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Abstract

Probabilistic graphical models (PGMs) are often used to represent probabilistic distributions
over many random variables. Belief propagation (BP) is a prominent tool for probabilistic
inference. On PGMs without loops BP performs exact inference. But PGMs often contain
loops in practice; therefore, exact inference with BP is not possible anymore. Moreover, for
PGMs containing loops it is not guaranteed that BP converges at all, and multiple solutions
can exist, which are not necessarily accurate.
In this work we introduce self-confident belief propagation (SBP). SBP solves some problems
of BP by gradually accounting for the pairwise potentials and iteratively improving the Bethe
approximation. On Ising models SBP starts with neglecting the pairwise potentials, and
follows a smooth solution path towards the desired solution. The solution of SBP is unique,
stable and accurate. Even in the cases where BP does not converge, SBP provides a good
solution. Additionally, we provide an adaption of SBP by restricting the runtime. We call
this method SBP early stopping (SBPES).
We evaluate SBP on different PGMs with Ising potentials and show that SBP improves the
accuracy of BP significantly. SBP is more accurate whenever BP converges, and obtains a
unique, stable and accurate solution whenever BP fails to converge. SBPES does even improve
the performance of SBP. Even compared to Gibbs sampling SBP and SBPES perform superior
in terms of accuracy and runtime.





Kurzfassung

Probabilistische grafische Modelle (PGMs) werden häufig verwendet, um probabilistische
Verteilungen über viele Zufallsvariablen darzustellen. Belief Propagation (BP) ist ein wichtiges
Werkzeug für die probabilistische Inferenz auf diesen PGMs. Auf PGMs ohne Schleifen führt
BP eine exakte Inferenz durch. Doch in der Praxis enthalten PGMs oft Schleifen. Daher
ist die exakte Inferenz mit BP nicht mehr möglich und einige Probleme von BP treten auf.
Es ist nicht garantiert, dass BP überhaupt konvergiert, und es können mehrere Lösungen
existieren, die nicht unbedingt genau sind.
In dieser Arbeit präsentieren wir Self-Confident Belief Propagation (SBP). SBP löst diese
Probleme von BP, indem es die Bethe-Approximation iterativ verbessert. Auf Ising-Modellen
berücksichtigt SBP nach und nach die paarweisen Potentiale. Ausgehend von der Ver-
nachlässigung der paarweisen Potentiale folgt SBP einem glatten Lösungsweg zur gewünschten
Lösung. Die Lösung von SBP ist eindeutig, stabil und genau. Selbst in den Fällen, in denen
BP nicht konvergiert, bietet SBP eine gute Lösung. Zusätzlich bieten wir eine Anpassung von
SBP durch die Beschränkung der Laufzeit. Wir nennen diese Methode SBP Early Stopping
(SBPES).
Wir evaluieren SBP auf verschiedenen PGMs mit Ising-Potentialen und zeigen, dass SBP die
Genauigkeit von BP signifikant verbessert. SBP ist exakter in den Fällen, wenn BP kon-
vergiert, und liefert eine eindeutige, stabile und genaue Lösung, wenn BP nicht konvergiert.
SBPES verbessert sogar die Leistung von SBP. SBP und SBPES sind hinsichtlich Genauigkeit
und Laufzeit Gibbs Sampling überlegen.
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1
Introduction

High dimensional probability distributions over many random variables are often represented
with probabilistic graphical models (PGMs) in an intuitive and simply way. In various fields
– including signal processing, information theory, artificial intelligence, computer vision, sta-
tistical physics, and digital communications – it is a important problem to perform inference
(Frey, 1998; Koller and Friedman, 2009; MacKay, 2002). We are interested in performing
inference on PGMs with many loops. While message passing algorithms, i.e. belief propaga-
tion (BP) (Pearl, 1988) or sum-product algorithm (Bishop, 2006) are exact on tree-structured
models, they are not for models with loops. We distinguish between two forms: exact and
approximate inference. On PGMs without any loops (i.e., tree-structured) it is simple to
apply exact inference. Message-passing algorithms are a prominent tool for this task. One of
them is belief propagation (BP) (Pearl, 1988), also known as sum-product algorithm (Bishop,
2006). BP passes around messages between nodes. These messages contain local information
and information about neighboring nodes. BP can be applied to Bayesian networks, Markov
random fields, and factor graphs.
With BP two important problems of PGMs can be solved: computing the marginal distri-
bution, and evaluating the partition function. These problems are related to each other. In
practice PGMs often contain loops. Loopy PGMs are NP-hard to solve; therefore, they can
not be solved exactly in reasonable time (Cooper, 1990). We can run BP on PGMs with
loops as well. This is also known as loopy BP, but we refer to it as BP for the remaining
of this work. On loopy PGMs BP runs until all messages remain unchanged. We call these
unchanged messages fixed points.
Obtaining the exact marginal distribution can also be considered as minimizing the Gibbs
free energy F of the system. But minimizing F is not always feasible. Instead of considering
all other nodes to obtain the marginal distribution, we relax the problem by only considering
the neighboring nodes; thus, we approximate F by the Bethe free energy FB. Applying BP
on the relaxed problem is equivalent to minimizing the Bethe free energy FB. Any fixed point
of BP corresponds to a local minimum of FB. But it is not guaranteed that the minimum
of FB is equal to the minimum of F . Additionally, FB may have multiple minima and local
minima can occur as well. Therefore, applying BP on loopy PGMs can lead to multiple fixed
points, and the fixed points are not necessarily accurate (Mooij and Kappen, 2007; Weiss,
2000). Another important problem of BP is that it is not guaranteed that the fixed points
are stable; thus, BP does not converge at all. These problems of BP on loopy PGMs, are
strongly depending on the message update-rule, initialization and other parameters.

1.1 Aim and Contributions

In this work we present self-confident belief propagation (SBP). SBP solves the problems of
multiple, unstable and inaccurate fixed points of BP. The observation that strong pairwise
potentials reduce accuracy and deteriorate the convergence properties (Knoll and Pernkopf,
2017) inspired us to ease the problem of inference by: solving a simple problem first and
subsequently modifying the pairwise potentials to the desired values. SBP iteratively refines
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1 Introduction

the Bethe approximation and guides itself towards an accurate solution. This is achieved by
solving a deterministic sequence of models by BP; this sequence converges in constant runtime
to a unique fixed point, which is independent of any hyper-parameters. We show optimality
of the selected fixed point for restricted models and argue why SBP is expected to obtain
good fixed points for general models. Especially if BP does not converge, SBP exhibits its
advantages and provides the best possible approximation of the Bethe approximation under
the constraint to be stable with respect to BP.
The principle of SBP is explained in the following example: Imagine a group of people

discussing about a topic. Within the group there are two different opinions and they have
to find a compromise to which everyone agrees to. Everyone has its own initial beliefs, but
everyone’s opinion also depends on the other members of the group in a certain way. To some
of them there is strong confidence, to others a weak one, or even none at all. Now consider
a very chatty group. Then it will be hard to find a common group solution. Everyone’s
opinion will change all the time, depending on who they are talking with. This is similar
to BP when it does not converge and the propagated beliefs are changing all the time. By
only allowing little interactions, the own initial beliefs tend to overrule others’ beliefs. Each
person’s opinion does not change much and the group quickly settles to a compromise. By
slowly increasing the interactions the compromise may change a bit but is expected to be
quickly obtained.
SBP does the same with PGMs. Every node neglects dependencies with other nodes. By
increasing the pairwise potentials to the desired ones in every iteration, SBP keeps track of
the BP solutions.
We evaluate SBP on grid graphs, complete graphs, and random graphs with Ising potentials

and show superior performance in terms of accuracy in comparison to BP with and without
damping. SBP provides a valuable tool to perform approximate inference for easy cases where
BP provides multiple solutions and for hard cases where BP does not work at all, despite
the existence of an accurate fixed point. Compared to Gibbs sampling, SBP achieves more
accurate results in a fraction of runtime. Moreover, it is very simple to adapt BP to SBP
and we hope that the ease of use lowers the hurdle for practical applications.
We further provide an adaption of SBP. By restricting the runtime of SBP we can even
improve the accuracy. We call this method SBP early stopping (SBPES).
Part of this work was prepared for publication and is presented in (Knoll et al., 2018). The

initial idea of SBP and the theoretical background was provided by Christian Knoll. My part
covers the implementation, the practical considerations and the experiments.

1.2 Outline

This thesis is structured as follows: Section 2 provides some background information on
probabilistic graphical models and different inference methods such as junction tree algo-
rithm, belief propagation, Gibbs sampling, and methods that minimize the Bethe free energy
directly. We present our proposed algorithm SBP and its adaption SBPES as well as im-
portant properties in Section 3. We empirically evaluate SBP and SBPES in Section 4:
the influence of different parameters on the performance is presented in Section 4.3 and our
proposed methods are applied and compared to other methods in Section 4.4, Section 4.5,
and Section 4.6. Finally we conclude this work in Section 5.
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2
Theoretical Background

In this work we are using probabilistic graphical models (PGMs) to represent probability
distributions over many random variables in an intuitive and simply readable way. PGMs
are very popular in the fields of computer vision, speech and signal processing, and in the
area of artificial intelligence (Pernkopf et al., 2014). There are different sorts of these models:
undirected graphical models (Markov networks), directed graphical models (Bayesian net-
works), and factor graphs (directed and undirected). In this work we focus on undirected
graphical models. We start with the definition of graphs in Section 2.1. Subsequently we
define potentials and set up the PGM in Section 2.2. In Section 2.3 we present different
methods for exact and approximate inference. Finally, we specifiy our model in Section 2.4.

2.1 Graph Theory

Let us consider an undirected graph G = (X,E), where X = {X1, . . . , XN} is the set of
N = |X| nodes, and E is the set of undirected edges. Two nodes Xi and Xj are joined by an
edge eij if eij ∈ E. The total number of edges is defined as E = |E|. We denote the set of
neighbors of Xi by ∂(Xi) = {Xj ∈ X : eij ∈ E}. The degree di of a node Xi is defined by the
total number of neighbors di = |∂(Xi)|. The mean degree 〈d〉 of a graph is equivalent to 2E

N
.

Direct relationships between two nodes are represented by edges, while the notion of paths
describes indirect relationships across several nodes (Pernkopf et al., 2014). A sequence of
nodes {X1, . . . , Xn}, with X1, . . . , Xn ∈ X is a path from X1 to Xn if for all i ∈ {1, . . . , n−1} :
ei(i+1) ∈ E. An undirected graph is connected if for any Xi, Xj there is a path between these
two nodes. If any two nodes are connected by only one path it is called a tree. A set of nodes
C ⊆ X is a clique if all nodes in C form a complete graph (cf. Section 2.1.2), i.e., all nodes
Xi ∈ C are connected by an edge. A clique is maximal if it has the largest possible size, i.e.
adding another node makes it no longer complete, i.e., let Xi ∈ {X \ C} then C ∪Xi is not
complete.
In contrast to undirected graphs, directed graphs have only directed edges, and mixed

graphs can have directed and undirected edges. Throughout this work we are only considering
undirected graphs. We refer to them as undirected graph and graph equivalently.
In this work we only use connected graphs and distinguish between three different forms:
grid graphs, complete graphs, and random graphs.

2.1.1 Grid Graph

A grid or lattice graph has the form of a regular tiling in the Euclidean space R
n (West,

2000). We only consider grid graphs in R
2. An infinite large grid graph, i.e., N = ∞, has a

mean degree 〈d〉 = 4. An example of a grid graph with N = 9 is shown in Figure 2.1.
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X1 X2 X3

X4 X5 X6

X7 X8 X9

Figure 2.1: Grid graph (N = 9 nodes, 3× 3).

2.1.2 Complete Graph

A complete or fully connected graph has an edge eij for any pair of nodesXi, Xj : consequently

E = N ·(N−1)
2 and 〈d〉 = N − 1. A complete graph with N = 4 nodes is shown in Figure 2.2.

X1 X2

X3 X4

Figure 2.2: Complete graph with N = 4 nodes.

2.1.3 Random Graph

For a random graphs the number of nodes N is fixed, but the nodes are connected randomly.
We use a Gilbert random graph GN,〈d〉 (Gilbert, 1959) where two nodes are connected with

probability P (eij ∈ E) = 〈d〉
N−1 . While grid graphs and random graphs are always connected,

random graphs are not necessarily connected. We however, consider only connected random
graphs and discard any graph that is not connected. A random graph with N = 7 nodes and
〈d〉 = 2 is shown in Figure 2.3.

X1 X2

X3 X4

X5 X6 X7

Figure 2.3: Random graph with N = 7 nodes and 〈d〉 = 2.
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2.2 Probabilistic Graphical Models

A random variable (RV) X maps from each outcome in the outcome space Ω into a value x in
the event space S, i.e., X : Ω 7→ S. PX(X = x) is the probability that X takes the value x ∈ S.

Let us define a probabilistic graphical model U = (G,Ψ) where Ψ = {Φ1, · · · ,ΦK} is the
set of all K potentials. We define the set of RVs X = {X1, X2, · · · , XN}, where every RV
corresponds to a node in G. We denote one specific configuration by x and the set of all
possible configurations by X .

Let ΨC = {ΦC1 , · · · ,ΦCL
} have all potentials specified over the maximal cliques Cl of the

nodes (Pearl, 1988, p.105). Then, the joint distribution factorizes to

PX(x) := PX(X = x) =
1

Z

L
∏

l=1

ΦCl
(xCl

), (2.1)

2.3 Inference

Two important problems of inference are:
(i) obtaining the marginal distribution

PXm
=

∑

Xi∈{X\Xm}

PX, (2.2)

where Xm ⊂ X may be any set of RVs and the sum in (2.2) goes over all RVs except Xm.
(ii) evaluation of the partition function Z, which is the normalization function of the

joint distribution such that
∑

x∈X

PX(x) = 1. The joint distribution can also be described by

Boltzmann’s Law :

PX(x) =
1

Z
· e−EX(x), (2.3)

where EX(x) is the energy of the configuration x. It follows with (2.1) that

EX(x) = − ln

L
∏

l=1

ΦCl
(xCl

)

= −
L
∑

l=1

ln ΦCl
(xCl

). (2.4)

We denote the average energy by E(PX) and the entropy by S(PX). Then evaluating the
partition function is equivalent to minimizing the Gibbs free energy

F(PX) := E(PX)− S(PX)

=
∑

x∈X

PX(x) · EX(x) +
∑

x∈X

PX(x) · ln PX(x) (2.5)

over the set of all globally realizable marginals (Wainwright et al., 2008); the system is in
an equilibrium at the minimum of F . In fact Z = e−F∗

where F∗ = minF(PX). For the
remainder of this work we will only make the dependence of the Gibbs free energy on PX(x)
explicit if required.
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2 Theoretical Background

Bot problems can be solved exactly (exact inference) for small PGMs, but are intractable
as N becomes large (Cooper, 1990). Therefore, it may be necessary to resort to approximate
methods (approximate inference).

Exact Inference

We show two different methods to perform exact inference:
(i) direct calculation of the marginals PXi

: we compute the joint probability of the PGM
and sum over all other RVs Xm = {X\Xi} according to (2.2). The time complexity of
this method is O(kN ), where k = |S| is the number of states (Pernkopf et al., 2014). For
tree-structured PGMs, however, one can interchange the summations and reduce the com-
plexity to O(k2) (Pernkopf et al., 2014). Note that this is equivalent to applying BP (cf.
Section 2.3.2).
(ii) by using the Junction Tree algorithm (Lauritzen and Spiegelhalter, 1988): the Junction
Tree algorithm can reduce the time complexity problem, by transforming the loopy PGM
into a junction tree. On this junction tree BP performs exact inference (cf. Section 2.3.1).

Approximate Inference

We can reduce the time complexity of exact inference by relaxing the problem. This al-
lows us – by accepting an error – to approximate the marginals within appropriate runtime.
In this work we use the following methods for approximate inference: BP, Gibbs sampling,
minimizing the Bethe free energy, and SBP.

2.3.1 Junction Tree Algorithm

The first step is to create a Junction Tree is to create an undirected graph by replacing each
directed edge with an undirected one. The next step is to construct a chordal or triangulated
graph by adding edges. This process is called triangulation (Koller and Friedman, 2009). A
graph is called triangulated if there is no cycle of length ≥ 4 without an edge joining two
non-neighboring nodes (Pernkopf et al., 2014). Triangulation can for example be done with
the elimination algorithm (Koller and Friedman, 2009). An example of an triangulated graph
is shown in Figure 2.4, where the edges added by the elimination algorithm are depicted as
dashed.
Subsequently we must obtain the maximal cliques of the triangulated graph. The maximal
cliques in the example shown in Figure 2.4 are {X1, X2, X3}, {X2, X3, X4}, {X3, X4, X5} and
{X4, X5, X6}.
Finally, the maximal cliques are connected by edges such that the intersection property

holds; i.e., if a variable Xi exists in two cliques Ci and Cj , it also must be in the path con-
necting Ci and Cj . This path is sometimes referred to as separator set S = Ci ∩ Cj (Pernkopf
et al., 2014). The junction tree corresponding to the triangulated graph in Figure 2.4 is
shown in Figure 2.5. The final step is to run BP on the junction tree. As we have mentioned
in chapter 1, BP finds the exact marginals on a graph without loops. The exact marginals
PXi

can then be obtained by marginalizing over a clique that includes Xi.
The computational complexity of exact inference with the junction tree algorithm is exponen-
tial in the size of the largest clique (Pernkopf et al., 2014). This size is also called tree-width.
Therefore, exact inference is intractable on large and dense PGMs and approximate inference
algorithms are necessary.
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XΓ1

XΓ2
Xi Xj

XΓ3

µ n
Γ

1 ,i (x
i )

µn
Γ2,i(xi)

µ
n
Γ3

,i
(x i

)

µn+1

i,j (xj)

Figure 2.6: Update of message µn+1

i,j (xj) from Xi to Xi. The sum over all states of the product of
all incoming messages at Xi (except to the one from Xj) is sent to node Xj (Pernkopf
et al., 2014).

idan et al., 2006; Knoll et al., 2015; Sutton and McCallum, 2007). In one iteration the
message-update is repeated for all messages and can either be done parallel, or sequential.
The former updates all messages at the same time while the latter updates only one message
at the time. With sequential scheduling the message ordering can either be fixed or random.
With parallel scheduling there is a higher chance of oscillating messages, whereas the sequen-
tial scheduling methods (round-robin and random) can improve this behavior.
Another method to achieve better convergence behavior is by replacing the messages with
a convex combination of the last messages (Murphy et al., 1999). This method is known as
damping where a damping parameter ǫ ∈ [0, 1) specifies µn+1 = (1− ǫ)BP(µn) + ǫµn.

After convergence, the singleton marginals PXi
and pairwise marginals PXi,Xj

are approx-
imated by the normalized products

P̃Xi
(xi) =

1

Zi
ΦXi

(xi)
∏

Xk∈∂(Xi)

µ∗
k,i(xi), (2.8)

P̃Xi,Xj
(xi, xj) =

1

Zij
ΦXi

(xi)ΦXj
(xj)ΦXi,Xj

(xi, xj) ·
∏

Xk∈{∂(Xi)\Xj}

µ∗
k,i(xi) ·

∏

Xl∈{∂(Xj)\Xi}

µ∗
l,j(xj),

(2.9)

where (Zi, Zij) ∈ R
∗
+ guarantee that all probabilities sum to one.

BP relaxes the problem of (2.1) by considering pairwise potentials at most, so that

P̃X(x) =
1

ZB

∏

eij∈E

ΦXi,Xj
(xi, xj)

N
∏

i=1

ΦXi
(xi), (2.10)

and approximates the marginals by the pseudomarginals

P̃XB
= {P̃Xi

, P̃Xi,Xj
: Xi ∈ X, eij ∈ E}. (2.11)

BP may not converge to its fixed points; moreover, the fixed points are not guaranteed to
be close to the exact solution. The approximated solution of BP deviates from the exact one
because of over-counting of information (Weiss, 2000). We present an illustrative example to
explain this in Figure 2.7. In this loopy PGM BP sends information from X1 to X2 (µ

n
1,2(xi)).

X2 processes this information and forwards it to X3 (µn
2,3(xi)). X3 sends this back to X1
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(µn
3,1(xi)). X1 receives parts of the information from X2 that it aims to neglect (2.6). Thus,

the information is over-counted and distorts the solution.
Note that the behavior of BP for does not only depend on G (Weiss, 2000) but on the
potentials Ψ as well (Knoll et al., 2017; Mooij and Kappen, 2007) (cf. Section 2.4 for further
discussions).

X1

X2 X3

µ
n

1
,2

(x
i
)

µn
2,3(xi)

µ n
3
,1 (x

i )

Figure 2.7: In a loopy PGM BP sends information from X1 to X2 (µn
1,2(xi)). X2 processes this

information and forwards it to X3 (µn
2,3(xi)). X3 sends this back to X1 (µn

3,1(xi)).
X1 receives parts of the information from X2 that it aims to neglect (2.6). Thus, the
information is over-counted and distorts the solution.

2.3.3 Minimizing Bethe Free Energy

The observation that fixed points of BP are in a one-to-one correspondence with stationary
points of the Bethe free energy FB (cf. Yedidia et al. (2005)) paved the way for a better
understanding of BP and provided an alternative approach by minimizing the Bethe free
energy directly.
Let us consider only pairwise potentials at most as in (2.10), then we obtain the Bethe free

energy

FB(P̃XB
) := EB(P̃XB

)− SB(P̃XB
) (2.12)

with the pseudomarginals P̃XB
(2.11), where

EB(P̃XB
) := −

∑

xm:Xm∈XB

P̃Xm
(xm) · ln ΦXm

(xm) (2.13)

is the average energy and the entropy is given by

SB(P̃XB
) := −

∑

xm:Xm∈XB

P̃Xm
(xm) · ln P̃Xm

(xm), (2.14)

such that

FB(P̃XB
)=

∑

eij∈E

∑

xi,xj

P̃Xi,Xj
(xi, xj) ln

P̃Xi,Xj
(xi, xj)

ΦXi,Xj
(xi, xj)

−
∑

Xi

∑

xi

P̃Xi
(xi) ln ΦXi

(xi)

−
∑

Xi

(|∂(XXi
)| − 1)

∑

xi

P̃Xi
(xi) ln P̃Xi

(xi). (2.15)

March, 2018 – 9 –



2 Theoretical Background

From a variational perspective BP is equivalent to minimizing FB (cf. Wainwright et al. (2008,
pp.77)), i.e.,

min(FB) = FB
∗ = FB(P̃

∗
XB

). (2.16)

Stationary points of FB relate to the pseudomarginals by

FB
◦ = FB(P̃

◦
XB

). (2.17)

Note that any fixed point P̃ ◦
XB

of BP corresponds to a local minimum of FB if BP is sta-
ble (Heskes et al., 2003); the converse, however, need not be the case, i.e., not every local
minimum of FB corresponds to a stable fixed point (Watanabe and Fukumizu, 2009).

The correspondence between BP and FB was not only essential in getting a better under-
standing of BP, but inspired plenty methods that minimize FB directly (Welling and Teh,
2003; Yuille and Rangarajan, 2003). The minimization, however, is still highly non-trivial
and requires good approximation methods in practice: one can further relax the problem and
allow for convex surrogate free energies that provide provable convergent message passing
algorithms (Globerson and Jaakkola, 2007; Hazan and Shashua, 2008; Meltzer et al., 2009;
Meshi et al., 2009). Alternatively, polynomial runtime algorithms exist that approximate FB

for restricted models: these include sparsity constraints (Shin, 2012) or require attractive
models (Weller and Jebara, 2014). If both properties are fulfilled, i.e., for locally tree-like at-
tractive models the Bethe approximation is exact and can can be optimized efficiently (Dembo
et al., 2010). Note that FB provides an upper bound on F for attractive models (Ruozzi,
2013; Willsky et al., 2008).

We aim to efficiently approximate FB similar as in (Weller and Jebara, 2014): their ap-
proximation can be made ǫ-accurate; this, however, comes at the cost of giving up runtime
guarantees for general models. Our work, on the contrary, provides an approximation in
constant runtime. The approximation error, however, can not be made arbitrarily small for
general models. It is worth mentioning, that both methods get rid of their respective disad-
vantages when restricting the models; i.e., both methods do efficiently minimize the Bethe
approximation for attractive models.

2.3.4 Gibbs Sampling

Gibbs sampling is a approximate inference method that belongs to the Markov Chain Monte
Carlo (MCMC) methods (Koller and Friedman, 2009). Gibbs sampling starts from an initial
marginal distribution (e.g. random or equal probabilities for all states). From this distribution
the next samples are sampled. Every sample depends only on the preceding one. Repeating
this procedure for a large number of iterations will push the obtained marginal distribution
towards the real marginal distribution.
Each sample is based on the previous sample; thus, there is a correlation between successive
samples. With thinning (Maceachern and Berliner, 1994) we can reduce this correlation by
only using, e.g., every 10th sample, while all samples in between are discarded. Using a
longer chain of samples instead (e.g. 10 times longer) leads to a better approximation of the
marginals (Link and Eaton, 2012).
Our implementation of Gibbs sampling is shown in Algorithm 1. Starting with the initial
sample s, for each node the state is flipped while the states of all other nodes remain fixed.
The unnormalized probability equals the product of the local potential with the pairwise
potentials, where the pairwise potentials are determined by the states of the neighboring
nodes. If the new value of the state has a lower unnormalized probability than the old one,
it will be discarded with probability α. This procedure is repeated for every node for a given
maximum number of iterations NGibbs. Subsequently the marginals can be computed from
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the whole set of samples {sNGibbs
}.

Algorithm 1: Gibbs Sampling

input : PGM U
output: PX

1 initialize s

2 for k ← 1 to NGibbs do

3 for i← 1 to N do

4 snewi ← s̄oldi

5 PXi
← UnnormalizedProbability(i, U)

6 α ← Min(1,
PXi

(X=s
new

i
)

PXi
(X=sold

i
)
)

7 With probability α: soldi ← snewi

8 {sk} ← s

9 PX ← ComputeMarginals({sNGibbs
})

2.4 Model Specification

We are considering the same model as in Knoll et al. (2018). We focus on binary pairwise
models in which every variable Xi takes values from S = {−1,+1}. These models are known
as the Ising models in physics where the variables represent magnetic dipole moments of
atomic spins. Let us define couplings Jij ∈ R assigned to each edge eij ∈ E and a local
(magnetic) field θi ∈ R acting on each variable Xi ∈ X. With the couplings and fields we can
define the pairwise potentials

ΦXi,Xj
(xi, xj) = exp(

1

T
Jijxixj), (2.18)

and the local potentials

ΦXi
(xi) = exp(

1

T
θixi), (2.19)

where T is the temperature of the system. The corresponding joint distribution of a config-
uration x is given by

P̃X(x)=
1

ZB
exp





1

T

∑

eij∈E

Jijxixj +
1

T

N
∑

i=1

θixi



 . (2.20)

For the remainder of this thesis we assume T = 1 and we use Jij and θi for altering the
configurations. It is sometimes more convenient to work with the minimal parameters of this
model, i.e, the mean (or magnetization)

mi = E(Xi) = PXi
(Xi = 1)− PXi

(Xi = −1). (2.21)

The mean magnetization of a model is given by:

〈m〉 = E(mi) (2.22)
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3
Self-Confident Belief Propagation (SBP)

In this chapter we introduce Self-Confident Belief Propagation (SBP). The underlying prin-
ciple of the algorithm and a pseudocode is presented in Section 3.1. Then, we discuss the
parameters of SBP and introduce SBPES in Section 3.2.

3.1 Algorithm Description2

The main concept is that any individual node (or RV) creates its own belief first, and their
interactions with other nodes is guided by its strong initial beliefs – thus we name our proposed
algorithm self-confident belief propagation.
The current understanding of BP is that strong pairwise potentials negatively influence BP

and strong local potentials increase accuracy and lead to better convergence properties (Knoll
and Pernkopf, 2017). Indeed, it is worth considering whether a good fixed point emerges if we
start from a trivial model with independent RVs and slowly increase the potentials-strength.
SBP solves this simple problem first and keeps track of the fixed point as the strength of the
pairwise potentials increases. All pairwise potentials are increased by exponential scaling with
ζ ∈ [0, 1]; SBP accounts for the change and tracks the fixed point by repetitive application
of BP.
The tracking of the fixed point is illustrated in Figure 3.1 for a problem where BP does

not converge at all. Initially SBP obtains the marginal distribution for ζ = 0 by running BP.
Then, SBP estimates the marginals by successively increasing ζ and running BP. Indeed, a
smooth solution path emerges and SBP is capable of tracking it. The fixed point becomes
unstable for ζ > 0.7. SBP stops and provides an approximate solution by using the last stable
solution. In this case BP does not converge until ζ = 1. Thus, the solution is not equal to a
stationary point of the Bethe free energy (SBP 6= FB

◦), but the approximated marginals are
already close to the exact marginals.
More formally, SBP considers an increasing length-M sequence {ζm} where m = 1, . . . ,M

such that ζm < ζm+1 and ζm ∈ [0, 1] with ζ1 = 0 and ζM = 1. This further indexes
a sequence of PGMs {Um} that converge to the model of interest UM = U. We fur-
ther denote the fixed points of BP for Um by µ∗

[m]. Every PGM has a set of potentials

Ψ[m] = {ΦXi,Xj
(xi, xj)[m],ΦXi

(xi)[m]} associated, where ΦXi
(xi)[m] = ΦXi

(xi) and the pair-
wise potentials at index m are exponentially scaled by

ΦXi,Xj
(xi, xj)[m] = eJijζmxixj

= ΦXi,Xj
(xi, xj)

ζm . (3.1)

The initialization has a major influence on the performance of BP – SBP provides favor-
able initialization for each instance by the fixed point of the preceding instance, i.e., SBP

2 This section contains contributions of Christian Knoll
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Figure 3.1: Illustrative example: SBP tracks the smooth solution path and obtains accurate
marginals despite instability of the terminal fixed point.

essentially performs the composition of functions

BP∗
[M ]

(

BP∗
[M−1]

(

· · · BP∗
[1]

(

µ0
[1]

)))

(3.2)

In other words SBP is an iterative algorithm that either provides a stationary point FB
◦,

or an approximation of FB
◦ if this stationary point is not stable with respect to BP. First,

SBP relaxes the problem until all RVs are independent and the Bethe approximation is exact.
Then, the problem is deformed into the original one by increasing ζ from zero to one. Conse-
quently, FB is deformed in a continuous fashion such that the stationary point FB

◦ emerges
as a continuous path. SBP keeps track of this solution with BP constantly correcting the
stationary point.

SBP is (i) straightforward to implement, (ii) guaranteed to converge, and (iii) provides an
accurate approximation, because of the following properties (Knoll et al., 2018):

(1) BP has a unique fixed point µ∗
[1] for ζ1 = 0 that is equal to the exact solution.

(2) A smooth solution path originates from the global optimum at FB(P̃
∗
B[1]).

(3) The solution path leads to an accurate approximation FB(P̃
◦
XB[m]

) ∼= FB
∗.

(4) SBP does efficiently follow this solution path.

For attractive models Theorem 1 guarantees that SBP provides the optimal solution (Knoll
et al., 2018):

Theorem 1. Consider an attractive model with θi ≥ 0. Then, SBP obtains pseudomarginals
P̃ ◦
XB

(ζm) such that m◦
i (ζm) increases monotone; this solution is optimal, i.e., the mean of

the approximate marginals mi are monotonically increasing, and SBP converges to the best
possible solution.

For general models any fixed point that is obtained by following a smooth solution path
from the origin is close to the global minimum FB

∗. Every other fixed point must inevitable
violate some local constraints and is consequently expected to be worse with respect to
approximating FB

∗ (Knoll et al., 2018).
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3.2 Practical Considerations

The performance of SBP depends on (i) the step size, and (ii) the extrapolation of the next
fixed point. The scaling factor increases in every iteration from ζ1 = 0 to ζM = 1. We can
use a constant step size ∆ζ = ζm − ζm−1 which describes the distance between to successive
steps. A change of ∆ζ could affect the performance of SBP. If SBP stops before ζm = 1, than
the solution of SBP is not equal to a stationary point of the Bethe free energy (SBP 6= FB

◦).
A smaller ∆ζ can drive SBP closer to ζm = 1; thus, push the last converged iteration closer
to FB

◦. Decreasing ∆ζ, however, will inevitable increase the total number of BP iterations.
Choosing ∆ζ too large on the other hand reduces the dependencies between successive fixed
points; thus, vanishes the basic idea of SBP. The problem of finding a good step size can
be overcome by using an adaptive step size, so that the step size can be kept small in areas
with a big change between successive fixed points and can be increased in areas where the
difference is small.
In Algorithm 2 we show the pseudocode of our implementation of an adaptive step size
controller. The minimum step size is fixed with ∆ζinit. The adaption of the step size is on
the differences between the sequence of previous fixed points {µ∗

[m]}. K is the number of fixed

points, where the differences of the magnetization between these fixed points (〈m〉(µ∗
[m]) −

〈m〉(µ∗
[m−k])) is less than a given threshold. The step size ∆ζ is adapted using following rule:

∆ζ =

K
∑

k=1

k ·∆ζinit. (3.3)

Algorithm 2: Adaptive Step Size Controller

input : Fixed point messages {µ∗
[m]}, ∆ζinit, m

output: ∆ζ

1 ∆ζ ← ∆ζinit

2 threshold ← 1 · 10−3

3 k ← 1
4 while

(

〈m〉(µ∗
[m])− 〈m〉(µ

∗
[m−k])

)

< threshold do

5 k ← k + 1
6 ∆ζ ← ∆ζ +∆ζinit · k

SBP initializes every iteration with the fixed point of the preceding instance (3.2). This
initialization can be expanded with the extrapolation of the next fixed point. By the smooth
change of the fixed points with an increase of the pairwise potentials (cf. property (2)) we
can use the preceding fixed points µ∗

[m−1], µ
∗
[m−2], . . . , µ

∗
[m−k] to extrapolate the initialization:

µ0
[m] = f(µ∗

[m−1], µ
∗
[m−2], . . . , µ

∗
[m−k]). (3.4)

Our implementation of SBP is shown as pseudocode in Algorithm 3. The maximum number
of iterations for BP is denoted by NBP = 1 · 103 and µ0 is initialized randomly. Setting ζm+1

is either done with a fixed step size ∆ζ, where ζm+1 = ζm + ∆ζ, or an adaptive step size
controller (adaptive stepsize = 1), where ∆ζ is a function of the previous fixed points.
ExtrapolateMessages applies cubic spline extrapolation to estimate the next fixed point (cf.
Section 3.2).
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Algorithm 3: Self-Confident Belief Propagation (SBP)

input : Graph G = (X,E), Potentials Ψ
output: Fixed point messages µ∗

1 initialization µ0
[1] ← µ0

2 m← 1
3 ∆ζinit ← 0.1
4 ζ1 ← 0
5 while ζ ≤ 1 do

6 Ψ(ζm) ← ScalePotentials(Ψ, ζm)
7 (µ, iterations) ← BP(µ0

[m],Ψ(ζm), NBP)

8 if iterations < NBP then

9 µ∗
[m] ← µ

10 else

11 break

12 if adaptive stepsize then

13 ζm+1 ← ζm+ AdaptiveStepSize({µ∗
[m]}, ∆ζinit, m)

14 else

15 ζm+1 ← ζm +∆ζinit

16 µ0
[m+1] ← ExtrapolateMessages({µ∗

[m]},{ζm})

17 m← m+ 1

18 µ∗ ← µ∗
[m−1]

3.2.1 Early Stopping

Additionally to step size and extrapolation there is another important practical consideration
for SBP. Property (3) shows that the error of SBP (w.r.t. FB

◦) decreases with the number
of iterations. It follows from the decrease of the error over iterations that the error also
decreases over the total number of BP iterations. While accepting a certain error, we can
set a maximum number of BP iterations; thus, restrict the runtime of SBP. We call this BP
iteration budget. If this budget is consumed, SBP uses the last converged iteration as final
result. We can call such a method SBP early stopping (SBPES). Note that the error reduces
rapidly in the first iterations by only using a small budget. Whereas a major part of the
budget is consumed for increasing the accuracy only slightly (cf. Section 4.4).
We expect that the MSE w.r.t. the exact solution increases for the last iterations of SBP,
because BP is over-counting information (cf. Section 2.3.2).
Using an iteration budget changes the implementation of the SBP algorithm slightly. In
Algorithm 4 we can see the pseudocode of SBPES. The only difference is that the algorithm
stops once the budget of iterations is consumed.
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Algorithm 4: Self-Confident Belief Propagation with Early Stopping (SBPES)

input : Graph G = (X,E), Potentials Ψ
output: Fixed point messages µ∗

1 initialization µ0
[1] ← µ0

2 m← 1
3 ∆ζinit ← 0.1
4 ζ1 ← 0
5 while ζ ≤ 1 do

6 Ψ(ζm) ← ScalePotentials(Ψ, ζm)
7 (µ, iterations) ← BP(µ0

[m],Ψ(ζm), NBudget)

8 NBudget ← NBudget − iterations
9 if NBudget > 0 then

10 µ∗
[m] ← µ

11 else

12 break

13 if adaptive stepsize then

14 ζm+1 ← ζm+ AdaptiveStepSize({µ∗
[m]}, ∆ζinit, m)

15 else

16 ζm+1 ← ζm +∆ζinit

17 µ0
[m+1] ← ExtrapolateMessages({µ∗

[m]},{ζm})

18 m← m+ 1

19 µ∗ ← µ∗
[m−1]
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4
Experiments

We apply and evaluate SBP in various experiments3 and determine if SBP can improve the
performance of BP. Additionally we evaluate the performance of SBPES. We run SBP and
SBPES on grid graphs, complete graphs, and random graphs with different potentials where
we distinguish between attractive and general models. In Section 4.2 we discuss the reference
methods and we show the evaluation criteria in Section 4.1. In Section 4.3 we try to find good
parameter settings for SBP which we will use for the experiments in Section 4.4, Section 4.5
and Section 4.6.

4.1 Reference Methods

We evaluate the performance of SBP, BP with and without damping, Gibbs sampling, and
minimizing the Bethe free energy and compare it to the Junction Tree algorithm (exact) (cf.
Section 2.3).
We only consider graphs where exact inference can be achieved in reasonable time. This
allows us to compare the performance of SBP the exact solution.
The aim of this work is to improve BP. Therefore BP is our main reference method of all
proposed approximate inference algorithms. For the experiments we use BP with a maximum
number of 103 iterations. We use random scheduling to increase the convergence behavior
of BP. Additionally we use BP with damping (BPD). The weighted message updates need
more BP iterations to converge. Because of the slower convergence rate of BPD we set the
maximum number of BP iterations for BPD to 104. In all our experiments we set ǫ to 0.9.
This is a large value, but also necessary to achieve better convergence behavior.
For our experiments we run Gibbs sampling for NGibbs = 105 iterations. We limit the number
of Gibbs iterations, because even so it takes long time to compute the marginals.
For minimizing the Bethe free energy we use (Weller and Jebara, 2014) and adapt the pa-
rameter ǫ to the given PGM. We try to keep ǫ as small as possible to get the best achievable
approximation in a given time. Therefore we start with ǫ = 0.01. If we choose ǫ too small, it
leads to a long runtime; thus, we stop the algorithm and restart it with a larger ǫ. Depending
on the graph and the potentials it is not always possible to keep ǫ as small as desired. There-
fore it is not guaranteed that the approximated minimum is close to the exact minimum of
FB.

4.2 Evaluation Criteria

Now we are describing the evaluation criteria. We use three criteria to evaluate SBP.
First, the accuracy is evaluated by averaging the mean squared error (MSE) between the ap-
proximate and the exact marginals over all N nodes. For binary RVs we can apply symmetry

3 The experiments in Sections 4.4, 4.5, and 4.6 except the results of SBPES are from Knoll et al. (2018)
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properties of the probability mass function PXi
(Xi = 1) = 1− PXi

(Xi = −1), so that:

MSE =
2

N

N
∑

i=1

|PXi
(Xi = 1)− P̃Xi

(Xi = 1)|2, (4.1)

where we obtain the exact marginals PXi
with the Junction Tree algorithm (cf. Section 2.3.1).

Second, we define MSEB as the MSE between the marginals of SBP and the marginals ob-
tained by minimizing FB, where FB

∗ is approximated with (Weller and Jebara, 2014) (cf.
Section 2.3.3).
Third, we evaluate the runtime behavior of SBP. Therefore we compare the runtime of all
methods by counting the overall BP iterations. We also report the number of iterations for
Gibbs sampling by assuming that a Gibbs sampling iteration takes equally long as a BP
iteration. This is a valid assumption, because in Gibbs sampling each node makes use of all
neighbors to compute the acceptance-probability of the next sample. Each iteration of Gibbs
sampling is similar in runtime to the BP message update.
Every experiment is executed L = 100 times with random potentials. We consider the prob-
lems of the existence of multiply fixed points and non-convergence by randomly initializing
BP 100 times for each these L models and run it with and without damping. This procedure
allows us to find most of the stable fixed points. The reported error and the runtime are
averaged over all converged runs BP* and BP∗

D. Note that we consider BP as converged if at
least a single initialization did converge.
On the contrary, we average the error and the runtime over all L models for SBP (SBPall),
SBPES (SBPES−all), Gibbs sampling (Gibbsall), and for minimization of the Bethe approxi-
mation (FB

∗
all)

4.3 SBP Parameters

Besides the standard parameters of BP (e.g. maximum number of iterations, scheduling,
damping), SBP has mainly two additional parameters. Step size ∆ζ and extrapolation of the
next fixed points (cf. Section 3.2). For SBPES we further need to define the budget of BP
iterations. In this section we are analyzing the effects of these parameters on accuracy and
runtime.

First, we analyze the effects of step size and extrapolation method on accuracy on a grid
graph (N = 25 RVs, 5× 5) with attractive and repulsive edges., where θi = 0.3 and pairwise
potentials are sampled Jij ∈ {−5, 5} with equal probability. For extrapolation of the next
fixed point we evaluate (i) reusing the preceding fixed point (3.4) (none), (ii) linear extrap-
olation (linear) and, (iii) spline extrapolation with different orders (spline 1 to 4 ).
The MSE for a fixed step size ∆ζ = 1

M−1 is presented for different extrapolation methods
in Figure 4.1. SBP never converges for ζm = 1 (i.e., SBPES 6= FB

◦). A step size smaller
than 0.1 (M ≥ 11) does not increase the accuracy. It is the same with different extrapolation
methods. For a sufficient small step size, there is no effect of the extrapolation method on
the accuracy.

Second, we analyze the runtime effects of different extrapolation methods. On an easier
problem, where SBP always converges for ζm = 1 (i.e., SBPES = FB

◦). We consider grid
graphs (N = 9 RVs, 3 × 3) with (i) attractive edges (Jij = 2) and, (ii) repulsive edges
(Jij = −2). For the total runtime we sum up the runtimes of (i) and (ii). With M = 21, we
have enough SBP iterations, to see bigger differences between the methods. The results are
shown in Table 4.1. SBP needs longer to converge with repulsive edges than with attractive
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Figure 4.1: MSE depending on step size and extrapolation method for a grid graph (N = 25 RVs,
25 × 25) with attractive and repulsive edges. SBP never converges for ζM = 1 (i.e.,
SBPES 6= FB

◦). For ∆ζ ≤ 0.15 here is no influence of the extrapolation methods on
the accuracy. Therefore the curves representing the different methods are covering
each other.

edges. Repulsive edges make the problem harder to solve for BP.
There is no difference between linear and spline 1 in runtime expressed in BP iterations.
Both methods provide the same extrapolation of fixed points, but they differ in computation
time (linear is about 7 times faster than spline 1 ). We can see that spline extrapolations
are computationally more complex, but they estimate the next fixed point more accurately.
This reduces the total number of BP iterations and furthermore, the total runtime of SBP
expressed in ms. Cubic spline extrapolation (spline 3 ) provides the best runtime performance.
Despite high calculation effort, the extrapolated fixed points are already close enough, such
that BP only needs a few iterations to converge.

Table 4.1: Runtime performance of SBP with different extrapolation methods on a grid graph
(N = 9 RVs, 3× 3).

Extrapolation
Method

Runtime in BP Iterations Runtime in ms
Repulsive Attractive Total Total Extrapolation

none 324 239 563 210.397 0.044
linear 291 210 501 193.461 3.377
spline 1 291 210 501 215.213 23.867
spline 2 268 188 456 200.040 24.647
spline 3 267 184 451 190.606 24.575
spline 4 275 178 453 194.629 25.389

We are interested in obtaining a good overall size of iteration budget for SBPES. Therefore
we evaluated the MSE over the total number of BP iterations. We use three different graphs:
grid graph (N = 100 RVs, 10×10), complete graph (N = 10 RVs), and random graph (N = 10
RVs with 〈d〉 = 3) with θi = 0.4. The pairwise potentials are sampled from Jij ∈ {−1,+1}
with equal probability.
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Table 4.2: Grid graph (N = 25 RVs, 5 × 5) and Jij ∈ {−1, 1} for different values of θ. We
evaluate MSE to the exact solution and MSEB to the Bethe approximation.

θ = 0 θ = 0.1 θ = 0.4

MSEB
SBPall 0.036 0.037 0.022
SBPES−all 0.036 0.034 0.040

FB
◦(ζM ) equals

SBP 100 10 23
SBPES 100 0 0

MSE

BP∗ 0.338 0.251 0.102

BP∗
D 0.226 0.198 0.066

SBPall 0.000 0.029 0.047
SBPES−all 0.000 0.008 0.037

Gibbsall 0.001 0.016 0.064

FB
∗
all 0.036 0.042 0.069

Percentage of
converged runs

BP∗ 5 11 26

BP∗
D 11 16 69

BP
Iterations

BP∗ 40 52 84

BP∗
D 1370 1449 1735

SBPall 5 182 146
SBPES−all 5 57 60

Gibbsall 105 105 105

stationary points is even lower than with SBP, but early stopping has only a minor impact
on the accuracy of the Bethe approximation. This suggests that stability of BP breaks down
only close to FB

◦ (cf. property (3)). Moreover, by looking at the MSE we observe that SBP
also accurately approximates the exact solution. SBPES provides even more accurate results.

We further examine the dependence of MSE and MSEB on ζm and present the evolution
over the cumulative iterations. We use a grid graph (N = 25 RVs, 5×5). All local potentials
are defined by θi = 0.4 and the model contains attractive and repulsive edges that are sampled
from Jij ∈ {−1, 1} with equal probability. The results are shown in Figure 4.3. Note that
MSEB (blue) decreases monotonically with every iteration. This empirically verifies that SBP
proceeds along a well-behaved solution path (cf. property (2)). The actual intent, however,
is to approximate the exact marginals. Therefore we present the MSE (orange). We can see
that the MSE starts to rise beyond a certain number of BP iterations. The minimum of MSE
lies somewhere around 70 BP iterations. This is similar to the observations in Figure 4.2.
The behavior of over-counting explains the increase of the MSE with ζm close to 1 (cf.
Section 2.3.2). The early stopping mechanism of SBPES stops before the approximated
solution deviates from the exact because of over-counting information. Therefore, SBPES

does not only reduce runtime, but even increases the accuracy compared to the exact solution.
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Figure 4.4: Attractive models with θi ∈ [−0.5, 0.5] and Jij ∈ [0, β]. We compare MSE and
number of iterations for: SBPall (blue), SBPES−all (light-blue), BP

∗ (purple), and
BP∗

D
(green).
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4.6 General Models

General models traditionally pose problems for BP and other methods that aim to minimize
the Bethe approximation. We consider θi = θ and draw the couplings with equal probability
from Jij ∈ {−1, 1}. The results are summarized in Table 4.3. We observe that BP and BPD

do not converge for most models. SBP, however, provides accurate fixed points for all models
considered and stops after only a few iterations. SBP significantly outperforms BP on all
graphs and achieves accuracy competitive with Gibbs sampling but requires fewer iterations
in the order of 103. But again, SBPES outperforms SBP and therefore all other methods. For
all settings it provides the lowest MSE and also the runtime is comparable to plain BP.

Increasing the coupling strength is expected to influence the behavior significantly; there-
fore we further consider θi ∼ U(−0.5, 0.5) and Jij ∼ U(−β, β). For every β ∈ [0, 5] we execute
L = 100 experiments and present the result in Figure 4.5 4. Note that we only show results for
β ≤ 2 on the grid graph because BP did only converge sporadically for models with stronger
couplings. SBP (blue) requires only slightly more iterations than BP, even if we consider
only models where BP converged. Again SBP outperforms BP* (purple) and BP∗

D (green)
on all graphs with respect to accuracy. The benefits of SBP become increasingly evident as
the coupling strength increases.
For SBPES(light-blue) the results are similar to the previous experiments. It outperforms
SBP in terms of accuracy and runtime. The runtime of SBPES is equal or even faster than
BP (if it converges).

4 Note that the MSE is not Gaussian distributed but we report the standard deviation for simplicity. In some
data points the difference between the mean and the standard deviation is negative. On the logarithmic
scale negative values can not be represented; thus, no data point is shown.
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Table 4.3: Results for general models with Jij ∈ {−1, 1} on grid graphs (N = 100 RVs, 10× 10),
complete graphs (N = 10 RVs), and random graphs (N = 10 RVs with 〈d〉 = 3). We
report the MSE with respect to the exact solution, the percentage of converged runs,
and the runtime. Only converged runs are considered for BP∗ and BP∗

D
, whereas all

results are considered for SBPall and Gibbsall.

θ = 0 θ = 0.1 θ = 0.4
G
ri
d
G
ra
p
h

MSE

BP∗ - - 0.184

BP∗
D 0.186 0.240 0.154

SBPall 0.000 0.026 0.077
SBPES−all 0.000 0.013 0.060

Gibbsall 0.001 0.037 0.120

Percentage of
converged runs

BP∗ 0 0 2

BP∗
D 1 2 12

BP Iterations

BP∗ - - 102

BP∗
D 2711 2313 2599

SBPall 5 149 209
SBPES−all 5 58 55

Gibbsall 105 105 105

C
om

p
le
te

G
ra
p
h

MSE

BP∗ 0.463 0.466 0.356

BP∗
D 0.463 0.473 0.422

SBPall 0.000 0.055 0.074
SBPES−all 0.000 0.035 0.063

Gibbsall 0.096 0.096 0.077

Percentage of
converged runs

BP∗ 41 42 50

BP∗
D 41 41 50

BP Iterations

BP∗ 17 17 18

BP∗
D 211 207 234

SBPall 5 51 110
SBPES−all 5 47 47

Gibbsall 105 105 105

R
a
n
d
o
m

G
ra
p
h

MSE

BP∗ 0.252 0.202 0.101

BP∗
D 0.128 0.116 0.083

SBPall 0.000 0.048 0.049
SBPES−all 0.000 0.010 0.032

Gibbsall 0.001 0.011 0.048

Percentage of
converged runs

BP∗ 30 33 49

BP∗
D 62 64 80

BP Iterations

BP∗ 42 53 50

BP∗
D 1077 1057 873

SBPall 5 149 131
SBPES−all 5 56 61

Gibbsall 105 105 105
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Figure 4.5: General models with θi ∈ [−0.5, 0.5] and Jij ∈ [−β, β]. We compare MSE and
number of iterations for: SBPall (blue), SBPES−all (light-blue), BP

∗ (purple), and
BP∗

D
(green).
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4.7 Discussion

In the previous experiments we have seen that SBP provides a unique solution that is superior
to BP and BPD in terms of accuracy with respect to the exact solution. For attractive models
SBP always obtains the best possible solution and therefore outperforms BP in all cases with
respect to accuracy. For general models BP does not converge for most models, and BP with
damping only slightly improves this. In contrast, SBP still provides accurate solutions for
all models. These experiments empirically verify the claim that SBP guides itself towards an
accurate fixed point on general graphs with attractive and repulsive edges (cf. property (3)).

Reconsidering the phase diagram in Figure 2.8 allows us to distinguish the behavior of SBP:
(i) in the ferromagnetic phase SBP obtains the same (unique) solution as BP, (ii) in the
ferromagnetic phase with multiple solutions SBP obtains the best solution with respect to
accuracy, and (iii) in the spin glass phase SBP obtains an accurate solution although BP fails
to converge.

Compared to Gibbs sampling SBP shows a similar performance in terms of accuracy by
only using a fraction of runtime.

Using a fixed iteration budget further increases the performance of SBP significantly. SBPES

not only reduces the runtime, but also increases the accuracy and provides the most accurate
results in all experiments.
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5
Conclusion

In this work we introduced self-confident belief propagation (SBP), an iterative algorithm
that approximates the marginal distributions.
While exact inference is not always feasible on loopy PGMs, approximate inference methods
can provide good solutions. BP is a prominent tool to perform approximate inference (Koller
and Friedman, 2009; Pernkopf et al., 2014), but the relation between convergence rate, accu-
racy and uniqueness of fixed points is still an open problem for general models. Fixed points
may be unstable and are not necessarily unique. Even if the fixed points are stable, it is not
guaranteed that they are close to the exact solution (Ihler et al., 2005; Mooij and Kappen,
2007; Weiss, 2000).
We showed how SBP overcomes these problems of BP and obtains a unique, stable and ac-
curate solution.

We achieved this favorable behavior of SBP by exploiting the following properties: (i) a
smooth solution path exists and originates from the unique fixed point that is obtained by
neglecting the pairwise potentials; (ii) this solution path is well-behaved and can be tracked
efficiently; (ii) the solution of SBP approximates the exact solution well and corresponds to
the global optimum of the Bethe approximation for attractive models.
SBP tracks this solution path by solving a simple problem without pairwise potentials first
and then gradually increases the pairwise potentials and follows a smooth solution path to-
wards a unique, stable and accurate solution.

Additionally, we provided and discussed some practical considerations to efficiently track
the solution path. We explained how a fixed budget of iterations (SBPES) enhances the ac-
curacy with respect to the exact solution in addition to restricting the overall runtime.

Finally, we evaluated the performance of SBP on various graphs with Ising potentials. SBP
significantly improves the performance of BP: the obtained marginals are consistently better
than for BP with and without damping. Moreover, SBP approximates the exact marginals
well on probabilistic graphical models for which BP does not converge at all. Compared to
Gibbs sampling, SBP obtains similar accurate solutions in a fraction of runtime. SBPES fur-
ther improves the performance of SBP, i.e., early stopping increases the accuracy and reduces
the runtime.

So far we have estimated the iteration budget empirically. We aim to investigate the depen-
dence between the number of iterations that minimize the MSE and the coupling strength in
order to obtain an optimal iteration budget for a given probabilistic graphical model.
We restricted our analysis to models with binary random variables. It would be straightfor-
ward to extend SBP and allow for random variables with more than two states.
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