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Abstract

In this thesis a plug-in for the image processing tool ImageJ [1] is developed. The basis is
a method published in [2]. This Angle Extraction Plug-In processes microscopic images
of specimen with a distinct fiber angle distribution such as arterial walls. Before the actual
analysis the image is preprocessed to remove possible contamination, which appears as
bright areas on the image. A sequence of a median filter, a normalization step and again a
median filter decrease the noise caused by removing the high-intensity areas. The next step
is the Fourier transformation and analysis thereof. This is carried out by using properties
of the Fourier transformation and the relationship between linear structures in the image
and the intensities of the Fourier power spectrum. The user defines the parameters of the
analysis and depending on those the results are calculated and visualized.

ImageJ is a widely used Java-based image processing and analyzing program. The idea
is a basis framework that can be extended by developing plug-ins. The development was
done using Eclipse Mars [3] as the environment. Before presenting the user with the user
interface the requirement of a compatible image opened is checked and afterwards the
choice of parameters and preprocessing steps are displayed. If there are multiple images to
be analyzed the user can observe the progress bar for an estimation of the remaining time.
At the end a result table with the normalized intensities values per angle-span and an image
representing those values in a graphical way is presented to the user. The finalized plug-in
is to be published and added to the collection at the official website 1.

1https://imagej.nih.gov/ij/plugins/index.html
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1 Introduction
Cardiovascular diseases (CVDs) are the number 1 cause of death globally. In June 2016
the World Health Organization (WHO) estimated 17.5 million or 31% of the total deaths
caused by CVDs [4]. The research in this area has the goal of decreasing those numbers.

One approach is creating models for various types of tissue [5, 6, 7]. Those models can
include patient specific data by different types of parameters. To understand the underly-
ing mechanics many different experiments like inflation and extension tests [8], uniaxial
tension tests [9, 10], biaxial tension tests [11, 12] and triaxial shear testing [13] are con-
ducted to gather enough data for creating constitutive models that describe the mechanical
properties and behavior [14, 15]. Those models can be used to predict fatal incidents like
aortic aneurisms [16].

Such experiments generate huge amounts of data that need processing and evaluating. To
ensure a reproducible and fast procedure automated methods with clear parameters must
be used. One part of the data are microscopic images of tested specimen. To be able to
connect mechanical responses to the configuration of the mechanical behavior defining el-
ements an analysis of their distribution has to be made. Responsible for the mechanical
properties are most of the time fibrous structures like elastin or collagen [17]. The auto-
mated methods need to quantify fiber angle distributions for many images unattended and
visualize the results as well as export the underlying numbers.

In case of the human aorta one of the main mechanical components collagen is arranged
in different ways depending on the layer of the vessel. [5] already showed that if two fiber
families tilted by an angle occur, the angle is a crucial parameter in the stretching behavior.
Fig. 1.1 shows the influence of the angle γ regarding the relationship between circumfer-
ential stretch λΘ and the internal pressure p of a fiber-reinforced circular tube.

With the help of the automated methods for extracting fiber-angle distributions of real
patient data, for example, a bivariate von Mises distribution [14]

p = ceb1 cos 2(ϕ−α)+b2 cos 2ϑ + eb1 cos 2(ϕ+α)+b2 cos 2ϑ, (1.1)

using c as a normalization factor, b1 as the in plane distribution descriptor, b2 as the out
of plane distribution descriptor, α as the angle between the circumferential direction and
the fiber family and ϕ, ϑ as polar angle coordinates in and out of plane can be replaced.
In Fig. 1.2 the effects of distribution descriptors can be observed. They have a significant
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2 1 Introduction

Figure 1.1: The fiber angle γ is a crucial parameter in solving the two-dimensional solution
for the stretch-pressure diagram (circumferential stretch λΘ and pressure p) of a
fiber-reinforced circular tube. In order to create realistic models a correct fiber-
angle distribution of microscopic images of tissue samples is essential (taken
from [5]).

Figure 1.2: Formula 1.1 is an example of a model for the distribution of fiber-angles. The
out of plane distribution descriptor b2 was set to 5 and different values for the
in plane distribution descriptor b1 were chosen to show different angle profiles
(in plane to the left and out of plane in the middle). b1 = 0 would be isotropic
angles in plane. To the right the stress-stretch diagram is shown where different
angle distributions have a significant impact (taken from [14]).

impact on the stress-stretch response which again highlights the importance of the angle
distributions for describing the mechanical behavior in a correct way.



2 Background and State of the Art
The Institute of Biomechanics at the Technical University of Graz does intensive research
on soft tissue. One of the foci is the human aorta [18, 13, 19] and its mechanical properties
in a healthy and pathological state [20, 14].

2.1 Histology of the Human Aorta
The focus of this thesis is extraction of angle distributions of microscopic images. There-
fore the emphasis is set on the different types of fibers and their distribution in the aortic
wall (see Fig.2.1).

Figure 2.1: Schematic of an aorta and its collagen fiber distribution. In the adventitia (A)
the collagen fibers are aligned in the axial direction, in the media (M) in cir-
cumferential direction and in the intima (I) an endothelial cell layer and with
aging a more isotropic distribution can be found. [2]

2.1.1 Intima
The intima is made of endothelial cells arranged in one layer. In young and healthy humans,
the intima does not contain any fibers and therefore samples of this kind do not need an
analysis concerning fiber angle distribution. Pathological changes like atherosclerosis can

3



4 2 Background and State of the Art

lead to changes and a deposition of for example collagen fibers. In this case microscopic
images of the intima can be analyzed regarding fiber angles. Also aging processes change
the histology of the intima in a manner where fiber angle analysis can be useful [18].

2.1.2 Media
The media is made of a network of collagen, elastin and smooth muscle cells. As a result,
the media has the main influence on the mechanical behavior and was investigated thor-
oughly [21]. [17] shows a clear separation of the media by elastic laminae into different
layers. Those layers have a distinct fiber distribution and microscopic images of dissected
media specimen can be evaluated using an angle extraction tool. In the human aorta this
fiber distribution can be seen as two fiber families with two dominant angles in plane to
the circular direction. Therefore, these angles have a large influence on the mechanical
behavior and need special attention when analyzing specimen of this section of the aorta
[18].

2.1.3 Adventitia
The outer layer is called adventitia and is connecting the blood vessel to the surrounding
tissue through the loose connective tissue around it. The fibrous part of the adventitia is
made out of wavy collagen fibers arranged in helical structures and serve as protection
against rupture because once they are stretched out the stiffness increases. Depending on
the anatomical place and age of the patient the adventitia can vary in thickness [18].

2.2 Motivation
An automated method was developed by Andreas Schriefl to quantitatively analyze mi-
croscopic images regarding their fiber distributions in two dimensions [2]. This data can
be used for parameter determination for computational modelling using fiber reinforced
models [19]. A big part of this method was determining the angle distribution of multiple
microscopic images.

The goal of this thesis is to develop a plug-in for ImageJ [1] (see Sec. 3.2) to analyze fiber
distributions of multiple microscopic images quantitatively and present the user with the
resulting data and visualize those results as well. At the end the plug-in will be published
and made available at the ImageJ-Plug-In collection.

2.3 State of the Art
Before implementing a new plug-in a thorough investigation of the available tools for Im-
ageJ was conducted and the most relevant ones are shown here.
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2.3.1 ImageJ Angle Measurement
ImageJ has a simple angle measurement functionality already included. Three points are
selected and the angle is shown in the status bar (see Fig. 2.2). It cannot be used for stack-
images and the result cannot be stored or saved.

Figure 2.2: ImageJs angle tool allows for direct measurement of a single angle by selecting
three points and the result is shown in the status bar of the main window.

2.3.2 OrientationJ
OrientationJ [22] is a plug-in for ImageJ (see Fig. 2.3) and has four functionalities:

• visual representation of the orientation

• quantitative orientation measurement

• distribution of orientations

• Harris corner detection

The software can use one of 6 structure tensors to calculate the orientation for every pixel.
The user specifies also minimum energy in % relative to the maximum energy in the image
and the coherency window in which the histogram of orientations is created. Because this is
evaluated for each pixel more global restrictions like the minimum length of a fiber cannot
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Figure 2.3: OrientationJ Distribution uses a specified structure tensor to calculate direction
information. Different features can be visualized and restrictions regarding
coherency and energy applied. The S-Distribution plot shows the orientation in
degrees for all slices.

be taken into account. The distribution plot and the underlying data are for all slices. Single
plots for single slices are not possible but needed for the application this thesis is focusing
on.

2.3.3 Directionality - Fiji
Fiji [23] is an image processing package including ImageJ and many plug-ins and tools
pre-installed. Directionality [24] is a plug-in for Fiji and has two analyzing methods im-
plemented. Fig. 2.4 shows a test-image to the right and the result of the analysis to the
left.
Fourier components analysis: This analysis splits the image into square parts and calcu-
lates the Fourier power spectra of those parts followed by a measurement of power using
spatial filters as stated in [25].
Local gradient orientation: This local method calculates the gradient using a 5x5 Sobel
[26] filter. A histogram is created by adding up corresponding square of gradient norms.
This results in a histogram with the same dimensions as the Fourier component analysis.
There is also a Gaussian fitting of the largest peak possible (see Fig. 2.4 in the histogram)
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Figure 2.4: The test-image to the right was analyzed using Directionality. The resulting
histogram can be seen to the left.

but the parameters are not displayed by default and can only be retrieved using an addi-
tional script similar to OrientationJ; length restrictions cannot be selected. Therefore, all
structures present will contribute to the result. To analyze fibers in biological tissue this
feature is crucial.





3 Introduction to Java and ImageJ

Java is a platform independent programming language and uses the concept of object-
oriented programming (OOP). A class is a construct of attributes (also: variables) and sets
of program instructions, called member variables and member functions. These properties
are marked either public or private. Public variables and methods can be accessed
by any other object or program instruction, whereas private properties can only be used
by instances of this specific class. If many of them are created, they can be arranged in so
called packages by their functionality or meaning. This results in a better overview if the
program is quite large. The class itself does not contain any data and is used as a stencil for
objects. This encapsulation suggests a strict boundary to other objects regarding activities
and meaning. For example, a Person-object can have name, address, social security num-
ber and birthday as member variables. Once created, the person-object is now an instance
of this class, defined by a unique variable-name and the data being stored. If we want to
metaphorically ask, ‘How old are you?’, a member function has to be implemented which
calculates the actual age. Here a major advantage of OOP is used: The age-calculation is
coded only once in the object-stencil and is executed by using the individual data stored in
the instance. Asking the question itself is called a ‘method call’. This is the tool for objects
to communicate with each other and get access to other data and information.

Another principle of OOP is inheritance. It allows more general classes to be used for more
detailed and specialized classes. In our previous example the Person-class could be used
as a parent and a new Athlete-class as the child. Now an Athlete-object has also
member variables like name, address etc. but can also have new, more detailed variables
such as sports, personal bests, weight and height or new methods like running or throwing
a javelin. Those are not available for a Person-object. Not just the variables are inherited
but also the functions. If the programmer wants to change or adapt the behavior they can
be altered but have to have the same name as in the parent object.

Especially if the software is being developed by different people or groups an agreement
has to be found in order to get the code to work. So called interfaces are used to ensure
code-compatibility. They are a special type of class, which can only contain constants
and method signatures (just the header of a function without implementation). Since an
instance does not have any actual code in it, a class can implement an interface to use the
predefined variables and methods. [27]

9



10 3 Introduction to Java and ImageJ

3.1 Structure of ImageJ
ImageJ uses the concepts of OOP to utilize its highly flexible behavior and creates an easy
possibility to extend the program. It is organized in 12 packages (see Tab. 3.1).

ij ij.gui ij.io ij.macro
ij.measure ij.plugin ij.plugin.filter ij.plugin.frame

ij.plugin.tool ij.process ij.text ij.util

Table 3.1: The 12 packages containing all classes and interfaces for ImageJ. They are sep-
arated by functionality according to the self-explanatory package names.

3.1.1 Important Classes and Interfaces
The 5 most important classes and interfaces used in the Angle Extraction Plug-In with their
methods are explained here.

ImageProcessor

The ImageProcessor is a superclass for 4 different processors that inherit a base set of
variables and functions depending on their data-type.

• ByteProcessor
The pixel data format is byte and is stored in 8 bit numbers.

• ColorProcessor
The pixel data format is int and represents a 32 bit RGB image.

• FloatProcessor
The pixel data format is float and is stored in 32 bit floating-point numbers.

• ShortProcessor
The pixel data format is short and is stored in unsigned 16 bit numbers.

Using OOP, the function calls are the same for every processor type and carried out ac-
cording to the underlying data format. This class is used to modify and analyze an image,
because a direct access to pixel values is possible. The most important functions are:

• convertToFloat
This function returns a FloatProcessor of the current image and is used to con-
vert color images into intensity (gray-value) images.

• getFloatArray
This method returns a two-dimensional array with the actual pixel data. One entry
represents one pixel.
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• setFloatArray
After modifying the image, this method is used to update the ImageProcessor’s pixel
data.

ImagePlus

An ImagePlus object contains an ImageProcessor and several other variables with
meta data (like bit depth and dimensions) regarding the image. This class is used to repre-
sent a single image and provides many useful methods such as:

• draw
This method opens a new window and shows the image-data stored in the corre-
sponding ImageProcessor.

• getProcessor
This method returns a reference to the object’s ImageProcessor for computations and
modifications to the image data.

• setProcessor
After altering the data in the ImageProcessor this method replaces the old ImagePro-
cessor and updates the image if it is shown in a window.

ImageStack

An image-stack is an array of images with the same dimensions and data-type. Access to
individual images is possible via an index. This index can also be used to delete or insert
single images to the stack.

ExtendedPlugInFilter

ExtendedPlugInFilter is an interface, which is used to develop plug-ins with an
extended functionality such as asking the user for parameters, a preview function or a
progress bar. It is a child of the PlugInFilter and has to have the following four
functions implemented:

• setNPasses
Informs the plug-in, how many times the run-function is called.

• showDialog
In this function a user interface is implemented and asks for different parameters.

• run
This method is called once for each image of an image-stack or just once if a single
image is active only. The actual image-processing is implemented here.
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• setup
Once the filter is loaded the setup-function is called only once and defines the
capabilities of the plug-in.

DialogListener

The interface DialogListener requires an implementation of dialogItemChanged,
a function that is called every time a user changes parameters in the plug-in interface. This
is used to apprehend the most recent values entered.
With the usage of OOP principles and instances of those classes and interfaces the aspired
functionality of the plug-in can be achieved.

3.2 Introduction to ImageJ
ImageJ is a Java based, open source image processing and analyzing tool with basic func-
tions already implemented. Once started the main window (see Fig. 3.1) appears. Besides
being able to handle most of the common image formats (e.g. jpeg, tiff, gif, png). ImageJ
is also able to work with image stacks. A stack is a collection of related images, like in the
case of this Master Thesis microscopic images through the depth of a sample specimen.

Figure 3.1: Main window of ImageJ.

3.2.1 Plug-Ins and Development
The structure of ImageJ allows it to be easily extended by plug-ins, scripts and macros.
The main difference between a script or a macro and a plug-in is the need for compilations.
Scripts (using JavaScript) and macros (Java-like language with a certain set of commands)
are interpreted iteratively. A plug-in is a class derived from the PlugIn/PlugInFilter class
and therefore has full access to ImageJ and Java APIs and is the most powerful and flexible
choice of those three alternatives; they are written in Java [28].

The Angle Extraction Plug-In is implemented for ImageJ v1.50g [28] using Java Version
8 Update 73 [29]. The development environment was Eclipse Mars.1 Release (4.5.1) [3].
To set up a working environment an instruction from [30] was followed. It is setting up
a project with the ImageJ source code and creating a new project (the plug-in) depend-
ing on it, so it can use all ImageJ classes and commands. During debugging the plug-in
automatically shows up in the Plug-In menu.



4 Mathematical Background
The Angle Extraction Plug-In uses the Fourier transformation and some basic image pre-
processing to calculate the results. The modalities used for this plug-in are described in
this chapter.

4.1 Fourier Transformation
The Fourier transformation is named after Jean-Baptiste Joseph Fourier (1768 - 1830) and
based on the Fourier series expansion

f(x) =
a0

2
+
∞∑

n=1

(an · cos (nx) + bn · sin (nx)), (4.1)

which states that every function is a sum of sines and cosines scaled by their coefficients

a0 =
1

π

∫ π

−π
f(x)dx, (4.2)

an =
1

π

∫ π

−π
f(x) · cos (nx)dx (4.3)

and
bn =

1

π

∫ π

−π
f(x) · sin (nx)dx (4.4)

with n ∈ N [31].

If the function is in the interval [−L,L],

x ≡ πx′

L
(4.5)

and
dx =

πdx′

L
(4.6)

are used to rewrite the Fourier series as follows:

f(x′) =
a0

2
+
∞∑

n=1

(
an · cos (

nπx′

L
) + bn · sin (

nπx′

L
)

)
. (4.7)
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14 4 Mathematical Background

Also the coefficients now read as follows:

a0 =
1

L

∫ 2L

0

f(x′)dx, (4.8)

an =
1

L

∫ 2L

0

f(x′) · cos (nπx
′

L
)dx′ (4.9)

and

bn =
1

L

∫ 2L

0

f(x′) · sin (nπx
′

L
)dx′. (4.10)

The Fourier transformation uses Euler’s formula

cos (x) + i · sin (x) = exp(ix) (4.11)

with x ∈ R, to represent the waves of the series expansion as exponential functions. As this
representation uses complex exponents the Fourier coefficients also need to be of complex
value.

Finally the Fourier transformation

F(f(x)) = F (k) =

∫ ∞
−∞

f(x) exp(−i2πkx)dx, (4.12)

k being the variable in the Fourier space, maps the time domain to the frequency domain
(disassemble a signal in its spectrum), where the real and the complex part correspond to
amplitude and phase of the analyzed function or signal, respectively ([32]).

4.1.1 Discrete Fourier Transformation - DFT
As there are no continuous functions in computer-aided calculations a discretization has to
be made. Not only the continuous Fourier transformation has to be discretized, also the
data has to be adapted if it is present in a continuous form. This happened implicitly due to
the pixel-structure of an image stored on a computer. The step from a continuous integral
to a discrete sum is carried out by using the Dirac delta function

δ(a) =

{
1 if a = 0

0 if a = else
(4.13)

and its property ∫
f(x)δ(a− x)dx = f(a). (4.14)

The final form of the DFT using N discrete samples

F(f [k]) = F [n] =
N−1∑
k=0

f [k]e−i·
2π
N

nk (4.15)

uses n as the spectral variable and k = 0, 1, 2, . . . , N as the sample index. Square brackets
[. . . ] are used for discrete functions and round brackets (. . . ) for continuous functions [33].
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4.1.2 Fast Fourier Transformation - FFT
Especially for large data sets, a fast execution is crucial to the usability of a program.
Therefore a reduction of the complexity of the problem is wanted. To achieve this goal the
DFT is rewritten to

F [n] =
1√
N

N∑
k=0

f [n]W nk
N , (4.16)

using
W nk

N = e−i·
2π
N

nk (4.17)

as a substitution for the exponential function.

Evaluating all possible W nk
N for a fixed number of samples N shows that if N is a power of

2 the decimation-in-time-algorithm works best. It splits up the input data in 2 equally long
parts

W 2mn
N = e−i·

2π
N

(2mn) = e
−i 2π

N
2 mn = Wmn

N
2

(4.18)

with even (substitute k = 2m) and odd (substitute k = 2m+1) sample indices by rewriting

F [n] =

m=N
2
−1∑

m=0

f [2m]Wmn
N
2

+Wm
N

m=N
2
−1∑

m=0

f [2m+ 1]Wmn
N
2
. (4.19)

If the factors W nk
N are analyzed, one can see they repeat themselves and only N different

values are needed. If a continuous signal is discretized using N = 8 samples, a total of 8
factors can be precomputed.

W 3
8 = e−i·

2π·3
8 = e−i·

3π
4 (4.20)

and
W 11

8 = e−i·
2π·11

8 = e−i·2πe−i·
3π·
4 = e−i·

3π
4 (4.21)

show the periodicity of the factors with a period of N .

If taking the sign also in account, only N
2

values have to be calculated. This is due to the
2π-periodicity of the sines and cosines expressed as an exponential function (see Eq. 4.18
and Eq. 4.11). In Tab. 4.1 all 8 factors are precomputed. The angles in degrees correspond
to angles inserted in the Euler identity (see Eq. 4.11).

The observation W k
N = −W k+N

2
N (see Tab. 4.1) reduces the needed calculations by a factor

of 2. This means if a continuous signal is sampled N times, only N
2

factors are required to
be precomputed.

Including all those findings, a N-point DFT can be decomposed into two N
2

-point transfor-
mations

F [n] = G[n] +Wm
N H[n], (4.22)
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Factor Exponential Function

W 0
8 e−i·

2π·0
8 = 1

W 1
8 e−i·

2π·1
8 = e−i·45◦ = 1−i√

2

W 2
8 e−i·

2π·2
8 = e−i·90◦ = −i

W 3
8 e−i·

2π·3
8 = e−i·135◦ = −1+i√

2

W 4
8 e−i·

2π·4
8 = e−i·180◦ = −1

W 5
8 e−i·

2π·5
8 = e−i·225◦ = −1−i√

2

W 6
8 e−i·

2π·6
8 = e−i·270◦ = i

W 7
8 e−i·

2π·7
8 = e−i·315◦ = 1+i√

2

Table 4.1: Factors used in the FFT. N (here: 8) samples can be thought of as N points
equally distributed on the unit circle. The angles are inserted in the Euler identity
(see Eq.4.11) and evaluated. Using this and the abstract unit circle one can see:
A shift of 180◦ or π is just a multiplication by −1 and this eliminates the need
for N

2
(here: 4) factors to be computed.

with G[h] being the DFT of the even input and H[n] the DFT of the odd input data (see
Eq. 4.19).

If this algorithm is applied recursively and the number of samples N is a power of 2,
the FFT is calculated by solving 2-point DFTs at the highest stage of recursion ([34]). If
comparing the complexity of the DFT to the FFT by comparing the number of complex
multiplications one can see, that for the DFT N2 multiplications are needed. Due to the
splitting operation the FFT has only N

2
multiplications. The number of splits possible is

log2(N), therefore a total of only N
2
log2(N) complex multiplications are needed. The other

operations are computationally inexpensive complex additions.

If the Fourier Transformation is applied on an image, N represent the number of pixels,
therefore only dimensions of a power of 2 can make use of the FFT. Otherwise the much
slower DFT has to be used.

4.1.3 DFT and FFT in Image Processing
Before applying the DFT or FFT, an adjustment has to be made to include the second
dimension ([35], shown in Eq. 4.23.

F(f [k, l]) = F [m,n] =
1√
MN

∞∑
m=−∞

∞∑
n=−∞

f [m,n] · e−i·2π(mk
M

+nl
N

)) (4.23)

f [m,n] represents a single pixel in an image of dimensions M ×N and F [k, l] is the cor-
responding entry in the discrete 2D Fourier spectrum. Separating the exponential term,
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allows also separating the double-sum and therefore the 2D transformation splits into two
1D transformations. Especially for image processing, this gives a computational advan-
tage: If only one dimension is a power of 2, this Fourier transformation can be calculated
using the FFT, while the other dimension needs the slower DFT.

Either result of the FFT or DFT leads to a complex-valued 2D matrix. The data can be
visualized in different ways. The most common one is to take the absolute value. Because
different entries in the Fourier data correspond to different frequencies, the mean-value of
the image lies at F [0, 0]. Most of the time this will be the largest value by far. To visualize
this spectral data, the logarithm of the power spectrum (multiplying the Fourier data by its
complex conjugate: P [m,n] = F [m,n]F ∗[m,n]) value is taken and can be interpreted as
intensity in a gray-scale image.

The power spectrum seen as a gray-scale image contains information about the frequen-
cies that occur in the original image. Using the term directions instead of frequency while
talking about image processing makes it better understandable. High values of the power
spectrum at specific points are shown as bright areas. Therefore those bright areas repre-
sent structures of a specific size and angle.

Fig. 4.1 shows a following findings:

• Different lengths of structures at a certain direction show up at different positions in
the power spectrum. Longer structures are further away from the center but are on
the same line if the angle stays the same

• The visualized power spectrum is shifted by 90◦

• The center represents the mean value of the image and has the largest value

This interpretation is the basis of the angle distribution analysis the ImageJ plug-in.

4.2 Image Preprocessing
Before the actual angle analysis certain steps have to be executed to improve the results.

4.2.1 Maxima Removing
The data to be analyzed in this thesis are microscopic gray-scale images. It is possible
dust particles or similar contamination get on the specimen as shown in Fig. 4.2 to the left.
These contaminations show up as bright spots and are taken in account during the Fourier
transformation. In order to exclude those artifacts a threshold is set by the user and all
pixel values above are set to the lowest occurring value (see Fig. 4.2 to the right). If it
would be set to 0, the normalization-step (see Subsec. 4.2.3) would not detect the lowest
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Figure 4.1: A test-image with its corresponding logarithmic scaled Fourier power spec-
trum.

intensity of the original picture and calculate a wrong normalization factor as described in
Eq. 4.24).Therefore, those artifacts do not influence the result of the Fourier transformation.

Figure 4.2: The bright white spots on the left side are artifacts due to contamination of the
specimen. They are filtered out by the maxima removing step of the image pre-
processing. Here a threshold of 250 was set and pixels with a higher intensity
are replaced with the lowest occurring intensity in this image.

4.2.2 Median Filtering
Additionally to removing the maxima a 3x3 median filter is applied (see Fig. 4.3). It takes
all pixels within its quadratic window with odd side length, sorts them ascending according
to their value and replaces the current pixel with the median value. At the border where the
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window cannot be filled the image is mirrored along the edge and those values are used.
This filter handles outliers very well, especially if for example in a brighter area a few
single pixels are set to the minimum value due the maxima removing step. The median
filter corrects those outliers and the area does not lose as much information, hence only
a few spots are above the threshold. In the workflow of the Angle Extraction Plug-in the
median filtering is applied after removing the maxima. Fig. 4.4 shows a specimen with its
maxima removed (left) and the output after the filtering operation (right).

Figure 4.3: 3x3 median filter applied on the center pixel.

Figure 4.4: Input for the median filtering step is here the image after removing the maxima
(seen on the left). After the median filtering less salt-and-pepper-like noise is
present.
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4.2.3 Normalization
To use as many gray-shades as possible at the end of the preprocessing steps a normaliza-
tion to an 8bit range (0-255) is carried out using

nf =
255

pmax − pmin

(4.24)

to calculate the normalization factor nf and

pnew = (pold − pmin) · nf (4.25)

as the normalization step (pnew and pold are the normalized and old pixel values respec-
tively). Tab. 4.2 shows an example of a calculation for an image.

old pixel value new pixel value
minimum 12 0
maximum 250 255

Table 4.2: Using Eq. 4.24 the normalization factor nf =
255
238

and the new pixel values are
calculated as shown in Eq. 4.25.

4.2.4 Cosine Mask
Because the Fourier Transform does not take spatial information into account and assumes
periodicity a translation of the image as seen in Fig. 4.5 should not have any effect on the
result. Due to the non-symmetric nature of the image artifacts occur in the Discrete Fourier
Transform [36]. To avoid those discontinuities a symmetric cosine-based mask is applied
to the image. The interval of [−π

2
, π

2
] is an equally-spaced sampled with the number of

samples being the number of pixels of the side length of the image and put into a vector.
This vector is multiplied and transposed with itself and the result is a cosine-based mask
with the dimension of the image (Fig. 4.6 to the left). Due to the nature of the cosine
function it has a range of [0, 1] with the maximum value being at the center and 0 at the
borders. After a pixel-wise multiplication of the mask and the image the basis for further
analysis is set (Fig. 4.6 to the right).
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Figure 4.5: A test-image (top left) is assumed to be periodic for using the Discrete Fourier
Transform. If an actual translation is carried out (top right) edges are created
which show up as a very distinct cross in both components of the Discrete
Fourier Transform (bottom left and right).
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Figure 4.6: This mask on the left is applied to the image before the Fourier transform to
avoid cross-like artifacts with high energy in the Fourier transform due to the
non-periodic image. It has a value of 1 at the center and decreases to 0 at the
borders according to a half-period of a cosine function. A pixel-wise multipli-
cation with the image to be transformed is carried out afterwards. The image
to be analyzed looks like the one to the right.



5 Theoretical Workflow
Because of the OOP and Java principles and setup discussed in Ch. 3 the actual workflow
is not represented clearly in the program code. This chapter explains the process from a
procedural viewpoint. The use of the mathematical methods of Ch. 4 in order to achieve
the desired result of an accurate angle distribution analysis is also pointed out.

5.1 Preprocessing
If the user selects preprocessing steps (see Fig.7.2) they are carried out in the listed order.
The cosine-based mask is a crucial part of the preprocessing. Therefore, it is not presented
as a choice and carried out every time. The execution follows Sec. 4.2. Assuming all steps
are selected the images are handled as followed:

1. Pixels in the image with an intensity larger than the user-chosen threshold are re-
placed by the smallest occurring intensity.

2. The image is smoothed with a 3x3 median filter to reduce possible speckle noise
caused by the previous step.

3. To use the whole intensity values of [0, 255] the image is normalized to this range.

4. At the end a 3x3 median filter is applied to smooth the image more. The median
filter does not introduce new intensity values. Therefore, a second normalization is
not necessary.

5. A cosine-based filter is applied to focus the analysis on the center of the image.

5.2 Analysis
After the preprocessing steps the actual angle analysis starts (see Sec. 4.1):

1. Execute the Fourier transformation and use the power spectrum for further analysis.

2. The pixels of the power spectrum are assigned to their corresponding angles.

3. Based on the user input angle wedges (see Fig.6.8 for an example) are created and
pixel intensities are summed up within those wedges.

4. For comparable results the wedge-intensity sums are normalized.

23
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5.3 Results
There are two ways the result is displayed to the user. First, a result table with the numerical
values is shown. From there (see Fig. 5.1) the user can see the normalized intensity values
of the wedges. One row represents one image and a column contains all summed intensities
of the corresponding angles. This data can directly be saved to a file for further usage.

Figure 5.1: The result table of a stack of 20 images with an angle width of 10◦. One row
represents one image and a column corresponds to the angles of this wedge.
The wedges continue to 180◦.

The second representation of the result is the graphical interpretation of the result table.
In Subsec. 6.1.2 the normalized intensities are represented as an image for easy visual
interpretation (see Fig. 8.6).



6 Execution
In this chapter a detailed pseudo-code of the whole plug-in is presented. The Angle Ex-
traction Plugin has a total of 9 Java-methods, out of which 4 are private and 5 public (see
Fig. 6.1). Private methods can be accessed within the code of the plug-in itself. Public
methods can be accessed by external code, in this case the ImageJ program.

Figure 6.1: An overview of the Java-Methods of the Angle Extraction Plug-in. Private
methods are used by the plug-in itself only and public methods can be accessed
by external Java code (e.g. ImageJ). This figure does not say anything about
the execution order but the accessibility of different methods.

6.1 Workflow
In Fig. 6.2 a flowchart is shown. setNPasses does not appear, because it is only used by
ImageJ to inform the plug-in how many times the run-method will be called. After con-
firming the requirements by setup and checking for valid parameters by showDialog,
run analyzes each image using removeMaxima, normalize and generateBandpass.
Finally, setup is called again because of the FINAL PROCESSING-flag and opens the
result table and result image.
This workflow represents the different stages of the plug-in from a programmer’s view.
The processing-chain regarding the image analyzing only is explained in Sec. 5.

6.1.1 Class Variables
Because a plug-in is an implemented Java-class the class variables are available in all meth-
ods. Following variables are used:

• private static int FLAGS = DOES ALL |
DOES STACKS | FINAL PROCESSING;

25
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Figure 6.2: After the user started the plug-in the setup-method at first checks if an image
of compatible type is opened (using the flags explained in Subsec. 6.1.1). If suc-
cessfully started the plug-in will present calling showDialog the possibility
to change the default parameters. It calls dialogItemChanged if the user
enters some data to update the variables the code is working with and check for
valid values. After confirming the parameters, run is called for each slice of
the image-stack or just once if only one image should be analyzed. Within run
the actual processing and analyzing is happening. At the end setup is called
one last time to generate the result table and the result image.

According to the flags the setup-method checks if the requirements for starting the
plug-in are met.
DOES ALL: plug-in handles all types of images
DOES STACKS: plug-in handles stacks of images
FINAL PROCESSING: setting this flag results in a last call of setupwith arg="final"

• float pi: used for creating the cosine mask

• ResultTable resTable: This is a provided data-type by ImageJ and uses
strings as column headers and numbers as entries. One column represents inten-
sities per angle-wedge through all images and one row represents an image with all
its wedges.

• int threshold: radius of low pass filter for Fourier transformation

• int wedgeWidth: width of wedge in ◦ (degrees)
The value has to be an integer-fraction of 360◦ to achieve full coverage.

• String widthes[]: array, which contains integer fractions of 360◦, used do fill
drop-down selection

• boolean[] preprocessing: Array with boolean values to decide which pre-
processing steps are executed in the following order: remove maxima, despeckle 1,
normalize, despeckle 2

• String[] prepStrings: array, which contains strings to show in the GUI
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• int width: width of the current image processed

• int height: height of the current image processed

• int iCoord: column-coordinate of maximum value in power spectrum of the
Fourier transformation

• int jCoord: row-coordinate of maximum value in power spectrum of the Fourier
transformation

• float[][] bandpass: Binary mask for applying bandpass to the Fourier trans-
formation

• float[][] angleMatrix: each entry contains the angle in degrees with re-
spect to the maximum of the Fourier transformation

• int maxThreshold: value for thresholding in removeMaxima

6.1.2 public int setup(String arg, ImagePlus imp)

This subsection will discuss the method setup. For clarity reasons some operations are
not implemented directly within one of the public methods. They are separately coded in
private functions, which are explained as well.

This method is called by ImageJ when the plug-in is loaded. arg can be empty, but after
the last image processed setup is called again with arg="final". This is used to de-
cide when the result table and generateResultImage() is called to create the final
image. imp is the current image being processed.

private void generateResultImage() This private function uses an already
implemented functionality to create an image by using data from the result table. Because
one entry in the result-table is the intensity of a wedge-span, resizing is necessary. Hitting
Crtl+E opens ImageJs scaling tool and the required size can be created (see Fig. 6.3). If
interpolation is used in the resizing process, the result will not be the correct data anymore,
because in the several interpolation options neighboring pixels and therefore neighboring
data influences each other. The number of wedges stays the same but the number of pixels
per wedge in the result image is increased. The intensity of a wedge must not change;
therefore, it is crucial that no interpolation is executed.

By default, the result image has the Fire-look up table (LUT) applied. A LUT does not
change the data itself, but contains information how to map different values to different
colors. Depending on the current version, ImageJ has already a few LUTs installed (see
Fig. 6.4).



28 6 Execution

Figure 6.3: The 36 by 36 result image is composed of 36 images (rows) and 180
5

= 36
wedges. The scaling tool (Crtl+E) allows to resize it. To avoid falsifying the
intensities the interpolation option ”None” has to be selected. Otherwise in the
upscaling process intensities from neighboring pixels influence each other.

Figure 6.4: Selection of LUTs in ImageJ. They do not interact with the data itself, but
represent the mapping operation from data-value to shown color.

6.1.3 public int showDialog(ImagePlus imp, String
command, PlugInFilterRunner pfr)

This subsection describes the method showDialog. After setup is finished the showDialog-
method is called to build the GUI. imp is the current image, command can be used to find
out what command started the plug-in and pfr is needed if a preview function is required.
Since the preview requires an execution of the run-method, which can be quite time con-
suming, it is not used here. If it would be implemented, every time the user changes a
parameter a new analysis is started.
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The GenericDialog-class has already implemented the features to build a GUI and an
instance of this class is set up to build a user interface (see Fig. 7.2) and automatically
invokes dialogItemChanged if any changes are made.

public boolean dialogItemChanged(GenericDialog gd, AWTEvent e)
This method updates the variables threshold, maxThreshold, wedgeWidth,
preprocessing[] and checks for valid values of maxThreshold (0 − 255). gd is
used to get access to the shown user interface and e describes the event that caused the call
of dialogItemChanged.

6.1.4 public void run(ImageProcessor ip)

In this subsection the method run is discussed. Here the actual image processing is car-
ried out. Its only parameter ip allows the developer to access, transform and analyze the
image’s data. Fig. 6.5 shows the workflow and structural setup

Figure 6.5: Workflow of the run-method. For detailed explanation of functional blocks
please see Sec. 6.1.4.

Preprocessing Depending on which tasks the user selected following operations can be
executed:

• Cosine Mask
To avoid artifacts in the Fourier transformation the image is multiplied with a mask
based on the cosine function. It is calculated by discretizing a half-period of a cosine
function in two dimensions (see Fig. 4.6).
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• Remove Maxima
Each pixel is checked individually against maxThreshold and set to the lowest
occurring intensity in the image.

• Despeckle 1
RankFilter-class is used to apply a standard 3 by 3 median filter as explained in
Sec. 4.2.2.

• Normalize
After finding the maximum intensity in the image the normalization-factor is calcu-
lated and a pixel-wise multiplication is performed to use all values between 0− 255.

• Despeckle 2
analogous to Despeckle 1

Fourier Transform Because ImageJ and its plug-ins are open source FFTJ [37] is included
in the Java project to get access to its functionality. After the Fourier transformation the
power spectrum of the Fourier transform of the current image (ip) is available in a two-
dimensional array with data type float.

Angle Matrix The wedge-filtering process needs to know every angle of every pixel in re-
lation to the center of the Fourier transform. The center coordinates (iCoord, jCoord)
are found by looking for the highest value of the power spectrum. With this information
two matrices with image dimensions are build containing the absolute x and y distances to
the center respectively.

Using

atan

(
yi,j

xi,j

)
· 180
π
, (6.1)

where yi,j and xi,j are the absolute distances to the center of the current pixel investi-
gated, the angle matrix itself is built. Since there are no negative angles allowed 360 is
added to those values. Each entry contains now the angle with respect to the center of the
power spectrum. In Fig. 6.6 the angles are shown in grayscale where 0◦ is black and 360◦

is white. The angles used in the result table and the result image correspond to this angle
matrix.
grayscale where 0◦ is black and 360◦ is white. The angles used in the result table and the
result image correspond to this angle matrix.

Bandpass Small structures do not represent the structures of interest and have to be filtered.
They appear closer to the center of the Fourier transformation. To do this a thresholding-
operation is executed. The user specified threshold as the radius in % of the image side
length. A circle around the center with this radius is ignored during wedge filtering.
To ensure an equal area for all wedges, another circle with the radius of the shorter image
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Figure 6.6: This image visualizes the angle matrix used in the wedge filtering process.
Each pixel-intensity represents an angle at the current position. 0◦ maps to
black and 360◦ to white.

side length is calculated. Everything outside this circle will be ignored as well.
The inner circle is in the Fourier domain a low-pass filter and the outer circle a high-pass
filter. With these combined a bandpass filter is created. To apply the bandpass a simple
pixel-wise multiplication is sufficient, because the ignored areas in the mask are set to 0
and those areas relevant to the analysis to 1 (see Fig.6.7).

Wedge Filter This step is crucial to the angle analysis and uses the values of the power
spectrum to establish a relationship between the Fourier data and angles of structures in
the image. Instead of creating 360

#wedges
masks the data from the angle matrix is used to

determine which pixel will be assigned to which wedge. Fig. 6.8 shows a wedge with an
angle span of 5◦.

The formula

index = mod

(⌊
angleMatrix i,j

wedgeWidth

⌋
,

360

wedgeWidth

)
(6.2)

calculates the index in the intensity array. angleMatrixi,j is the angle of the pixel with
the coordinates [i, j] and wedgeWidth describes how many degrees are combined. The
example with a wedge width of 5◦ and the pixel with an angle of 276◦

index = mod

(⌊
276

5

⌋
,
360

5

)
= mod (55, 72) = 55 (6.3)
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Figure 6.7: The inner circle has a radius of threshold and the outer radius is the value
of smaller side of the image. This mask is multiplied pixel-wise with the power
spectrum and the basis for wedge filtering is created.

would add the intensity of this pixel to the 55th wedge of the intensity array. In the image
it cannot be differentiated if a structure or fiber is rotated either 96◦ or 276◦. Therefore,
wedges, which are 180◦ apart contain information regarding the same structures and can
be added. In example 6.3 the 55th (275◦ − 280◦) wedge is added to the 19th (95◦ − 100◦).
At the end for each image the intensities are normalized to a range of [0, 100], where 100
represents the maximum intensity for a wedge. Therefore, this wedge represents the most
occurring angles in the image. A schematic overview is shown in Fig. 6.9. This data is
added to the resultTable, which is later used to generate the visual output.

6.2 Summary
The ImageJ Angle Extraction Plug-In is capable of analyzing and visualizing angle dis-
tributions of any kind using Fourier transformation. The wedge-width is the most crucial
parameter. In Fig. 6.10 the left structure is made of small parts at different angles. These
parts will contribute to different areas in the Fourier spectrum. If the wedge is too small,
intensities are mapped to the wrong angles for the total fiber. The right straight line will be
captured by the corresponding wedge only, because this particular line will show up in one
place of the Fourier transformation only.

As shown in Subsec. 6.1.4 the central part of the power spectrum is not used for the analy-
sis. Intensities close to the center are caused by very small structures like the one marked
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Figure 6.8: Depending on the angle-span currently analyzed a wedge-mask is created fig-
uratively and multiplied with the Fourier data pixel-wise. The remaining in-
tensities belong to the current angles evaluated. This step is left out in the
implementation, because the affiliation of a pixel to its angle can be calculated
by using the angle matrix directly.

Figure 6.9: The intensity for each pixel of the power spectrum is added to the index, which
is calculated based on the angle and wedge width (see Eq. 6.2). Before stor-
ing the results, a normalization based on the maximum intensity to a range of
[0, 100] is executed.

by the red rectangle in Fig. 6.10. This threshold determines the length of the structures to
be filtered out and therefore more realistic results regarding the angle of the whole fiber
and not the individual pieces can be achieved.
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Figure 6.10: Because the left structure is made of different smaller structures at varying
angles it is going to show at more than one place in the Fourier spectrum. The
right line with only one specific angle is going to be at a certain spot in the
power spectrum and will be captured by the right wedge. If the wedge-width
is too small, it is possible that different parts of the left structure contribute to
wrong wedges. The marked segment will show up close to the center of the
power spectrum and can falsify the intensity for this angle, even though the
whole fiber is rotated in a completely different way.



7 Manual
In this chapter the handling of ImageJ, the Angle Extraction Plug-In and plug-ins in general
are explained.

7.1 ImageJ
ImageJ is an open-source software based on Java. Therefore, the current Java Runtime En-
vironment (JRE) has to be installed. Additionally, if the user wants to develop and modify
plug-ins, the Java Software Development Kit (JDK), which already includes the JRE has
to be installed instead.

Assuming a basic usage of ImageJ is wanted and no further programming will take place
(for developing manual see next section). In this case depending on the operating system
of the computer, the correct files have to be downloaded from the website 1.

7.2 Plug-Ins
Plug-ins are either .java or already compiled .class-files. It is recognized as a plug-in
by a (underscore) in its file name. In order to add a new plug-in to ImageJ two different
methods can be used:

• Copy plugin .java-file to a subfolder in the ImageJ/Plugins
select the copied file via Plugins→ Compile and Run... command (see Fig. 7.1 on
the top).

• Copy plugin .class to a subfolder in the ImageJ/Plugins folder

After either method ImageJ needs to be restarted and the plug-in will appear in the menu
(see Fig. 7.1 to the bottom).

7.3 Angle Extraction
To start the plug-in from the menu an image or an image-stack has to be opened. Once it
is started the input mask shows as in Fig. 7.2.

1https://imagej.nih.gov/ij/download.html
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Figure 7.1: Menu entry to compile and install a new plug-in on the top and the plug-in
appears after a restart in the menu (on the bottom).

After setting the parameters the processing itself begins and the progress can be observed
in ImageJ’s progress bar (marked with red rectangle in Fig. 7.3).
At the end two new windows appear:

• result table
contains the normalized intensity values in a range from [0, 100]
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Figure 7.2: Input mask for the Angle Extraction plug-in with its standard values. The ra-
dius for the lowpass can either be changed by entering the value or using the
slider. Wedge widths are restricted to fractions of 180, because otherwise a full
rotation is not possible. The four preprocessing steps are executed from top to
bottom, if selected. The threshold for removing the maxima has to be a value
between 0 and 255 due to the gray value image type.

Figure 7.3: ImageJ’s main window during execution of the Angle Extraction plug-in. The
progress bar is marked with a red rectangle.

• result image
intensities from the result table are mapped to a LUT and displayed as an image





8 Verification
In order to assess the plug-in a Matlab [38] script to generate test-images with well-defined
parameters was written (see Fig. 8.1).

Figure 8.1: GUI for creating quadratic test-images with a power of 2 side-length. Param-
eters for fiber family 1 are used to create lines on the top half of the image
and likewise for the lower half and fiber family 2. If more than one image is
created the increment is added after each image. A margin is applied by adding
a random value from the interval [−margin,margin] to the original specified
angle.

8.1 Generate Testimages
The script generates images with two sets of lines to mimic the two fiber families in the
microscopic images that are to be analyzed. On the top half lines with parameters for fiber
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family 1 is set up and on the lower lines with parameters for fiber family 2. The user needs
to fill out following parameters to generate a set of test-images:

• image side-length
has to be a power of 2 for use of FFT

• angles for first and second fiber family
angles are positive in clockwise direction
have to lie between 0◦ and 180◦

• number of lines per fiber family

• number of images created in total

• increments for first and second fiber family per image
Increments are applied after each image and positive values are clockwise rotations
and negative values are counterclockwise rotations.
irrelevant if only 1 image is created

• angle margins for first and second fiber family
margin is multiplied with a random number [−1, 1] and then added to the original
angle

There is also the possibility to create more images and vary the angles with each image.
This is to simulate changing fiber direction through depth. In addition to single image-files
a stack-file containing all images is created, which is evaluated by the plug-in. In Fig. 8.2
a single test-image with angles of 45◦ and 135◦ is shown.

To identify the properties of each image they are stored in a folder containing the param-
eters in its name. Each parameter is represented by a string and are concatenated to form
the full folder name in the following order:

• start angle fiber family 1 to end angle fiber family 1

• +- margin fiber family 1

• start angle fiber family 2 to end angle fiber family 2

• +- margin fiber family 2

• number of lines per fiber family

• increments for fiber family 1 and 2

This example: 0to180+-5 0to-180+-5 10lines incr5 -5 contains images start-
ing with both fiber families at 0◦. Fiber families 1 and 2 have an angle margin of±5◦. Lines
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Figure 8.2: Part of a test image series created by the Matlab script with 10 lines per fiber
family and +5◦ angle increase for fiber family 1 and −5◦ for fiber family 2 per
image. The whole series continues until a total change of 180◦ is reached.

on the top half of the image are rotated by 5◦ clockwise and on the bottom half 5◦ counter-
clockwise indicated by the negative sign. From this information the number of images total
can be calculated by dividing the angle-span by the increment (here: 180−0

5
= 36 images).

Within the folder single images have a file name with angle test , a counter and the
base angles (without any margins) of both fiber families. angle test 3 10 -10.tif
is the third image of the series containing lines with angles of 10◦ and −10◦.

8.2 Verification Results
Several sets of test-images were generated, analyzed with the plug-in and the results were
compared with the input parameters. For all the verifications a 5◦ wedge-width and a low-
pass radius of 10% was set. No preprocessing steps were carried out. In Fig. 8.3 the two
fiber families contained a single line each at 45◦. The resulting, normalized intensity values
can be found in Tab. 8.1 and the visualized result in Fig. 8.4.

For further verification processes only the visualized output is shown. The resulting values
can be reproduced by creating the desired test images with the Matlab script and analyzing
those with the plug-in. After using one angle in one image another set was analyzed (see
Fig.8.5 for detailed parameters).
The plug-in output for the image-series generated with Fig. 8.5 is shown in Fig. 8.6. The
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Figure 8.3: Test image with two single lines at 45◦.

angle intensity angle intensity angle intensity
0◦ − 5◦ 0.553 60◦ − 65◦ 0.146 120◦ − 125◦ 0.016
5◦ − 10◦ 0.049 65◦ − 70◦ 0.085 125◦ − 130◦ 0.016
10◦ − 15◦ 0.032 70◦ − 75◦ 0.056 130◦ − 135◦ 0.016
15◦ − 20◦ 0.041 75◦ − 80◦ 0.042 135◦ − 140◦ 0.016
20◦ − 25◦ 0.056 80◦ − 85◦ 0.032 140◦ − 145◦ 0.016
25◦ − 30◦ 0.085 85◦ − 90◦ 0.029 145◦ − 150◦ 0.016
30◦ − 35◦ 0.149 90◦ − 95◦ 0.591 150◦ − 155◦ 0.016
35◦ − 40◦ 0.343 95◦ − 100◦ 0.023 155◦ − 160◦ 0.016
40◦ − 45◦ 2.267 100◦ − 105◦ 0.019 160◦ − 165◦ 0.017
45◦ − 50◦ 100.000 105◦ − 110◦ 0.018 165◦ − 170◦ 0.018
50◦ − 55◦ 2.260 110◦ − 115◦ 0.017 170◦ − 175◦ 0.019
55◦ − 60◦ 0.344 115◦ − 120◦ 0.017 175◦ − 180◦ 0.043

Table 8.1: Normalized result of the analysis of 8.3 by the plug-in. The maximal value is as
expected between 45◦ and 50◦, since the test image has only lines at 45◦.

maxima (white boxes) match perfectly the input parameters and therefore represent a valid
angle distribution.
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Figure 8.4: Plug-in output of the test image with two single lines at 45◦. Wedge-width was
5◦ and the low-pass radius at 10%.

Figure 8.5: Parameters for the image set used to verify the plug-in. After each image fiber
family 1 rotates by 5◦ clockwise and fiber family counter-clockwise. The ex-
pected output will be an x-shaped pattern, because both families span over
0◦ − 180◦. The angle margin is a randomly added/subtracted value to a lines
angle before drawing in the range of the entered magnitude.

Finally a test-set of images with a margin of ±5◦ (see Fig. 8.7 for full parameters) was
generated and analyzed. Because there are random numbers used in creating those images,
one has to save them to be able to reproduce the results. Nevertheless, the main angle
is expected to be found at the given values. In Fig. 8.8 the first 18 of 36 test-images are
shown.

Interpreting the result (see Fig. 8.9) leads to following conclusions:

• maxima are found correctly
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Figure 8.6: Calculated angle distribution for the image-set (total of 36 images) generated
as defined in Fig. 8.5. The maxima of each image are exactly where they have
to be in order to match the input parameters.

• neighboring angle-spans have higher intensities due to the margin

The green rectangle in Fig. 8.9 marks the individual angle distribution of Fig. 8.8 with the
maxima at 45◦ − 50◦ and −45◦ −−50◦ as expected.
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Figure 8.7: Parameters for the final image set used to verify the plug-in. After each image
fiber family 1 rotates by 5◦ clockwise and fiber family counter-clockwise. The
expected output will be an x-shaped pattern, because both families span over
0◦ − 180◦. Here a random value between −5◦ and 5◦ was added to each single
line before drawing.
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Figure 8.8: These are the first 18 images from the series generated with parameters seen
in Fig. 8.7. The first fiber family has angles of 45◦ ± 5◦ and the second fiber
family −45◦ ± 5◦.

Figure 8.9: The result of the image-set generated with Fig. 8.7. Fig. 8.8’s result is high-
lighted with a green rectangle. The maxima (white boxes) are still at the right
place but one can see, that due to the margin of ±5◦ and a wedge-width of 5◦

neighboring fields have higher values than the corresponding fields in Fig. 8.6.



9 Conclusion
The Angle Extraction Plug-In introduced in this thesis presents a user-friendly method of
a fiber distribution analysis. The results are displayed in a numerical result table and a
visualization to be able to use in further work.

Due to the nature of the underlying images not just a single fiber angle but a distribution of
angles and the dominant direction is sought. The Fourier transformation has the properties
and methods to analyze structures and their corresponding orientation. For verification sets
of test-images with clearly defined parameters are generated and analyzed. Those results
show a high precision regarding the occurrence of angle changes and two different angle
families.

Comparing the Matlab script and the new plug-in several improvements can be observed:

• The original script consists of two parts: The angle extraction script creates a file
with the results and the plotting script visualizes the data as seen in Fig. 9.1. The
image is normalized by the global maxima therefore only one wedge with a value
of 100 is displayed. This makes it more difficult to locate the maximum angle at
slices with low values because the ratio to the global maxima is similar and therefore
of similar color. The resulting image of the plug-in is normalized slice by slice and
therefore not a global maxima but a maxima per slice is displayed and the dominating
angle spans can be picked out very easily.

• If the user wants to change the parameters, the user has to change them in the ac-
cording lines of Matlab code whereas in the plug-in a user interface presents all
possibilities of input and options to choose from.

• In the Matlab version the data is stored as comma-separated-values (CSV) in a file
without extension and never directly displayed to the user. ImageJ has a result ta-
ble which is shown additionally to the graphical representation thereof. This result
table can be saved in an Excel-file and used by all compatible programs for further
evaluation and computations if necessary.

• Last but not least the plug-in is much faster than the Matlab script and allows, due to
this advantage, a more effective way of experimenting with the settings.

Considering all the mentioned advantages the Angle Extraction Plug-In is a significant
improvement in the evaluation of microscopic images containing fibers.

47
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Figure 9.1: This is an example of the visual representation of the result of the angle ex-
traction script generated by the plotting script. The scale to the left shows the
globally normalized color-scale.

After finalizing the Angle Extraction Plug-In it will be made available to the public via the
ImageJ platform using the web tool at the ImageJ Documentation Wiki 1.

1http://imagejdocu.tudor.lu/doku.php?id=create new content
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