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Abstract

The goal of this master’s thesis is to investigate reinforcement learning
methods for the task of autonomous robotic navigation in corridor environ-
ments through monocular images. In our setup, the agent explores the given
corridor environment and learns to predict the rewards for the state-action
pairs. During the learning process, we use the pose estimation and the
bumper sensor of the robot to compute a reward signal. For predicting the
reward, we only use monocular images. We utilize the experience replay
approach to decorrelate the data during training. Herein, we introduce a
novel method to show the importance of considering the sample similarity
in the replay memory during the learning process. We propose an approach
for managing the replay memory that discards only the similar samples
from the replay memory. Therefore, we ensure that the samples in the replay
memory are less correlated and offer good representations of the given
environment. Due to the complexities of the evaluation in the real world, we
perform our experiments in a simulated environment. We evaluate the abil-
ity of our agent to learn more complex corridor environments, step-by-step.
First, we evaluate the learning process in a simple corridor and compare
our replay memory management strategy to the standard discard phase
for the replay memory. Second, we evaluate the capabilities of our agent
for learning two corridor environments. Finally, we evaluate the learning
process in a complex environment. The results indicate that the agent is able
to apply the acquired knowledge well for the tasks at hand. Additionally,
the replay memory management approach enhances the ability of the agent
to learn multiple corridor environments.
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1 Introduction

The autonomous navigation of robots in indoor environments is a challeng-
ing task. Usually, the methods propose the usage of complex hierarchies of
sensors that enable a robot to complete long and smooth trajectories in the
given environment. In this context, the related works often refer to Simulta-
neous Localization And Mapping (SLAM), as described in [20], the famous
problem that correlates the task of navigation in a corridor environment
with constructing a detailed map of the environment and providing a good
localization estimation for the robot. In order to estimate the map of the
environment, we need to be able to extract the information recorded by the
available sensors precisely. The problem includes estimating the distances
to the obstacles in the environment. The advanced solutions often utilize
different sensors such as laser rangefinders or RGBD-sensors [6, 11] for such
calculations. The solutions may therefore imply complex calibrations of the
involved sensors and large costs for the deployment.

In contrast to the mentioned approaches, in this thesis we address the prob-
lem of mapless navigation and object avoidance in corridor environments
using sensory data received from a monocular image. Through this, we
reduce the required complexity of the underlying sensor hierarchy.

Even though calculating the distances in a monocular image is a hard task,
humans are able to perceive the distances just by observing a given monoc-
ular image and can predict the most appropriate strategy for avoiding the
obstacles by applying the previously learned context to the given image.

The goal of this thesis is to investigate the methods that we use today to
extract the context from images and to develop a model which correlates the
extracted context and learning through self-motion. The model is evaluated
on a robot that learns to navigate in a given corridor environment. The
detailed project specifications are presented in Chapter 2.
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1 Introduction

In this chapter we first cover one of the early neuroscience experiments that
contributes to understanding the importance of self-motion for the learning
progress. Further on, we discuss why reinforcement learning might be a
good choice for modeling the concept of learning from self-motion. We
briefly discuss the methods behind the Deep Q-Network (DQN) approach
[13, 14] that exceeds the human-level of performance in the domain of
playing ATARI 2600 games [1] and through that inspires our approach. We
conclude the chapter by providing the problem statement for this thesis and
we briefly introduce our approach and its advantages.

1.1 Motivation From Neuroscience

Learning from previous experiences influences our development. Even
though it might be helpful to study the behavior of others to faster grasp
the solution for the given task, sometimes we are able to find a solution
only after we have experienced cycles of trial and error for the task at hand.
What we can do today without a lot of thinking, might be the result of hard
work. Although we do not even remember our own first steps, by observing
the children today that go through the process of learning the same task,
we can imagine how much work we had to invest for solving it.

To examine the influence of self-motion on the learning progress, Held
and Hein conducted an experiment in 1963 that showed the importance
of self-motion for learning the visual perception [5]. They performed the
experiment on a pair of kittens, the active cat and the passive cat. The
goal was to investigate the role of self-motion for the development of the
action-perception. During the early stage of life, the cats were tied to a
carousel-like structure. The active cat was given the freedom of walking
around the structure. By moving freely, it was rotating the lever which in
turn resulted in moving the passive cat, constrained to keep it from walking
on its own. This way both the active and the passive cat received an equal
amount of visual experience but the active cat was able to connect the visual
experience to the range of movements it was performing during this time.
The passive cat was not able to develop the functional sight during the
experiment as it did not learn to perceive depth and was distinguishable
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1.1 Motivation From Neuroscience

Figure 1.1: The active-passive cat experiment [5]. By walking around the corousel, the active
cat A moves the lever which in turn moves the passive cat P.

among other cats by its performance in the open world. Active cat was
able to perceive depth and perform in the world like any other cat. Only
after the passive cat was given the freedom of the active movement for a
prolonged period of time, it learned to perceive depth. The setting for the
active-passive cat experiment is shown in Figure 1.1.

The experiment shows an example of the developmental process. The self-
induced movement produces a variation of stimulus which influences the
learning process in our brain. We ask ourselves the following question:
As the self-motion is so important for our visual system, can we use it as
an inspiration for developing machine visual systems that perform and
perceive the world in a similar way as we do?

Herein, we investigate the autonomously learning systems that correlate
to the notion of learning through self-motion. More specifically, we utilize
the current progress in the field of reinforcement learning which fits the
requirements for our model well.

3



1 Introduction

Figure 1.2: Reinforcement learning, typical scenario. The agent observes a state from the
environment and chooses an action based on the observation. The agent asso-
ciates a certain noisy reward to the state-action pair through the interaction
with the environment.

1.2 Reinforcement Learning

When defining a machine learning problem, we have to think about the
type of signal that is provided to the algorithm for the learning process.
In the standard supervised learning task, the signals for the available data
samples are precisely defined, usually with some sort of human interaction.
The most typical examples of the supervised learning problems are the
image classification tasks. In such tasks the learning process is guided by
a dataset of images, carefully labeled to be categorized into the different
classes that the algorithm should learn to recognize. The key component of
the recent success in the field of image classification is the utilization of the
Convolutional Neural Networks(CNN) [9]. The ImageNet Large Scale Visual
Recognition Challenge [17] is just one such example task where outstanding
results have been achieved in the last years.

In contrast to the supervised learning, in the field of reinforcement learning
we deal with problems where it is hard or impossible to label the data

4



1.2 Reinforcement Learning

exactly. Therefore, the learning process is guided by an approximation
of the correct signal, the reward. The typical setting for the reinforcement
learning problems is as follows: An agent is placed into an environment
where it gathers data samples consisting of an observation state, e.g. image
sensory data, and an action, which leads to the transition to the next state.
The agent receives a reward signal for each of the state-action pairs based on
how the agent interacts with the environment for the chosen action in the
given state. The reward in the most of the reinforcement learning scenarios
is often delayed and noisy, making it difficult to design algorithms that deal
with such problems. We illustrate a typical reinforcement learning scenario
in Figure 1.2.

Different reinforcement learning methods have been successfully applied
to the challenging task of playing ATARI 2600 games [1] recently. In such
tasks, the observation state is usually the current game frame (or multiple
game frames) and the reward is the score change after the agent performs a
specific action. The DQN method [13, 14], for which the agent learned to
play the ATARI 2600 games above the human-level, demonstrates a possible
application of the reinforcement learning algorithms to solve this task.

1.2.1 Deep Q-Network for playing ATARI 2600 games

The work by Mnih et al. in 2013 [13] introduces a novel model for reinforce-
ment learning, the DQN, that masters a wide variety of ATARI 2600 games
by using only the raw pixels of the image frame for the observation state.
The idea is to extend the Q-Learning method, the acknowledged traditional
approach, through deep learning.

The Q-Learning approach is the basis of the DQN method. As presented
originally in 1989 by Watkins in his PhD thesis [22], the Q-Learning enables
learning from the delayed rewards and shows convergence to the optimal
solutions of the problems where the Markov property can be assumed
for the defined observation states. The motivation for the Q-Learning ap-
proach is set from the assumption that the optimal action policy is the one
that maximizes the future reward. Therefore, Watkins suggested that one
way of learning such policy would be to propagate the delayed reward
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1 Introduction

through the previously visited state-action pairs. This idea is portrayed by
the function Q(s, a), also referred to as the action-value function in [13],
that represents the estimation of the expected delayed reward for the given
state-action pair (s, a). During the training phase, Q-Learning suggests the
update of the action-value for the visited state-action pairs (st, at) at time
step t, represented in Equation 1.1:

Q(st, at)←
{

rt if st is terminal,
(1− α)Q(st, at) + α(rt + γmaxaQ(st+1, a)) otherwise,

(1.1)

where α is the learning rate, rt the immediate reward received at the time
step t and maxaQ(st+1, a) the prediction of the future reward discounted by
the factor γ. The state is terminal if there are no other states that follow. In
other words, it is the state that ends the episode. For ATARI 2600 domain
an episode is usually considered to be the interval between the start and
the end of the game.

With such definition, the Q-Learning approach is limited to solving the
tasks with very low state complexities. To solve this, for the DQN method
the function Q is represented by a CNN. The observed state s is obtained by
stacking the last 4 recorded image frames. The network takes the observed
state as the input and outputs the predictions of the rewards for each of the
defined actions in the environment.

The actual rewards for the ATARI 2600 games are represented in the DQN
method by the change in the game score. The positive score changes are
fixed to 1 and the negative score changes are fixed to −1. No score change
implicates the 0 reward. The end of the game marks the end of the episode
and afterwards the game restarts from the initial state.

The DQN method introduces the experience replay concept. The idea is to
maintain a list of the previously visited state-action-reward triples, the replay
memory, that contains the previous experiences of the agent gathered in the
earlier iterations of the learning process. By randomly sampling a batch
from the replay memory at the training time, the correlation between the
data is smaller and therefore the experience replay ensures the low chances

6



1.3 Problem Statement

of overfitting the network. As the replay memory is limited in size, the
standard approach is to discard the oldest samples once the replay memory
is full.

Additionally, the DQN also utilizes the ε-greedy action policy. With small
probability ε, the agent takes random actions instead of the action for which
the highest future reward is predicted. Through non-deterministic behavior,
such policy encourages the agent to explore the environment and discover
the potentially more rewarding state-action pairs.

Finally, the work of Mnih et al. from 2015 [14] makes one additional im-
provement on the work from 2013 [13] by introducing the target network.
This approach separates the network for training, the training network,
and the network that predicts the rewards, the target network. Through
this, the samples are generated using the action policy that depends on
the target network for multiple iterations making the variations between
the rewards for the similar gathered samples smaller. After certain number
of steps C, the target network is updated to fit the values of the training
network. The work in [14] also presents the separate results of the training
for a variety of ATARI 2600 games. One part of the visualization from [14],
in Figure 1.3, shows the behavior of the learned agent for the game of Pong.
The approach is still challenged by the games that require more demanding
planning strategies where the learning does not converge to the optimal
game strategies.

1.3 Problem Statement

In our reinforcement learning scenario, the agent learns to navigate in the
given corridor environment. To solve this task, as implied throughout this
chapter, we develop a model which introduces the aspect of learning from
self-motions through a reinforcement learning approach inspired by the
DQN method [13, 14].

Our agent explores the given corridor and it learns to navigate and complete
long trajectories in the environment while avoiding obstacles by using the
gathered experience. The reward signal is the distance that our agent covers

7



1 Introduction

Figure 1.3: DQN, the learned predictions, adapted from [14]. The image shows the devel-
opment of the learned Q-function for Pong in different situations of the game.
In the first frame, the state is of a low risk and therefore the Q-function predicts
high future rewards around 0.7 for all of the actions. As the risk increases in
frames 2 and 3, the Q function predicts the negative scores for the non-optimal
actions but keeps the score for the optimal action high. In the frame 4, the
opponent is about to be beaten, therefore the predictions are ∼ 1 for all actions.

for the corresponding state-action pair. In order to be able to estimate the
reward, our agent has to learn to distinguish between the observation states
defined by a single monocular image. During the learning process, we
calculate the positive part of the reward by measuring the covered distance
between different steps. We use the bump information as the negative part
of the reward. The trained agent predicts the rewards for the state-action
pairs based on a single monocular image. The agent chooses which action to
take by relying on the defined action policy. Therefore, during the learning
process we do not require the high-precision sensors. Our algorithm relies
only on the camera mounted on the top of the robot, the bumper sensor
and the noisy estimations of the covered distances. At the test time, the
algorithm relies solely on the image data captured by the camera.

Although the usage of an continuous action space is arguably a better
choice for the real world navigation scenarios, we choose to define a simple
discrete action space for this problem. By allowing it to move forward with
possibility of slight rotations to the left or to the right, the agent can choose
between three different actions. Such simple definition of the discrete action

8



1.3 Problem Statement

space allows the straightforward application of the techniques presented in
the DQN approach for playing ATARI 2600 games in [13, 14]. The possibility
of extending our approach to a more complex continuous action space is
discussed in 5.3.1.

We build our model under the assumption that, in contrast to the game
environments, the position of the robot in a real world cannot be just reset to
the initial position. Therefore, the initial state for each trial differs from the
previous one which might implicate additional complexity for our task.

Finally, learning the new corridor environments should not result in forget-
ting the knowledge about the previously learned corridors. Therefore, we
adapt the standard experience replay approach and introduce the concept
of replay memory management. By discarding only the similar samples
from the replay memory, we ensure lower correlation between the samples.
Hence, the agent can preserve the knowledge of the previously explored
corridors. Similarly, the agent can preserve the knowledge about the less
frequent situations in a single complex corridor environment.

We evaluate our agent on multiple challenges. First, we compare our ap-
proach that utilizes the replay memory management to the standard ap-
proach of discarding the oldest samples from the replay memory. We per-
form the comparison on the task of learning a simple corridor environment.
Afterwards, we evaluate the ability of our agent to learn multiple corridor
environments. Finally, we task our agent with learning a complex corridor
environment. We demonstrate through the evaluations that our agent is
capable of solving the tasks for which the standard experience replay ap-
proach is not fit by its definition. Hence, we conclude that considering the
sample similarity in the replay memory enhances the possible applications
for the experience replay.

9





2 Project Specifications

The specified problem for this thesis requires the definition of different
aspects that enable the eventual implementation and the evaluation of
our solutions. In this chapter we present various project definitions and
choices considering the hardware and software components. We describe
the omnidrive robot that we use to explore the corridor environments.
Furthermore, we introduce the difficulties and the constraints that appear
during the learning process in the real world. Therefore, we conduct our
experiments in a simulated environment to overcome those difficulties.
Herein, we also include the descriptions of different corridor environments
for the evaluation of our approach. Each of the individual corridors is
associated with different challenges that our agent must overcome in order
to be able to maneuver smoothly. Finally, we present a software framework
for establishing the communication channels between the robot and our
software components.

2.1 Robotino R©

The first step is to define the ”body of the agent” through which the
actions are transformed into the actual motions in the given corridor. In this
section, we introduce Festo Robotino R© 1 [19], a mobile robot platform that
fits the requirements for our experiments. Figure 2.1 shows the model of
Robotino.

Robotino R© is equipped with three independent drive units to enable the
omnidirectional drive, in other words the movement in all directions and
the inplace rotation. HD Webcam, mounted on Robotino R©, provides the

1http://www.festo-didactic.com/int-en/services/robotino
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2 Project Specifications

Figure 2.1: Robotino R© model, the image adapted from the official web site a. Sensors
marked red are required for conducting our experiments. a) Camera sensor is
mounted onto the front panel of Robotino R©. b) Bumper sensor surrounds the
base of Robotino R©.

ahttp://www.festo-didactic.com/int-en/services/robotino

observation state in our reinforcement learning scenario. The bumper sensor
on the bottom edge of the chassis of Robotino R© provides the bump infor-
mation necessary for the definition of the negative rewards in Section 3.2.
We use the built-in algorithms to estimate the change in position for the
calculation of the positive part of rewards. The algorithms integrated in
Robotino R© estimate the position change by analyzing the data gathered
through the odometry and the gyroscope sensor. Robotino R© establishes the
communication with the communication partner through its wireless access
point.

Furthermore, even though we do not rely on some of the functionalities for
our approach, Robotino R© provides interesting features that might be useful
for the extensions of our approach. The basis of Robotino R© is equipped with
nine distance sensors to examine the immediate surrounding. Additional
modules, such as the robotic arm, are available to extend the number of
possible use cases.

However, the constraints of the real world environments imply difficulties
for the learning process. First of all, due to the battery consumption, the
duration of one experiment is limited to several hours only. Second, the
real environments might imply variations of the observation state, e.g. the

12
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2.2 Gazebo Simulation

Figure 2.2: Simulated Robotino R© modela from [24] was adapted to fit our experiments .
ahttp://www.robocup-logistics.org/

illumination changes or the moving obstacles in the scene. While these
variations certainly should not be neglected in the real case scenarios, such
setting makes the learning and the evaluation processes much harder. Hence,
we look for a simulation environment that is fit to fulfill the requirements
for the task.

2.2 Gazebo Simulation

Gazebo 2 is a tool for running robotic simulations with integrated physics
engine and quality graphics. Because of its simple programmatic interface
and its open source nature, it is a good simulator choice for conducting our
experiments.

Moreover, for the purpose of creating a simulation environment for RoboCup
Logistics League (RCLL) 3, Zwilling et al. presented in 2014 a simulated
Robotino R© model[24] that can be integrated into Gazebo simulations. Fig-
ure 2.2 shows the simulated Robotino R© model. As the model lacks the
simulation of a bumper sensor, we adapt the model to include this feature.

2http://gazebosim.org/
3http://www.robocup-logistics.org/
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2 Project Specifications

Figure 2.3: Plus corridor. a) The model of the corridor. b) The corridor as seen by the agent.
Due to the shape of the corridor, the agent will often encounter situations where
the wall corners are not in its field of view. Therefore, in order to perform long
and smooth trajectories, it is useful to learn to avoid such states. Additionally, the
agent might switch the direction of traversing the corridor, implying additional
complexities to the learning process.

The adapted model is therefore suitable to provide the required sensory
data for the simulated environment. Additionally, in the Gazebo simulation
environment, we are able to reduce the execution time for each action for
the agent and therefore reduce the time for performing the experiments
significantly.

2.2.1 Corridor Models

For the purpose of evaluation, we present three corridor models, shown
in Figures 2.3, 2.4, 2.5. Each of the models induces certain challenges that
test different skills that are required for the task of navigation in corridor
environments. Herein, we test the agent on difficult challenges, such as:

• nearby wall corners that are not in the field of view,
• dead ends,
• different wall textures,
• windows,
• obstacles,
• and more.
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2.3 Robot Operating System

Figure 2.4: Minus corridor. a) The model of the corridor. b) The corridor as seen by the
agent. The agent has to learn to perform the U-turn. In other words, it has to
reverse the movement direction once it has reached the dead end. At the same
time, the definition of the reward should not encourage the agent to drive in
small circles around one point.

2.3 Robot Operating System

Robot Operating System (ROS) 4 [15] is a software framework widely used
as an communication interface between the robotic application and the robot
itself. The communication between the nodes is based on subscribing and
publishing to topics, the named buses over which the nodes exchange the
messages. Additionally, ROS offers a large set of tools for diagnosing and
visualizing the data about the robot but which is of less interest for the
purpose of this thesis.

As Robotino R© is compatible with ROS, we use it for setting up the commu-
nication channels. In our case, we subscribe to the topics for reading image
frames, bumper and pose data. We publish to the topic that controls the
individual wheel engines of Robotino R© and, in turn, induces motions in the
desired direction.

4http://www.ros.org/
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(a) (b)

(c) (d)

(e)

Figure 2.5: Inffeldgasse 16c (First Floor) corridor (I16c). The model is based on a real
corridor, located at Inffeldgasse 16c, 8010 Graz, Austria. a) The narrow corridor
encourages the agent to move straight forward. b,c,d) For the largest part,
the wall textures are similar but, occasionally, the agent runs into different
wall textures, e.g. the bridges that connect the different parts of the corridor,
windows, or the doors to Prof. Lepetit’s office. The areas that are not encountered
often are harder to learn. Therefore, the agent might overfit to the areas that it
visits often and not react well in the less frequently visited areas. c) The texture
of the doors to Prof. Lepetit’s office only occurs once in the complete corridor. e)
Additionally, the corridor contains simple obstacles that the agent should learn
to bypass. Finally, the dead ends and the narrow pathway for the agent in this
corridor imply that the agent requires the possibility of rotating in place at the
test time.
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2.4 Online Repository

2.4 Online Repository

The repository containing the adapted simulated model of Robotino R©,
the corridor models and videos that demonstrate the behavior of the
agent for some of the experiments can be found at https://github.com/
sinisastekovic/Reinforcement-Learning-With-Deep-Networks-And-A-Robot.

git (State: February 2018).
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3 Reinforcement Learning With
Deep Networks And A Robot

In this chapter, we present our approach for learning corridor navigation
with monocular images. The agent explores the given corridor and learns
over time to estimate the optimal actions to take for the given observation
states. Throughout this chapter, we present our reinforcement learning
approach and the individual components that we utilize during the learning
process. The main goal of our approach is to show the importance of
decreasing the correlation of the data for the training phase.

Section 3.1 presents the overview of our approach. We present the intuition
of using experience replay approach for the task of corridor navigation. The
later sections introduce the individual components of the algorithm and
explain the algorithmic choices for the components.

3.1 Learning Corridor Navigation With Monocular
Images

In this section, we give an overview of our approach for learning corridor
navigation with experience replay, with the algorithm flowchart and the
pseudo code shown in Figure 3.1, 3.2 respectively.

In the initialization phase, the algorithm sets the parameters of the neural
networks, see Section 3.4. The concept of the train and the target network is
presented in Section 3.4.3. Then, the algorithm initializes the replay memory
to contain N samples. The main advantage of the replay memory is that
in the train phase we do not consider only the last gathered samples. By
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3 Reinforcement Learning With Deep Networks And A Robot

Figure 3.1: Simplified algorithm flowchart for learning the corridor navigation with experi-
ence replay
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3.1 Learning Corridor Navigation With Monocular Images

1 Function learnCorridor():
2 Initialize the target network parameters θ
3 Initialize the train network parameters θ−

4 Initialize the replay memory D to the full capacity N
5 Initialize the empty ebatch list for the data gathered in one episode
6 Loop :
7 get the current state s, position pos, bump data bump
8 Loop while bump == False and len(ebatch) < 500:
9 Choose a based on the given action policy

10 Perform action a and observe s′, pos′, bump′

11 Append tuple (s, a, s′, pos) to ebatch
12 s← s′

13 pos← pos′

14 bump← bump′

15 EndLoop
16 if bump == True then
17 Calculate the rewards for all samples in ebatch
18 Append the corresponding state-action-reward triples to D
19 Reset ebatch to the empty list
20 else
21 Calculate the rewards for the first 450 samples in ebatch
22 Append the corresponding state-action-reward triples to D
23 Remove the first 450 samples from ebatch
24 end
25 if len(D) > N then
26 Discard samples from D
27 end
28 Update the parameters θ− based on D
29 if bump == True then
30 θ = θ−

31 end
32 EndLoop

Figure 3.2: The overview of the algorithm for learning the corridor navigation with ex-
perience replay. We present the individual components in the corresponding
sections.
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3 Reinforcement Learning With Deep Networks And A Robot

maintaining a list of the previous experiences, we reduce the correlation of
the samples and allow the agent to learn more general strategy for moving
through the given corridor environment.

The algorithm alternates between the two phases: the gathering of new
samples and the training phase. By training the network using the gathered
samples, our agent learns better reward predictions which lead to further
increasing the performance level of the agent and higher rewards in the
next iteration.

The agent observes its current state, position and bump information for
each action in the corridor. The agent decides the next action based on
the given action policy, see Section 3.3. We refer to the phase of moving
smoothly in the corridor as an episode. The bump event signals the end of an
episode. Additionally, we end the episode every time the agent has gathered
500 unprocessed samples to increase the frequency of training steps. At
the end of each episode, the agent processes the newly gathered samples
by calculating the corresponding rewards and adding the individual state-
action-reward triplets into the replay memory. If the episode has ended due
to a large number of gathered samples, we calculate the rewards only for
the first 450 gathered samples and keep the remaining unprocessed samples
for the next episode. The reason is that, as we describe in Section 3.2, in case
there is no bump, the agent has to look 50 steps in the future to calculate
the corresponding reward. Therefore, the reward for the last 50 samples
cannot be computed. Finally, the replay memory is limited to hold a fixed
number of samples. Hence, if the memory is full, the agent discards samples
based on the discard strategy described in Section 3.5. The training step,
as described in Section 3.4.2, uses the samples from the replay memory
to update the parameters of the network. The updated parameters lead to
different reward predictions which, in turn, induce different behavior of the
agent during the next episode.

3.2 Reward Calculation

The rewards help the agent to recognize good and bad situations in the
corridor. In other words, the reward definition must ensure that the agent
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3.2 Reward Calculation

learns to distinguish between the state-action pairs that lead to good and
bad performance. Therefore, the agent should associate the bad rewards
with the state-action pairs that lead to a bump. It should associate the good
rewards with the state-action pairs that maximize the traveled distance in
the given amount of time steps. Finally, the reward should regularize the
observation by a factor of previous knowledge.

We define the reward to be a scalar in range [−1, 1]. For each time step t and
state-action pair (st, at), the agent receives the reward rt. The final reward is
given in Equation 3.1 as the weighted sum that fits the requirements for the
definition of the reward:

rt =

{
−1 if st terminal
0.8(eucl distt + bump distt) + 0.2 maxa Q(st+1, a) otherwise ,

(3.1)

where Q-function predicts the reward for the given state-action pair. We
define the Q-function through a neural network in Section 3.4, similarly to
the DQN approach [13, 14]. State st is the terminal state if a bump event has
occurred at that time step. maxa Q(st+1, a) is the prediction of the maximum
reward for the next state and introduces the aspect of previous knowledge
into the reward. eucl dist is the positive and bump dist is the negative part
of the reward.

The positive part of the reward is based on the traveled distance. It is the
normalized euclidean distance given by Equation 3.2:

eucl distt = max
i

√
(xt − xi)2 + (yt − yi)2

max dist
, t < i < k, (3.2)

where k is the time step of the next bump occurrence. If the bump does not
occur in the next 50 steps, we set k = t + 50. pt = (xt, yt) and pi = (xi, yi)
are the 2D positions of the agent at time steps t and k. max dist is a constant
defined as the maximum possible distance that the agent can travel in 50
steps. Therefore, eucl dist calculates the largest normalized distance the
agent has reached from the initial position pt after a certain amount of time
steps.

23



3 Reinforcement Learning With Deep Networks And A Robot

Equation 3.3 represents the negative part of the reward and is based on the
amount of time steps to the nearest bump occurrence in the future:

bump distt =

{
(−0.9)(tb−t) if tb − t < 50
0 otherwise,

(3.3)

where tb, tb > t, is the time step of the first bump occurrence after the time
step t. Therefore, bump dist decreases the final reward based on the number
of time steps before the first bump occurs. Hence, the final reward rt is the
weighted sum of the observed reward and the prediction of the reward for
the next state.

3.3 Action Policies

An action policy is the algorithm upon which the agent decides which
action to take. Even though, it is intuitive to take actions for which the agent
predicts the maximum reward, it does not introduce an exploration factor
into the system. The agent is not encouraged to search for the solutions that
might be better than the current one. In this section, we present different
action policies that encourage the exploration.

3.3.1 ε-Greedy Action Policy

The ε-greedy action policy, in Figure 3.3, suggests that the agent should take
the action that maximizes the reward prediction for the current state but
with some probability, given by ε, the agent should take a random action
instead. Therefore, ε represents the exploration factor for such approach.
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3.3 Action Policies

1 Function chooseEpsGreedy(state s, set of actions A):
2 Select randval ∈ [0, 1] uniformly at random
3 if randval ≥ ε then
4 Choose action a∗ such that a∗ = maxa Q(s, a) for a ∈ A
5 end
6 else
7 Uniformly at random choose action a∗ from A
8 end

Figure 3.3: ε-greedy action policy. We set ε to 0.1. Therefore, the agent takes a random
action with probability of 10%. In contrast, the DQN method [13, 14] suggests
decaying ε through time from 1 to 0.1.

1 Function chooseRoulette(state s, set of actions A):
2 For A calculate the probability distribution table P :

3 pi =
exp(Q(s,ai)/0.01)

∑a∈A exp(Q(s,a)/0.01) for ai ∈ A, pi ∈ P
4 Choose action a∗ from A with probabilities from P

Figure 3.4: Roulette action policy. We choose the factor 0.01 as such to additionally regu-
larize the effect of the reward predictions on the final probability distribution.
Often, it is referred to as the temperature and is altered during the learning
process [12]. We keep it constant to reduce the number of hyper parameters for
the algorithm.

3.3.2 Roulette Action Policy

The roulette action policy, in Figure 3.4, suggests to calculate the probability
for choosing the individual actions based on the predicted reward. There-
fore, the agent does not always take the action that maximizes the reward
prediction. The exploration factor varies based on the difference between
the reward predictions for the individual actions.
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1 Function chooseEpsGreedyRoulette(state s, set of actions A):
2 Select randval ∈ [0, 1] uniformly at random
3 if randval ≥ ε then
4 Choose action a∗ such that a∗ = maxaQ(s, a) for a ∈ A
5 end
6 else
7 For A calculate the probability distribution table P :

8 pi =
exp(Q(s,ai)/0.01)

∑a∈A exp(Q(s,a)/0.01) for ai ∈ A, pi ∈ P
9 Choose action a∗ from A with probabilities from P

10 end

Figure 3.5: ε-greedy roulette action policy. By combining the ε-greedy and the roulette
action policies we overcome the disadvantages of both approaches.

3.3.3 ε-Greedy Roulette Action Policy

The third possibility is the mixture of the two policies from Section 3.3.1, 3.3.2.
Therefore, we call it the ε-greedy roulette action policy. The algorithm is
shown in Figure 3.5. Due to the disadvantages of the other policies, as we
explain later in Section 4.2, we use it as a compromise solution to overcome
the difficulties.

3.4 Network Architecture

The Q-function is a CNN. Hence, we use the notation Q(s, a|θ) as the reward
prediction for state-action pair (s, a) changes with the network parameters
θ. The network takes a grayscale image as one input and an action as
a separate input and outputs the prediction of the reward. With such
architecture, the network model is easily adjustable to a higher dimensional
or continuous action space for future work. It is possible to use a network
architecture which only takes an image and outputs three values, one per
reward prediction for each of the defined actions. However, it does not
generalize to the action spaces of higher dimensionality.
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3.4 Network Architecture

We present a detailed description of the individual layers for the network
model in Figure 3.6. As the model suggests, the network processes the
grayscale image input through a number of convolutional layers and one
fully connected layer. The action input is a binary vector of size three:

• Vector (1,0,0) represents the forward motion,
• Vector (1,1,0) represents the forward motion and, at the same time,

applies a slight motion to the left (forward/left motion)
• Vector (1,0,1) represents the forward motion and, at the same time,

applies a slight motion to the right (forward/right motion).

The network processes the action vector through a fully connected layer.
Finally, it concatenates the preprocessed inputs, performs additional pro-
cessing through a fully connected layer and outputs the reward prediction.
Additionally, we clip the output to the interval [−1, 1] to fit the range of the
possible reward values. The action policies in Section 3.3 make use of the
reward prediction in order to decide the next action.

3.4.1 Preprocessing The Image Data

Before feeding it to the neural network, we first preprocess the image frame
of shape ch× h× w (number of channels × image height× image width).
In our case, the frames recorded by the camera are of shape 3× 720× 1280.
First, we rescale the image to the size 3× 50× 75. Second, we convert it
to the grayscale image. Additionally, we ensure that the individual pixel
values are in the range [0, 1].

3.4.2 Training The Network

At the end of each episode we perform a training step. We randomly sample
a mini-batch of size 128 from the replay memory and calculate the loss
based on the mean square error function in Equation 3.4.

mse(mb) =
1

128 ∑
(s,a,r)∈mb

(r−Q(s, a; θ))2 (3.4)
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Figure 3.6: Network architecture. All trainable layers, with the exception of Out layer, use
ReLU [7] as the activation function. The learning parameters are initialized using
the Glorot uniform initializer (also known as Xavier uniform initializer) [3].
Input img is the input layer into the network for the image data of shape (1×
50× 75), where 1 is the number of image channels, 50 and 75 are the image
height and the image width respectively. Conv1-4 are the convolutional layers
with 64 filters of size 3× 3 each. Max pool1-2 layers perform max pooling of size
2× 2. FConn1 is a fully connected layer with 128 output units that is the last step
of the individual processing for the image data. Input comm is the input layer
into the network for the action data of shape (1, 3) to match the dimensions of
the action vector. FConn2 is the fully connected layer with 32 output units and
the only individual processing step for the action data. By concatenating the
outputs of FConn1 and FConn2 layers we obtain a vector of size 160 that is the
input into FConn3, the fully connected layer with 128 output units. Out is the
output fully connected layer with 1 output unit and no activation function.

28



3.5 Replay Memory Management

where mb is the mini-batch sampled from the replay memory, θ are the
parameters of the network. The optimization is done by minimizing the
loss function by RMSprop [21], the gradient descent based method with
adaptive learning rates. The learning rate is 0.00025 as in the DQN approach
[13, 14].

3.4.3 Target Network

The target network approach relies on two networks of the same architecture,
the training network and the target network. As proposed for the DQN in
[14], the update steps are performed on the training network. The target
network is used for the reward predictions. Occasionally, the parameters of
the target network are assigned to the parameters of the training network.
In our approach, we update the parameters of the target network after every
bump.

Occasionally adjusting the parameters of the target network implies that the
agent uses the same state of the network for multiple episodes. As the work
in [14] suggests, such approach adds a delay before the update influences
the behavior of the agent and reduces the policy oscillations.

3.5 Replay Memory Management

As the replay memory is limited to hold a certain number of samples, there
are different strategies to handle the memory in case it gets full. In the both
of the strategies that we consider, once the memory is full, we keep 99% of
the maximum replay memory size and discard the rest of the samples.

The simplest strategy is to discard the oldest samples in the memory. In other
words the strategy follows the First-In-First-Out (FIFO) principle. Hence,
we refer to this approach as No Replay Memory Management (NoRMM).
The main idea is that the newer samples in the replay memory contain
more accurate rewards. Therefore, it is intuitive to keep those samples
in memory until the newer, more accurate samples are recorded. Even
though this strategy is successfully applied in the DQN approach [13, 14], it
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has certain drawbacks. The samples that appear only occasionally may be
neglected during the learning process. The definition of the strategy implies
that the agent is not able to learn two different corridor environments.
After being exposed for a longer period of time to only one corridor, the
agent will discard the samples from the previous corridor and eventually
overfit to the current corridor. Furthermore, when the agent learns the task
to a certain extent, the upcoming episodes may contain a small amount
of the examples that lead to a bump. Therefore, the agent may overfit
to the samples containing positive rewards and eventually decrease the
performance level.

In this thesis, we introduce a different approach. We propose discarding
samples based on their similarity to the other samples in the replay memory.
By doing so, we further reduce the correlation between the samples in
the replay memory. Therefore, we reduce the possibility of overfitting to
the most recent samples. We refer to this approach as the Replay Memory
Management (RMM).

3.5.1 Calculating The Discard Candidates

The RMM method is partially motivated by the BRIEF approach [2] for cal-
culating and matching the image features with binary vectors. Our method
presents a basic framework for the calculation of the discard candidates for
the replay memory through binary feature vectors. We discuss the possible
improvements in Section 5.3.5.

We recalculate the new discard candidates every time the number of can-
didates for a certain decision falls below 1000. In order to calculate the
discard candidates, we first extract the image features by taking the output
of the MaxPool2 layer of our network that gives us a feature map of size
64× 9× 15. Then, we divide the feature map into the sub-feature maps of
size 4× 9× 15 and we sum over the individual values of the sub-feature
maps. Finally, the comparison between the individual values results in a
120 dimensional binary vector. The abstraction of the calculation process is
shown in Figure 3.7.
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3.5 Replay Memory Management

Figure 3.7: Calculation of the binary descriptors for RMM.

We compare the binary vectors by calculating the Hamming distance be-
tween the descriptors. Hence, if the distance exceeds the given threshold,
we mark the sample with a lower index in the replay memory as the discard
candidate. We compare only the samples which contain the same action. The
distance threshold, measured in percentages of the full size of the binary
descriptor that is 120 bits, is set to 1%(or equivalently 1 different bit) at
the beginning of the learning and is increased by an additional percent
when the agent is not able to find more than a certain number of discard
candidates for any of the actions. In all of the experiments, we set this
number to 2000. For the conducted experiments, the Hamming distance
threshold never exceeds 7%.

In the discard phase, we only consider the candidates of the individual
decisions for which the number of samples exceeds one third of the replay
memory. Therefore, each decision keeps 99% of its replay memory space
by discarding the oldest discard candidates. By doing so, our approach
ensures that all decisions are represented with equal number of samples in

31



3 Reinforcement Learning With Deep Networks And A Robot

the replay memory.

As the initial network parameters produce similar feature maps for arbitrary
images, it is useful to pre-train the network before utilizing this approach.
Otherwise, the agent marks the majority of the samples as the discard
candidates during the first calculation as the standard network initializations
output similar features for all inputs. Therefore, the advantages of the RMM
approach are first notable after the agent has performed the calculation
of the discard candidates for the second time and has trained for a larger
amount of iterations.

3.5.2 Reward Equalization

In comparison to the NoRMM, for the RMM the samples may remain in
the replay memory for uncertain amount of time. The older samples often
contain rewards which are inaccurate and can therefore interfere with the
learning process. To circumvent this problem, we propose to perform one
reward equalization step for every 50 episodes in Equation 3.5:

rt = 0.7rt + 0.3Q(st, at|θ). (3.5)

We perform the equalization for every state-action-reward triple (st, at, rt)
in the replay memory. In case that the target network approach is used, we
propose using the target network for the equalization process.

3.5.3 Fitting The Network To The Replay Memory

High correlation of the samples in the replay memory might still occur in
some situations for the NoRMM approach. In such cases, training more
frequently can lead to degrading the level of performance to the state from
the beginning of the training. If we consider a perfect theoretical model of
the agent that does not bump, the newly gathered samples with maximized
reward would eventually overfill the replay memory. By training a large
number of epochs for such setting, the network learns that the best solution
is always to predict the maximum rewards.
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3.5 Replay Memory Management

As the RMM considers the similarity of the samples for its discard strategy,
the correlation between the samples of the replay memory is significantly
reduced when compared to the NoRMM. Therefore, we expect that such
samples are good representations of the given corridor environment. This
allows us to perform multiple training steps without considering the pos-
sibility of overfitting the network to the most recent experiences. In our
experiments, we introduce a fitting phase after every 100 episodes. In the
fitting phase, we perform 3 epochs. Each of these epochs randomly divides
the replay memory into the mini-batches of size 128 that are individually
used for training the network. Through the fitting phase, we apply much
larger training updates which, in turn, results in learning the environment
in significantly smaller number of episodes.
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4 Evaluation

In this part of the thesis, we evaluate our approach. In the first evaluation
we compare the action policies to define the one which is the most suitable
for the rest of the experiments. The goal of the rest of the experiments
is to evaluate, step by step, if our agent is able to learn to navigate in a
complex corridor environment using the RMM approach. For this part, we
first evaluate the ability of the agent to learn a simple corridor by utilizing
the NoRMM and RMM approach for discarding the samples from the replay
memory. The main focus is showing the importance of considering the
similarity of the samples. Second, we investigate if the agent is able to
learn two simple corridors at the same time with the RMM. This is tightly
related to the agent exploring a large corridor where the individual parts
are not encountered as often as the others. Finally, we evaluate our agent in
a complex corridor environment.

4.1 Fitness Definition

In all of the experiments we define the fitness as the number of actions the
agent performs without bumping. The maximum fitness is 500 as that is
the maximum number of actions that the agent performs during a single
episode. It is not the actual measure for the performance level as the trained
agent should also prefer traversing the long distances which we cannot
observe from the fitness measures. Still, such fitness definition is simple to
visualize and to interpret for the evaluation of the learning process. One
additional observation for interpreting the results is that, after the agents
bumps, it finds itself in a difficult position for which any action leads into
additional bumps. Therefore, the fitness plots for the individual experiments
in the following sections appear degraded by this factor.
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Number of episodes Replay memory size
1000 2000

Figure 4.1: Action policies evaluation settings.

Action policy ε-greedy Roulette Roulette ε-greedy
(ε = 0.1%) (4000 ep.) roulette

(ε = 0.1%)
maximum fitness
(average on 100 episodes) 38 16 16 36

Figure 4.2: Comparison of action policies. Agent learns the Plus corridor through the given
action policy. The performance is measured based on the maximum fitness level
of the agent. In the table, we show the fitness values averaged on 100 episodes.
The bold value indicates the highest fitness among the experiments. All the
agents have completed 1000 episodes, except for the experiment where it is
explicitly stated that the agent has completed 4000 episodes.

4.2 Evaluation: Comparison Of Action Policies

In order to choose the appropriate action policy for the rest of the evalu-
ations, in the first step, we evaluate the action policies introduced in the
previous sections. For each of the policies, the agent learns the Plus corridor.
The settings for the experiment are shown in Figure 4.1. The initial weights
for the neural networks and the initial state of the replay memory are equal
for all of the experiments. We present the results in Figure 4.2.

The ε-greedy strategy shows the highest fitness level. However, even though
the reward predictions might be correct, due to its definition, the random
actions can lead to the bumps for this policy. On the other hand, the roulette
strategy does not seem to show any learning progress. Even though we let
it to run for 4000 episodes, the roulette strategy still fails to reach higher
fitness level. Therefore, we choose the ε-greedy roulette strategy for the
rest of the experiments as it reaches the similar fitness level as the ε-greedy
strategy but explores the corridor in a way that always considers the reward
predictions.
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Number of com-
pleted episodes

Replay memory
size

Completed
steps

Highest number
of actions with-
out bumps

15000 45000 1584893 8719 (episode
8685)

Figure 4.3: Plus corridor, NoRMM, evaluation details.

4.3 Evaluation: Comparison Of The NoRMM And
The RMM Approach

After deciding to use the ε-greedy roulette policy, we evaluate the ability of
the agent to learn the Plus corridor environment and compare the presented
methods for managing the replay memory. The Section 2.2.1 defines the
challenges for the navigation in the Plus corridor. These experiments provide
the necessary visualizations of the data for understanding intuitively the
importance of sample selectivity for the replay memory. In order to provide
a better insight into the fitness level of the agent, we observe that the
agent completes a lap in the Plus corridor by completing approximately 150
actions.

4.3.1 Evaluation: NoRMM For The Plus Corridor

In order to evaluate the NoRMM, we train the agent for 15000 episodes in
the Plus corridor. The details of the experiment are shown in Figure 4.3.

The development of the agent’s performance is shown in Figure 4.4a. The
progress of the loss function is presented in Figure 4.4b. We observe the
progress of the agent during the training to explain the behavior of the
fitness progress.

Initially, the agent does not differ between facing a wall and looking at a
long straight corridor. After a short learning period we observe that the
agent is first able to learn to predict the rewards for the situations when
a bump is immediate. As there is no much variance in the rewards for
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(a) Plus experiment, NoRMM, fitness progress. The upper plot shows the fitness
progress for the 15000 completed episodes. The blue curve shows the fitness
values averaged every 100 episodes. The green points indicate the episodes
where the agent has reached maximum fitness value of 500. The lower plot
concentrates on the maximum fitnesses reached around the most successful
episodes.

(b) Plus experiment, NoRMM, loss progress. The plot shows the loss progress for
the 15000 completed episodes. The results are averaged for every 100 episodes.

Figure 4.4: Plus experiment, NoRMM, fitness and loss progress.
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such samples, the agent is able to quickly grasp the appropriate reward
predictions. Harder to grasp are the situations where the agent needs to
maneuver around a corner with a precise set of actions and may require
much larger amount of training. Finally, as the agent uses a single monocular
image as the observation state, some situations are impossible to handle
without overfitting the network to the corridor environment. Due to the
specific properties of the Plus corridor, there are lots of situations where
there is a wall corner in the immediate surrounding which the agent is
not able to see. the agent predicts a high reward but the movement results
in a bump. Therefore, there is a lot of variance between the rewards for
resembling observation states. Learning such features of the individual
corridor is hard and the performance of the agent varies during the training
due to such cases. Additionally, we notice that the performance of the agent
when traversing the corridor in the clockwise direction does not match the
performance in the counter-clockwise traversal. The performance for the
both directions varies throughout the episodes.

The slow development of the fitness throughout the first 15000 episodes im-
plies the need for increasing the number of training sessions per episode. As
discussed in Section 3.5.3, for the NoRMM approach, increasing the number
of training iterations in a single episode can theoretically degrade the fitness
to the initial level. We perform additional 5000 episodes and include a fitting
phase every 100 episodes. Additionally, we perform 5 standard training
steps after every episode instead of only 1 with 5 different mini-batches
sampled from the replay memory. As demonstrated in Figure 4.5, the fitness
level never reaches the highest possible level. Therefore, the replay memory
never contains only the samples with positive rewards. Hence, the network
does not overfit to the samples with positive rewards and we never experi-
ence a large drop in performance during the experiment either. However,
we notice a sudden increase of fitness as we include the fitting phase in the
approach. This motivates the fitting phase for the RMM approach where the
correlation between the samples is significantly reduced and we expect that
the replay memory is able to provide a better representation of the corridor
environment.

Additionally, in Figure 4.6 we observe that the number of samples in the
replay memory for the individual actions is not equal. Depending on the
properties of the corridor, the agent might develop a certain preference for
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Figure 4.5: Plus experiment, NoRMM with fitting phase, fitness progress. The first 15000
episodes are the results earlier presented for the NoRMM without fitting phase.
Vertical red dashed line represents the first episode where we use NoRMM with
fitting phase. We observe that the agent is able to reach higher values more
frequently. The fitness level never drops to the very low levels as the agent never
reaches such high levels of performance where the fitting phase would lead to
overfitting.

Figure 4.6: Plus experiment, NoRMM, replay memory samples per action. The presented
statistics refer to the state of the replay memory after 15000 episodes. Depending
on the observed episode, it is possible that one action dominates the replay
memory by larger margins.
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a single action which, in turn, becomes the dominant action of the replay
memory. Hence, we address this issue in the RMM approach by defining
the limit for the number of samples for each of the actions.

Finally, the learned reward predictions of the agent for the different observa-
tion states in the corridor are presented in Figure 4.7. Due to the oscillations
in the performance, the figure shows the predictions for the network param-
eters, for which the network had reached the highest performance. Even
though, the agent performs a very long trajectory, the reward predictions
might not be very satisfactory for the more challenging situations for some
of the actions. One of the causes might be the unequal distribution of the
samples in the replay memory. This further motivates the RMM approach.

The experiment in the Plus corridor with NoRMM shows the possible
disadvantages of the discard strategies that follow the FIFO principles.
Through this experiment, we point to the advantages of tackling the problem
from a different perspective. Therefore, in Section 4.3.2 we evaluate the agent
that utilizes the RMM strategy in the Plus corridor.

4.3.2 Evaluation: RMM For The Plus Corridor

We evaluate the RMM approach by training the agent for 7000 episodes (sig-
nificantly less than for the NoRMM) in the Plus corridor. The details of
the experiments are shown in Figure 4.8. We use the same set of the initial
network parameters as for the NoRMM evaluation. As already explained
in Section 3.5.1, it is useful to perform a pre-training phase for the RMM
approach. Therefore, we vary the different approaches for training the agent
int the first 3000 episodes. For the first 1000 episodes the agent uses the
NoRMM approach with the replay memory of the size 2000 to give the
agent a small initial boost. Next, the agent increases the replay memory size
limit to 45000, additionally explores the envirionment to fill the memory
and then continues to use the NoRMM approach for the episodes 1000-2000.
Finally, for the episodes 2000 to 3000 the agent uses the RMM approach
without ever performing a train step in order to decrease the correlation of
the data in the replay memory. We perform the first fitting phase in episode
3000 that marks the end of the pre-training phase. The agent then trains
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(a) (b) (c)

(d) (e) (f)

Action color legend forward forward/right forward/left

Figure 4.7: Plus experiment, NoRMM, reward prediction examples. Each of the image pairs
a-f shows in the upper image the observation state and in the lower image the
reward predictions for each of the actions. a) The agent is in a safe situation.
Therefore, all of the predictions are relatively high. b,c) The agent is getting
closer to the wall to the right. Even though the motion to the left would move
the agent into a safe state, the reward for that motion is still relatively low. d,e)
The agent is in the safe position, all rewards are high. f) The agent is about to
bump and predicts the minimum rewards.
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Number of com-
pleted episodes

Replay memory
size

Completed ac-
tions

Highest number
of actions with-
out bumps

7000 45000 1299722 18211 (episode
3260)

Number of pre-
train episodes

Number of train
episodes

Initial Ham-
ming threshold

3000 4000 1%

Figure 4.8: Plus corridor, RMM, evaluation details.

using the RMM strategy for additional 4000 episodes. During this time,
the Hamming distance threshold for determining the discard candidates
reaches the maximum of 3% of the descriptor size. Due to a large number
of training steps that occurs in the fitting phase every 100 episodes, we
skip the standard phase of performing one training step per episode during
the experiment. Therefore, in the episodes between the two fitting phases,
we only perform additional filtering of the samples in the replay memory.
Hence, the target network method is obsolete for such approach.

The fitness progress is shown in Figure 4.9a. The progress of the loss function
is presented in Figure 4.9b. Again, we observe the agent during the learning
process to analyze the behavior of the fitness.

Immediately after the first fitting phase, we observe a large increase in the
performance of the agent that is close to the best average fitness for the
standard NoRMM evaluation. The agent continues to perform well in the
corridor afterwards. Around the episode 4000, what appears as a large drop
in fitness, is when the agent starts to grasp the movements for the opposite
direction of the corridor. The fitness improves fast and the agent is able to
learn the both traversal directions in a short amount of time. We observe that
the performance may vary for both of the traversal directions throughout
the episodes. Still, after learning it for the first time, the agent is able to
recover the good performance for the affected direction after the first fitting
phase. In the end, the wall corners that are in the blind spot of the agent
still represent the unsolved obstacle for the agent. The performance in such
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cases varies throughout the episodes.

The learned reward predictions for the NoRMM and the RMM strategies
are shown in Figure 4.10. For each of the strategies, we use the set of the
network parameters for which the agent has reached the best performance.
The agent that utilizes the RMM strategy is able to predict more accurate
rewards when compared to the NoRMM strategy for critical observation
states. We show in Section 4.4 that for the RMM approach we must not
necessarily use the set of the best network parameters in order to predict the
accurate rewards. Furthermore, Figure 4.11 shows that the RMM strategy
achieves the equal distribution of the samples in the replay memory for
each of the actions.

To sum up the role of the fitting phase for the RMM approach, we run
an experiment for RMM without the pre-training phase for 5000 episodes
and observe the required number of completed episodes before the agent
starts reaching higher fitnesses. Additionally, we sample 5 mini-batches
from the replay memory and perform 5 training steps after every episode to
be able to provide the similar setting to the NoRMM approach that uses the
fitting phase for a better comparison. The results of the fitness comparisons
of the two RMM approaches and the NoRMM approach are presented in
Figure 4.12. We observe that for both RMM approaches the fitness level still
includes a certain level of variance. However, by comparing the maximum
fitness levels, we conclude that the fitting phase has significant benefits for
the RMM approach when compared to the NoRMM approach.

Through the experiments in the Plus corridor, we show that the RMM
strategy is able to replace the NoRMM strategy for the standard task of
learning a simple corridor environment. In Section 4.4, we continue to show
that, by utilizing the RMM strategy, the agent is able to learn the tasks for
which the NoRMM strategy is not fit to learn by its definition. The agent
learns the navigation in two different corridors.
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(a) Plus experiment, RMM, fitness progress. The upper plot shows the fitness
progress throughout the 7000 completed episodes. The blue curve shows the fit-
ness values averaged every 100 episodes. The green points indicate the episodes
where the agent has reached maximum fitness value of 500. The lower plot
concentrates on the maximum fitnesses reached around the most successful
episodes.

(b) Plus experiment, RMM, loss progress. The plot shows the loss progress for the
7000 completed episodes. The results are averaged for every 100 episodes. We
observe a sudden drop of loss value after the first fitting phase in episode 3000.

Figure 4.9: Plus experiment, RMM, fitness and loss progress.
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(a) (b) (c) (d)

(e) (f)

Action color legend forward forward/right forward/left

Figure 4.10: Plus experiment, RMM and NoRMM, reward prediction examples. Each of the
image triples a-f shows in the upper image the observation state, in the middle
image the reward predictions for each of the actions for RMM approach
and in the lower image the reward predictions for each of the actions for
NoRMM approach. For the non-critical observation states in examples a) and
d), both networks predict similar rewards. For the more critical observation
states in examples b), c) and e), the network trained with RMM outputs better
predictions.
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Figure 4.11: Plus experiment, RMM, replay memory samples per action. The presented
statistics refer to the state of the replay memory after 7000 episodes. Through-
out the learning process, the number of samples in the replay memory for each
action remains balanced.

Figure 4.12: Plus experiment, fitness Comparison. The plot compares the fitness progresses
for the different approaches averaged on every 100 episodes.
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Number of completed episodes Replay memory size Completed actions
3000 50000 706653

Number of com-
pleted episodes
in Minus corri-
dor

Number of com-
pleted episodes
in Plus corridor

Initial Ham-
ming threshold

1500 1500 3%

Figure 4.13: Plus-Minus experiment, RMM, evaluation details.

4.4 Evaluation: Plus-Minus Experiment, Learning
Two Corridors

In order to evaluate the RMM approach for learning multiple corridors,
we move the agent to the Minus corridor. In Section 2.2.1, we present the
navigation challenges of the corridor. There, the agent explores the new
environment for 1500 episodes. Afterwards, we move the agent back to the
original Plus corridor, where it completes additional 1500 episodes. The
experiment settings are presented in Figure 4.13.

For the initialization process, we use the values that were achieved at the
end of the Plus corridor experiment. We initialize the network by using the
state of the network parameters from the end of the Plus experiment. We
initialize the replay memory to the state after the episode 7000. Therefore,
the replay memory initially contains only the samples from the Plus corridor.
Even though it might be helpful to use much larger replay memory, in this
experiment we set the size of the replay memory to 50000. Again, we follow
the principle of training only by performing a fitting phase after every 100
episodes. The Hamming distance threshold reaches a maximum of 5% of
the descriptor size during the experiment.

In Figure 4.14 we observe the fitness progress during the experiment. Even
though the textures in the Minus corridor differ completely from the ones
in the Plus corridor, already in the beginning of the experiment, the agent
is able to use some of the knowledge from the Plus corridor and apply it
to the Minus corridor. After a short amount of time, the agent learns to
perform the U-turn in the Minus corridor and is able to reach high levels
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Figure 4.14: Plus-Minus experiment, fitness progress. The plot shows the fitness progress
of the agent during the experiment averaged on 100 episodes. The experiment
starts at episode 7000 when we move the agent from the Plus corridor to the
Minus corridor. The red dashed line marks the episode in which we move the
agent back to the Plus corridor.

of performance. After we move the agent back to the Plus corridor, we
observe that the agent, to some extent, preserves the knowledge of the Plus
corridor and is able to regain higher levels of fitness after a small number
of episodes.

We compare the number of samples for each of the corridors in the replay
memory after the 10000th episode in Figure 4.15. Even though, the agent has
spent the last 1500 episodes in the Plus corridor, there are significantly more
samples in the replay memory from the Minus corridor. This might imply,
that the walls in the Minus corridor include more complex patterns in the
textures than the walls in the Plus corridor resulting in higher Hamming
distance. The results show that there is still a small number of samples
tracing back to the Plus experiment. Such state of the replay memory
indicates that there are some state-action pairs that the agent does not visit
after learning to perform better in the corridor. This further implies that
the sample selectivity for the replay memory is important for maintaining a
good representation of the corridor environment.

In Figure 4.16, 4.17 we show the learned reward predictions after completing
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Figure 4.15: Plus-Minus experiment, number of samples in the replay memory for different
corridors.

the Plus-Minus experiment. The main observation is that for the Plus corri-
dor, the reward predictions do not show much variation when compared
to the predictions from the previous experiment in the Plus corridor for
the RMM approach. On the other hand, the agent is at the same time able
to predict the appropriate rewards for the Minus corridor. We observe in
Figure 4.17 that the predictions of the agent strongly favor a single action
as it performs the U-turn. The only situations where the agent shows some
uncertainty in predictions during the U-turn are the situations for which it
is hard, even for a human eye, to predict the optimal action (e.g. when the
agent is facing a wall at a certain distance).

Through this experiment we have shown that the agent is capable of learning
two corridor environments simultaneously. While the performance may still
vary throughout the episodes for the individual corridors, the agent is able
to predict the appropriate rewards for both corridors for the most of the
situations. We perform the final experiment and evaluate the ability of the
agent to learn a complex corridor environment in Section 4.5.
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(a) (b) (c) (d)

(e) (f)

Action color legend forward forward/right forward/left

Figure 4.16: Plus-Minus experiment, reward prediction examples for the Plus corridor. Each
of the image triples a-f shows in the upper image the observation state. In the
middle image we show the reward predictions for each of the actions for RMM
approach after the Plus-Minus experiment. In the lower image we show the
reward predictions for each of the actions for the state of the network where
the agent reached the best performance in the Plus experiment. We observe
similar predictions with only slight variations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Action color legend forward forward/right forward/left

Figure 4.17: Plus-Minus experiment, reward prediction examples for the Minus corridor.
Each of the image pairs a-l shows in the upper image the observation state. In
the lower image we show the reward predictions for each of the actions for
RMM approach after the Plus-Minus experiment. In examples a-j we observe
the reward predictions as the agent completes the U-turn in the corridor. The
rewards are balanced up to the first critical observation state, example f, where
the agent starts predicting much larger rewards for the action leading to the
safe state. In example g), we note that there is a lot of uncertainty as the agent
is facing the wall and it is hard, even for a human eye, to predict the optimal
action. Examples k) and l) show the predictions for the additional situations in
the corridor.
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Number of completed episodes Max. Replay
memory size

Completed actions

3000 90000 273965

Figure 4.18: I16c, RMM, evaluation details.

4.5 Evaluation: I16c Experiment, Learning A
Complex Corridor

In this scenario, the agent learns a single complex corridor environment (I16c)
for 3000 episodes. The Section 2.2.1 presents the challenges for the navi-
gation in the I16c corridor. The details of the evaluation are shown in
Figure 4.18. Because of the long and narrow parts of the corridors, the agent
prefers to roam through a single area of the corridor. For this reason, we
interact with the corridor environment by placing and removing obstacles
in the corridor and force the agent to move into the different sections of the
corridor. We refer to this experiment as the I16c experiment.

We initialize the agent to the state after the Plus-Minus experiment. Addi-
tionally, we mark all samples in the replay memory as the discard candidates
as, in this experiment, we are only interested in evaluating the aspect of the
agent learning one large complex environment. In this experiment, as the
agent is not able to handle the complex corridor with the replay memory of
size 50000, we gradually increase the limit by 5000 each time the agent is
not able to mark more than 2000 samples (as opposed to the approach in
Section 3.5.1 where we always increase the Hamming distance threshold).
We continue increasing the limit until it reaches the maximum limit of 90000.
Afterwards, we continue the original approach and gradually increase the
Hamming distance threshold instead. The threshold is initially 5% and
reaches the 7% of the descriptor size at its peak. We follow the principles of
training only through the fitting phase every 100 episodes.

We do not show the fitness progress for this experiment, as the values do
not contribute to the evaluation factor due to the properties of the corridor
and the human interaction.

We observe the behavior during the learning process. At the beginning, the
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agent seems to perform well when encountered with the new wall textures.
However, the agent soon arrives at the windows section and faces a hard
task to solve. However, during the training, the agent is able to perfectly
solve this obstacle. We observe the similar behavior for the bridge sections
that connect the two sides of the corridor.

We observe the learned reward predictions for the corridor in Figure 4.19.
Even though the I16c corridor appears more complex in comparison to
the Plus and Minus corridor, the agent is able to successfully learn this
environment. We observe that the agent is able to learn good reward pre-
dictions for the difficult situations in the corridor including different wall
textures, window patterns and obstacles. We further evaluate the agent by
performing a test run in Section 4.5.1.

4.5.1 Evaluation: I16c Corridor, Test Phase

In this section, we present the results at the test time. After completing the
I16c experiment, we evaluate the ability of the agent to move through the
I16c corridor using the previously learned knowledge.

As the corridor includes dead ends where the agent has no other choice but
to bump, we modify the action policy to include the rotation in place. If the
reward prediction for the action chosen by the action policy is negative, the
agent does not complete the action but instead rotates based on this action.
In this case, if the action policy suggests the forward/left action, the agent
rotates to the left instead and otherwise rotates to the right. The agent keeps
rotating in the same direction and observing the new states until the action
policy suggests taking an action with positive reward.

Because of its reward prediction, the agent naturally follows the long straight
part of the corridor. Therefore, as the agent gets closer to the last intersection
point, we place one obstacle in such a way to make a turn instead. We show
the recorded video of the test run in our online repository, see Section 2.4.
We observe a rough sketch of the route that the agent traverses during
the test in Figure 4.20. The agent is able to pass the straight section of the
corridor that includes windows without any issues. After reaching the new
obstacle, the agent rotates in place and continues its route over the bridge
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(a) (b) (c) (d)

(e) (f) (g) (h)

Action color legend forward forward/right forward/left

Figure 4.19: I16c experiment, reward prediction examples for the I16c corridor. Each of
the image pairs a-l shows in the upper image the observation state. In the
lower image we show the reward predictions for each of the actions for RMM
approach after the I16c experiment. a,b) The examples containing windows. c)
The agents sees a long straight corridor. d) The agent is making a turn at the
bridge area. e) There is an obstacle on the left side of the agent. f) The agent
is approaching Prof. Lepetit’s office. g) The agent is at the bridge section. h)
Agent sees a dead end.
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Figure 4.20: I16c corridor, test run. 1) Right at beginning, the agent passes near a window
area without any issues. 2) The agent overestimates the motion to the left and
is facing the wall. It predicts negative rewards and therefore rotates to the
right. 3) The agent continues through a long window area. 4) We place an
obstacle in front of the agent. The agent approaches it, stops, rotates in place
to the left and continues to navigate without bumping. 5) The agent goes right
at the next intersection not knowing that it will reach a dead end. As the agent
approaches the dead end it rotates in place for 180 degrees and continues to
navigate. 6) The agent passes by a set of obstacles. 7) The agent turns left after
seeing Prof. Lepetit’s office, as to the right, there are some obstacles which
often resulted in a bump during the learning phase. 8) The agent reaches the
dead end, rotates for 180 in place and finishes the run without a single bump.

and into a different part of the corridor. The agent continues to avoid the
obstacles in the way, crosses the bridge and eventually reaches its starting
point. As the agent is now looking at a dead end, it rotates in place to
complete the test run.

By completing the test run we conclude that our agent is fit to learn larger
and more complex environments. The current reward definition makes the
agent favor the long straight parts of the corridor. It might imply that using
the traveled distance may not be enough for the reward signal on its own.
However, the final experiment shows that the agent is able to learn the parts
of the corridor which it does not visit often pointing to the importance of
the replay memory management. Through this, we conclude the evaluation
chapter.
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The goal for this thesis was to investigate the reinforcement learning method
for the task of navigation in corridor environments using monocular images.
We have focused on the utilization of the experience replay for decorrelating
the data during the training. Herein, we have introduced, what might be an
important factor for learning more complex environments, the concept of
sample selectivity in the replay memory and pointed out, through multiple
evaluations, the possible advantages of further pursuing such approaches.

5.1 Limitations

During the experiments, we have noticed a certain level of variation in the
agent’s performance. One of the factors that influences such behavior is the
narrow field of view which sometimes leads to bumping into the objects
in the immediate surrounding. The agent is not able to associate negative
rewards when seeing long straight corridors as such samples lead to the
highest rewards most of the time. This is a direct constraint of our approach
and we discuss the possible ways to make the agent more robust to such
situations in Section 5.3.

The obvious drawback of the experience replay approaches are the high hard-
ware requirements for maintaining the replay memory. For our approach,
we were satisfied with the results obtained by keeping 90000 samples in the
memory but this number may scale with the complexity of the environment.
In comparison, the DQN approach [13, 14] maintained 1000000 samples in
the replay memory to reach such high level of performance. Therefore, it
remains unclear to what extent we can expand the replay memory size and
how complex environments our agent could eventually learn.
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5.2 Learning A Real Corridor

As presented in Section 2.1, there are many difficulties for evaluating the
learning process in real corridors. Therefore, we do not mention any results
for such environments in Chapter 4. However, the early experiments did
show the notion of learning in the real corridor. In these experiments,
the agent was placed in a real corridor, similar to the I16c corridor from
Section 2.2.1. By using a replay memory of size 1000 and the NoRMM
approach, the agent was able to learn small parts of the corridor, including
a windowed area. Hence, as this is of direct interest for the future work, we
provide a video showing the behavior of the agent in the learned part of the
corridor in our online repository, see Section 2.4.

5.3 Possible Improvements

5.3.1 Continuous Action Space

So far, we have considered only a simple discrete action space in our
experiments. However, to utilize the robot to its full extent, it would be
useful to consider the continuous action space instead. One way of extending
our approach to the continuous action space is tightly related to the one that
was used for learning robotic grasping from the monocular images in the
work of Levine et al. [10]. It utilizes the Cross-Entropy Method(CEM) [16],
a derivative-free optimization technique, to choose the optimal motions of
the robotic arm. The algorithm samples a batch of possible actions from
the initial Gaussian distribution, then fits a new Gaussian distribution to
the best samples and repeats the process iteratively. Finally, the algorithm
chooses the best action from the sampled sets and performs a grasp attempt.
We can utilize the similar approach for the task of navigation in the corridor
environment. The current neural network architecture takes a vector of size 3
for the action input but it can be easily adapted to fit the eventually different
requirements for the continuous action space. As the RMM approach for
managing the replay memory also considers the actions when looking for
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the similar samples, the RMM method would need to be appropriately
adjusted to fit the action space.

5.3.2 Using Pre-Trained CNN For Image Preprocessing

Instead of learning the convolutional layers for processing the image input,
it is possible to use previously trained state of the art neural networks. As
we are not interested into the outputs of the networks, but rather the inner
feature representations, different architectures come to mind [18, 4, 23].
Therefore, the number of the learning parameters would be reduced to
the parameters for learning the processing of the command input and
correlating the preprocessed image and action data to predict the reward.
This could have a significant effect on the learning time and the robustness
of the algorithm. The other possible advantage is that we could reduce the
hardware requirements for maintaining the replay memory, assuming that
the extracted features have lower dimensionality than the original input
images. If we fix the pre-trained CNN and use it for preprocessing only, we
could use the data of much lower dimensionality for the representations in
the replay memory.

5.3.3 Asynchronous Learning

Although such approach would be inconvenient in the real world environ-
ments, it is possible to reach high performance without experience replay
by utilizing the multi-agent learning. For the task of playing ATARI 2600

games, Mnih et al. in 2016 [12] suggested using multiple agents for the
learning task and removed the need of the replay memory in the learning
process. Additionally, the results from the paper show much faster conver-
gence to the optimal behavior of the agent compared to the single-agent
DQN method. The application for our approach could also include the pos-
sibility of placing multiple agents into different corridors and investigating
if the agents are able to learn multiple corridors by cooperating with each
other. However, the downside of such approach for its utilization in the real
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world is the difficulty of creating suitable environments and acquiring the
necessary number of robots to explore those environments.

5.3.4 Expanding The Observation State

In order to improve the robustness to the nearby obstacles outside of the
agent’s field of view, it would be helpful to consider multiple frames for
the observation state. We could incorporate this aspect by adapting the
network architecture to take the tiled sequential frames as input. However,
this would in return imply much higher hardware requirements for the
replay memory as well.

Furthermore, we could incorporate the recurrent neural networks (RNN)
to process the sequential data. The Long Short-Term Memory (LSTM) [8]
was shown useful for the task of playing ATARI 2600 games by Mnih et
al. in [12]. The previously learned CNN can be used as a preprocessing
step for the RNN as sketched in Figure 5.1. However, the requirements of
keeping the data sequential partially contradicts the RMM idea of lowering
the correlation of the data during the training phase. Therefore, the RMM
would require additional adjustments to fit such approach.

5.3.5 Measuring The Sample Similarity

In this thesis, we have presented a basic method for measuring the similarity
between the samples in order to evaluate the importance of the sample selec-
tivity for the experience replay approaches. In the Plus-Minus experiment,
we have observed that, after being moved to a different corridor, the agent
is able to preserve the samples from the previous corridor after a longer
period in time. It would be of interest to perform the true evaluations of the
similarity measurements and to test the approach for the features extracted
from the different layers of our network. In particular, intriguing is the fully
connected layer that processes the image input (FConn1) as it is of much
lower dimensionality compared to the Max Pool2 layer. On the other hand,
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Figure 5.1: The RNN network sketch, sequential processing. Use the learned CNN as a
preprocessed input for the RNN.

we could also consider the fully connected layer that combines the pro-
cessed image and action inputs (FConn3) and intuitively removes the need
of checking whether the action is the same for the compared samples.

5.4 Conclusion

Through this, we conclude our findings. We have shown that the rein-
forcement learning on its own can be a good strategy for the domain of
autonomous corridor navigation. Without any image preprocessing tech-
niques that might be helpful for this task, we have seen that the agent
was able to perform well for the learned corridor. We have exposed some
of the issues for the experience replay and presented the RMM approach
that considers the sample similarity for the replay memory to circumvent
those issues. We have evaluated our approach on multiple challenges and
in the end shown that the agent is able to perform well in the complex
corridor environments. Even though our approach still offers improvement
opportunities, it shows that, with basic reinforcement learning concepts, we
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can already achieve good results that motivate us to further pursue such
approaches in the field of robotics.
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