of the dependency of the
yield stress on the deformation conditions.

The most critical point when modelling recrystallization is perhaps the nucleation
of new grains. The number of nuclei is quite often an empirical parameter that has
to be optimized. It usually does not take into account the amount of strain in the

34



material, or static recovery. The latter not only slows down the kinetics of grain
growth, it also prevents the nucleation of new grains. Thus, a proper nucleation
criterion needed to be worked out, that: i. relates to the microscopic variables
used in the constitutive model, ii. takes into account the deformation grade of the
material, and iii. grasps the competition between recovery and recrystallization.

Following those considerations, the main goals of this thesis are:

• develop a physically based constitutive model applicable to cold, intermedi-
ate and hot working over a wide range of strain rates

• develop a model for static recrystallization with a tailored nucleation crite-
rion that takes into account the three constraints mentioned above

• implement the models in a finite element macroscopic code

Throughout this document, the reader will often encounter the triplet (RD, ND,
TD). It is designed to serve as spatial reference frame when dealing with rolled
products. RD stands for “Rolling Direction”, ND for “Normal Direction” and TD
for “Transverse Direction”. The three directions are orthogonal to each other and
are defined as shown in figure 1.4. This convention will be used in the remainder
of this document.

RD

ND

TDSlab

Rolls

Figure 1.4: Definition of the reference frame triplet (RD, ND, TD).
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Chapter 2

Materials Characterization

Physically based models cannot be developed without adequate material charac-
terization, whether it is to research a path for modelling, to initialize some of the
parameters, or to validate the output. Plates from a commercial aluminium al-
loy 6082, whose chemical composition is given in table 2.1, were delivered by the
company AMAG Austria Metall in the following conditions.

1. HR1: hot rolled between 550 ◦C and 450 ◦C to a thickness of 4.9 mm and
slowly cooled down to room temperature.

2. HR2: hot rolled between 550 ◦C and 450 ◦C to a thickness of 3.9 mm and
slowly cooled down to room temperature.

The 3.9 mm thick hot rolled state was the initial state for this study. It was
investigated by means of Light Optical Microscopy and Scanning Electron Mi-
croscopy combined with image analysis. Samples in this state were then deformed
in plane-strain condition at various strain rates and temperatures. Cold deformed
samples were additionally oven annealed to induce recrystallization and observed
with Scanning Electron Microscopy. The 4.9 mm thick hot rolled state was only
used to assess the effect of the plate thickness on the flow stress of the material
during cold forming. It appeared that the flow curves at room temperature of
materials 1 and 2 superimposed perfectly for all investigated strain rates. The
cold rolled state was used in a parallel experimental study of the grain size after
annealing [58] and to assess the subgrain size after industrial deformation.
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Si Fe Cu Mn Mg Cr Ni Zn Ti Al

0.88 0.39 0.07 0.43 0.81 0.02 0.01 0.04 0.04 Compl.

Table 2.1: Chemical composition of the studied AA6082 alloy, in weight
percent.

2.1 Methodology

2.1.1 Plain strain tests

Plane strain compression tests are known to exhibit the same mechanical char-
acteristics as the rolling process of flat products. The stress-strain curves of the
material under two-dimensional solicitation were obtained by conducting plane-
strain compression tests in a Gleeble® 3800 System. The tests were conducted
on the hot rolled material of thickness 3.9 mm (HR2). The test configuration is
illustrated in figure 2.1. The sample size is 10 mm in the rolling direction by
20 mm in the transverse direction, and the contact length between the anvils and
the sample is 5 mm. A nickel based suspension was used as lubricant to reduce
the friction between the anvils and the samples. In the Gleeble® 3800, heating is
done by resistance heating. An electrical current is brought directly by the anvils
and flows though the sample. In those experiments, a J-type (iron-constantan)
thermocouple was welded as illustrated in figure 2.1 for temperature control. Care
was taken to weld the thermocouple horizontally on an isothermal plane. The two
branches of the thermocouple were welded as close as possible to prevent them
from spreading out of between the anvils during deformation.

The samples were heated up to the deformation temperature by resistance heating
at a rate of 5 ◦C s−1 and soaked 10 to 15 s for temperature stabilization. The
samples were then deformed to a macroscopic true strain of 1 and air cooled to
room temperature (figure 2.2). During heating and soaking, the upper anvil was
let free to move in order to account for the thermal expansion of the whole system
– machine and sample. The testing conditions are reported in table 2.2.

The true strain ε̄ and the true flow stress of the material σ are given by equa-
tions (2.1) and (2.2), respectively [59]:

ε̄ =
2√
3

ln

(
hs0

hs0 −∆h

)
(2.1)
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Figure 2.1: Geometry of the plane-strain compression test. The deforma-
tion force F is applied on the shaded surface.The thermocouple welding
position is marked by the red crosses (xx).
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Figure 2.2: Thermomechanical schedule of the plane-strain compression
tests.
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Strain rate Temperature (◦C)
(s−1) 25 50 100 150 200 250 300 350 400

0.01 X X X X X X X X X
0.1 X X X X X X X X X
1 X X X X X X X X X
10 X X X X X X X

Table 2.2: Grid of plane-strain experiments.

σ =

√
3

2

|Fapp|
A

(2.2)

Where hs0 is the initial thickness of the sample, ∆h the thickness reduction, Fapp
the applied force and A the contact area.

Two to three tests were carried out per deformation conditions. The obtained flow
curves were smoothed, sampled with a strain period of 10-3 and averaged over the
3 samples. The linear elastic part was manually removed as it also includes the
elastic deformation of the anvils. The results of the tests are given in chapter 3,
were they are compared with the results of the flow stress model. Figure 2.3 shows
the raw flow curves of two samples deformed at 100 ◦C and 0.01 s−1 superimposed
with the treated data.

2.1.2 Sample preparation for microscopy

Before any microscopic observation, the samples were cold embedded with a Varidur
3000/3003 cold mounting compound from Buehler, mechanically ground with
sandpaper grading from 180 to 4000 for 1 to 2 min per paper, polished with a
suspension of DP-Paste P 3 µm diamond particles from Struers for 1 to 2 min and
further polished with a NonDry colloidal silicon suspension (OP-S) from Struers
for 1 to 5 min. The samples were rinsed with water between each step. In the
latter step, the samples and polishing cloth were rinsed with water every minute
to avoid crystallization of the suspension. Directly after polishing, the remaining
impurities at the surface of the sample were removed with acoustic waves in an
ethanol bath. A subsequent step of electrochemical etching with a Barker’s reagent
was made to identify the grain structure in section 2.1.5.
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Figure 2.3: Deformation at 100 ◦C and 0.01 s−1. Superimposed raw and
treated data. The elastic part was removed manually.

2.1.3 Microscopic equipment

All microscopic investigations were carried out by means of Light Optical Mi-
croscopy and Scanning Electron Microscopy with the following devices:

1. Light Optical Microscope Zeiss Axio Observer.71m in bright field mode or
in polarized light mode (after Barker’s etching).

2. Scanning Electron Microscope Zeiss Ultra 55 at the Austrian Center for Elec-
tron Microscopy and Nanoanalysis FELMI-ZFE in Back Scattered Electron
(BSE) mode (section 2.1.4) and Electron Back Scattered Diffraction (EBSD)
mode (section 2.1.5).

2.1.4 Observation of second-phase particles

The first step of characterization of the second-phase particles was to determine
their type, their size and their spatial distribution. This was done by means of
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light optical microscopy in bright field mode and by scanning electron microscopy
in backscattered electron mode, based on the chemical contrast of the particles.

The pictures were analyzed with the software ImageJ [60, 61]. They were first
turned into 8-bit grayscale images. After adjusting the levels of brightness and
contrast, the particles of interest were selected with an appropriate threshold.
Particles intersecting the edges of the picture were removed from the mask of the
threshold, as well as all the particle whose area was smaller than a critical value
Ac. Ac had to be determined according to the type of particle being analyzed.

The density of particles NS intersecting the sample surface was calculated using:

NS =
NP

hplp
(2.3)

Where N is the number of particles intersecting the sample surface and hp and lp
are the respective picture height and length.

The particle radius was determined as follows. Let (Oz) be the normal direction to
the observation plane. The average area 〈AI〉 of the circle created by the random
intersection of a sphere of radius Rs with a plane perpendicular to (Oz) can be
calculated by averaging the area of intersection over [−Rs;Rs]:

〈AI〉 =
1

2Rs

∫ Rs

−Rs

π
(
R2
s − z2

)
dz =

2π

3
R2
s (2.4)

Where z is the position of the intersecting plane along (Oz). Assuming that
the particles of interest are randomly distributed spheres of radius RP , then all
particles whose centre is located within a distance RP under the sample surface and
all those whose centre was located within a distance RP above the sample surface
are visible in the picture. If NS is large enough, RP is determined by replacing
〈AI〉 by the average measured particle area 〈AP 〉 and Rs by RP in equation (2.4):

〈AP 〉 =
2π

3
R2
P (2.5)

Equation (2.5) can be corrected to take into account the removal of undercritical
particles by averaging the area of intersection over [−Rc;Rc], where Rc =

√
Ac/π:

〈AP 〉 =
1

2Rc

∫ Rc

−Rc

π
(
R2
P − z2

)
dz (2.6)
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Which yields:

〈AP 〉 = π

(
R2
P −

R2
c

3

)
(2.7)

The particle volume fraction is then given by combining equations (1.63) and (2.5):

FV = NS 〈AP 〉 (2.8)

Or by combining equations (1.63) and (2.7), without the undercritical particles:

FV =
2

3
NSπ

(
〈AP 〉
π

+
R2
c

3

)
(2.9)

2.1.5 Annealing tests

Cold plane-strain deformed samples were oven annealed at 300 ◦C and 400 ◦C for
10 s, 1 min, 5 min, 20 min and 1 h to induce recrystallization. The samples were
placed cold in the hot furnace and water quenched after annealing. Three consecu-
tive EBSD mappings from the middle of the sample to the centre of a deformation
cross were made on each sample, except for the sample recrystallized at 400 ◦C for
10 s, where only the middle of the sample was mapped.

The light optical micrograph in polarized light mode in figure 2.4 shows the defor-
mation zone of a sample deformed in plane-strain condition at room temperature,
in the (ND, RD) plane. The microstructure displays two deformation crosses,
hence a heterogeneous distribution of strain. A finite element analysis of the
plane-strain test was made with the software DEFORM2DTM [62] (see chapter 5).
It reveals that the true strain is equal to the macroscopic strain of 1 in the middle
of the sample, in between the deformation crosses. In the centre of the crosses, a
true strain of 1.5 is achieved.

In a simultaneous study, P. Loidolt [63] carried out annealing tests of cold plane-
strain deformed samples from the material HR2.
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TD
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ND

Figure 2.4: Light Optical Micrograph of a cold sample deformed in plane-
strain condition, magnified 15x. The consecutive zones studied in EBSD
are dashed. The true strain increases from 1 (white) to 1.5 (red)

2.1.6 Grain and subgrain characterization

The recrystallization kinetics were studied with the software OIMTM Data Analysis
7 [64]. The three maps were first merged together using the merging function
of OIMTM. The data was cleaned up with a iterating grain dilation, using a
grain tolerance angle of 10° and a minimum grain size of 20 pixels, i.e. ≈17 µm2.
The grain tolerance angle determines the angle of misorientation above which two
neighbouring data points belong to different grains. It was set to 10 degrees. The
grain orientation spread is the spread of orientations of all the data points within a
grain with respect to the average orientation of the grain. Grains whose orientation
spread was lower than 3 degrees were considered as recrystallized.

The experimental results are shown in chapter 3, where they are used to validate
the recrystallization model.
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Figure 2.5: LOM micrograph of the hot rolled plate perpendicular to the
transverse direction.

2.2 As received condition characteristics

The grain size in the 3.9 mm thick hot rolled material (HR2) was investigated in
a prior study by P. Loidolt [58]. Figure 2.5 shows a light optical micrograph in
polarized light mode of the plate in the normal direction. The grain dimensions
clearly appear bigger in the centre of the plate than on the edges. The grains
were assumed to be ellipsoids — they are disks in 3D, appear as ellipses in 2D.
Their length l0, width w and height h0 was defined as shown in figure 2.6. They
were measured by a mean linear interception method and the measurements are
reported in table 2.3. As the variation in grain width is assumed to be negligible in
further cold deformation, w is not attributed an index. No stereological corrections
were made.

The precipitation state was investigated in the 3.9 mm thick hot rolled material.
The light optical micrographs in bright field mode (figures 2.7 and 2.8) show second
phase particles of various sizes. The biggest particles appear to be aligned in the
rolling direction and display rather complex “Chinese” morphologies, while the
smallest ones appear blocky and disperse.
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Figure 2.6: Grain geometry. The view is given by the reference frame.

Central region Edges

l0 (µm) 680 200
w (µm) 430 190
h0 (µm) 85 70
h0/l0 0.125 0.350
h0/w 0.198 0.368

Table 2.3: Grain size measured by mean linear interception in light optical
micrographs [58].
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Figure 2.7: LOM micrograph of the hot rolled plate. The arrows indicate
large Al-FeMnSi particles aligned in the rolling direction.

TD
RD

ND

Figure 2.8: LOM micrograph of the hot rolled plate. The white arrows
indicate large Al-FeMnSi particles and the black arrows blocky Mg2Si.
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The backscattered electron mode in scanning electron microscopy gives pictures
with a chemical contrast (figures 2.9 to 2.12). The background contrast in those
micrographs comes from the sample preparation, where long OP-S polishing times
have an etching effect. Three kinds of particles could be clearly identified with the
help of EDX analysis: large white FeMnSi aluminides with “Chinese” morpholo-
gies, blocky black Mg2Si of intermediate size and small, finely disperse FeMnSi
aluminides with spheroidal morphologies. The average surface density, radius and
volume fraction of each type of particle is given in table 2.4.

Particle type NS [µm−2] RP [µm] FV [%]
√
FV /RP

[µm−1]

Large Al-FeMnSi 0.0015 2.5 1.7 0.52
Mg2Si 0.039 0.35 1.0 2.9
Small Al-FeMnSi 1.1 0.06 0.83 15

Table 2.4: Measured particle characteristics in the 3.9 millim thick hot
rolled material (HR2). The ratios

√
FV /RP are indicated because they

play a role in dislocation pinning and will be used in equation (3.4).
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Figure 2.9: SEM Micrograph of the 3.9 millim thick hot rolled material.
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Figure 2.10: Magnification in figure 2.9.
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Figure 2.11: Magnification in figure 2.10.
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Figure 2.12: Magnification in figure 2.11.
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Chapter 3

Flow stress model

At high temperatures, the flow stress saturation can be easily modelled on the
basis of one internal variable, like the total dislocation density or the subgrain
size, that saturates after some strain. At moderate and low temperatures however,
modelling the work hardening requires at least two internal variables with their
own evolution kinetics. Especially, the successive stages III and IV of hardening
are respectively linked to the rapid storage of dislocations and their rearrangement
in subgrain boundaries.

A model featuring three kinds of dislocation densities was developed. One of them
appears as a strain rate dependent parameter, while the two others vary with strain
and strain rate. The flow stress is determined from the contributions of long range
elastic interactions and short range physical interaction between dislocations, as
well as their interaction with second-phase particles.

A model structure as defined in section 1.3 was adopted.

3.1 Model set up

3.1.1 Microstructure representation

The microstructure is assumed to be composed of well defined subgrains, whose
walls and interiors are populated with dislocations of respective densities ρw and
ρi. We emphasize that, although ρw classically stands for the dislocation density
within the subgrain walls, it here represents the total length of wall dislocations
per unit volume of material. The later definition yields lower densities than the
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former. Additionally, mobile dislocations of density ρm are present to account
for the plastic deformation. Mobile dislocation loops can extend across several
subgrains before being stored and transformed into interior dislocations that do
not move, and contribute to ρi. The wall dislocations are created by rearrangement
of the interior dislocations in a configuration of lower energy. The density of stored
dislocations ρ reads:

ρ = ρi + ρw (3.1)

And the total dislocation density reads:

ρt = ρ+ ρm = ρi + ρw + ρm (3.2)

Figure 3.1 shows the microstructure representation described above. Some simpli-
fications were done in figure 3.1 to gain clarity:

• Only edge dislocations are represented here. This is correct for the subgrain
walls, but there are also screw dislocations in the subgrain interiors.

• All dislocations have the same orientation. In reality, there are roughly as
many dislocations of opposite orientation.

• Dislocations actually glide on different slip systems, which is not visible here.

Note that the dislocations are ordered and densely packed within the subgrain
walls, but disordered and less densely packed in the subgrain interiors.

The subgrain wall and subgrain interior dislocations are immobile and act as pin-
ning agents for any mobile dislocation on its way through the crystal. As such,
they contribute to work hardening. The mobile dislocations offer in comparison a
weak resistance to the imposed stress as they are free to glide. Their contribution
to the work hardening is negligible.

3.1.2 Constitutive equation

The constitutive equation links the dislocation densities to the flow stress of the
material. Because the latter is polycrystalline, the flow stress σ relates to the
resolved shear stress τ through the Taylor factor M (equation (1.3)).

The shear stress results from multiple contributions. Here, only three of them are
considered, namely the athermal stress τath (equations (1.10), (1.11) and (3.1)),
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ρm

ρw

ρi

Figure 3.1: Representation of the microstructure. The subgrain wall dis-
locations have a density ρw, the subgrain interior dislocations a density
ρi. The mobile dislocations can travel through several subgrains before
being stored. They have a density ρm.

the contribution from second-phase particles (equation (1.21)) τd and the effective
stress τeff (equation (1.37)).

τ = τath + τeff + τd (3.3)

The linear summation is generally accepted. For a discussion on the superposition
of the contributions to the shear stress, see [65].

As mentioned in section 1.3.8, the school of Gottstein encourages to decompose
the contributions from the cell walls and the cell interiors into a hybrid model
(equation (1.48)). Rollett and Kocks [13] however argue that the flow stress is
determined by the percolation of the mobile dislocations past the forest dislocations
and the “hard spots”, i.e. the local fluctuations in dislocation density due to the
presence of cell/subgrain walls. Because of that, the flow stress within the hard
spots does not affect the measured flow stress. Therefore, the approach of Gottstein
and co-workers is not retained here.

Combining equations (1.3), (1.10), (1.11), (1.21), (1.23), (1.37), (2.8), (3.1) and (3.3)
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and assuming that forest dislocations, separated by a distance ρ−0.5, are the major
obstacles to mobile dislocation motion, it comes:

σ = M

(
α1µb

√
ρi + ρw +

Qact

Vact
+
kBT

Vact
ln

(
Mε̇

ρmbνd

√
ρi + ρw

)
+
µb
√
FV

χ′′Rp

)
(3.4)

Where χ′′ is a constant of the order of
√

2. Note that when several kinds of second-
phase particles coexist in the microstructure, their individual contributions have
to be added in equation (3.4). In our case, we are dealing with an overaged
material, where the typical Mg2Si hardening precipitates are too large to have an
effect on the strengthening. However, the finely disperse FeMnSi aluminides with
a ratio

√
FV /Rp much greater than the other kinds of precipitate are believed to

contribute to τd. Those small Al-FeMnSi are present in the initial state, and do not
dissolve during deformation at high temperature. Their contribution is considered
constant in equation (3.4).

3.1.3 Evolution rates

During thermomechanical processes, the quantity of microstructural defects varies;
this phenomenon is at least partially responsible for the hardening or the softening
of the material.

The Orowan equation in its differential form (equation (1.8)), used to establish
the constitutive equation (3.4), implies per se that the mobile dislocation den-
sity remains constant during deformation, at given conditions of strain rate and
temperature. To our knowledge, all the models featuring the mobile dislocation
density as internal variable have an evolution rate for it, with a production term
and an annihilation term as in equation (1.19). Although it is true that mobile
dislocations are emitted, for example by Frank and Read sources, and stored or
annihilated, the Orowan equation indicates that there is a balance between the pro-
duction and the reduction of the mobile dislocation density for a constant strain
rate. It may still very well be a function of the processing conditions, i.e. the
deformation rate and the temperature.

ρi and ρw however must evolve during plastic deformation and subsequent recovery.
Their evolution rate is split into a dynamic (D) and a static (S) part:

∂ρx
∂t

=

(
∂ρx
∂t

)
D

+

(
∂ρx
∂t

)
S

(x = i, w) (3.5)
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The static/dynamic splitting allows for work hardening as well as for recovery after
deformation and between deformation passes. In industrial processes where the
strain rate is high, the dynamic part always dominates during deformation.

Because both internal variables are dislocation densities, their dynamic evolution
has a form similar to the one suggested by Kocks in equation (1.18):

(
∂ρx
∂t

)
D

= ε̇

(
h1,x
b

√
ρx − h2,xρx

)
(x = i, w) (3.6)

Where h1,x and h2,x are model parameters, that depend on the deformation tem-
perature and strain rate. The static part is assumed to be governed by climb and
follows the form suggested by Caillard and Martin [28] in equation (1.30).

(
∂ρx
∂t

)
S

= −Kx
µb3

π (1− ν)

D

kBT
(ρx − ρx,eq)2 (x = i, w) (3.7)

The Kx are model parameters. Equilibrium dislocation densities ρx,eq have been
inserted. They correspond to the dislocation densities of a fully recrystallized
material. This prevents the stored dislocation density to drop to very small or
negative values, which would be non physical. The diffusion coefficient follows an
Arrhenius type law:

D = b2νD exp

(
−Qbulk

kBT

)
(3.8)

Where Qbulk is the activation energy for bulk-diffusion. It can be argued that the
activation energy for pipe diffusion Qpipe makes more sense for growing dislocation
loops. Assuming that one knows the respective weights βp of pipe and βb bulk
diffusion in the climb mechanism, one can calculate an effective activation energy
for diffusion Qdiff as:

1

Qdiff

=
βp
Qpipe

+
βb
Qbulk

(3.9)

With βp + βb = 1. In the following, only bulk diffusion is considered and equa-
tion (3.8) is used.
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3.1.4 Model parameters

Determination of the initial values of ρi and ρw

The yield stress of the material is given by equation (3.4) at zero deformation.
It depends on the temperature and on the strain rate through the effective stress
τeff . As mentioned in section 1.3.6, if the processing temperature exceeds a critical
temperature, τeff cancels out. The flow stress becomes:

σ = M (τath + τd) (3.10)

And the yield stress reads:

σ (ε = 0) = M
(
α1µb

√
ρi0 + ρw0 + τd

)
(3.11)

Where ρi0 and ρw0 are the dislocation densities at 0 strain. If the second-phase
particles are stable in the test conditions, τd is constant. Assuming that ρi0 and
ρw0 are equal and low — which is a reasonable assumption at the very beginning
of the deformation when the initial material is partially recrystallized — one only
needs to know the value of the yield stress above the critical temperature to assess
the initial dislocation densities.

If τeff does not cancel out, the values of ρi0 and ρw0 have to be provided from the
literature or from experimental measurements [66]. If we take into account that
τeff is necessarily positive:

τeff ≥ 0 (3.12)

Then, from equations (1.3), (1.3) and (3.3) at yield, it comes:

√
ρ0 ≤

( σ
M
− τd

)
/ (αµb) (3.13)

Where ρ0 = ρi0 + ρw0 . This gives a criterion on the maximum initial dislocation
densities that can be taken for the model. After hot forming and subsequent
recovery during slow cooling, the dislocation density is very low. Values in the
range 109 to 1012 m−2 are often used [9,25]. Using the parameter values in table 3.1,
we find ρ0 ≤ 1.7× 1011 m−2.
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Determination of ρm, Qact and Vact

Consider once again the Orowan equation in its differential form (equation (1.8)).
If we assume that the dislocation velocity is independent of the deformation tem-
perature, then the mobile dislocation density is only a function of the strain rate
ε̇.

Let us call σ̂Y the measured values of the yield stress and σY the modelled yield
stress. σY is given by substituting ρi and ρw to ρi0 and ρw0 in equation (3.4). At
any given strain rate, σY is now a linearly decreasing function of the temperature.
Figure 3.2 displays σ̂Y as a function of the temperature, obtained from the plane
strain compression tests at 4 strain rates.

Under 100 ◦C, the yield stress varies slightly with the temperature. The predicted
linear decrease really starts only above 100 ◦C, but does not reach a plateau. This
indicates that the critical temperature for this material lies above 400 ◦C, for every
strain rate considered here. The data points also superimpose up to 200 ◦C. This
shows that the strain rate has little to no effect on the yield stress up until 200 ◦C.
Looking at the higher temperatures (300 ◦C and 400 ◦C), the yield stress only varies
from ≈ 5 to 10 MPa when the strain rate varies one order of magnitude, and the
same variation is observed when the temperature increases 50 ◦C. The strain rate
has a much lower effect on the yield stress than the temperature.

Above 100 ◦C, the assumption that the dislocation velocity is independent of the
temperature seems to hold. This means that Qact− τeffVact in equation (1.35) has
a first order dependency on the temperature.

The value of ρm(ε̇) is determined by least square regression of σY with σ̂Y above
100 ◦C. Typically, for a given strain rate, if the flow curves were obtained at I
conditions of temperatures, the following objective function is minimized:

f 1
obj =

I∑
i=1

[σY (ρm, Ti)− σ̂Y (Ti)]
2 (3.14)

If the literature does not provide satisfactory values of Qact and Vact, it is possible
to include them in the least square regression. For I temperatures and J strain
rates, the objective function to be minimized now reads:

f 2
obj =

I∑
i=1

J∑
j=1

[σY (Ti, ε̇j, Q, Vact, ρm (ε̇j))− σ̂Y (Ti, ε̇j)]
2 (3.15)
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Figure 3.2: Measured yield stress from plane strain compression tests as a
function of temperature. The estimated error on each measurement point
is ±7 MPa.
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Figure 3.3: Superimposed modelled and measured yield stress as a func-
tion of temperature.
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Where Q, Vact and the values of ρm for all strain rates have to be optimized
simultaneously. The uniqueness of the solution can be guaranteed by providing a
number of data points equal or greater than the number of unknown parameters.
In the current study, the system was overdetermined by using 22 data point.

After optimization, the following relationship was determined:

ln

(
ρm
ρ∗m

)
≈ 0.65 ln

(
ε̇

ε̇∗

)
+ 2.28 (3.16)

With ρ∗m = 1010 m−2 and ε̇∗ = 1 s−1 being the normalization dislocation density
and strain rate, respectively. Alternatively:

ρm
ρ∗m
≈ e2.28

(
ε̇

ε̇∗

)0.65

(3.17)

Coming back to equation (1.8), this yields the following form of relationship be-
tween the dislocation velocity and the strain rate:

v̄ = p
(ε̇)1−q (ε̇∗)q

bρ∗m
(3.18)

With p = Me−2.28 and q = 0.65 < 1 in our case.

The modelled yield stress is showed in figure 3.3. Below 100 ◦C, the effective stress
was made to be only affected by the strain rate. The initial small decrease in yield
stress with temperature is due to the decrease of the shear modulus. The model
shows a good fit with the experiments at higher temperatures, and an acceptable
fit at lower temperatures.

Parameter values

The values of the parameters used in the model are given in table 3.1. They were
obtained from the literature or from optimization of the yield stress of the material.
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Parameter Value Unit

b 2.86× 10−10 m−1

kB 1.38× 10−23 J K−1

Kx [0.01–1] -
M 3.06 -
Qact [1–3] eV
Qbulk [0.5–1.5] eV
Vact [1–50]×10−27 m3

α1 0.5 -
µ (8.48− 0.0406T )/(2 (1 + ν)) GPa
ν 0.33 -
νD 1.5× 1013 s−1

ρi0 [1010–1012] m−2

ρm [1010–1014] m−2

ρw0 [1010–1012] m−2

ρx,eq [1010–1012] m−2

χ′′
√

2 -

Table 3.1: Model Parameters

Temperature ◦C h1,i h2,i h1,w h2,w

25 0.018 12 0.0055 1.5
50 0.017 12 0.0055 1.5
100 0.0165 13.5 0.0055 1.5
150 0.016 14 0.0055 1.5

200 0.010 21 0.0030 1.5
250 0.008 25 0.0020 1.5
300 0.004 30 0.0015 1.5
350 0.002 35 0.0010 1.5
400 0.002 35 0.0010 1.5

Table 3.2: Average rate parameter value per temperature.
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3.2 Model results

3.2.1 Flow curves and rate parameters

The output of the model depends obviously of the values given to the rate param-
eters h1,x and h2,x (x = i, w). Those can be optimized by comparing the model
output with the experimental flow curves. An average value per temperature has
been worked out for each parameter, and is reported in table 3.2.

Figure 3.4 shows the flow curves modelled with those parameters together with
the experimental data. A seemingly good match was obtained. As expected,
the strain hardening depends strongly on the temperature, especially at higher
temperatures. One strong feature of the model is that it entirely captures the
temperature and strain rate dependency of the yield stress of the material. Now
by having a closer look, the flow stress generally appears overestimated at low
strain rates, and underestimated at higher strain rates. This reflects the lack of
dependency to the strain rate of the parameters h1,x and h2,x (x = i, w). Let us
call ζ the mean square error of the model:

ζ2 =
1

J

J∑
j=1

(σj − σ̂j)2 (3.19)

Where J is the total number of computed points, over all temperatures and all
strain rate, the σj are the modelled values of the flow stress and the σ̂j the cor-
responding experimental points. Using the coefficients in table 3.2 gives the error
ζ = 76.4 MPa. The strain rate dependency of the parameters was introduced via
the following corrections:

hcorrected1,x = h1,x

(
1 + ξ ln

(
ε̇

ε̇0

))
(3.20)

hcorrected2,x = h2,x

(
1− ξ ln

(
ε̇

ε̇0

))
(3.21)

Where ε̇0 = 1 s−1, and ξ is the correction factor. Setting ξ to 1/75 brings ζ down
do 9 MPa. Figure 3.5 shows the corrected flow curves.

In practice, one can determine the parameters for ε̇ = ε̇0, whereby ln ε̇/ε̇0 = 0, and
use a correction factor for the other strain rates. The flow curves will be shifted
down at strain rates lower than ε̇0, and up at strain rates greater than ε̇0.
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Figure 3.4: Superimposed modelled (lines) and experimental (markers) flow curves.
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Figure 3.5: Superimposed modelled (lines) and experimental (markers) flow curves. The rate
parameters are corrected by ξ = 1/75.
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3.2.2 Athermal stress, effective stress

The athermal stress and the effective stress are reported in figures 3.6 and 3.7,
respectively. The strain rate has no influence on them under 150 ◦C, which was
expected since the flow stress has no dependency on the strain rate at low defor-
mation temperatures.

τath grows rapidly at 200 ◦C and under, and slower when the temperature increases.
At 0.01 s−1 it even ends up saturating at moderate to high temperatures. This is
due to the static part of the evolution rates that is not negligible any more.

τeff saturates at all temperatures and strain rates. The temperature has no influ-
ence under 100 ◦C, given the model design. Above 100 ◦C the curves are regularly
spaced, following the linearity of equation (1.37). Note that the effective stress is
never negative, even at 400 ◦C and 0.01 s−1. If it had become negative, it should
have been nullified for consistency.

3.2.3 Dislocation densities

The evolution of ρi and ρw is shown in figures 3.8 and 3.9, respectively.

ρi increases rapidly at the very beginning of the deformation and saturates very
soon. There is no influence of the strain rate because the evolution parameters in
table 3.2 are strain rate independent. The rapid saturation indicates that there is
a limit to storage capacity of the subgrain interiors.

ρw also increases rapidly at the beginning of the deformation, and slower passed
ε ≈ 0.1. It does not saturate, except at 0.01 s−1 above 200 ◦C where diffusion
driven climb of dislocations kicks in. The kinetics of dislocation storage is slower
at the beginning of the deformation than for ρi, but the persistent increase in
ρw indicates that the dislocations keep re-arranging in subgrain boundaries. The
subgrain boundaries however cannot receive an infinite number of dislocations [6],
thus ρw can only keep increasing if the subgrain size decreases.

The predicted values of ρi and ρw at low temperatures are in the range of those
predicted in [9, 10, 48] (1013 to 1014 m−2 see section 1.3.9), albeit for higher tem-
peratures, which means that both ρi and ρw could raise more. The subgrain size
however, as calculated by equation (3.22), corresponds approximately to that pre-
dicted in [10].
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Figure 3.6: Modelled athermal stress.
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Figure 3.7: Modelled effective stress.
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Figure 3.8: Modelled interior dislocation density.
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Figure 3.9: Modelled wall dislocation density.
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3.2.4 Subgrain size

The subgrain size δ can be calculated from ρw in one of two ways [6, 10].

Physically, if the subgrain boundaries are assumed to be tilt boundaries of average
misorientation θ̄sg, and if the wall dislocation density can be averaged over the
microstructure, then the subgrain size δ is given by [67]:

δ =
κθ̄sg
bρw

(3.22)

Where κ is a shape factor and θ̄sg is the average subgrain misorientation angle.
This approach assumes that the wall dislocations form a network so dense, that
their density can be averaged over a whole representative element, even though
they are by definition located in the subgrain boundaries only.

However, when the flow stress reaches a steady state during high temperature
deformation, δ follows an empirical relationship of the form [56,68]:

δ ∝ ρ−0.5i (3.23)

In that context, when ρi reaches a plateau, so does the subgrain size, and no
further hardening is observed.

In the scope of this work, hardening can be observed at all deformation condi-
tions, therefore equation (3.23) cannot apply. Using equation (3.22), equation (3.1)
rewrites as:

ρ = ρi +
κθ̄sg
bδ

(3.24)

Figure 3.10 shows the evolution of the subgrain size calculated using equation (3.22),
with κ = 3 and θ̄sg = 3 degrees. The steady increase in ρw, responsible for the
persistent hardening, translates into substructure refinement.
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Chapter 4

Recrystallization

Quite some work has already been done in modelling recrystallization and subse-
quent grain growth (section 1.4). The overall aim is to predict the evolution of
the grain size and the recrystallized fraction during annealing. A recrystallization
model has been developed here in the wake of the flow stress model developed in
chapter 3. Experimental work has been carried out to observe recrystallization af-
ter cold deformation in order to calibrate the recrystallization model and validate
its output.

4.1 Experimental characterization

4.1.1 Experiments

Samples deformed in plane strain compression at room temperature were further
oven annealed at 300 ◦C and 400 ◦C to induce recrystallization. For each temper-
ature, the treatment was interrupted after 10 s, 1 min, 5 min, 20 min and 1 h and
the samples were water quenched. The microstructure evolution was observed with
EBSD in regions of local strain 1 and 1.5. The experimental procedure is detailed
in section 2.1.5. The analysis of the EBSD data was initiated in a collaborative
project and is credited to M. Spuller [69].

In the annealing experiments, the samples were placed cold in a warm oven. The
heat treatment was thus not isothermal and the heating rate was not controlled.
In order to use the right heating rate for modelling, the temperature profile in the
samples was determined by finite element simulations of the annealing tests. The
simulations were run in DEFORM2DTM after plane strain compression at room
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Temperature Thermal capacity Thermal conductivity
◦C J kg−1 K−1 W m−1 K−1

20 888 160
100 924 169
150 947 175
200 970 187
250 992 199
300 1015 202
350 1038 201
400 1060 200
450 1083 199
500 1106 195
550 1128 188

Table 4.1: Thermal capacity and conductivity measured by DSC. Data
provided by the Austrian Institute of Technology.
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Figure 4.1: Temperature evolution in the workpiece during annealing at
300 ◦C, 400 ◦C and 500 ◦C.
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temperature. The workpiece was placed in an air atmosphere at 300 ◦C or 400 ◦C
for 1 h. An additional treatment at 500 ◦C was performed to test the prediction
capability of the model. Heat exchange was allowed on the whole interface between
the workpiece and the atmosphere, whose convective heat transfer coefficient was
set to 0.02 N s−1 mm−1 K−1. The thermal capacity and the thermal conductivity
of the material were determined by Differential Scanning Calorimetry (table 4.1),
and its emissivity was set to 0.7.

The temperature profiles in the middle of the sample during the first 10 minutes
are shown in figure 4.1. They were fit with an equation of the form:

T = Ti + (Ta − Ti) exp

(
− t

t∗

)
(4.1)

Where Ti is the initial sample temperature, set at 20 ◦C, Ta is the temperature of
the surrounding atmosphere, i.e. the oven temperature and t∗ is a characteristic
time to be determined. Least square regressions yielded the following values of t∗:
67.2 s at 300 ◦C, 56.2 s at 400 ◦C and 45.0 s at 500 ◦C.

4.1.2 Experimental results

Figure 4.2 shows the inverse pole figure of the microstructure in the cold deformed
state. The deformed grains are elongated on several millimeters along the defor-
mation path and contain internal boundaries due to local matrix rotations. A
strain of 1.5 is achieved in the deformation cross, whereas a strain of 1 is achieved
towards the edge of the picture. Accordingly the grains are much thinner in the
cross than on the edges.

TD
RD

ND

Figure 4.2: IPF map of a sample deformed in plane strain compression.
The region of strain 1.5 is highlighted in plain and the region of strain 1
is highlighted with a dashed line.
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Figure 4.3 shows the evolution of the grain structure after annealing at 300 ◦C.
Black lines highlight boundaries with a misorientation larger than 10°. Recrys-
tallization clearly occurs between 5 and 20 min in the deformation cross, where
the stored energy of deformation is higher, i.e. where the driving pressure for
recrystallization is higher. The recrystallized grains are free of inner boundaries,
in contrast with the deformed matrix. After 1 h of annealing, the region of lower
strain is also recrystallized. The grains are elongated in the direction of previous
deformation and their thickness is similar to that of the deformed grains in fig-
ure 4.2, i.e. roughly 50 to 100 µm. The grains are longer in the region of strain 1
than in the deformation cross, where more grains are able to nucleate and impinge
upon each other during growth.

Figure 4.4 shows the evolution of the grain structure after annealing at 400 ◦C.
Black lines highlight boundaries with a misorientation larger than 10°. New grains
are readily formed after 1 min of annealing within the deformation cross. After
5 min, the whole microstructure is recrystallized. The grain size varies also in-
versely to the strain grade, though in a lower extent than at 300 ◦C. The effect of
strain on nucleation appears to be greatly reduced by the increase in temperature.
In a general manner, the grains are much smaller than after annealing at 300 ◦C.

At both annealing temperatures, the sample temperature nears that of the oven
after only 200 s of annealing (section 4.1.1). This time is well reflected at 400 ◦C,
where new grains are formed within a minute, but not at all at 300 ◦C, where
recrystallization is first observed after 20 min of annealing. This seems to indicate
that there is an incubation time during which newly formed grains cannot grow.

In the light of those experiments, the following conclusions can be drawn and
should be reflected in the model:

1. The nucleation process is affected by the strain grade achieved during defor-
mation prior to annealing and by the annealing temperature.

2. The boundary pinning by bigger aluminides oriented in the direction of de-
formation effectively stops the boundary migration during recrystallization.

3. After being stopped in one direction, grain growth is two dimensional.

4. The boundary pinning by small aluminides can counter balance the capillar-
ity effects.

5. Recrystallization happens, as expected, faster at higher temperature.
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Figure 4.3: IPF maps of cold deformed samples annealed at 300 ◦C for a)
10 s, b) 1 min, c) 5 min, d) 20 min and e) 1 h.
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Figure 4.4: IPF maps of cold deformed samples annealed at 400 ◦C for a)
10 s, b) 1 min, c) 5 min, d) 20 min and e) 1 h.
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4.2 Recrystallization model

4.2.1 Model set-up

Any recrystallization model must take into account two phenomena: the nucle-
ation of new grains, and their growth. This can be done by supplying a Jonhson
Mehl Avrami Kolmogorov type equation either with adequate constants, or with
adequate nucleation and growth rates. Although the latter is now pretty straight-
forward, properly assessing the nucleation rate remains an issue, which is often
dealt with by supplying a phenomenological equation. Physically based mod-
els for nucleation exist, but they are often coupled with complex texture models
(see [36, 37] for example) and are of little use for industrial applications.

Concurrently to recrystallization, the microstructure recovers during annealing.
The stored energy decreases, and so does the pressure on the grain boundaries.
This affects recrystallization in two ways:

• The critical radius for nucleation is inversely related to the pressure on the
boundaries (equation (1.66)). When the stored energy drops, the critical
radius increases, which heavily reduces the nucleation rate.

• The growth rate of the grains being proportional to the pressure on their
boundaries (equation (1.67)), a decrease in the latter slows down the overall
kinetics of recrystallization.

Additionally the experimental observations show that the level of strain reached
during deformation prior to annealing can considerably influence the recrystalliza-
tion kinetics.

The following model was developed as a follow up on the prior flow stress model. It
makes use of the same internal variables, namely the cell interior dislocation density
ρi and the cell wall dislocation density ρw and the mobile dislocation density ρm.
The output of the constitutive model can therefore directly be used as input for
this recrystallization model. Recovery is enabled by setting up the evolution rates
of the internal variables.

The model addresses nucleation from a geometric point of view, which yields an
explicit relationship to the local strain in the material. The nucleation rate is made
time and temperature dependent in order to allow for recovery and non isothermal
treatments.
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Figure 4.5: Grain geometry before (left) and after (right) deformation.

Nucleation rate

In a concurrent study by P. Loidolt [63], it was found that strain induced boundary
migration was the dominant nucleation mechanism in our alloy, which is supported
by the literature [6]. As bulging happens in consequence of thermal fluctuations
in free energy, the probability of it happening is a function of temperature. The
nucleation frequency per unit volume is often given an Arrhenius form.

Let us assume that the grains are rectangle parallelepipeds, as shown in figure 4.5.
Prior to deformation, they have a length l0 in the rolling direction, a height h0 in
the normal direction and a width w in the transverse direction, assimilated to the
measured grain sizes in section 2.2. During plane strain compression as described
in section 2.1.1, the deformation is two dimensional in the plane formed by the
rolling direction and the normal direction. According to equation (2.1), the height
h of a deformed grain reads:

h = h0 exp (−B|ε|) (4.2)

Where B is a constant equal to
√

3/2 for plane strain compression tests. The
volume conservation of the grains reads:

lhw = l0h0w ⇔ l =
l0h0
h

(4.3)

l being the length of a deformed grain. Combining equations (4.2) and (4.3) yields:

l = l0 exp (B|ε|) (4.4)
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The grain boundary area of one deformed grain is 2 (lh+ lw + hw). In a regular
network of deformed grains, each boundary is shared between two grains. Hence
the area of grain boundary available in a volume element of size l× h×w is equal
to (lh+ lw + hw).

The volume density ρA of grain boundary area then reads:

ρA =
lh+ lw + hw

lhw
(4.5)

For a critical bulge radius Rb, the area of boundary that bulges is πR2
b (see sec-

tion 1.4.3). Potentially, the number of bulges that can form reaches a maximum
when the available grain boundary area is saturated with bulges. The maximum
density of bulges ρmaxb hence reads:

ρmaxb =
ρA
πR2

b

(4.6)

Let us assume that at any given time t, there is a given volume density ρb of sites
lying on the boundaries of deformed grains that have the potential to bulge in the
neighbouring grain, in consequence of local variations in stored energy. ρb can be
taken as a fraction χb of ρmaxb . As the distribution of bulge sizes is not known, χb
must be allowed to vary with the strain.

ρb = χb (ε) ρmaxb χb ∈ [0; 1] (4.7)

Combining equations (1.66), (4.2) and (4.4) to (4.7) yields:

ρb =
χb (ε)

4πγ2b
P 2

(
1

w
+

exp (B|ε|)
h0

+
exp (−B|ε|)

l0

)
(4.8)

P being the driving pressure for recrystallization. As recovery onsets, P decreases
with time, and so does ρb.

Let νnucl be the frequency at which a bulging event happens. The nucleation rate
Ṅ (t) per unit volume then reads:

Ṅ (t) = νnuclρb (t) (4.9)

78



As bulging happens in consequence of thermal fluctuations in free energy, the
probability of it happening is a function of the temperature T . νnucl can be written
under the form [53,55]:

νnucl (T ) = ν∗ exp

(
−Qnucl

kBT

)
(4.10)

Where ν∗ is a characteristic frequency and Qnucl is the activation energy for nu-
cleation.

Combining equations (4.8) to (4.10) yields the following nucleation rate:

Ṅ = Ṅ∗ (ε)
P 2

γ2b

(
1

w
+

exp (B|ε|)
h0

+
exp (−B|ε|)

l0

)
exp

(
−Qnucl

kBT

)
(4.11)

With Ṅ∗ (ε) = χb (ε) ν∗/4π. This criterion includes both the thermal activation
of recrystallization and the effects of recovery. In practice, Ṅ∗ (ε) is a model
parameter that needs to be adjusted.

Recovery

The microstructure representation is the same as described in figure 3.1. The
evolution rate ρi is simply given by equation (3.7), where only static recovery by
climb is considered:

∂ρi
∂t

= −Ki
µb3

π (1− ν)

D

kBT
(ρi − ρi,eq)2 (4.12)

During recovery, the wall dislocations rearrange in stable arrays. Their density
can no longer be averaged over the microstructure, and the subgrain size cannot
be calculated from equation (3.22) anymore. Instead, it is preferable to use a
capillarity driven growth mechanism for the subgrain boundaries [6]:

1

2

∂δ

∂t
= Msg

(
3γsg
δ
− PZ

)
(4.13)

Where γsg is the specific energy of the low angle grain boundaries, given by a Read
and Shockley relationship of the form:
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γsg =
µbθ

4π (1− ν)
ln

(
eθc
θ

)
(4.14)

θ being the subgrain average misorientation, θc the critical misorientation for a
low angle boundary to turn into a high angle boundary (typically 10–15°), e the
natural exponential and ν the Poisson coefficient of the material.

Msg is the mobility of the subgrain boundaries, which has an Arrhenius form (see
equation (4.23)).

It has to be mentioned here that both γsg and Msg are highly dependent on the
subgrain misorientation. Humphreys and Hatherly [6] have reported that the
average subgrain misorientation decreases during recovery, which should be taken
into account in further developments.

PZ in equation (4.13) is the Zener retarding pressure, as discussed further in equa-
tion (4.21).

Stored energy

Stored energy of deformed grains

Because the microstructure is composed of both disorganized dislocations in the
cell interiors and dislocations located within the subgrain walls, the volume en-
ergy of deformation contributes from both equations (1.57) and (1.59). Within
the subgrains, the stored dislocations are the interior and the previously mobile
dislocations. The subgrain walls are composed of dislocations arranged in a lower
energy configuration. The subgrain size is calculated in the same way than in the
flow stress model and is given by equation (3.22).

Assuming a weak interaction between the wall dislocations, the dislocations within
the subgrain interiors and the mobile dislocations, the energy of deformation reads:

ED = αµb2(ρi + ρm) +
1.5γsg
δ

(4.15)

Stored energy of recrystallized grains

The crystalline structure of metallic alloys is not perfect, even for newly recrys-
tallized grains. Those contain a small amount of dislocations, hence an volume
energy. Usually, this energy can be neglected in regard of that of the deformed
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grains. But because the equilibrium dislocation density in equation (4.12) was de-
fined as the dislocation density of the recrystallized material, we need to consider
its energetic contribution. We define the energy of recrystallized grains as:

ERX
D = αµb2(ρeq,i) (4.16)

Note that the contribution of the subgrain boundaries does not appear. Since
subgrains form upon deformation, the recrystallized grains do not contain any
subgrain boundary.

Driving pressure on the grain boundaries

As seen in section 1.4, the difference in volume energy ∆ED between each side
of the boundaries separating the recrystallized grains from the deformed matrix
results in a driving pressure P for recrystallization on the boundary. This pressure
plays a role in both the nucleation and the growth mechanisms. It is given by:

P = ∆ED + PC − PZ (4.17)

PC being the capillarity pressure and PZ the retarding pressure of dispersoids.

Usually, the volume energy of the deformed material is considered a lot greater
than that of the recrystallized material, and ∆ED is taken equal to ED, the volume
energy of the deformed material. But because of our definition of an equilibrium
dislocation density, ∆ED reads:

∆E = ED − ERX
D (4.18)

The capillarity pressure is very small with respect to ∆ED and can be neglected
during recrystallization. During subsequent grain growth however, there is no de-
formed material left and PC is the only driving pressure acting on the boundaries.
Numerically, recrystallization was considered complete when the fraction of recrys-
tallized material reached 99 %. Equation (4.17) then rewrites as follows for grain
growth:

P = PC − PZ (4.19)

PC is given by equation (1.61) where the grain diameter is replaced by 2 times the
average grain radius (equation (4.28)):
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PC =
3γg

2 < Rg >
(4.20)

In presence of a dispersion of second-phase particles, the moving boundaries are
hindered and grain growth is slowed. In figures 4.3 and 4.4, we have seen that
the boundaries are stopped by the primary aluminides located on the former grain
boundaries. The finely disperse aluminides and the β-Mg2Si cannot effectively
stop the moving boundaries, but they still exert a retarding pressure on them.
Their individual contributions are each given by equation (1.64) and are linearly
added:

PZ =
3

2

(
V al
f

Ral

+
V β
f

Rβ

)
(4.21)

V al
f and V β

f are the volume fraction of the small aluminides and the β-Mg2Si, Ral

and Rβ are their radii, measured in table 2.4.

The larger aluminides, however, are not homogeneously dispersed and the Zener
equation cannot be used to describe their contribution. They actually do not exert
any effective retarding pressure before the moving boundaries reach their location
and get pinned by them. This difficulty was circumvented by numerically limiting
the growth in two directions and preventing the boundaries to move beyond the
lines of primary aluminides. Figure 4.6 depicts a high angle grain boundary (in
red) being stopped at the large white aluminides. The smaller aluminides and the
blocky dark β-Mg2Si retard the boundary motion without stopping it.

The particle drag can nullify the driving pressure, but cannot outwit it, because
it would numerically result in a shrinking pressure on the boundaries. Hence
whenever the total pressure was found to be negative, it was set to 0, for both
recrystallization and growth.

Growth rate

The growth rate Ṙg of recrystallized grains is simply the product of the total
pressure P with the mobility of the boundaries Mg (equation (1.67)):

Ṙg = MgP (4.22)

Mg is difficult to obtain from the literature because it highly depends on the chem-
ical composition of the alloy, the material state and the direction of movement.
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aluminides
Mg2Si

boundary

Figure 4.6: Schematics of a boundary (in red) being effectively pinned by
the large aluminides.

Therefore, the mobility measurements are always carried out for low alloyed ma-
terials, if possible in given directions [70–73]. It is common to assume that the
mobility has an Arrhenius form, both for subgrain and grain boundaries:

My = M∗
y exp

(
−Q

y
mob

kBT

)
(y = g, sg) (4.23)

Any review of the literature yields ranges of mobilities too wide to pinpoint a value
suiting our needs (see table 4.2). In the model, the activation energies are picked
between 0.5 and 2.5 eV and the pre-exponential factor is fitted adequately.

Extended volume

It is common practice to use Avrami’s approach to determine the recrystallized
volume fraction [53–55]. The extended volume fraction is defined as the volume
fraction of the recrystallized grains if both nucleation and growth were unaffected
by the already recrystallized material, i.e. if new grains could nucleate in the
recrystallized material and overlap each other upon growth. It is given by:

Vext (t) =

∫ t

0

Ṅ (t′)V (t, t′)dt′ (4.24)

Where V (t, t′) is the volume at time t of a single grain nucleated at time t′. Be-
cause their growth is constricted by the lines of primary aluminides, the grains are
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System M0 (m4 J−1 s−1) Q (kJ mol−1) Q (eV) source

Al - 0.01 Mn - 40°<111> 3.0 96.4 1.0 [74]
Al - 0.01 Mn 3.0 106 1.1 [74]
Al - 0.1 Mn 2.71 136 1.41 [75]
Al - 0.1 Mn 75.33 168 1.74 [75]
Al - 0.3 Mn 0.09 135 1.40 [75]

HP Al - 28°/ <100> 2.2× 10−3 66 0.68 [73]
Al - 0.05 Si - 40°/ <111> 0.15 87 0.90 [73]
Al - 0.1 Mg - 40°/ <111> 3.16 136 1.41 [73]
Al - 1 Mg - 40°/ <111> 376 171 1.77 [73]

Al - 1 Mg 367 170 1.76 [73]
Al - 3 Mg 189 353 3.66 [73]

Al - 3 Mn - 40°/ <111> 3.7× 107 212 2.20 [73]

Table 4.2: Measured mobilities in various low alloyed aluminium materi-
als.

assumed to expand mostly in two dimensions. In rolled products, the aluminides
are stacked in parallel (RD, TD) planes. Limiting the growth in the direction ND
to a maximum height h (equation (4.2)), the grains end up having a cylindrical
morphology.

Considering the experimental results, this approximation is fully justified at 300 ◦C,
and at 400 ◦C in the deformation crosses. In between the deformation crosses, the
grain boundaries impinge on each other before reaching the lines of aluminides.
The approximation is kept however for two reasons:

• The computed grain radius is an equivalent radius to a cylinder of same
volume. This calculation should override the effects of the cylindrical ap-
proximation.

• In cold rolled products, the level of strain achieved is well above 1.5. The
planes of primary aluminides are separated by a short distance, which highly
prevents growth in the direction of ND.

V (t, t′) is then given by:

V (t, t′) = hπR2
g(t, t

′) (4.25)

Where Rg(t, t
′) is the radius at time t of an individual grain nucleated at time t′,

given by integration of Ṙg over [t′, t]:
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Rg (t, t′) =

∫ t

t′
Ṙg (z) dz (4.26)

Recrystallized fraction

The recrystallized fraction is calculated after equation (1.70):

χRX = 1− exp(−Vext) (4.27)

Average grain radius

Because of the Avrami approach, so called “phantom” grains are able to nucleate
within the recrystallized material. Therefore the nucleation rate was made inde-
pendent of χRX . When calculating the average grain radius, one must however
consider only the grains that nucleated in the untransformed material. During
a time interval dt′, the real number of grains that nucleate is (χRX (t)) Ṅ (t) dt′.
These grains grow to a radius Rg (t) given by equation (4.26). The average grain
radius < Rg (t) > is then given by integrating Ṙg over the nucleation time and
normalizing by the total number of recrystallized grains:

< Rg (t) >=

∫ t
0
Ṙg (t, t′) (1− χRX (t′)) Ṅ (t′) dt′∫ t

0
(1− χRX (t′)) Ṅ (t′) dt′

(4.28)

Equation (4.28) actually gives the “extended” radius of the grains, i.e. the radius
that they would have if they were able to overlap. This might lead to overestimate
the actual grain radius.

4.2.2 Model implementation

The model was implemented in Matlab® using the parameters in table 4.3. The
quadratures were made using Euler explicit methods with a time step of 0.01 to
1 s.
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Variable Value Unit

b 0.286 µm

B
√

3/2 -
h0 85 µm
kB 1.38× 10−23 J K−1

Ki 0.01 -
l0 680 µm
M∗

g 30 m4 J−1 s−1

M∗
sg 0.5? m4 J−1 s−1

Ṅ∗ [4× 104 – 1× 105]?? s−1

Qdiff 0.98 eV
Qg
mob 1.6 eV

Qsg
mob 1.6? eV

Qnucl 2.1 eV
w 431 µm
α 0.5 -
γg 0.324 J m−2

µ (8.48− 0.0406T )/(2 (1 + ν)) GPa
ν 0.33 -
νD 1.5× 1013 s−1

ρi,eq 2× 1010 m−2

θ 3 °
θc 11 °

Table 4.3: Model parameters.

? Zurob et al. [76] use Msg = [0.2− 0.02]Mg.
?? Two levels of strain have been investigated, which was not sufficient to investi-
gate the strain dependency of N∗. The reported values are for ε = 1 and ε = 1.5,
respectively.
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4.3 Results

4.3.1 Non-isothermal

In a first approach, we assume that the samples are placed cold in an oven at the
annealing temperature, and we use the temperature profiles in section 4.1.1.

The kinetics of recrystallization, namely the time evolution of the recrystallized
fraction and that of the mean grain diameter, are presented in figure 4.7, for both
regions of strain ε = 1 and ε = 1.5. The experimental measurements and the
modelling results are displayed together at 300 ◦C and 400 ◦C. At 500 ◦C, only
modelling results are available. Note that at 300 s and 400 ◦C, the microstructure
is fully recrystallized for both strain grades. Also, after 1200 s, all the experimental
points not visible on the plot are simply superimposed with the red dots.

The experimental and modelling results are in reasonable agreement. As expected,
recrystallization is faster at higher temperatures. It is noticeable that the level of
strain reached before annealing has a bigger effect on the recrystallization kinetics
at 300 ◦C than at higher temperatures.

At 300 ◦C and ε = 1, the model results differ from that of the experiments in two
ways. First the predicted volume fraction after 1200 s of annealing is 25 % higher,
and second the mean grain diameter at the same time is lower by roughly a factor
2. The final recrystallized fraction and grain radius are however well within the
uncertainty of measurement. Moreover, the time of beginning of recrystallization
is correctly captured by the model.

At 300 ◦C and ε = 1.5, the calculations are off by roughly 600 s, i.e. 10 min, in pre-
dicting the time of 100 % recrystallization. The grain size is predicted accurately.

The difference in strain reflects in the results by offsetting the recrystallized fraction
for 500 to 1000 s. The final grain radius shows a difference of about 10 µm.

At 400 ◦C and ε = 1, the recrystallization kinetics are accurately predicted.

At 400 ◦C and ε = 1.5, the time of beginning of recrystallization is off by about
50 s, but the final grain radius is correctly predicted.

Note that at 400 ◦C, there is almost no more dependency of the previous strain on
the evolution of the recrystallized fraction, but the grain diameter is still appre-
ciably affected (about 5 µm).

The same observation can be made at 500 ◦C. At that temperature, recrystalliza-
tion happens well at the beginning of annealing, during heating.
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Figure 4.7: Modelled (mod) and experimental (exp) recrystallization ki-
netics.
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When recrystallization is complete, the model does not predict further grain growth.
This means that the particle pinning is strong enough to prevent grain boundary
motion.

In addition, figures 4.8 and 4.9 show the evolution of ρi, δ, P and Ṙg with time
in the non recrystallized material. All curves stop when 100% recrystallization is
reached, even P and Ṙg, meaning that the particle drag is indeed strong enough
to prevent grain growth.

Because of recovery, ρi decreases and δ increases, causing a drop in the driving
pressure. The evolution of the kinetics is gradual because both recovery and static
recrystallization are temperature activated phenomena. The sample temperature
at the beginning of annealing being low, the kinetics are unaffected. As the temper-
ature rises, recovery and recrystallization gradually occur. At 300 ◦C the evolution
of Ṙg shows a maximum at about 300 s. Initially, as the temperature increases, the
grain growth rate increases accordingly. But as the temperature stabilizes, recov-
ery rapidly takes over and Ṙg starts decreasing. At 400 ◦C and 500 ◦C, the same
trend can be observed but recrystallization stops before the maximum growth rate
is achieved.

Figure 4.10 (top) shows the density of growth nuclei being created at each time
step, in the yet non-recrystallized material. Nucleation being thermally activated,
the density of nuclei increases as the sample temperature rises. All 6 curves dis-
play a maximum around the time where the sample temperature nears the oven
temperature. Please be aware that those time evolutions are affected by the time
step chosen for the simulations. Time step independent solutions can be obtained
by plotting the number of nuclei per unit volume and per grain radius achieved,
but they are much less intuitive to interpret and do not bring extra information.

Figure 4.10 (bottom) shows the grain radius achieved by growth nuclei nucleated
at different times, during annealing at 300 ◦C for 100 s, 300 s, 1000 s and 3600 s. In
every case, the earliest nucleated grains reach a near constant radius. When the
nucleation time approaches the annealing time, the radius naturally drops towards
0 since the grains have very little time to grow. At the beginning of annealing,
i.e 100 s, grains barely grow because the temperature is too low. After 100 s, the
temperature is already high enough for individual grains to start growing. However
figure 4.10 shows that the density of nuclei being nucleated within the first 100 s
remains relatively low. Hence only the grains nucleated after 100 s effectively
contribute to recrystallization. Same goes for further annealing for 1000 s and
3600 s.
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Figure 4.8: Modelled time evolution of ρi (top) and δ (bottom).
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Figure 4.9: Time evolution of the driving pressure (top) and the grain
growth rate (bottom).
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Figure 4.10: (top) volume density of growth nuclei being created at each
time step (dt = 1s) and (bottom) radii of individual grains nucleated at
each time step after holding at 300 ◦C for 100 s, 300 s, 1000 s and 3600 s
(ε = 1).
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4.3.2 Isothermal

After calibration, the model was run with a constant sample temperature. Fig-
ure 4.11 compares the recrystallization kinetics in isothermal (I) condition to the
recrystallization kinetics obtained in non-isothermal (NI) condition.

At 300 ◦C, the kinetics are almost unaffected. Recrystallization starts 200 s earlier
than in the NI case, but ends only a couple of seconds earlier. The kinetics are
slightly shifted, and the grain size is not affected in an appreciable way.

At 400 ◦C and 500 ◦C however, recrystallization is strongly accelerated by the
change from non-isothermal to isothermal annealing. The kinetics of the reaction
are accelerated by 2 orders of magnitude and more in the isothermal condition.
The grain diameter is decreased by about 30 – 40 % (5–10 µm).

Comprehensively, under isothermal condition, new grains are created and start
growing from the beginning of annealing because the temperature is sufficient to
promote atomic diffusion. The driving pressure is readily at its maximum, since no
recovery has occurred yet. The nucleation rate, given by equation (4.11), benefits
from the maximum possible pressure and temperature, assuring that nuclei are
formed very quickly.

The grain growth rate, given by equation (4.22), is plotted in figure 4.12. It also
benefits from an early maximum pressure, ensuring that the new recrystallized
grains start growing immediately and relatively fast. This impacts greatly the
kinetics at 400 ◦C and 500 ◦C because relatively high growth rates are achieved
very early. Figure 4.12 shows that the growth rates at those temperatures is at
least one order of magnitude higher than the maximum growth rate achieved in
the non-isothermal case. It also shows that the growth rate is maximum from the
beginning. Recrystallization even stops (reaches 100 %) before recovery has time
to consequently impact the growth rate.

At 300 ◦C however, even though a maximum growth rate is achieved early, it
remains too low to consequently impact the overall kinetics. Figure 4.12 shows
that the growth rate in isothermal condition is in the same order of magnitude as
the maximum growth rate achieved in the non-isothermal case. Thus, the kinetics
of recrystallization are only slightly affected.
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Figure 4.11: Recrystallization kinetics under isothermal (I, thick curves)
and non-isothermal (NI, thin curves) conditions.
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Chapter 5

Finite element simulations

Plane strain compression, multipass rolling and annealing were modelled by means
of finite elements in the commercial code DEFORM2DTM. The objective of this
part was to model the strain hardening during a mutlipass cold rolling operation,
and then to calculate the grain size evolution during subsequent solution annealing.
Because of the symmetry of the processes considered, all problems were set in 2D
with a plane strain symmetry.

The DEFORMTM system comes with a set of customizable subroutines that allow
the users to implement their own bit of code. The subroutines, called on the run,
can be used to update some microstructural variables at every FE node or element,
like the dislocation densities and the fraction of recrystallized material. The flow
stress of the material can be computed in a dedicated routine that has access to
all the user defined variables. Figure 5.1 shows the connections between the FEM
engine and the subroutines.

In all the simulations, the mesh was generated automatically by DEFORM2DTM.
Only an approximate total number of elements is required, as well as the number of
elements in the thickness of the workpiece. In plane strain conditions, the elements
are rectangular by default.

The finite element engine computes the temperature T , strain ε and strain rate ε̇
at the current step, and sends them along with the time step dt and the micro-
scopic variables ξ at current time t to the microstructure routine. This routine,
implemented by the user, updates ξ at time t+ dt, and sends it back to the FEM
engine or to the stress routine. The latter, if involved, calculates the flow stress σ
at every node/element and sends all the data back to the FEM engine.
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FEM engine
Microstructure

subroutine

Flow stress routine

T , ε, ε̇,
dt, ξ(t)

ξ(t + dt), σ(t + dt)

ξ(t+ dt)

Figure 5.1: Structure of the microstructure and flow stress model imple-
mentations in DEFORM2D®. The Flow stress routine can be ignored if
there is no deformation.

5.1 Implementation of the flow stress model

The flow stress model in chapter 3 was implemented and used to predict the
microstructure evolution during plane strain compression. It was then applied to
multiple industrial rolling operations.

5.1.1 Generalities about flow rules

The deformed material is always assumed to be rigid plastic. This means that all
the strain that the material is subjected to is of plastic nature. The material was
considered isotropic; the Levy-Mises flow rule applies. It relates the components
of the stress tensor σij to those of the strain rate tensor ε̇ij as follows:

σij =
1

λ̇
ε̇ij (5.1)

The proportionality parameter λ̇ is determined from the flow stress σ of the ma-
terial:

λ̇ =
2

3

˙̄ε

σ
(5.2)
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˙̄ε being the equivalent strain rate. σ can either be provided by experimental
investigations, or by the flow stress subroutine.

5.1.2 Plane strain compression

The plain strain geometry is a 2D replica of the test geometry in the Gleeble®

3800 experiments (figure 2.1) in the (RD, ND) plane (figure 2.1).

Coefficient of friction

Frictionless experiments would generate a homogeneous deformation. The defor-
mation crosses observed experimentally in figure 2.4 are a consequence of friction
between the tools and the sample. The samples deformed at room temperature
often display an asymmetrical geometry, as showed in figure 5.2. This lack of
symmetry is a clear indicator of a non-uniform friction between the tools and the
sample.

In his master thesis, P. Loidolt [63] investigated the influence of an heterogeneous
distribution of friction between the anvils and the sample by means of finite element
analysis combined with an experimental investigation. The following conclusions
were drawn:

• The measurements of the flow stress are overestimated if friction is omitted,
thus the measured flow curves must be corrected for friction.

• The asymmetrical flow can be caused either by a non uniform friction distri-
bution on the surface of the sample, due to bad lubrication for example, or
to a misalignment of the anvils. The latter case is a methodology problem
that was checked thoroughly.

• The comparison between the experimental sample geometry after deforma-
tion and the geometry predicted by the simulations showed that a shear
friction coefficient of 0.02 was best suited for the simulations.

Simulation set-up

The dies are considered rigid, i.e. they are made of a hard material and their elastic
deformation is negligible. The top anvil is mobile, while the bottom anvil does not
move. The top anvil velocity vanvil is obtained by differentiating equation (2.1)
(see figure 5.3):
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Figure 5.2: Cross section of a sample cold deformed in plain strain com-
pression. The asymmetry indicates non homogeneous frictional effects.
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Figure 5.3: Anvil velocity as a function of strain, after equation (5.3) and
for several strain rates.
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vanvil =

√
3

2
hs0 exp

(√
3

2
˙̄εt

)
˙̄ε (5.3)

The surface of the sample was made permeable to heat. The heat transfer coeffi-
cient with the anvils was N s−1 mm−1 K−1 and the convection coefficient in air was
0.02 N s−1 mm−1 K−1. The mesh had 504 elements, 12 in the thickness and 42 in
the rolling direction. Remeshing was prohibited during deformation to avoid any
loss of information regarding the internal variables calculated in the microstructure
subroutine.

Simulation results

The simulation results of deformation at room temperature and ε̇ =10 s−1 are
shown in figure 5.4. The effective strain ε̄ is defined from the coefficients of the
strain tensor εij as:

ε̄ =

√
2

3

∑
i,j

ε2ij (5.4)

After deformation to a macroscopic strain of 1, the effective strain distribution
displays two deformation crosses, as observed experimentally in figure 2.4a). The
true macroscopic strain of 1 is reached in between the deformation crosses. In the
centre of the crosses, the strain reaches a value of 1.5.

The flow stress is calculated by the flow subroutine and is equated to the von Mises
stress of the material. It raises to a maximum of 230 MPa in the deformation zone
(figure 2.4b)).

The model predicts a homogeneous saturation of the cell interior dislocation den-
sity, while the wall dislocation density has the same distribution pattern as the
effective strain, showing that the wall dislocation density keeps increasing with
strain.

The asymmetry observed in the results, on the edges of the deformation zone, are
simulation errors arising from a mesh distortion.

The subgrain size, given by equation (3.22), varies inversely proportional to ρw.
Therefore, δ is expected to be smaller within the deformation crosses, and the
stored energy higher.
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Figure 5.4: FEM simulation of the plane strain compression tests.
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5.1.3 Multi-pass rolling

The rolling simulations were ran with only one roll and half the plate, since the
behaviour of the other half is assumed to be symmetrical (figure 5.5). As such, a
boundary condition was inserted on in the middle plane to fix its vertical velocity
to 0. A pusher was used at the beginning to force the plate under the roll, until
friction alone was enough to drag the plate forward. The geometry specifics were
provided by the company AMAG Austria Metall to match the production process.

The roll was rigid, made of a stainless steel A-286. The material thermal data was
taken from the DEFORMTM material database. The roll diameter was fixed at
430 mm and its angular velocity at 35 rad s−1.

In order to limit the computation time, the length of the plate was reduced to
200 mm (the initial plate thickness being approximately 10 mm thick). The ini-
tial mesh was made of roughly 4000 elements, with 8 elements in the thickness.
Heat exchange was enabled on the whole outer surface of the plate. A constant
heat exchange coefficient of 11 W m−2 K−1, recommended by DEFORM2DTM, was
applied between the roll and the plate. The environment temperature was fixed
at 20 ◦C with a convection coefficient of 0.2 N s−1 mm−1 K−1, i.e. 10 times the
standard value for air [77] in order to account for the wind created by the plate
displacement.

A Coulomb coefficient µf was applied between the roll and the plate. Its influence
on the strain rate in the plate was previously investigated (figure 5.6). A stick-slip
situation gives birth to instabilities in the strain rate profile when µf < 0.3. In
the range 0.3 – 0.6, the plate still slips right after the entry points. Above 0.6, the
plate sticks to the roll.

A unidirectional rolling schedules of 6 passes of cold deformation was simulated
(table 5.1). A time lapse of 2 min was inserted between the passes for the material
to cool down. Indeed, the material exiting the rolls does not come back between
them before all the remaining plate is deformed and repositioned, which leaves
some time for recovery to occur.

Figure 5.7 shows the results of the simulation in the 6th pass. The strain accu-
mulates preferentially on the edge of the plate. Accordingly, the wall dislocation
density is higher on the edge than in the centre of the plate. The internal disloca-
tion density saturates and remains constant in the plate. Overall, the temperature
does not increase over 100 ◦C.
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Figure 5.5: Rolling geometry. The plate is initially pushed under the roll
by the pusher. The middle plane of the plate is a symmetry plane, thus
only the top half of the process is simulated.
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Figure 5.6: Influence of the friction coefficient µf on the strain rate in the
plate.
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Pass Initial height Thickness reduction

1 10 2.5
2 7.5 2.0
3 5.5 1.5
4 4.0 1.0
5 3.0 0.5
6 2.5 0.5

Table 5.1: Rolling schedule A. All heights are in mm.

TD
RD

ND

Effective strain
1.4 3.1

Effective stress (MPa)
0 250

Temperature (◦C)
20 75

ρi = 1.6× 1013 (m−3)

ρw (m−3)
5.6× 1013 9.1× 1013

Figure 5.7: Cold rolling simulation, pass 6.
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Figure 5.8: Strain and dislocation evolution during multipass cold rolling.
The position of the passes are indicated in bold.

Figure 5.8 shows the evolution of the strain and the dislocation densities with
time, in the centre and near the surface of the plate. The pass numbers are
indicated in bold. At every pass, the strain increases very fast, and so do the
dislocation densities. The strain increases more at the surface than in the centre
of the plate. ρi saturates after two passes in the whole plate. ρw, however, keeps
increasing at every pass, albeit less and less every time. The subgrain size is
inversely proportional to ρw. It is therefore expected to decrease as one travels
from the center of the plate towards the surface.
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5.2 Implementation of the recrystallization

model

One of the drawbacks of the DEFORMTM subroutines is that the stored micro-
scopic variables must be scalar, i.e. DEFORMTM does not provide any solution
for passing arrays between the FEM engine and the subroutines.

The calculation of the average grain growth as formulated in equation (4.28) re-
quires to recall the whole nucleation history because the nucleation rate is not
constant. Because DEFORM does not work with arrays, it is not possible to save
the number of nuclei being formed at every time step, and the recrystallization
model as formulated in chapter 4 cannot be implemented. What can be done, is
to implement a simplified version of the recrystallization model.

5.2.1 Simplified recrystallization model

The objective of this section is to find a nucleation criterion in order to calculate the
grain size evolution during annealing of the plate after cold deformation. Consider
the volume density of nuclei N being formed during the process. It reads:

N = N∗ exp (ε) exp

(
−Qnucl

kBTa

)
(5.5)

Where N∗ is a model constant and Ta is the annealing temperature. If the latter
is high enough, all new grains are quickly formed at the beginning of the process,
before recovery discards any possibility of bulging. Let us call t0 the time at
which no more nucleation event can occur. If t0 is small enough, no consequent
growth occurs before that time, and the average grain size is simply given by
equation (4.28) where τ is replaced by t0:

< R > (t0, t) =

∫ t

t0

Ṙ (z) dz (5.6)

With that model, there is no need to store any large array of information over the
whole simulation, since R, and consequently the recrystallized volume fraction, are
not any more a function of the nucleation rate.
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5.2.2 Annealing of samples deformed in plane strain com-
pression

The samples deformed in plain strain compression were annealed at 300 ◦C and
400 ◦C. The corresponding temperature profiles are given in section 4.1.1. After
one hour, the whole microstructure is recrystallized. The grain size prediction are
shown in figure 5.9. The results show a good agreement with the grain size observed
experimentally (figures 4.3 and 4.4). The model also displays the observed grain
refinement with increasing strain and annealing temperature, which validates the
nucleation criterion in terms of predictability.

300◦C

400◦C

0 8 16 24 32

Figure 5.9: Average grain radius prediction after annealing one hour at
300 ◦C and 400 ◦C, in µm.

5.2.3 Solution annealing after rolling

The simplified model can be used to calculate the recrystallized fraction and the
grain size after annealing of the deformed microstructures from rolling. The plate
was deformed according to the rolling schedules A in table 5.1 and B in table 5.2.
After rolling, a solution annealing step is used to dissolve the β-Mg2Si particles.
Solution annealing of 6xxx aluminium alloys is carried out in the range of 500
to 600 ◦C. A coil of cold deformed material is uncoiled and continuously driven
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Figure 5.10: Continuous solution annealing. The plate is uncoiled, an-
nealed, quenched and coiled.

into an oven at a speed of 2 m s−1, where the material recrystallizes and some of
the second phase particles dissolve. At the exit of the oven, the material is water
quenched. The whole annealing process takes about 200 s. As the temperature is
higher than in our experiments, the nucleation time is expected to be shortened
and the model accuracy increased. Figure 5.11 shows the predicted grain size
after solution annealing at 550 ◦C for 200 s. Note that no account is taken of the
dissolution of the β–Mg2Si here. As discussed in chapter 4, those particles are not
distributed in a way that they effectively hinder the grain growth. The smaller
FeMnSi aluminides, homogeneously distributed, are much more efficient at slowing
down the grain boundary migration. The bigger FeMnSi aluminides, aligned on
the previous grain boundaries, effectively stop the boundary migration. Only the
β–Mg2Si dissolve during the solution annealing, but they are not expected to have
an appreciable effect on the recrystallization kinetics.

The model predicts full recrystallization after both cold rolling schedules. The
grain radius lies in both cases between 5 and 10 µm, increasing from the surface
towards the center of the plate, following the gradient of strain. This is consistent
with the tendency observed in chapter 4, where the grain size varies inversely with
the annealing temperature, in the presence of a strong grain boundary pinning.
The grain radius dispersion is narrower after the rolling schedule A (from 6.4 to
8 µm) than after the rolling schedule B (from 6 to 10 µm).
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Pass Initial height Thickness reduction

1 8.0 2.0
2 6.0 1.5
3 4.5 1.0
4 3.5 0.5
5 3.0 0.5
6 2.5 0.5

Table 5.2: Rolling schedule B. All heights are in mm.

Rolling plan A

Rolling plan B

5.0 7.5 10

Figure 5.11: Grain radius prediction after solution annealing 20 s at
550 ◦C, in µm.
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Chapter 6

Additional Discussion

6.1 Deformation behaviour

The dislocation rate parameters are plotted against the temperature in figure 6.1.
The strain rate corrections provided by equations (3.20) and (3.21) allow for h1,x
and h2,x (x = i, w) to be independent of ε̇.

Except for h2,w, all the parameters display the same behaviour in that they re-
main similar until 150 ◦C and then start varying, i.e the h1,x (x = i, w) strongly
decrease and h2,i strongly increases. This is due to the fact that the flow curves
at low deformation temperatures all display the same pattern and fall within a
range of maximum 50 MPa from each other. The temperature variation in the
model is sufficient to capture this behaviour without further need to act on the
parameters. The decrease of h1,i with the temperature indicates that the storage
of dislocations becomes less effective when the temperature increases, i.e. that the
mobile dislocations travel a longer distance before being immobilized, reflecting an
improved capacity for bypassing local obstacles when the temperature increases.
The results also indicate that the hardening due to subgrain formation is promoted
at lower temperatures since h1,w decreases with increasing temperatures also. As
expected, h2,i increases with the temperature, meaning that dynamic recovery of
cell interior dislocations is promoted. Interestingly, h2,w does not depend on the
temperature. This seems to indicate that the wall dislocations, being already ar-
ranged in a configuration of low energy, are not appreciably affected by dynamic
climb.
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Figure 6.1: Hardening and softening parameters as a function of the
temperature.

6.2 Recrystallization behaviour

The evolution of grain size after recrystallization in samples deformed by plane
strain compression can be explained as follows. As the critical bulge size for Strain
Induced Boundary Migration has an inverse relationship to the stored energy of
deformation (equation (1.66)), more grains are able to nucleate in the middle of
the deformation crosses, where the accumulated strain is larger, than in regions
of lower strain. The new grains impinge on each other upon growth and limit the
grain size in the deformation crosses.

Furthermore, the recrystallized grains are elongated in the direction of deforma-
tion. This is especially obvious during annealing at 300 ◦C (figure 4.3) between the
deformation crosses, where the grain growth in the transverse direction is severely
limited in comparison to the rolling direction (figure 4.3). It has been seen that
the bigger aluminides are aligned in the direction of deformation (figure 2.7). In
those regions where the particles are, their radius remains the same but their vol-
ume fraction increases drastically. The pinning effect on the moving boundaries
increases accordingly, enough to stop them. At higher strain grades and annealing
temperatures, surely the same trend would be observed if the grains did not im-
pinge on each other before reaching the bigger aluminides. The small aluminides,
homogeneously distributed, might still slow down the boundary migration but
cannot completely pin the grain boundaries during recrystallization.

Within the time frame of the measurements, the grain size appears to be stabilized.
As grain growth after recrystallization is driven only by capillarity effects, the
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pressure on the boundaries is much lower than during recrystallization. Pinning
by the homogeneously distributed smaller aluminides can then effectively counter
balance this pressure and prevent any further boundary movement.

Above 350 ◦C, the Mg2Si phase dissolves [78]. It however does not affect the
recrystallization kinetics here, because the Mg2Si particles are to coarse and too
widely spaced to effectively pin the boundaries to begin with. The effects of the
finely disperse aluminides and of the lines of coarse aluminides are dominant.

It was mentioned in section 4.2.1 that the calculated average grain radius should
be overestimated because it represents the radius of overlapping grains. However,
the model parameters were chosen to favor the accuracy of the grain sizes over
that of the recrystallization grades. The most critical parameter in determining
the final grain size appeared to be density of nuclei. The more grains nucleate,
the less space they have to grow and the lower is the final grain size. By slightly
increasing the density of nuclei being created — through the parameters χb or
Qnucl — the predicted grain radius can be decreased to match the experimental
measurements. In doing so the recrystallization grade becomes overestimated and
100 % recrystallization is reached at earlier times.

6.3 Modelling: further considerations

The measured yield stress of the material in figure 3.2, displays two distinct be-
haviours. Under 100 ◦C, σ̂Y remains strain rate and temperature independent,
whereas above 100 ◦C it becomes moderately strain rate dependent and strongly
temperature dependent.

Overcoming obstacles to the dislocation motion is a thermally activated process
(section 1.3), and the effective stress τeff needed to bypass the obstacles is tem-
perature and strain rate dependent (section 1.3.6).

The obstacle approach shows good results at moderate to high temperatures, but
seems ill advised at low deformation temperatures, since the measurements of the
yield and the flow stress reported in figures 3.2 and 3.4 show almost no dependency
to ε̇ and T under 100 ◦C. In the flow stress model presented in chapter 4, τeff was
fixed at its value at 100 ◦C for low temperature deformation. This is however not
physically supported.

In a first attempt to model the yield stress saturation at low temperature, we
considered that τeff as defined in equation (1.35) was limited by the condition:
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Qact − τeffVact = 0 ⇐⇒ τeff =
Qact

Vact
(6.1)

From equation (1.37), and since the temperature is not absolute zero, it comes:

Mε̇

ρmbdνatt
= 1 (6.2)

Taking d = ρ−0.5 for values of ρ in the range [109; 1012], and strain rates between
0.1 – 10 s−1, ρm falls in the range 10−1 – 105 m−2. [9,14] report much higher values
of ρm m, in the order of 1010 – 1016 m−2. Thus, this method cannot be retained.

In a second approach, it was considered that the obstacles to dislocation motion
are the forest dislocations intersecting the slip plane. The mobile dislocations cut
trough the forest dislocations by forming jogs, therefore they increase the energy
of the material by the energy of jog formation Ej ≈ 0.2µb3 [5]. The formation of
jogs gives birth to an attractive force between the intersecting dislocations.

The force F per unit line required to move a dislocation is defined as the work
done when a unit length of dislocation moves a unit distance b. If τ ∗ is the stress
acting on the dislocation, F = τ ∗b. The work that needs to be done to move a
dislocation segment of length λ on a unit distance b is therefore equal to τ ∗b2λ.

In the absence of thermal activation, the work that needs to be done to break a
mobile dislocation free of the attractive force of the jog is equal to Ej. It comes
that:

τ ∗ ≈ 0.2
µb

λ
(6.3)

If the length of the dislocation segment that is affected by a single jog is the spacing
between two forest dislocations, then λ is given by:

λ = Cλρ
−0.5 (6.4)

Where Cλ is a proportionality constant, and:

τ ∗ =
µb

5Cλ

√
ρ (6.5)
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Figure 6.2: Superposition of the experimental yield stress with τeff (T, ε)
and τ ∗ (T ) (Cλ = 14).

This approach is only valid for low temperatures, since equation (6.3) is defined
in the absence of thermal activation. τ ∗ is independent of the strain rate and only
slightly dependent on the deformation temperature through µ.

The yield resolved shear stress τ̂Y can be calculated from the measurements of σ̂Y
as:

τ̂Y =
σ̂Y
M
− τath − τd (6.6)

τ̂Y is plotted as a function of temperature in figure 6.2, together with τeff , and
τ ∗. The activation energy in τeff was taken equal to the energy of jog formation
(Qact = Ej). At low temperatures, the data points fall on τ ∗. When thermal
activation kicks in, the data deviate from τ ∗ and align on τeff .

Therefore, τeff has to be redefined. It now consists of two parts representing two
distinct concepts:
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1. In the absence of thermal activation, τeff = τ ∗ is the stress to break free
from attractive junctions ensuing from the formation of dislocation jogs.

2. When the temperature is high enough, τeff = τth, where τth represents the
temperature dependent stress required to cut through arrays of obstacles,
and is defined as in equation (1.35).

In practice, one can define τeff as follows:

τeff = min(τ ∗, τth) (6.7)

This approach was developed on the late in this thesis, in an attempt to explain the
break in the slope of the yield stress of the material. Let us note that taking a con-
stant effective stress under 100 ◦C, as was done in the model presented chapter 3,
does not affect much the simulation results, but it has no physical ground.

This bimodal approach to the effective stress is novel in several ways:

• It is brought about by on the observation of the yield stress of the material
instead of its flow stress.

• It points out the saturation of the effective stress at low deformation tem-
peratures. Up to now, only its cancellation at high enough temperature was
considered — inherent to the definition of τeff .

• It precises the nature of the force acting on the mobile dislocations as they
cut through the forest dislocations at low temperatures.

• Although the expressions of τ ∗ and τth have been known for a long time,
they had never been used together before.

A consequence of this method is the introduction of a temperature of change Tchange
of mechanical behaviour. Figure 6.1 shows a clear change in the behaviour of 3 out
of 4 evolution parameters at about 150 ◦C, which could be related to the change
in mechanical behaviour introduced here.

The region of transition, here between 100 – 150 ◦C, still needs be investigated
thoroughly, from a microscopic point of view, as the change in mechanical be-
haviour is most certainly coupled with changes in the microstructure. Indeed,
one can assume that the actual behaviour of the material is not discontinuous as
shown in figure 6.2, but rather continuously deviates from the attractive junction
approach to the obstacle driven approach. Mathematically, such a continuous de-
viation could be implemented by weighing the contribution of each approach with
respect to T − Tchange — with a sigmoid function for example. Physically, fur-
ther work on the mechanisms of storage and annihilation of dislocations is clearly
needed.

115



Conclusions

In the course of this thesis, the area of focus was the understanding, description
and prediction of the microscopic mechanisms responsible for strain-hardening
and recrystallization. A flow stress and a recrystallization model relying on a solid
theoretical basis were developed to deal with those issues in an industrial grade
AA6082.

The flow stress model introduced in chapter 3 uses a relatively common approach
to constitutive modelling. A strong hypothesis, based on the Orowan equation, is
that the mobile dislocation density depends only on the strain rate, and remains
constant during deformation at constant strain rate. Measurements of the yield
stress of the materials were used to calibrate some of the model parameters. It
ensued that the effective stress deviates from the obstacle-driven approach at low
deformation temperatures (below 100 ◦C in our case). This issue was further ad-
dressed in chapter 6, where it is introduced that the effective stress in the absence
of thermal activation is limited by the stress needed to push dislocations away
from the attractive junctions of jog formation. This bimodal approach relies on
two well-known mechanisms that were not brought together up to now, at least to
the author’s knowledge.

The recrystallization model developed in chapter 4 introduces a nucleation criterion
that depends directly on the pressure acting on the grain boundaries. As the
temperature increases, it promotes the nucleation of new grains and their growth.
Simultaneously, the microstructure recovers, which inherently inhibits nucleation
and grain growth. The model revolves entirely around this competition. The
pressure-related nucleation rate is necessary to limit the formation of growth nuclei,
hence to control the kinetics of recrystallization.

In both the flow stress and the recrystallization model, the subgrain misorientation
was taken constant on average, which resulted in a constant subgrain boundary
surface energy. It is however known that the subgrain specific energy is highly
dependent on the sub-boundary misorientation, and it should be taken into account
in further developments.
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The implementation of both models in a finite element code allows for the sim-
ulation of actual macroscopic processes. The validity for both models is however
limited to the range of parameters in which they were defined. Extrapolation can
be performed with caution, in which case the results can bring some insight about
the influence of the process conditions on the final microstructure. For instance,
the large deformation grades achieved during multipass rolling are not reached
experimentally in the lab. The flow stress model predicts that the materials keeps
hardening by subgrain refinement, but the hardening decreases slowly towards a
steady-state, as seen in figure 1.1. In the same way, the recrystallization model
implemented in the finite element code extrapolates the experimental results to
a higher temperature and higher deformation grades. The predicted grain radius
is lower than observed experimentally, which confirms the tendencies observed in
chapter 4, i.e. that the recrystallized grain size decreases with increasing annealing
temperature and stored energy of deformation.

Further work is required on the saturation of the effective stress at low deformation
temperatures. As mentioned in chapter 6, the change in mechanical behaviour is
most probably associated with a change in microscopic deformation mechanism.
This should be reflected in the evolution rates of the dislocation densities.
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