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Abstract

Digital signatures play a crucial role in our digital world. They have for exam-
ple a major impact on the security of our online communication, e-government
applications, and online banking. It is known since the 1980s that most of the
digital signature schemes which are in use today can be broken by a sufficiently
large quantum computer. Although such a powerful quantum computer does
not exist yet, it is necessary to start the transition to so-called post-quantum
signature schemes already now. Thus, the National Institute of Standards and
Technology hosts the Post-Quantum Cryptography project which aims to find
suitable post-quantum signature schemes. Picnic, a post-quantum signature
scheme which was developed at the Institute of Applied Information Processing
and Communications, was submitted to this project.

In this thesis we optimize LowMC which is one of the main building blocks of
Picnic. We propose two structural and one implementational optimization.
First, we improve the computation of the round key which yields a performance
gain of almost 50%. Second, we propose a Feistel network which replaces a
matrix multiplication. This optimization can reduce the memory requirements
of a matrix multiplication by up to 97%. The third optimization targets the
implementation of Picnic on devices which feature an ARM CPU. We exploit
the single instruction, multiple data instruction set extension NEON for im-
plementing matrix operations. This optimization creates a performance gain
of 5 to 10%.

v





Kurzfassung

Digitale Signaturen sind ein wichtiger Bestandteil unserer digitalen Welt. Sie
haben beispielsweise großen Einfluss auf die Sicherheit von Online-Kommu-
nikation, E-Government Anwendungen, und Onlinebanking. Es ist seit den
1980er Jahren bekannt, dass die meisten digitalen Signaturschemata, die heutzu-
tage verwendet werden, durch einen ausreichend großen Quantencomputer ge-
brochen werden können. Obwohl ein solcher leistungsfähiger Quantencomputer
noch nicht existiert, ist es bereits jetzt notwendig, dass wir mit dem Übergang
zu sogenannten Post-Quanten-Signaturschemata zu beginnen. Deshalb hat das
National Institute for Standards and Technologie das Post-Quantum Cryptog-
raphy Projekt ausgeschrieben, das zum Ziel hat, geeignete Post-Quanten-Sig-
naturschemata zu finden. Picnic, ein Post-Quanten-Signaturschema das am
Institut für angewandte Informationsverarbeitung und Kommunikationstech-
nologie entwickelt wurde, wurde zu diesem Projekt eingereicht.

In dieser Masterarbeit optimieren wir LowMC, einen der Hauptbestandteile
von Picnic. Wir präsentieren drei Optimierungen, wovon zwei die Struk-
tur und eine die Implementierung von LowMC betreffen. Zuerst verbessern
wir die Berechnung des Rundenschlüssels, was zu einem Leistungsgewinn von
fast 50% führt. Zweitens schlagen wir ein Feistel-Netzwerk vor, das eine Ma-
trixmultiplikation ersetzt. Diese Optimierung kann den Speicherbedarf für
eine Matrixmultiplikation um bis zu 97 % reduzieren. Die dritte Optimierung
zielt auf die Implementierung von Picnic auf Geräten mit einer ARM-CPU
ab. Wir verwenden die Single instruction, multiple data Erweiterung NEON
zum Implementieren von Matrixoperationen. Diese Optimierung erzeugt einen
Leistungszuwachs von 5 bis 10%.
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1. Introduction

In our modern world of digital communication it is indispensable that we make
use of digital signatures. For example, we want to send a message and make
sure that the receiver knows that the received message is really the message
we sent. Furthermore, we also need to identify our communication partner
correctly. It is not enough to know that the received message has not been
modified if we do not know who sent the message. When we connect to our
online banking we want to be sure we are truly connecting to the website of
our bank and not to some adversary’s website. In other words, we have to
ensure that we can confirm the identity of our communication party with an
error probability that is negligible, i.e., nobody can trick us into believing that
he or she is somebody else. Digital signatures provide the possibility for our
communication partner to ensure that the received message is truly from us
and that the content of the message has not been changed during the trans-
mission. The security of our digital communication is ensured in all modern
browsers using TLS [DR08]. TLS makes use of digital signatures for example
to authenticate the key exchange between two parties which is required for the
further encryption of the communication. Another application of digital signa-
tures in TLS is the identification of the communicating parties. Furthermore,
digital signatures are used in the Domain Name System Security Extensions
(DNSSEC [Are+05]) which aims to secure the Domain Name System (DNS
[Moc87]). DNS is mostly known for translating the URL that is entered into
the browser into an IP-Address that can be used to locate the requested web-
site on the internet. Another application of digital signatures is code signing
in an app store1. There, all applications that are uploaded to an app store are
signed to prevent adversaries from infiltrating a malicious app into the store.
If a user downloads a signed app he can make sure that the version he installs

1https://developer.apple.com/support/code-signing/
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1. Introduction

is truly the one that the owner of the store approved. Similarly hardware
manufacturers provide signed device drivers2.

Digital signatures can also be used in the context of e-government applications.
In Austria, it is possible to create a legally binding digital signature using a
smartphone or a smartcard3. These signatures can be used for administrative
procedures including contract and petition signing, online banking, and tax
declarations. They can replace handwritten signatures which are an important
part of our daily life. When we sign a contract we agree to the content of the
contract and all terms and conditions associated with it. Our signature, no
matter if handwritten or digital, can be used by the second party of the contract
to prove that it was truly us who signed the contract.

In general, digital signatures have to fulfill three main security notions to be
considered secure [MOV96]:

• Authenticity: The sender of the message is truly who he or she claims
to be.

• Integrity: The sent message has not been altered on the way from
sender to receiver.

• Non-repudiation: The creator of the signature cannot deny that the
signature was created by him- or herself.

In recent decades there was a notable advancement in the development of
quantum computers [BBD09]. At least since the discovery of Shor’s algorithm
in 1994, we know that a sufficiently large and powerful quantum computer
can break a considerable amount of our modern-day public-key encryption
and signature schemes [Sho94]. Hence, once a sufficiently powerful quantum
computer exists, all of our digital communication that relies on broken primi-
tives becomes vulnerable and insecure. However, there are also approaches for
public-key encryption, key exchange algorithms, and signatures schemes which
are secure in this so-called post-quantum setting. It takes a development pro-
cess of several years until a post-quantum scheme is usable in practice. There-
fore, it is necessary to start the transition to post-quantum schemes as early

2https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/

driver-signing
3https://www.digitales.oesterreich.gv.at/elektronische-signaturen#

Elektronische_Signaturarten

2
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as possible. Up to now, there have been many approaches to construct post-
quantum signature schemes which are built on different primitives. Examples
of post-quantum signature schemes include lattice-based schemes like TESLA
[Alk+15] and BLISS [Duc+13], hash-based schemes like SPHINCS [Ber+15],
multivariate schemes like MQDSS [Che+16], and code-based schemes like the
Niederreiter scheme [Nie86]. Furthermore, all signature schemes which are
based on symmetric-key primitives are, to the best of our knowledge, secure
in the post-quantum setting although their security level is reduced by one
half. This reduction of security is due to the discovery of Grover’s algorithm
in 1996 [Gro96]. Grover’s algorithm reduces the complexity of exhaustive key
search attacks by a factor of 1

2
. Therefore, we have to double the block size of

a symmetric-key algorithm to achieve the same security.

One feature of a signature scheme which is particularly important when it
comes to the real world application is its performance. A perfectly secure
post-quantum signature scheme is only of theoretical interest if its perfor-
mance is too poor or its memory requirements are too high for practical usage.
Especially on less powerful devices like embedded devices or smartphones, it
is essential that the performance of the scheme not hinder the regular work-
flow. ECDSA achieves a performance in the order of microseconds which is
not noticeable by a human being. Many post-quantum signature schemes suf-
fer either from large keys, large signatures or long execution time [Cha+17a].
There is still a vast optimization potential until these schemes are as optimized
as ECDSA is nowadays.

The National Institute of Standards and Technologies (NIST) launched a
project4 which aims to find secure key exchange, public-key encryption and
signature algorithms. The deadline for the submissions was in November 2017
and in total 69 algorithms where submitted. The Institute of Applied Informa-
tion Processing and Communications (IAIK) at Graz University of Technology
submitted the signature scheme Picnic [Cha+17a].

Picnic is a symmetric-key based, post-quantum signature scheme which is
based on the symmetric-key primitive LowMC [Alb+16b]. This thesis focuses
on the optimization of LowMC in the context of Picnic so that Picnic be-
comes usable in practice. We propose two structural optimizations and one

4http://csrc.nist.gov/groups/ST/post-quantum-crypto/

3



1. Introduction

implementational optimization. The structural optimizations focus on two dif-
ferent bottlenecks of LowMC. The first optimization targets the computation
of the round key layer, which is a costly part of LowMC. We propose to split
the round key computation such that a part of it can be precomputed for
multiple encryptions without decreasing the security of Picnic. The second
optimization targets the matrix multiplication in the linear layer of LowMC.
Our proposal substitutes the multiplication with a Feistel network which im-
plements the multiplication through its round functions. Furthermore, we
propose to implement parts of the Picnic code using the NEON instruction
set extension of ARM CPUs. This instruction set extension implements single
instruction, multiple data intrinsics which allow performing the same operation
on multiple data instances at the same time. All of these optimizations pursue
the same target, which is to make Picnic usable in practice. First, they aim
to optimize the performance of Picnic so that it is no handicap in a regular
workflow. Second, they try to minimize the memory consumption of the signa-
ture scheme. The reduction of the memory requirements should make Picnic
usable on platforms with limited available memory, e.g., embedded devices.

1.1. Structure of this Document

Chapter 2 includes background information on signature schemes, post-quan-
tum cryptography, LowMC, Picnic, Feistl networks and single instruction,
multiple data instruction set extensions. In Chapter 3, we describe the opti-
mizations that we propose for LowMC. The performance and the memory
requirements of these optimizations are evaluated in Chapter 4. Chapter 5
briefly discusses the results and implications of Chapter 4. Finally, Chapter 6
concludes the works.

4



2. Preliminaries

This chapter describes all necessary background information required in the
remainder of this thesis.

2.1. Signature Schemes

Whenever we want to confirm our identity for whatever reason, e.g., a contract,
we provide a hand-written signature. This signature binds us to the content
of the document we signed and we cannot deny that the signature is truly
ours. Nowadays, a huge part of our daily life includes digital communication.
To be able to identify ourselves digitally to our communication partner we
need a digital equivalent to the hand-written signature. This is where digital
signature schemes come into play. A digital signature scheme consists of three
algorithms: Keygen, Sign, and Verify [Kat10]. The Keygen algorithm is used
to create the secret and the public key for creating and verifying signatures
with respect to a certain security parameter 1κ, i.e., (sk, pk) ← Keygen(1κ).
The person who signs a message uses the secret key sk to create a signa-
ture σ for the message m, i.e., σ ← Sign(m, sk). Whoever wants to ver-
ify the signature can do this by using the public key pk. The verification
is either successful (>) or not (⊥), i.e., {>,⊥} ← Verify(σ,m, pk). Com-
monly used signature schemes include RSA [RSA78], the ElGamal signature
scheme [Gam84], the (elliptic curve) digital signature algorithm (DSA [ST93]
and ECDSA [ST13]), and Edwards-curve digital signature algorithm (EdDSA
[JL17; Ber+12; Ham15]).

Signature schemes need to fulfill EUF-CMA security to be considered secure
[Kat10]. EUF-CMA describes existential unforgeability under adaptively cho-
sen message attack. In this setting a polynomially bounded adversary A is

5



2. Preliminaries

allowed to query the signatures from a signing oracle OS for any desired mes-
sages. If the scheme is EUF-CMA secure, the adversary cannot produce a valid
signature for a message that was not queried except for a negligible probability.
A function ε(x) is called negligible if for every polynomial p(x) there exists an
n such that ε(n) < 1

p(n)
. EUF-CMA secure can more formally be described as

Pr

[
(pk, sk)← Keygen(1κ), (m∗, σ∗)← AO

S(·,sk)(pk) :
m∗ /∈ Q ∧ Verify(m∗, σ∗, pk) = >

]
≤ ε(κ).

2.2. Post-quantum Cryptography

Many present-day cryptographic signature and public-key encryption algo-
rithms rely on specific hard mathematical problems like the integer factor-
ization problem, the discrete logarithm problem and the elliptic curve discrete
logarithm problem. A hard problem is defined as a problem to which no poly-
nomial algorithm is known to solve it. Examples for algorithms that are based
on these problems include RSA, DSA, ECDSA, the ElGamal signature scheme
[ST13], and the (elliptic curve) Diffie-Hellman key exchange (DH [DH76] and
ECDH [Mil85]). In 1994, Shor proposed an algorithm which is capable of
efficiently solving the discrete logarithm and the factorization problem on a
powerful enough quantum computer [Sho94]. To be more specific, there is no
known algorithm for classical computers that can factor a number in poly-
nomial time, whereas Shor’s algorithm can factor a b-bit number in approx-
imately O(b3). The algorithm can also solve the discrete logarithm problem
in polynomial time by building on the solution of the factorization problem.
Therefore, once a quantum computer exists that solves the mentioned prob-
lems in a reasonable amount of time, all cryptographic primitives that build
on these problems are insecure. All applications where the insecure algorithms
are used become vulnerable. To overcome the threat of quantum computers
there exist new approaches for building public-key primitives which are secure
against attacks from quantum computers. Post-quantum cryptography refers
to cryptographic algorithms which are considered secure against attacks us-
ing quantum computers [BBD09]. These approaches include, among others,
symmetric-key-based, hash-based, lattice-based, multivariate, and code-based
signature schemes.

6



2.2. Post-quantum Cryptography

The development of quantum computers is still in its infancy, and it will be
years or even decades until a quantum computer can be used to break modern
cryptography standards [BBD09]. However, once such a quantum computer
exists, all cryptographic algorithms that are based on the problems presented
above can be broken. NIST already launched a post-quantum cryptography
project to find suitable key exchange, public-key encryption and signature
algorithms for the post-quantum era. According to the proposed timetable,
the selection of one or multiple suitable post-quantum schemes will take at
least five years.

Symmetric-key-based Signatures. To current knowledge, symmetric key
primitives cannot be broken by quantum computers because they do not rely
on integer factorization or the discrete logarithm problem [BBD09]. However,
in 1996 Grover proposed an algorithm for quantum computers which allows to
search in a unsorted database with N entries in O(

√
N). Compared to classical

computers, which can search in unsorted databases in O(N), this is a quadratic
speedup. This means that Grover’s algorithm can recover a 256-bit key for a
symmetric cipher using brute-force with 2128 trials instead of 2256. To make
symmetric key primitives secure against attacks from a quantum computer,
we can double the security parameter for symmetric key primitive. In other
words, we can double the key size for symmetric key primitives to achieve the
same security of the primitives on quantum computers as we have today on
classical computers. How symmetric key primitives can be used to create a
signature scheme will be covered in detail in Section 2.4.

Hash-based Signatures. Hashes are believed to be post-quantum secure if
the hash size is doubled to avoid attacks using Grover’s algorithm. Hash-based
signature schemes use a one-way function like a hash as a primary building
block because hashes provide collision resistance [BBD09]. Collision resistance
means that no two inputs to a hash function lead to the same output except
for a small probability. Merkle was the first to propose a practically usable
hash-based signature scheme [Mer89]. It uses a one-time signature scheme,
like the Lamport-Diffie scheme [Lam79], as a basis. With a one-time signature
scheme a pair of a private signing and a public verifying key can only be used
to sign one single document because the computed signature reveals part of
the signing key. Merkle uses the Lamport-Diffie scheme as a building block
for his signature scheme and builds a hash tree to extend the validity of the
signature key. In 2015 Bernstein et al. published the hash-based signature

7



2. Preliminaries

scheme SPHINCS [Ber+15] which is the state-of-the-art hash-based signature
scheme.

Lattice-based Signatures. Lattice-based signatures use lattices as their ba-
sis, which can informally be described as a set of points in an n-dimensional
space, that follows a periodic structure [BBD09]. The security of lattice-based
cryptography is based on the hardness of particular problems in the lattice
space, e.g., short integer solution problem (SIS) and learning with errors prob-
lem (LWE). The SIS problem is defined as follows. Let A ∈ Zn×mq be a random
matrix. The goal in the SIS problem is to find a non-zero vector x ∈ Zmq such
that A ·x = 0. The definition of the LWE problem is as follows. Let A ∈ Zn×mq

be a random matrix and s ∈ Znq be a secret vector. Furthermore, we require
e ∈ Enq and the calculation g = A · s + e mod q. Given A and g, the goal is
to find the secret vector s. The SIS and the LWE problem are believed to be
hard to solve efficiently on a classical and a quantum computer. Therefore,
there exist several signature schemes which build on these problems, and the
Fiat-Shamir transform (cf. Section 2.4) [Alk+15; Lyu09; Lyu12]. Ajtai was
the first to propose a lattice-based cryptographic scheme together with the
hardness analysis of the SIS problem [Ajt96]. However, lattice-based signature
schemes often suffer from immense key sizes up to several megabytes [Alk+15;
Lyu12; Dag+14; GPV08]. There exists a variety of efficient schemes which
do not rely on classical lattice problems, but on their ring analogues [Akl+16;
BB13; Bar+16; GLP12]. One major advantage is that these constructions re-
duce the key size from several megabytes to kilobytes. Ducas et al. proposed
such a signature scheme, which is highly efficient, under the name BLISS in
2013 [Duc+13].

Multivariate Signatures. Multivariate cryptography builds on the prob-
lem of solving multivariate, non-linear equation systems over a finite field F
[BBD09]. This problem is proven to be NP-complete, which is the basis of
the security of these schemes. The public key P consists of a set of non-linear
(usually quadratic), multivariate equations. To construct the private key, we
require two affine transformations S and T and an easily invertible map Q.
The relation between the public and the private key is P = S ◦ Q ◦ T . The
signature s for a block x is calculated as s = S−1(Q−1(T−1(x))). The verifica-
tion can be done by computing x = P−1(s). In 2016, Chen et al. proposed the
signature scheme MQDSS, which is based on solving quadratic multivariate
equations and the Fiat-Shamir transform [Che+16].

8



2.3. LowMC

Code-based Signatures. Code-based cryptography builds upon error cor-
recting codes (ECC). The first approach for a public-key encryption scheme
based on ECC was made by McEliece in 1978 [McE78]. In 1986, Niederreiter
published a signature scheme based on McEliece’s encryption scheme [Nie86].
Many code-based signatures are based on the syndrome decoding problem. In-
formally, the syndrome decoding problem is defined as follows. Let H ∈ Fx×yq

be a parity check matrix, i a vector of length x, and t an integer. The syndrome
decoding problem describes the question if there is a vector e of length y such
that He = i and the Hamming weight of e < p. Véron proposed an identifica-
tion system based on this problem [Vér96]. This identification scheme can be
transformed into a signature scheme by applying the Fiat-Shamir transform.

2.3. LowMC

LowMC is a symmetric encryption scheme which is highly parameterizable
and was proposed by Albrecht et al. [Alb+15; Alb+16b]. It is a block cipher
which is based on a substitution-permutation network [KD79; MOV96]. The
parameters of LowMC include the block size n, the key size k, the number of
S-boxes m, and the number of rounds r.
One round of the LowMC encryption consists of a non-linear S-box layer, a
linear layer, and the addition of a round constant and a round key. Each of
these layers operates on a n-bit state s ∈ Fn2 . This state is initialized with the
plaintext and an inital key. LowMC requires several matrices in each round.
Those matrices are described below in the corresponding section. We refer to
a set of fixed parameters and matrices as a LowMC instance.

S-box Layer. LowMC’s S-box layer consists of multiple 3-bit S-boxes and
does not necessarily operate on the whole state. Although the number of S-
boxes m can be chosen freely, 3m bits must not exceed the block size n. The
m S-boxes operate on the lower 3m bits of the state s. The upper n−3m bits,
which are not influenced by the S-box, use an identity mapping, i.e., they do
not change. We call the lower 3m bits the non-linear part of the state and
the remaining n− 3m bits the linear part. The S-box for the three input bits
(a, b, c) is defined as S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab) [Alb+15].
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Linear Layer. In the linear layer of round i the state s is multiplied by
the linear layer matrix Li ∈ Fn×n2 . The matrices Li are chosen uniformly at
random for all rounds i. However, all matrices Li have to be invertible.

Round Constant. In each round i the round constant Ci ∈ Fn2 is added to
the state. The round constants Ci are chosen uniformly at random and need
not fulfill any special constraints.

Round Key. Each round contains an addition of the round key to the state.
The round key for round i is calculated by multiplying the round key matrix
Ki ∈ Fn×k2 by the secret key y ∈ Fk2. The matrices Ki are chosen uniformly at
random for all rounds i. All matrices Ki require rank min(n, k). Additionally,
we need one more key matrix K0 for the initial key, which is also computed
by multiplying the key matrix by the secret key. This initial key matrix has
to fulfill the same constraints as all other round key matrices.

All matrices Li, Ci andKi are generated once, fixed for one instance of LowMC
and do not necessarily have to be kept secret. In other words, a LowMC in-
stance is a set of fixed, publicly known parameters and matrices which is used
for multiple encryptions. Additionally to the LowMC matrices presented
above, we require a secret key. The secret key y is chosen uniformly at random
and has to be kept secret. However, in contrast to all other matrices, it is not
fixed for one LowMC instance. Therefore, it is possible to execute LowMC
encryptions with the same LowMC instance but with different secret keys,
e.g., secret keys from different people.

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Require: plaintext p ∈ Fn2 and key y ∈ Fk2
1: s← K0 · y + p
2: for i ∈ [1, r] do
3: s← SBOX(s)
4: s← Li · s
5: s← Ci + s
6: s← Ki · y + s
7: end for
8: return s
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Algorithm 1 shows the full algorithm for the LowMC encryption. Line 1
shows the initialization of the state. Lines 3 to 6 show the non-linear S-box
layer, the linear layer, the round constant addition and the round key addition,
respectively.

As Albrecht et al. describe, LowMC aims to optimize two characteristics of
a cipher: the multiplicative complexity and the ANDdepth [Alb+16b]. Both
terms refer to the representation of the cipher as a boolean circuit. The mul-
tiplicative complexity describes the number of ANDs which is necessary to
implement a given boolean circuit, i.e., the total number of AND gates which
will be used for building the circuit [BPP00]. The ANDdepth is the depth of
the circuit. In other words, the depth of a circuit describes the length of the
longest path between an input and an output gate. In LowMC the AND-
depth corresponds to the number of rounds. Doröz et al. already suggest that
a low ANDdepth is necessary for an efficient implementation of an encryption
scheme and demonstrate it on the example of PRINCE [Dor+14]. The goal
of LowMC is to minimize the multiplicative complexity and the ANDdepth
at the same time. This should yield a good tradeoff between a fast and a
small hardware implementation. A low number of AND gates is desirable in
a hardware implementation where the circuit should be implemented as small
as possible, e.g., on a microchip. The low ANDdepth favors a fast execution
of the algorithm because the input has to pass fewer gates to reach the out-
put. However, minimizing the multiplicative complexity and the ANDdepth
at the same time is not a trivial problem [Alb+16b]. If the ANDdepth is op-
timized and decreased, the total number of gates increases, which makes the
circuit bigger and requires more space on a chip. If the number of AND gates
is optimized and decreased, the depth of the circuit increases, which makes
the path between input and output gates longer and therefore the execution
slower. Hence, it is necessary to find a good tradeofff between the character-
istics. The number of rounds r of the encryption is an adaptable parameter
of LowMC. It can be adapted according to the security level that should
be reached. The number of S-boxes m, the block size n, and the key size k
also have an impact on r for a certain security level. If the number of S-boxes
m decreases, the number of rounds r has to be increased to reach the same
security level. If the block size n or the key size k or both are increased, r also
has to be increased. Increasing the number of S-boxes without changing the
number of rounds, the block size, or the key size increases the security level.
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Block size n 128 256 512
S-boxes m 1 10 30 42 1 10 30 84 1 10 30 170
Rounds r 191 20 8 6 380 38 13 6 757 78 26 6
Data
complexity d 1 1 1 1 1 1 1 1 1 1 1 1
ANDs/bit 4.48 4.69 5.63 5.91 4.45 4.45 4.57 5.91 4.44 4.57 4.57 5.98
S-boxes m 1 10 30 42 1 10 30 84 1 10 30 170
Rounds r 287 32 20 19 537 58 27 22 809 83 31 17
Data
complexity d 128 128 128 128 256 256 256 256 256 256 256 256
ANDs/bit 6.73 7.5 14.06 18.7 6.29 6.8 9.49 21.66 4.74 4.92 5.45 16.93

Table 2.1.: LowMC parameters for different block sizes, number of S-boxes
and data complexities.

Also increasing the number of rounds without changing the block or key size,
or the number of S-boxes has a positive impact on the security level. However,
increasing the block size without adapting the number of S-boxes or rounds
decreases the security level.

The data complexity d is a measure of the security of a cipher [MOV96]. 2d

describes the number of plaintext-ciphertext pairs, which are generated with
the same key, the attacker is allowed to use for mounting an intended attack.
The higher the data complexity, the more the attacker can learn from the given
plaintext-ciphertext pairs. For example, if the relation between the plaintext
and the ciphertext can be described as an equation, more equations may help
to solve the equation system.

Table 2.1 shows the calculated number of rounds for data complexity 1 and 256
according to Albrecht et al. for different block sizes and numbers of S-boxes
[Alb+16b]. The instances with one S-box have the lowest number of AND
gates in the implemented circuit. Using as many S-boxes as possible decreases
the number of necessary rounds to 6 for all proposed block sizes when a data
complexity of 1 is used. Furthermore, Table 2.1 shows ANDs gates that are
required per bit of the block size. The ANDs/bit can be calculated by dividing
the total number of AND gates in the circuit by the block size, i.e., 3·m·r

n
.
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2.4. Picnic

Picnic is a signature scheme, which aims to achieve security in a post-quantum
era [Cha+17a]. It can be classified as a symmetric-key based signature algo-
rithm. Picnic is based on the symmetric cipher LowMC, which is believed to
be post-quantum secure, and uses it as a one-way function. The core building
blocks of Picnic are described in the following sections.

2.4.1. Zero-knowledge Proofs

A zero-knowledge proof is a special form of proof system which tries to min-
imize the amount of knowledge that is exchanged during the proof [GMR85].
The prover P can convince a verifier V that he or she “knows something” but
does not reveal this actual knowledge [Qui+89]. V has to be convinced of
P ’s knowledge by using the zero-knowledge protocol without learning the ex-
plicit knowledge of P . We use the term “perfect zero-knowledge” to refer to a
zero-knowledge proof which truly does not leak any additional, unintended in-
formation. Cramer, Damg̊ard, and MacKenzie investigate on efficient methods
for such perfect zero-knowledge proofs [CDM00].

A zero-knowledge proof has to fulfill the three properties completeness, sound-
ness and zero-knowledge [GMR85]. If one of these three properties is not
fulfilled, the proof cannot be considered a valid proof system.

• Completeness. If an honest prover P indeed possesses the knowledge
that P wants to prove to the honest verifier V , P can always convince
V of this fact. An honest prover and an honest verifier do not cheat and
follow the protocol as intended.

• Soundness. If P is cheating, an honest V cannot be convinced that P
possesses the claimed knowledge, except for a negligible probability.

• Zero-knowledge. After the execution of the protocol, an honest verifier
V learns nothing apart from the fact that P truly possesses the proven
knowledge.
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Σ-Protocol. A Sigma protocol (Σ-protocol) is a form of zero-knowledge proof
which is interactive. Interactive zero-knowledge proofs use messages (interac-
tions) between a prover P and a verifier V . A Σ-protocol is a three-move
protocol between P and V , where P proves “some knowledge” to V . After
executing the protocol, P has proven “some knowledge” to V , and V is con-
vinced that P truly “possesses this knowledge”. This standard definition of a
“proof of knowledge” was proposed by Bellare and Goldreich [BG92].

Schnorr proposed the first efficient Σ-protocol in [Sch89]. To prove the knowl-
edge, P sends a random commitment a to V . The commitment should prevent
P from cheating by binding him to the fresh execution of the protocol. V re-
sponds with a challenge e which has to be unpredictable. The challenge should
be constructed in such a way that P can only solve it if he truly has the knowl-
edge that he claims to have. P then computes the response z, which should
convince V of P ’s knowledge. The transcript of this protocol, which can be
seen by an observer, is (a, e, z).

Example 2.1. Schnorr proposes a Σ-protocol that operates on a cyclic group
G with the generator g in which the discrete logarithm problem is hard [Sch89].
The protocol allows the prover P to prove to the verifier V that he knows x
such that y = gx, i.e., P proves the knowledge of the discrete logarithm x.
Finding the discrete logarithm is considered a hard problem and no known,
classical (not quantum) algorithm exists which is able to compute the discrete
logarithm efficiently. y, the generator g, and the prime p are public. The
protocol works as follows

1. P chooses a random commitment r and sends a = gr to V .

2. V chooses a random challenge e to P .

3. P sends z = r + e · x to V .

V accepts the proof of knowledge if gz = a · ye, since

gz = gr · ge·x = gr · (gx)e = a · ye.

Fiat-Shamir Transform. Σ-protocols are interactive proofs of knowledge.
However, to create a signature scheme, we require a non-interactive zero-
knowledge proof (NIZK). This non-interactive proof can be achieved by ap-
plying the Fiat-Shamir transform [FS86] on the interactive Σ-protocol. It is
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important to consider which properties the Σ-protocol has to fulfill to create
a NIZK proof [Fau+12]. These properties include an exponentially large chal-
lenge space and a minimal entropy α of the commitment r such that 2−α is
negligible with respect to the chosen security parameter. In the transform,
the same messages a, e, and z as in the Σ-protocol are used. To make the
proof non-interactive, the transform needs a random oracle R [BR93]. The
random oracle returns a uniformly distributed value for each input that is
unique, i.e., the same input yields the same output, but two different inputs
should not yield the same output. However, a random oracle can collide with
the probability 1 : Size of output space. If the input space is larger than the
output space, a collision is inevitable once all possible outputs have been gen-
erated. In the non-interactive proof version the challenge e is not computed by
the verifier V but by the prover himself using e← R(a). Hence, the transcript
of the protocol for an observer is (a,R(a), z).

Example 2.2. If the Fiat-Shamir transform is applied to Schnorr’s protocol,
which was presented in Example 2.1, the challenge e is computed as e ←
R(a) = R(gr). The response z can further be computed as

z ← r + e · x = r +R(a) · x = r +R(gr) · x.

To build a signature scheme using the Fiat-Shamir transform, it is necessary to
include the message, which should be signed by the signature scheme, into the
protocol. This can be done by including the message m into the calculation of
the challenge such that e ← R(a,m) [Der+16]. The signature consists of the
challenge and the response. The Fiat-Shamir transform cannot only be used
to transform a Σ-protocol into a signature scheme, but it can also be applied
to an identification scheme [Abd+02; Abd+12; BPS16; Dag+16; KMP16;
OO98; PS96]. For the verification of the signature, the verifier recalculates the
challenge and the response. If the recalculated response of the verifier and the
response in the signature are the same, the signature is valid.

Example 2.3. As a continuation of Example 2.2 we now construct a signature
based on the Schnorr protocol. The private key in our signature scheme is the
discrete logarithm x and the public key is y = gx. All values that are computed
by the prover who creates the signature are subscripted with s, whereas all
values computed by the verifier are subscripted with v. To sign the message
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m we calculate the challenge es as follows (|| denotes concatenation)

es ← R(as||m) = R(grs||m)

As the next step we compute the response zs.

zs ← rs − es · x = rs −R(grs||m) · x

The signature is the pair (es, zs). To verify a signature the verifier has to
compute rv and ev.

rv ← gzs · yes , ev ← R(rv||m)

The verifier accepts the signature if ev = es.

ev = R(gzs · yes||m) = R(grs−es·x · gxes||m) = R

(
grs

ges·x
· gx·es||m

)
= R(grs||m) = R(as||m) = es

A one-way function can be described as a function which is easy to compute
and hard to invert [MOV96]. This means that computing y = f(x) given x
is easy, whereas finding x given y such that y = f(x) is hard. A signature
scheme can be created from such a one-way function and a NIZK proof in the
following way. Let f be a one-way function, x the secret key which is used
for signing the message, and y the public key which is used for verifying the
signature. y is defined as y = f(x). The signature is the NIZK proof that
proves the knowledge of the secret key x such that y = f(x). As previously
mentioned, the message m to be signed is included in the challenge calculation
of the NIZK proof.
In Picnic we use the LowMC encryption as the one-way function f . We
denote the encryption of a value p to the ciphertext c under the key k as
c = fk(p). The secret key x for signing the message m is generated randomly.
As described above, the public key y can be calculated by applying the one-
way function f on x, i.e., y = f(x). In Picnic y is the LowMC encryption
of a randomly generated value r with the secret key x, i.e., y = fx(r). The
signature is the transcript of the NIZK proof which proves the knowledge of
the secret key x [Der+16].
The Fiat-Shamir transformed signature scheme achieves security in the classi-
cal random oracle model (ROM) [Cha+17a]. The Picnic version which uses
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the Fiat-Shamir transform will be referred to as Picnic-FS in the remainder
of the thesis.

Unruh Transform. The Fiat-Shamir transform makes Picnic secure in
the classical ROM. However, schemes which are secure in the ROM are not
necessarily secure in the quantum random oracle model (QROM) [Bon+11].
Therefore, we need a new approach if we want to achieve security in the QROM.
Unruh proposed a transformation which also transforms interactive proofs into
non-interactive proofs [Unr12; Unr15; Unr16]. In contrast to the Fiat-Shamir
tansform, the Unruh transform provides security in the QROM. The Picnic
variant using the Unruh transform will be referred to as Picnic-UR.

The Unruh transform requires a statement x, a challenge space C, an inte-
ger t, a random permutation G, and a one-way function f . First, t val-
ues r1, · · · , rt are generated by executing the first step of the Σ-protocol t
times. Second, for each i ∈ [1, t] and for each challenge c ∈ C the re-
sponse sic is computed. Then the permutation G is applied to all values
sic by calculating gic = G(sic). As the next step, the values J1, · · · , Jt =
H(x, r1, · · · , rt, g11, · · · , gt|C|) are calculated. These values J1, · · · , Jt are used
as indices for the responses in the final signature. They determine for each
i ∈ [1, t] which of the |C| responses is used for the signature, i.e., J1 deter-
mines which element of {s11, · · · s1|C|} is included in the signature. In the end,
it outputs the signature σ = {r1, · · · , rt, s1J1 , · · · , stJt , g11, · · · , gt|C|}. To ver-
ify the signature, the verifier V first recomputes the indices J1, · · · , Jt. Then
V verifies that the values giJi are generated by the corresponding values siJi .
Furthermore, the values siJi values need to be valid responses for the values
ri. To create a signature, we can include the message in the calculation of the
challenge, i.e., the indices J1, · · · , Jt.

2.4.2. ZKBoo

ZKBoo is a Σ-protocol which allows for the construction of zero-knowledge
proofs on arbitrary circuits [GMO16]. In the case of Picnic, the knowledge
which should be proven is the knowledge of the secret key sk. The idea is
based on MPC-in-the-HEAD which is described in [Ish+09].
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Multiparty Computation. Multiparty computation (MPC) describes a pro-
cess to compute y = f(x) where f(x) is not evaluated directly but the compu-
tation is split over multiple parties. In general, x is split into multiple shares xi
and each party evaluates f(xi) for one share xi. In the end, y is reconstructed
from the results of all parties. One important thing to note is that each party
does not learn anything about the original input x. Therefore, one corrupted
party alone cannot disclose any sensitive information because one share of x
does not reveal any secret. In MPC-in-the-HEAD the prover simulates the
multiparty computation by calculating all shares himself and committing to
their so-called views, which are the intermediate states. The verifier chooses
two views randomly, requests the prover to ’open’ these views and checks if
they are calculated correctly. The opening of the views serves the purpose that
the verifier can convince himself that the prover did not cheat in the calcula-
tion of the views. The only possibility that the prover cheats undetected is in
the view that is not opened. If the prover corrupts the not opened view, he
can cheat on the verifier and convince him of his honesty at the same time.
However, repeating the protocol decreases the chance of a cheating prover be-
cause he would have to guess the share that is not opened in each run of the
protocol correctly. The procedure is repeated as often as necessary to get a
certain probability that the prover did not cheat.

(2,3)-Decomposition of Circuits in Picnic. ZKBoo uses a so-called (2,3)-
decomposition of the LowMC circuit. A (2,3)-decomposition is a protocol
where three simulated parties evaluate the shares of the input. Intuitively,
correctness is the most important property of this decomposition. Informally,
this means that if the calculation y = f(x) is split over the three shares,
the result y still has to be correct if the individual results of the shares are
combined to the final result. Another essential property is 2-privacy, which
means that leaking two of the three shares does not disclose any information.
Therefore, even if two out of three shares are leaked the adversary does not
learn anything about the initial input to the decomposition. These properties
and their validity are described in more detail by Giacomelli, Madsen, and
Orlandi [GMO16].

The decomposition consists of the four functions Share, Update, Output, and
Reconstruct [GMO16; Cha+17a]. Figure 2.1 shows the (2,3)-decomposition
of a circuit using these four functions. The functions are defined as follows.
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Figure 2.1.: (2,3)-decomposition of a circuit calculating f(x).
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yi ←Output(viewi)

y ←Reconstruct(y1, y2, y3)

The Share function takes three random bit streams k1, k2, and k3 and the
input value x as parameters. It splits x into three shares using the random bit
streams and outputs the initial shares, which will be the starting view view

(0)
i

for all parties i. In Picnic, the Share function uses only k1 and k2 for sharing
the secret key x. The first and the second share are initialized with the first k
bits of k1 and k2. The third share is calculated as x⊕ k1 ⊕ k2.
The Update function updates all views by simulating the gates of the imple-
mented circuit. If the simulated gate is an XOR, we do not have to include
the intermediate value into the views. An XOR of two values a and b can
directly be computed by applying the XOR on the shares of the two values,
i.e., ci = (a ⊕ b)i = ai ⊕ bi. If all shares ci are combined again, we have the
direct XOR of the non-shared values a and b. In contrast, an AND gate cannot
be computed that easily. Computing a AND b in the shared setting cannot be
done by simply applying the AND to the shares of a and b. That is because
combining all shares after applying the AND to all shares of a and b does not
yield the AND of the non-shared values a and b. To calculate a AND b in the
shared setting we have to include the value of the neighboring share for calcu-
lating each share. Furthermore, we use the random bit streams k1, k2, and k3,
which were already used in the Share function, to blind the AND operation.
The notation ki refers to the next unused bit of the bit stream ki. This results
in ci = (a∧b)i = (ai∧bi)⊕(ai∧bi+1)⊕(ai+1∧bi)⊕(ki∧ki)⊕(ki∧ki+1)⊕(ki+1∧ki).
If we now combine all shares ci we get the result a∧ b, which is the evaluation
of the AND on the non-shared values a and b. All layers of Picnic except the
S-box layer use only XOR operations which operate on one share. However,
the S-box includes AND gates which have to be simulated in the views. As
mentioned above, an AND operation does not only operate on one share but
requires multiple shares. Therefore, we have to store the output of each S-box
as the next view for each share. This guarantees that all shares are synchro-
nized all the time.
After all views have been calculated completely, the Output function takes
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Block size Key size S-boxes Rounds
n k m r

128 128 10 20
192 192 10 30
256 256 10 38
384 384 10 57
512 512 10 78

Table 2.2.: Parameters of LowMC instances for different Picnic instances.

the whole view from one share and calculates the final output value for this
share. Hence, the Output function returns the calculated value f(xi) for each
share. In the end, all output values of the three shares are combined in the
Reconstruct function, which returns the final result of the circuit calculating
y = f(x). In Picnic, the Reconstruct function takes all three output shares
from the Output function and applies an XOR on them.

2.4.3. Parameter Instances of Picnic

Table 2.2 shows the LowMC instances that are used in the Picnic implemen-
tation. We focus on instances with 10 S-boxes only because it has significant
implementational advantages. These advantages will be discussed in detail in
Section 3.1.1. We can use instances which have a data complexity d of 1. The
data complexity d of 1 allows the adversary to see 2d = 21 plaintext-ciphertext
pairs for the attack. d = 1 is sufficient for Picnic because it only gener-
ates one plaintext-ciphertext pair which can be seen by the adversary. This
plaintext-ciphertext pair is the public key which is the encryption of a random
value.

2.4.4. Variations of Picnic

The construction of Picnic is highly modular which facilitates the exchange of
several building blocks. The used one-way function does not necessarily have
to be LowMC, ut can be replaced by for example MiMC [Alb+16a]. Chase
et al. evalute several possible one-way functions [Cha+17a]. Furthermore, it
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L0 R0K0

F

L1 R1

Figure 2.2.: One round of a Feistel network

is possible to create ring signatures if accumulators are used [RST01; BD93;
DRS17]. The zero-knowledge proof of the preimage of the one-way function
is replaced by a zero-knowledge proof of the membership of an accumulated
value in the accumulator.

2.5. Generalized Feistel Networks

Feistel networks are iterative structures which are commonly used in block ci-
phers [MOV96]. Horst Feistel proposed them first in the cipher Lucifer [Fei73].
One of the most famous examples of a cipher using a Feistel network is DES,
which was the state-of-the-art encryption algorithm for many years. It was
standardized by NIST in 1976 [ST77]. Until 1999 the standard was published
in three updated versions, e.g., TripleDES [ST99]. Other examples of block
ciphers, which are based on Feistel-like structures, include Blowfish [Sch93],
GOST 28147-89 [GOS89], and RC5 [Riv94]. Figure 2.2 shows one round of a
standard Feistel network. The input is split into two blocks, L0 and R0, which
are usually equally sized. In each round i, Ri and the round key Ki are used
as input for the round function F . The result of the round function is then
combined with Li using an XOR. After this XOR, Ri and the modified Li are
swapped. Hence, the complete round of the Feistel network can be described
as Li+1 ← Ri, Ri+1 ← Li ⊕ F (Ri ⊕Ki).

The two blocks L and R usually have the same size and the round function F
has exactly as many output bits as input bits. However, Schneier and Kelsey
suggested so-called unbalanced Feistel networks where both blocks are not
equally sized and F has a different number of input and output bits [SK96].
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One important characteristic of a Feistel network is that it provides full dif-
fusion [ST14], i.e., all output bits depend on all input bits. If one input bit
changes, each output bit has a probability of 1

2
of changing. We describe two

approaches to generate this diffusion.

One approach is that two neighboring S-boxes partly use the same input bits.
For example, the input to one S-box consists of two bits which are also input
to the previous S-box, two unique bits, and two bits which are also used in the
next S-box. This sharing of the input generates diffusion and is used in DES.
Additionally, in DES all bits are permuted after the S-boxes to increase the
diffusion. The permutation is done in such a way that the four output bits of
one S-box are spread across four different S-boxes in the next round [ST77].

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

y′1 y′2 y′3 y′4 y′5 y′6 y′7 y′8

F1
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F3

F4

K1

K2

K3

K4

Figure 2.3.: One round of a generalized Feistel network. Both input halves are
split into four blocks. After the round function, the blocks are
rotated by one. [Nyb96]

Kaisa Nyberg proposed a new variant of balanced Feistel networks which she
called Generalized Feistel Networks (GFN) [Nyb96]. A GFN relies on a dif-
ferent approach to generate diffusion than DES which was described above.
The round function in this network consists of several parallel S-boxes. The
most significant difference to a standard Feistel network is that the output of
the S-boxes is split into smaller blocks which are then permuted. After this
permutation, the two halves are swapped like in a standard Feistel network.
This structure also guarantees a full diffusion in the network. A generalized
Feistel network where both input halves are split into four blocks each is shown
in Figure 2.3.
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2. Preliminaries

2.6. Single Instruction, Multiple Data Instruction
Set Extensions

Flynn introduced a classification of computer architectures which is known as
Flynn’s taxonomy [Fly72]. The taxonomy divides computer architectures into
four types:

1. Single instruction, single data (SISD). A SISD architecture exe-
cutes a sequential stream of instructions on a single data element. This
architecture does not offer any type of parallelism.

2. Single instruction, multiple data (SIMD). In a SIMD architecture,
a sequential instruction stream is applied to multiple data elements in
parallel. Parallelizing the same instruction on multiple data instances is
particularly useful in multimedia and graphics processing in the GPU.
For example, a SIMD architecture can apply a transformation to a pic-
ture much fast than regular instructions because they process parts of
the picture in parallel.

3. Multiple instruction, single data (MISD). A MISD architecture ex-
ecutes multiple instructions on the same data element. This architecture
may be used for fault-tolerant systems by executing the same instruction
on the same data element several times and checking the consistency of
the results. A famous example of a MISD system is the Space Shuttle
[GS84].

4. Multiple instruction, multiple data (MIMD). A MIMD archi-
tecture achieves parallelism by applying multiple instruction streams
on multiple data elements. Such an architecture typically is a multi-
processor system where each processor operates independently. The pro-
cessors may share their memory or use separate memory spaces.

Instruction Set Extensions. Modern CPUs provide SIMD instruction set
extensions to optimize their performance by using the provided parallelism.
Two commonly used instruction set extensions on Intel CPUs are the Stream-
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2.6. Single Instruction, Multiple Data Instruction Set Extensions

ing SIMD Extensions (SSE)1 and the Advanced Vector Extensions (AVX)2.
SSE uses 128-bit registers which are interpreted as four 32-bit floating-point
numbers, i.e., one operation can be performed on four floating-point numbers
at once. SSE2 extends the use of the 128-bit registers by two 64-bit floating-
point numbers, two 64-bit integers, four 32-bit integers, eight 16-bit short
integers or sixteen 8-bit characters. The integer interpretation of the registers
in SSE2 allows to perform SIMD operations on integers, which is not possible
in SSE.

Example 2.4. An easy example for an operation exploiting the SIMD par-
allelism is vector addition. We will present the vector addition based on a
four-dimensional example. Adding the vectors v = (v1, v2, v3, v4) and w =
(w1, w2, w3, w4) conventionally with SISD requires four additions, v1 +w1, v2 +
w2, v3 + w3, v4 + w4. Furthermore, the CPU has to load the two elements vi
and wi of both vectors for the addition and store the result of the addition
afterwards. Using a SIMD instruction set extension enables us to operate on
all four elements of one vector at once, e.g., in AVX we can use the 256-bit
register as four 64-bit floats where each of the four floats stores one element
of the vector. If both vectors have been loaded by the CPU, we can add them
using one single addition. This addition interprets the AVX register as four
independent values and executes the addition on all four values at once.

1 mm256d v = mm256 set1 pd ( 1 6 . 0 ) ;
2 mm256d w = mm256 set1 pd ( 1 5 . 0 ) ;
3 mm256d r e s u l t = mm256 add pd (v , w) ;

Listing 2.1: Code that initializes two AVX variables and adds them as two
4-dimensional float vectors.

The code in C could look as in Listing 2.1. The initialization of the AVX
registers in lines 1 and 2 is only done for demonstration purposes. All elements
of vector v and w are set to 16 and 15, respectively. Adding the four elements
of the two vectors is done in line 3. To sum up, instead of eight load operations
the SIMD variant needs two, instead of four additions it needs one, and instead
of four store operations it needs one.

1https://www.intel.com/content/www/us/en/support/articles/000005779/

processors.html
2https://software.intel.com/en-us/isa-extensions/intel-avx
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SSE3, SSSE3 (Supplemental SSE3) and SSE4 are enhancements of SSE2 which
add more instructions. SSE4 was announced in late 2006 by Intel in a white
paper [Ram+06]. It can be split into two instruction set extensions, SSE4.1
and SSE4.2, which offer a different subset of instructions and together form
SSE4.

AVX is an extension of the SSE family which increases the register size from 128
to 256 bits. It was first introduced in Intel’s Sandy Bridge microarchitecture.
AVX also introduces three-operand instructions, which are not available in any
SSE version. This means that an instruction can involve three registers instead
of two. Therefore, calculations like a = b + c are possible with AVX, whereas
SSE only provides the possibility to calculate a = a+ b, which always changes
the content of one of the involved register. AVX2 was introduced with Intel’s
Haswell microarchitecture and enhances the AVX instruction set extensions.
In 2015, Intel released its Knights Landing microarchitecture, which is part of
the Xeon Phi product series, with the latest AVX version, AVX-512. AVX-512
extends the register size to 512 bits and implements new instructions.

Also other CPUs include SIMD instruction set extension. PowerPC offers
AltiVec3 which is also called Vector Multimedia Extension (VMX). AltiVec
uses 128-bit registers which can mostly be used in the same variants as the
SSE2 registers. The main difference in the register usage is that AltiVec does
not offer 64-bit floating-point numbers, but instead a pixel data type which
facilitates the storage and handling of of RGB values. ARM CPUs offer a SIMD
instruction set extension called NEON4. NEON is included in the Cortex-A
series and Cortex-R52 processors in ARMv7 and ARMv8. It supports 64-
and 128-bit registers. The registers can be used as 8-, 16-, 32-, and 64-bit
integers and 32-bit floating-point values. The 64-bit integer representation of
the 128-bit registers is only available on ARMv8, which is the first ARM 64-bit
architecture.

3https://www.nxp.com/docs/en/reference-manual/ALTIVECPIM.pdf
4https://developer.arm.com/technologies/neon
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3. Optimizations of the Linear
Operations of LowMC

In this chapter, we describe the optimizations which were made on LowMC in
the course of this master’s thesis. The optimizations target different problems
which will be described in the corresponding sections. However, they have one
thing in common. They all try to optimize the linear computations on the
state in LowMC.

The optimizations in this chapter were proposed in [Per+17] and are covered
here in more detail. The notations which are used in this chapter are also
based on [Per+17].

3.1. Splitting the Round Key Computation

One major bottleneck in the LowMC algorithm is the calculation of the round
key addition in every round. The round key matrix Ki has to be multiplied
by the secret key y in each round to compute the round key. An intuitive
solution to this problem would be that Ki ·y is precomputed once and that this
precomputed value is used for all following encryptions. The precomputation
could be done before any encryption takes place but as soon as the LowMC
instance is fixed and the secret key is known. This proposal would remove the
matrix multiplication from each LowMC round, and only the addition of the
already computed round key to the current state would be necessary. However,
Picnic uses a (2,3)-decomposition of the state (cf. Section 2.4.2) which does
not allow this precomputation because y is divided into three new shares for
each encryption process. Therefore, we try to exploit the fact that LowMC

27



3. Optimizations of the Linear Operations of LowMC

only uses a partial S-box layer which does not operate on the whole state but
only on a part of the state.

We denote the lower 3m bits of state s, the bits on which the S-boxes operate,
as ρN(s) and call this part of the state the non-linear part. The upper n− 3m
bits are referred to as the linear part and ρL(s). In general, ρji (v) denotes the
bits from index i to index j of the vector v. Therefore, the non-linear and the
linear part can also be described as ρN = ρ3m1 and ρL = ρn3m+1.

The linear part of the round key never interacts with any S-box. This fact
makes it possible to reorder each LowMC round in such a way that the
linear round key part is added before the S-box. One original LowMC round
can be described as si = Li · SBOX(si−1) + Ki · y + Ci. To achieve the
reordering we first have to reorder the linear layer and the round key addition.
For the reordering to be correct, the round key has to be multiplied by the
inverse of the linear layer L−1i . Now the whole round key is added after the
S-box layer and before the linear layer. The modified LowMC round si is
Li(L

−1
i ·Ki · y + SBOX(si−1)) + Ci The linear part of the round key addition

can now be moved past the S-box while the non-linear part stays after the
S-box layer. Figure 3.1 shows one modified round.

The procedure of moving the linear part of the round key past the S-boxes can
be repeated until the linear part of all round keys is at the beginning of the
encryption.

So far, the linear part of the round key addition has been moved to the be-
ginning of the encryption, and the non-linear part remains in each LowMC
round. However, the original goal, to remove the multiplication Ki · y from
each round, has not been achieved yet as the non-linear part of the round key
is still calculated in each round. Before we have a look at the removal of this
multiplication we discuss the calculation for the linear part in more detail. As
we have to move the round key past the linear layer of each round, we need
the inverse matrices of Li for all rounds i. Furthermore, we only need the
part of the inverse which influences the linear part of the round key so that
we can set the first 3m rows to 0. These rows only influence the non-linear
part and are therefore not relevant for the calculation of the linear part. This

modified inverse is denoted as L−1i for round i. The modified inverse can be
used to combine the linear part of the round keys of all rounds. This combined
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si

SBOX

· Li

Ci

Ki · y
si+1

si

ρL(L−1
i · Ki · y)

SBOX

ρN(L−1
i · Ki · y)

· Li

Ci

si+1

Figure 3.1.: One round of LowMC before (left) and after (right) the splitting
of the round key [Per+17]

linear part includes the calculation of the linear parts of the round keys of all
rounds if they are moved to the beginning of the encryption. The combina-
tion of the linear round key parts works as follows. For the first round, the

round key can be calculated as L−11 ·K1 · y. Starting from the second round,
we also have to consider all rounds up to the currently evaluated round in
our computation because we move the round key past the linear layer of each
round. Therefore, the linear round key part for the second round is calculated

as (L−11 ·K1 +L−11 ·L−12 ·K2) · y. If all round key parts have been moved to the
beginning of the encryption, we can add the matrices for all round keys with-
out considering y yet. This combined matrix PL can according to [Per+17] be
described as

PL = L−11 ·K1 +
r∑
j=2

(
j∏

k=1

L−1k

)
·Kj.

PL only involves the matrices Ki and L−1i , which are based on Li, which allows
us to precompute it once as soon as the LowMC instance is fixed. Hence,
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3. Optimizations of the Linear Operations of LowMC

before an encryption starts, PL is multiplied by the secret key y to get the
linear round key part for the specific shares of y and this specific encryption.
PL · y is then added to the initial state s0 which means that the linear part of
all round keys is added at once.

Now we have to adapt the non-linear part of the round key accordingly because
moving the linear round key part past the linear layer gives us some calculation

artifacts. If L−12 ·K2 · y is moved past the linear layer of round 1 we multiply

it by L−11 . This structural change also influences the non-linear part of round

1 because the result of the multiplication by L−11 also has bits with value one
in the lower 3m bits (the non-linear part) of the state. Therefore, in each
round j we receive all artifacts from rounds j + 1 to r as all of these rounds
are moved past round j. This results in the matrix PNi

for round i which can
be calculated as

PNi = L−1i ·Ki +
r∑

j=i+1

(
j∏
k=i

L−1k

)
·Kj.

These matrices PNi
are multiplied by y in each round. The first 3m bits of the

resulting vector are added to the non-linear part of the state after the S-box
in each round.

Now we still have a correct encryption algorithm, but the linear part of the
round key addition of each round was moved to the beginning of the encryption.
The round key addition in each round was reduced to the non-linear part.
However, we still did not remove the multiplication by the secret key from each
LowMC round. This removal of the multiplication can be done as follows.
We only use the first 3m bits of PNi

· y which means that we also only need
the first 3m rows of PNi

. In the following, these described three rows of PNi

are denoted as PNi
3m

. The matrices PNi
3m

of all rounds can be combined to
one matrix CN which has the dimensions (3m · r× k), where m is the number
of S-boxes, k the key size, and r the number of LowMC rounds.

CN =

 PN 1
3m

...

PNr
3m︸ ︷︷ ︸

k cols


}

3m rows}
3m rows
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This matrix CN can, like PN , be precomputed as soon as the LowMC instance

is fixed because it also only depends on all Ki and L−1i matrices. In the same
manner as for the linear part, we calculate v = CN · y at the beginning of an
encryption to get the correct non-linear part for the current shares of y. Now
we can add the bits ρ3m·i1+3m·(i−1)(v) to the non-linear part of the state after the
S-box in round i.

Algorithm 2 shows the full LowMC encryption with the split round key com-
putation. The major differences to Algorithm 1 include the multiplications of
the precomputed values by the secret key in lines 1 and 2 and the addition of
the non-linear part of the state in line 5.

Algorithm 2 LowMC encryption with the split round key computation for
key matrices Ki ∈ Fn×k2 for i ∈ [0, r], linear layer matrices Li ∈ Fn×n2 and
round constants Ci ∈ Fn2 for i ∈ [1, r], and the precomputed matrices PL and
CN . [Per+17]

Require: plaintext p ∈ Fn2 and key y ∈ Fk2
1: v ← CN · y
2: s← (K0 + PL) · y + p
3: for i ∈ [1, r] do
4: s← SBOX(s)
5: s← ρ3m·i1+3m·(i−1)(v) + s
6: s← Li · s
7: s← Ci + s
8: end for
9: return s

We now successfully removed the multiplication Ki · y from each LowMC
round. Instead of r(n×k) ·(k×1) multiplications we only have 1(n×k) ·(k×1)
multiplication for the linear part and 1(3m·r×k)·(k×1) multiplication for the
non-linear part. Additional to the two multiplications we use a 3m-bit addition
in each round and one n-bit addition at the beginning of the encryption. The
original algorithm required an n-bit addition in each of the r rounds, so we did
not reduce the number of additions, but we decreased their size immensely.

Also, the memory requirements are reduced drastically because the round key
matrices are not required during the encryption anymore, and we do not
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3. Optimizations of the Linear Operations of LowMC

LowMC LowMC with RRK
Linear layer r (n× n) r (n× n)
Round key matrices (r + 1) (n× k) 1 (n× k) (linear part)

1 (3m · r × k) (non linear part)
Round constants r (1× n) r (1× n)
Additional memory 1 (3m · r × 1) (vector v)

Table 3.1.: Necessary matrices for general LowMC and LowMC with RRK.
[Per+17]

have to store them. Table 3.1 compares the required matrices for the orig-
inal LowMC algorithm and our modified version with the reduced round key
computation (RRK). It shows that the memory requirements for the modified
algorithm depend on the number of S-boxes m. The original algorithm always
uses the same amount of memory independent of m.

The precomputation of PL and CN is only useful if the instance of LowMC
is fixed. If the instance were not fixed, the precomputation would have to be
done for each encryption freshly. This would undo all the benefits we gained
from the improved round key addition in each round. The precomputation
involves many matrix multiplications and is therefore very expensive. However,
fixed instances allow us to compute PL and CN once and use them for many
encryptions. It is not a problem if different secret keys are used for different
executions of the encryption with the same instance because PL and CN do
not use the secret key during the precomputation. As shown above the secret
key and its shares are only included at the beginning of each encryption.

Correctness. Now we briefly broach the correctness of the proposed opti-
mization. First, we show that all transformations applied to one round of
LowMC are equivalent transformations. Second, we discuss the correctness
of passing the linear part of the round key across several rounds. We continue

to use the notation L−1i for the inverse of Li whose first 3m rows are set to
zero. For a vector v, vN denotes a vector with the first 3m bits of v followed
by n− 3m zeros, and vL denotes 3m zeros followed by the n− 3m last bits of
v. For simplicity, ki denotes the round key of round i, i.e., ki = Ki · y.

The equivalent transformations on one round are shown in Equation 3.1. The
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original LowMC encryption is shown in Equation 3.1a. Equation 3.1b shows
the splitting of the input to the S-box. Only the non-linear part of the state
has to be the input to the S-box. The linear part uses an identity mapping
and is therefore not influenced by the S-boxes. In Equation 3.1c, the round
key Ki · y is split into a non-linear and linear part.

si = Li · SBOX(si−1) +Ki · y + Ci (3.1a)

= LiL · si−1L + LiN · SBOX(si−1N) +Ki · y + Ci (3.1b)

= LiL · si−1L + (Ki · y)L + LiN · SBOX(si−1N) + (Ki · y)N + Ci (3.1c)

Up to now, we showed that the transformations which are applied to one
LowMC round are correct. As the next step, we show that moving the linear
part of the round key to the beginning of the encryption is also correct. To
show this correctness we look at a general case where the linear part of the
rounds i−1 and i is moved to the “initial state“ si−2. For simplicity reasons we
omit the round constant in this procedure and note that this does not influence
the correctness of the transformations. Equation 3.2 shows the passing of the
linear part of the round key across two rounds. The S-box layer is denoted
as S. First, in Equation 3.2b the linear layer and the round key layer of both
LowMC rounds are exchanged. In order to do so, the round key has to be
added before the linear layer is applied and multiplied by the inverse linear
layer of the corresponding round. The next step in Equation 3.2c splits the
round key of round i − 1 into a linear and non-linear part. Furthermore, the
linear part (Li−1 · ki−1)L is moved into the S-box function, i.e., before the S-box
layer. Now we have a look on the round key of round i. In Equation 3.2d, the
round key of round i is split into a linear and non-linear part. Equation 3.2e
moves the linear part (Li · ki)L across the S-box layer of round i. This step does
not require any further adaptions except for reordering the two calculations.
In Equation 3.2f, the linear round key part (Li · ki)L is moved across the linear
layer of round i− 1. To reorder the calculations we have to multiply (Li · ki)L
by L−1i−1. However, this calculation generates artifacts for the non-linear part.

Therefore, we have to add the term (L−1i−1 · L−1i · ki)N to correct the non-linear

part. In Equation 3.2g, the term (L−1i−1 · L−1i · ki)L is moved across the S-box
layer of round i− 1. Equation 3.2h simply changes the notation of the round
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key back to the original notation for a better comparison with the previously
introduced formulas for PN and PNi. In Equation 3.2i, y is factored out.

The formula we use for precalculating the linear part of all round keys at the
beginning of the encryption is

PL = L−11 ·K1 +
r∑
j=2

(
j∏

k=1

L−1k

)
·Kj.

If we compare this formula to our two round transformation in Equation 3.2

we can observe the following. The term (L−1i−1 ·Ki−1)L + (L−1i−1 · L−1i ·Ki)L has
to be represented by the formula. If we insert r = 2 into the formula we can

observe that (L−1i−1 ·Ki−1)L is the same as the term (L−11 ·K1)L in the formula.

The second part of the formula,
∑r

j=2

(∏j
k=1 L

−1
k

)
·Kj, has to generate the

term (L−1i−1 · L−1i ·Ki)L. If we again insert r = 2 we exactly observe the desired
result. For the artefacts of the non-linear part, which are calculated with CN ,
the same observations hold.

To sum it up, we showed that passing the linear part of the round key across
two rounds only involves equivalent transformations, i.e., Equation 3.2a and
Equation 3.2g are equivalent.

3.1.1. Implementation

We now describe a few remarks for the implementation of the proposed opti-
mization. The basis for our implementation of the precomputation of PL and
CN is the LowMC reference on GitHub1. The whole modified algorithm is
implemented in the Picnic implementation of the Institute of Applied Infor-
mation Processing and Communications (IAIK)2. We implement the precom-
putation in Python and use the matrix operations available in Sage. The full
code for the precomputation can be found on Github 3.

1https://github.com/LowMC/lowmc
2https://github.com/IAIK/Picnic
3https://github.com/IAIK/Picnic-LowMC
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All matrices for the whole LowMC algorithm are stored as their transposed
representation. This eases, for example, the multiplication of a matrix M by
a vector v. We denote the transposition of M as N , i.e., MT = N . The
only required mathematical operation is summing up the necessary rows of
the matrix N . If bit i is set in vector v, row i of matrix N is added to the
result vector. In the following equation we show that this implementation
of the matrix multiplication is correct and favorable from an implementation
point of view. Mi denotes row i of matrix M , M j denotes column j of matrix
M . < v1, v2 > denotes the scalar product of the two vectors v1, v2.

M · v =

< M1, v >
...

< Mn, v >

 =


∑n

k=1(M
k
1 · vk)

...∑n
k=1(M

k
n · vk)

 =
n∑
k=1

M
k
1 · vk
...

Mk
n · vk

 (3.3)

=
n∑
k=1

(Mk · vk) =
n∑
k=1

((MT )k · vk) =
n∑
k=1

(Nk · vk) (3.4)

Equation 3.3 rewrites the multiplication first to a vector of scalar products.
Second, the scalar product is rewritten to a sum. In the third transformation
the sum is not calculated in each element of the result vector, but the sum is
taken over the vectors (M1

1 · v1, · · · ,M1
n · v1), · · · , (Mn

1 · vn, · · · ,Mn
n · vn). The

vector (Mk
1 · vk, · · · ,Mk

n · vk) can be rewritten to Mk · vk, which is shown in
Equation 3.4. In other words, each column i of the matrix M is multiplied
by element i of vector v. All of these resulting vectors are summed up to the
result of the multiplication M · v. To facilitate the implementation of this
multiplication variant we store the transposed variant of M , which we denote
as N . We can now multiply each row i of matrix N by element i of vector v
to calculate M · v.

In general, the number of S-boxes can be chosen freely. However, as Table 2.2
shows, we propose to always use 10 S-boxes for the LowMC instantiation in
Picnic. When CN is assembled in the Python script, we add 2 columns of
padding after the columns for each round. Note that we use columns here
instead of rows as described in the previous paragraph because we calculate
with the transposed versions of all matrices. Once CN is multiplied with the
secret key y we get a vector of length (3 · 10 + 2) · r. This makes extracting the
non-linear part of one round much easier because modern operating systems
use 64-bit datatypes. In our implementation, we use uint64 t (unsigned 64-bit
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3.2. Replacing Li with a Feistel Network

integers) arrays to store the data of our vectors and matrices. Therefore, we
can simply extract the upper or lower half of one of these integers to get the
non-linear part of one round. The two bits of padding are always the last
two bits of both halves of the integer. This makes it easy to use bit masks
to get the necessary 30 bits. Only storing the necessary 30 columns for each
round makes it much more difficult to extract the required 3m bits out of the
vector v. The bits for the non-linear part of one round would in many cases
be spread across two integers. More complex bit operations than a simple bit
mask would be necessary to connect the necessary bits.

3.2. Replacing Li with a Feistel Network

The most expensive operation which remains in each LowMC round after the
previous optimization has been applied is the linear layer. The linear layer
in each round consists of one (n× n) · (n× 1) matrix multiplication, where n
is the block size. Therefore, we propose to replace the matrix multiplication
with a Feistel network [Per+17]. The main idea is to replace Li by several
smaller matrices which are used in the round functions of the Feistel network.
More specifically we propose to use a Fibonacci-Feistel network (Ffn) which is
based on Generalized Feistel networks (Section 2.5). The Ffn is based on the
Fibonacci sequence, which is defined as f0 = 0, f1 = 1, fn = fn−1+fn−2 ∀n ≥
2. We introduce the notation i = Λf (b) where i is the smallest integer such
that fi > b, e.g., f5 = 5, f6 = 8, so Λf (7) = 6.

The Ffn works as follows. The parameter that can be chosen for the Ffn is
the branch size w ≥ 4. The constraints it has to fulfill are that

• w ≤ n
4

because at least 4 branches are required for the Feistel network,
and

• n mod w = 0 because we have to split the whole input into branches and
cannot leave some bits untouched.

The input s of size n is split into 2b branches of size w such that 2b · w = n.
Hence, the number of branches 2b can be calculated as n

w
and b (i.e., the

number of branches on one half of the input) is always greater or equal to 2.
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3. Optimizations of the Linear Operations of LowMC

si (0 ≤ i ≤ 2b − 1) denotes the i-th branch of the input, i.e., bits i · w to
(i+ 1) ·w− 1. Figure 3.2 shows the splitting of the input into the branches.

s0 s1 · · · sb−1 sb · · · s2b−2 s2b−1

w bits

n bits

b branches b branches

Figure 3.2.: Splitting the n-bit input s into 2b branches, each branch si con-
sisting of w bits.

The number of necessary rounds r in the Ffn can be calculated as Λf (b).
Furthermore, we need r · b(w×w) matrices which are used as a linear mapping
in the Ffn. All of these matrices have to be invertible. We denote the (w×w)
matrix which is applied to branch i in round j as M j

i .

In each round i ∈ [0, r− 1] of the Ffn the first b branches are multiplied with
the corresponding (w×w) matrix M j

i . After these multiplications, all branches
are rotated by the Fibonacci number fi, i.e., Bk ← B(k+fi) mod b. According to
the Fibonacci sequence, the branches are not rotated in the first round. For
the next few rounds, the rotations in the Feistel network are as follows. In the
second and third round the branches are rotated by 1, in the fourth round by
2, and in the fifth by 3.

The whole Feistel network is shown in Algorithm 3. Line 3 shows the appli-
cation of the matrices M j

i on the state. In line 6 the state is rotated. In the
end, in lines 9 and 10 the two halves of the state are swapped.

Figure 3.3 shows the first two rounds of a Ffn with 8 branches. The round
functions contain the matrices M j

i . The Fibonacci permutation can first be
seen in round two when the result of F2,1 is not applied to y′5, but to y′6. In
round 3, F3,1 is again applied to the sixth branch, whereas in round 4 (f4 = 2)
F4,1 is applied to the seventh branch.

To replace the multiplications by Li with a Ffn we need to represent each
matrix Li as r · b(w × w) matrices M j

i which can be used in the Ffn. This
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3.2. Replacing Li with a Feistel Network

Algorithm 3 Ffn for input s ∈ Fn2 , temporary storage tmp ∈ Fn2 , matrices
M j

i ∈ Fw×w2 for i ∈ [0, b − 1] and j ∈ [0, r − 1], and fi for i ∈ [0, r − 1] being
the Fibonacci sequence described above.

1: for j ∈ [0, r − 1] do
2: for i ∈ [0, b− 1] do
3: tmpi = M j

i · si . store the state temporarily for the rotation
4: end for
5: for i ∈ [0, b− 1] do
6: sb+((i+fj) mod b)+ = tmpi
7: end for
8: tmp = s . store the state temporarily for swapping the two halves
9: s0,1,··· ,b−2,b−1 = tmpb,b+1,··· ,2b−2,2b−1
10: sb,b+1,··· ,2b−2,2b−1 = tmp0,1,··· ,b−2,b−1
11: end for
12: return s

representation cannot be computed easily. To be more specific, it is not always
possible to calculate the matrices M j

i of an already known matrix Li. There-
fore, we have to generate the matrices M j

i first. These matrices can then be
used to calculate the corresponding (n×n) matrix which is represented by the
small matrices M j

i . Computing the (n×n) matrix out of the matrices M j
i can

be done as follows. First, r · b random (w × w) matrices M j
i are generated.

We need the identity matrix of size (n× n) as the basis for the calculation of
the (n × n) matrix Li. The Ffn, with the generated matrices M j

i as round
functions, is applied to each row (= column) of the identity matrix, i.e., the
Ffn is executed n times, each time with one row of the identity matrix as its
input. The result of the Ffn with input row i is then stored in column i of the
output matrix Li. After all rows of the identity matrix have been processed,
we obtained the matrix Li. We note that it is necessary to transpose this
calculated representation of Li to be compliant with the implementation we
described in Section 3.1.1.

The permutations which are used in the proposed Ffn allow a very fast dif-
fusion. This approach was already suggested in 2010 by Suzaki and Mine-
matsu [SM10]. Their proposal requires 2 · log2(b) rounds for a full diffusion
operating on 2b branches. Our proposal uses Λf (b) rounds for 2b branches,
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x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

y′1 y′2 y′3 y′4 y′5 y′6 y′7 y′8

F1,1

F1,2

F1,3

F1,4

y′′1 y′′2 y′′3 y′′4 y′′5 y′′6 y′′7 y′′8

y′′′1 y′′′2 y′′′3 y′′′4 y′′′5 y′′′6 y′′′7 y′′′8

F2,1

F2,2

F2,3

F2,4

Figure 3.3.: Two round of the proposed Feistel network. In the first round
the branches are not permuted (f0 = 0), in the second round the
branches are permuted by one (f1 = 1). In the round function Fj,i
the matrix M j

i is applied to the state.

which also provides a full diffusion [Per+17].

3.2.1. Implementation

This section focuses on the implementation details of the Ffn explained in
the previous section. We implemented the Ffn using C code in the setting of
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3.2. Replacing Li with a Feistel Network

the Picnic implementation already described in Section 3.1.1. Furthermore,
a Python implementation of the Ffn is available in Appendix A.

One massive bottleneck in the implementation of the Ffn as it is described in
Algorithm 3 is the rotation and the swapping of the branches. It would not
be very efficient to copy all branches to their destination in each round of the
Ffn. Therefore, we propose a variant of the algorithm which does not copy
any branches but solely relies on the indexing of the branches. Algorithm 4
shows the improved algorithm. The main difference is that the two halves of
the state are never actually swapped in memory. In general, after swapping
the two halves, the bits that were in branch s0 in round 0 are found in branch
sn in round 1. In our implementation the representation in memory stays the
same and we have to address s0 to get the bits of sn in round 1. In round
2, we can address the bits that were in s0 in round 0 and in sn in round
1 again as s0 because the two halves were “swapped” again. Every second
round requires this change in indexing. To facilitate these index changes in the
implementation, we introduce two macros permL and permR. Their parameter
is the current round. Depending on the round it returns 0 or b, 0 meaning that
we can use the “normal” index of the branch and b meaning that we have to
adapt the index. permL and permR work exactly in the opposite way. This is
necessary because we use permR for reading the branch that is multiplied by
M j

i and permL for adding the result of the multiplication to the correct branch.
The two branches which are involved in this operation will never be in the same
half of the state. Therefore, permL and permR are used to address the correct
half of the state. permL is always used on the left side of the calculation and
permR on the right side. The rest of the two indices for the branches is just
used for indexing the correct branch within the corresponding half and is not
modified. These unmodified indices are (fj + i) mod b for the branch that is
modified, and b for the branch that is used for the multiplication.

The statement spermL(j)+((fj+i) mod b)+ = M j
i · spermR(j)+b in Algorithm 4 now

combines all elements of the Ffn:

• the multiplication by the matrix M j
i on the right-hand side,

• the rotation using fj in the index of the branch on the left-hand side,

• the swapping of the two halves of the state using permL and permR, and
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• combining the round function (the multiplication byM j
i ) with the correct

branch using the addition of the left and right-hand side.

As we never actually swap the two halves in memory, we produce the wrong
result if the number of rounds in the Feistel network is odd. Therefore, after
applying all rounds on the initial state, the two halves need to be swapped in
memory.

Algorithm 4 Ffn for input s ∈ Fn2 , matrices M j
i ∈ Fw×w2 for i ∈ [0, b−1] and

j ∈ [0, r − 1], and fi for i ∈ [0, r − 1] being the Fibonacci sequence described
above.

def permL(a) : a mod 2 ? 0 : b
def permR(a) : a mod 2 ? b : 0

for j ∈ [0, r − 1] do
for i ∈ [0, b− 1] do

spermL(j)+((fj+i) mod b)+ = M j
i · spermR(j)+b

end for
end for
if r mod 2 = 1 then . Swap halves in memory if r is odd

tmp = s
s0,1,··· ,b−2,b−1 = tmpb,b+1,··· ,2b−2,2b−1
sb,b+1,··· ,2b−2,2b−1 = tmp0,1,··· ,b−2,b−1

end if
return s

A crucial point in the implementation of this algorithm is the multiplication.
There are r · b (w × w) · (w × 1) multiplications in one execution of the Ffn.
An easy constant-time approach implemented in C for w = 4 is shown in
Listing 3.1. This implementation uses the following representation of the data.
v is the w-bit vector which is multiplied by the (w×w) matrix M . The result
of the multiplication is stored in c. v and c are 64-bit integers. M is an array
of 4 64-bit integers, where each integer stores one row of the matrix. We need
to emphasize here again that we store the transposed variants of all matrices.
Therefore the bits in the first integer actually represent the first column of M .
The vector v is connected via the bitwise AND operator with the numbers
1, 2, 4, and 8. This is used to check which bits of v are set, e.g., (v&1) returns
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0x1 if bit 0 of v is set, (v&2) returns 0x2 if bit 1 of v is set, etc.. We will now
show the effect of the double negation operator in lines 2-4 on the example of
(v&2). As mentioned above, (v&2) returns 0x2 if bit 1 of v is set. Negating
0x2 results in 0x0 because all values not equal to zero evaluate to 0 if they are
negated in C. The second negation changes 0x0 to 0x1 because the negation
of zero is one. The second case, (v&2) returns 0x0 because bit 1 of v is not
set, works likewise. The first negation changes 0x0 to 0x1 and the second
negation changes it back to 0x0. This procedure is necessary to get either 0x0
or 0x1 as an indicator if a bit of v is set. The resulting 0x0 or 0x1 can now be
multiplied by the corresponding row of M . The result of the multiplication is
either a vector with zeros, or row i of M if bit i was set. Due to the transposed
representation we can simply apply an XOR on these 4 multiplication results
and get the result c for the (4× 4) · (4× 1) multiplication.

c = M[ 0 ] ∗ ( v & 1 ) ;
c ˆ= M[ 1 ] ∗ ! ! ( v & 2 ) ;
c ˆ= M[ 2 ] ∗ ! ! ( v & 4 ) ;
c ˆ= M[ 3 ] ∗ ! ! ( v & 8 ) ;

Listing 3.1: A constant-time implementation in C for the multiplication c =
v ·M for c and v ∈ F4

2 and M ∈ F 4×4
2 .

The data structure which is used for storing matrices in the implementation
of Picnic requires a change to Listing 3.1. Each row consists of at least 2
uint64 t, which means that each row is at least 128 bits wide. Consequently,
Picnic uses 8 64-bit integers to store a (4× 4) matrix. The remaining bits of
the first integer and the second integer of each row are used as padding. The
number of integers which is used per row is called rowstride. The value of
rowstride is 2 in the case of a (4×4) matrix. We need to use M [1 ·rowstride],
M [2 ·rowstride], and M [3 ·rowstride] to address the second, third, and fourth
row of M , respectively.

The suggested constant-time implementation can be adapted easily for branch
sizes up to 64 bits. The only necessary adaption is that not only the first 4 but
all 64 rows of M and all 64 bits of v are considered. If the branch size exceeds
64 bits, one row of M does not fit into one uint64 t anymore. Then we have to
consider both integers of one row in the calculation because the second integer
is not only padding anymore.
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3.3. NEON Instruction Set Extension

Intel CPUs offer SIMD instruction set extensions which are used in the im-
plementation of Picnic. Picnic uses features of SSE2, SSE4.1, and AVX2.
The SIMD instructions are mainly used to implement matrix operations like
a matrix multiplication. We can exploit the fact that SSE and AVX operate
on different register sizes to optimize the performance of Picnic. This can
be done by implementing optimized versions of several functions for different
block sizes in different instruction set extensions. A 256-bit multiplication is
faster with AVX than with SSE because the 256-bit values can be stored in
one register. AVX does not provide an additional speedup compared to SSE
for a 128-bit matrix multiplication because the register size of SSE suffices for
the calculation.

Picnic can be compiled for ARM architectures when the general purpose C
implementation is used and SSE and AVX code is disabled. We implement
the SSE and AVX based code in NEON to optimize the performance on ARM
CPUs because most modern smartphones, tablets, and embedded systems use
ARM CPUs4. The size of the NEON registers is 128 bits which is the same size
as of SSE registers. Therefore, we base most of the NEON code on the SSE
implementation and not on the AVX version, which uses 256-bit registers.
The 128-bit datatype of SSE is called m128i. Depending on the function
that is applied to a m128i, it is interpreted as multiple 8-, 16-, 32-, or 64-bit
values. NEON offers various 128-bit data types, which already specify what
they represent. Examples for such 128-bit data types include uint8x16 t (16
8-bit unsigned integers), uint16x8 t (8 16-bit unsigned integers), uint32x4 t (4
32-bit unsigned integers), and uint64x2 t (2 64-bit unsigned integers). All of
these data types are also available as a version with signed integers. In Picnic,
uint32x4 t is used in the NEON code. However, any other NEON data type
would be possible as well because we do not use the intended representation
of the data type.

Parts of the code which are optimized with SSE intrinsics are also straightfor-
ward to implement with NEON instructions. This is the case if NEON offers
an equivalent intrinsic to the used SSE intrinsic. The equivalent functions of
SSE and NEON which are used in Picnic are shown in Table 3.2.

4https://www.arm.com/
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Description SSE intrinsic NEON intrinsic
128-bit XOR mm xor si128(a, b) veorq u32(a, b)
128-bit OR mm or si128(a, b) vorrq u32(a, b)
128-bit AND mm and si128(a, b) vandq u32(a, b)

Table 3.2.: Equivalent functions in the SSE and NEON instruction set.

m128i ∗ mzd mul sse 128 ( m128i ∗ c , m128i ∗ v ,
m128i ∗ A) {

u i n t 6 4 t ∗ vptr = ( u i n t 6 4 t ∗) v ;
u i n t 6 4 t v1 = ∗vptr , v2 = ∗( vptr +1);
∗c = ( v1 & 1) ∗ A[ 0 ] ;
for ( int i = 1 ; i < 64 ; i++) {
∗c = mm xor si128 (∗ c ,

( ( ! ! ( v1 & ( ( u i n t 6 4 t )1 << i ) ) )∗A[ i ] ) ) ;
}
for ( int i = 0 ; i < 64 ; i++) {
∗c = mm xor si128 (∗ c ,

( ( ! ! ( v2 & ( ( u i n t 6 4 t )1 << i ) ) )∗A[ i +64 ] ) ) ;
}
return c ;

}
Listing 3.2: Constant time matrix multiplication implemented with SSE in-

trinsics.

An example of a function that is converted from SSE to NEON is shown
in Listing 3.2 and Listing 3.3. Listing 3.2 shows the matrix multiplication
c = AT · v using SSE intrinsics. In Listing 3.3 the same multiplication is done
with NEON intrinsics. The only difference between the two implementations
is the used data type and XOR function.

One SSE intrinsic that does not directly map to a NEON intrinsic with the
same functionality is mm setzero si128(). It sets a 128-bit value to 0. In NEON
there is the intrinsic vmovq n u32(uint32 t a). It sets the 4 32-bit integers in
the 128-bit value to the integer a. Therefore, executing the NEON instruction
vmovq n u32(0) has the same effect as the SSE intrinsic mm setzero si128().
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u in t32x4 t ∗ mzd mul neon 128 ( u in t32x4 t ∗ c ,
u in t32x4 t ∗ v ,
u in t32x4 t ∗ A) {

u i n t 6 4 t ∗vptr = ( u i n t 6 4 t ∗) v ;
u i n t 6 4 t v1 = ∗vptr , v2 = ∗( vptr +1);
∗c = ( v1 & 1) ∗ A[ 0 ] ;
for ( int i = 1 ; i < 64 ; i++) {
∗c = veorq u32 (∗ c ,

( ( ! ! ( v1 & ( ( u i n t 6 4 t )1 << i ) ) )∗A[ i ] ) ) ;
}
for ( int i = 0 ; i < 64 ; i++) {
∗c = veorq u32 (∗ c ,

( ( ! ! ( v2 & ( ( u i n t 6 4 t )1 << i ) ) )∗A[ i +64 ] ) ) ;
}
return c ;

}
Listing 3.3: Constant time matrix multiplication implemented with NEON in-

trinsics.
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In contrast to the examples presented above, there are also SSE intrinsics which
do not have an equivalent NEON intrinsic. It is therefore not straightforward to
implement functions, which use these SSE intrinsics, using NEON intrinsics. In
these cases, it is necessary to find an alternative implementation of the function
using NEON intrinsics. One example for such an alternative implementation
is the shifting of a 128-bit value. Neither SSE nor NEON offers an intrinsics
which shifts the 128-bit value as one value. However, for the bit-sliced SBOX
implementation of LowMC, we require a shift function that interprets all 128-
bits as one value. The bit-sliced SBOX implementation uses bitmasks to create
three instances of the S-box input, s1, s2 and s3, where one instance stores only
the first, second, or third input bit of each S-box. In other words, s1 stores the
first input bit of each S-box and keeps them at their correct place in the state,
hence s1 = [x0, 0, 0, x3, 0, 0, x6, · · · ], s2 = [0, x1, 0, 0, x4, 0, 0, x7, · · · ], and s3 =
[0, 0, x2, 0, 0, x5, 0, · · · ]. The SBOX function uses the AND and XOR operation
on the three input bits of the S-box. To facilitate the implementation of these
operations, we shift s2 by 1 bit and s3 by 2 bits to the left. After these shifts
all input bits for the S-boxes in s1, s2 and s3 have been moved to the indices
j mod 3 = 0, i.e., , s1 = [x0, 0, 0, x3, 0, 0, x6, · · · ], s2 = [x1, 0, 0, x4, 0, 0, x7, · · · ],
and s3 = [x2, 0, 0, x5, 0, 0, x8 · · · ]. The resulting structure can be used to easily
apply AND and XOR on two input bits of the S-box, e.g., by calculating s1∧s2
we execute an AND with the first and second bit of each S-box as input. For
this implementation to be correct, we need to shift the whole state as one
128-bit value. Therefore, we need a 128-bit shift which does not treat the
128-bit register as 32- or 64-bit values. We want to emphasize here that using
the 128 bits as one value is not the intended use case of a SIMD instruction
set. For most functions used in Picnic, like AND, OR, and XOR, it does
not make a difference if the 128 bits are interpreted as one value or multiple
smaller values. Neighboring bits do not influence each other, and each bit is
evaluated by itself. On the contrary, shifting changes the position of the bits
and therefore it does make a difference how the 128 bits are interpreted.

Listing 3.4 and Listing 3.5 show the implementation of a 128-bit right shift
using SSE and NEON intrinsics, respectively. c describes by how many bits
the vector is shifted. We will highlight the differences and similarities between
the two implementations on the example of a right shift by c bits. The starting
point for both algorithms is a 128-bit vector which can be split into two 64-bit
parts (Figure 3.4a). We define the “lower” 64-bit value as the bits 0 to 63 and
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the “upper” 64-bit value as the bits 64 to 127. There are options for shifting
the 128 bits as two 64-bit values in both SIMD instruction sets. This step is
done in line 7 of the SSE and in line 8 of the NEON code. The result of shifting
the 128 bits as two 64-bit is a shifted vector with c zeros in bits 63− c+ 1 to
63 and 127 − c + 1 to 127 (Figure 3.4b). The zeros in bits 63 − c + 1 to 63
should be filled with the original bits 64 to 64 + c − 1 because they have to
“cross the barrier” between the two 64-bit integers. Therefore, we calculate the
so-called carry, which is used to fill the mentioned zeros. The calculation of
the carry slightly differs in the SSE and NEON implementation because they
offer different intrinsics. SSE provides the instruction mm bsrli si128( m128i
a, int b) which shifts the 128-bit value a to the right by b bytes. It does not
split the value into two parts but shifts it as a whole. For our right shift
implementation, we shift the original input by 8 bytes in line 5 of the SSE
implementation. This moves the upper 64 bits into the lower 64 bits and
uses zeros to fill the upper bits. The result of this operation can be seen in
Figure 3.4c. NEON does not offer such a shift operation. However, we can use
the vextq u64(uint64x2 t a, uint64x2 t b, int c) instruction to achieve the same
result. This intrinsic combines the lower c (c ∈ [0, 1]) 64-bit values of b and the
2− c upper 64-bit values of a to one vector, whereby the parts of b become the
upper part of the result and the part of a becomes the lower part. Before we
use this instruction, we set the vector which is used to calculate the carry to 0
in line 5 of the NEON implementation. We then use vextq u64(carry, data, 1)
in line 6 to compose a vector which consists of only zeros in the upper 64 bits
and bits 64 to 127 in the lower 64 bits. The result is the same as using the SSE
implementation with the instruction described above. Therefore, Figure 3.4c
shows the intermediate result of the carry calculation for SSE and NEON.
The finalization of the carry is the same for SSE and NEON. The intermediate
result in Figure 3.4c has to be shifted to the left by 64 − c bits. This can be
done using the instruction mm slli epi64 in line 6 of the SSE implementation
and vshlq n u64 in line 7 of the NEON implementation. The final carry is
shown in Figure 3.4d. As the final step, carry (Figure 3.4d) and the result
of the initial right shift by c bits (Figure 3.4b) can be combined by an OR to
calculate the result of the 128-bit right shift. Line 8 in the SSE code and line
9 in the NEON code show this operation.

To sum it up, we propose to implement parts of Picnic using NEON intrinsics.
We mainly focus on matrix operations because they can be efficiently optimized
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a127 · · · a64 a63 · · · a0

127 64 63 0

(a) The 128-bit vector split into two 64-bit parts.

0 · · · 0 a127 · · · a64+c 0 · · · 0 a63 · · · ac

127 64 63 0

(b) Result after shifting the two 64-bit values by c to the right.

0 · · · 0 a127 · · · a64

127 64 63 0

(c) The upper 64 bits of the initial vector shifted to the lower 64 bits.

0 · · · 0 a64+c−1 · · ·a64 0 · · · 0

127 64 63 0

(d) Final carry that is built out of Figure 3.4c and can be added to the state
that is shown in Figure 3.4b.

Figure 3.4.: 128-bit right shift by c bits.

1 m128i s h i f t r i g h t ( m128i data , unsigned int c )
2 {
3 i f ( ! c ) {
4 return data ;
5 }
6 m128i car ry = mm bsr l i s i 128 ( data , 8 ) ;
7 car ry = mm s l l i e p i 6 4 ( carry , 64 − c ) ;
8 data = mm sr l i ep i 64 ( data , c ) ;
9 return mm or si128 ( data , car ry ) ;

10 }
Listing 3.4: 128-bit right shift using SSE intrinsics
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1 u in t64x2 t s h i f t r i g h t ( u in t64x2 t data , unsigned int c )
2 {
3 i f ( ! c ) {
4 return data ;
5 }
6 u in t64x2 t car ry = vmovq n u64 ( 0 ) ;
7 car ry = vextq u64 ( data , carry , 1 ) ;
8 car ry = vsh lq n u64 ( carry , 64 − c ) ;
9 data = vshrq n u64 ( data , c ) ;
10 data = vorrq u64 ( data , car ry ) ;
11 return data ;
12 }

Listing 3.5: 128-bit right shift using NEON intrinsics

using SIMD instructions. Therefore, Picnic already implements these opera-
tions using SSE and AVX code, which optimizes the signature scheme on Intel
CPUs. The implementation using NEON aims to increase the performance of
Picnic on ARM-based architectures, e.g., smartphones, tablets and embedded
devices.
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This section evaluates the optimizations described in Chapter 3. We focus on
memory requirements and execution time of the optimizations.

4.1. Evaluation Method

We evaluate the proposed optimizations on two different platforms. This sec-
tion describes the benchmarking platforms and how the results in Section 4.2
and Section 4.3 are measured.

4.1.1. Intel Processor

The first benchmarking platform, which we will refer to as Platform A, fea-
tures an Intel(R) Core(TM) i7-6700K CPU running at 4 gigahertz (GHz). It
operates on 16 gigabytes (GB) RAM and runs Ubuntu 16.04 as its operating
system. Picnic is compiled using GCC 5.4.

To measure “time” on the Intel CPU we use the CPU cycles as our timing unit.
These cycles can be measured using so-called Performance Counters on Linux
(PCL), which are also referred to as perf events [Man17]. With perf events
it is possible to measure how many CPU cycles it takes to execute a specific
instruction, function, or program. Before we can measure CPU cycles in a
program, we need to initialize the perf events using the syscall perf event open.
This syscall returns a file descriptor. The file descriptor can be used to read
the hardware CPU cycles that have passed since perf event open was called. To
measure how long a part of a program takes, we read from the file descriptor
before and after the part which should be timed. Subtracting these two values
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results in the number of CPU cycles the execution of the measured program
part took.

4.1.2. ARM Processor

The second benchmarking platform (Platform B) is a Raspberry Pi 3 Model B.
It features a Quad Core Broadcom BCM2837 64-bit CPU running at 1.2 GHz.
This ARM Cortex-A53 CPU implements the 64-bit ARMv8 architecture. It
operates on 1 GB RAM and runs openSUSE Leap 42.2 as its operating system.
Picnic is compiled using GCC 6.2.

The ARMv8 architecture offers the Performance Monitor Unit (PMU) to mea-
sure CPU cycles. This method of measuring time on an ARM device has been
proven to be very accurate [Lip+16]. The PMU consists of several registers
which store, among other information, the passed CPU cycles since the PMU
has been activated or reset. Several bits in the register PMCR EL0 (Perfor-
mance Monitors Control Register, EL0) have to be set to activate the PMU.
Furthermore, setting bit 31 in the register PMCNTENSET EL0 (Performance
Monitor Count Enable Set Register) enables the cycle counter. To read the
current “time”, i.e., CPU cycles since activation of the PMU, the register
PMCCNTR EL0 (Performance Monitor Cycle Count Register) can be read.

4.2. Splitting the Round Key Computation

We evaluate the splitting of the round key computation on both benchmark-
ing platforms using instances with a block size from 128 to 512 bits. The full
details of all benchmarked Picnic instances can be found in Table 2.2. The
Picnic instance with block size n is in the following referred to as Picnic-n.
Furthermore, we only benchmark the Picnic variant Picnic-FS, which is the
variant using the Fiat-Shamir transform (cf. Section 2.4). We do not have to
benchmark both Picnic variants, Picnic-FS and Picnic-UR, because the
proposed optimization is applied to the LowMC primitive which is used in
the same way in Picnic-FS and Picnic-UR. We measure the time for signa-
ture creation and verification in CPU cycles and convert them to milliseconds
for an easier “human-readable” comparison. All measurements are executed
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with RRK without RRK Perf. gain
Parameters Sign Verify Sign Verify Sign Verify
Picnic-128 1.97 1.37 2.13 1.47 8% 5%
(1000 cyc.) 7 079 5 019 7 685 5 239
Picnic-192 5.59 3.93 9.73 7.05 43% 44%
(1000 cyc.) 20 125 14 153 35 025 25 391
Picnic-256 14.01 10.11 23.56 16.57 41% 39%
(1000 cyc.) 50 440 36 380 84 829 59 641
Picnic-384 100.9 69.34 184.83 126.3 45% 45%
(1000 cyc.) 363 229 249 624 665 391 454 696
Picnic-512 241.61 165.38 444.94 304.38 46% 46%
(1000 cyc.) 869 802 595 383 1 601 767 1 095 770

Table 4.1.: Averaged benchmarks without and with RRK on Platform A in
milliseconds and 1000 cycles. The two rightmost columns show the
performance gain for the sign and verify operation.

1000 times and averaged using an automated Python script. Table 4.1 and
Table 4.2 show the benchmark results for Platform A and Platform B, respec-
tively. Figure 4.1 shows a graphical representation of the performance gain on
Platform A.

The performance gains described in Table 4.1 and Table 4.2 show that the
proposed optimization increases the performance by more than 40% for large
block sizes. Furthermore, we can observe that the performance gain is 5/9
times higher for signature creation/verification on Platform B than on Platform
A for a block size of 128. However, the difference in performance gain between
the two platforms becomes smaller as the block size increases.

Memory Requirements. The memory requirements of the optimized algo-
rithm strongly depend on the parameters of LowMC. The number of S-boxes
has a significant influence on how much the required memory can be reduced
compared to the original algorithm. We will demonstrate how the number of
S-boxes influences the reduction of memory requirements based on a block and
key size of 256 bits. The original LowMC algorithm with 38 rounds and 10
S-boxes requires 38 (256 × 256) matrices for the linear layer, 39 (256 × 256)
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128 192 256 384 512
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Block size
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Sign: Optimized

Verify: Optimized

Sign: Not optimized

Verify: Not optimized

Figure 4.1.: Performance of the original and the optimized LowMC algorithm
in milliseconds depending on the block size.

matrices for the round keys, and 38 256-bit vectors for the round constants.
This results in a theoretical memory requirement of 632 kilobytes (KB). The
required memory for the original algorithm depends on the block and key size
but is independent of the number of S-boxes.

The optimized LowMC algorithm with 38 rounds and 10 S-boxes requires 38
(256 × 256) matrices for the linear layer, 1 (256 × 256) matrix for the linear
part of the round keys, 1 (30 · 38 × 256) matrix for the non-linear parts of
the round keys, 38 256-bit vectors for the round constants, and a (30 · 38)-bit
vector as temporary storage. In total, this sums up to a memory requirement
of 357.33 KB. This is a reduction of the memory requirements by 43%. If we
use 20 S-boxes the number of rounds can be decreased to 21 to achieve the
same security level as with 10 S-boxes. Using the optimized algorithm with
these parameters (21 rounds and 20 S-boxes) requires 221.37 KB of memory.
Compared to the original algorithm the required memory is reduced by 65%.
This is even 38% less than in the optimized algorithm with the first proposed
parameter set (38 rounds and 10 S-boxes).

In the practical implementation, the requirements are slightly higher because
every matrix has to store metadata about itself. The metadata includes the
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with RRK without RRK Perf. gain
Parameters Sign Verify Sign Verify Sign Verify
Picnic-128 30.41 21.15 55.49 38.43 45% 45%
(1000 cyc.) 36 495 25 374 66 584 46 121
Picnic-192 116.22 78.36 187.67 126.73 38% 38%
(1000 cyc.) 139 459 94 037 225 208 152 078
Picnic-256 241.27 161.47 405.82 272.09 40% 40%
(1000 cyc.) 289 523 193 767 486 989 326 503
Picnic-384 1259.40 832.41 2363.71 1566.67 46% 46%
(1000 cyc.) 1 511 283 998 888 2 836 456 1 879 999
Picnic-512 3108.42 2053.59 5929.80 3921.24 48% 48%
(1000 cyc.) 3 730 099 2 464 312 7 115 754 4 705 494

Table 4.2.: Averaged benchmarks without and with RRK on Platform B in
milliseconds and 1000 cycles. The two rightmost columns show the
performance gain for the sign and verify operation.

number of rows and columns, the width of one row in memory, and the distance
between two rows in memory (rowstride). The unit of the latter two elements is
uint64 t, e.g., a matrix where each row consists of two uint64 t has a rowstride
of 2. Each matrix requires 32 bytes of memory for its metadata. This results
in 3.59 KB of metadata in the original algorithm and 2.44 KB in the optimized
algorithm for a block size of 256 bits.

4.3. Replacing Li with a Feistel Network

We evaluate the proposed Feistel on a (n × n) · (n × 1) multiplication us-
ing the block sizes n 128, 256, 512, and 1024 and the branch sizes 2i, i ∈
{2, 3, 4, 5, 6, 7, 8}. As a reference, we use the implementation of the matrix-
vector multiplication in Picnic. This implementation uses SSE2 code for mul-
tiplications with a block size which is a multiple of 128. Furthermore, it uses
AVX2 code if the block size is a multiple of 256. We will refer to this imple-
mentation as Picnic multiplication. All following benchmarks for the Picnic
multiplication and the Feistel network show 500000 averaged executions.
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Block size Cycles Memory (in bytes)
128 1033 2048
256 2260 8192
512 4356 32768
1024 11580 131072

Table 4.3.: Execution time in cycles and memory requirements in bytes for the
Picnic multiplication with different block sizes (Platform A).

Table 4.3 shows the performance and the memory consumption of the Picnic
multiplication on Platform A for the block sizes 128, 256, 512, and 1024. Ta-
ble 4.4 shows the performance of the Feistel network which represents the
(n× n) · (n× 1) multiplication with n ∈ {128, 256, 512, 1024}. In general, the
performance of the Feistel network increases with the branch size w. We can
observe that for each block sizes there exists a branch size which results in
a performance of the Feistel network that is close to the performance of the
Picnic multiplication. For the 128-bit Feistl network a branch size of 32 bits
is most favorable in terms of performance. However, this construction is still
around 50% slower than the Picnic multiplication. The Feistel structure for
256 bits block size with a branch size of 64 bits achieves a 10% better perfor-
mance than the Picnic implementation. In contrast, the Feistel structure for
the 512-bit multiplication with a branch size of 64 bits is 10% slower than the
Picnic implementation. There are four branch sizes 16, 64, 128, and 256 in
the Feistel network that implements the 1024-bit multiplication that acchieve
a performance that is less than 10% slower than the Picnic multiplication.
The performance that is closest to the Picnic multiplication is the Feistel
network with a branch size of 128 bits.

Memory Requirements. The Picnic multiplication only requires the (n×n)
matrix, which results in a memory requirement (excluding the metadata) of n·n

8

bytes. As Table 4.3 shows, this results in 2048 bytes for 128-bit block size, 8192
bytes for 256-bit block size, 32768 bytes for 512-bit, and 131072 bytes for 1024-
bit block size. Table 4.5 shows the required memory for the Feistel network
for different branch sizes in bytes. The required memory can be described
as w·w·b·r

8
bytes. We can observe that for all block sizes and all branch sizes

the memory consumption can be lower with the Feistel network than with the
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Block size
128 256 512 1024

R Cyc. R Cyc. R Cyc. R Cyc.

B
ra

n
ch

si
ze

4 9 1785 10 4463 12 9994 13 22586
8 8 1359 9 3224 10 6874 12 16975
16 6 960 8 2430 9 5337 10 12189
32 5 1627 6 3231 8 9159 9 20405
64 - - 5 2047 6 4855 8 12622
128 - - - - 5 7766 6 11695
256 - - - - - - 5 12468

Table 4.4.: Benchmarks of the Feistel network implementing a multiplication
with 128, 256, 512 and 1024 bits block size and different branch
sizes on Platform A. R denotes the number of necessary rounds in
the Feistel network and Cyc. the number of cycles the execution
of the Feistel network takes.

Block size
128 256 512 1024

B
ra

n
ch

si
ze

4 288 640 1536 3328
8 512 1152 2560 6144
16 768 2048 4608 10240
32 1280 3072 8192 18432
64 - 5120 12288 32768
128 - - 20480 49152
256 - - - 81920

Table 4.5.: Memory requirements of the Feistel network with different branch
sizes and the block sizes 128, 256, 512, and 1024.
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Picnic multiplication. For the 128-bit and 256-bit multiplication the required
memory is lower in the Feistel network for all possible branch sizes. The
Feistel network can reduce the memory consumption by 86% for the 128-bit
multiplication, 92% for the 256-bit multiplication, 95% for the 512-bit, and
97% for the 1024-bit multiplication. All of these memory savings occur with a
branch size of 4. We note, that depending on the implementation the memory
requirements may be higher than theoretically assumed.

4.4. NEON Instruction Set Extension

Table 4.6 and Table 4.7 show the performance of Picnic with and without
NEON intrinsics. For the benchmarks in Table 4.6 the optimization of Sec-
tion 3.1, the reduced round key computation (RRK), was enabled. Table 4.7
shows the benchmarks where the RRK was not enabled. For all benchmarks
without NEON the compiler flag “-march=armv8+nosimd” was used to pre-
vent the compiler from generating NEON code on its own. In both cases, with
and without the RRK, the performance gain is highest for the 128-bit block
size. With the RRK the performance gain is 13% and 10% for signing and
verifying, respectively. The performance of the original LowMC algorithm
can be increased by 18% for signing and 17% for verifying when NEON in-
structions are used. For all other block sizes the performance gain does not
exceed 5%. If the RRK is disabled the performance for a block size of 192 bits
decreases by 4% due to the usage of NEON instructions.
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with NEON without NEON Perf. gain
Parameters Sign Verify Sign Verify Sign Verify
Picnic-128 30.18 21.10 34.95 23.61 13% 10%
(1000 cyc.) 36 220 25 324 41 937 28 332
Picnic-192 121.49 81.96 126.36 85.37 4% 4%
(1000 cyc.) 145 783 98 351 151 637 102 446
Picnic-256 235.22 157.42 247.63 166.25 5% 5%
(1000 cyc.) 282 266 188 900 297 158 199 497
Picnic-384 1259.61 832.53 1270.71 845.56 1% 2%
(1000 cyc.) 1 511 534 999 031 1 524 848 1 014 669
Picnic-512 3107.63 2054.78 3274.69 2193.11 5% 6%
(1000 cyc.) 3 729 152 2 465 733 3 929 628 2 631 737

Table 4.6.: Averaged benchmarks without and with NEON instructions on
Platform B in milliseconds and 1000 cycles. The two rightmost
columns show the performance gain for the sign and verify opera-
tion. The RRK was enabled for this benchmark

with NEON without NEON Perf. gain
Parameters Sign Verify Sign Verify Sign Verify
Picnic-128 48.31 33.30 58.86 40.151 18% 17%
(1000 cyc.) 57 967 39 959 70 626 48 182
Picnic-192 208.90 140.55 201.46 135.63 -4% -4%
(1000 cyc.) 250 684 168 661 241 753 162 761
Picnic-256 405.65 271.95 456.66 306.08 11% 11%
(1000 cyc.) 486 777 326 334 547 993 367 301
Picnic-384 2376.95 1575.00 2402.92 1610.26 1% 2%
(1000 cyc.) 2 852 335 1 889 999 2 883 505 1 932 307
Picnic-512 5967.48 3956.89 6243.58 4189.65 4% 6%
(1000 cyc.) 7 160 976 4 748 273 7 492 300 5 027 582

Table 4.7.: Averaged benchmarks without and with NEON instructions on
Platform B in milliseconds and 1000 cycles. The two rightmost
columns show the performance gain for the sign and verify opera-
tion. The RRK was disabled for this benchmark
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This chapter discusses the results and benchmarks which are presented in
Chapter 4. We will assess performance gains, memory consumption, and other
issues of all proposed optimizations.

5.1. Splitting the Round Key Computation

In this section we focus on effects of the LowMC algorithm which uses a
split round key. Section 5.1.1 focuses on the memory consumption and the
performance gain of the optimized LowMC variant when larger block sizes
are used. In Section 5.1.2 we highlight the effects of different numbers of S-
boxes. We discuss how the number of S-boxes influences characteristics like
memory consumption, ANDdepth, and signature size.

5.1.1. Large Block Sizes

The splitting of the round key becomes particularly useful when the block
size increases. If the number of S-boxes does not proportionally rise with the
block size, the memory that can be saved by the precomputation increases. As
Table 5.1 shows, if the number of S-boxes is fixed the memory that is saved
increases with the block size. The algorithm with the split round key saves
almost 50% of the required memory compared to the original algorithm when
10 S-boxes are used.

The performance gain can only be achieved if the number of S-boxes stays the
same even if the block size increases. The S-box layer is computationally more
expensive than all other layers because it involves AND operations. Therefore,
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Block size Without RRK With RRK Savings
128 83.29 KB 53.01 KB 36%
192 281.81 KB 165.28 KB 41%
256 632 KB 357.33 KB 44%
384 2122.42 KB 1152.09 KB 46%
512 5149.57 KB 2743.72 KB 47%

Table 5.1.: Memory requirements for 10 S-boxes and different block sizes
for the original (without RRK) and the optimized (with RRK)
LowMC algorithm.

it is favorable for the performance to decrease the proportion of the state on
which the S-boxes are applied. However, one has to keep in mind that a lower
number of S-boxes results in more rounds of the LowMC algorithm.

5.1.2. Number of S-boxes

As briefly described in Section 4.2, the choice of the number of S-boxes m for
the LowMC algorithm in Picnic has a huge influence on the memory require-
ments. The memory requirements for the optimized algorithm with 20 S-boxes
are 35% lower than for the optimized algorithm with 10 S-boxes. This effect
occurs because the number of rounds can be decreased if the number of S-boxes
is increased. Therefore, a decreased round number results in faster execution
time and reduced memory requirements. The additional S-boxes do, up to the
point where 3 ·m > 256, not increase the runtime of the algorithm because the
bitsliced S-box implementation can calculate all S-boxes in parallel. While 3m
is smaller than 256 the bitsliced S-box implementation can use SSE or AVX
registers to process all S-boxes at once. When 3m bits exceed the capacity of
an AVX register the runtime of the S-box layer might increase slightly because
we require 2 AVX registers to compute the S-box layer. This constraint only
affects the proposed instances with the block sizes 384 and 512.

Although it might look favorable to increase the number of S-boxes to the
possible maximum in terms of execution time, this has a significant drawback
as well. The number of AND gates in the circuit that implements the LowMC
encryption increases. This makes the hardware implementation of the circuit
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more expensive because it requires more gates and space. However, the lower
number of rounds is favorable for the ANDdepth of the circuit and therefore
alleviates the effect of the increased number of AND gates partly.

Another effect of the number of S-boxes which should not be left out of con-
sideration is the signature size. If the number of S-boxes is decreased, the
signature size decreases as well. The signature size is dependent on the size
of the calculated views, and the size of the views is dependent on the number
of S-boxes. A lower number of S-boxes reduces the view size even though the
number of rounds of LowMC has to be increased to achieve the same security
level.

5.2. Replacing Li with a Feistel Network

This section discusses results of the Feistel structure that was proposed in
Section 3.2. We discuss the memory consumption in relation to the achieved
performance. Furthermore, we discuss the usage of the Feistel network when
large block sizes are used. At the end, we compare the number of XORs in the
Feistel network and a standard constant-time implementation.

5.2.1. Memory Consumption

As Table 4.5 shows, the memory consumption of the Feistel network increases
with the used branch size. For all evaluated block sizes the memory con-
sumption is the lowest if a branch size of 4 is used. Compared to the Picnic
multiplication the Feistel network can save up to 97% of the required memory
in the 1024 bits block size case. If this theoretical saving can be achieved in
practice depends on the concrete implementation of the used data structures.
However, as Table 4.4 shows, the performance of the Feistel structure increases
with the branch size. For all evaluated block sizes, a branch size of 4 has the
least favorable performance compared to other branch sizes. Hence, it is not
possible to achieve the lowest memory consumption and the best performance
at the same time. One has to make a tradeoff between execution time and
required memory. In which direction this tradeoff drifts can be made depen-
dent on the target platform or the application of the scheme. If the target
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platform is an embedded device with limited memory then it may be favorable
to decrease the memory requirements at the cost of a lower performance. In
contrast, on a modern laptop or PC a few mega bytes of extra memory are of
no consequence with regard to the gigabytes that are availabe. Therefore, the
optimization of the execution time may be of more importance.

5.2.2. Large Block Sizes and SIMD Registers

When a block size of 1024 bits is used, the maximum branch size is 256 bits.
256 is exactly the size of an AVX register. Hence, all branch sizes greater or
equal to 256 bits can make use of the 256-bit registers. The AVX variant can
save up to 3

4
of the operations for certain functions compared to an imple-

mentation which uses 64-bit uint64 t. This effect occurs because one 256-bit
branch can be handled in one AVX instruction instead of four 64-bit instruc-
tions. Therefore, using the AVX registers is of great interest for block sizes
> 1024 bits because they can reduce the number of executed instructions and
as a result the execution time. For the 512-bit Feistel network the AVX regis-
ters cannot be applied because the largest possible branch size is 128. However,
the Feistel network can use SSE intrinsics on Intel CPUs and NEON intrinsics
on ARM CPUs. These intrinsics reduce the number of instructions by 1

2
for

certain implementation parts.

In general, we can observe that it is possible for all block sizes to achieve a per-
formance of the Feistel network that is close to the performance of the Picnic
multiplication. For all evaluated block sizes the Feistel network yields the
best performance if the used branch size is the largest or second largest possi-
ble branch size. Therefore, for these branch sizes, the use of AVX, SSE, and
NEON registers is worth consideration. However, our experiments showed no
significant performance gain when SIMD instructions were used in the Feistel
network. This may be due to the small amount of data the instructions are ap-
plied to. Another possible explanation is that the compiler can generate highly
optimized and efficient code when no SIMD instructions are used. In this case,
the usage of SIMD instructions may not yield a reasonable performance gain
anymore.
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5.2.3. Number of XORs

Table 5.2 shows the number of necessary XOR operations in the constant-time
multiplication and in the Feistel network. The number of XOR operations
in the constant-time multiplication exactly quadruples when the block size
is doubled. In contrast, the Feistel network less than triples the number of
XOR operations when doubling the block size. The larger the block size is the
more XOR operations can be saved using the Feistel network. The numbers
in Table 5.2 consider only the XORs that are necessary for the multiplications
in the Feistel network. The XOR which adds the result of the multiplication
to the current state of the Feistel network can be neglected in the number of
XORs. This is possible because the multiplication can be implemented in a way
that it directly operates on the state so that no extra addition is necessary.

The multiplications in the branches of the Feistel network can be implemented
using SSE intrinsics for all block sizes larger than 512 bits. AVX intrinsics can
be used starting from a block size of 1024 bits. These SIMD intrinsics should
reduce the number of XORs. Needless to say, the SSE and AVX intrinsics can
also be used in the constant-time implementation.

Blocksize Rounds XOR operations XOR operations with
in Feistel network constant-time mult.

256 5 640 1024
512 6 1536 4096
1024 8 4096 16384
2048 9 9216 65536
4096 10 20480 262144

Table 5.2.: Number of XOR operations in the Feistel network with 64-bit
branches and the constant-time multiplication for different block
sizes.

5.3. NEON Instruction Set Extension

Benchmark results of the Picnic variants that use SSE intrinsics show that the
SIMD instructions can provide a performance gain of up to 30% [Cha+17b]. As
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Table 4.6 and Table 4.7 show, the performance gain with NEON instructions is
much lower than 30%. This observation might be caused by different factors.
These factors can include, but may be not limited to, compiler optimization
issues, out-of-order execution, and hardware limitations.

One explanation for the low performance gain may be the compiler itself. The
compiler may not be equally capable of generating highly optimized code if the
compiled code includes NEON instructions than if it does not. This might be
due to the fact that optimizing code without NEON intrinsics has been done
for a much longer time and is, therefore, more powerful. NEON instructions
have only been introduced in 2005 which could mean that there is still opti-
mization potential.
A factor that may also influence the performance gain is out-of-order execu-
tion. Most Intel CPUs provide out-of-order execution whereas the Raspberry
Pi does not [ARM14]. Out-of-order execution enables the CPU to execute
instructions not in the provided order, but in a more optimal way if this is
possible. For example, the CPU may reorder arithmetic operations followed
by a load operation if they are independent of each other. In this case, it
is more optimal to start the load operation before the arithmetic operation
because the load needs more cycles to complete. Therefore, out-of-order ex-
ecution can provide a considerable speedup because code that is not written
optimally can be reordered. The Raspberry Pi does not offer this feature which
means that the performance is highly dependent on the written code.
A Raspberry Pi has, compared to an Intel processor, much weaker and smaller
hardware. One of the hardware factors that might influence the performance
gain is the time it takes to fetch data from memory. The relation of the dura-
tion of a fetch from memory and the duration of executing other instructions
plays an important role in the performance gain. If the memory fetch takes
longer compared to other instructions on the Raspberry Pi, the executed in-
structions are not the bottleneck of the algorithm. In this case, it would be
more useful to minimize the reads from memory. Another hardware effect
that could influence the performance gain is caching. Caches on Intel and
ARM CPUs behave differently concerning replacement policy [Lip+16]. Fur-
thermore, the cache on the Raspberry Pi is much smaller than on the Intel
processor which means that more data has to be fetched from memory.
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In this document, we proposed three optimizations on Picnic and especially
its component LowMC. The goal of all three optimizations is to decrease the
execution time or the memory consumption of Picnic. The first optimization
splits the round key into a linear and a non-linear part and the linear part is
moved to the beginning of the encryption. This structural change removes the
multiplication Ki·y from every LowMC round. The round key computation in
each LowMC round is reduced from one (n×n)·(n×1) multiplication and one
n-bit addition to one 3m-bit addition. This has shown to be a very effective
optimization. We can increase the performance of Picnic by almost 50%
by applying this optimization. Furthermore, also the memory requirements
for our fixed LowMC instances with 10 S-boxes can be reduced by almost
50%. The second optimization addresses the linear layer of LowMC. We
proposed to replace the multiplication in the linear layer by a Feistel network.
The multiplication can be implemented as the round functions of the Feistel
network. This Feistel network yields a similar performance to the original
linear layer. However, the memory consumption can be reduced by up to 97%
if a performance loss is acceptable. This reduction in memory requirements
can be achieved because the matrix of the linear layer is not stored as one (n×
n) matrix, but several smaller matrices. The third optimization implements
parts of Picnic using NEON intrinsics. NEON intrinsics should reduce the
number of necessary XOR operations for matrix operations like multiplication.
The usage of the SIMD instructions increases the performance slightly for all
evaluated block sizes. The performance gain is highest if the block size is 128
bits.
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6. Conclusion

6.1. Future Work

One research direction that directly arises from this thesis is a deeper look
into the NEON instruction set extension. As we did not manage to achieve
the expected results, it may be interesting to have a closer look at how the
compiler generates code around the NEON instructions. Furthermore, it may
also be worth reconsidering the code design of Picnic. The implementation
itself could be the problem that it is not possible to use NEON instructions
effectively. It could also be possible that on a different ARM platform the
NEON optimizations yield a higher performance gain.

A possible application for the Feistel network is Rasta [Dob+18]. Rasta re-
quires randomly sampled matrices for a linear layer. The size of these matrices
depends on the block size n of the Rasta instance. As the block size of Rasta
can quickly reach more than 1024 bits, the Feistel network could ease the gener-
ation of the matrices for the linear layer. It would be more efficient concerning
execution time and memory consumption if not a matrix of size (n × n) but
several smaller matrices are generated.
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Appendix A.

Feistel Network in Python

This appendix shows an implementation of the Feistel network which is pre-
sented in Section 3.2. First, the code generates random (W × W ) matrices
(lines 57-59). Second, the matrix M is computed from random these random
matrices (lines 62-67). Finally, we apply the Feistel network on a random input
vector s to check if it truly computes M · s (lines 71-75).

69



Appendix A. Feistel Network in Python

1 #!/ usr / bin / sage
2 from sage . a l l import ∗
3 import i t e r t o o l s , math
4 F = GF(2)
5 N = 128 # block s i z e N
6 W = 4 # branch width
7 B = in t (N/(2∗W) ) # N = 2∗B∗W
8
9 R = 1
10 whi l e f i b o n a c c i (R) <= B: #ca l c u l a t e rounds f o r f u l l d i f f u s i o n
11 R += 1
12
13 de f r and l i n ea r pe rmuta t i on (w, dens i ty =0.5) :
14 #Returns a random w x w matrix
15 whi l e True :
16 r e s u l t = zero matr ix (F , w, w)
17 f o r i , j in i t e r t o o l s . product ( xrange (0 , w) , r epeat=2) :
18 i f random ( ) < dens i ty :
19 r e s u l t [ i , j ] = 1
20 i f r e s u l t . rank ( ) == w:
21 return r e s u l t
22
23 de f p e rmute l e f t ( r ) :
24 re turn 0 i f r % 2 e l s e B
25
26 de f permute r ight ( r ) :
27 re turn pe rmute l e f t ( r + 1)
28
29 de f f e i s t e l n e tw o r k ( i , rot , s , Ls ) :
30 f o r i in xrange (0 , R) :
31 f o r b in xrange (0 , B) :
32 L = Ls [ b ]
33 idx = ( permute r ight ( i ) + b) ∗ W
34 x = s [ idx : idx + W]
35 y = L ∗ x
36 idx = ( pe rmute l e f t ( i ) + ( ( ro t + b) % B) ) ∗ W
37 s [ idx : idx + W] += y
38 i f R % 2 == 1 :
39 tmp = s
40 s [ 0 : B∗W] = tmp [B∗W : 2∗B∗W]
41 s [B∗W : 2∗B∗W] = tmp [0 : B∗W]
42 return s
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43 def r andom ro ta t ed f e i s t e l r ound ( ro t ) :
44 sma l l mat r i c e s = [ ]
45
46 for i in xrange (0 , B) :
47 sma l l mat r i c e s . append ( rand l i n ea r pe rmuta t i on (W) )
48 return sma l l mat r i c e s
49
50 i f name == ” main ” :
51
52 phi = [ x % B for x in f i b ona c c i s e qu en c e (R) ]
53 print ”B = {} , W = {} , N = {} R = {}\nphi = {}” . format (B, W, N

↪→ , R, phi )
54
55 a l l r ound mat r i c e s = [ ]
56 #genera te a l l R∗B smal l matr ices
57 for i in xrange (0 , R) :
58 round matr i ces one round = random ro ta t ed f e i s t e l r ound (

↪→ phi [ i ] )
59 a l l r ound mat r i c e s . append ( round matr i ces one round )
60
61 #genera te matrix M out o f sma l l matr ices
62 M = matrix (F , N, N)
63 for j in xrange (N) :
64 s = vecto r (F , N)
65 s [ j ] = 1
66 s = f e i s t e l n e tw o r k ( i , phi [ i ] , s , a l l r ound mat r i c e s [ i ] )
67 M[ : , j ] = s
68
69 #check F e i s t e l network by comparing M∗ s to r e s u l t o f
70 # mu l t i p l i c a t i o n wi th F e i s t e l network
71 s = random vector (F , N)
72 t = M ∗ s
73 s = f e i s t e l n e tw o r k ( i , phi [ i ] , s , a l l r ound mat r i c e s [ i ] )
74 #pr in t i f comparison was s u c c e s s f u l
75 print ( t == s )

Listing A.1: Fibonacci network, which is described in Section 3.2, implemented
in Python.
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