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Abstract
Payment forecasts of the receipt of payments within their invoices lead time can be
considered as a valuable analytical strategy to support companies throughout various
invoice collection steps. Especially in small and medium-sized companies, such forecasts
may contribute supportive advice towards quick responses on possible payment outages for
overcoming own liquidity issues. In this thesis, we investigated various machine learning
techniques to determine a suitable strategy for identifying such late paying customers. The
considered classification models focused thereby mainly on the past customer’s payment
behaviors while trying to reveal hidden patterns within companies collected records.
Moreover, we reviewed in this thesis all required processing steps which we conducted
for analyzing, preparing, training and evaluating our different datasets, strategies, and
models. Results demonstrated that the performance for identifying such payment outages
got strongly influenced by the underlying structure and amount of used invoice records.
Nevertheless, our experiments exposed that a reasonable amount of historical invoice
records can enhance a proper customer segmentation and early identification of late
payments with additional classification interpretability while choosing the right model.
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Kurzfassung
Zahlungsprognosen über den Eingang von Zahlungen innerhalb der Vorlaufzeit von
Rechnungen können als eine wertvolle analytische Strategie angesehen werden, um
Unternehmen bei verschiedenen Schritten der Rechnungseinholung zu unterstützen.
Vor allem in Klein- und Mittelunternehmen können solche Prognosen unterstützende
Ratschläge für schnelle Reaktionen auf mögliche Zahlungsausfälle zur Überwindung
eigener Liquiditätsprobleme liefern. In dieser Masterarbeit haben wir dabei verschiedene
Techniken des Maschinellen Lernens untersucht, um eine geeignete Strategie zur Identi-
fizierung solcher spät zahlender Kunden zu ermitteln. Die betrachteten Klassifikations-
modelle konzentrierten sich dabei hauptsächlich auf das vergangene Zahlungsverhalten
der entsprechenden Kunden und versuchten dabei, verborgene Muster innerhalb der
gesammelten Datensätze aufzudecken. Darüber hinaus haben wir in dieser Arbeit alle
erforderlichen Verarbeitungsschritte untersucht, welche wir zur Analyse, Vorbereitung,
Training, und Evaluierung unserer verschiedenen Datensätze, Strategien und Modelle
durchgeführt haben. Die Ergebnisse unserer Arbeit zeigten, dass die Performance zur
Identifizierung solcher Zahlungsausfälle stark von der zugrunde liegenden Struktur und
Menge der verwendeten Rechnungsdaten beeinflusst wurde. Dennoch haben unsere
Experimente gezeigt, dass durch eine angemessene Menge an historischen Rechnungs-
datensätzen eine entsprechend gute Kundensegmentierung und frühe Identifizierung
von Zahlungsverzögerungen inklusive Interpretierbarkeit bei der Auswahl der richtigen
Modelle erreicht werden kann.
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Chapter 1
Introduction
In-depth data analytics of different business processes in enterprise and finance sectors is
often a crucial and complex task to obtain insightful knowledge about complex systems.
Especially when various external and internal factors influence these diverse economic
structures, an interpretable and in practice applicable solution is often sought to under-
stand and control these processes. Throughout this broad field of challenging tasks, a core
area which influences undoubtedly every firm’s financial position, rests in the invoice and
collection management. Thereby, especially the transformation of outstanding invoices
into overdue invoices needs to be minimized and preferably avoided. However, identifying
such invoices which are likely to turn into problematical ones can be considered as a
challenging task for itself, because every customer exposes a different behavior towards his
or her willingness to pay an invoice on-time. Furthermore, many companies struggle with a
proper overview of their outstanding invoices and consequently lack in taking preliminary
actions towards controlling these issues. Whereby especially those invoices which are
already past their pay term due need to be appropriately handled. The intent of this thesis
is consequently to transform various business information into an asset such that these
problems can be properly tackled. An increased internal efficiency in the overall payment
collection process could thereby be gained by the use of Machine Learning (ML) techniques.

This chapter will help to understand the basic background behind late payments and
underlines the motivation following this thesis. Furthermore, we will explain the related
problems with which companies have to deal during their invoice collection process, and
what the goals and contributions of this thesis are. Followed by the limitations which we
had to make to evaluate our findings properly and to create concise boundary conditions
for this work. Last but not least, we presented a short outline of this thesis.

1.1 Background andMotivation
It is commonly known that late paying customers can drive a company into significant
organizational problems and bottlenecks considering a companies liquidity. This is espe-

1



1 Introduction

cially true for small and medium-size companies which can only handle a certain amount
of payment outages. The reason for this is that in contrary to non-store online retailers,
many traditional ones do not get immediately paid for the purchased service or goods by
their customers. The so-called invoice payment terms and conditions are therefore usually an
essential part of every invoice. Besides late payment consequences (e.g. extra charge of
overdue fees) and the preferred payment method, this section of an invoice explicitly states
a defined range of days within which the retailer expects the invoice payment. In other
words, this range of days can be seen as a period within which the company provides a
sort of short-term credit to their customers. If a customer does not pay up his debts within
this defined range of days, the invoice is considered as late payment, and further actions
in the invoice collection process need to be taken. In general, there exist many different
varieties of payment terms that are widely spread among several retail sectors which may
differ from company to company e.g.: ”Payment 30 days after invoice date”, ”Payment 10
days after invoice date”, or ”Payment upon receipt”. Whereby the first two terms would
mean that the customer is asked to pay the total invoice amount within 30 or rather 10
days starting from the invoice issue date. Contrary to ”Payment upon receipt”, which
intends to clarify immediate payment consideration after the receipt of the invoice.

However, as two separate studies from leading accounting software systems by Xero1 and
FreshBooks2 demonstrate, not stating a specific amount of days may leave too much room
for interpretation by the debtor; actual payment considerations may thus stretch from
immediate payment up to commonly used 30-day terms [Lim15; Inc16].

Figure 1.1: Generalized invoice workflow, whereby the payment period is defined with three weeks (21 days)
and an additional waiting period past the due date of two weeks (14 days) is considered for demonstrating
purposes. The period which starts with the invoice issue date up to the defined pay term due represents
the payment term/period. Consequently, everything past this pay term due is considered as the actual
invoice payment delay. The total time-frame where a short-term credit is provided to the customer (payment
term/period + delay) is referred to as invoice lead time.

To demonstrate the typical workflow and to enhance the understanding of the basic
terminology, Figure 1.1 visualizes the generalized procedure that an invoice usually passes
through. As a starting point we assume that some goods or service has been provided to

1 https://www.xero.com
2 https://www.freshbooks.com
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1 Introduction

the customer and consequently the invoice is being created. The invoice creation date,
which is further referred to as invoice issue date, is usually the date on which the invoice
is sent to the customer; if this is not done electronically, the customer will receive the
invoice after a short period by mail or postal delivery. The customer now has a defined
time-frame to pay for the provided service or purchased goods. This period is referred
to as payment term or payment period and is commonly clearly marked on the invoice. In
our example, the defined payment term is precisely three weeks. If the customer pays the
invoice within this period, the invoice is considered as an on-time payment, otherwise,
if no payment has been received until the pay term due (last day of the defined payment
term), the invoice is considered as a late payment. The date on which an invoice is actually
paid is called settlement date, and the period between pay term due and settlement date
is seen as the total measure of invoice delay. The period starting from invoice issue date
until the actual settlement date represents the invoice lead time. In other words, this reflects
the total amount of time for which the short-term credit was provided to the customer.
Once even the invoice due date is exceeded, an additional waiting period is commonly
provided to the customer (in our example two extra weeks). The invoice is nonetheless
already considered as a late payment, and the invoice issuer may charge additional fees.
As soon as this final deadline has been reached, the customer is considered as insolvent
and consequently the dunning process starts, which triggers further actions in the invoice
collection process [You+14; ZS12; Zen+08]. Note that from this point forward, we do
not track the invoice collection process anymore and consequently no further steps are
considered in this thesis due to the set limitations.

In practice it can be very challenging to evaluate in advance whether a customer will
pay an invoice on-time or not. Either long-term experience with established customers,
or additional background information from third-party credit management agencies like
Schufa3 are typically needed to perform a valid decision making process. In general one
can say that the sooner a company can gauge the probability of late payments, the earlier
the company can try to take preventive actions like sending out notifications or calling the
related debtors. In many cases a simply overlooked invoice or other human errors might
often be the most straightforward reason for late payments, but of course also software
errors, company holidays, or even product defects might be imaginable. The primary
impulse behind this thesis was therefore to think of the payment prediction process as
a customer ranking which is based on the related late payment probabilities. One of the
simplest solutions would therefore be to send out payment reminders several days after
the due date, or even some days before the due date without an incoming payment. We
think nevertheless that this strategy might be a primary cause of annoyed or bothered
clients which could even result in increased customer churns. A more valuable strategy was
consequently needed to sort the outstanding invoices by their probabilities of late payments
so that prevention strategies can be followed in a smart order. With this setup in mind,
additional consideration of individual cases regarding national holidays or the country
of origin allowed us for example to outtake the chance of contacting customers who are
on vacations and who would pay on-time anyway once returning to regular business. To
neatly summarize the focus which we set in this context, we illustrate in Figure 1.2 a high-

3 https://www.schufa.de
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1 Introduction

level order-to-cash process which companies usually follow. We consequently highlighted
the two main sections on which this thesis builds upon, namely: Collection Management
and Deductions/Dispute Management.

Figure 1.2: Generalized high-level order-to-cash process that represents the typical process steps which a com-
pany encounters during order processing. Starting from customer acquisition over order fulfillment, and billing
to the final cash application. Considering invoice payment predictions, we mainly focused on the collection
management and deductions/dispute management processes. Illustration adopted from Zeng et al. [Zen+08].

Overall we can conclude that the needed knowledge about customer payment behaviors
could possibly be reduced with the help of an automated invoice payment ranking system.
The related invoice payments could thereby be automatically reported according to their
probability of late payments. We think that this may be especially important for small and
medium-sized companies who have to react quickly to possible payment outages so that
they can overcome financial bottlenecks.

The objective of this thesis is thereby to perform predictive analytics on the invoice pay-
ment behavior of customers, which might consequently support the invoice collection
and decision-making process in companies. In this context, the main idea was to focus on
historical payment behaviors and to predict the probability of late payments, while consid-
ering the specified invoice payment terms. The intention was thereby to reduce the manual
effort during the invoice collection process and to demonstrate a suitable attempt for an
early warning system which identifies those invoices which are most likely to get overdue.

1.2 Problem Statement
Unfortunately, collecting unpaid invoices is part of almost every companies daily business.
This collection process faces thereby mainly the problem of when to start contacting
a customer to remind him or her about a missing payment. While waiting too long
might result in own payment bottlenecks, reacting too early can lead to annoyed and
bothered customers. In addition, firms tend to have problems while manually gauging the
creditworthiness of new or not so established customers. This thesis aims to find a reliable
ranking strategy for customers which reflects the late payment probability right after or

4



1 Introduction

during the invoice creation process. Along with this ranking, we try to identify the most
significant features which show correlated influences on customers late payment behaviors.
The resulting findings might consequently be used as a supportive method for assessing
the creditworthiness of a companies clients. In more detail, the research questions which
this thesis addresses can be summarized as follows:

• RQ 1: Which ML classifiers are most suited for the problem of invoice payment classification
into ”on-time payments” and ”late payments”?

• RQ 2: Which invoice and customer features are the most significant ones to predict whether
an invoice will be paid on-time or late?

• RQ 3: Would such invoice and customer features differ drastically while constructing ML
classifiers for different companies?

1.3 Limitations
Although this thesis reached its goal in focusing on the narrowed down topic of payment
predictions on companies invoices, there were further limitations which we had to consider.

First, due to the difficult task of finding usable datasets that include business and
accounting documents with features considering invoices or purchase orders, we had
to limit our research on two rather small datasets. To generalize the results of this
thesis, we would need to consider bigger datasets of various companies (preferably
from companies of similar sectors or regions). We also did not have access to any
background information on the corresponding customers for which invoices have been
issued. Valuable customer information like a companies tax returns, age, natural or legal
person information etc. might further strongly influence the performance of our predictions.

Secondly, we focused our research only on outgoing invoices. This limitation was necessary
due to our set requirement of tackling the problem from the seller’s point of view. Thereby,
a company is mainly interested in knowing whether its customers are paying on time
or not, and less in its own payment behavior. Consideration of incoming invoices would
thereby reflect the companies payment performance to third parties. However, we note
that this might influence the final customer’s willingness to pay as well, especially when
considering business to business relations.

Last but not least, we worked with only outgoing invoices from returning customers,
which means that we discarded invoices from one-time customers. Whereby we mainly
performed this step due to the low volume of available one-time customers and the lack
of significant features. None of the available one-time customer features would strongly
outperform simple random guessing under the available knowledge that customers
did not have any correlations within the used datasets, nor did we have any external
background information about them.

Despite these limitations, we think that predicting the payment behavior of customers with

5



1 Introduction

an abolition of the mentioned restrictions would most likely result in an improved perfor-
mance rather than a worse one. This assumption is argued based on the increased available
information which would additionally be gained by abolishing these limitations.

1.4 Outline
This thesis is consequently structured into seven chapters. The Introduction is followed by
Chapter 2 which provides a brief overview of related work which has been conducted in
the specific field of invoice payment predictions and the related topic of credit scoring and
insolvency modeling. Chapter 3 will then continue to provide a stable groundwork for the
methodology which focuses on the applied ML classifiers and reviews also further dataset
preprocessing techniques and strategies. The experimental setup consists of the conducted
dataset analyzing and preprocessing steps, as well as model training, evaluation, and test-
ing which will be reviewed in Chapter 4. Chapter 5 reflects the performance evaluations of
the invoice payment classification results on the used ML classifiers in this thesis. A related
discussion which focuses on answering the stated research questions is consequently
found in Chapter 6. Finally, Chapter 7 concludes this thesis by reviewing the main
findings and presenting further fields of interest which could be considered in future work.
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Chapter 2
Literature Review
Predictive analytics and the application of ML is an established concept and widely used
tool in business and finance sectors to support decision makers in their daily business.
Besides that, many different measurement metrics are commonly in use to reflect the
overall evaluation of a companies performance in various aspects. This section will thereby
provide an insight into two basic metrics which are used to measure the performance of
invoice collection processes, followed by a brief overview of related work in the field of
late payment predictions and associated customer rankings. Due to limited work which
has been conducted in this specific field, we will further investigate studies which focus
on related topics of data mining and predictive analytics, namely, customer credit scoring
and insolvency models.

2.1 Business Analytics andMetrics
Measuring and analyzing companies potential weaknesses and strengths as for example
in terms of supply chain performances or decision-making processes has become an
essential part of competitiveness in business and financial environments [Trk+10; GK07].
All of these so-called Key Performance Indicators (KPIs) aim to evaluate and reevaluate a
businesses performance in a variety of aspects [BS07], or as Chae [Cha09] describes it in
one of his works: ”Monitoring KPIs reveals the gap between plan and execution and helps
to identify and correct potential problems and issues”.

A commonly used measurement to track the performance of invoice collection processes is
thereby the Days Sales Outstanding (DSO) indicator. This metric expresses the average time
in days an invoice remains in the invoice lead time period, it’s defined as:

DSO =
Outstanding Receivables

Total Credit Sales1 ∗ Number o f Days (2.1)

Apparently, the object is to keep this value as low as possible (optimally zero), considering
the fact that it reflects the average time in days short-term credits are provided to

1 Credit Sales refers to all purchases which are made by customers which do not require immediate payment
considerations after their acquisition.
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customers. At the same time, the DSO measurement could be evaluated against the
defined invoice payment term which serves than as an indicator of the overall customer
willingness to pay in time.

The frequency of DSO evaluations can vary from company to company e.g.: weekly,
monthly, quarterly etc. - whereby the appropriate frequency selection always depends on
the pursued objective. Furthermore, even though this metric is widely used, it suffers from
high sales volatility and seasonality [LL11]. Such seasonality may for instance be observed
in the hospitality sector where different sale peaks throughout the year distort a yearly
DSO measurement. A simplified example in Table 2.1 demonstrates this behaviour.

Q1 Q2 Q3 Q4 DSO (Yearly)

Company A e 25.000 e 25.000 e 25.000 e 25.000 10.000
100.000 * 365 = 36,5 days

Company B e 40.000 e 10.000 e 40.000 e 10.000 10.000
100.000 * 365 = 36,5 days

Table 2.1: An example of seasonality distortion using yearly DSO. Company A represents a business with
regular sales, and Company B represents a business with seasonally increased sales (see Q1 and Q4). Both com-
panies made e 100.000 in sales on credit and their outstanding invoice amount at the end of the year is e 10.000.
By applying the DSO formula, we see that both companies measure a yearly DSO of 36,5 days. In other words,
it seams as it takes both companies on average 36,5 days to collect an invoices of their credit sales. However,
in reality, Company A could outperform Company B concerning the actual invoice collection time. The DSO
measurements artificially decreases the needed time to collect an invoice due to it’s known seasonality problem.

To overcome this dilemma, one might consider using the so-called Collection Effectiveness
Index (CEI). Much like DSO, this metric is used to measure the performance of the overall
invoice collection process. However, CEI compares the actual collected invoice amount to
the highest possible invoice amount which could have been collected in a given period.
Consequently, it overcomes the problem with seasonal sale peaks. The metric is defined as:

CEI =
Start Out. Receivables + Credit Sales− End Total Out. Receivables

Start Out. Receivables + Credit Sales− End Current Out. Receivables
∗ 100 (2.2)

whereby in contrary to DSO, the objective is to reach the highest score as possible - get as
close as possible to 100%. Furthermore, the CEI metric is found to be a useful tool for
trend analysis. In more detail, this means that an increasing CEI indicates most likely a
respectively good invoice collection processes while a decreasing CEI might point out
cash flow problems. Nevertheless, as with the DOS metric, the frequency of its evaluation
depends on the pursuit analyzation goals and intentions. An example of a quarterly CEI
measurement evaluation is presented in Table 2.2.

Generally speaking, selecting the right metrics (including the appropriate evaluation fre-
quency) to measure business performances can be very challenging when looking at the
vast amount of KPIs which can be analyzed and looked into. Nevertheless, we found that
literature and practice highly recommend the proper use of KPIs in business and finance
environments [Par15]. However, it’s important to note that the application of the right mea-
surement metric always depends on the defined focus and circumstances within a company.
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Outstanding Credit Outstanding On-Time CEI
Start of Quarter Sales End of Quarter Payments Metric

Q1 e 50.000 e 60.000 e 65.000 e 40.000 64%
Q2 e 65.000 e 50.000 e 60.000 e 35.000 69%
Q3 e 60.000 e 40.000 e 50.000 e 30.000 71%
Q4 e 50.000 e 30.000 e 40.000 e 30.000 80%

Table 2.2: An example of CEI measurements on a quarterly frequency. The measurements of quarterly credit
sales which were made during one year of sale have been reported including the corresponding outstanding
payment calculations in the beginning and end of each quarter. Additionally, on-time invoice payments and
the corresponding CEI measurements are tracked to evaluate invoice collection processes. At the end of the
year, an overall loos in credit sales is clearly observable and counts as a difficulty which needs to be addressed.
Nevertheless, the trend in CEI is still rising, which indicates that incoming payments are still going and the
collection process is constantly increasing. Therefore, one could conclude that the company should not run
into financial problems any time soon despite its loss in credit sales.

2.2 Closely RelatedWork
Predictive models applied to the specific domain of invoice payment forecasts and related
invoice collection improvement strategies have been used and studied so far in a modest
manner.

One work from Kim and Kang [KK16] focuses on a late payment prediction model with
customer ranking for call centers. Their main idea was to increase the quality of customer
contact lists so that a proper distribution among customers who pay on time and those
who do not, is fairly allocated among call center agents. To obtain the payment likelihood
of every client, they applied five different classification models, i.e.: single Classification
Tree, Random Forests (RF), Artificial Neural Network (NN), Support Vector Machine
(SVM) and a combining hybrid approach using a combination of the former four models.
Their results show that the proposed strategy of using predictive models in combination
with customer scoring rules would help call center agents to develop individual collection
strategy plans with an improved overall satisfaction of a fair customer list allocation
among them.

Younes et al. [You+14] are focusing on identifying and ranking bottlenecks in invoice
processing. In their research, they suggest using Markov Chains as a simulation tool for
decision improvements on the invoice lead time. Whereby an invoice is seen as a product
which is moving through a supply chain from initial receipt to payment. The results of
their case study demonstrate that although their approach cannot be used to improve
invoice processing time itself, it is a valuable tool to analyze, identify and prioritize
opportunities for an efficient improvement in the invoice processing system. In other
words, the method can be used to identify major bottlenecks during invoice processing
steps i.e.: invoice approvement, data entry, or invoice checking etc..

The main study on which this thesis builds upon is the work of Zeng et al. [Zen+08]. In
their study, they use supervised learning methods to predict on a customers basis whether

9



2 Literature Review

an individual invoice will be paid on time or not. In particular, the use: Decision Tree
(DT), Naive Bayes (NB), Logistic Regression (LR), Boosting Decision Stumps (one level
Decision Tree), and the PART algorithm (rule learner approach). Besides the use of one-time
invoice data and historical invoice information, they further include customer background
information as for example credit limits or region of origin to generate a more accurate
prediction model for first-time customers where no invoice history is available. Zeng et al.
further conducted experiments in creating a unified model which combines the available
information from different companies which lead to an even more sophisticating accuracy
due to hidden commonality patterns in the customer behavior across different company
domains [Zen+08]. Finally, they conclude in their work that it may be advantageous
concerning time-saving, to predict the magnitude of the payment delay so that a related
ranking along this quantity can be performed. In other words, one should set the focus for
preemptive actions on those invoices with the highest predicted payment delay.

2.3 Loosely RelatedWork
Due to limited work which has been conducted in the field of late payment prediction,
we decided to review also some related topics such as credit risk or customer scoring and
insolvency modeling. These fields tackle similar problems as in invoice payment forecasts
when it comes to strategic decision making considering a customers willingness or ability
to pay up financial debts. Consequently, this subsection will briefly review some prior
studies which have been conducted in these associated fields.

2.3.1 InsolvencyModels
As discussed in Section 1.1 insolvency prediction refers to the process of identifying
customers who won’t or can’t pay up for used services or purchased goods after the
invoice due date [Das+03; ZS12; Che+13]. Even if the focus of this domain slightly differs
from our defined goals, the context of customer classification on payment debt collection
remains the same.

Chen et al. [Che+13] proposed a late payment prediction framework for insolvency
customers of a telecommunication provider. By using association rules and expert domain
knowledge, they started to create clusters of behavioral models from customers who
tend to show insolvency. Based on these clusters, highly accurate rules were extracted
from various DT models (constructed by numerous attributes) which were finally used to
identify the related problematic customers. Their evaluation results showed an accuracy
boost of 13% to previously established methods of their telecommunication provider who
conducted this evaluation over six months.

Zabkowski and Szczesny [ZS12] also attempted to predict customers insolvency, but in
their approach, they focus mainly on the use of NN and DT models. Especially the use
of NN models is widely used in many applications and reveals its strengths also in the
evaluation process of their thesis. However, even though NN models outperform DT
models in the respective prediction performance, the authors conclude that its major
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drawbacks still lies in their lack of explainability. Considering this statement, the authors
further conclude that insolvency probability predictions can successfully and efficiently
be performed by using ML techniques, but when selecting a ML algorithm, one has to
consider the tradeoff between performance and interpretability.

2.3.2 Credit Risk and Customer Scoring
Another related field where the use of ML algorithms is well established is the domain
of customer credit risk and credit scoring forecasts. As mentioned in Section 1.1, we
can compare the discussed invoice lead time to a period where a sort of short-term
credit is provided to the customer by the invoice issuing company. The fundamental
concept behind credit risk and credit scoring is thereby to help lending institutions to
evaluate the risk of providing such credits to borrowers. In other words, a ranking of
customers creditworthiness is respectively evaluated which reflects the probabilities
that customers can pay back their credits within a specified timeframe [HCW07;
Har15]. To do this, as Khandani et al. [KKL10] points out in one of their works: ”a
good understanding of consumer choice and early warning signs of over-heating in
consumer finance are essential to effective macroprudential risk managed policies”.

Khandani et al. [KKL10] elaborated thereby a detailed analysis of forecasting models for
customer credit risk by using generalized classification and regression trees (CART). As
a conclusion statement, they mention that ML forecasts used in credit risk or customer
scoring can positively contribute a valuable information gain in the context of risk
management. Whereby ML algorithms, in general, are ideally suited for those large sample
sized and complex data sectors as we find in banking and finance.

Huang et al. [HCW07] applied a hybrid SVM-based credit scoring model to evaluate the
creditworthiness of customers credit. In their work, they evaluate three different SVM
strategies in combination with genetic algorithms which all achieved similar accuracies
to established Genetic Programming, Back-Propagation NN, and DT approaches.
Nevertheless, they conclude that even tough their SVM-based hybrid approach seems to
be a good alternative, the drawback of their credit scoring model is the long training time
and its black-box nature.

Harris [Har15] tried to tackle the drawback of this long training time with SMVs by using
the Clustered Support Vector Machine (CSVM) approach which he applied again for
credit scoring. His research showed that by splitting the data into several clusters before
training, a local weighting of the classifier is possible which finally results in a faster
overall classification process. His evaluations confirm that CSVM produces comparable
results to nonlinear SVM techniques which consequently represents a suitable substitution
for them.

Additionally, recent studies in the field of credit risk and customer scoring focus on the
use of ensemble methods [Les+15a; AA16; Xia+17].
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Xia et al. [Xia+17] present an accurate process of a credit scoring models using Extreme
Gradient Boosting (XGBoost). The evaluation of the models are compared to established
baseline models i.e.: LR, SVM, NN, DT, and further ensemble methods like Gradient
Boosting and Adaptive Boosting (AdaBoost). The experimental results show that the
presented XGBoost-based models perform very well on imbalanced datasets and provides
good performance concerning their accuracy. Moreover, the proposed model outperforms
baseline models and is comparable to other state-of-the-art parallel ensemble methods.
Nevertheless, the authors state that ”the experimental results also indicate that LR remains
a competitor in credit scoring because of its simplicity and efficiency.” [Xia+17].
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Chapter 3
Methodology
In this chapter, we will cover the essential aspects of ML algorithms and techniques of
which we made use of in this thesis. The focus lies thereby on providing a stable ground-
work of ML knowledge to enable a supportive understanding in the follow-up chapters of
our experimental setups and results. In the first section Supervised Learning Classification,
we will thereby start with an overview of state-of-the-art supervised learning classification
models which are commonly in use in literature and practice. Note that we evaluated all
of these presented methods for our defined task invoice payment classifications. Followed
by Ensemble Learning: Boosting and Bagging where we explore the methods which we used
to combine the individual classification models to construct more robust and performance-
driven ensemble classifiers. In the section of Performance Measures & Evaluation Methods,
we will cover the used methods and measurements for evaluating the performance of our
ML models on the defined classification task. Last but not least, we briefly explain the
well-known problem of data imbalance and demonstrate several sampling strategies which
were used to overcome this problem in the section of Sampling Methods.

3.1 Supervised Learning Classification
3.1.1 Naive Bayes
Naive Bayes (NB) is one of the simplistic supervised classification models which is based
on the Bayes Theorem. Considering its simplicity, it thereby assumes general independence
among all features. This means that given a class with X features, each of these features
are considered to have no dependency on each other regarding their presence related to
the class. Even though this assumption is somewhat optimistic and generally not true, NB
it is known as a very effective classification model due to the ease in its applicability and
to its stunning performance results while it is often outperforming more sophisticated
methods [BB12]. The Bayes Theorem is thereby defined as:

P(cm|xn) =
P(xn|cm)P(cm)

P(xn)
(3.1)

whereby it is used to calculate the posterior probability P(cm|xn) where xn ∈ X (Features)
and cm ∈ C (Classes). Its individual terms are thereby defined as:
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• P(c|x) - the probability of class c given feature x ⇒ posterior probability.
• P(c) - the probability of class c.
• P(x|c) - the probability of feature x given class c ⇒ likelihood.
• P(x) - the probability of feature x.

To better understand the use of NB as a classification model, the following example
will serve as an illustrative instance. Let us assume that we have a set of invoices
with a limited set of features and we want to classify whether an invoice payment
arrives on-time or not. This setup includes that we have two classes c1, c2 ∈ C (”on-
time”, ”late”) and some features X: ”invoice amount less than e 5.000” and ”due date
month” as demonstrated in Table 3.1. For illustrative purposes we further assume that
we want to classify a new invoice for the month December with an invoice amount less
than e 5.000 (see Invoice #9 in Table 3.1). By using the observations from the collected
invoices and their correspondingly derived frequency tables, we can calculate the re-
spective probabilities for late payment and on-time payment with the help of the pre-
viously stated Bayes Theorem. In the end, the class with the highest posterior proba-
bility will finally be the one which the NB classifier will predict for the new invoice.

Collected Invoices Amount (less e 5.000) Due Date (Month) Class

Invoice #1 e 12.000⇒ No 15.11.2018⇒ November on-time
Invoice #2 e 4.000⇒ Yes 16.11.2018⇒ November on-time
Invoice #3 e 18.000⇒ No 20.11.2018⇒ November late
Invoice #4 e 2.000⇒ Yes 21.11.2018⇒ November on-time
Invoice #5 e 4.000⇒ Yes 28.11.2018⇒ November on-time
Invoice #6 e 13.000⇒ No 12.12.2018⇒ December on-time
Invoice #7 e 16.000⇒ No 24.12.2018⇒ December late
Invoice #8 e 2.000⇒ Yes 25.12.2018⇒ December late
Invoice #9 (PREDICT) e 3.000⇒ Yes 28.12.2018⇒ December on-time

Likelihood Table (Amount)

Amount on-time late

< e 5.000 3 1 4
8 = 0.50

≥ e 5.000 2 2 4
8 = 0.50

Likelihood Table (Month)

Month on-time late

Nov. 4 1 5
8 ≈ 0.63

Dec. 1 2 3
8 ≈ 0.37

Table 3.1: Late payment classification with the NB classifier. For illustrative purposes, eight invoices serve
as small sample dataset composed by only two features: the first one is a binary indicator representing
whether the invoice amount is less then e 5.000 and the second feature represents the related invoice due
date month. The last invoice (Invoice #9) is consequently the one which we want to predict. Note that the
class label in the table corresponds to the actual ground-truth of each collected invoice sample. To clarify
how the NB classifier uses the probabilities, we further plotted the likelihood tables for the available features.
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Probability for on-time payment = P(on-time | amount less e 5.000, December)

=
P(amount less e 5.000 | on-time) P(December | on-time) P(on-time)

P(amount less e 5.000) P(December)

=
3/8 ∗ 1/8 ∗ 5/8

4/8 ∗ 3/8
= 5/32 ≈ 0.156

Probability for late payment = P(late | amount less e 5.000, December)

=
P(amount less e 5.000 | late) P(December | late) P(late)

P(amount less e 5.000) P(December)

=
1/8 ∗ 2/8 ∗ 3/8

4/8 ∗ 3/8
= 1/16 ≈ 0.062

As we see from the results, NB would classify this new invoice as a corresponding on-time
payment. Due to the simplification of NB we are able to merely assume feature indepen-
dency which allowed us to naturally multiply the corresponding feature probabilities.

Overall we concluded that this classification method is rather easy to use and as demon-
strated in the example above, also suitable for small datasets. Many studies have shown
that NB is able to outperform even more sophisticated alternatives despite its drastically
assumptions about feature independency [BB12]. Nevertheless, NB is also known for its
weaknesses especially when it comes to class specific probabilistic output results. Addi-
tionally, it is worth to note that the simplified assumptions cause somehow a loss in the
possible reachable precision because in real-world scenarios it is rather unlikely to come
along problems whose features do not have any dependencies among each other.

3.1.2 Logistic Regression
The Logistic Regression (LR) model is another popular method which is commonly
used for linear and binary classification problems. It is basically a classification algo-
rithm which estimates the class probabilities via linear functions under consideration
of (linear) feature dependencies. The main idea behind LR is thereby to predict for
a specific sample x the actual probability of its belonging to a specific class c while
at the same time representing the probability of not belonging to this specific class.

To understand how LR works, we had to consider a few things. First, like in the NB
classifier, P(x) denotes the probability of a sample x ∈ X to occur or to be part of a
specific class. Second, we need to consider the odds of an event. This is simply defined as
the outcome of an event divided by all other possible outcomes e.g.: the probability of
observing a dice roll of 1 is P(1) = 1/6, whereby the odds(1) = 1/5.

The odds are thereby defined as:

odds(x) =
P(x)

1− P(x)
(3.2)
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Next, the logit-function, which is simply the logarithm of the odds-function, is used to map
the probability ranges (from 0 to 1) into the entire range of real numbers, it is defined as:

logit(P(x)) = ln

(
P(x)

1− P(x)

)
= − ln

(
1

P(x)
− 1
)

(3.3)

This transformation is than further used to model the linear relationship between feature
values and its corresponding weights which can be rewritten to:

logit(P(y = 1|x)) = w0x0 + w1x1 + · · ·+ wnxn =
n

∑
i=0

wixi = wTx (3.4)

whereby P(y = 1|x) refers to the probability of a sample belonging to class 1 given its
features x. Finally, the characteristic sigmoid-function is received by taking the inverse of
the logit-function, called logistic-function:

logit−1(P(x)) =
ex

ex + 1
=

1
1 + e−x (3.5)

sigmoid(z) =
1

1 + e−z (3.6)

whereby z refers again to the linear relationship between feature values and the corre-
sponding weights, as z = wTx. As can we can see in Figure 3.1, the sigmoid-function
mapped each real value into the range between 0 and 1, whereby larger values resulted
close to 1 and smaller ones appeared close to 0. We can further see this behavior as a sort
of activation function which decides whether a sample with features x and weights w
belongs to a class or not. As mentioned before, the output of the sigmoid-function repre-
sents thereby the probability of a sample belonging to a class. This means if the output of
sigmoid(z) = P(y = 1|x; w) was for example 0.7, it would indicate that the LR model classi-
fied this sample with 70% in belonging to class y and with 30% in not belonging to this class.

Figure 3.1: The logistic curve representing the sigmoid-function in the range of −10 to 10. Its typical char-
acteristics can be directly read from the plotted curve: when z goes to +∞ we obtain a value close to 1,
while when z goes to −∞ we get a value close to 0. Note that its inflection point lies exactly at 0.5 which
can be seen as the default decision boundary when associating a sample either to be part of a class or not.
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In terms of binary classification, we can further define a so-called step-function which
returns the predicted classes. Assuming, that we again want to predict whether an invoice
payment will be classified as late payment or as an on-time payment, such a step-function
could look like this:

predicted class =

{
late payment if sigmoid(z) ≥ ε

on-time payment otherwise

whereby ε represents the threshold which is seen as a decision boundary on deciding
whether to classify a sample as a positive one or not. In other words, it represents how much
confidence the classifier needs to have until we can positively classify it as late payment.

We concluded that LR is a rather simple and robust approach which performs very well
on linear and binary classification tasks as well as on multi-class classification problems
(also with small datasets). Its probabilistic output is easy to interpret and allows tuning
modifications concerning its threshold to receive more sophisticated classification results.
Additionally, this model outstands also for its possible use as a feature analyzation tool.
As used like that, the corresponding coefficients for each feature have to be analyzed and
reported. The most promising features are thereby favoring a positive class prediction
and can be told apart from the ones who contribute the most in not belonging to a class.
Moreover, it is possible to identify also feature which are irrelevant due to their non-
contribution in neither direction during the prediction process. Despite these advantages,
the LR model comes also with some limitations. In general, LR requires for instance that
each sample is independent of each other. That means if there exists some dependency
among samples, the results may be overfitted due to an overestimation of feature weights.
Besides that, the model may further be vulnerable to sampling biases because it relies on
the underlying logit-function which can amplify a predictions accuracy.

3.1.3 Decision Tree
The Decision Tree (DT) classifier is another established classification model which especially
scores with its easy interpretability considering the outcome of its classification result. As
the name suggests, it can be seen as a simple decision rule tree, composed of many nodes
where every one of them (besides the leaf-nodes) is considered as a decision boundary.

To learn such decision boundaries, the DT algorithm tries to identify features with the high-
est information gain. This means that the features with the most informative characteristics
are used to create nodes (introducing a split in the tree) while constructing the tree from
top to bottom. The algorithm proceeds in creating more and more nodes while creating
new decision boundaries on its way down the tree. This procedure continues until each
child node only contains samples of one single class or other limiting conditions are met -
the final nodes at the bottom of the tree are thereby known as leaf nodes. In practice, this
strategy might however very quickly lead to extremely deep trees which are no longer in-
terpretable due to their high complexity. To overcome this behavior, a conventional method
is to prune the DT which refers merely to setting a maximal limiting condition for its depth.
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As a measure for the informative characteristic of a feature, commonly the Gini Impurity or
the concept of Entropy is used as an objective function to construct the decision boundaries
in the DT. It is however worth to note that in literature and practice both methods
commonly return rather similar results [Ras15; HTF09]. The Entropy is thereby defined as:

H(X) = −∑
x

p(x) log p(x) (3.7)

whereby the algorithm tries to optimize (maximize) the mutual information for de-
ciding on which features to split.On the other hand, the Gini Impurity is defined as:

IG(p) = 1−∑
i

pi
2 (3.8)

whereby the algorithm aims to minimizes the probability of misclassification.

In Figure 3.2 we provided an illustrative example to support the understanding of how
a DT classifies samples; we try again to classify whether an invoice will be paid on-
time or not. Once the DT algorithm constructed all decision boundaries (nodes), the
classification process starts at the top root note and advance down the tree nodes while
answering the questions which arise in the corresponding nodes. At each node which
we face, the tree branches into n subnodes and depending on the provided answer,
the algorithm follows the path down the tree until a final leaf node is reached. Every
node in the DT belongs thereby to a specific type of class. Meaning that when we end
up in a final leaf node, we just have to look at its assigned class and we know how
the DT classifies a sample. It is worth to mention at this point that the DT can handle
categorical features as well as numerical ones. These features are thereby packed into
decision boundaries which will be learned during the training process of the model. In
the end, each decision boundary refers to a specific feature in the samples, whereby
the more important a feature seems to be in identifying whether a sample belongs to
a specific class, the sooner it will occur in the DT. Therefore, more important features
arise at the top of the tree, while the deeper we dive into the tree structure, the less
important the features can be considered. Note that this does not mean that each feature
can only be considered once, it can happen that multiple nodes are build upon different
boundary decision of the same features - resulting in a more detailed classification.

As a conclusion, we argued that the DT model is very well suited for classification tasks
and also rather simple considering its underlying objective functions. One of the main
advantages of this model is that humans can very easily interpret the results of it by just
looking at the corresponding decision boundaries which were created by the algorithm.
Moreover, it is also possible to distinguish between features which are more and less
significant to classify samples for certain classes - features with the highest informative
content will be at the top of the tree. Nevertheless, also this model comes with some
downsides. First of all, it is important to note that it needs some careful parameter
tuning. This tuning process is especially important when choosing an appropriate maximal
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Figure 3.2: Illustration of a constructed decision tree by the DT model where we want to classify whether
an invoice will be paid on-time or not. From the constructed DT (which gets learning during the model
training process) we can derive that the feature which handles whether the invoice reflects a first-time customer,
is the most important one. Followed by total invoice amount considerations and previous late payments. Starting
at the top root node and sequentially answering boundary conditions (illustrated by branching nodes) allows
a manually retracing process and supports the understanding why certain classification decisions were
made. Consequently, an evaluation of the learned model can easily be performed by looking at the final DT.

tree depth. A rather high tree depth may thereby quickly lead to an increased gain of
complexity when diving deeper into the tree structure which can consequently result
in overfitting and loss of interpretability. At the same time, a shallow tree depth may
results in poor classification results while not enough boundary conditions may be created.
Besides that, the DT model usually suffers from a high variance. Meaning that already
some minor changes in the data might lead to invalid classification results. Therefore, it is
essential that the training set covers a suitable variance, but at the same time it should not
contain outliers as well - an adequate bias-variance-tradeoff needs to be determined.

3.1.4 Random Forest
A more advanced classification method, which builds upon the previously mentioned DT,
is the so-called Random Forest (RF) model. This method can be seen as a simple ensemble
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strategy which combines multiple DT classifiers and therefore inherits the benefits from
the good classification results. At the same time, this model aims to overcome the ease
of overfitting which may occur when a single DT is not appropriately pruned (more
insight into ensemble method strategies will be covered in Section 3.2). Even though this
method is more advanced concerning the combination of multiple DT classifiers, it can
still be considered as a rather simple approach which it is easy to handle regarding its
parameters. At the same time, it is important to note that this model is commonly known
to outperform many other supervised learning classifiers (also with rather small datasets)
and therefore gains huge attention in literature and practice [Sha+17; Les+15b].

Before classifying samples with a RF model, a particular number k, which specifies the
amount of ensembled DT classifiers, has to be specified. A trade-off between computational
expenses and classification performance needs thereby to be considered. This means that
the more DT classifiers are in use, the better the final classification results will be, but also
the higher the computational costs. Once this number k is specified, the RF algorithms start
by selecting n samples at random (with replacement) from the provided training dataset -
these samples further serve as the basis for the training process. Based on this training set,
one DT classifier can be constructed as stated in Subsection 3.1.3. However, in the approach
with RF not all available features are considered to optimize the objective function, but
rather only a specified amount of m features which are randomly selected (without replace-
ment) from the set of the available ones. Consequently, the construction of decision trees
will be repeated k-times whereby every time a new DT is constructed, also a new subset
of features (on which the respective DT split is performed) will be selected at random.
Once all DT classifiers have been constructed, the RF classifier is ready to use. To classify a
data sample with the trained RF model, a classification process on every DT classifier is
performed individually with a subsequent evaluation and report of the individual classifi-
cation results. Finally, the class which was reported by the majority of the ensembled DT
classifiers will be used as the classification result of the respective RF classifier [L+02; Ras15].

Considering the advantages of a RF model, we concluded that it commonly results in an
outstanding classification performance and outperforms many alternative classification
algorithms. Furthermore, it can also handle noise from unpruned DT classifiers in a robust
manner which leads to a major benefit such that the individual DT parameters do not
need as much attention [Ras15]. Nevertheless, RF comes also with a central disadvantage,
namely the loss of interpretability. Due to the use of multiple DT classifiers, one can no
longer represent their full structure in a meaningful manner. Furthermore, the method
needs special caution when choosing its parameter values for the number of used DT
classifiers (performance vs. computational cost tradeoff). Moreover, the number of used
features m and the number of drawn samples n needs also to be chosen with caution due
to possible bias-variance tradeoff problems.

3.1.5 K-Nearest Neighbors
The K-Nearest Neighbors (KNN) model is another classification strategy which can be
pursued when trying to classify samples. Contrary to the other presented methods in
this thesis, this method is especially interesting due to the non-existence of a training
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procedure. This means that KNN does not need any training in advance to perform a
successful classification process. It will instead memorize a set of defined data points and
classify samples based on this stored knowledge.

The fundamental principle behind KNN is therefore straightforward, which is also re-
flected by its parameter settings. In general, we could observe that the algorithm consisted
only of two main parameters. The first one is the number of neighbors k which are
considered when classifying a sample, and the second parameter is the preferred dis-
tance metric used to measure the distance between our samples. Consequently, as these
two parameters intuitively already suggest, a new sample will be classified by looking
at its k nearest neighbors (determined by the measurement metric), and based on the
majority class of these neighbors, the corresponding class will be assigned - see Figure 3.3.

Some common measurement methods to identify a samples k-nearest neighbors are thereby,
the Euclidean distance or the Manhatten distance. The Euclidean Distance is defined as:

euclidean dist(x, y) =

√
n

∑
i=1

(xi − yi)2 (3.9)

whereby it represents the length of the unique shortest line connecting the two points x
and y in an n-dimensional space. On the other hand, the Manhatten Distance is defined as:

manhatten dist(x, y) =
n

∑
i=1
|xi − yi| (3.10)

representing the shortest rectilinear distance between two vectors x and y.

Figure 3.3: Illustration of a classification with a KNN model using the Euclidean distance as a measurement
metric and k = 6 as a parameter setup. Based on these parameters, the algorithm looks for the six closest neigh-
bors around the sample which should be classified (indicated by question mark). As a result, we see that four
of these nearest neighbors are included in the ”on-time payment” class, and two are within the ”late payment”
class. Consequently, the prediction results would be ”on-time payment” due to the determined majority class.
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A significant aspect which we want to underline at this points is that the dataset samples
require to be standardized in order to enable a valid and correct distance comparison
among them (see Subsection 3.3.1).

For a conclusion, we want to point out again that this algorithm does not need any training
in advance which can be very beneficial due to its adaptive behavior. Nevertheless, the
more samples we need to consider while computing the corresponding k-nearest neighbors,
the more complex the classification process gets. This is especially true when we have
to consider a high dimensional feature space and consequently need to perform also
many distance calculations in this high dimensional space. Although there exist different
methods for dimensionality reduction (e.g. Principal Component Analysis), which might
solve this problem, another difficulty considering storage problems arises too. The fact
that we have to save all the respective samples from our training set implies that especially
bigger datasets may lead to significant storage bottlenecks.

3.1.6 Support VectorMachine
The last classification algorithm which we discuss in this section is the Support Vector
Machine (SVM). Same as the other presented classification methods it is also widely used
and known for its good classification performance, but besides that, it can additionally
be used for regression problems too. For classification it generally uses a function
which maps the given sample features into a higher dimensional space, followed by
the task of finding an optimal hyperplane which separates those samples the best.
Due to our set focus on classification methods, we will further concentrate this review
on the SVM model with non-linear kernels for classification purposes only. To better
understand what the goals of SVM are, and how it works, we will support this review
by illustrating a small example with two classes (which are linearly separable) in Figure 3.4.

As already mentioned, the SVM classifier tries to find the optimal decision boundary
which separates the sample features the best. The objective is thereby to find an opti-
mal hyperplane (decision boundary) which maximizes the margin between the samples
which are the closest to the hyperplane itself. These points which are considered to
be the closest one are thereby called support vectors - see illustration below. The main
idea behind this concept is to find a hyperplane which provides the largest possible
margin. A SVM with a respectively bigger margin tends thereby to have a better gen-
eralization performance and is less likely to show overfitting problems in contrary to
a SVM with a hyperplane with a fewer margin [Ras15]. As we found this optimal hy-
perplane, a samples class is determined by checked on which side of the hyperplane
the sample is located; the sample gets classified based on its position to the hyperplane.

The objective function to find this best hyperplane considers thereby the minimization of
the following function:

1
2

wTw + C

(
N

∑
i

ξi

)
(3.11)

whereby w is related to the feature weights, and N to the number of available classes.
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Besides that, ξ corresponds to the so-called slack-variable which enables better handling of
non-linear separable classes in a relaxed manner. Furthermore, C represents the capacity
constant which can be seen as the responsible parameter for controlling the misclassification
penalty. It is important to note that this parameter needs to be picked with caution due
to possible overfitting problems. As can be seen in the illustration below, a lower value
for C allows the SVM classifier to make more misclassification errors while a higher one
restricts that behavior by penalizing the SVM [Ras15].

Figure 3.4: Illustration of a classification with a SVM model using a high and low value for the respec-
tive capacity constant. In both cases, the SVM classifier tried to find the best hyperplane which sepa-
rated both classes most appropriately while considering to maximize the margin to the support vectors.
In the top figure, we were using a high value for the capacity constant, whereby the hyperplane is con-
structed considering three support vectors, allowing no error. In the figure at the bottom, the same ex-
ample was plotted with a lower value for the capacity constant. Thereby, only two support vectors were
considered while additionally some error in finding the best boundary condition is overlooked, resulting
in a overall bigger margin. The hyperplane (decision boundary) was generally defined by the equation
y = wT x + b whereby w and b were parameters of the hyperplane itself. Moreover, the outer border lines
which limit the width of the decision boundary were defined in way such that they resolved to +1 and -1.
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Last but not least, we briefly review some of the basic kernel-functions in SVM classifiers
which are used by the model to map feature values into a higher dimensional feature space.
This specific concept allows us to find more suitable decision boundaries of non-linear
separable samples by exploring regions in higher dimensions. Some of the most common
kernel-functions are thereby:

K(Xi, Xj) =



Xi · Xj Linear kernel(
γ Xi · Xj + C

)d
Polynomial kernel

exp
(
−γ

∥∥∥Xi − Xj

∥∥∥2
)

Radial Basis Function (RBF) kernel

tanh
(

γ Xi · Xj + C
)

Sigmoid kernel

whereby γ refers to a parameter for the respective kernel-functions which needs to be
optimized, and K(Xi, Xj) = φ(Xi)

T · φ(Xj) represents the kernel-function which is the dot
product between two points transformed into the higher dimensional feature space by the
function φ [HTF09].

To summarize the SVM classifiers, we concluded they are well suited for classifica-
tion problems whereby a particular attention is set on samples next to the decision
boundary (support vectors). A benefit of SVM classifiers is that they are capable of
handling also very complex relationships among features which is sometimes not pos-
sible with other classifiers. Nevertheless, training such a SVM classifier can be rather
expensive, especially while considering the respectively used kernel-function and com-
putational costs of the minimization in the objective function to maximize the margin.
Although the classification results are most of the time very good, the SVM model can
be seen as a sort of black-box which can not be interpreted as easily. This refers pri-
marily to the fact that they are not very interpretable in the sense of how the SVM
model came to a concluding classification result considering individual samples [HTF09].

3.2 Ensemble Learning: Bagging and Boosting
Ensemble learning is a widely spread method in the field of ML which is commonly
used to combine the strengths of multiple ML algorithms. In the case of supervised
classification, data samples get classified by combining multiple supervised classification
algorithms whereby the results get determined by an aggregation process among the
individual results. This means, that instead of creating an entirely new classifier, we
independently classify a sample on multiple types of classifiers and combine the final
result by either smart decision boundary conditions or majority voting evaluations. In
the previous subsection, we already reviewed one such ensemble classifier, namely the
RF model. As already discussed, this strategy refers to the majority vote classification
process where multiple outputs of k different DT classifiers get combined and aggregated
to one specific outcome. In this subsection, we will further present two of the most com-
monly used techniques when it comes to ensemble learning, called Bagging and Boosting.
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In general, the application of ensemble learning strategies comes to use once an already
robust model of a set of classification algorithms has been developed. This means in
particular that first of all one should concentrate on the development of multiple single
classification methods. As these models show suitable evaluation performances, a boosting
or bagging approach could be considered to push the classification performance towards
an optimal model. However, there are of course exceptions, as for example the use of
the RF classifier. At this point, it is important to note that even if the RF model can be
considered as an ensemble strategy for its own, this does not restrict the further use and
combination with additional ensemble strategies like Bagging and Boosting.

3.2.1 Bagging: Voting Classifier
In literature, the strategy of Bagging was first introduced by Breiman [Bre96] who proposed
it to be a valuable strategy which is able to gain a significant amount of accuracy by
combining various classification results. Besides this aggregation process, which generally
refers to collecting and combining different algorithm results, the sample bootstrapping
process is a key aspect of this ensemble strategy. With the help of bootstrapping it is thereby
possible to create multiple training subsets out of only one unique training dataset. It is
thereby essential to note that each of these subsets differs in its represented bias-variance
tradeoff which counts as a beneficial advantage. During the creation process of such a
subset, different sample instances are randomly drawn (with replacement) from one central
training set. This new subset is consequently used for the actual training process of a
specific classifier. Depending on the number of classifiers which one wants to combine with
this ensemble method, this bootstrapping and training process will be repeated n-times. In
the end, especially this usage of multiple classifiers and different dataset variations enables
the strategy to minimizes the bias within the overall model. For a better understanding,
we illustrated the fundamental procedure of the described bagging process in Figure 3.5.

As mentioned before, the final prediction process is performed through a voting procedure
which generally can be categorized into a hard-voting or a soft-voting strategy. In the case
of hard-voting, the simplistic approach of the majority class over all different classifier
predictions is considered to be the final result. With soft-voting, the respective argmax of the
sums of predicted probabilities gets calculated, on which basis the corresponding predicted
class gets inherited (a prerequisite is thereby the support of a probabilistic classifier output).
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Figure 3.5: Illustration of a classification with a Voting classifier. In the training process of a Voting classifier,
we start with a set of classifiers (also possible to have multiple classifiers of the same type with different
hyperparameter setup) and train those on different training subsets which are determined in a bootstrapping
process. Once all classifiers are trained, the classification process of a new sample is performed by classifying
it on each classifier independently with a subsequent aggregation of the results. As illustrated above, even
though the LR model classified the invoice in our example as ”late payment”, the majority of the classifiers does
not, which is why the final result of the Voting classifiers is ”on-time payment” (used hard-voting aggregation).

3.2.2 Boosting: AdaBoost
The second ensemble method which is commonly in use is Boosting. Generally, this
strategy can be seen as a sort of variation or expansion of the previously presented
Bagging strategy. In comparison to Bagging, this method focuses thereby primarily on the
bootstrapping process which is responsible for the data subset sampling process. One of
the most common implementations of Boosting is Adaptive Boosting (AdaBoost) which
was first presented by Schapire and Freund [F+96].

The basic concept behind AdaBoost is to learn sequentially from prediction mistakes (e.g.
misclassification errors) and to improve the algorithm performances step by step over time.
In more detail, this concept can be summarized as follows. As a first step, the algorithm
starts with a subset of randomly drawn samples (without replacement) from a central
training set, and classifies them with the help of a defined classification method. Each
sample in the training dataset holds thereby a corresponding weight which is uniformly
initialized. Once the classification process is completed, the data samples get validated
and reweighted. This means that each sample which was classified correctly receives an
updated lower weight while those who were classified incorrectly get a higher weight.
Next, a new subset of samples is drawn (without replacement) from the training set, but
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this time an additional focus is set on those samples which have a higher weight (samples
with a higher weight are more likely to get picked for the training subset). Additionally,
the classification process will further concentrate on the correct classification of those
samples with a higher weight. This procedure of classification and reweighting of samples
gets now repeated n-times, depending on the specified repetitions/rounds. The strategy
implies thereby that samples which got misclassified in a prior classification step, are
more likely to get correctly classified in a new processing step - the algorithm improves
itself over time. In the end (after n classification and reweighting reruns), the results
of each different classification outcome on the differently weighted training subsets get
combined by a majority vote process, and the final prediction result gets reported [Ras15].

As a conclusion, we argued that the use of ensemble strategies can be beneficial concerning
the increase of performances in different classification methods while combining their
strengths and lowering the overall bias of the independent classifiers. However, the
computational costs which come with the use of these ensemble strategies need to be
considered as well. Especially in practice it is known to be difficult in finding the right
trade-off between these computational expenses and the growth of a classifiers performance.

3.3 PerformanceMeasures & EvaluationMethods
Evaluating and judging the output quality of prediction or classification tasks is a well-
studied area in the field of ML [SL09; Ste+10]. Moreover, also various techniques for
correct hyperparameter tuning and sample splitting have been studied and reviewed.
This section will consequently review some common statistical concepts, key metrics for
model evaluations, and optimization techniques which we used in this thesis to handle the
specific tasks of model evaluations, data splitting, and hyperparameter tuning.

3.3.1 Relevant Statistical Concepts
Throughout our upcoming feature analyzation and preprocessing steps we made use of
several statistic related concepts which we further briefly describe in this subsection to
provide a solid groundwork and to clear out possible misunderstandings.

The Mean refers to the simple use case of calculating the average value of a finite set of
numerical values. It is defined as:

X =

n
∑

i=1
Xi

n
(3.12)

whereby n refers to the number of values in a defined set X.
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The Median is a basic concept to determine the value which lies exactly in the middle
of an in ascending order sorted value range. This means that the median value exactly
separates the whole range of values into an upper and lower half. It is defined as:

X̃ =

x n+1
2

if n is odd(
x n

2
+ x n

2 +1

)
1
2 otherwise

(3.13)

whereby n corresponds again to the number of elements in a defined set X. It is however
important to note that for certain use cases where the set of values is even, it is not
practical to determine the average between the two numbers x n

2
and x n

2 +1 which is why we
simply use the later one as the corresponding median value. This is especially important
when considering a list of given values where we want to pick the median index which
corresponds to a specific element in a list.

The Z-Score Standardization is a well known concept which refers to the feature normal-
ization process and is generally defined as:

z =
x− µ

σ
(3.14)

whereby µ refers to the mean value and σ to the corresponding standard deviation of
the mean. This concept can thereby be simply summarized as a strategy to scale all the
available values into a common range. Applied on feature scaling, we end up with the
common setup of rescaled features with a mean of 1 and a standard deviation of 0. In
this thesis, we use however a slightly modified version of this z-score standardization
process whereby we replace the mean with the median value. This setup comes with the
additional advantage of providing a more stable groundwork and considers at the same
time potential outliers in the data.

The Min-Max Scaling is an alternative strategy for normalizing values and is defined as:

X̂ =
X− Xmin

Xmax − Xmin
(3.15)

whereby Xmax refers to the highest value in X and similar Xmin to the lowest value in
X. Employment of this strategy maps each value of a given set of values into the range
between 0 and 1 whereby the highest value will be mapped to 1 and the lowest one to 0.

The Correlation Matrix is a conventional technique to represent the correlation coefficients
among different variables (features) and thereby represents a common tool to test and
visually inspect the relationship among variables in a statistical context. These feature
correlation coefficients are thereby defined in a range from -1 to +1, whereby -1 represents
a negative relationship and +1 a positive relationship between different variables. Further-
more, a coefficient which corresponding to a value of 0 means that no relationship between
two variables exists. In more detail, a positive correlation implies that if variable a increases,
also variable b increases and on the other hand, a negative correlation implies that if vari-
able a increases, variable b decreases. The value of these relationship reflects consequently
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the strength of the relationship between two variables. To calculate these coefficient
values, the standard Pearson correlation coefficient is commonly in use, which is defined as:

ρX,Y =
cov(X, Y)

σXσY
(3.16)

whereby σ refers to the standard deviation and cov to the covariance between two variables.

3.3.2 ConfusionMatrix & KeyMetrics
An accessible way to evaluate the results of a supervised learning task is commonly based
on four measurements, namely: True Positive, True Negative, False Positive, and False
Negative. All of those measurements can be seen as a simple collection of observations
whereby each predicted sample is compared, counted and reported.

• True Positive (TN): The number of samples which were predicted as a specific class and
comparison to related ground-truth class is positive.

• True Negative (TN): The number of samples which were predicted not to belong to a
specific class and the comparison to the related ground-truth class is positive.

• False Positive (FP): The number of samples which were predicted as a specific class and
comparison to related ground-truth class is negative.

• False Negative (FN): The number of samples which were predicted not to belong to a specific
class and the comparison to the related ground-truth class is negative.

As demonstrated above, the comparing process refers to the result when matching a
samples ground truth class to its predicted class. As an example, we can look at the
classification of invoice payments where we have two classes: ”payment arrived on-time”
and ”payment arrived late”. First, each invoice gets label according to whether the invoice
was paid on-time or not (by looking a the due date and the actual settled date). Next, all
invoices get classified by a specific supervised classification model. Finally, each prediction
result can be compared to its previously defined ground-truth, followed by the assignment
to one of the four presented measurement groups.

Especially in binary classification tasks, where we have only two classes: positive and
negative, the presented measurement groups are a standard procedure to judge the
performance of a classifier. A popular way to represent the outcome of these measurements
is thereby in the form of a so-called Confusion Matrix which is a simple 2×2 matrix that
summarizes the gathered results as illustrated in Table 3.2.

Note that for multi-class problems with n classes, one can simply extend the confu-
sion matrix to an n×n matrix. Same as in the simple 2×2 confusion matrix, the rows
reflect thereby the actual ground-truth and the columns correspond to the predicted classes.
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Table 3.2: Example of a confusion matrix on a binary classification task. On the left side, the basic structure
of a confusion matrix is illustrated, and on the right, the illustrated table is filled with example results from a
classifier. In total 26 samples were correctly classified as samples affiliated to class A or respectively class B. The
other six samples were incorrectly classified as can be seen in the top right and bottom left corner of the table.

Besides the presented confusion matrix, supplementary key metrics can be derived from
the stated measurements to evaluate a supervised learning model. Commonly used
metrics in literature and practice are thereby Precision, Recall, Accuracy, and the F1-Score.

The Precision indicates the percentage of correctly classified samples among all the
samples which were classified as a specific class. Meaning that we divide the correctly
classified positive predictions by the total amount of predictions made:

Precission =
TP

TP + FP
(3.17)

The Recall indicates the percentage of correctly classified samples while considering the
total ground-truth of all samples in the corresponding class:

Recall =
TP

TP + FN
(3.18)

The Accuracy represents the percentage of correctly classified samples. This means that it
can be simply calculated by dividing the correctly classified samples by the number of all
considered classifications:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.19)

The Fβ-Score can be seen as a weighted average of the precision and the recall measure-
ments. The choice of β depends thereby on how much weight one wants to give the
precision value over the recall value. Note that β = 1 weights both measurements equally
(known as F1-Score) and simply returns the harmonic mean of precision and recall:

Fβ-Score = (1 + β2)
Precission ∗ Recall

(β2 ∗ Precission) + Recall
(3.20)
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F1-Score =
2TP

2TP + FP + FN
(3.21)

As a conclusion, on the presented measurement metrics, we want to point out the impor-
tance of selecting a measurement one wants to focus on before starting with an evaluation
process. Thereby, one has to admit a trade-off among the presented metrics and further
decide thoughtfully on which one wants to use and optimize during the performance eval-
uation of a model. Changing between measurement optimization strategies e.g. focusing
on accuracy and recall optimization in the first place and then later trying to optimize
for precision, will result in problems due to the competing focus of these measurements.
Furthermore, focusing the attention on one measurement strategy only, as for example
accuracy, may also be a critical strategy due to misleading interpretation problems. When
we have for example an imbalanced dataset which contains 99 samples of class A and
1 sample of class B, the final accuracy measurement of a naive majority class predictor
would be 99% - clearly not a valuable strategy to evaluate the quality of this classifier.
Consequently, the choice of suitable measurement strategies is always problem specific
and implies skeptical thinking while applying them.

3.3.3 Receiver Operating Characteristic
Another popular method to evaluate the performance of a classification model is the use the
so-called Receiver Operating Characteristic (ROC). This method is a simple tool to visualize
the tradeoff between recall and precision while considering all possible thresholds calibra-
tions which can be set to classify a sample as a positive one (threshold values reach from 0
to 1). This threshold values are thereby responsible for setting the limit from where on a
sample is affiliated to a class. As an example, we can think of a classifier which outputs the
probability of sample x and two classes A and B. When the classifier predicts the probability
of sample x to be with 0.70 affiliated with class A (consequently 0.30 to class B), a defined
threshold of 0.75 would still force the classifier to affiliate the sample x to class B. Thus, this
parameter is responsible for determining the strength of the decision boundary in each clas-
sifier whereby it needs to be accordingly optimized to obtain a suitable classification result.

Note that the described ROC visualization requires thereby a classifier which is able to
produce a probabilistic output e.g.: Logistic Regression, Decision Trees, SVM etc.. This
requirement results from the way the corresponding output measurements for the ROC
(True Positive Rate and False Positive Rate) are computed:

True Positive Rate =
TP

TP + FP
= Recall (3.22)

False Positive Rate =
FP

FP + TN
(3.23)

Once these two metrics have been measured for all possible thresholds values of one
classifier, it is possible to plot the so-called ROC-Curve as illustrated in Figure 3.6. To
further assess a classifier’s performance, the calculation of the respective Area Under
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the Curve (AUC) is a commonly applied measurement metric. This measurement value
reaches from 0.00 to 1.00 and represents the percentage of the total amount of the area
which lies under the calculated ROC-Curve of a specific classifier. A higher AUC value
indicates thereby better classification results than one close to 0.50. This scenario can also
be observed in the Figure 3.6 where the optimal ROC-Curve holds an AUC of 1.00 and the
random classifier only an AUC of 0.50. Consequently, everything below 0.50 means that
we have trained a classifier which performs worst than pure random guessing, which
most likely indicates a problem during in the implementation process itself. Therefore,
only AUC measurements between 0.50 and 1.00 can be seen as valuable and comparable
results which are useful to evaluate a classifier’s performance.

Figure 3.6: Illustration of a ROC-Curve for a SVM classifier. The performance of the SVM classifier is thereby
plotted for all possible threshold values between 0 and 1 (see green line). Furthermore, the performance of a
random classifier is visualized by the red dashed line holding an AUC of 0.50. The most optimal result which
one aims to get as close as possible to is visualized by the blue line, holding an AUC of 1.00. Note that the
possible performance result of the SVC classifier can be adjusted by setting the threshold value between 0 and
1, whereby the lowest threshold value corresponds to the bottom left of the line and the highest to the top right.

The AUC measurement is thereby commonly used to gauge and compare the performances
of multiple models. Nevertheless, as mentioned before, it is important to note that the
threshold is a parameter which one has to pick smartly to reach the desired performance
in a deployed model. This means that before applying the actual model for a classification
task, one has to pick a specific threshold value which corresponds to one specific point on
the ROC-Curve. Having for example a suitable model as the SVM classifier (green line in
the plot below), one has to adjust the performance of it by tweaking its threshold value
which consequently moves the actual model performance along the visualized ROC-Curve.
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Generally speaking, decreasing the threshold moves the performance towards the top
right corner while increasing it leads to the bottom left. This behavior can be argued by
investigating the performances at the threshold extrema of 1.00 and 0.00. A threshold
of 1.00 would thereby mean that every sample not reaching a prediction probability
of 1.00 is marked as negative prediction, which is why one ends up in the lower left
corner of the ROC-Curve. On the other hand, a threshold of 0.00 would predict every
sample as a positive one, leading to a prediction performance in the upper right corner.

As a conclusion for the ROC-Curve and the AUC measurement metric, we concluded that
it is definitely a valuable approach to judge the overall performance of a classifiers result,
while it is most often more accessible than just investigating a single measurement metric
on its own. Moreover, it is rather easy to compare multiple model performances while
plotting their individual ROC-Curves in the same figure. Nevertheless, when it comes to
deploying the model, we still need to carefully choose a suitable threshold value in a smart
way which reflects our desired goal. The choice of the threshold is thereby always problem
dependent and may heavily influences the actual model outcome.

3.3.4 K-Fold Cross-Validation
Having defined evaluation metrics in Subsection 3.3.2 and seen a brief overview of the
commonly used ROC-Curve visualization in Subsection 3.3.3, we further focus now on
a conventional method for dataset splitting, namely the process of Cross-Validation
(CV). This method refers mainly to the estimation of the prediction error considering
training and testing a model which allows us to properly measure the classification error
while splitting the available dataset into independent training, validation and test subsets.

A standard procedure to accurately estimate a ML models performance is generally to
split the available dataset into three subsets called training set, validation set, and test set.
The main concept behind this idea is thereby to use these three subsets in independent
processing steps. First, the model training is performed on the training set, followed by the
model validation process which is performed on the validation set. An iterative process of
model improvement and validation is consequently repeated until a certain level of desired
performance is reached. Once the model has successfully been trained, and a certain level
of performance is reached on the validation set, the final testing is performed on the
corresponding test set. This test set is thereby used to simulate real-world circumstances
and to generalize the model’s performance on data which was never seen in the former
training or validation process.

This strategy is however not always applicable due to possible dataset size restrictions.
Especially in real-world scenarios, the size of used datasets to develop a ML model can
sometimes be rather limited whereby a proper splitting into three data subsets is not
always possible. To overcome this dilemma, one makes use of k-fold CV which further
divides the training dataset into k subsets on which the model is alternately trained
and validated [HTF09]. This implies that one has to split the original dataset into two
subsets only, namely training set and test set. Note that, a certain percentage of the data
should always be held back to evaluate the model on a separate final test set (this data
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should never be mixed up with validation or training set). An illustration of the k-fold CV
technique (with k = 5) can be found in Figure 3.7.

Figure 3.7: Illustration of a k-Fold CV example with k = 5. First, the original dataset is split into two subsets
of the size 80% to 20% whereby the later one is held back as the final test set. The remaining 80% of the
data (training set) is then further split into five subsets. As can be seen in the illustration, the first subset
is firstly used for the model validation purposes and the other k − 1 subsets for training the model. By
iteratively switching the validation set selection, each of these five subsets will once be used as a validation set
while the rest of it serves always for model training purposes. The average validation error of this k-fold CV
process is finally computed by aggregating the individual validation results of each model evaluation process.

As already stated, a certain amount of data should always be held back for final testing
purposes on unseen data. The rest of the data is considered as the training set and will
be split into k subsets whereby it is important to note that all of these subsets hold the
same class distribution as the defined training set. Having these k data subsets, the CV
process declares one of these sets as the validation set. Now a ML model can be trained
on the remaining k − 1 subsets and a final validation process will be executed on the
prior declared validation set. The corresponding validation error on this subsets gets
consequently reported and the CV process continues to declare another subset as the
validation set. This procedure gets now repeated for k iterations whereby each of the
subsets is declared exactly once as a validation set. The overall validation error can finally
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be computed by:

Total CV Error =
1
k

k

∑
i=1

errorcvi (3.24)

where k corresponds to the number of dataset splits in the training set. In general, one
can argue that the size of this parameter k influences the overall outcome of the averaged
validation error, which means that a higher or lower k may generally lead to bias or
variance problems. Nevertheless, literature commonly recommends setting k around
5 or 10 iterations to achieve a good compromise in consideration of these problems [HTF09].

Another use case is to set k = N, whereby N is the number of available data samples
(always after the test set has been removed and held back for final testing purposes).
This technique is commonly known as Leave-One-Out Cross-Validation (LOOCV) and
is especially recommended for small datasets. In this case, exactly one sample is always
considered as validation set whereby the rest of the dataset is used for training the model.
Due to the possible insufficiency of data variance which is reflected by the validation sets
when choosing k to be for example 5 or 10, this approach may expose improvements in the
evaluation results when working with few data samples. However, this strategy lacks in
terms of performance due to the increased amount of needed iterations. Especially when
using bigger datasets, LOOCV is not recommended due to the huge performance loss and
the already sufficient variance representation of the validation set when setting k to 5 or 10.

For a general conclusion on the CV strategy, we concluded that the choice of k strongly
depends on the size of the used dataset and the corresponding task which one wants to
solve. Having a rather small dataset, LOOCV is recommended due to the high bias and
low variance which can be perceived when working with a small number of dataset splits.
However, depending on the pursued goal, this drawback may also be considered as not
too important in practice. The overall recommendation is yet to pick k = 5 or k = 10 when
working with not too small datasets to obtain fairly reliable evaluation results considering
variance and bias problems.

3.3.5 Hyperparameter Tuning andOptimization
In Section 3.1 we presented various supervised classification methods which count to state-
of-the-art approaches in the domain of ML. However, all of these classification methods
provide various parameters which need to be modified an tuned to obtain optimal results
for the objective which wants to be achieved. This section will consequently review some
strategies which are commonly in use to support this selection and tuning process. First, we
will discuss the term hyperparameter which is used to describe these tunable model param-
eters and give a short introduction to the tuning process itself. Followed by the explanation
of two a widely used technique, called Grid Search and Random search, which auto-
matically report the best hyperparameter setup from a specified set of parameter ranges.

Hyperparameter is a commonly used term in the ML domain and refers to model
parameters which we need to define before the actual model training process, which
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implies that the model can not learn these type of parameters on its own. Consequently,
they usually need to be set manually. The tuning process of such hyparameters can thereby
be sometimes very challenging, but is especially needed when additional data gathering
for model improvements is not possible due time limitations or simple non-existence of
more data. As an example for hyperparameters, we can look at a DT classifier which
typically uses the maximal depth of the tree itself, the number of minimal samples required
to be at a leaf node, or the maximal number of considered features. The tuning process of
these hyperparameters can be seen as a major key aspect of the model training process
and influences heavily the performance of it. Manually selecting such hyperparameters
implies most often deep knowledge of the underlying model behavior and can be rather
challenging due to their quantity and the broad range of their acceptable values. To
overcome this drawback, various techniques for automatical detection and selection of
the most promising hyperparameters have been studied and used in literature and practice.

Grid Search is one of such techniques to automate the process of finding the most suitable
hyperparameters. Instead of manually persuing a trial-and-error approach in executing a
model k-times with model training, evaluation reporting and hyperparameter tuning to
finally end up with an applicable parameter setup, Grid Search uses a pre-defined set of
parameters (parameter-grid) and automatically reports the best combination to use. Never-
theless, this method is rather time-consuming, and we have to have some knowledge about
a narrowed down parameter set which we need to present to the method (see Table 3.3).

Grid Search will consequently pick up all the defined parameters and constructs all possible
hyperparameter combination with which the model is then trained and evaluated. Finally,
the hyperparameter combination with the best measurement metric (minimal error) will
be reported. It is important to note that even if this approach is rather simple and pleasant
in its application, it can be computationally cost expensive especially when the defined
value ranges for each hyperparameter are not narrowed down properly. Nevertheless, this
strategy provides good results and minimizes the challenging task of manual selection
and evaluation.

Hyperparameter Tuning Description Range # Parameters

max depth maximal depth of the decision tree [1-20] 20
max features number of considered features when splitting [2-14] 13

min samples leaf minimal number of samples required to split [1-20] 20

⇒ 20*13*20 = 5.200 possible hyperparameter combinations

Table 3.3: Grid-Search example on a DT classifier. For illustration purposes, we choose to pick three hyperpa-
rameters with a defined value range for each one of them (parameter-grid-space). Grid Search will consequently
train and evaluate the DT model with each possible combination (5.200) and compares the results for each the
specified metric e.g. accuracy, recall, F1-score etc.. As a final result, the hyperparameter setup with the best
evaluation metric will be reported. Note that the application of Grid-Search can be rather time consuming.

Another favorite method to optimize hyperparameters is Random Search. The basic
concept behind this strategy is the same as in Grid Search, but when it comes to iterating
through the parameter-grid-space, not all specified hyperparameter combinations are
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evaluated but rather only a fixed number of them is picked at random as representatives.
Note that a specific range of values must be still manually pre-defined for each
hyperparameter. Even though this approach might at first glance seem less accurate
in finding a good parameter setup, a recent study by Bergstra and Bengio [BB12]
demonstrated that it outperforms Grid Search regarding its efficiency while achieving
approximately the same evaluation results. This is especially true when we have many
hyperparameters with many possible values to evaluate our model on. The reason for its
accuracy lies thereby in the probabilistic random picking procedure while assuming that
the pre-defined parameter-grid covers a decent amount of nearly optimal parameter values.

Last but not least, an interesting aspect is the combination of Random Search with a subse-
quential application of Grid Search, that might result in an even more substantial approach
regarding an optimal hyperparameter setup in a computationally efficient time. To do
this, we have to define in a first step a parameter-grid-space which covers a broader value
range for each hyperparameter. Followed by applying Random Search and using its output
(which should be computed rather efficiently) to create a new, more detailed, parameter-
grid-space around it. Finally, applying the Grid Search strategy should result in the most
optimal parameter setup whereby a considerable amount of time-saving can be assumed.

As a conclusion, we argued that the use of strategies like Grid Search, Random Search
or a possible combination of both is a very well suited strategy to overcome the vast
workload which comes along when manually approaching a trial-and-error strategy on
hyperparameter tuning. Nevertheless, a reasonable amount of background knowledge of
the underlying prediction and classification models is always needed to define the overall
parameter-grid-space most efficiently.

3.4 SamplingMethods
Using supervised ML classifiers faces most often the rather challenging problem of data
imbalance. Especially in real-world classification scenarios, this problem is commonly
known and refers to situations where most of the available data represents only one
majority class while a rather small amount represents one or more minority classes. If
the classification process is executed on such an imbalanced dataset, the results could be
easily biased by this skewed data [K+06].

In general, literature and practice differentiate between oversampling and undersampling
to overcome such problems. In simple words, oversampling refers to adding samples to
the minority class whereby undersampling refers to removing samples from the majority
class. However, both techniques aim to balance the datasets such that an approximately
even distribution amount all classes is reached. In terms of binary classification with
two defined classes, the goal is thereby to get a common class distribution of about 50%.
Several studies addressed the positive and negative sides of under- and oversampling
techniques [Bar+04; Yap+14], as well as different combinations of both [Ram+12; SKV09].

In this section, we investigate several common sampling strategies which were used to over-
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come the problem of class imbalance, namely: Random Over-Sampling (ROS), Synthetic
Minority Over-Sampling Technique (SMOTE), and a hybrid version of SMOTE and Edited
Nearest Neighbor (SMOTE + ENN). It is important to note that due the limited size of the
used datasets in this thesis, no undersampling approach would have been useful to apply
in the sense of proper invoice payment classifications. Consequently, only oversampling
strategies were considered to handle the related class imbalance problems in this thesis.

3.4.1 RandomOver-Sampling
The most naive and simplest approach to perform oversampling is the Random Over-
Sampling (ROS) method. As the name suggests, it randomly picks samples (with re-
placement) from the minority class and duplicates them. This sample and duplication
process will then be repeated until all classes are approximately equally distributed, as we
illustrated in Figure 3.8.

Figure 3.8: ROS applied on an imbalanced class problem. For illustration we scattered an imbalanced dataset
with a ratio of 10% (Class A) to 90% (Class B) on the left-hand side of the figure. After applying the ROS
method, an equal distribution among both classes was achieved, whereby corresponding sample feature
values were simply duplicated (see right-hand side of the figure). To demonstrate the separability before and
after the sampling method, a Support Vector Classifier (SVC) was used.

Even though this approach is relatively simple and the positive side-effect of no information
loss comes to our advantage, ROS is known for its drawback of an increased likelihood
in overfitting when trying to subsequently apply ML algorithms. This effect arises due to
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the exact reproduction of the minority class samples whereby no modification within the
features of the sample has been applied.

3.4.2 SyntheticMinority Over-Sampling
A more advanced approach to overcome the imbalance class problem is the Synthetic
Minority Over-Sampling Technique (SMOTE) proposed by Chawla et al. [Cha+02]. As
we demonstrated in Figure 3.9, SMOTE is thereby focusing on the creation of additional
synthetic samples within the minority class instead of just creating exact replicas as in the
rather naive approach of ROS.

Figure 3.9: SMOTE applied on an imbalanced class problem. On the left-hand side we scattered an im-
balanced dataset with a ratio of 10% (Class A) to 90% (Class B) to demonstrate the imbalanced class prob-
lem. On the right-hand side we reported the result after applying SMOTE. Besides the balanced class
distribution, we could observe that synthetic samples in the minority class (Class A) were successfully
created. A Support Vector Classifier (SVC) was again used to demonstrate the separability of both classes.

As mention before, this process is able to overcome the problem of overfitting which is a
resulting drawback of the ROS method. To create such synthetic samples, SMOTE uses a
k-nearest neighbors interpolation within the minority class. In more detail, this sample
generation process works as we illustrated in Figure 3.10. First, a sample xi, including its
k-nearest neighbors get selected. Next, one sample of these k neighbors xj gets picked at
random. Finally, a new sample xnew will be generated by interpolating between xi and xj, as:
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xnew = xi + λ(xj − xi) (3.25)

whereby λ corresponds to a random number between 0 and 1 [Cha+02].

Figure 3.10: Synthetic sample generation process in SMOTE. New samples get generated by interpolat-
ing between xi and xj. Whereby xj gets randomly selected out of the k-nearest neighbors of the sam-
ple xi in the minority class. The method will generate as many samples as needed to reach a desired
(balanced) class distribution. Illustration was adapted from the scikit-learn examples website [Lem16].

Aside from regular SMOTE, there exist also different variations considering the synthetic
sample generation and data cleaning process. Common hybrid methods in literature and
practice are thereby: SMOTE with Tomek links [Tom76] and SMOTE with Edited Nearest
Neighbor (SMOTE + ENN) [Wil72]. The motivation behind those extensions is to apply
undersampling so that potential outliers get removed after the oversampling process to
gain a better cluster separation and to prevent possible overfitting problems. Let us assume
for example that we have two classes which are not well separable. With regular SMOTE, it
could now happen that synthetic samples from the minority class expand too deeply into
the majority class space. This would consequently lead to a poor separability and potential
overfitting in the data. By applying under-sampling, such potential outliers and noise can
subsequently be removed to get a more robust behavior [Ram+12; BPM04]. In general,
SMOTE with Tomek links and SMOTE with ENN are rather similar and mainly differ only
in the calculation process whether a sample should be removed or not. Nevertheless, the
Tomek link method is generally known to detect rather few samples as outliers compared to
ENN. The SMOTE - Tomek link method removes samples which are identified/connected
as so-called ”Tomek links”, which is exactly the case when for two different samples x and
y (from two different classes) no other sample z exists such that:

dist(x, y) < dist(x, z) or dist(x, y) < dist(y, z) (3.26)
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whereby dist() corresponds to the distance between two samples [Tom76].

On the other side, ENN applies a nearest-neighbor strategy which removes samples if its
nearest neighbors do not fulfill a defined criterion e.g.: remove sample x if its three nearest-
neighbors do not include at least one common class. An illustration of how ENN is applied
on the result of SMOTE with a comparison to regular SMOTE can be found in Figure 3.11.

Figure 3.11: Oversample comparison of SMOTE and SMOTE + ENN. On the left-hand side we reported
an imbalanced dataset which we oversampled by applying SMOTE. It resulted in a balanced class distri-
bution of 50%, whereby some outliers from the majority class were appearing in the expanded minority
class (noise in green sample cloud). On the right-hand side we additionally applied ENN on these results
of SMOTE to undersample these produced outcome. This cleaning process lead thereby to a less noisy
oversample result which may consequently boost the performance of further clustering and ML techniques.

It is important to note that neither ENN nor Tomek link restricts itself to the minority
class only. The methods can be used to identify outliers and noise either in the minority
class, majority class, or the total dataset [BPM04]. Furthermore, it is also relevant to state
that by removing such identified samples, SMOTE can no longer guarantee to succeed in
balancing the classes (see right side Figure 3.11). Nevertheless, the overall performance
may still be improved due to a better overall data representation.
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Chapter 4
Experimental Setup
In this chapter, we will focus on the conducted experiments and evaluation processes
which we followed to find a possible solution for the stated problems in this thesis.
Thereby we will describe the basic setup of these experiments and provide insightful
information about each step in the development and evaluation process. Starting with
the section Datasets and Terminology which covers the most important characteristics and
background information about the gathered invoice datasets. Followed by the section Data
Analysis and Processing, which handles the attempted data analyzations and processing
steps, namely: data cleaning and initial data review, feature engineering and selection,
in-depth data analysis, and data preprocessing. Finally, the section Model Fitting, Selection,
and Optimization will cover the ML techniques which we used to build supervised learning
classifiers including evaluation strategies and model optimization methods.

For all conducted experiments and evaluations in this thesis we used the Python 3.6

environment with the following library setup:

• graphviz v0.8.2

• imbalanced-learn v0.3.3

• matplotlib v2.2.2

• numpy v1.14.2

• pandas v0.22.0

• scikit-learn v0.19.1

• scipy v1.0.1

• seaborn v0.8.1

• workalendar v2.4.0

whereby scikit-learn was the main library to construct the different ML models.

4.1 Datasets and Terminology
”An analysis can only be as good as the data on which it builds upon.”

While considering this well-known statement in Data Science, we discovered that getting
an authorized access to datasets which hold information about privacy critical business
documents with features regarding invoices or credit notes is an already difficult task for
itself. This section provides some background information on the used datasets and gives
an insight into the basic structure while aiming to ease the understanding of the underlying
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data on which this thesis is built upon. Additionally, this section will provide an overview
of the data terminology and the given feature contexts concerning the provided data.

Most of the public available datasets which aim to provide invoice information are either
covering governmental spendings (due to government disclosure regulations) or outgoing
purchase orders from companies to third parties. However, throughout most of these
datasets, we noticed a major absence of payment receipt information or a contrariwise
point of view (seller vs. buyer perspective). Meaning that these datasets could not provide
any value to our problems due to the missing time information of elapsed days between
invoice issue date and actual payment, or due to the misleading perspective of incoming
instead of outgoing invoices. Moreover, it is important to note that datasets from non-store
online retailers are most likely not able to provide any useful information either. The
reason for that is the immediate payment behavior of customers, which implies that no
late-payment is possible (e.g. payment by credit card). Nevertheless, we were able to find
two suitable datasets for our problems which considered the set limitations in this thesis.
The first dataset which we found was provided by EmcienScan1 and held a list of suitable
invoices, including all the needed features for a proper payment classification - this dataset
is further referred to as Dataset A. The original dataset from EmcienScan can be freely
downloaded as a comma-separated values (CSV) file from the companies support website2

(Accounts Receivable). Besides that particular dataset from EmcienScan, we got a granted
access to a real-world Enterprise-Resource-Planning (ERP) system which provided us a
database with outgoing invoices of two years by a small company based in Italy - this
dataset is further referred to as Dataset B. Unfortunately, the database from the ERP system
can not be published due to related privacy concerns.

Invoice Country Customer Issue Due Total Settled

00001 391 0000-0001 2012-01-03 2012-02-02 55.37 2012-02-16
00002 770 0000-0002 2012-01-03 2012-02-02 50.39 2012-01-23
00003 406 0000-0003 2012-01-03 2012-02-02 71.33 2012-01-30
00004 391 0000-0004 2012-01-03 2012-02-02 97.60 2012-02-25
00005 770 0000-0005 2012-01-03 2012-02-02 15.99 2012-02-15

Table 4.1: Representative samples from the used datasets which were employed to predict the invoice
payment outcome of on-time and late payments. Note that both datasets included the same basic features.

To compensate the lack of availability and to get a better understanding of the underlying
data, we provided an insight into the basic structure and characteristics of both datasets in
Table 4.1. It is worth to note that both datasets did not include any information about the
purchased goods or services, neither were any detailed background information about the
respective customers included. Six features consequently composed the basic information
of each provided invoice: three invoice related timestamps, two customer related fields
and the total amount of the corresponding invoice.

1 https://emcien.com
2 https://support.emcien.com/help/sample-data-sets
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In more detail these features were:

• Country: representing the country to which the invoice was issued to. Assuming that this
represents the main customer location. Partly no country assignment by name was possible
due to data anonymizations in Dataset A.

• Customer: representing the customer who purchased a specific service or goods. These
values were respectively anonymized by replacing names with integer values, if not already
provided in that format.

• Issue: referring to the issue date of the invoice. Assuming that this was the date when the
invoice was sent to the customer (either electronically or by postal delivery).

• Due: referring to the due date of the invoice, which corresponds to the last day on which the
retailer was still considering the invoice payment as on-time.

• Total: representing the total amount (including vat) which was charged by the retailer for
the provided service or goods.

• Settled: refers to the payment receipt day when the total invoice amount was settled/paid -
payment receipt on the bank account.

Further background information on a generalized invoice workflow can be found in
Section 1.1. The next section will continue to provide additional insight into the feature
distributions and the underlying feature engineering process on both presented datasets.

4.2 Data Analysis and Processing
4.2.1 Data Cleaning and Initial Review
An initial step which is always necessary when working with real-world data, is a data
cleaning and filtering process to overcome inconsistency and bias-variance problems
within the datasets. Our two datasets with which we worked in this thesis recorded
thereby a very different starting situation. On the one hand, Dataset A was an already
prepared and cleaned dataset which was intentionally constructed by EmcienScan for
classification and prediction tasks, which did therefore not require any special cleaning
or filtering. On the other hand, the real-world Dataset B from the Italian companies
ERP system showed some common obstacles which still needed some fine-tuning. By a
manual inspections process of the samples in Dataset B, we observed that it notably lacked
concerning data cleansing and some thesis limitation contradictions. That means besides
invoices from one-time customers and invoice which did not have any settlement date or
due date yet, we also discovered some outliers and noise within the dataset which needed
to be cleaned out before starting a more detailed data analyzation process.

Dataset A held out of the box 2.466 individual invoices from almost two years (January
2012 - December 2013) whereby each invoice held initially 12 features. Due to incon-
sistency among the presence of the features in both datasets, we had to drop six of
them to end up with the same features in both datasets. Consequently, we dropped the
features: paperless date, invoice number, disputed, paperless bill, days to settle, and days late.
Thereby we want to note that features like days to settle or days late got reconstructed
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in a later preprocessing step. Besides these interventions, no further steps were neces-
sary to prepare the data for the initial analysis process. As an additional side note, we
want to mention that the dataset did not contain any invoices from one-time customers.

Dataset B held a set of 531 individual invoices which were extracted from the Italians
company ERP system and covered almost three years of issued bills (March 2015 - Febru-
ary 2018). By manually looking at the data, we discovered that some of the represented
invoices were most likely still involved in an ongoing order handling process due to
missing information like customer location, settlement date, or due date. Furthermore, we
discovered that the feature which represented the main customer location showed some
distortions regarding an inconsistency of the country names e.g. spelling or style mistakes.
Consequently, we decided to drop all the invoices which were likely to be involved in an
ongoing invoice creation process (containing NaN values in the due date or settlement
date) and fixed the country name inconsistencies by replacing spelling or style difference
to a common standard. Moreover, it is important to note that we further dropped invoices
which were either only partially or not at all paid by the customers (due to possible insol-
vency problems). Besides that, we also removed invoices which were issued to one-time
customers, since it referred to a contradiction to our set limitations in this thesis. Last
but not least, we manually checked for noise and outliers which represented purchases
way over the usual standard behavior of established customers. To do this, we filtered
out invoices which showed either a purchasing behavior of a very high or very low total
invoice amount. Finally, we ended up with a cleaned dataset holding the same character-
istics as Dataset A which ultimately contained a total amount of 361 individual invoices.

Once the datasets had been cleaned and filtered, such that a reasonable amount of data
variance could be assumed, the next step was to perform an initial data review which
aimed to reveal the underlying data structure. Consequently, we continued to analyze the
related feature frequency distributions as well as the overall invoice payment behavior
distribution of on-time and late payments. Note that we performed these analyzations
again on both datasets individually.

In our thesis we generally distinguished between categorical and numerical features
whereby we considered the related timestamp values (which are commonly ordinal cyclic
features) as part of the categorical features. Regarding the evaluations of the categorical
features, we evaluated the statistical measurements of the maximal and minimal frequency
counts as well as the unique quantity of feature values. For the numerical features, we
reported the mean and the corresponding minimal and maximal values. We presented the
results of these evaluations in Table 4.2 for Dataset A and in Table 4.3 for Dataset B.

Based on these measurements, we were able to gain a further understanding of the used
invoices and their related feature characteristics. The results allowed us thereby to see for
example how many unique customers the datasets covered or what the average amount
of each invoice in the dataset corresponded to. As we looked for example on the results
from Dataset A, we saw that each of the 100 unique customers held a minimal number
of 15 invoices whereby a normal distribution considering the invoice amounts seemed to
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be likely. On the other hand, the results of Dataset B showed that the minimal number
of invoices which were guaranteed for each customer was only two. Furthermore, we
observed that the invoice amounts of both datasets differed very strongly, whereby Dataset
B covered rather high invoice amounts compared to Dataset A. Moreover, these statistical
measurements shed a light on the frequency of issued invoices in different countries, and
the related frequency of the companies invoice issuing behavior.

categorical

stats country customer issue due settled

count 2.466 2.466 2.466 2.466 2,466
unique 5 100 681 681 695

freq min 387 15 1 1 1
freq max 616 36 10 10 10

numerical

stats total

count 2.466
mean e 59,89
min e 5,26
max e 128,28

Table 4.2: Statistical analysis results on Dataset A which show the basic characteristics of each feature in the
dataset. To facilitate the representation, we separated our categorical and numerical features into two tables.

categorical

stats country customer issue due settled

count 361 361 361 361 361
unique 5 125 196 196 235

freq min 5 2 1 1 1
freq max 338 15 7 7 7

numerical

stats total

count 361
mean e 25.348,61
min e 110,50
max e 610.000,00

Table 4.3: Statistical analysis results on Dataset B which show the basic characteristics of each feature in the
dataset. To facilitate the representation, we separated our categorical and numerical features into two tables.

Next, we proceeded by analyzing the distribution of invoices which were considered
as on-time payments versus invoices which were handled as late payments. To do this,
we reported the elapsed days between the issue date and the settlement date for each
of the invoices. If this number was less than the established payment terms, the invoice
was considered as an on-time payment, while when this number exceeded these terms,
the invoice was seen as a late payment. In Dataset A, the payment terms were given by
looking at the time difference between the invoice issue date and the corresponding due
date; which resulted in payment terms of 30 days. Unfortunately, in Dataset B we did not
have the actual due date of each invoice but rather only the background information that
the payment terms which were stated on each invoice were ”Payment upon receipt”. As
already briefly discussed in Section 1.1, this type of payment term may be problematic due
to often rather ”freely” interpreted conditions from the customer’s side [Lim15; Inc16].
Due to this lack of information, we decided to approximate the payment terms in Dataset B
by calculating the average days it commonly took a customer to pay an invoice. The results
from this experiment corresponded thereby to 19 days. Next, we continued to calculate
the same measurement for Dataset A which resulted in 28 days. As a final revealment,
we concluded that the actually considered payment terms for the Dataset B were thereby
21 days (3 weeks), whereby we compared the calculated number of 19 days with the
calculated baseline of Dataset A (28 days) and its corresponding payment terms of 30 days.
It is important to note that changes in these payment terms might completely distort the
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presented results in this thesis. We illustrated a final summary of the on-time and late
payments distributions in Figure 4.1. Note that in both datasets the class distribution was
somewhat similar which reinforces a correct assumption about the calculated payment
terms of 21 days in Dataset B.

Figure 4.1: Class distributions in the used datasets, showing that both datasets held fairly the same distribu-
tion of on-time and late payments with a ratio of 70% to 30%.

4.2.2 Feature Engineering and Selection
A good dataset basis is only half the story when it comes to the development process
of a reliable ML classifier. Feature engineering and feature selection is generally an
iterative process and counts to one of the most crucial steps when developing a proper ML
classifier. In the previous section, we gained a better understanding of the used datasets
and its characteristics, as well as an overview of the underlying class distributions. In this
section, we review how we used this knowledge for feature engineering and thus present
the constructed and selected features for our model fitting process.

Due to our set goal of predicting whether a customer will pay an invoice on-time or
not, we constructed our features on an invoice basis along with the historical customer
payment behaviors. That means within our feature matrix, each row represented ex-
actly one invoice whereby the customer historical payment behaviors were considered
as features of each invoice. In total, we worked thereby with 12 features which we ex-
tracted from our available invoices - consisting of 10 numerical features, 1 categorical
feature, and 1 target feature. The target feature stated thereby the ground-truth class
of each invoice, representing if it was an on-time or a late payment. We presented a
complete list with short accompanying description of the engineered features in Table 4.4.
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Feature Description Type

country main customer location categorical
total invoice total amount (including vat) numerical

non business days
number of closed business days

within invoice lead time
numerical

prior total
number of prior paid invoices

(late payments + on-time payments)
numerical

prior total late number of prior late paid invoices numerical

prior paid
total amount of prior paid invoices

(late payments + on-time payments)
numerical

prior paid late total amount of prior late paid invoices numerical
ratio prior paid late ratio of prior late paid invoices numerical
recent paid ontime days elapsed days from last on-time payment numerical
recent paid late days elapsed days from last late payment numerical

avg days late
average days of payment delay

over all passed payments
numerical

payment receipt ground-truth payment label: ”on-time” or ”late” target

Table 4.4: List of used features for the payment classification process. Composed of 12 engineered features:
10 numerical features, 1 categorical feature, and 1 ground-truth target. Each feature refers to the past payment
behavior of the respectively consider customer.

To extract our set of features for each invoice, we had to iterate through all the available
customers while considering each time the corresponding subset of related invoices. That
means we had to pick each of the customers, including his or her related list of invoices
and consequently extracted the past customer payment behaviors for each of those
invoices. Some examples are thereby the number of previous late payments or the recent
elapsed days from the last on-time payment. This process further implied that we needed
to consider the time-related aspect of each invoice which required a previous sorting by
their issue date. In the end, each invoice of our datasets corresponded to one row in our
feature matrix whereby the stated features corresponded to the columns of this matrix.

The overall goal of our feature engineering process was to keep the feature dimensions
as low as possible while constructing only those features which were most valuable for
the invoice classification task. During the feature engineering process, we encountered
thereby some challenging difficulties considering the equivalency among features and the
iterative feature improving process. For example, as we investigated the time series of
when invoices get issued and when the corresponding due date was set, we tried to find
an essential feature in the monthly or weekly aspect which could possibly help in the later
classification process. Our assumption was thereby that invoices whose due dates were set
on a Saturdays or Sundays, get less likely paid on-time. However, this assumption was
generally wrong as we observed from corresponding time series analyzations. However,
we fine-tuned this assumption and finally came up with the feature non business days
which covers the number of state holidays and weekends altogether. This feature is thereby
reflecting the number of days a company has closed its business concerning the invoice
lead time. As it turned out, this features was much more valuable as only the consideration
of weekends. With the help of the constructed correlation matrix, we were further able to
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identify features which were considered equivalent to others. As an example, we initially
started with the features ratio prior payed late and ratio prior payed ontime. Obviously one
of those features was already sufficient since the other simply reflected the counterpart of
this ratio. However, with the help of the correlation matrix, such critical edge cases were
identified automatically. In the end, we ended up dropping such identified features which
showed strong relationships among each other. To do this, we dropped features with a
rather high correlation coefficient very close to -1 or +1 (we presented an overview of these
corresponding correlation matrices for both of our datasets in the next subsection).

Last but not least, the actual feature selection process was conducted manually. That
means on an iterative trial-and-error basis, features were manually added and removed
based on the validation results of the individual ML classifiers and the in-depth feature
analyzations in the next subsection. Besides that, it is again important to note that most
of the used features were only valuable under the assumption of using invoices from
returning customer only (not one-time customers).

4.2.3 In-Depth Data Analysis
As we have constructed our features for the payment prediction process, we continued
with a related feature analysis. The aim of this analysis was thereby to get a better
understanding of the individual feature distributions and their relations to each other. We
further used this knowledge to identify the essential features for the prediction process,
and to get a feeling of the possible modeling process itself. Note that the feature analysis
was thereby again performed on both datasets individually.

First of all, we started again with some standard statistical evaluations to get a better
overview of the engineered features and their frequency distributions. As mentioned
earlier, our features were thereby categorized into numerical and categorical features.
To facilitate this analysis, we performed different statistical measurements on these two
feature groups independently. For the numerical features, we reported the mean, standard
deviation, and minimal and maximal values. For our categorical feature country, we
reported the number of unique values and the corresponding maximal and minimal
feature frequencies. We presented all of these evaluation results in Table 4.5 and Table 4.6.

With the help of these results, we were finally able to learn a lot about our constructed fea-
tures and their distribution in the related datasets. For example, revealed that the invoices
from Dataset A tended to delay only half as much as invoices from Dataset B, whereby the
overall maximum payment delay was at about 60 days. At this point, we already assumed
that feature like avg days late or prior paid late might especially be important for our upcom-
ing payment classifications. By investigating the related statistical measurements, we got
already a good feeling of how the whole picture in the underlying datasets looked like. A
very striking difference between the two datasets could however be observed while investi-
gating the statistical evaluations of the features prior total and prior total late. These huge
difference between our two datasets indicated already that these features are most likely dif-
ferently ranked among the individual classifier feature importance. Furthermore, we think
that a unified model would not be able to rank these features in a proper way which implies
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that they could be rather useless for such a specific scenario. However, in our case on the
construct of company-specific classifiers, these features might be valuable due to considera-
tions of the established customer’s payment behaviors based on particular invoice amounts.

stats avg days late non business days prior paid prior paid late prior total prior total late

mean 6,11 8,87 12,27 4,67 729,93 282,36

std 5,40 0,84 7,88 5,58 509,32 347,20

min 0,00 8,00 0,00 0,00 0,00 0,00

max 31,00 10,00 35,00 31,00 2.563,22 1.804,78

stats ratio prior paid late recent paid late days recent paid ontime days total stats country

mean 0,38 68,27 38,78 59,90 count 2.466

std 0,37 106,14 54,61 20,44 unique 5

min 0,00 0,00 0,00 5,26 min freq ”391”

max 1,00 641,00 533,00 128,28 max freq ”818”

Table 4.5: Statistical feature analysis results on Dataset A which shows their basic feature characteristics.
The categorical and numerical features have thereby been split into separated tables to facilitate the analysis
structure considering the different measurement criteria.

stats avg days late non business days prior paid prior paid late prior total prior total late

mean 4,62 6,01 1,27 0,42 93.773,06 26.433,93

std 11,34 0,10 1,94 1,07 372.022,80 135.841,10

min 0,00 6,00 0,00 0,00 0,00 0,00

max 57,00 7,00 14,00 7,00 2.720.179,00 1.133.925,00

stats ratio prior paid late recent paid late days recent paid ontime days total stats country

mean 0,16 22,45 58,13 25.348,61 count 361

std 0,32 55,87 96,08 60.392,42 unique 5

min 0,00 0,00 0,00 110,55 min freq Austria

max 1,00 344,00 680,00 610.000,28 max freq Italy

Table 4.6: Statistical feature analysis results on Dataset B which shows their basic feature characteristics.
The categorical and numerical features have thereby been split into separated tables to facilitate the analysis
structure considering the different measurement criteria.

To additionally support the analyzations for our categorical feature country, we further
evaluated the customer payment behaviors for each country individually. Thereby we re-
vealed that certain countries perform way better in comparison to others. As a counterpart,
we also calculated the respective probabilities for invoice late payments in each country.
We reported the respective frequency evaluations in Figure 4.2, and the the conditional
late payment probabilities in Table 4.7.

50



4 Experimental Setup

Figure 4.2: Payment behavior distributions by country for the used datasets. The respective invoices were
counted, reported, and categorized into ”on-time” and ”late” payments to visualize the different payment
behavior distributions for each country individually.

Dataset A

country P(late | country)

391 25,49 %
770 38,74 %
406 41,53 %
818 41,34 %
897 33,08 %

Dataset B

country P(late | country)

italy 31,07 %
austria 0,00 %

germany 40,00 %
luxembourg 85,71 %
switzerland 0,00 %

Table 4.7: Late payment probabilities for the individual countries in both datasets. Representing the condi-
tional probabilities that an invoice payment will arrive late under a given customer main country.

As visible from the results above, there existed some specific trend within the customer
willingness to an invoice on-time concerning his or her main location. From the results
in Dataset A we could reveal that especially customers from the country ”391” had a
higher tendency to pay on-time while their probability to pay late was only 25,49%.
Compared to other customer locations in this dataset, this was an already valuable
conclusion. Similarly, the analyses on Dataset B revealed that customers from Italy had
a way higher tendency to pay invoices on-time than customers from other countries in
this datasets. However, it is important to note that Dataset B represented only a tiny
fraction of customers from other countries than Italy. This observation could therefore
not be neglected and implied that even though the late payment probability of 31,07%
in Italy provided a valuable insight, the probabilities concerning other countries in
this dataset needed to be handled with caution. Consequently, we decided to drop the
feature country from our feature matrix in Dataset B to prevent possible bias problems
towards invoices classification difficulties which were not issued to customers based in Italy.
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To visually back the frequency analysis of the numerical features, we continued by plotting
the related boxplots and histograms. For clarity reasons, we discuss in this subsection
only the most unique outcomes which showed the most relevant results for the upcoming
invoice payment classification process. A full overview of the constructed boxplots
and histograms was however provided in Figure 4.4 and Figure 4.5 for Dataset A, or
respectively Figure 4.7 and Figure 4.8 for Dataset B. Moreover, we investigated how those
numerical features relate to each other with the help of a scatter plot construction. Again,
this subsection will only discuss the most characteristic results, whereby the full scatter
plot is presented in Figure 4.3 for Dataset A and Figure 4.6 for Dataset B.

Out of our ten numerical features, three particular ones caught our attention: avg days late,
prior paid late, and ratio prior paid late. Note that all of these features reflected thereby
the customer’s payment behavior considering the amount of previouse late payments.
Primarily, the analyzation of the constructed scatter plots has helped us thereby to identify
these three features, whereby we think that they might be the most important ones to
distinguish between on-time and late payments.

From these results we could for example derive that the feature ratio prior paid late must
most likely be a valuable characteristic for the upcoming classification task, as its associated
payment receipt distribution showed some good separability among both classes. Conse-
quently, we could argue that the higher the ratio of prior late payments of a particular
customer, the higher also the probability of future late payments. Similarly the other two
features prior paid late and avg days late could be reviewed. Contrary to Dataset B where our
investigations revealed that the feature prior paid late did not provide such a clear separabil-
ity among both classes. Nevertheless, we observed that some particular values for on-time
payments seemed to incorporate with some specific use cases, which is why we thought
that this feature might still be important for the upcoming classification task in Dataset B.

In combination with the constructed boxplots and histograms, we could further de-
rive the distribution of our numerical features within both datasets. With the help of
these results we were consequently able to construct a better picture of the overall cus-
tomer late payment behavior. We reported the results of these evaluations in Figure 4.4
and Figure 4.5 for Dataset A, or respectively Figure 4.7 and Figure 4.8 for Dataset B.

To conclude our feature analysis, we constructed the respective feature correlation matrices
for both datasets which we reported in Figure 4.9 for Dataset A and in Figure 4.10 for
Dataset B. It is important to note that these matrices represent the relationship between
all categorical and numerical features in the datasets, whereby we dropped the categor-
ical feature country in Dataset B due previously identified possible problems during the
upcoming classification task.
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Figure 4.3: Scatter plots of all numerical features in Dataset A. The individual plots represent thereby
the relationship between features, and were particularly helpful to determine how each numerical feature
contributed to different on-time and late payment behaviors. Especially the feature ratio prior payed late seemed
to be a suitable classification indicator due to its good separability between both classes.
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Figure 4.4: Boxplots of the all numerical features in Dataset A which demonstrate the individual feature
distributions within the used dataset. The most characteristic features were thereby (i) avg days late: average
days an invoice was considered overdue, (ii) prior paid late: number of previously late paid invoices, and (iii)
ratio prior paid late: the overall ratio of previously late paid invoices in proportion to all paid invoices.

Figure 4.5: Histograms of all numerical features in Dataset A which demonstrate the individual feature
distributions within the used dataset. The most characteristic features were thereby (i) avg days late: average
days an invoice was considered overdue, (ii) prior paid late: number of previously late paid invoices, and (iii)
ratio prior paid late: the overall ratio of prior late paid invoices in proportion to all paid invoices.
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Figure 4.6: Scatter plots of all numerical features in Dataset B. The individual plots represent thereby
the relationship between features, and were particularly helpful to determine how each numerical feature
contributed to different on-time and late payment behaviors. Especially the feature ratio prior payed late and
prior paid late seemed to be a suitable classification indicator due to its good separability between both classes.
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Figure 4.7: Boxplots of the all numerical features in Dataset B which demonstrate the individual feature
distributions within the used dataset. The most characteristic features were thereby (i) avg days late: average
days an invoice was considered overdue, (ii) prior paid late: number of previously late paid invoices, and (iii)
ratio prior paid late: the overall ratio of previously late paid invoices in proportion to all paid invoices.

Figure 4.8: Histograms of all numerical features in Dataset B which demonstrate the individual feature
distributions within the used dataset. The most characteristic features were thereby (i) avg days late: average
days an invoice was considered overdue, (ii) prior paid late: number of previously late paid invoices, and (iii)
ratio prior paid late: the overall ratio of prior late paid invoices in proportion to all paid invoices.
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Figure 4.9: Correlation matrix of all features in Dataset A which reflects the relationship between all
numerical and categorical features in the respective dataset. Note that coefficient values close to +1 and -1
represented thereby a strong relationship between features whereby a coefficient value close to 0 represented a
very low relationship among features. It is important to restate that we kept the categorical feature country for
Dataset A because our analysis revealed that it should not cause any problems for the upcoming classification
task. Moreover, we already preprocessed these categorical features (see one-hot encoding in next section), which
is why we finally ended up with 15 different features for Dataset A.
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Figure 4.10: Correlation matrix of all features in Dataset B which reflects the relationship between all
numerical and categorical features in the respective dataset. Note that coefficient values close to +1 and -1
represented thereby a strong relationship between features whereby a coefficient value close to 0 represented a
very low relationship among features. It is important to restate that we did not include the categorical feature
country for Dataset B because our analysis revealed possible problems during the upcoming classification
process with invoices which were issued to other countries than Italy. This implied that we consequently
ended up with 10 different features for Dataset B.
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4.2.4 Data Preprocessing
Before we could start with the actual model fitting process, we needed to prepare
our datasets and features. This process involved feature encoding, feature scaling or
standardization, dataset oversampling, and a final dataset splitting into a training and
test set. In this subsection, we will shortly review each of these processing steps and
presents the results of the most characteristic outcomes. It is important to note that the
process of oversampling serves thereby just as an illustrative instance since the actual
oversampling process has been repeated several times during the training of each classifier.

The process of Feature Encoding refers to our categorical features and was the first step
which we considered. It covered thereby the process of transforming our categorical
features into numerical ones. This step was necessary so that all our ML models could
work with these type of features. Except for DT and RF, all other proposed classifiers
in this thesis do require this specific setup since they cannot operate on labeled data
directly (e.g. strings, dates, etc.). In practice, two strategies are commonly used to achieve
this transformation. The most simple method is integer encoding. This method assigns
to each unique categorical value a corresponding integer number which replaces each
categorical feature value. Assuming for example that we want to encode all months of a
year, this method would simply assign the numbers 1 to 12 to each of the months. The use
of this strategy is however task dependent due to its disadvantage of assigning integer
values in a natural ordering. In specific ML models such as KNN, this may thereby lead
to some unexpected side effect because higher values are considered to have stronger
relations than lower ones (due to distance considerations between features). The second
commonly used method, which overcomes this problem, is one-hot encoding. This method
replaces each categorical feature with a new set of binary features whereby each new
binary feature represents a unique value of the categorical feature space. Referring again
to the example of encoding the months of a year, this strategy would delete the original
categorical features and replaces them with 12 new binary features. Each of those features
corresponds thereby to a binary value which represents the original state from the categor-
ical features. In our thesis we concluded that the use of one-hot encoding would thereby be a
better-suited strategy since our categorical feature country did not include any ordinal rela-
tionships. We provided an illustrative example of the one-hot encoding strategy in Table 4.8.

Original Feature

. . . country

Invoice 1 . . . Austria
Invoice 2 . . . Italy
Invoice 3 . . . Italy
Invoice 4 . . . Germany

⇒
⇒

One-Hot Encoded Feature

. . . Austria Italy Germany

Invoice 1 . . . 1 0 0
Invoice 2 . . . 0 1 0
Invoice 3 . . . 0 1 0
Invoice 4 . . . 0 0 1

Table 4.8: Example of applying one-hot encoding on a categorical feature. The original feature country gets
replaced by three new binary features which values are set according to the original feature state of the removed
categorical feature- this strategy might drastically increase the dimensions of the underlying feature matrix.

Feature Scaling and Standardization relates generally to the process of transforming
the independent feature values into a common range. Usually, all the provided features
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values tend to vary drastically in their original range of values which might strongly
influence the outcome and performance of different ML classifiers. To overcome this
problem, we distinguish between scaling which refers to the min-max scaling process and
standardization which refers to the z-score standardization (see Section 3.3.1). Whether a
scaling or standardization process needs to be performed is thereby again task dependent.
Note that many of the proposed classifiers in Section 3.1 do not necessarily require
such a preprocessing step. However, for convenience purposes applying the z-score
standardization method is generally known as a good habit which may results in a
more robost classifier behavior. Nevertheless, some classification methods needed some
special attention. The proposed KNN classifier considers for example the use of the
Euclidean or Manhatten distance to classify samples. Thereby it is very important
to respectively scale all the features such that a higher or lower feature value does
not distort the prediction outcome of the classifier per se. We provided an overview
of the applied scaling and standardization processes for each considered classifier in Table 4.9.

Oversampling is a common method to overcome the problem of imbalanced datasets
as described in Section 3.4. During the initial dataset review we discovered that both of
our used datasets are rather imbalanced (see Figure 4.1), and further also rather small
considering their sample sizes. Consequently, we concluded to finally use the oversampling
strategies ROS, SMOTE and SMOTE + ENN. All of these three oversampling strategies
have been finally in use during our model fitting procedure. Consequently, we provided an
overview of the basic class distribution after applying these three oversampling methods in
Figure 4.11 for Dataset A and Figure 4.12 for Dataset B. Thereby it is important to note, that
these results serve only for illustrative purposes since the actual oversampling procedure
has been repeated several times during the model fitting process. The multiple application
of oversampling methods had thereby been followed to overcome lucky situations where
the sampling process might have picked only easy samples considering the reproduction
of synthetic samples or the later classification process. As one can see from our presented
results, ROS and SMOTE produced exactly balanced class distribution. Unlike SMOTE
+ ENN which did not necessarily guarantee an accurate class balance of 50% due to
the additional focus on an outlier removal process with the help of the ENN algorithm.

Classifier Scaling/Standardization Method Required

Naive Bayes z-score standardization No
Logistic Regression z-score standardization No
Decision Tree z-score standardization No
Random Forest z-score standardization No
K-Nearest Neighbors min-max scaling Yes
Support Vector Machine min-max scaling Yes

Table 4.9: Feature scaling and standardization overview per classifier. All classifiers which make predictions
based on distances or similarity measurements require a mandatory scaling or standardizing process. However,
the application of z-score-standardization is usually a good habit to ensure a more robust classifier behavior.
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Figure 4.11: Application of ROS, SMOTE and SMOTE + ENN on Dataset A. Note that ROS and SMOTE
focused only on the oversampling process, which resulted in a class balanced dataset of the same
size. SMOTE + ENN applied an additional outlier detection process on the results of SMOTE which re-
sulted in fewer samples with a slightly skewed dataset classes - fewer on-time payment invoice samples.

Figure 4.12: Application of ROS, SMOTE and SMOTE + ENN on Dataset B. Note that ROS and SMOTE
focused only on the oversampling process, which resulted in a class balanced dataset of the same
size. SMOTE + ENN applied an additional outlier detection process on the results of SMOTE which re-
sulted in fewer samples with a slightly skewed dataset classes - fewer late payment invoice samples.

The last step which we needed to perform before starting with the model fitting process
was Dataset Splitting. This step refers to splitting the original dataset into a corresponding
training and test set. Generally, we can see this step as a very essential requirement to
properly evaluate a ML classifier. The basic idea bind this subset construction is that a ML
classifier should never see a specified portion of data until the final evaluation process to
prevent the model from possible overfitting. In other words, the subset which gets extracted
as the test set should never be touched again until the final model evaluation. The training
set is thereby the only source which serves for training and validation purposes. The
splitting process itself is rather straightforward, but still, two main concepts need to be
considered. First, the size of the test set should not be chosen too small but also not too
big. An established ratio for the test set is thereby around 20% to 30% of the original
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dataset size. The intention is thereby to pick a decent amount of samples which cover
the most of the variance in the original dataset so that real-world circumstances can
be simulated in the final model evaluations. The second important step refers to the
random sampling process when splitting the data. This means that the data samples have
to be picked randomly (without replacement) such that approximately the same class
distribution within in the final training and test set can be expected. In our experiments
we decided to stick with a ratio of 70% (training set) to 30% (test set) for both of our
datasets. We presented the final results of this dataset splitting procedure in Figure 4.13 for
Dataset A and in Figure 4.14 for Dataset B.It is further necessary to note that we previously
sorted all our invoices within the datasets according to their issue date and selected the
last 30% of the dataset as or test set, which allowed us to create some realistic training
and test sets for the upcoming model training and evaluation. Note that the underlying
class distribution within our final training and test sets held thereby approximately
the same distribution of on-time and late payment invoices in both of our datasets.

Figure 4.13: Class distribution of the final training and test set in Dataset A, whereby the test set repre-
sented the last 30% of issued invoices to ensure realistic circumstances during our classifier evaluations.

Figure 4.14: Class distribution of the final training and test set in Dataset B, whereby the test set repre-
sented the last 30% of issued invoices to ensure realistic circumstances during our classifier evaluations.
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4.3 Model Fitting, Selection andOptimization
In this section, we will finally cover the conducted steps to develop a supervised
classification model which should be able to classify invoices such that on-time payments
can be distinguished from late payment already upon the creation of an invoice. For clarity
reasons, we split this section into two subsection where each covers different steps in our
development procedures. Model Parameter Optimization reviews the process to determine
the best-suited hyperparameters for each model, and Model Fitting, Selection and Testing
covers the process of evaluating the overall performance of each classifier based on their
reported accuracy scores. Furthermore, we finally present in this section also the model
selection process and the construction of additional ensemble strategies on which the final
classifier performances got evaluated.

Our datasets were at this point already prepared and preprocessed, which is why we
could further use the defined training set for training and validation purposes while
the test set got only used for the model evaluation process only. This means that the
test set was only used to check how well our created models performed on unseen
data (simulate real-world circumstances). Throughout our hyperparameter determination
process, and the model fitting procedure, we performed multiple oversampling itera-
tions to overcome lucky situations where the oversampling process might have lead to
evaluation problems. Moreover, to support the upcoming model fitting, selection, and
optimization steps, we provided an illustrative workflow procedure in Figure 4.15 which
serves as a baseline to back the understanding while guiding through our model de-
velopment process. To determine the most suitable classification models, we evaluated
each of the discussed classifiers in Section 3.1, namely: Naive Bayes, Logistic Regress,
Decision Tree, Random Forest, K-Nearest Neighbors, and Support Vector Machine. More-
over, we made use of the ensemble strategies AdaBoost and a Soft-Voting classifier which
served as additional models to possibly enhance out evaluations performances even more.
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Figure 4.15: Illustrative model fitting, selection, and optimization workflow which was used in this thesis to develop a suitable supervised classification
model for invoice payment classification into on-time and late payments - supportive workflow to enhance the understanding of our development strategy.

64



4 Experimental Setup

4.3.1 Model Parameter Optimization
Before we started with the actual model training process, we needed to find some suitable
hyperparameter setups for the individual classifiers. To do this, we followed the upcoming
procedure. First, we needed to determine a set of available and useful hyperparameters
which were supported by the scikit-learn library for each of the used classifiers. Thereby it
is important to note, that each model holds its own hyperparameters which may differ in
their quantity and value ranges. Once we had chosen the most suitable hyperparameters
and their corresponding value ranges (see Table 4.10) we continued to take the prepared
training set and applied an oversampling technique to achieve a balanced class setup.
Next, we started to evaluate the best combination of hyperparameters for each model
by applying k-fold CV and the Grid-Search technique. The parameters for k-fold CV
have thereby been adapted to the size of the corresponding datasets. This means that
with the bigger Dataset A we used k = 10 and for Dataset B we used the leave-one-out
(LOO) strategy due to the lack of available data. Regarding the scoring method which was
used by Gird-Search to compare the individual model results, we used the accuracy score.
The procedure of oversampling and application of k-fold CV has thereby been repeated
100 times to overcome lucky situations during the oversampling process (especially
important for SMOTE and SMOTE + ENN). In each iteration, the best hyperparameter
setup and the corresponding accuracy score got reported for each classifier. In the end,
we had a list of hyperparameters with the corresponding average accuracy score which
was reported from the k-fold CV process. This list of hyperparameters got consequently
sorted for each classifier by their accuracy scores, and finally, the hyperparameter
setup with the overall median accuracy had been picked as the final setup. We pre-
sented the results of these hyperparameter setups for each model and dataset in Table 4.11.

65



4 Experimental Setup

Classifier Hyperparemters Values

Naive Bayes – –
Logistic Regression C [0.001, 0.01, 0.1, 1, 10, 100]
Decision Tree max depth [1, 5, 10, 15, 20]

max f eatures** [2− 15]
min samples lea f [1, 5, 10, 15, 20]

criterion [entropy]
Random Forest max depth [1, 5, 10, 15, 20]

max f eatures** [2− 15]
min samples lea f [1, 5, 10, 15, 20]

n estimators [10, 15, 20, 25]
criterion [entropy]

K-Nearest Neighbors n neighbors* [15, 20, 25, 30, . . . , 100]
Support Vector Machine kernel [rb f ]

gamma [0.01, 0.1, 0.2, 0.5, 1, 10]
C [0.001, 0.01, 0.1, 1, 10, 100]

Table 4.10: Hyperparameters and value ranges for the used classifier models which have been considered in
this thesis. Note, that this table does not cover all possible parameter settings which were provided by the
scikit-learn library. All parameters which are not present in this table, but supported by the scikit-learn library,
were set to the suggested default values.

*We ran into problems while evaluating the rather small Dataset B and the sampling method SMOTE + ENN.
The dataset did not provide enough samples to calculate the corresponding neighbors for KNN up to 100. To
compensate this problem, we needed to reduce this range to a maximum of 50 neighbors. Moreover, it is
also important to state that the corresponding range of neighbors for KNN did not start at exactly 1 due to
possible overfitting problems which could be caused by the oversampling methods.

**For evaluations on Dataset B, we used the parameter range 2-10 due to the reduced set of features.
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Dataset A Dataset B

Classifier Hyperparameter ROS SMOTE SMOTE + ENN ROS SMOTE SMOTE + ENN

Naive Bayes – – – – – – –
Logistic Regression C 0.1 0.01 1 0.01 0.01 0.1
Decision Tree max depth 16 6 11 16 16 11

max f eatures 6 15 12 15 10 12
min samples lea f 1 11 1 1 1 1

criterion entropy entropy entropy entropy entropy entropy
Random Forest max depth 16 16 16 16 16 11

max f eatures 12 8 4 4 8 4
min samples lea f 1 1 1 1 1 1

n estimators 25 25 25 25 25 25
criterion entropy entropy entropy entropy entropy entropy

K-Nearest Neighbors n neighbors 85 75 15 40 25 15
Support Vector Machine kernel rb f rb f rb f rb f rb f rb f

gamma 10 10 10 10 10 10
C 10 10 100 100 100 10

Table 4.11: Best hyperparameter setups for each model in Datset A and Dataset B. We selected the best combination of hyperparameters based on the
most suited accuracy score evaluations which were calculated by repetitive application of k-fold CV.
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4.3.2 Model Fitting, Selection and Testing
Once the most suitable hyperparameters for our models were found, we started to
evaluate the performance of the individual classification models. Our goal was thereby to
determine the classifiers which were most suited for our invoice payment classification
task. To do this, we used again the training set, oversampled it and trained each of the six
models with the optimized hyperparameters, followed by a k-fold CV which reported the
average accuracy score. Again, for the bigger Dataset A we used k = 10 and for Dataset B
we used LOO. As in the search for the best hyperparameters, we repeated this process 100
times to overcome lucky situations during the oversampling process. At this point, we
want to note again that we used three different oversampling strategies which is why the
whole procedure was reproduced three times with ROS, SMOTE, and SMOTE + ENN. The
results of these different classifier evaluations were finally summarized in several boxplots
to neatly present the average performances of the 100 training and validation iterations
for each classifier. We reported the results for Dataset A in Figure 5.1 (ROS), Figure 5.3
(SMOTE), and Figure 5.5 (SMOTE + ENN). Similarly, we reported the results for Dataset B
in Figure 5.11 (ROS), Figure 5.13 (SMOTE), and Figure 5.15 (SMOTE + ENN).

These boxplot evaluations further revealed that the classifier performances seemed to
be strongly influenced by the used oversampling methods. At this point, we already
assumed that the results from the applied sampling methods with ROS and SMOTE
+ ENN had a rather strong tendency to overfit our models on the training data. To
approve this assumption, we continued to test our models on the held-back test set,
which finally allowed us to report the actual performance of our models on unseen data
(constructed real-world circumstances). We reported the respective confusion matrices
and evaluation metrics on the test set for each of our models in the following result
Chapter 5. Furthermore, we picked the top three classification models which showed the
highest overall accuracy score in the related boxplot evaluations, and constructed four
additional ensemble classifiers. This was done with the help of AdaBoost and a Soft-Voting
classifier to further possibly increase the performance of our classification models. From
the resulting evaluations on the test set, we received the approving feedback that the
models which were trained on the oversampled datasets with ROS and SMOTE + ENN
were actually overfitting. Moreover, we revealed that SMOTE + ENN removed too many
samples during the related outlier detection process which most likely removed only
samples which were hard to classify (more details in Chapter 6). This is why we decided to
performe the final evaluations of the ensemble classifiers only on the oversampled dataset
with SMOTE. We reported also these evaluation metrics in the following results Chapter
5. To further clarify this final model training and testing process, we want to state again
that the defined training set and the held-back test set were both oversampled with the
respectively used methods of ROS, SMOTE, and SMOTE + ENN. This means that the
models were trained on the fully oversampled training set, whereby the final evaluations
were performed on the oversampled test set. Moreover, it is important to note that we did
not repeat the oversampling process 100 times for our final evaluations because we already
learned from previous experiments that the use of SMOTE did not influence the actual
classification results by much. In the end, we finally selected the most suited classifiers
for our task of on-time and late payment classifications with the help of our evaluation
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metrics on ROC and the F1-Score. We present all accompaning result, evaluation metrics,
and confusion matrices in the next Chapter 5. Chapter 6 continues thereby to interpret
these results and further tries to answer the stated research question of this thesis.
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Chapter 5
Results
In this chapter, we present the results of our invoice payment classifications on two
datasets with the used ML classifiers of Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbors (KNN), and Support Vector
Machine (SVM). Additionally, we present in this chapter the results of the ensemble
classifiers (AdaBoost and Voting classifier) which we built upon the three classification
models which reported on average the highest accuracy score on the training and test
set. Note that we evaluated all ML classifiers (except for the ensemble classifiers), on
three different oversampling strategies, namely: Random Over-Sampling (ROS), Synthetic
Minority Over-Sampling Technique (SMOTE), and Synthetic Minority Over-Sampling
Technique with Edited Nearest Neighbors (SMOTE + ENN). At this point, we want to
anticipate and point out that the results of ROS and SMOTE + ENN tended to raise some
problems which were mainly caused by the invoice duplication process with ROS or by
the outlier removing process with ENN (more details in Chapter 6). Consequently, we
needed to interprete the corresponding results with caution, which is why we further
reported the evaluation results of the top three ML classifiers, including their ensemble
strategies, only for the oversampled dataset with SMOTE.

To identify the features which contributed the most to our classifications, we further
present the constructed decision trees of the DT classifiers, and the feature coefficients of
the LR classifiers. Due to limiting time constraints in this thesis, we did not evaluate any
detailed feature analysis on NB, KNN, nor on the black-box models with SVM and RF.
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5.1 Company Specific Results - Dataset A
To evaluate the results for our classifiers on Dataset A, we analyzed the constructed
accuracy score boxplots from the training procedure and compared them to the related
performances on the oversampled test set. It is important to note again that we created
these boxplot results during the classifier training procedure which hold the 100 average
accuracy scores of the 100 training iteration with 10-fold CV. To identify the most-suited
strategy for overcoming the problem of class imbalance, we further evaluated all
classifier performances for each used oversampling method individually. Besides that, this
procedure allowed us to determine also possible issues throughout the use of different
oversampling methods.

For proper evaluations, we trained each classifier with optimized hyperparameters on the
oversampled training set and evaluated them on the oversampled test set. Furthermore,
we used a constant classifier as a baseline model which classified each invoice as a ”late
payment”. To evaluate the performances of the individual classifiers on the test set, we
respectively reported the confusion matrix, accuracy, precision, recall, and F1-Score. If the
respective classifiers supported the use of a reliable probabilistic output, we further stated
the AUC measurement form the ROC.

For the oversampling strategy with ROS, we reported the boxplot evaluations
from the training in Figure 5.1, and an illustration of the oversampled data subsets
in Figure 5.2. We listed all related classifier evaluations on the test set in Table 5.1 - Table 5.7.

For the oversampling strategy with SMOTE, we reported the boxplot evaluations from
the training in Figure 5.3, and an illustration of the oversampled data subsets in Figure 5.4.
We listed all related classifier evaluations on the test set in Table 5.8 - Table 5.14.

For the oversampling strategy with SMOTE + ENN, we reported the boxplot evaluations
from the training in Figure 5.5, and an illustration of the oversampled data subsets in
Figure 5.6. We listed all related classifier evaluations on the test set in Table 5.15 - Table 5.21.

Last but not least, we reported the ROC evaluations of our top three classifiers and the
corresponding ensemble strategies with AdaBoost and a Soft-Voting classifier in Figure 5.7
and Figure 5.8. Moreover, we listed the accompanying evaluation metrics in Table 5.22 -
Table 5.25. To support the feature analysis for the most important characteristics during the
classification procedure, we plotted the related feature coefficients of the LR classifier in Fig-
ure 5.9, and the constructed decision tree of the DT classifier in Figure 5.10. As a side note,
we want to mention that we used n estimators: 100 and learning rate: 0.1 as the respective
hyperparameters for AdaBoost, and the default scikit-learn parameters for the Soft-Voting
classifier - corresponding to a uniformly weighting among the individual classifiers.
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Figure 5.1: Boxplots of all accuracy score evaluations in Dataset A (ROS) for each used classifier on the
training set. Each boxplot contains the 100 average accuracy scores during the repeated training evaluations
by 10-fold CV. On the x-axis, we reported the used classifiers whereby we listed the respective accuracy scores
on the y-axis. Moreover, we used a constant classifier (green dashed line) as the baseline model.

Figure 5.2: Oversampled training and test set in Dataset A (ROS) that we used for the final model evaluations;
illustrating the achieved class balance of 50% in both subsets. The data split on the original dataset was
performed on a ratio of 80% (training set) to 20% (test set).
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 355 0
on-time 355 0

Accuracy: 0.50

Evaluation Metrics

Precision Recall F1-Score

late 0.50 1.00 0.67
on-time 0.00 0.00 0.00

avg/total 0.25 0.50 0.33

ROC

AUC

–
–

0.50

Table 5.1: Evaluation results of the Constant classifier - Dataset A (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 283 72
on-time 68 287

Accuracy: 0.80

Evaluation Metrics

Precision Recall F1-Score

late 0.81 0.80 0.80
on-time 0.80 0.81 0.80

avg/total 0.80 0.80 0.80

ROC

AUC

–
–

0.86

Table 5.2: Evaluation results of the LR classifier - Dataset A (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 197 158
on-time 57 298

Accuracy: 0.70

Evaluation Metrics

Precision Recall F1-Score

late 0.78 0.55 0.65
on-time 0.65 0.84 0.73

avg/total 0.71 0.70 0.69

ROC

AUC

–
–

0.69

Table 5.3: Evaluation results of the DT classifier - Dataset A (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 216 139
on-time 47 308

Accuracy: 0.76

Evaluation Metrics

Precision Recall F1-Score

late 0.82 0.61 0.70
on-time 0.69 0.87 0.77

avg/total 0.76 0.74 0.73

ROC

AUC

–
–

0.82

Table 5.4: Evaluation results of the RF classifier - Dataset A (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 300 55
on-time 97 258

Accuracy: 0.79

Evaluation Metrics

Precision Recall F1-Score

late 0.76 0.85 0.80
on-time 0.82 0.73 0.77

avg/total 0.79 0.79 0.79

ROC

AUC

–
–

–

Table 5.5: Evaluation results of the NB classifier- Dataset A (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 298 57
on-time 80 275

Accuracy: 0.81

Evaluation Metrics

Precision Recall F1-Score

late 0.79 0.84 0.81
on-time 0.83 0.77 0.80

avg/total 0.81 0.81 0.81

ROC

AUC

–
–

0.87

Table 5.6: Evaluation results of the KNN classifier - Dataset A (ROS).
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 180 175
on-time 64 291

Accuracy: 0.66

Evaluation Metrics

Precision Recall F1-Score

late 0.74 0.51 0.60
on-time 0.62 0.82 0.71

avg/total 0.68 0.66 0.65

ROC

AUC

–
–

0.74

Table 5.7: Evaluation results of the SVM classifier - Dataset A (ROS).

We will present the accompanying discussions on these results in Chapter 6. Next, we
reported the results of Dataset A using the SMOTE-based sampling method where we
again used the oversampled test set to evaluate our classifiers on previously unseen data.
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Figure 5.3: Boxplots of all accuracy score evaluations in Dataset A (SMOTE) for each used classifier on the
training set. Each boxplot contains the 100 average accuracy scores during the repeated training evaluations
by 10-fold CV. On the x-axis, we reported the used classifiers whereby we listed the respective accuracy scores
on the y-axis. Moreover, we used a constant classifier (green dashed line) as the baseline model.

Figure 5.4: Oversampled training and test set in Dataset A (SMOTE) that we used for the final model
evaluations; illustrating the achieved class balance of 50% in both subsets. The data split on the original dataset
was performed on a ratio of 80% (training set) to 20% (test set).
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 355 0
on-time 355 0

Accuracy: 0.50

Evaluation Metrics

Precision Recall F1-Score

late 0.50 1.00 0.67
on-time 0.00 0.00 0.00

avg/total 0.25 0.50 0.33

ROC

AUC

–
–

0.50

Table 5.8: Evaluation results of the Constant classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 294 61
on-time 76 279

Accuracy: 0.81

Evaluation Metrics

Precision Recall F1-Score

late 0.79 0.83 0.81
on-time 0.82 0.79 0.80

avg/total 0.81 0.81 0.81

ROC

AUC

–
–

0.86

Table 5.9: Evaluation results of the LR classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 246 109
on-time 69 286

Accuracy: 0.75

Evaluation Metrics

Precision Recall F1-Score

late 0.78 0.69 0.73
on-time 0.72 0.81 0.76

avg/total 0.75 0.75 0.75

ROC

AUC

–
–

0.84

Table 5.10: Evaluation results of the DT classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 231 124
on-time 54 301

Accuracy: 0.75

Evaluation Metrics

Precision Recall F1-Score

late 0.81 0.65 0.72
on-time 0.71 0.85 0.77

avg/total 0.76 0.75 0.75

ROC

AUC

–
–

0.86

Table 5.11: Evaluation results of the RF classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 304 51
on-time 95 260

Accuracy: 0.79

Evaluation Metrics

Precision Recall F1-Score

late 0.76 0.86 0.81
on-time 0.84 0.73 0.78

avg/total 0.80 0.79 0.79

ROC

AUC

–
–

–

Table 5.12: Evaluation results of the NB classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 287 68
on-time 77 278

Accuracy: 0.80

Evaluation Metrics

Precision Recall F1-Score

late 0.79 0.81 0.80
on-time 0.80 0.78 0.79

avg/total 0.80 0.80 0.80

ROC

AUC

–
–

0.85

Table 5.13: Evaluation results of the KNN classifier - Dataset A (SMOTE).
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 175 180
on-time 59 296

Accuracy: 0.66

Evaluation Metrics

Precision Recall F1-Score

late 0.75 0.49 0.59
on-time 0.62 0.83 0.71

avg/total 0.68 0.66 0.65

ROC

AUC

–
–

0.72

Table 5.14: Evaluation results of the SVM classifier - Dataset A (SMOTE).

We will present the accompanying discussions on these results in Chapter 6. Next, we
reported the results of Dataset A using the SMOTE + ENN-based sampling method where
we again used the oversampled test set to evaluate our classifiers on previously unseen data.
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Figure 5.5: Boxplots of all accuracy score evaluations in Dataset A (SMOTE + ENN) for each used classifier
on the training set. Each boxplot contains the 100 average accuracy scores during the repeated training
evaluations by 10-fold CV. On the x-axis, we reported the used classifiers whereby we listed the respective
accuracy scores on the y-axis. Moreover, we used a constant classifier (green dashed line) as the baseline model.

Figure 5.6: Oversampled training and test set in Dataset A (SMOTE + ENN) that we used for the final
model evaluations; illustrating the skewed class balance which was caused by ENN. The data split on the
original dataset was performed on a ratio of 80% (training set) to 20% (test set).
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 260 0
on-time 239 0

Accuracy: 0.52

Evaluation Metrics

Precision Recall F1-Score

late 0.52 1.00 0.69
on-time 0.00 0.00 0.00

avg/total 0.27 0.52 0.36

ROC

AUC

–
–

0.50

Table 5.15: Evaluation results of the Constant classifier - Dataset A (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 237 23
on-time 20 216

Accuracy: 0.91

Evaluation Metrics

Precision Recall F1-Score

late 0.92 0.91 0.92
on-time 0.90 0.92 0.91

avg/total 0.91 0.91 0.91

ROC

AUC

–
–

0.96

Table 5.16: Evaluation results of the LR classifier - Dataset A (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 230 30
on-time 16 220

Accuracy: 0.91

Evaluation Metrics

Precision Recall F1-Score

late 0.93 0.88 0.91
on-time 0.88 0.93 0.91

avg/total 0.91 0.91 0.91

ROC

AUC

–
–

0.91

Table 5.17: Evaluation results of the DT classifier - Dataset A (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 230 30
on-time 14 222

Accuracy: 0.91

Evaluation Metrics

Precision Recall F1-Score

late 0.94 0.88 0.91
on-time 0.88 0.94 0.91

avg/total 0.91 0.91 0.91

ROC

AUC

–
–

0.95

Table 5.18: Evaluation results of the RF classifier - Dataset A (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 240 20
on-time 42 194

Accuracy: 0.88

Evaluation Metrics

Precision Recall F1-Score

late 0.85 0.92 0.89
on-time 0.91 0.82 0.86

avg/total 0.88 0.88 0.87

ROC

AUC

–
–

–

Table 5.19: Evaluation results of the NB classifier - Dataset A (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 231 24
on-time 16 217

Accuracy: 0.92

Evaluation Metrics

Precision Recall F1-Score

late 0.94 0.91 0.92
on-time 0.90 0.93 0.92

avg/total 0.92 0.92 0.92

ROC

AUC

–
–

0.97

Table 5.20: Evaluation results of the KNN classifier - Dataset A (SMOTE + ENN).
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 219 36
on-time 30 203

Accuracy: 0.86

Evaluation Metrics

Precision Recall F1-Score

late 0.88 0.86 0.87
on-time 0.85 0.87 0.86

avg/total 0.87 0.86 0.86

ROC

AUC

–
–

0.90

Table 5.21: Evaluation results of the SVM classifier - Dataset A (SMOTE + ENN).

We will present the accompanying discussions on these results in Chapter 6. Next, we
reported the results of the identified top three classifiers, and the four applied ensemble
strategies on Dataset A, using the SMOTE-based oversampling method.
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Figure 5.7: ROC evaluations of the top three classifiers - Dataset A (SMOTE), whereby we reported the
ROC-Curve and accompanying AUC measurements for LR, RF, and SVM to enable a supportive comparison.

Figure 5.8: ROC evaluations of the top three ensemble classifiers - Dataset A (SMOTE), whereby we re-
ported the ROC-Curve and accompanying AUC measurements of AdaBoost LR, AdaBoost RF, AdaBoost SVM,
and the Soft-Voting classifier (LR, RF, SVM) to enable a supportive comparison among the ensemble strategies.
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Confusion Matrix
Ground-Truth/Predicted late on-time

late 326 29
on-time 141 214

Accuracy: 0.76

Evaluation Metrics

Precision Recall F1-Score

late 0.70 0.92 0.79
on-time 0.88 0.60 0.72

avg/total 0.79 0.76 0.75

ROC

AUC

–
–

0.85

Table 5.22: Evaluation results of the AdaBoost LR classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 268 87
on-time 63 292

Accuracy: 0.79

Evaluation Metrics

Precision Recall F1-Score

late 0.81 0.75 0.78
on-time 0.77 0.82 0.80

avg/total 0.79 0.79 0.79

ROC

AUC

–
–

0.86

Table 5.23: Evaluation results of the AdaBoost RF classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 207 148
on-time 67 288

Accuracy: 0.70

Evaluation Metrics

Precision Recall F1-Score

late 0.76 0.58 0.66
on-time 0.66 0.81 0.73

avg/total 0.71 0.70 0.69

ROC

AUC

–
–

0.79

Table 5.24: Evaluation results of the AdaBoost SVM classifier - Dataset A (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 253 102
on-time 67 295

Accuracy: 0.77

Evaluation Metrics

Precision Recall F1-Score

late 0.81 0.71 0.76
on-time 0.74 0.83 0.78

avg/total 0.78 0.77 0.77

ROC

AUC

–
–

0.86

Table 5.25: Evaluation results of the Soft-Voting classifier- Dataset A (SMOTE).

Finally, we presented the constructed decision tree of the DT classifier and the feature
coefficients of the LR classifier; further used to analyze the respective feature importance.
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Figure 5.9: Feature coefficients used by the LR classifier - Dataset A (SMOTE) to classify the invoices into
on-time and late payments. On the y-axis, we reported the categorical and numerical features, and on the x-axis,
we respectively reported their feature importance. The feature importance represents thereby the calculated
coefficient values in the LR classifier which lie in the range between -1 and +1. The closer a feature’s coefficient
value is to -1, the more important is the feature for classifying an invoice as a late payment. Contrary, the closer
a feature’s coefficient value is to +1, the more important is the feature for an on-time payment classification.
This implies for the trained LR classifier in Dataset A, that the features ratio prior paid late and avg days late
held the essential characteristics to predict a late payment classification, while the features prior paid, and
recent paid late days were considered as the most important ones for an on-time payment classification.
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ratio_prior_paid_late <= 0.593
entropy = 1.0

samples = 2468
value = [1234, 1234]

class = late

prior_paid <= -1.396
entropy = 0.811
samples = 1364

value = [341, 1023]
class = on-time

True ratio_prior_paid_late <= 1.597
entropy = 0.704
samples = 1104

value = [893, 211]
class = late

False

prior_paid <= -1.519
entropy = 0.996
samples = 127
value = [68, 59]

class = late

ratio_prior_paid_late <= -0.325
entropy = 0.761
samples = 1237

value = [273, 964]
class = on-time

total <= 0.863
entropy = 0.997
samples = 111
value = [52, 59]
class = on-time

entropy = 0.0
samples = 16
value = [16, 0]

class = late

non_business_days <= 1.131
entropy = 0.99
samples = 93

value = [41, 52]
class = on-time

entropy = 0.964
samples = 18
value = [11, 7]

class = late

total <= 0.381
entropy = 0.999
samples = 67

value = [32, 35]
class = on-time

country=391 <= 1.155
entropy = 0.931
samples = 26
value = [9, 17]
class = on-time

entropy = 0.986
samples = 51

value = [29, 22]
class = late

entropy = 0.696
samples = 16
value = [3, 13]
class = on-time

entropy = 0.837
samples = 15
value = [4, 11]
class = on-time

entropy = 0.994
samples = 11
value = [5, 6]

class = on-time

prior_total <= -0.079
entropy = 0.574
samples = 728

value = [99, 629]
class = on-time

avg_days_late <= -0.208
entropy = 0.927
samples = 509

value = [174, 335]
class = on-time

total <= -1.473
entropy = 0.7

samples = 465
value = [88, 377]
class = on-time

ratio_prior_paid_late <= -0.517
entropy = 0.251
samples = 263

value = [11, 252]
class = on-time

country=770 <= 1.238
entropy = 0.194
samples = 67
value = [2, 65]
class = on-time

non_business_days <= 1.16
entropy = 0.753
samples = 398

value = [86, 312]
class = on-time

entropy = 0.0
samples = 56
value = [0, 56]
class = on-time

entropy = 0.684
samples = 11
value = [2, 9]

class = on-time

entropy = 0.825
samples = 282

value = [73, 209]
class = on-time

entropy = 0.506
samples = 116

value = [13, 103]
class = on-time

recent_paid_ontime_days <= -0.339
entropy = 0.057
samples = 153
value = [1, 152]
class = on-time

prior_total_late <= -0.099
entropy = 0.439
samples = 110

value = [10, 100]
class = on-time

entropy = 0.337
samples = 16
value = [1, 15]
class = on-time

entropy = 0.0
samples = 137
value = [0, 137]
class = on-time

entropy = 0.581
samples = 72

value = [10, 62]
class = on-time

entropy = 0.0
samples = 38
value = [0, 38]
class = on-time

prior_total_late <= 0.228
entropy = 0.759
samples = 164

value = [36, 128]
class = on-time

recent_paid_ontime_days <= -0.25
entropy = 0.971
samples = 345

value = [138, 207]
class = on-time

recent_paid_ontime_days <= 0.137
entropy = 0.831
samples = 137

value = [36, 101]
class = on-time

entropy = 0.0
samples = 27
value = [0, 27]
class = on-time

entropy = 0.582
samples = 79

value = [11, 68]
class = on-time

entropy = 0.986
samples = 58

value = [25, 33]
class = on-time

ratio_prior_paid_late <= -0.059
entropy = 0.738
samples = 72

value = [15, 57]
class = on-time

recent_paid_late_days <= 0.678
entropy = 0.993
samples = 273

value = [123, 150]
class = on-time

entropy = 0.0
samples = 24
value = [0, 24]
class = on-time

entropy = 0.896
samples = 48

value = [15, 33]
class = on-time

entropy = 1.0
samples = 199

value = [101, 98]
class = late

entropy = 0.878
samples = 74

value = [22, 52]
class = on-time

avg_days_late <= 0.758
entropy = 0.893
samples = 517

value = [357, 160]
class = late

avg_days_late <= 0.042
entropy = 0.426
samples = 587

value = [536, 51]
class = late

ratio_prior_paid_late <= 1.289
entropy = 0.961
samples = 317

value = [195, 122]
class = late

prior_total <= 0.157
entropy = 0.701
samples = 200

value = [162, 38]
class = late

country=391 <= 1.155
entropy = 0.987
samples = 240

value = [136, 104]
class = late

recent_paid_late_days <= -0.12
entropy = 0.785
samples = 77

value = [59, 18]
class = late

ratio_prior_paid_late <= 0.668
entropy = 1.0

samples = 117
value = [57, 60]
class = on-time

avg_days_late <= 0.527
entropy = 0.941
samples = 123
value = [79, 44]

class = late

entropy = 0.672
samples = 17
value = [14, 3]

class = late

entropy = 0.986
samples = 100
value = [43, 57]
class = on-time

entropy = 0.902
samples = 110
value = [75, 35]

class = late

entropy = 0.89
samples = 13
value = [4, 9]

class = on-time

entropy = 0.996
samples = 13
value = [7, 6]
class = late

total <= 0.01
entropy = 0.696
samples = 64

value = [52, 12]
class = late

entropy = 0.384
samples = 40
value = [37, 3]

class = late

entropy = 0.954
samples = 24
value = [15, 9]

class = late

total <= -0.898
entropy = 0.795
samples = 154

value = [117, 37]
class = late

ratio_prior_paid_late <= 1.324
entropy = 0.151
samples = 46
value = [45, 1]

class = late

prior_paid <= -0.377
entropy = 0.579
samples = 58
value = [50, 8]

class = late

prior_total <= -0.148
entropy = 0.884
samples = 96

value = [67, 29]
class = late

entropy = 0.977
samples = 17
value = [10, 7]

class = late

entropy = 0.165
samples = 41
value = [40, 1]

class = late

entropy = 0.796
samples = 79

value = [60, 19]
class = late

entropy = 0.977
samples = 17
value = [7, 10]
class = on-time

entropy = 0.0
samples = 35
value = [35, 0]

class = late

entropy = 0.439
samples = 11
value = [10, 1]

class = late

recent_paid_late_days <= -0.037
entropy = 0.954
samples = 32

value = [20, 12]
class = late

country=391 <= 1.155
entropy = 0.367
samples = 555

value = [516, 39]
class = late

entropy = 0.592
samples = 21
value = [18, 3]

class = late

entropy = 0.684
samples = 11
value = [2, 9]

class = on-time

recent_paid_ontime_days <= 3.933
entropy = 0.321
samples = 514

value = [484, 30]
class = late

avg_days_late <= 0.789
entropy = 0.759
samples = 41
value = [32, 9]

class = late

total <= -1.573
entropy = 0.296
samples = 497

value = [471, 26]
class = late

entropy = 0.787
samples = 17
value = [13, 4]

class = late

entropy = 0.706
samples = 26
value = [21, 5]

class = late

entropy = 0.263
samples = 471

value = [450, 21]
class = late

entropy = 0.994
samples = 11
value = [5, 6]

class = on-time

prior_total <= -0.512
entropy = 0.469
samples = 30
value = [27, 3]

class = late

entropy = 0.845
samples = 11
value = [8, 3]
class = late

entropy = 0.0
samples = 19
value = [19, 0]

class = late

Figure 5.10: Constructed decision tree by the DT classifier - Dataset A (SMOTE) to classify the invoices into on-time and late payments. The
most characteristic features are reported at the top of the tree and decrease by their importance while descending the tree structure. The in-
voice features ratio prior paid late, avg days late, and prior paid were consequently considered as the most important features for the DT to clas-
sify an invoice into a late or on-time payment. We trained the constructed DT classifier for Dataset A with the optimized hyperparame-
ters on the oversampled training set and evaluated it on the oversampled test set. The best AUC corresponded thereby to 86%. The blue
nodes in the presented decision tree represent an on-time payment classification while the orange nodes represent a late payment classification.
The color saturation of the individual nodes represents the respective class distribution, whereby white nodes denote a uniform distribution.
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5 Results

5.2 Company Specific Results - Dataset B
To evaluate the results for our classifiers on Dataset B, we analyzed the constructed
accuracy score boxplots from the training procedure and compared them to the related
performances on the oversampled test set. It is important to note again that we created
these boxplot results during the classifier training procedure which hold the 100 average
accuracy scores of the 100 training iteration with LOO CV. To identify the most-suited
strategy for overcoming the problem of class imbalance, we further evaluated all
classifier performances for each used oversampling method individually. Besides that, this
procedure allowed us to determine also possible issues throughout the use of different
oversampling methods.

For proper evaluations, we trained each classifier with optimized hyperparameters on the
oversampled training set and evaluated them on the oversampled test set. Furthermore,
we used a constant classifier as a baseline model which classified each invoice as a ”late
payment”. To evaluate the performances of the individual classifiers on the test set, we
respectively reported the confusion matrix, accuracy, precision, recall, and F1-Score. If the
respective classifiers supported the use of a reliable probabilistic output, we further stated
the AUC measurement form the ROC.

For the oversampling strategy with ROS, we reported the boxplot evaluations from the
training in Figure 5.11, and an illustration of the oversampled data subsets in Figure 5.12.
We listed all related classifier evaluations on the test set in Table 5.26 - Table 5.32.

For the oversampling strategy with SMOTE, we reported the boxplot evaluations from
the training in Figure 5.13, and an illustration of the oversampled data subsets in Figure
5.14. We listed all related classifier evaluations on the test set in Table 5.33 - Table 5.39.

For the oversampling strategy with SMOTE + ENN, we reported the boxplot evaluations
from the training in Figure 5.15, and an illustration of the oversampled data subsets in
Figure 5.16. We listed all related classifier evaluations on the test set in Table 5.40 - Table 5.46.

Last but not least, we reported the ROC evaluations of our top three classifiers and the
corresponding ensemble strategies with AdaBoost and a Soft-Voting classifier in Figure
5.17 and Figure 5.18. Moreover, we listed the accompanying evaluation metrics in Table 5.47
- Table 5.50. To support the feature analysis for the most important characteristics during
the classification procedure, we plotted the related feature coefficients of the LR classifier in
Figure 5.19 , and the constructed decision tree of the DT classifier in Figure 5.20. As a side
note, we want to mention that we used n estimators: 15 and learning rate: 1 as the respective
hyperparameters for AdaBoost, and the default scikit-learn parameters for the Soft-Voting
classifier - corresponding to a uniformly weighting among the individual classifiers.
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5 Results

Figure 5.11: Boxplots of all accuracy score evaluations in Dataset B (ROS) for each used classifier on the
training set. Each boxplot contains the 100 average accuracy scores during the repeated training evaluations
by LOO CV. On the x-axis, we reported the used classifiers whereby we listed the respective accuracy scores
on the y-axis. Moreover, we used a constant classifier (green dashed line) as the baseline model.

Figure 5.12: Oversampled training and test set in Dataset B (ROS) that we used for the final model evalua-
tions; illustrating the achieved class balance of 50% in both subsets. The data split on the original dataset was
performed on a ratio of 80% (training set) to 20% (test set).
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 54 0
on-time 54 0

Accuracy: 0.50

Evaluation Metrics

Precision Recall F1-Score

late 0.50 1.00 0.67
on-time 0.00 0.00 0.00

avg/total 0.25 0.50 0.33

ROC

AUC

–
–

0.50

Table 5.26: Evaluation results of the Constant classifier - Dataset B (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 40 14
on-time 31 23

Accuracy: 0.58

Evaluation Metrics

Precision Recall F1-Score

late 0.56 0.74 0.64
on-time 0.62 0.43 0.51

avg/total 0.59 0.58 0.57

ROC

AUC

–
–

0.70

Table 5.27: Evaluation results of the LR classifier - Dataset B (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 18 36
on-time 18 36

Accuracy: 0.50

Evaluation Metrics

Precision Recall F1-Score

late 0.50 0.33 0.40
on-time 0.50 0.67 0.57

avg/total 0.50 0.50 0.49

ROC

AUC

–
–

0.51

Table 5.28: Evaluation results of the DT classifier - Dataset B (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 25 29
on-time 18 36

Accuracy: 0.56

Evaluation Metrics

Precision Recall F1-Score

late 0.58 0.46 0.52
on-time 0.55 0.67 0.61

avg/total 0.57 0.56 0.56

ROC

AUC

–
–

0.55

Table 5.29: Evaluation results of the RF classifier - Dataset B (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 54 0
on-time 50 4

Accuracy: 0.54

Evaluation Metrics

Precision Recall F1-Score

late 0.52 1.00 0.68
on-time 1.00 0.07 0.14

avg/total 0.76 0.54 0.41

ROC

AUC

–
–

–

Table 5.30: Evaluation results of the NB classifier - Dataset B (ROS).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 36 18
on-time 23 31

Accuracy: 0.62

Evaluation Metrics

Precision Recall F1-Score

late 0.61 0.67 0.64
on-time 0.63 0.57 0.60

avg/total 0.62 0.62 0.62

ROC

AUC

–
–

0.47

Table 5.31: Evaluation results of the KNN classifier - Dataset B (ROS).
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 29 25
on-time 20 34

Accuracy: 0.58

Evaluation Metrics

Precision Recall F1-Score

late 0.59 0.54 0.56
on-time 0.58 0.63 0.60

avg/total 0.58 0.58 0.58

ROC

AUC

–
–

0.47

Table 5.32: Evaluation results of the SVM classifier - Dataset B (ROS).

We will present the accompanying discussions on these results in Chapter 6. Next, we
reported the results of Dataset B using the SMOTE-based sampling method where we
again used the oversampled test set to evaluate our classifiers on previously unseen data.
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5 Results

Figure 5.13: Boxplots of all accuracy score evaluations in Dataset B (SMOTE) for each used classifier on the
training set. Each boxplot contains the 100 average accuracy scores during the repeated training evaluations
by LOO CV. On the x-axis, we reported the used classifiers whereby we listed the respective accuracy scores
on the y-axis. Moreover, we used a constant classifier (green dashed line) as the baseline model.

Figure 5.14: Oversampled training and test set in Dataset B (SMOTE) that we used for the final model
evaluations; illustrating the achieved class balance of 50% in both subsets. The data split on the original dataset
was performed on a ratio of 80% (training set) to 20% (test set).
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 54 0
on-time 54 0

Accuracy: 0.50

Evaluation Metrics

Precision Recall F1-Score

late 0.50 1.00 0.67
on-time 0.00 0.00 0.00

avg/total 0.25 0.50 0.33

ROC

AUC

–
–

0.50

Table 5.33: Evaluation results of the Constant classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 43 11
on-time 22 32

Accuracy: 0.69

Evaluation Metrics

Precision Recall F1-Score

late 0.66 0.80 0.72
on-time 0.74 0.59 0.66

avg/total 0.70 0.69 0.69

ROC

AUC

–
–

0.75

Table 5.34: Evaluation results of the LR classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 26 28
on-time 17 37

Accuracy: 0.58

Evaluation Metrics

Precision Recall F1-Score

late 0.60 0.48 0.54
on-time 0.57 0.69 0.62

avg/total 0.59 0.58 0.58

ROC

AUC

–
–

0.54

Table 5.35: Evaluation results of the DT classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 29 25
on-time 18 36

Accuracy: 0.60

Evaluation Metrics

Precision Recall F1-Score

late 0.62 0.54 0.57
on-time 0.59 0.67 0.63

avg/total 0.60 0.60 0.60

ROC

AUC

–
–

0.59

Table 5.36: Evaluation results of the RF classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 54 0
on-time 50 4

Accuracy: 0.54

Evaluation Metrics

Precision Recall F1-Score

late 0.52 1.00 0.68
on-time 1.00 0.07 0.14

avg/total 0.76 0.54 0.41

ROC

AUC

–
–

–

Table 5.37: Evaluation results of the NB classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 40 14
on-time 26 28

Accuracy: 0.63

Evaluation Metrics

Precision Recall F1-Score

late 0.61 0.74 0.67
on-time 0.67 0.52 0.58

avg/total 0.64 0.63 0.62

ROC

AUC

–
–

0.56

Table 5.38: Evaluation results of the KNN classifier - Dataset B (SMOTE).
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 36 18
on-time 19 35

Accuracy: 0.66

Evaluation Metrics

Precision Recall F1-Score

late 0.65 0.67 0.66
on-time 0.66 0.65 0.65

avg/total 0.66 0.66 0.66

ROC

AUC

–
–

0.58

Table 5.39: Evaluation results of the SVM classifier - Dataset B (SMOTE).

We will present the accompanying discussions on these results in Chapter 6. Next, we
reported the results of Dataset B using the SMOTE + ENN-based sampling method where
we again used the oversampled test set to evaluate our classifiers on previously unseen data.
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5 Results

Figure 5.15: Boxplots of all accuracy score evaluations in Dataset B (SMOTE + ENN) for each used classifier
on the training set. Each boxplot contains the 100 average accuracy scores during the repeated training
evaluations by LOO CV. On the x-axis, we reported the used classifiers whereby we listed the respective
accuracy scores on the y-axis. Moreover, we used a constant classifier (green dashed line) as the baseline model.

Figure 5.16: Oversampled training and test set in Dataset B (SMOTE + ENN) that we used for the final
model evaluations; illustrating the skewed class balance which was caused by ENN. The data split on the
original dataset was performed on a ratio of 80% (training set) to 20% (test set).
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 34 0
on-time 30 0

Accuracy: 0.53

Evaluation Metrics

Precision Recall F1-Score

late 0.53 1.00 0.69
on-time 0.00 0.00 0.00

avg/total 0.28 0.53 0.37

ROC

AUC

–
–

0.50

Table 5.40: Evaluation results of the Constant classifier - Dataset B (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 27 7
on-time 9 21

Accuracy: 0.75

Evaluation Metrics

Precision Recall F1-Score

late 0.75 0.79 0.77
on-time 0.75 0.70 0.72

avg/total 0.75 0.75 0.75

ROC

AUC

–
–

0.90

Table 5.41: Evaluation results of the LR classifier - Dataset B (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 21 13
on-time 10 20

Accuracy: 0.64

Evaluation Metrics

Precision Recall F1-Score

late 0.68 0.62 0.65
on-time 0.61 0.67 0.63

avg/total 0.64 0.64 0.64

ROC

AUC

–
–

0.64

Table 5.42: Evaluation results of the DT classifier - Dataset B (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 28 6
on-time 13 17

Accuracy: 0.70

Evaluation Metrics

Precision Recall F1-Score

late 0.68 0.82 0.75
on-time 0.74 0.57 0.64

avg/total 0.71 0.70 0.70

ROC

AUC

–
–

0.77

Table 5.43: Evaluation results of the RF classifier - Dataset B (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 29 5
on-time 7 23

Accuracy: 0.81

Evaluation Metrics

Precision Recall F1-Score

late 0.81 0.85 0.83
on-time 0.82 0.77 0.79

avg/total 0.81 0.81 0.81

ROC

AUC

–
–

–

Table 5.44: Evaluation results of the NB classifier - Dataset B (SMOTE + ENN).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 27 5
on-time 10 20

Accuracy: 0.76

Evaluation Metrics

Precision Recall F1-Score

late 0.73 0.84 0.78
on-time 0.80 0.67 0.73

avg/total 0.76 0.76 0.76

ROC

AUC

–
–

0.82

Table 5.45: Evaluation results of the KNN classifier - Dataset B (SMOTE + ENN).
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 30 2
on-time 11 19

Accuracy: 0.79

Evaluation Metrics

Precision Recall F1-Score

late 0.73 0.94 0.82
on-time 0.90 0.63 0.75

avg/total 0.82 0.79 0.78

ROC

AUC

–
–

0.72

Table 5.46: Evaluation results of the SVM classifier - Dataset B (SMOTE + ENN).

We will present the accompanying discussions on these results in Chapter 6. Next, we
reported the results of the identified top three classifiers, and the four applied ensemble
strategies on Dataset B, using the SMOTE-based oversampling method.
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5 Results

Figure 5.17: ROC evaluations of the top three classifiers - Dataset B (SMOTE), whereby we reported the
ROC-Curve and accompanying AUC measurements for LR, RF, and SVM to enable a supportive comparison.

Figure 5.18: ROC evaluations of the top three ensemble classifiers - Dataset B (SMOTE), whereby we re-
ported the ROC-Curve and accompanying AUC measurements of AdaBoost LR, AdaBoost RF, AdaBoost SVM,
and the Soft-Voting classifier (LR, RF, SVM) to enable a supportive comparison among the ensemble strategies.
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5 Results

Confusion Matrix
Ground-Truth/Predicted late on-time

late 51 3
on-time 41 13

Accuracy: 0.59

Evaluation Metrics

Precision Recall F1-Score

late 0.55 0.94 0.70
on-time 0.81 0.24 0.37

avg/total 0.68 0.59 0.54

ROC

AUC

–
–

0.79

Table 5.47: Evaluation results of the AdaBoost LR classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 29 25
on-time 18 36

Accuracy: 0.60

Evaluation Metrics

Precision Recall F1-Score

late 0.62 0.54 0.57
on-time 0.59 0.67 0.63

avg/total 0.60 0.60 0.60

ROC

AUC

–
–

0.56

Table 5.48: Evaluation results of the AdaBoost RF classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 42 12
on-time 24 30

Accuracy: 0.67

Evaluation Metrics

Precision Recall F1-Score

late 0.64 0.78 0.70
on-time 0.71 0.56 0.63

avg/total 0.68 0.67 0.66

ROC

AUC

–
–

0.65

Table 5.49: Evaluation results of the AdaBoost SVM classifier - Dataset B (SMOTE).

Confusion Matrix
Ground-Truth/Predicted late on-time

late 23 31
on-time 20 34

Accuracy: 0.53

Evaluation Metrics

Precision Recall F1-Score

late 0.53 0.43 0.47
on-time 0.52 0.63 0.57

avg/total 0.53 0.53 0.52

ROC

AUC

–
–

0.58

Table 5.50: Evaluation results of the Soft-Voting classifier - Dataset B (SMOTE).

Finally, we presented the constructed decision tree of the DT classifier and the feature
coefficients of the LR classifier; further used to analyze the respective feature importance.
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5 Results

Figure 5.19: Feature coefficients used by the LR classifier - Dataset B (SMOTE) to classify the invoices
into on-time and late payments. On the y-axis, we reported the categorical and numerical features, and on
the x-axis, we respectively reported their feature importance. The feature importance represents thereby
the calculated coefficient values in the LR classifier which lie in the range between -1 and +1. The closer a
feature’s coefficient value is to -1, the more important is the feature for classifying an invoice as a late payment.
Contrary, the closer a feature’s coefficient value is to +1, the more important is the feature for an on-time
payment classification. This implies for the trained LR classifier in Dataset B, that the features prior paid and
recent paid late days held the essential characteristics to predict a late payment classification, while the features
total, and prior paid late were considered as the most important ones for an on-time payment classification.
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5
Results

prior_paid <= 0.008
entropy = 1.0

samples = 388
value = [194, 194]

class = late

total <= -0.065
entropy = 0.982
samples = 283

value = [119, 164]
class = on-time

True

total <= -0.147
entropy = 0.863
samples = 105
value = [75, 30]

class = late

False

recent_paid_ontime_days <= 0.443
entropy = 0.989
samples = 98

value = [55, 43]
class = late

prior_total_late <= 0.058
entropy = 0.93
samples = 185

value = [64, 121]
class = on-time

total <= -0.182
entropy = 0.954
samples = 88

value = [55, 33]
class = late

entropy = 0.0
samples = 10
value = [0, 10]
class = on-time

total <= -0.19
entropy = 0.371
samples = 14
value = [13, 1]

class = late

recent_paid_ontime_days <= 0.302
entropy = 0.987
samples = 74

value = [42, 32]
class = late

total <= -0.191
entropy = 0.592

samples = 7
value = [6, 1]
class = late

entropy = 0.0
samples = 7
value = [7, 0]
class = late

entropy = 0.0
samples = 6
value = [6, 0]
class = late

entropy = 0.0
samples = 1
value = [0, 1]

class = on-time

total <= -0.099
entropy = 0.999
samples = 67

value = [35, 32]
class = late

entropy = 0.0
samples = 7
value = [7, 0]
class = late

avg_days_late <= 0.794
entropy = 0.968
samples = 38

value = [15, 23]
class = on-time

total <= -0.079
entropy = 0.894
samples = 29
value = [20, 9]

class = late

ratio_prior_paid_late <= 1.558
entropy = 0.944
samples = 36

value = [13, 23]
class = on-time

entropy = 0.0
samples = 2
value = [2, 0]
class = late

total <= -0.108
entropy = 0.967
samples = 33

value = [13, 20]
class = on-time

entropy = 0.0
samples = 3
value = [0, 3]

class = on-time

total <= -0.122
entropy = 0.981
samples = 31

value = [13, 18]
class = on-time

entropy = 0.0
samples = 2
value = [0, 2]

class = on-time

total <= -0.14
entropy = 0.958
samples = 29

value = [11, 18]
class = on-time

entropy = 0.0
samples = 2
value = [2, 0]
class = late

entropy = 0.998
samples = 21

value = [10, 11]
class = on-time

entropy = 0.544
samples = 8
value = [1, 7]

class = on-time

total <= -0.091
entropy = 0.779
samples = 26
value = [20, 6]

class = late

entropy = 0.0
samples = 3
value = [0, 3]

class = on-time

total <= -0.098
entropy = 0.523
samples = 17
value = [15, 2]

class = late

total <= -0.084
entropy = 0.991

samples = 9
value = [5, 4]
class = late

entropy = 0.0
samples = 4
value = [4, 0]
class = late

total <= -0.096
entropy = 0.619
samples = 13
value = [11, 2]

class = late

entropy = 0.722
samples = 10
value = [8, 2]
class = late

entropy = 0.0
samples = 3
value = [3, 0]
class = late

total <= -0.086
entropy = 0.722

samples = 5
value = [1, 4]

class = on-time

entropy = 0.0
samples = 4
value = [4, 0]
class = late

entropy = 0.0
samples = 3
value = [0, 3]

class = on-time

prior_total <= -0.006
entropy = 1.0
samples = 2
value = [1, 1]
class = late

entropy = 0.0
samples = 1
value = [1, 0]
class = late

entropy = 0.0
samples = 1
value = [0, 1]

class = on-time

total <= -0.058
entropy = 0.941
samples = 179

value = [64, 115]
class = on-time

entropy = 0.0
samples = 6
value = [0, 6]

class = on-time

entropy = 0.0
samples = 6
value = [0, 6]

class = on-time

total <= 0.356
entropy = 0.951
samples = 173

value = [64, 109]
class = on-time

total <= 0.302
entropy = 0.971
samples = 150
value = [60, 90]
class = on-time

recent_paid_ontime_days <= 1.322
entropy = 0.667
samples = 23
value = [4, 19]
class = on-time

recent_paid_ontime_days <= 4.944
entropy = 0.954
samples = 144
value = [54, 90]
class = on-time

entropy = 0.0
samples = 6
value = [6, 0]
class = late

prior_total <= 0.044
entropy = 0.948
samples = 142
value = [52, 90]
class = on-time

entropy = 0.0
samples = 2
value = [2, 0]
class = late

total <= 0.241
entropy = 0.956
samples = 138
value = [52, 86]
class = on-time

entropy = 0.0
samples = 4
value = [0, 4]

class = on-time

total <= 0.194
entropy = 0.945
samples = 135
value = [49, 86]
class = on-time

entropy = 0.0
samples = 3
value = [3, 0]
class = late

prior_total <= 0.04
entropy = 0.964
samples = 126
value = [49, 77]
class = on-time

entropy = 0.0
samples = 9
value = [0, 9]

class = on-time

entropy = 0.957
samples = 124
value = [47, 77]
class = on-time

entropy = 0.0
samples = 2
value = [2, 0]
class = late

total <= 0.451
entropy = 0.575
samples = 22
value = [3, 19]
class = on-time

entropy = 0.0
samples = 1
value = [1, 0]
class = late

total <= 0.419
entropy = 0.811
samples = 12
value = [3, 9]

class = on-time

entropy = 0.0
samples = 10
value = [0, 10]
class = on-time

total <= 0.394
entropy = 0.469
samples = 10
value = [1, 9]

class = on-time

entropy = 0.0
samples = 2
value = [2, 0]
class = late

entropy = 0.0
samples = 4
value = [0, 4]

class = on-time

prior_total <= 0.026
entropy = 0.65
samples = 6
value = [1, 5]

class = on-time

entropy = 0.722
samples = 5
value = [1, 4]

class = on-time

entropy = 0.0
samples = 1
value = [0, 1]

class = on-time

total <= -0.178
entropy = 0.722
samples = 15
value = [3, 12]
class = on-time

recent_paid_ontime_days <= 0.567
entropy = 0.722
samples = 90

value = [72, 18]
class = late

total <= -0.19
entropy = 0.971

samples = 5
value = [3, 2]
class = late

entropy = 0.0
samples = 10
value = [0, 10]
class = on-time

entropy = 0.0
samples = 2
value = [0, 2]

class = on-time

entropy = 0.0
samples = 3
value = [3, 0]
class = late

recent_paid_ontime_days <= 0.292
entropy = 0.544
samples = 64
value = [56, 8]

class = late

ratio_prior_paid_late <= 1.298
entropy = 0.961
samples = 26

value = [16, 10]
class = late

total <= 0.028
entropy = 0.863
samples = 28
value = [20, 8]

class = late

entropy = 0.0
samples = 36
value = [36, 0]

class = late

prior_total <= 0.046
entropy = 0.863

samples = 7
value = [2, 5]

class = on-time

prior_total <= 2.116
entropy = 0.592
samples = 21
value = [18, 3]

class = late

entropy = 0.0
samples = 4
value = [0, 4]

class = on-time

avg_days_late <= 2.498
entropy = 0.918

samples = 3
value = [2, 1]
class = late

entropy = 0.0
samples = 2
value = [2, 0]
class = late

entropy = 0.0
samples = 1
value = [0, 1]

class = on-time

entropy = 0.0
samples = 13
value = [13, 0]

class = late

total <= 3.056
entropy = 0.954

samples = 8
value = [5, 3]
class = late

prior_paid <= 4.115
entropy = 0.811

samples = 4
value = [1, 3]

class = on-time

entropy = 0.0
samples = 4
value = [4, 0]
class = late

entropy = 0.0
samples = 3
value = [0, 3]

class = on-time

entropy = 0.0
samples = 1
value = [1, 0]
class = late

recent_paid_ontime_days <= 1.415
entropy = 0.722
samples = 10
value = [2, 8]

class = on-time

prior_total_late <= 3.755
entropy = 0.544
samples = 16
value = [14, 2]

class = late

entropy = 0.0
samples = 6
value = [0, 6]

class = on-time

total <= 0.046
entropy = 1.0
samples = 4
value = [2, 2]
class = late

entropy = 0.0
samples = 2
value = [0, 2]

class = on-time

entropy = 0.0
samples = 2
value = [2, 0]
class = late

avg_days_late <= 0.672
entropy = 0.353
samples = 15
value = [14, 1]

class = late

entropy = 0.0
samples = 1
value = [0, 1]

class = on-time

total <= -0.048
entropy = 1.0
samples = 2
value = [1, 1]
class = late

entropy = 0.0
samples = 13
value = [13, 0]

class = late

entropy = 0.0
samples = 1
value = [1, 0]
class = late

entropy = 0.0
samples = 1
value = [0, 1]

class = on-time

Figure 5.20: Constructed decision tree by the DT classifier - Dataset B (SMOTE) to classify the invoices into on-time and late payments.
The most characteristic features are reported at the top of the tree and decrease by their importance while descending the tree structure.
The invoice features prior paid, total, and recent paid ontime days were consequently considered as the most important features for the DT to
classify an invoice into a late or on-time payment. We trained the constructed DT classifier for Dataset B with the optimized hyperparam-
eters on the oversampled training set and evaluated it on the oversampled test set. The best AUC corresponded thereby to 54%. The blue
nodes in the presented decision tree represent an on-time payment classification while the orange nodes represent a late payment classification.
The color saturation of the individual nodes represents the respective class distribution, whereby white nodes denote a uniform distribution.
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Chapter 6
Discussion
In this chapter, we will discuss the presented classification results from Chapter 5 and
further try to answer the stated research questions in this thesis. To do this, we first review
and discuss the different sampling methods by comparing the results from the training
evaluations with the ones from the test evaluations. Next, we will discuss the results of our
individual classifiers to identify the most suited ML model for a proper invoice payment
classification. Followed by the discussion on our constructed ensemble strategies which
we build upon the most promising classifiers. Subsequent, we will review the feature
analysis to determine the essential features for a successful classification. Finally, we will
summarize our main findings on the conducted experiments and thereby try to answer
the stated research questions in this thesis.

6.1 SamplingMethods
Throughout our experiments, we evaluated three sampling methods to overcome the
problem of class imbalance in our datasets, namely: ROS, SMOTE, and SMOTE + ENN.
Comparing the classifier evaluations from the training set with those from the test set,
allowed us to identify the most appropriate oversampling method for our classification
problem. Thereby, we discovered that some sampling methods tended to raise some
difficulties concerning an overfitting on the training data, or unrealistic performance
evaluations on a reduced subset of invoices. To judge which sampling method was most
suited, we compared each model’s average accuracy scores from the classifier training
with the respective accuracy score of the test evaluations. Note that the boxplot evaluations
from the previously presented training procedure hold thereby the 100 average accuracy
scores which were evaluated by 10-fold CV or respectively LOO CV on the oversampled
training set. To graphically support this comparison, we collected in Figure 6.1 all
evaluated boxplots of the different sampling methods and manually marked the accuracy
evaluations of the test set to identify possible issues more intuitively.
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Figure 6.1: Comparison of training and test accuracy scores for Dataset A and Dataset B. We reported the
individual classifier boxplot evaluations containing 100 accuracy score from the k-fold CV training process for
each of the used sampling methods and datasets. From top to bottom we listed the sampling methods for
ROS, SMOTE, and SMOTE + ENN. On the left-hand side, we always reported the boxplots for Dataset A while
on the right-hand side, we respectively reported the boxplots for Dataset B. Additionally, we manually marked
for each of the individual models the respective accuracy evaluation of the test set (blue lines).

Applying ROS on Dataset A, allowed us to observe that the DT, RF, and SVM classifiers
were strongly overfitting on the training data. We could perceive this behavior while
comparing the accuracy boxplots in Figure 5.1 with the respective evaluation results in
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Table 5.3 (DT), Table 5.4 (RF), and Table 5.7 (SVM); or top left plot in Figure 6.1. Thereby,
we saw that the reported training accuracy scores of the RF classifier (on average around
0.84) were much higher than the reported accuracy on the final test set (0.76). Consequently,
we were able to argue that the corresponding classifier was overfitting on the training data.
Similarly, for the DT and SVM classifiers, which reported an accuracy score of 0.70 and
0.66 on the test set and a much higher one during the training evaluations (on average
around 0.80). Contrary to the LR, NB and KNN classifiers which showed a much more
stable behavior considering the respectively reported accuracy score evaluations, F1-Score,
and AUC evaluations on the test set.

The results of Dataset B showed similar outcomes while applying ROS. Again, the DT
and RF classifier were overfitting on the training data while lower accuracy scores got
reported on the final test set than on the training set (see Table 5.28 and 5.29; or top right
plot in Figure 6.1). The LR, NB, SVM and KNN classifiers were performing quite stable
while their accuracy showed similar results on the training and test set. However, all used
classifiers reported a rather poor performance compared to Dataset A. Especially the NB
model was reporting a very low performance with an F1-Score of 0.41 and an accuracy of
0.54 (see Table 5.30).

These observations of performance loss were however already expected since Dataset B
contained only very few invoice samples with a very low number of individual invoice
records for each customer (as revealed during the initial dataset review in Section 4.2).
Consequently, the NB classifier was not able to calculate the respective late payment
probabilities as precisely as in Dataset A (which guaranteed a minimum number of 15
invoices for each customer). The overfitting observations of the DT and RF classifiers
in Dataset A and Dataset B were thereby also somehow expected due to the invoice
duplication process within ROS. This particular invoice duplication (without modifying
any feature values), resulted likely in a classifier overfitting due to possible k-fold CV on
same samples as used in the training process. Nevertheless, we initially expected the RF
classifier to compensate this behavior since it trains the classifier with multiple invoice
subsets which get randomly drawn from the original training set. Further investigations
revealed however that the used scikit-learn implementation constructs these subsets of the
same size as the original training set. Consequently, identical samples are still very likely
to be contained within these training subsets (mainly due to the small size of Dataset B),
which further explained our observed behavior. Note that the performance of LR, SVM
and KNN was not influenced in Dataset B since the classifiers were able to compensate the
sample duplication in ROS with the help of their hyperparameters (e.g. higher number
of considered nearest neighbors in KNN - see Table 4.11). The only unexpected results
which we observed during these evaluations with ROS was the poor test performance of
the SVM classifier on Dataset A. Thereby we assumed that the underlying training data
must have contained some structures which were not represented enough during the
training process. Indeed, as we compared the invoices within the test and training set, we
noticed a considerable lack of invoices with a high number of past payments in the test set.
This means that we observed in the test set mostly invoices which held on average only
two previously issued invoices or invoices from new customers, whereby the training set
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consisted mostly of invoices from already established customers which held on average
around six previously issued invoices. Consequently, also other related invoices features
as prior total late or recent paid late days got influenced, which is thereby likely the reason
for the overfitting of the SVM classifier in Dataset A.

As a conclusion, we argued that even though ROS solved the problem of class imbalance,
we could not consider it as the most appropriate method for our classification task due to
the related overfitting problems with invoice duplicates.

By using the SMOTE-based sampling method, we were able to overcome this specific
problem of overfitting due to its use of synthetic sample generation as described in Section
3.4. On Dataset A, we observed that it almost resulted in the same performance as with
ROS while we compared the training accuracy scores in Figure 5.1 (ROS) and 5.3 (SMOTE).
However, this time the individual classifiers did not overfit anymore (except for the SVM
classifier). As we compared the average accuracy scores of the DT and RF classifiers on
the training set with the ones on the test set, we only observed a difference of about 0.05
which we considered as proper behavior. We were further able to observe similar results
for the LR, NB, and KNN classifiers, which was already an indicator for the preferable
use of SMOTE as the final sampling method. Besides that, we can see in Figure 5.4 that
SMOTE was also able to solve the class imbalance problems within our used datasets.
The only problem which we still encountered was the poor performance result of the
SVM classifier on the test set. Even though we optimized its hyperparameters, we again
received the unexpected result of an overfitting behavior on the training data. As we
can see in Table 5.14, the reported F1-Score of 0.65 and the accuracy of 0.66 were much
lower as the reported results in the training evaluations (average accuracy of 0.79). Overall
we would have expected that the SVM classifier performs on approximately the same
level as the other proposed ML models. However, as we observed the same situation
already within ROS, we can assume that we mainly note this loss of performance due to
the different data structure within the training and test set.

Applying SMOTE on Dataset B brought similar results. Same as in Dataset A, the boxplot
evaluations of the accuracy score were comparable to the one from ROS whereby LR,
NB, SVM, and KNN showed a stable performance and were no more overfitting on
the test set. Especially the LR classifier showed thereby a performance boost with an
accuracy of 0.69, which increased compared to the training performance with ROS by 0.11.
Furthermore, the DT and RF classifiers were able to perform quite stable and were not
overfitting anymore. However, we noticed that the variance of the individual accuracy
score evaluations on the training set was much higher than in Dataset A, which is likely
caused by the minimal number of invoice records per customer. We could observe this
behavior for almost all classifiers by looking at the individual boxplot evaluations of the
training set. Most of these illustrated boxplots hold thereby larger quartiles and whiskers
which consequently indicate a higher standard deviation considering the 100 accuracy
score evaluations with k-fold CV (see Figure 5.13). Another interesting observation was
that the SVM model did not have any overfitting problems concerning the training data
as in Dataset A. The reported average accuracy score on the training data was around

102



6 Discussion

0.67 and the respective test accuracy was 0.66. Additional investigations revealed that
the individual invoices within the training and test set were thereby very similar which
explains why the SVM classifier was not overfitting while using the invoices from Dataset B.

We concluded that SMOTE enabled us to overcome the class imbalance problem while at
the same time the creation of synthetic samples also enhanced the model training process
and raised no further overfitting problems on the training data.

Last but not least we reviewed the results of SMOTE + ENN on Dataset A and Dataset
B. It is important to mention that the use of ENN did not result in an exactly balanced
dataset since it removed various samples after the oversampling process with SMOTE
(see Figure 5.6 and 5.16). At first glance, it seemed like this method outperformed the
prior sampling methods concerning the high evaluation results on the training and test
sets. However, even though SMOTE + ENN did not cause any overfitting problems on the
training set (except for DT and RF in Dataset B due to the discussed lack of samples), a
major problem during the ”outlier” detection could be recognized in both datasets. We
observed that a rather large amount of invoices got detected as outliers and consequently
removed by the ENN algorithm. This process removed all invoices which were somehow
difficult to classify regarding their payment outcome and lead thereby to the observed
boost in performance for the remaining invoices. As discussed in Section 3.4, SMOTE +
ENN tends to remove many samples by undersampling the dataset with the help of a
k-nearest neighbor strategy. The alternative use of ”Tomek links” would thereby likely have
been a better choice to detect outliers as it is known to perform more stable while not
removing as many samples as ENN. Such experiments were however left for further work.

In the end, we can conclude for SMOTE + ENN, that it was not suited for our classification
problems even though the outlier removing process seemed useful during the experimental
setup. It turned out that ENN was removing way too many samples and thereby artificially
increasing the performance of the individual classifiers. However, we want to mention at
this point that our manual outlier detection process on Dataset B (see Section 4.2), likely
influenced the ENN algorithm and further also the evaluation results of SMOTE + ENN.
Because we already removed most of the outliers manually, ENN was likely not the best
approach to choose while it could have lead to more promising evaluations when we
would have worked with the original dataset. Nevertheless, for the Datset A such an
approach would not have been applicable since it was already provided as filtered and
cleaned dataset by EmcienScan.

As an overall conclusion on the choice of the most appropriate oversampling strategy,
we can say that even though ROS solved the problem of data imbalance, it was not a
suitable approach due to overfitting problems on the training data. Neither was the use of
SMOTE + ENN due to the vast removal process of invoice ”outliers” which caused an
artificially increased performance during training and testing of the individual classifiers.
Consequently, we decided to stick with the SMOTE-based oversampling method. It
provided proper evaluation performances and was not overfitting on the training set.
Furthermore, SMOTE guaranteed a balanced dataset setup which further allowed us do
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provide comparable evaluations results regarding future work and improvements.

6.2 Classifier Comparison
Once we revealed that the most appropriate oversampling method for our classification
task was SMOTE, we evaluated and compared the top three classifiers of our two datasets
against each other to determine the best classifier for our research objectives. To discover
these top three classifiers, we compared the training evaluations (Figure 5.3 for Dataset A,
and Figure 5.3 for Dataset B), with the corresponding performances on the test set (Table
5.8 - Table 5.14 for Dataset A, and Table 5.33 - Table 5.39 for Dataset B). Consequently, we
tried to identify the best combination of classifiers by evaluating a proper tradeoff between
training and test set performances.

Figure 6.2: Selection of the top three classifiers for Dataset A and Dataset B. On the left-hand side, we
reported the accuracy boxplots of the 100 training iterations on Dataset A, and on the right-hand side, we
respective reported the boxplot evaluations on Dataset B. To visually back the performance differences on
the training and test set, we additionally marked each classifiers test accuracy in the related boxplot (blue
lines). Finally, by comparing the evaluations on the training and test set, we were able to identify our top three
classifiers which we used for the final evaluations (marked by black boxes #1, #2, #3).

To support the understanding of how we picked these three models, we present in
Figure 6.2 an overview of the training and test accuracy scores on Dataset A and Dataset
B. First of all, we picked the LR classifier due to its outstanding performance on both
Datasets. Concerning the DT and RF classifiers, we observed that both models performed
somewhat similarly while the DT was performing slightly worst than RF, which is
why we decided to pick RF as the second model. Regarding the NB approach, we
observed in prior experiments that it was not performing very well in Dataset B due
to the lack of available data. Consequently, this model was not considered to be part
of the selection of the overall best classifiers. Last but not least, we looked at SVM
and KNN. Even though KNN performed good on both test evaluations, SVM showed
slightly better results in the training and test evaluations. However, we knew that
SVM was overfitting on the training data in Dataset A. Regardless of this overfitting
problem, we decided to stick with the SVM classifier as the third model since we hoped
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for improvements when applying ensemble strategies like AdaBoost or the Voting classifier.

To summarize, we selected LR, RF, and SVM as our top three classifiers for the respective
task of invoice payment classifications. Since we selected the same models for both
datasets, we were further able to properly compare the different results of our two rather
diverse datasets. Note that we reported the evaluated ROC and its AUC for each of the
selected models in Figure 5.7 for Dataset A, and in Figure 5.17 for Dataset B.

Figure 6.3: Comparison of LR and RF threshold calibrations. Note that a threshold of 1.00 means that every
classification which is not reaching a prediction probability of 1.00 is marked as on-time payment, while a
threshold of 0.00 implies that every sample is considered as a late payment. A: We can observe that the LR
classifier (blue line) outperforms the RF classifier (red line) in the higher section of thresholds. Setting a high
threshold means that the classifier needs high confidence in classifying an invoice as a late payments. B: We
can observe that the RF classifier (red line) slightly outperforms the LR classifier (blue line) in the lower end
of the threshold values. A lower threshold does thereby mean that the classifier does not need such high
confidence in classifying an invoice as late payments.

For evaluations on Dataset A, we observed again that the LR and the RF classifiers
outperformed the SVM classifier whereby both models hold an AUC of 0.86 or respectively
0.85. The LR model is thereby slightly better with higher threshold values, whereby RF
performs better with lower ones. For a final classifier application, we could thus base the
choice of the right classifier on the pursued target strategy. If we want to have a classifier
which performs well on late payment predictions with a high level of confidence, we
would have to set a high threshold on the LR classifier. On the other hand, when we want
a classifier which performs quite good with lower classification confidences, we would
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have to pick a lower threshold on the RF classifier. We provided a graphical illustration of
this observation in Figure 6.3. For the SVM classifier, we could observe that it particularly
lacked in performance compared to the LR and RF classifiers, which is also reflected by
the lower AUC of 0.72 and F1-Score of 0.65 (see Table 5.14). As already explained above,
we argued this behavior due to problems within the test and training data in Dataset A.

On Dataset B we observed that LR outperformed the RF and SVM classifiers which is also
indicated by the respective AUC measurements. While LR held an AUC of 0.75, RF and
SVM could only provide an AUC of 0.59 or respectively 0.58. We were already expecting
such low results for SVM and RF due to the lack of performance in prior test evaluations.
However, this evaluation allowed us to compare the individual effects of our models on
both datasets. Consequently, we could reveal that in both datasets, independent of their
size and underlying data structure, LR performed as the overall best classifier while SVM
as the worst one. For RF we identified a huge loss in performance in Dataset B while
comparing it to Dataset A, where LR and RF performed almost equivalent. This lack of
performance is therby most likely attributed to the size of Dataset B where the number of
recorded invoices per customers is much lower than in Dataset A.

For a conclusion on our top three classifiers, we can say that LR was overall the most-suited
classifier for classifying invoices into on-time and late payments. Even if we reported a
higher performance on Dataset A, its stability was mostly untouched by the amount of
available data and also worked surprisingly good in classifying invoices where we had
only a small amount of recorded past invoices. The LR classifier reported thereby an
F1-Score of 0.81 and an AUC of 0.86 on Dataset A. For Dataset B it reported an F1-Score of
0.57 with an AUC of 0.70 whereby the low number of available invoices influenced the
corresponding performance results. The performance of the RF and SVM classifiers was
thereby however strongly dependent on the underlying dataset. While the RF classifier
reported similar performances to LR on the larger Dataset A, it notably lacked on the
smaller Dataset B. Similarly with the SVM classifier which performed quite stable in
Dataset B but struggled with the diverse training and test data on Dataset A.

6.3 Ensemble Strategies
As we knew how our single classifiers performed on the individual datasets, we wanted
to review also whether we could further boost their performances by the construction
of additional ensemble classifiers with AdaBoost and Soft-Voting. The respective ROC
evaluation are thereby reported in Figure 5.8 for Dataset A, and Figure 5.18 for Dataset B.
To support the understanding on how boosting influenced our classification results, we
further provided an additional illustration in Figure 6.4, where the ROC-Curve for the
RF and SVM classifiers got compared with the respectively applied AdaBoost strategy.

The evaluations of the applied Boosting strategy with AdaBoost for Dataset A showed
that AdaBoost LR and AdaBoost RF were now performing identically. As observable in
Figure 6.4, the application of AdaBoost increased the performance for the RF classifier
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in the higher range of its threshold values. The Soft-Voting classifier which combined
the LR, RF, and SVM classifiers, also performed almost identically with an AUC of 0.86.
Contrary, the AdaBoost SVM classifier was still not able to compete with the other boosted
classifiers except for the rather high and low end of its threshold values. All evaluations
of the accuracy, precision, recall and F1-Score can thereby be found in Table 5.22 - 5.25.
These evaluation measurements showed very similar outcomes and further indicated that
there is not much of a difference between the use of AdaBoost LR, AdaBoost RF, or the
combining Soft-Voting classifier in Dataset A. As mentioned, the performance lack with the
SVM classifier lies likely in the used test set structure, whereby the use of the AdaBoost
ensemble strategy was not able to compensate this behavior.

Figure 6.4: Influence of AdaBoost on the RF and SVM classifiers on Dataset A. On the left-hand side, we re-
ported the ROC for the RF and AdaBoost RF classifier, and on the right-hand side, we reported the Boosting ap-
proach with SVM. A: We can see that by applying AdaBoost on the RF classifier, we were able to push the perfor-
mance in the higher threshold ranges which means that the classifier improved especially for late payment pre-
dictions with higher confidence. B: Even though the application of AdaBoost generally pushes the overall per-
formance of a classifier, it is also possible that it partially decreases which must not necessarily imply a negative
effect for the classifier. C: For the SVM classifier, we can see that the application of AdaBoost increased the over-
all performance of the classifier within all threshold values, which is also observable by the higher AUC of 0.79.

For Dataset B, the ensemble strategy with AdaBoost pushed the LR classifiers AUC from
0.75 to 0.79, which we already considered as a proper result concerning the rather low
amount of available invoices. However, the evaluation metrics reported only an F1-Score
of 0.54 (see Table 5.47). This revealed that the Boosting strategy mainly focused on
the correct classification of late payments, as further visible from the same table while
observing its confusion matrix. The use of this classifier is thereby only valuable for late
payment predictions while it performs rather poorly for on-time predictions. Besides
that, the evaluation results of AdaBoost RF and AdaBoost SVM did no further impact the
classification performance by much. Consequently, we could argue that the few invoices
within Dataset B, and the particular low number of recorded invoices per customer
could not provide enough information for the Boosting strategy to improve the overall
performance of the used classifiers.

To conclude our findings on the ensemble strategies, we can say that the application of
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AdaBoost is overall very well suited to increase the performance of individual classifiers.
Nevertheless, on Dataset A, it lead to only minor improvements for the RF and SVM
classifiers while the LR classifier was almost not affected at all. Moreover, AdaBoost was
also no suitable approach for Dataset B, since the dataset did not provide enough invoices
to train the classifiers properly (problems with LR). For the Soft-Voting classifier we made
similar observations, whereby not enough data was provided by Dataset B to efficiently use
the RF and SVM classifier in combination with LR. On Dataset A, the Soft-Voting classifier
was able to combine the strengths of LR, RF, and SVM, nevertheless, it did not outperform
the used LR classifier by much.

6.4 Feature Importance
Since we identified the LR classifier as the most appropriate model for both of our
datasets, we were further able to investigate whether we considered the same feature
during the classification of different datasets. To identify the most characteristic features
for the LR classifier, we consequently reported the respective feature coefficients on both
of our datasets in Figure 5.9 and 5.19. Moreover, we sorted these features according to
their reported coefficient value (independent of their sign) so that we could guarantee
a proper ranking among the individual features. Consequently representing a ranking
among the features which is sorted by their importance for classifying an invoice as
on-time or late payment. Even though we did not identify the DT classifier as part of
the most valuable classifiers, we further investigated also the list of used classification
features of the constructed decision tree, which allowed us to determine possible reasons
for the performance loss with the DT classifier. We presented the constructed decision
trees in Figure 5.10 and 5.20. To rank the features of the DT in the same order as we did
for LR, we reported the features from top to bottom (and left to right), which consequently
represented the same importance among the features as in LR.

Next, we compared the list of identified DT features with the extracted list of LR features.
We presented the complete list of features (ranked by their importance for each classifier -
from top to bottom) for both datasets in Table 6.1.

An important insight which we revealed by the help of this table, is that features differ
drastically while considering their importance among different datasets. In the case of
Dataset A, the LR classifier considered ratior prior paid late, avg days late, and prior total late
as the top three essential features to distinguish between on-time and late payments.
Moreover, we revealed that the least significant features were non business days, and
recent paid ontime days. Contrary to Dataset B, where the LR classifier considered prior paid,
recent paid late days, and non business days as the most important features for the respective
classification, whereby the features prior total and prior total late were rather insignificant.
To determine whether a particular feature was considered for on-time or late payment clas-
sification, we need to review the corresponding sing of the feature coefficients within the
respective LR plots. Thereby, a negative value indicates that it was used for late payment
classification while a positive value indicates that it was used for on-time classifications.
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Rank Dataset A (LR) Dataset B (LR) Dataset A (DT) Dataset B (DT)

1 ratio prior paid late prior paid ratio prior paid late prior paid
2 avg days late recent paid late days prior paid total
3 prior total late non business days avg days late recent paid ontime days
4 prior paid late total total prior total late
5 prior paid avg days late prior total ratio prior paid late
6 recent paid late days prior paid late recent paid late days prior total
7 prior total ratio prior paid late country=391 avg days late
8 country=391 recent paid ontime days recent paid ontime days prior paid
9 country=897 prior total prior total late non business days
10 total prior total late non business days prior paid late
11 country=818 country=770
12 country=406 prior paid late
13 country=770 country=406
14 non business days country=818
15 recent paid ontime days country=897

Table 6.1: Most characteristic features for the LR and DT classifiers to classify invoice into on-time and late
payments. We ranked the features from top to bottom which means that the higher a feature is listed, the
more important it was for the respective classifier to determine the payment outcome for an invoice. The
strikethrough features were not considered by the DT classifiers due to set constraints by the hyperparameters.

Next, we determined a similar ranking for the features in the decision tree for Dataset A
and Dataset B. However, not all features were used to by the respective DT classifiers since
the optimized hyperparameters limited its depth or the number of considered feature.
Consequently, we could reveal that the DT classifier in Datasets A did not make use of
the feature prior paid late, whereby it further ranked the features prior paid late and total
very differently than the used LR classifier. For Dataset B found similar results, where
the DT classifier did not include the characteristic feature non business days. Thereby we
could argue that the exclusion of these features were maybe one of the main causes which
explain the lack of performance compared to the LR models.

As a conclusion for the feature importance, we want to point out again that we could not
determine any overall best set of features for the classification process of on-time and late
payment considering both of our datasets. Each dataset held its own set of characteristic
features whereby the ranking differed very drastically among the used datasets, e.g.
non business days held a rank of 14/15 in Dataset A whereby Dataset B ranked the same
feature at 3/10. Thereby we think that the diversity of our two datasets is likely the main
cause for the different feature ranking throughout our two datasets. While we know that
both datasets contain invoices with very different characteristics, from different countries
and business sectors, the payment behavior of the respective customers is also very likely
to differ. Consequently, we were not able to identify an overall set of best features, but we
rather identified a set of features for each dataset individually. Nevertheless, we think that
it is very likely to identify similar feature sets when exploring invoices from companies of
similar business sectors or regions.
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6.5 Conclusion
To summarize our discussion about the individual results of sampling methods, classifier
comparisons, ensemble strategies, and identification of feature importance, we concluded
this chapter by concisely presenting our main findings while trying to answer the stated
research questions in this thesis.

RQ 1: Which ML classifiers are most suited for the problem of invoice payment
classification into ”on-time payments” and ”late payments”?

In this thesis, we conducted various experiments for invoice payment classification with
the ML classifiers of Naive Bayes (NB), Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN).
Additionally, we evaluated ensemble strategies with a Soft-Voting classifier (LR, RF, SVM
- uniformly weighted), and Adaptive Boosting (AdaBoost) on LR, RF, and SVM. All
evaluations where thereby based on two rather diverse datasets from different business
sectors. After conducting various experiments and investigations, we could conclude that
the LR classifier was the best suited ML model which provided the best performance
results regarding F1-Score and AUC measurements. However, it is particularly important
to note that the use of different datasets influenced these results. Using the dataset which
contained more records on customer’s historical payment behaviors (Dataset A), revealed
that most of the considered ML models performed more or less equally. Conducting the
same experiments on a smaller dataset with fewer invoice records (Dataset B), revealed
however that LR was outperforming all other presented classifiers very drastically. The
biggest difference was thereby observable in the use of the NB classifier, whereby we
can not recommend using it when working with only few invoice samples since our
experiments on Dataset B demonstrated that it performed only slightly better than the
constant classifier. We made similar observations while investigating the results of the
ensemble classifiers. Even though the application of AdaBoost and the Soft-Voting
classifier provided useful results in use on the bigger Dataset A, they were still not able to
outperform the single LR model by much (performed rather identically). On Dataset B we
could observe that the application of Boosting somewhat worsens the overall results while
they forced the classifiers to concentrate on specific classes only (e.g. LR was only usable
for late payment classifications).

To summarize, we can conclude that our main findings for the best ML classifiers revealed
that LR outperformed all other evaluated classifiers, but only in the case of using a
dataset with rather few data samples. Considering a decent amount of invoice records for
returning customers, also RF or NB would be appropriate models to pick when trying
to classify invoices into on-time and late payments. The use of ensemble strategies was
thereby considered to be of little use, due to the rather low performance boost and the
high computational efforts during training and classification.
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RQ 2: Which invoice and customer features are the most significant ones to predict
whether an invoice will be paid on-time or late?

Throughout our experiments on feature importances, we mainly focused on the LR and
DT classifiers, whereby the investigations on the feature importance for the DT classifier
were only considered to determine possible problems while comparing it to the LR
classifier. The LR classifier, which generally outperformed all other considered classifiers
in this thesis, was consequently the one on which we focused to find the most valuable
feature characteristics. The individual features coefficients of the trained LR classifiers
were thereby used to distinguish between valuable features for on-time and late payment
classifications. Similarly to the process of determining the most suited ML classifier itself,
also the identification of feature characteristics differed rather drastically for our two
datasets. Consequently, we were not to able to identify an overall unique set of features for
both datasets in general, but rather provided a set of features for each dataset independently.

For Dataset A, the two most valuable features for a late payment classification were
ratio prior paid late (representing the ratio of previous late paid invoices compared to
the total number of issued invoices), and avg days late (reflecting the average payment
delay in days considering all previous issued invoices). On the other side, the two most
valuable features for an on-time payment classification were prior paid (representing the
total amount of all previous paid invoices), and recent paid late days (representing the
number of elapsed days from the last late payment).

Contrary, for Dataset B, we determined that the two most valuable features for a
late payment classification were prior paid (number of previous paid invoices), and
recent paid late days (representing the number of elapsed days from the last late payment).
Furthermore, the two most characteristic features for an on-time payment classification
were total (total invoice amount of previous on-time and late paid invoices), and
prior paid late (number of previous late paid invoices).

It is important to note that throughout our two datasets, the different features had
different interpretations. While LR in Dataset A used recent paid late days to identify
on-time payments, LR in Dataset B used the same feature to identify late payments. This
difference is thereby mainly caused due to the different customer payment behaviors in
our dataset. Further investigations revealed for example that the feature value for late
payments in Dataset B were always respectively low, whereby our LR classifier used them
for late payment classifications. On the other side, in Dataset A, we observed mostly very
high values for the respective feature, which is why the LR classifier used them mainly to
determine on-time classifications.

To summarize these observations, we concluded that the feature importance for our
classifications is strongly dependent on the underlying datasets on which we trained
the respective LR classifier. However, we think that especially by using invoice datasets
from similar business sectors or regions (holding same customers), an overall feature set
detection would be definitely possible.
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RQ 3: Would such invoice and customer features differ drastically while constructing
ML classifiers for different companies?

As we observed from prior evaluations, it depends on the interpretation of ”different
companies”. When we consider the scenario which we had in our experiments (two rather
diverse datasets from companies with different business sectors and customers), than
the feature importance differs very drastically. However, assuming that we have similar
companies or at least companies which serve the same customers, we strongly assume to
receive also similar customer and invoice features for the respective payment classification.
In this thesis, we were however not able to conduct such experiments due to missing
access to additional invoice datasets. Consequently, we can only make assumptions based
on our conducted experiments whereby we left a detailed answer for future work.

As a conclusion for this discussion, we can say that the use of the LR classifier was
overall the most suited strategy to classify invoice into on-time and late payments while it
also provided a respectively good overview of used classification features which argued
its decisions. To finally provide a proper tool for businesses which supports the choice
of selecting customers for preventive actions like email reminders, phone calls, etc., all
invoices would need to be sorted by their reported late payment probability. Once all
invoices have been sorted, one can continue to filter out the underlying customers, which
then finally leads to a list of sorted customers who are ranked by their probability of
late payments. Consequently, the respective invoice collection department can use this
extracted list to smartly decide on the choice of customers who need to get contacted to
take primarily actions for preventing possible payment outages.
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Chapter 7
Conclusion and FutureWork
This chapter provides a brief outline of future work which may be considered when
advancing the work in this field of predictive analytics on invoice payment classifications.
Additionally, we conclude by reviewing and summarizing the main objectives of this thesis.

7.1 FutureWork
The ability to classify invoices into two groups which distinguish between on-time and
late payments can be seen as a valuable approach towards the use of predictive analysis
and ML techniques in invoice collection and deductions/dispute management. To further
improve the performance and practicality of the classifiers which we presented in this
thesis, one could consider several steps as future work:

• Gathering more invoice data from companies which have a higher invoice issuing
frequency. Since our assembled datasets in this thesis are both rather small, this step
would further imply that more invoices from returning customers are likely to get
collected which enables a more detailed customer-specific payment behavior analysis.

• Collection and use of customers background information like natural or legal
person status, age, credit limit, business sector etc., which might enable an additional
invoice classification of one-time or first-time customers.

• Unification of classifiers regarding companies individual models which work
in the same business sector or handle the same customer base (similar regions).
Customer-specific payment behaviors could thereby be learned trough inheriting
and combining features from different company models. This additional information
might especially be valuable when working with small companies which provide
only a rather small amount of invoices.

• Forecasting the magnitude of payment delays could also be a possible goal in
future work to more carefully support invoice collection processes of late paying
customers. Thereby, not only their respective late payment probabilities could be
forecasted, but also the individual amount of invoice delay (days) to support the
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customer selection process regarding related preventive action considerations.

• Customer clustering could also be a valuable strategy to reveal whether payment
behaviors can be assigned to individual customer groups. That might especially be
interesting when considering companies who work with various business or private
clients from different sectors or regions.

• Neural Network based ML classifiers and strategies might be tested and evaluated
to improve the performance of the classification tasks itself, while further revealments
of hidden structures in the payment behavior of the individual customer groups are
also imaginable.

• A/B testing could be considered to evaluate the actual benefit which is gained
through these respective invoice classifications. That refers to an evaluations where
the predicted late payments are split into two groups, and one group gets contacted
through preventive actions like phone calls, e-mail reminders, etc., while the second
group does not get influenced through any preventive actions. The results can
thus be used to assess if the gained knowledge could be used in a meaningful manner.

7.2 Conclusion
The overall goal of this master thesis was to develop and review a strategy to overcome
the lack of information which many companies encounter while handling their invoice
collection process. This problem referred mainly to the ability to identify and distinguish
between possible late and on-time payments during the invoice creation process.
Furthermore, the thesis suggested a ranking of the outstanding invoices according to their
forecasted payment probability, such that preventive actions for late payments can be
considered in a smart order. In other words, outstanding invoices which get classified to
stay very likely unpaid within the defined invoice lead time, are listed on the top while
invoices which are very likely to get paid within this timeframe are listed at the bottom.
The main idea behind this concept was thereby to provide a suitable strategy such that
companies are able to incorporate preventive actions during this invoice lead time, which
could enable to minimize the time of outstanding payments.

This thesis focused thereby on using six different state-of-the-art classification models,
namely: Naive Bayes, Logistic Regression, Decision Tree, Random Forest, K-Nearest
Neighbors, and Support Vector Machine. Moreover, additional ensemble strategies
with AdaBoost and a Soft-Voting classifier were used to combine the strengths of the
individual models. Besides the training, testing and evaluation process of these classifiers,
a fundamental focus was also set on the data interpretation and preprocessing steps which
were necessary to understand and prepare the underlying data on which this thesis was
built upon. Consequently, the thesis guided through the different steps of data cleaning
and review, feature engineering and selection, data analysis, and oversampling as well as
optimization strategies.
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The final evaluation results of this thesis can be summarized into two scenarios. On the one
hand, when we consider working with a decent amount of invoices which hold multiple
invoice records for returning customers, the use of the LR or RF classifier turned out to
provide the most promising classification performances. Thereby, it is important to note,
that LR can easily be used to identify additional feature characteristics which are especially
valuable for the classification process itself. The RF classifier is thereby known as a black-
box model which classification results cannot be interpreted as easily. Moreover, the use of
the NB classifier was also very promising since the rather large amount invoices enabled
us to depict the respective probabilities of customer payment behaviors. On the other hand,
when we consider working with only few invoice information (on average only two or
three invoice records for each customer), we concluded that the only suitable classifier
was the LR model. However, the respective classification performances were thereby much
lower compared to the larger dataset. Consequently, we were able to conclude that a proper
classification of invoices into on-time and late payments also requires an adequate amount
of invoice records for returning customers. Moreover, the most characteristic features
which were used by the LR model to classify invoices into their respective class were also
differing rather strongly along both datasets. These results further indicated that a suitable
classification tool which can identify on-time and late payments during the invoice creation
process needs to be trained for each company (dataset) individually.
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