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Nomenclature

The present section collects, for the convenience of the reader, notation which is
frequently used in this thesis.

General notation

‖x‖2 denotes the Euclidean norm of x ∈ Rn.

‖x‖∞ is the maximum norm of x ∈ Rn.

Rn×n denotes the set of n× n matrices with entries from the ring R.

‖D‖2 = the spectral norm (the operator norm induced by ‖ · ‖2) of D ∈ Rn×n.

λ(S) abbreviates the Lebesgue measure of a measurable set S ⊆ R.

vol(S) denotes the Lebesgue measure of a measurable set S ⊆ Rn.

AN abbreviates the set of the first N elements of a sequence (an)n.

Geometry of numbers related notation

Γ is a lattice of full rank in Rn, i.e. Γ = AZn where A ∈ Rn×n is invertible.

Γ⊥ denotes the dual lattice of Γ; i.e. if Γ = AZn, then Γ⊥ = (A−1)TZn.

Ln abbreviates the set of unimodular lattices in Rn.

λi(Γ) is the i-th successive minima of Γ with respect to the Euclidean unit ball.

ν(Γ, ·) denotes the ν-function of the lattice Γ, cf. (2.1.1).

γn is the Hermite constant; i.e. the quantity supΓ∈Ln λ
2
1(Γ).

Combinatorics related notation

#X denotes the cardinality of X ⊂ R.

X − Y = {x− y : x ∈ X, y ∈ Y } where X, Y ⊆ R.

rX−Y (d) = #{(x− y) ∈ X × Y : d = x− y} where X, Y ⊆ R, and d ∈ R.

E(I) abbreviates #{(a, b, c, d) ∈ I4 : a+ b = c+ d} where I ⊆ R.
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Analytic number theory related notation

O(·), o(·) is the Landau notation with their usual meaning.

g = Ω(f) means there is a c > 0 such that g(x) > cf(x) holds for infinitely many x.

�,� are the Vinogradov symbols with their usual meaning.

g � f denotes that both f � g, and g � f holds.

f ∼ g means f(x) = g(x)(1 + o(1)).

(a, b) denotes the greatest common divisor of a, b ∈ Z.

ϕ(a) = #{1 ≤ b ≤ a : (a, b) = 1} where a ∈ Z.

bac equals max{b ∈ Z : b ≤ a} where a ∈ R.

〈x〉 abbreviates x− bxc where x ∈ R.

p denotes a prime element in Z≥1.

π(x) abbreviates #{p : p ≤ x} where x ∈ R.

a | b means that a ∈ Z divides b ∈ Z.

ω(n) is the cardinality of {p : p | n} where n ∈ Z≥1.

e(x) = exp(2πix) where x ∈ R.

|x| is the absolute value of x ∈ R (with the exception of Appendix A where it
denotes the norm of x ∈ G for a given arithmetic semi-group G).

‖x‖ equals min{|x− y| : y ∈ Z} where x ∈ R.

R(·, ·, ·) denotes the Poissonian pair correlations counting function, cf. (1.3.1).
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Chapter 1

Preface

“In a hole in the ground there lived a hobbit. Not a nasty, dirty, wet hole,
filled with the ends of worms and an oozy smell, nor yet a dry, bare, sandy
hole with nothing in it to sit down on or to eat; it was a hobbit-hole, and
that means comfort.”
— J. R. R. Tolkien [119, Ch.1, p.1].

In this section, we detail the content of the subsequent chapters, put the investigated
problems in their general context, and mention the established methods of investigation.
Doing so allows us to present the main results of the thesis at hand against that
background. In the process, we draw on the papers [11, 13, 41, 42, 73, 117] which
form the backbone of the present thesis. We begin by elaborating on the first chapter.

1.1 Counting Lattice Points
Counting problems in various branches of natural sciences — such as (algebraic)
number theory, coding theory, Diophantine approximation, mathematical physics,
Diophantine geometry, and spectral analysis — can be solved by reformulating the
problem into a lattice point counting problem, cf. [26, 40, 82, 107, 128]. However,
for avoiding misinterpretations, let us stress that by a lattice Γ in Rn we mean the
Z-span of n vectors in Rn which are required to be R-linearly independent.

The general lattice point counting problem is to determine, for a given set S ⊆ Rn,
the cardinality of Γ ∩ S. If S is a compact set whose boundary is not “too distorted,”
then one expects that # (Γ ∩ S) roughly equals vol (S) / det Γ where vol (S) denotes
the Lebesgue measure of S, and det Γ := detA with A ∈ Rn×n satisfying Γ = AZn.

For applications, it is crucial to make this guess precise, and to derive good upper
bounds on the error term

E (Γ, S) :=
∣∣∣∣∣# (Γ ∩ S)− vol (S)

det Γ

∣∣∣∣∣ .
4



In the literature, there are different approaches to estimate E (Γ, S) depending on
the Diophantine nature of Γ, and the geometric properties of S. A general, modern
approach to lattice point counting can be based on quantitative ergodic theorems; for
further reading, we recommend the beautiful work of Gorodnik and Nevo [48].

Following a more classical approach, which dates back to Lipschitz and has been further
studied, e.g., in [82, 105, 112], the remainder term E (Γ, S) can be bounded provided
S has Lipschitz parameterizable boundary. The most refined bound along these lines
of thought is, to the best of our knowledge, due to Widmer [129]. For stating it, we
say that S ⊆ Rn is in Lip(n,M,L) if there exist M maps φ1, . . . , φM : [0, 1]n−1 → Rn

satisfying the Lipschitz condition

‖φi(x)− φi(y)‖2 ≤ L ‖x− y‖2 ∀x,y∈[0,1]n−1

such that S is covered by the images of the maps φi where ‖·‖2 is the canonical
Euclidean norm on Rn; moreover, we denote by λi(Γ), for i = 1, ..., n, the i-th
successive minima of Γ (with respect to the Euclidean unit ball).

Theorem. (Widmer, [129, Thm. 5.4]). Let Γ be a lattice in Rn, and S a bounded set
in Rn such that the boundary ∂S of S is in Lip(n,M,L). Then S is measurable and

E (Γ, S) ≤ c (n)M max
0≤i<n

Li

λ1(Γ) · . . . · λi(Γ) . (1.1.1)

For i = 0, the expression in the maximum is understood as one. Furthermore, one can
choose c(n) = n3n2/2.

Remark. The Lipschitz assumption above is rather mild, and (1.1.1) yields that
E(Γ, S) is less than vol(S)/ det(Γ) as soon as the volume of S is somewhat larger than
its diameter.

For lattice point counting theorems which do not require ∂S directly, and work
rather with a tameness property called “o-minimality” we refer the reader to the work
of Barroero and Widmer [17] and there references therein; in some constellations, the
bound presented in [17, Thm. 1.3] is best possible (up to the involved constant).

In several problems (e.g. from algebraic number theory), it is of interest to count
lattice points in homogeneously expanding sets. Therefore, we fix from now on a
compact set S ⊆ Rn, a lattice Γ ⊆ Rn, and consider the homogeneously expanding
family (St)t≥1 of dilatations

St := tS := {ts : s ∈ S}

by the factor t ≥ 1. In what follows, we are concerned with bounding E (Γ, St) as a
function of t such that the dependence on Γ, and S is as explicit as possible.

As an illustration of the delicateness of the arising difficulties, let us make a little
detour to a classical, planar example — the Gauß circle problem — in conjunction with
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some of its history. On that way, we invite the reader to observe that a straightforward
modification of the geometric reasoning presented down below yields, provided S is
convex (and compact), that

E (Γ, St)�Γ |∂St| �S t
n−1, (1.1.2)

where |∂St| denotes the surface area of St.

Example (Gauß circle problem). Let Γ := Z2, and denote the planar disc1 of radius
t, which is centred at the origin, by

Dt := {x ∈ R2 : ‖x‖2 ≤ t}.

Trivially, Z2 ∩ Dt−
√

2 ⊆ Z2 ∩ Dt ⊆ Z2 ∩ Dt+
√

2. Furthermore, by attaching to each
γ ∈ Γ of norm at most t+

√
2 a fundamental region of Γ centred at γ (depicted as a

light gray square), we get the following picture.

As illustrated above, we can conclude that πt2 + O(t) ≤ #(Z2 ∩ Dt) ≤ πt2 + O(t).
Hence, E (Z2, St)� t. Due to Hardy and, independently, Landau we know that

E(Z2, St) 6= o(t1/2 (log t)1/4).

Moreover, it is conjectured that the smallest admissible exponent α > 0 such that

E(Z2, Dt)�ε t
α+ε (1.1.3)

holds for every ε > 0 is α = 1/2. At the time of writing, the smallest (known) admissible
value of α in (1.1.3) is 517/824 = 0.627 . . . which is due to Bourgain and Watt [27].

1As usual, discs are to be taken with respect to the Euclidean norm ‖·‖2.
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Let us come back to the task of bounding E(Γ, St), and consider a unimodular
lattice, i.e. a lattice of determinant one, of the form Γ := diag (d1, . . . , dn)Zn, where
d1, . . . , dn ∈ R. By specializing S := [0, 1]n, it follows that E (Γ, St)�Γ tn−1. Hence,
we cannot hope to improve upon the trivial bound (1.1.2) without excluding some
lattices from our attention by making (Diophantine) assumptions on Γ. It turns out
that from a metric perspective, with respect to the Haar measure on the group Ln
of unimodular lattices in Rn, the following function is a convenient tool for imposing
such assumptions; let

ν (Γ, ρ) := min {|γ̃1 · · · γ̃n| : γ := (γ̃1, . . . , γ̃n)T ∈ Γ , 0 < ‖γ‖2 ≤ ρ}

for ρ > γ1/2
n where γn := supΓ∈Ln λ

2
1 (Γ) denotes the Hermite constant. Informally

speaking, ν(Γ, ρ) quantifies how close, in a multiplicative sense, non-zero lattice
points γ ∈ Γ in the zero-centred ball of radius ρ come to the coordinate planes
{(x1, . . . , xn)T ∈ Rn : xj = 0}, j = 1, . . . , n. Now, if Γ is such that ν(Γ, ρ) 6= 0 for all
ρ > γ1/2

n , then Γ is called weakly admissible.
In light of the Gauß circle problem, it might be even more surprising that in

the scenario when S is a compact polyhedron, Skriganov was able to establish
(conjecturally) best possible upper bounds for E (Γ, St) for a large class of lattices Γ.
For stating Skriganov’s result (in a special case), we introduce further notation. The
lattice defined by Γ⊥ := {x ∈ Rn : 〈x, γ〉 ∈ Z ∀γ∈Γ}, where 〈·, ·〉 is the standard inner
product on Rn, is called the dual lattice of Γ. This notion is of crucial importance in
the following. Moreover, for r > 0 we introduce a special set of diagonal matrices

∆r := {δ := diag(2m1 , . . . , 2mn) : m = (m1, . . . ,mn)T ∈ Zn, ‖m‖2 < r, det δ = 1},

and we put
S(Γ, r) :=

∑
δ∈∆r

(λ1(δΓ))−n.

Now, in the case that S is an aligned box, i.e. the Cartesian product of compact
intervals, a special case of Skriganov’s counting theorem (upon making the dependence
of S explicit) can be stated as follows.

Theorem. (Skriganov [109, Thm. 6.1]) Let n ≥ 2 be an integer, let Γ ⊆ Rn be a
unimodular lattice, and let B ⊆ Rn be an aligned box of volume 1. Suppose Γ⊥ is
weakly admissible, and ρ > γ1/2

n . Then, for t > 0,

E(Γ, B)�
n

(|∂B|λn(Γ))n · (tn−1ρ−
1/2 + S(Γ⊥, r))

where r := n2 + log ρn

ν(Γ⊥,ρ) .

Skriganov used, amongst other things, very refined tools from Fourier analysis,
and the geometry of numbers to derive his counting theorem, and invented, on the
way, the notion of “dyadic minima of a lattice” — which was essential for his proof.
However, we decided not detail this further, and hence refer the reader to [109].

7



Moreover, the above explicit version of Skriganov’s result is of central importance
when we deduce, in the following, a counting theorem for inhomogeneously expanding
boxes. For stating it, let T := diag(t1, . . . , tn), for ti > 0, and let y ∈ Rn. We set

B := T [0, 1]n + y, and T := (det T )1/n · ‖T −1‖2 = (t1 · · · tn)1/n

min{t1, . . . , tn}
≥ 1

where ‖ · ‖2 denotes the operator norm induced by the Euclidean norm.
Theorem ([117]). Let n ≥ 2, let Γ ⊆ Rn be a unimodular lattice, and let B ⊆ Rn be
as above. Suppose Γ⊥ is weakly admissible, and ρ > γ1/2

n . Then,

E(Γ, B)�
n

1
ν(Γ⊥, T ?)

(
(vol(B))1−1/n

√
ρ

+ Rn−1

ν(Γ⊥, 2RT )

)
where x? := max {γn, x}, and R := n2 + log ρn

ν(Γ⊥,ρT ) .

Note that ρn/ν(Γ⊥, ρ) ≥ nn/2 by the inequality between arithmetic and geometric
mean. We have (2RT )? = 2RT , since T ≥ 1 and

γn ≤ (4/3)(n−1)/2, (1.1.4)
and hence, the far right hand-side in the above theorem is well-defined.
Remark. Let δ ∈ R be non-zero. It follows from a zero–one-law due Kleinbock and
Margulis [66, p. 456], compare also [109, Lem. 4.5 ], that the set of Γ ∈ Ln with

ν(Γ, ‖γ‖2) ≤ (log ‖γ‖2)−(n−1+δ)

for infinitely many γ ∈ Γ has full measure if δ < 0, and zero measure if δ > 0. In
particular, the bound on E(Γ, tB), t ≥ 1 provided by either one of the last two theorems
is, generically, far better than the trivial bound (1.1.2): for a fixed ε > 0, and almost
every Γ ∈ Ln the bound E(Γ, tB)�

Γ
tn−1 is sharpened to E(Γ, tB) = OΓ,ε((log t)n−1+ε).

However, a draw-back of the previous two counting theorems is that they are not
intrinsic in the lattice Γ, as they require Diophantine properties of Γ⊥ to be applicable.
To see if this is necessarily so, or could be circumvented in reasonable generality, we
carefully analyse the relation between ν (Γ, ·), and ν(Γ⊥, ·). As it turns out, the next
result is showing that, roughly speaking, one of these functions cannot be bounded
(from below) in terms of the other, as soon as the dimension of the ambient space
exceeds three. More precisely, we show the following.
Theorem ([117]). Let n ≥ 3, and let ψ : (0,∞) → (0, 1) be non-increasing. Then,
there is a weakly admissible Γ ∈ Ln, and a sequence (ρl)l ⊆ (γ1/2

n ,∞) tending to ∞, as
l→∞, such that

ν(Γ⊥, ρ)� ρ−n
2
, and ν(Γ, ρl) ≤ ψ(ρl)

for all l ∈ N = {1, 2, 3, . . .} and for all ρ > γ1/2
n .

Remark. German [47] proved that coarse measures, the so called lattice exponents,
of the decay rates of ν(Γ, ·) and ν(Γ⊥, ·) are linked by transference inequalities. In
particular, he showed, provided n ≥ 3, that if ν(Γ, ρ) 6� ρ−ω for every ω > 0, then
for every ε > 0 the inequality ν(Γ⊥, ρl) ≤ ρ

ε−1/(n−2)
l holds for a sequence of ρl > γ1/2

n

which tends to ∞.
8



1.2 The Duffin–Schaeffer Conjecture
The field of classical Diophantine approximation aims, roughly speaking, to quantify
how dense the rationals are in the reals. Nowadays, Diophantine approximation is
closely connected to, e.g., fractal geometry [20], ergodic theory [38], analytic number
theory [32], and has practical applications [10]. A fundamental result in this area is
Khintchine’s theorem. For stating it, let ψ : N→ R be a non-negative function, and
denote by Wnr(ψ) the set of all x ∈ [0, 1] for which there are infinitely many n ∈ Z≥1
satisfying ‖nα‖ ≤ ψ(n) where ‖ · ‖ abbreviates the distance to the nearest integer.

Theorem (Khintchine). Suppose ψ is monotonically decreasing. If
∞∑
n=1

ψ(n)

diverges, then Wnr(ψ) has full Lebesgue measure and zero Lebesgue measure otherwise.

Duffin, and Schaeffer [36] showed that the above monotonicity assumption is
necessary by constructing a ψ for which Wnr(ψ) has measure zero2 and for which
the series above diverges; moreover, they conjectured that W (ψ) has full measure
whenever ∑∞n=1 ψ(n)ϕ(n)/n diverges where W (ψ) is the set of all x ∈ [0, 1] such that
there are infinitely many coprime integers n,m with |nα−m| ≤ ψ(n). To (dis)prove
this is one of the most important open problems in metric number, and remains
unsolved since 1941. However, the Duffin–Schaeffer conjecture is known to be true
under some additional arithmetic conditions or regularity assumptions on the function
ψ, cf. [57, 123]. In [59] Haynes, Pollington and Velani initiated a program to establish
the Duffin–Schaeffer conjecture without assuming any regularity or number-theoretic
properties of ψ, but instead assuming a slightly stronger divergence condition. The
result of [59] was improved upon by Beresnevich, Harman, Haynes and Velani [19]
by a beautiful averaging argument, which is also at the core of Chapter 3. The main
result of [19] is that W (ψ) has full measure provided there is some ε > 0 such that

∞∑
n=1

ψ(n)ϕ(n)
n(log n)ε log log logn =∞

(we understand log x as max(1, log x), so that all appearing logarithms are positive
and well-defined). In Chapter 3, we prove that the extra divergence factor can be
reduced to (log n)ε for a fixed ε > 0. In particular, this solves Problem 2 posed in [59],
where it was asked whether the extra divergence factor log n is sufficient.

Theorem ([11]). The Duffin–Schaeffer conjecture is true for every non-negative
function ψ : N→ R for which there is a constant ε > 0 such that

∞∑
n=1

ψ(n)ϕ(n)
n(log n)ε =∞.

2Loosely speaking, the underpinning reason is that Wnr(ψ) allows approximation by non-reduced
fractions; therefore, one can construct a ψ, supported on “highly composite”’ numbers (and its
divisors), to make the above series diverge whilst keeping the support of ψ still small enough to
enforce that Wnr(ψ) has measure zero, by using the Borel-Cantelli lemma.

9



1.3 Poissonian Pair Correlations
The theory of uniform distribution mod 1 dates back, at least, to the seminal paper
[127] of Weyl. It has a long and honorable history which records more than a century
of intensive investigations with several practical applications, cf. [34, 72]. Nevertheless,
only in recent years various authors have started to investigate a distribution property
which can be considered as a uniform distribution property of second order; namely,
whether the asymptotic distribution of the pair correlations has a property which is
called Poissonian, and defined as follows:

Definition 1. A sequence (θn)n in [0, 1) is said to have the Poissonian (pair correla-
tions) property, if for each s ≥ 0 the pair correlation function

R ([−s, s] , (θn)n , N) := #{1 ≤ i 6= j ≤ N : ‖θi − θj‖ ≤ s/N}
N

(1.3.1)

tends to 2s as N →∞. Moreover, let (an)n denote a strictly increasing sequence of
positive integers. If no confusion can arise, we write

R ([−s, s] , α,N) := R ([−s, s] , (αan)n , N)

and say that a sequence (an)n has the metric Poissonian (pair correlations) property
if (αan)n has the Poissonian property for Lebesgue almost all α ∈ (0, 1).

It is known from the work of Aistleitner, Lachmann, and Pausinger [12] and,
independently, from the work3 of Larcher and Grepstad [77] that if a sequence (θn)n has
the Poissonian property, then it is uniformly distributed mod 1. Interest in this spacing
property spread when Rudnick and Sarnak [98], motivated by a well-known conjecture
from mathematical physics, proved that (nd)n has the metric Poissonian property for
d ≥ 2. Since then, several authors have contributed to building a metric theory for
this second order uniform distribution property [13, 14, 23, 73, 78, 79, 97, 99, 125].

As it turns out, recent investigations pointed towards the existence of a zero–one-law,
akin to Khintchine’s fundamental theorem from the previous section. We proceed
to describe this putative zero–one-law: The development in this direction started
with a paper of Aistleitner, Larcher, and Lewko [14], where a strong link between
combinatoric properties of (an)n, and the metric Poissonian property was uncovered;
to this end, Fourier–analytic arguments, originating from [98], in combination with
estimates on GCD sums, which are due to Bondarenko and Seip [25], were used.
For stating the main result of [14], let (an)n henceforth denote a strictly increasing
sequence of positive integers and abbreviate the set of the first N elements of (an)n
by AN . Moreover, define the additive energy E (I) of a finite set integers I via

E (I) :=
∑

a,b,c,d∈I
a+b=c+d

1.

3Remarkably, both papers were on the arXiv 100 years after Weyl’s work [127] was published.
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The main result of [14] is the implication that if there is an ε > 0 such that

E (AN)� N3−ε,

then (an)n has the metric Poissonian property. Note that (#I)2 ≤ E (I) ≤ (#I)3

where #I denotes the cardinality of I ⊂ Z (heuristically speaking, a set I has large
additive energy if and only if it contains a “large” arithmetic progression like structure).
The criterion of [14] for detecting metric Poissonian sequences was further refined as
follows provided that the density function δ (N) := N−1# (AN ∩ {1, . . . , N}) of the
sequence in question is not decaying too rapidly.

Theorem (Bloom, Chow, Gafni, Walker [23]). Let (an)n ⊆ Z≥1 be a strictly increasing
sequence. If there exists ε > 0 such that

E (AN)� N3

(logN)2+ε and δ (N)� 1
(logN)2+2ε ,

then (an)n has the metric Poissonian property.

In accordance with a probabilistic model, the authors of [23] asked, in their
terminology, the following “Fundamental Question:” they conjectured the convergence
side of a Khintchine law for the metric Poissonian property, i.e. a characterization of
the metric Poissonian property via the convergence of a series involving E(AN).

Question (Bloom, Chow, Gafni, Walker [23]). Is it true that if E (AN) ∼ N3ψ (N) for
some weakly decreasing function ψ : N→ [0, 1], then (an)n has the metric Poissonian
property if and only if ∑

N≥1

ψ(N)
N

(1.3.2)

converges?

In order to answer a related question, we construct in Chapter 4 sequences which
are not metric Poissonian, in a strong sense, and whose cut-offs have additive energy
located arbitrarily close to the putative convergence-divergence-threshold of (1.3.2).
In fact, a slightly stronger version of the subsequent statement is proved in Chapter 4.

Theorem ([73]). Let r be a positive integer, and let logr denote the r-times iterated
logarithm. Then, there is a strictly increasing sequence (an)n of positive integers with

E (AN) � N3

log (N) log2 (N) · · · logr (N)

such that the set of α ∈ (0, 1) for which (αan)n is not Poissonian has full Lebesgue
measure. Moreover, for any ε > 0 there is a strictly increasing sequence (an)n of
positive integers with

E (AN) � (logr (N))−εN3

log (N) log2 (N) · · · logr (N)

such that the set of α ∈ (0, 1) for which (αan)n is not Poissonian has full Hausdorff
dimension.

11



On the other hand, Chapter 3 is concerned with constructing sequences exhibiting
the metric Poissonian property while (1.3.2) diverges. Indeed, the main result in
Chapter 3 is that we can, essentially, save the sixth root of a logarithm, relative to
said threshold, in the additive energy of AN whilst preserving the Poissonian property:

Theorem ([13]). For every ε ∈ (0, 1/12), there is a metric Poissonian sequence (an)n
of strictly increasing integers satisfying

E (AN)� N3

(logN)5/6+ε .

The proof of this result uses, amongst other things, the insights from Chapter 4,
and the Fourier–analytic methods of [14]. Furthermore, by combining the two previous
theorems, it is apparent that a characterization of the metric Poissonian property
cannot just depend on the additive energies of the truncations alone. Instead, the
picture is more complicated — cf. the introduction of Chapter 5 for further details.

However, the high energy case is well-understood by a very recent result.

Theorem 1.3.1 (Larcher, Stockinger [79]). If E(AN) = Ω(N3), then there is no
α ∈ (0, 1) such that (anα)n has the Poissonian property.

The methods of Larcher and Stockinger are purely combinatorial, and a closer
inspection of their reasoning shows that the pair correlations function, for all α ∈ [0, 1],
is infinitely often “too” large. By different methods, we show a weaker statement which
pre-dates the aforementioned theorem: we show that the pair correlation function of
(αan)n, for sequences (an)n with E(AN) = Ω(N3), is “too” small infinitely often for
almost every α ∈ (0, 1), see Theorem 4.1.3 and its proof.

1.4 Regularity of Primes in Arithmetic Progres-
sions

Let ω (k) be the number of distinct prime factors of an integer k, and let ϕ denote
Euler’s totient function. We say that k is a P -integer if the first ϕ (k) primes which
do not divide k form a complete residue system modulo k. In 1978, Recaman [94]
conjectured that there are only finitely many prime P -integers. In 1980, Pomerance
[89] proved this, and conjectured moreover that no P -integer exceeds 30. This was
proved in special cases by Hajdu, Saradha, and Tijdeman [53, 55, 101]. In fact, in
[55], they proved the conjecture of Pomerance under the assumption of the Riemann
Hypothesis. Eventually, in a paper of Yang and Togbé [131] the conjecture was proven
unconditionally.

However, one can rephrase the definition of P -integers, see also [54], as follows:
Let, without further mention, p denote a prime, P the set of primes, and pn the
n-th smallest prime. Then k is a P -integer if the block p1, p2, . . . , pϕ(k)+ω(k) of the
first ϕ (k) + ω (k) primes, lying in the closed interval [p1, pϕ(k)+ω(k)], has precisely one
element in each reduced residue class modulo k, with the exception of the ω (k) primes
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which divide k (and thus lie in non-invertible residue classes). By viewing P -integers
as instances of such distribution phenomena, there is an obvious and far more general
notion.

Definition 2. Let α, β, γ, ι > 0 denote integers, and G = (G, ·) an arithmetical
semi-group with norm |·|, in the sense of Knopfmacher [70, p. 11], which takes
only values in the positive integers. Consider for k ∈ G the equivalence relation
a ∼ b ⇔ |a| ≡ |b| mod |k| on G and let M denote the primes in G with norm in
the interval [α, β]. Then we say k ∈ G is a P (α, β, γ, ι)-integer if M has in each
equivalence class corresponding to an invertible residue class modulo |k| at least γ
elements, and the remaining ι primes distribute in some arbitrary equivalence classes
such that #M = γϕ (|k|) + ι. (For ease of exposition, we shall simply speak of
P ∗-integers if no confusion can arise.)

Let us clarify that we are mainly concerned with investigating P ∗-integers in the
case that G is the semi-group of the positive integers. However, a side-objective was
to put P -integers into a more conceptional context. To this end, one might first look
for a definition of P ∗-integers in the ring of integers of a given number field. Here the
role of the primes is, in general, taken by prime ideals. Moreover, to define a notion
of arithmetic progressions it is natural to pull the ideals back to N by taking the
norm, as one does to define a Dedekind zeta function.4 Since this approach extends
to even greater generality, we stated our definition of P ∗-integers in the language of
arithmetical semi-groups. A natural question is to estimate, for a given k ∈ G, the
smallest values of α, β such that k is for the first time a P ∗-integer. Let us simplify this
question by considering the semi-group G = N of the natural numbers, endowed with
its canonical norm, and by asking the following question: fix α = 2 and estimate for a
given k the smallest integer β = β (k) such that k is the first time a P (2, β, 1, ι)-integer
for some ι. This problem is nothing but estimating Linnik’s constant which is widely
open. The following well-known probabilistic considerations in the spirit of Cramér’s
model suggest that β should be of magnitude k log2 k, whereas Heath-Brown [60]
has conjectured that β � k log2 k and Granville and Pomerance [51, below Thm. 1]
conjectured that β � ϕ(k) log2 k.

We start by estimating the probability P (X) for a random set of f (k) ≥ ϕ (k)
many primes to not cover all of the ϕ (k) reduced residue classes with at least one
prime each. We assume that a prime p has probability 1

ϕ(k) about to be in a specific
invertible residue r class modulo k, and denote by the event that none of the f (k)
primes is congruent r mod k. Then, writing f (k) = C (k)ϕ (k) log k, we estimate that

P (X) = P

(⋃
r

Xr

)
≈
∑
r

P (Xr) ≈
ϕ (k)
kC(k) (1.4.1)

where the union and the summation run through a complete residue system r modulo k.
Hence, if C (k) > 1+ε, for some fixed ε > 0, we expect with a positive probability that
our f (k) many primes cover all invertible residue classes at least once. On the other

4However, if the ring of integers happens to be Euclidean, as Z[i], there is an obvious alternative
generalization of P -integers.
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hand, if C (k) < 1−ε holds, we expect, by using the reversed Borel-Cantelli Lemma, cf.
[33], that X is likely to occur infinitely often. Since pn ∼ n log n, the threshold C = 1
amounts to the estimate β (k) ≈ ϕ (k) log k log (ϕ (k) log k) = O(k log2 k) for having
about ϕ (k) log k primes in the interval [2, β(k)]. This approximation was suggested
by a similar, but more complicated heuristic of Wagstaff [124], and is plausible in view
of various results e.g. from Turán [122].5

Let us stress that for k ∈ G, where G is as in Definition 2, this heuristic suggests
that one should need about ϕ (|k|) log |k| primes to cover the invertible residue classes
modulo |k| in G at least once with primes and not just ϕ (|k|) + ω (|k|) as one asks in
Recaman’s conjecture. Our first result shows that, under certain assumptions, this
is indeed the case. Furthermore, we say G satisfies Axiom A (cf. [70, p. 75]) with
δ > 0, if for some 0 ≤ η < δ the counting function NG (x) := # {g ∈ G : |g| ≤ x} has
the expansion xδ +O(xη) as x→∞. Thus, we can state the following result.

Theorem 1.4.1 ([42]). Let G as in Definition 2 satisfy Axiom A with some δ > 0.
Let k ∈ G, and K := |k|. Assume that numbers α = 1, β � K logaK and ι� logbK
are given for some fixed a, b > 0 in the case 0 < δ ≤ 1 and in the case δ > 1 the value
of β may additionally differ from multiples of K by at most K1−ε for some absolute
constant ε > 0. Then there are only finitely many such P ∗-integers.

For instance, the assumptions (on the semi-group) above are satisfied if G is the
set of non-zero integral ideals of a number field K with the usual ideal norm. Moreover,
one can also interpret the property to be a P ∗-integer as the resolvability (in the set of
primes) of a certain set of Diophantine equations and inequalities. For determining all
such solutions, it is of interest to furnish Theorem 1.4.1 with explicit bounds on k and
it might be interesting in its own right to make a qualitative statement quantitative.
We shall do so only in the case G = N since one needs explicit bounds for the prime
counting function πG (x) := # {p ∈ G : g prime , |g| ≤ x}, for x > 0, of G which are
only known if one has sufficient arithmetic information about G. For instance, the
error term in Landau’s prime ideal theorem naturally depends on the given number
field. However, once this information is given; it is a straightforward task to extend
our explicit results to more general cases.

Loosely speaking, our main result states, in a quantitative manner, that blocks
of primes (in the natural numbers) of approximate length γ ϕ (k) are, in general, not
evenly distributed among the reduced residue classes modulo k. More precisely, we
prove the following extension of Recaman’s conjecture:

Theorem 1.4.2 ([42]). Let λ ∈ N ∪ {0} and d1, d2, d3 denote strictly positive real
numbers. There are only finitely many P (α, β, γ, ι)-integers k in N such that the
growth restrictions α = λk+O(k1−d1), ι = O(k1−d2) and β = O(k logd3 k) are satisfied.

5Turán showed, assuming the Extended Riemann Hypothesis, that for any δ > 0 the smallest
prime P (k, l) in the invertible residue class l modulo k is exceeding the quantity ϕ (k) log2+δ (k) for
at most o (ϕ (k)) choices of l. There are other results of this kind, we refer the reader to [49] and the
references therein. However, there is also reason to be cautious with respect to the above mentioned
heuristic. In this direction there are, inter alia, the results of Maier [81], Rubinstein and Sarnak [96],
or [67].
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1.5 Iterated Multiplicative Arithmetic Functions
The study of the maximal order of arithmetic functions (for example of the divisor
functions d or σ) is an integral part of introductory number theory text books. For these
divisor functions d or σ satisfactory answers are well-known (see, e.g., Wigert [130]
and Gronwall [52]) the methods making use of the fact that these are multiplicative
functions. For the maximal order of magnitude of iterated arithmetic functions, much
less is known. Here are some reasons which show that this is generally a very delicate
subject:

1. The iterate of a multiplicative function is usually not multiplicative.

2. Understanding the iterates of the function g(n) = σ(n)− n, where σ is the sum
of divisors function, would entail an understanding of odd perfect numbers.

3. Let a(n) denote the number of abelian groups of order n. By results of Erdős
and Ivić [44] it is known that

exp
(
(log x)1/2+o(1)

)
� max

n≤x
a(a(n))� exp

(
(log x)7/8+o(1)

)
,

leaving a large gap between lower and upper bounds. Improving these bounds
would seem to require an understanding of the multiplicative structure of the
number p(n) of unrestricted partitions, about which very little is known beyond
certain congruences.

4. Let σ1(n) = σ(n) be the sum of divisors function, and σk(n) = σ1(σk−1(n)) its
iterates. Schinzel [102] conjectured that

lim inf
n→∞

σk(n)
n

<∞.

This is only established for k = 1, 2 and 3 by results of Mąkowski [83] and Maier
[80], and conditionally on Schinzel’s Hypothesis H.

In the case of multiplicative functions, the maximal order of magnitude was initially
proved in a number of individual cases: The maximal order of the divisor function d
has been determined by Wigert [130] and Ramanujan [91]. They proved that

lim sup
n→∞

log d(n) log log n
log n = log 2.

(Note that for functions of this magnitude one typically has asymptotics for log(f(n))
rather than for f(n) itself. From our perspective we will still say that the maximal
order has been determined.) This study subsequently influenced (via results of Hardy
and Ramanujan, Turán and Erdős and Kac) the development of probabilistic number
theory.

Ramanujan studied the multiplicative function δ that counts the number of
representations of its argument as a sum of two squares ignoring sign, i.e.,

δ(n) = 1
4 #{(x, y) ∈ Z× Z | x2 + y2 = n}. (1.5.1)
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If νp denotes the p-adic valuation, then it is well-known (see, e.g., [56, Theorem 278])
that

δ(n) =
∏

prime q|n
q≡1 mod 4

(νq(n) + 1)×
∏

prime p|n
p≡3 mod 4

1
2

(
1 + (−1)νp(n)

)
. (1.5.2)

(To be precise, Ramanujan called this function Q2(n), here we use the notation used
by Hardy and Wright [56, Theorem 278], and observe that δ(n) = r2(n)

4 , where r2(n)
is the sum of two squares function which also takes care of signs. The r2 function is
not quite multiplicative.) Ramanujan [93] showed that, for some positive constant a,

max
n≤x

δ(n) = exp
(

log 2
2 li(2 log x) +O((log x) exp(−a

√
log x))

)
,

which implies that

max
n≤x

δ(n) = exp
(

(log 2 + o(1)) log x
log log x

)
.

This implies the very same logarithmic maximum order:

lim sup
n→∞

log r2(n) log log n
log n = log 2.

Knopfmacher [69] and Nicolas [85] later also observed this. At that time they did not
know about Ramanujan’s work which was, as yet, unpublished: Quite remarkably,
the end of Ramanujan’s paper [91] of 1915 was not intended to be the end. In
fact, Ramanujan’s manuscript was considerably longer, and due to a shortage of
resources during wartime the London Mathematical Society printed only a part of
the manuscript. The second part was recovered and published many years later, first
in [92], but later with detailed annotations by Nicolas and Robin [93], and also [15].
Ramanujan (see [93], Paragraphs 55 and 56) also achieved the very same result,

max
n≤x

Q̃2(n) = exp
(

log 2
2 li(2 log x) +O((log x) exp(−a

√
log x))

)
,

for the function Q̃2(n) counting non-negative pairs (x, y) with n = x2 + xy + y2.

Q̃2(n) =
∏

prime q|n
q≡1 mod 3

(νq(n) + 1)×
∏

prime p|n
p≡−1 mod 3

1
2

(
1 + (−1)νp(n)

)
. (1.5.3)

Krätzel [71] proved for the number a(n) of non-isomorphic abelian groups of order n
that

lim sup
n→∞

log a(n) log log n
log n = 1

4 log 5,

and Knopfmacher [68] proved for the number β(n) of squareful divisors of n that

lim sup
n→∞

log β(n) log log n
log n = 1

3 log 3.
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A number of authors independently observed that these limits can be worked out
more generally, for the class of prime independent multiplicative functions. Of these
results we only mention the one by Shiu [106], but there are others (see [16, 35, 62,
64, 69, 84, 87, 90, 114]). Shiu [106] proved: let f : N→ R be a multiplicative function
satisfying the following conditions:

1. There exist constants A and 0 < θ < 1 such that f(2ν) ≤ exp(Aνθ) where ν ≥ 1,
and

2. for all primes p and all a ≥ 1 one has f(pν) = f(2ν) ≥ 1,

then the following holds:

lim sup
n→∞

log f(n) log log n
log n = logM,

where M = maxν≥1(f(2ν))1/ν . The quest for the maximal order of the iterated divisor
function was raised by Ramanujan [91] in his paper on highly composite numbers. At
the very end of that paper, he gave a construction of integers Nk = ∏k

i=1 p
pi−1
i and

observed that for these integers d(d(Nk)) ≥ exp
((√

2 log 4 + o(1)
) √

logNk
log logNk

)
. Erdős

and Kátai [45], Ivić [65] and Smati [110, 111] gave results on the maximal order, but
a satisfying answer about the maximal order of the iterated divisor function was only
given almost 100 years after Ramanujan’s paper: Buttkewitz, Elsholtz, Ford and
Schlage-Puchta [29] proved, using elementary and combinatorial methods, that:

lim sup
n→∞

log d(d(n)) log log n√
log n

= Cdiv :=
(

8
∞∑
l=1

(
log

(
1 + 1

l

))2)1/2

.

It seems to be a gap in the literature that even for the quite frequently used sums
of two squares functions (δ or r2), which often serve as a benchmark for a function
not too different from the divisor function, but not being quite prime independent,
there are no studies on the iterated function and Chapter B in the appendix intends
to close this gap. In fact, let us recall the development for sums of multiplicative
functions, where Landau investigated the number of integers representable as sums
of two squares. Subsequently, this was generalised many times, for example to the
number of integers consisting of primes in certain residue classes only, and eventually
led to the celebrated mean value results of Wirsing and Halász.

Motivated by this development, we study a class of multiplicative functions which
includes important functions - such as the divisor functions d, or δ = r2(n)/4 (the
number of representations of sums of two integer squares, ignoring signs, so that it
becomes a multiplicative function). For iterated arithmetic functions, it seems that
the investigations are still in the beginning phase. In the spirit of Shiu’s theorem,
we also investigated which hypotheses on the function f , defining a certain class of
function, allow one to determine the maximum order magnitude of f(f(n)). In some
cases (including δ and Q̃2), we are able to give asymptotics for the logarithmic size of
this maximum. The results concerning the maximal order of functions from the said
class of function are of the following kind.
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Corollary ([41]). If α ∈ N, then

max
n≤x

log d((d(nα))α) =
√

log x
log2 x

 Cα√
τ/α

+O
(

log3 x

log2 x

)
where

Cα =
(

8
∞∑
ν=1

log
(

1 + α

1 + (ν − 1)α

))1/2

.

In particular, for δ given by (1.5.1) we obtain the following.

Corollary ([41]). Let δ be given by (1.5.1). Then

max
n≤x

log δ(δ(n)) =
√

log x
log2 x

(
Cdiv√

2
+O

(
log3 x

log2 x

))
.

Remark. Since at least one of my collaborators wants to use some of the joint research
presented in this thesis for his PhD thesis as well, I need to declare and detail — for
bureaucratic reasons — percentages of my contribution to the research related to this
matter: for the second chapter my contribution was 20%, for the third chapter it was
50%, and for the fourth chapter it was 33%.
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Chapter 2

On a Counting Theorem of
Skriganov

“Not everything that can be counted counts, and not everything that
counts can be counted.”
— W. Cameron [30, p.13].

The following chapter is based on joint work with Martin Widmer [117].

We prove a counting theorem concerning the number of lattice points for the dual
lattices of weakly admissible lattices in an inhomogeneously expanding box, which
generalises a counting theorem of Skriganov. The error term is expressed in terms of
a certain function ν(Γ⊥, ·) of the dual lattice Γ⊥, and we carefully analyse the relation
of this quantity with ν(Γ, ·). In particular, we show that ν(Γ⊥, ·) = ν(Γ, ·) for any
unimodular lattice of rank 2, but that for higher ranks it is in general not possible
to bound one function in terms of the other. This result relies on Beresnevich’s
recent breakthrough on Davenport’s problem regarding badly approximable points on
submanifolds of Rn. Finally, we apply our counting theorem to establish asymptotics
for the number of Diophantine approximations with bounded denominator as the
denominator bound gets large.

2.1 Introduction
In the present chapter, we are mainly concerned with four objectives. Firstly, we
prove an explicit version of Skriganov’s celebrated counting result [109, Thm. 6.1] for
lattice points of unimodular weakly admissible lattices in homogeneously expanding
aligned boxes. Secondly, we use this version to generalise Skriganov’s theorem to
inhomogeneously expanding, aligned boxes. Thirdly, we carefully investigate the
relation between ν(Γ, ·) (see (2.1.1) for the definition) and ν(Γ⊥, ·) of the dual lattice
Γ⊥ which captures the dependency on the lattice in these error terms. And fourthly,
we apply our counting result to count Diophantine approximations.

To state our first result, we need to introduce some notation. By writing f � g (or
f � g) for functions f, g, we mean that there is a constant c > 0 such that f(x) ≤ cg(x)
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(or cf(x) ≥ g(x)) holds for all admissible values of x; if the implied constant depends on
certain parameters, then this dependency will be indicated by an appropriate subscript.
Let Γ ⊆ Rn be a unimodular lattice, and let Γ⊥ := {w ∈ Rn : 〈v, w〉 ∈ Z ∀v∈Γ} be
its dual lattice with respect to the standard inner product 〈·, ·〉. Let γn denote the
Hermite constant, and for ρ > γ1/2

n set

ν(Γ, ρ) := min
{
|x1 · · ·xn| : x := (x1, . . . , xn)T ∈ Γ, 0 < ‖x‖2 < ρ

}
(2.1.1)

where ‖·‖2 denotes the Euclidean norm. We say Γ is weakly admissible if ν(Γ, ρ) > 0
for all ρ > γ1/2

n . Note that this happens if and only if Γ has trivial intersection with
every coordinate subspace. It is also worthwhile mentioning that the function ν(Γ, ρ)
controls the rate of escape of the lattice Γ under the action of the diagonal subgroup
of SLn(R) (cf. (2.2.7)).

Furthermore, let T := diag(t1, . . . , tn) for ti > 0 be the diagonal matrix with
diagonal entries t1, . . . , tn, and let y ∈ Rn. We set

B := T [0, 1]n + y,

and we call such a set an aligned box. Moreover, we define

T := (det T )1/n · ‖T −1‖2 = (t1 · · · tn)1/n

min{t1, . . . , tn}
≥ 1

where ‖ · ‖2 denotes the operator norm induced by the Euclidean norm. Then, our
generalisation of Skriganov’s theorem reads as follows.

Theorem 2.1.1. Let n ≥ 2, let Γ ⊆ Rn be a unimodular lattice, and let B ⊆ Rn be
as above. Suppose Γ⊥ is weakly admissible, and ρ > γ1/2

n . Then,

|#(Γ ∩B)− vol(B)| �
n

1
ν
(
Γ⊥, T ?

)((vol(B))1−1/n

√
ρ

+ Rn−1

ν(Γ⊥, 2RT )

)
(2.1.2)

where x? := max {γn, x}, and R := n2 + log ρn

ν(Γ⊥,ρT ) .

Note that ρn/ν(Γ⊥, ρ) ≥ nn/2 by the inequality between arithmetic and geometric
mean.

Since T ≥ 1 and by (1.1.4) we have (2RT )? = 2RT , and hence, the far right
hand-side in (2.1.2) is well-defined.

The lattice Γ is called admissible if Nm (Γ) := limρ→∞ ν(Γ, ρ) > 0. It is easy to
show that if Γ is admissible then also Γ⊥ is admissible (see [108, Lemma 3.1]). In this
case we can choose ρ = (volB)2−2/n, provided the latter is greater than γ1/2

n , to recover
the following impressive result of Skriganov ([108, Theorem 1.1 (1.11)])

|#(Γ ∩B)− vol(B)| �
n,Nm (Γ⊥)

(log(vol(B))n−1. (2.1.3)

However, if Γ is only weakly admissible, then it can happen that Γ⊥ is not weakly
admissible; see Example 1. But this is a rather special situation and typically, e.g., if
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the entries of A are algebraically independent, see Lemma 2.3.1, then Γ = AZn and
its dual are both weakly admissible. This raises the question whether, or under which
conditions, one can control ν(Γ⊥, ·) by ν(Γ, ·). We have the following result where we
use the convention that for an integral domain R the group of all matrices in Rn×n

with inverse in Rn×n is denoted by GLn(R).

Proposition 2.1.2. Let Γ = AZn, and suppose there exist S,R both in GLn(Z) such
that

ATSA = R,

and suppose S has exactly one non-zero entry in each column and in each row. Then,
we have

ν(Γ⊥, ·) = ν(Γ, ·). (2.1.4)

A special case of Proposition 2.1.2 shows that ν(Γ⊥, ·) = ν(Γ, ·) whenever Γ = AZn
with a symplectic matrix A, in particular, whenever1 Γ is a unimodular lattice in
R2. In these cases, one can directly compare Theorem 2.1.1 with a recent result [128,
Theorem 1.1] of the second author, and we refer to [128] for more on that. On the
other hand, our next result shows that in general ν(Γ, ·) can decay arbitrarily quickly
even if we control ν(Γ⊥, ·).

Theorem 2.1.3. Let n ≥ 3, and let ψ : (0,∞)→ (0, 1) be non-increasing. Then, there
exists a unimodular, weakly admissible lattice Γ ⊆ Rn, and a sequence {ρl} ⊆ (γ1/2

n ,∞)
tending to ∞, as l→∞, such that

ν(Γ⊥, ρ)� ρ−n
2
,

and
ν(Γ, ρl) ≤ ψ(ρl)

for all l ∈ N = {1, 2, 3, . . .} and for all ρ > γ1/2
n .

In the case where exactly one of the functions ν(Γ, ·), and ν(Γ⊥, ·) is controllable
while the other one decays very quickly either Theorem 2.1.1 or [128, Theorem
1.1] provides a reasonable error term, but certainly not both. This highlights the
complementary aspects of Theorem 2.1.1, and [128, Theorem 1.1]. Theorem 2.1.3 is
deeper than Proposition 2.1.2, and relies on Beresnevich’s recent breakthrough on
Davenport’s longstanding question about the distribution of badly approximable points
on certain submanifolds of Rn. Going even beyond Davenport’s original question,
Beresnevich proved that the sets of these points have full Hausdorff-dimension, and it
is the full power of this result that we require to prove Theorem 2.1.3.

Very recently German [47] introduced the so-called lattice exponent ω(Γ) which is
a coarse measure for the rate of decay of the function ν(Γ, ρ); it can be expressed as

ω(Γ) = lim sup
ρ→∞

− log ν(Γ, ρ)
n log ρ , (2.1.5)

1Let us write Sp2m(R) for the symplectic subgroup of GL2m(R) and SLn(R) for the special linear
subgroup of GLn(R). The fact Sp2(R) = SL2(R) can be checked directly.
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where for non-weakly admissible lattices this is interpreted as ω(Γ) = ∞. German
proposes the problem of studying the spectrum of the pairs (ω(Γ), ω(Γ⊥)) as Γ runs
over all unimodular lattices in Rn. He constructs a non-weakly admissible lattice Γ
with ω(Γ⊥) = 1/(n− 1)2 and hence, (ω(Γ), ω(Γ⊥)) = (∞, 1/(n− 1)2). If we insist that
Γ be also weakly admissible then we can use Theorem 2.1.3 but at the expense that
we have only an estimate for ω(Γ⊥). More precisely, there exists a weakly admissible
lattice Γ such that (ω(Γ), ω(Γ⊥)) ∈ {∞} × [0, n].

Next, we apply Theorem 2.1.1 to deduce counting results for Diophantine approxi-
mations. We start with a bit of historical background on this, and related problems.
Let α ∈ R, let ι : [1,∞)→ (0, 1] be a positive decreasing function, and let N loc

α (ι, t)
be the number of integer pairs (p, q) satisfying |p+ qα| < ι(q), 1 ≤ q ≤ t. In a series
of papers, starting in 1959, Erdős [43], Schmidt [103, 104], Lang [9, 74, 75], Adams
[1, 2, 3, 4, 5, 6, 7, 8], Sweet [115], and others, considered the problem of finding the
asymptotics for N loc

α (ι, t) as t gets large.
Schmidt [103] has shown that for almost every2 α ∈ R the asymptotics are given

by the volume of the corresponding subset of R2, provided the latter tends to infinity.
This is false for quadratic α; there with ι(q) = 1/q the volume is 2 log(t) +O(1), and
by Lang’s result N loc

α (1/q, t) ∼ cα log(t) but Adams [5] has shown that cα 6= 2.
Opposed to the above “non-uniform” setting, where the bound on |p + qα| is

expressed as a function of q, we consider the “uniform” situation, where the bound
is expressed as a function of t. Furthermore, we shall consider the more general
asymmetric inhomogeneous setting. Let α ∈ (0, 1) be irrational, ε, t ∈ (0,∞), and let
y ∈ R. We define the counting function

Nα,y(ε, t) = #
{

(p, q) ∈ Z× N : 0 ≤ p+ qα− y ≤ ε,
0 ≤ q ≤ t

}
. (2.1.6)

If the underlying set is not too stretched, then Nα,y(ε, t) is roughly the volume εt
of the set in which we are counting lattice points. If we let ε = ε(t) be a function of t
with t = o(tε) we have, by simple standard estimates,

Nα,y(ε, t) ∼ εt (2.1.7)

for any pair (α, y) ∈ ((0, 1) \ Q) × R whatsoever. To get non-trivial estimates for
our counting function, we need information on the Diophantine properties of α. Let
φ : (0,∞)→ (0, 1) be a non-increasing function such that

q
∣∣∣p+ qα

∣∣∣ ≥ φ (q) (2.1.8)

holds for all (p, q) ∈ Z× N. Then [128, Theorem 1.1] implies that

|Nα,y(ε, t)− εt| �α

√
εt

φ(t) . (2.1.9)

Hence, unlike in the non-uniform setting, for badly approximable α the asymptotics
are given by the volume as long as the volume tends to infinity.

2Here “almost every” refers always to the Lebesgue measure.

22



Our next result significantly improves the error term in (2.1.9), provided α is
“sufficiently” badly approximable, i.e., provided φ(t) decays slowly enough. We assume
that

εt > 4 and 0 < ε <
√
α. (2.1.10)

Corollary 2.1.4. Put E := εt
φ(4t
√
εt) , and E

′ := 168
√
εt3E. Then, we have

|Nα,y(ε, t)− εt| �
α

logE
φ2(E ′) . (2.1.11)

In particular, if α is badly approximable then

|Nα,y(ε, t)− εt| �
α

log(εt). (2.1.12)

2.2 An Explicit Version of Skriganov’s Counting
Theorem

Let Γ ⊆ Rn be a lattice, and let λi(Γ) denote the i-th successive minimum of Γ with
respect to the Euclidean norm (1 ≤ i ≤ n). For r > 0 we introduce a special set of
diagonal matrices

∆r :=
{
δ := diag(2m1 , . . . , 2mn) : m = (m1, . . . ,mn)T ∈ Zn, ‖m‖2 < r, det δ = 1

}
,

and we put
S(Γ, r) :=

∑
δ∈∆r

(λ1(δΓ))−n.

Now we can state Skriganov’s result. In fact, his result is more general, and applies to
any convex, compact polyhedron. On the other hand, the dependency on B and Γ
in the error term is not explicitly stated in his counting result [109, Thm. 6.1]. By
carefully following his reasoning, see Remark 1 below, we find the following explicit
version of his result. Recall that γn denotes the Hermite constant.

Theorem 2.2.1. [Skriganov, 1998] Let n ≥ 2 be an integer, let Γ ⊆ Rn be a
unimodular lattice, and let B ⊆ Rn be an aligned box of volume 1. Suppose Γ⊥
is weakly admissible, and ρ > γ1/2

n . Then, for t > 0,

|#(Γ ∩ tB)− tn| �
n

(|∂B|λn(Γ))n · (tn−1ρ−
1/2 + S(Γ⊥, r)) (2.2.1)

where r := n2 + log ρn

ν(Γ⊥,ρ) , and |∂B| denotes the surface area of B.

Remark 1. The references and notation in this remark are the same as in [109]. Put
O := tB, fix a mollifier ω as in (11.3), and denote by χ̃(O, ·) the Fourier transform
of the characteristic function χ(O, ·) of O. Skriganov applies Lemma 11.1 to the error
term

R(O,Γ) := sup
X∈Rn

|#((O +X) ∩ Γ)− vol(O)|
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to estimate it by

R(O,Γ) ≤ vol(O+
τ )− vol(O−τ ) + sup

X∈Rn

(∣∣∣R+
τ (O, X)

∣∣∣+ ∣∣∣R−τ (O, X)
∣∣∣)

where O±τ is a τ -coapproximation3 of O, and R±τ are the Fourier series

R±τ (O, X) :=
∑

γ∈Γ⊥\{0}
χ̃(O±τ , γ)ω̃(τγ)e−2πi〈γ,X〉

defined in (11.5) where ω̃ denotes the Fourier transform of ω. Observe that |∂B| ≥ 1,
and that without loss of generality B is centred at the origin, i.e., y = −1

2(t1, . . . , tn)T .
Hence, we can choose O±τ := (t± |∂B| τ)B with 0 < τ < 1, and thus

vol(O+
τ )− vol(O−τ )�

n
|∂B|n tn−1τ.

As noted in (6.6), since B is an aligned box, the average S(Γf, ·) simplifies to S(Γ⊥, ·),
and ν(Γ⊥f , ·) = ν(Γ⊥, ·) for each flag of faces f of B.
Now R±τ is decomposed via (12.7) into partial sums A±τ,ρ plus remainder terms B±τ,ρ
which are defined in (12.8) and (12.9), respectively. Let ω2 denote the Fourier transform
of ω1 (cf. p. 57). Due to (12.12), there is a constant c = c(ω1, ω2), independent of
Γ, t, ρ, τ , such that4

max
X∈Rn

A±τ,ρ(O, X) ≤ cS(Γ⊥, r)

where we may choose r to be

r := n2 + log ρn

ν(Γ⊥, ρ) .

Hence, c depends in fact only on the (fixed) mollifier ω1. Furthermore, B±τ,ρ(O, X) is
estimated in (12.14) by

max
X∈Rn

∣∣∣B±τ,ρ(O, X)
∣∣∣ ≤ cA

2π |∂B| t
n−1τ−A

∑
γ∈Γ⊥
‖γ‖2>

1
8 ρ

‖γ‖−A−1
2

where A > n. Note that for R > 0

#
{
γ ∈ Γ⊥ : ‖γ‖2 < R

}
�
n

(R/λ1(Γ⊥) + 1)n.

This in turn implies that for k ∈ N0 we have

#
{
γ ∈ Γ⊥ : 2k ≤ ‖γ‖2 < 2k+1

}
�
n

(2k+1/λ1(Γ⊥))n.

3Given a compact region O ⊆ Rn and a real number τ > 0, compact regions O±τ are called
τ -coapproximations to O, if O−τ ⊆ O ⊆ O+

τ and dist(∂O, ∂O±τ ) ≥ τ are satisfied.
4Conceivably, we should mention a typo regarding the definition of rf in (6.5): rf is to be taken

as in (12.13). In (12.13) κn denotes τn from Lemma 10.1, which was defined in (7.4) as two times
the diameter of the Dirichlet-Voronoi region of the lattice M defined in (3.3). It is easy to see that
2τn < n2.
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Using dyadic summation, and Mahler’s relations

1 ≤ λi(Γ⊥)λn+1−i(Γ) ≤ n! (i = 1, . . . , n) (2.2.2)

yields ∑
γ∈Γ⊥
‖γ‖2>

1
8 ρ

‖γ‖−A−1
2 �

n

∑
k>

⌊
log(8−1ρ)

log 2

⌋ 2(k+1)nλ−n1 (Γ⊥) · 2−(A+1)k �
n
λnn(Γ)ρn−A−1.

Hence, ∣∣∣R±τ (O, X)
∣∣∣�
n
cS(Γ⊥, r) + cA |∂B| tn−1τ−Aλnn(Γ)ρn−A−1.

Specialising A := 2n− 1 implies

R(O,Γ)�
n
|∂B|n tn−1τ + S(Γ⊥, r) + |∂B|n tn−1τ 1−2nλnn(Γ)ρ−n

�
n

(|∂B|λn(Γ))n(tn−1τ + S(Γ⊥, r) + tn−1τ 1−2nρ−n)

where in the last inequality we used the obvious fact |∂B| ≥ 1. Finally, choosing
τ := ρ−1/2 gives the required estimate.

For proving Theorem 2.1.1, we want to exploit Theorem 2.2.1. To this end let
t := (det T )1/n, and let

U := tT −1. (2.2.3)

Thus,

#(Γ ∩B) = #(UΓ ∩ U(T [0, 1]n + y)) = #(Λ ∩ t([0, 1]n + T −1(y)))

where Λ := UΓ. Moreover, we conclude by Theorem 2.2.1 that

|#(Γ ∩B)− vol(B)| �
n
λnn(Λ)

(
t
n−1

√
ρ

+ S(Λ⊥, r)
)
. (2.2.4)

For controlling the quantities on the right hand side in terms of Γ, t, ρ, and ν(Γ⊥, ·),
we need two lemmata. We will frequently use the fact that if Γ = AZn is unimodular
then Γ⊥ = (A−1)TZn. As usual, we let SLn(R) denote the group of all Rn×n matrices
with determinant 1.

Lemma 2.2.2. Let D := diag(d1, . . . , dn) be in SLn(R), and ρ > γ1/2
n . Then,

ν((DΓ)⊥, ρ) ≥ ν(Γ⊥, ‖D‖2 ρ), (2.2.5)

and
λn1 (DΓ)�

n
ν(Γ,

∥∥∥D−1
∥∥∥?

2
). (2.2.6)
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Proof. For v := (v1, . . . , vn)T ∈ Rn define Nm(v) := |v1 · · · vn|. We remark that

ν((DΓ)⊥, ρ) = ν(D−1Γ⊥, ρ)
= min

{
Nm(D−1v) : v ∈ Γ⊥, 0 <

∥∥∥D−1v
∥∥∥

2
< ρ

}
= min

{
Nm (v) : v ∈ Γ⊥, 0 <

∥∥∥D−1v
∥∥∥

2
< ρ

}
.

If ‖D−1v‖2 < ρ, then ‖v‖2 < ‖D‖2ρ. Thus, (2.2.5) follows. Now let Q > 0, and v ∈ Γ
with 0 < ‖v‖2 ≤ Q. By the inequality of arithmetic and geometric mean, we have

‖Dv‖n2 ≥ n
n/2 · Nm(Dv)�

n
ν(Γ, Q?).

Now suppose ‖v‖2 > Q. Since ‖v‖2 = ‖D−1Dv‖2 ≤ ‖D−1‖2 ‖Dv‖2, we conclude that

‖Dv‖2 >
∥∥∥D−1

∥∥∥−1

2
Q.

Hence, we have
‖Dv‖2 �n min

{
(ν(Γ, Q?))1/n,

∥∥∥D−1
∥∥∥−1

2
Q
}
.

Specialising Q := ‖D−1‖2, and noticing that by the inequality of arithmetic and
geometric mean, ν(Γ, γn)�

n
1, we get (2.2.6).

Note that ‖D−1‖2 ≤ ‖D‖
n−1
2 , and hence by Lemma 2.2.2 that

λn1 (DΓ)�
n
ν(Γ, ‖D‖n−1

2 ), (2.2.7)

at least if ‖D‖n−1
2 > γ1/2

n . Therefore, the function ν(Γ, ρ) controls the rate of escape of
the lattice Γ under the action of the diagonal subgroup of SLn(R).

Lemma 2.2.3. Let U be as in (2.2.3), and let s ≥ 1. Then, we have

S(Λ⊥, s)�
n

sn−1

ν(Γ⊥, (2s ‖U‖2)?) .

Proof. Since Λ⊥ = U−1Γ⊥, we conclude by (2.2.6) that

S(Λ⊥, s) =
∑
δ∈∆s

1
λn1 (δU−1Γ⊥) �n

∑
δ∈∆s

1
ν(Γ⊥, ‖Uδ−1‖?2) .

Since #∆s �
n
sn−1, and since ν(Γ⊥, ·) is non-increasing, we get

S(Λ⊥, s)�
n

sn−1

ν(Γ⊥, (2s ‖U‖2)?) .

Now we can give the proof of Theorem 2.1.1.
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Proof of Theorem 2.1.1. By (2.2.5), we conclude

r = n2 + log ρn

ν(Λ⊥, ρ) ≤ n2 + log ρn

ν(Γ⊥, ‖U‖2 ρ) = R

Since ν(Λ⊥, ·) is non-increasing, and since (2R ‖U‖2)? = 2R ‖U‖2 Lemma 2.2.3 yields

S(Λ⊥, r)�
n

Rn−1

ν(Γ⊥, 2R ‖U‖2) . (2.2.8)

By using Mahler’s relation (2.2.2) and Lemma 2.2.2, we obtain

λnn(Λ)�
n

1
λn1 (U−1Γ⊥) �n

1
ν(Γ⊥, ‖U‖?2) . (2.2.9)

Taking (2.2.8) and (2.2.9) in (2.2.4) into account, it follows that

|#(Γ ∩B)− vol(B)| �
n

1
ν
(
Γ⊥, ‖U‖?2

)(tn−1

√
ρ

+ Rn−1

ν(Γ⊥, 2R ‖U‖2)

)

which is (2.1.2).

2.3 Comparing ν(Γ, ·) and ν(Γ⊥, ·)
A natural question is whether one can state Theorem 2.1.1 in a way that is intrinsic
in Γ, i.e. expressing ν(Γ⊥, ·) in terms of ν(Γ, ·). However, for n > 2 there are weakly
admissible lattices Γ ⊆ Rn such that Γ⊥ is not weakly admissible as the following
example shows.

Example 1. Let n ≥ 3, and let A′0 ∈ GLn−1(R) be such that the elements of each row
of A′0 are Q-linearly independent. Choose real x1, . . . , xn−1, y outside of the Q-span of
the entries of A′0, and suppose y 6= xn−1. Let x = (x1, . . . , xn−1)T and let rn−1 be the
last row of A′0. Then, the matrix

A0 :=
(
A′0 x
rn−1 y

)

satisfies
(i) A0 ∈ GLn(R), and
(ii) the elements in each row of A0 are Q-linearly independent.
The second assertion is clear and for the first suppose a linear combination of the

rows vanishes. Using that the rows of A′0 are linearly independent over R and that
y 6= xn−1, the first claim follows at once. We now let A be the matrix we get from
A0 by swapping the first and the last row, and scaling each entry with | detA0|−1/n.
Clearly, (i) and (ii) remain valid for A, and the (n, n)-minor of A vanishes. We
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conclude that Γ := AZn is a unimodular, and weakly admissible lattice; moreover,
Cramer’s rule implies that

(A−1)T =


? ? . . . ?

?
. . . . . . ...

... . . . ? ?
? . . . ? 0


where an asterisk denotes some arbitrary real number, possibly a different number each
time. Hence, Γ⊥ contains a non-zero lattice point with a zero coordinate, and thus is
not weakly admissible.

Keeping Example 1 in mind, we now concern ourselves with finding large subclasses
of lattices Γ ⊆ Rn such that

1. Γ and Γ⊥ are both weakly admissible,

2. ν(Γ⊥, ·) = ν(Γ, ·).

It is easy to see that the first item holds for almost all lattices in the sense of
the Haar-measure on the space Ln = SLn(R)/ SLn(Z) of unimodular lattices in Rn.
Moreover, we have the following criterion.

Lemma 2.3.1. Suppose A ∈ SLn(R), and suppose that the entries of A are alge-
braically independent (over Q). Then, Γ := AZn and Γ⊥ are both weakly admissible.

Proof. First note that if K is a field and X1, . . . , XN are algebraically independent
over K, then any non-empty collection of pairwise distinct monomials Xa1

1 · · ·XaN
N is

linearly independent over K. Next note that by Cramer’s rule, each entry of (A−1)T
is a sum of pairwise distinct monomials (up to sign) in the entries of A, and none of
these monomials occurs in more than one entry of (A−1)T . This shows that the entries
of (A−1)T are linearly independent over Q, in particular, the entries of any fixed row
of (A−1)T are linearly independent over Q. Thus, Γ⊥ is weakly admissible.

Next, we prove Proposition 2.1.2. Notice that S and S−1 are, up to signs of the
entries, permutation matrices, and thus for every w ∈ Rn

Nm (w) = Nm (Sw) = Nm (S−1w), (2.3.1)
‖w‖2 = ‖Sw‖2 =

∥∥∥S−1w
∥∥∥

2
. (2.3.2)

Now let Aw be an arbitrary lattice point in Γ = AZn. Then, since R ∈ Zn×n, we get
(A−1)TRw ∈ Γ⊥. Since by hypothesis A = S−1((A−1)TR), we conclude from (2.3.1)
that Nm (Aw) = Nm ((A−1)TRw), and from (2.3.2) that ‖Aw‖2 =

∥∥∥(A−1)TRw
∥∥∥

2
.

This shows that ν(Γ⊥, ·) ≤ ν(Γ, ·).
Similarly, if (A−1)Tw ∈ Γ⊥ then, since R−1 ∈ Zn×n, we find that AR−1w ∈ Γ, and

using that (A−1)T = SAR−1 we conclude as above that ν(Γ, ·) ≤ ν(Γ⊥, ·). This proves
Proposition 2.1.2.
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Remark 2. Let Im := diag(1, . . . , 1) be the identity matrix, and 0m the null matrix
in Rm×m. Specialising

S = R =
(

0m Im
−Im 0m

)
in Proposition 2.1.2, we conclude that if Γ = AZn with a symplectic matrix A, then

ν(Γ⊥, ·) = ν(Γ, ·). (2.3.3)

Moreover, it is easy to see that Sp2(R) = SL2(R), and hence (2.3.3) holds for any
unimodular lattice Γ ⊆ R2.

Next, we prove Theorem 2.1.3. Recall that α := (α1, . . . , αn)T ∈ Rn is called badly
approximable, if there is a constant C = C(α) > 0 such that for any integer q ≥ 1 the
inequality

max {‖qα1‖ , . . . , ‖qαn‖} ≥
C

q1/n
(2.3.4)

holds where ‖·‖ denotes the distance to the nearest integer. By a well-known
transference principle, cf. [31], assertion (2.3.4) is equivalent to saying that for
all non-zero vectors q := (q1, . . . , qn)T ∈ Zn the inequality

‖〈α, q〉‖ ≥ C̃

‖q‖n2
(2.3.5)

holds where C̃ = C̃(α) > 0 is a constant. Let Bad(n) denote the set of all badly
approximable vectors in Rn. The crucial step for constructing matrices generating the
lattices announced in Theorem 2.1.3 is done by the following lemma.
Lemma 2.3.2. Let n ≥ 3 be an integer. Fix algebraically independent real numbers
ci,j where i, j = 1, . . . , n and i 6= j. Then, there exist λ1, . . . , λn ∈ R such that the
entries of each row of

A :=


λ1 c1,2 . . . c1,n

c2,1 λ2
. . . ...

... . . . . . . cn−1,n
cn,1 . . . cn,n−1 λn

 (2.3.6)

are algebraically independent, A is invertible, and each row-vector of (A−1)T is badly
approximable.

For proving this lemma, we shall use the following special case of a recent Theorem
of Beresnevich concerning badly approximable vectors. We say that the map F :=
(f1, . . . , fn)T : B → Rn, where B ( Rm is a non-empty ball and m,n ∈ N, is
non-degenerate, if 1, f1, . . . , fn are linearly independent functions (over R).
Theorem 2.3.3 ([18, Thm. 1]). Let n, m, k be positive integers. For each j = 1, . . . , k
suppose that Fj : B → Rn is a non-degenerate, analytic map defined on a non-empty
ball B ( Rm. Then,

dimHaus

k⋂
j=1

F−1
j (Bad(n)) = m.
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Proof of Lemma 2.3.2. We work in two steps. First, we set the scene to make use of
Theorem 2.3.3.

(i) Let M ∈ Rn×n, and denote by (M)i,j the entry in the i-th row and j-th column
of M . Moreover, we define a map F̃ : Rn → Rn×n by

λ := (λ1, . . . , λn)T 7→


λ1 c1,2 . . . c1,n

c2,1 λ2
. . . ...

... . . . . . . cn−1,n
c1,n . . . cn,n−1 λn

 .

On a sufficiently small non-empty ball B ( Rn, centred at the origin, F̃ (λ) is invertible
for every λ ∈ B.5 On this ball B, we define Fj, for j = 1, . . . , n, by mapping λ to
the j-th row of (

(
F̃ (λ)

)−1
)T . We claim that Fj is a non-degenerate, and analytic

map. By Cramer’s rule, every entry of ((F̃ (λ))−1)T is the quotient of polynomials in
λ1, . . . , λn whereas the polynomial in the denominator does not vanish on B. Hence,
each Fj is an analytic function. Now we show that F1 is non-degenerate, the argument
for the other Fj being similar. The j-th component of F1 is (

(
F̃ (λ)

)−1
)j,1 and, using

Cramer’s rule, is hence of the shape

(det F̃ (λ))−1

Rj + (−1)1+j
n∏

k=2, k 6=j
λk


where the polynomial Rj ∈ R[λ2, . . . , λn] is of (total) degree < n − 1, if j = 1,
and of (total) degree < n − 2, if j = 2, . . . , n. Therefore, if a linear combination
k0 +∑n

j=1 kj((F̃ (λ))−1)j,1 with scalars k0, . . . , kn ∈ R equals the zero-function 0 : B →
R, then

0 = k0 · (det F̃ (λ)) +
n∑
j=1

kj(−1)1+j
n∏

k=2, k 6=j
λk +

n∑
j=1

kjRj.

Comparing coefficients, we conclude that k0 = 0 and thereafter k1 = k2 = · · · = kn = 0.
Hence, F1 is non-degenerate.

(ii) By part (i), Theorem 2.3.3 implies that the set M of all λ ∈ B such that
F1(λ), . . . , Fn(λ) are all badly approximable, has full Hausdorff dimension. Moreover,
we claim that there is a set M (1) ⊆ M of full Hausdorff dimension such that for
every λ ∈ M (1) the entries of the first row of F̃ (λ) are algebraically independent.
Let M1 be the subset of M of all elements λ := (λ1, . . . , λn)T ∈ M satisfying that
{λ1, c1,j : j = 2, . . . , n} is algebraically dependent; observe that the possible values for

5To see this, it suffices to show det F̃ ((0, . . . , 0)T ) 6= 0. However, by the Leibniz formula,

det F̃ (0, . . . , 0) =
∑
σ

sgn(σ)
n∏
i=1

ci,σ(i)

where the sum runs through all fixpoint-free permutations of {1, . . . , n}. Since
{ci,j : i, j = 1, . . . , n, i 6= j} is algebraically independent, the evaluation of the polynomial on the
right hand side above cannot vanish, cf. proof of Lemma 2.3.1.
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λ1 are countable, since Z[c1,2, . . . , c1,n, x] is countable and every complex, non-zero,
univariate polynomial has only finitely many roots. Therefore, M1 is contained in a
countable union of hyperplanes. It is well-known that if a sequence of sets {Ei} ⊆ Rn

is given, then dimHaus
⋃
i≥1Ei = supi≥1{dimHausEi}, cf. [21, p. 65]. Consequently,

n = dimHaus M = max {dimHaus(M \M1), dimHausM1} = dimHaus(M \M1),

and we define M (1) := M \M1. Using the same argument, we conclude that there
is a set M (2) ⊆ M (1) of full Hausdorff dimension such that each of the first two
rows of F̃ (λ) has algebraically independent entries for every λ ∈ M (2). Iterating
this construction, we infer that there is a subset M (n) ⊆ M (n−1) ⊆ . . . ⊆ M of full
Hausdorff dimension such that for every λ ∈M (n) each row of the matrix A := F̃ (λ)
has algebraically independent entries, and (A−1)T has badly approximable row vectors.
Moreover, λ ∈M (n) ⊆ B implies that A is invertible.

We also need the following easy fact whose proof is left as an exercise.

Lemma 2.3.4. Let m ∈ N, and let α ∈ R be transcendental. Then, there are real
numbers β1, . . . , βm such that β1, αβ1, β2, . . . , βm are algebraically independent.

Proof of Theorem 2.1.3. First, we set ψ̃(x) = ψ(x2) such that for every c > 0 and
x ≥ c we have ψ̃(x) ≤ ψ(cx). We may assume that ψ̃(q)� exp(−q). By writing down
a suitable decimal expansion, we conclude that there exists a number α ∈ (0, 1) such
that ∣∣∣∣α− p

q

∣∣∣∣ < ψ̃(q)
qn+1 (2.3.7)

has infinitely many coprime integer solutions p, q ∈ Z; observe that such an α is
necessarily transcendental. We apply Lemma 2.3.4 with m = n2 − n and we set
c1,2 := β1, c1,3 := αβ1, and we choose exactly one value βk (k ≥ 2) for each of the
remaining ci,j (i 6= j). Thus, the real numbers ci,j are algebraically independent.
We use Lemma 2.3.2 with these specifications to find A as in (2.3.6). For l ∈ N let
pl, ql denote distinct solutions to (2.3.7), and put vl := (0,−pl, ql, 0, . . . , 0)T ∈ Zn.
Set Ã := | detA|−1/nA, and let us consider the unimodular, weakly admissible lattice
Γ := ÃZn. Then, the first coordinate of Ãvl equals

| detA|−1/n |−plc1,2 + qlc1,3| = | detA|−1/n |c1,2| |qlα− pl| �
A

ψ̃(ql)
qnl

.

Since α ∈ (0, 1), we may assume, by choosing l large enough, that pl ≤ ql. Hence, the
j-th coordinate for j = 2, . . . , n of Ãvl is �

A
ql. Thus, for l sufficiently large,

Nm(Ãvl)�
A

ψ̃(ql)
qnl
· qn−1

l = ψ̃(ql)
ql
≤ ψ(2‖Ã‖2ql)

ql
≤ ψ(‖Ãvl‖2)

ql
.

Choosing ρl = ‖Ãvl‖2, we conclude that ν(Γ, ρl) ≤ ψ(ρl) for all l sufficiently large.
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Because the rows of (A−1)T are badly approximable vectors by construction, Γ⊥ is
weakly admissible. Moreover, by (2.3.5), we conclude that Nm((A−1)Tv)�

A
‖v‖−n

2

2

for every non-zero v ∈ Zn. Also note that
∥∥∥(A−1)Tv

∥∥∥
2
< ρ implies ‖v‖2 < ‖AT‖2ρ.

This implies that ν(Γ⊥, ρ)�
A
ρ−n

2 . Hence, Γ has the desired properties.

2.4 An Application - Proof of Corollary 2.1.4
Throughout this section we fix the unimodular lattice Γ = AZ2 where

A := 1√
α

(
1 α
1 2α

)
,

and we consider the aligned box

B := 1√
α

([
y, y + ε

]
×
[
y, y + αt

])
. (2.4.1)

Then, the following relation holds

#(B ∩ Γ) = #
{

(p, q) ∈ Z2 : 0 ≤ p+ αq − y ≤ ε,
0 ≤ p+ 2αq − y ≤ αt

}
.

Because of (2.1.10), we conclude that

|Nα,y(ε, t)−#(B ∩ Γ)| �
α

1. (2.4.2)

In order to use Theorem 2.1.1, we need to control the characteristic quantity ν(Γ, ·)
of the lattice Γ. This is where the Diophantine properties of α come into play.

Lemma 2.4.1. Let φ be as in (2.1.8), and suppose ρ > γ
1/2
2 . Then, we have

ν(Γ⊥, ρ) = ν(Γ, ρ) ≥ φ(4ρ/
√
α)

4 .

Proof. The claimed equality follows immediately from Proposition 2.1.2, and the
remark thereafter. A vector v ∈ Γ is of the shape

v = 1√
α

(
z
z′

)

where z := p+ qα, z′ := z + qα, and p, q denote integers. Assume that ‖v‖2 ∈ (0, ρ).
Observe that q = 0 implies Nm(v) ≥ 1 > 4−1φ(4ρ/

√
α). Therefore, we may assume

q 6= 0. Since z′ − z = qα, one of the numbers |z|, |z′| is at least 1
2α|q|, and both are

bounded from below by 1
2|q|φ(2|q|). Hence,

Nm (v) ≥ α|q|
2
√
α
· φ(2|q|)

2|q|
√
α
≥ φ(4ρ/

√
α)

4

where in the last step we used that 1
2
√
α|q| ≤ 1√

α
min{|z|, |z′|} ≤ ‖v‖2 < ρ.
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Proof of Corollary 2.1.4. Let B be given by (2.4.1). Thus, B has sidelengths t1 =
α−1/2ε, and t2 =

√
αt. By (1.1.4) and (2.1.10), we are entitled to take ρ := εt > γ

1/2
2 in

Theorem 2.1.1. Moreover, (2.1.10) implies t1 < 1 < t2, and thus

T =
√
α
t

ε
>
√
εt > 2 > γ2.

Hence, T ? = T . By combining relation (2.4.2) and Theorem 2.1.1 with these
specifications, it follows that

|Nα,y(ε, t)− εt| �
α

1
ν(Γ⊥, T )

(
1 + R

ν(Γ⊥, 2RT )

)
. (2.4.3)

By Lemma 2.4.1, the right hand side above is � R(φ(4T/
√
α)φ(2R+2T/

√
α))−1. The

first factor in the round brackets is larger than the second one, since φ is non-increasing.
Hence, we conclude that the right hand-side of (2.4.3) is bounded by

� R(φ(2R+2T/
√
α))−2. (2.4.4)

Furthermore, Lemma 2.4.1 yields

R ≤ 4 + log 4(εt)2

φ(4t
√
εt)
� log εt

φ(4t
√
εt)

. (2.4.5)

By using the first estimate from (2.4.5), we get

2R ≤ 24
(

4(εt)2

φ(4t
√
εt)

)log 2

< 24+2 log 2 (εt)2

φ(4t
√
εt)

.

Hence, (2.4.4) is bounded from above by

�
log εt

φ(4t
√
εt)

φ2
(
26+2 log 2 (εt)2

φ(4t
√
εt)

√
t
ε

) ≤ logE
φ2(E ′) .

This completes the proof of Corollary 2.1.4.
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Chapter 3

The Duffin-Schaeffer Conjecture
with Extra Divergence

“Ich habe keine besondere Begabung, sondern bin nur leidenschaftlich
neugierig.”1

— A. Einstein [39].
The present chapter is based on joint work with Christoph Aistleitner, Thomas
Lachmann, Marc Munch, and Agamemnon Zafeiropoulos [11].

The Duffin–Schaeffer conjecture is a fundamental unsolved problem in metric number
theory. It asserts that for every non-negative function ψ : N→ R for almost all reals
x there are infinitely many coprime solutions (a, n) to the inequality |nx− a| < ψ(n),
provided that the series ∑∞n=1 ψ(n)ϕ(n)/n is divergent. In the present work we prove
that the conjecture is true under the “extra divergence” assumption that divergence
of the series still holds when ψ(n) is replaced by ψ(n)/(log n)ε for some ε > 0. This
improves a result of Beresnevich, Harman, Haynes and Velani, and solves a problem
posed by Haynes, Pollington and Velani.

3.1 Introduction and Statement of Results
Let ψ : N→ R be a non-negative function. For every non-negative integer n define a
set En ⊂ R/Z by

En :=
⋃

1≤a≤n,
(a,n)=1

(
a− ψ(n)

n
,
a+ ψ(n)

n

)
(mod 1). (3.1.1)

The Lebesgue measure of En is ψ(n)ϕ(n)/n, where ϕ denotes the Euler totient function.
Writing W (ψ) for the set of those x ∈ [0, 1] which are contained in infinitely many
sets En, it follows directly from the first Borel–Cantelli lemma λ(W (ψ)) = 0 when

∞∑
n=1

ψ(n)ϕ(n)
n

<∞. (3.1.2)

1In English (translated by N.T.): "I have no special gift, but I am, merely, passionately curious".
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Here λ denotes the Lebesgue measure. The corresponding divergence statement, which
asserts that λ(W (ψ)) = 1 whenever the series in (3.1.2) is divergent, is known as the
Duffin–Schaeffer conjecture [36] and is one of the most important open problems in
metric number theory. It remains unsolved since 1941.

We shall prove the following.

Theorem 3.1.1. The Duffin–Schaeffer conjecture is true for every non-negative
function ψ : N→ R for which there is a constant ε > 0 such that

∞∑
n=1

ψ(n)ϕ(n)
n(log n)ε =∞. (3.1.3)

We note that by the mass transference principle of Beresnevich and Velani [20] it
is possible to deduce Hausdorff measure statements from results for Lebesgue measure,
in the context of the Duffin–Schaeffer conjecture. Roughly speaking, the quantitative
“extra divergence” result in Theorem 3.1.1 translates into a corresponding condition on
the dimension function of a Hausdorff measure for the set where the Duffin–Schaeffer
conjecture is true. For details we refer the reader to Section 4 of [59], where this
connection is explained in detail.

3.2 Proof of Theorem 3.1.1
Throughout the proof, we assume that ε > 0 is fixed. We use Vinogradov notation
“�”, where the implied constant may depend on ε, but not on m,n, h or anything
else.

As noted in [19], we may assume without loss of generality that for all n either
1/n ≤ ψ(n) ≤ 1/2 or ψ(n) = 0. Furthermore, by Gallagher’s zero–one law [46] the
measure of W (ψ) can only be either 0 or 1. Thus λ(W (ψ)) > 0 implies λ(W (ψ)) = 1.

We will use the following version of the second Borel–Cantelli lemma (see for
example [58, Lemma 2.3]).

Lemma 3.2.1. Let An, n = 1, 2, . . . , be events in a probability space (Ω,F ,P). Let
A be the set of ω ∈ Ω which are contained in infinitely many An. Assume that

∞∑
n=1

P(An) =∞.

Then

P(A) ≥ lim sup
N→∞

(∑N
n=1 P(An)

)2

∑
1≤m,n≤N P(Am ∩ An) .

The following lemma of Pollington and Vaughan [88] allows to estimate the ratio
between the measure of the overlap Em ∩ En and the product of the measures of Em
and En, and is a key ingredient in [19].
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Lemma 3.2.2. For m 6= n, assume that λ(Em)λ(En) 6= 0. Define

P (m,n) = λ(Em ∩ En)
λ(Em)λ(En) . (3.2.1)

Then

P (m,n)�
∏

p| mn
(m,n)2 ,

p>D(m,n)

(
1− 1

p

)−1

, (3.2.2)

where the product is taken over all primes p in the specified range, and where

D(m,n) = max(nψ(m),mψ(n))
(m,n) . (3.2.3)

In view of Lemma 3.2.1 it is clear that controlling P (m,n) is the key to proving
λ(W (ψ)) > 0. Following [19], we divide the set of positive integers into blocks

24h ≤ n < 24h+1
, h ≥ 1, (3.2.4)

and we may assume without loss of generality that the divergence condition (3.1.3)
still holds when the summation is restricted to those n which are contained in a block
with h being even. As noted in [19], when m and n are contained in different blocks,
then automatically P (m,n)� 1. Thus the real problem is that of controlling P (m,n)
when m and n are contained in the same block (3.2.4) for some h.

In the sequel, let m,n be fixed, and assume that

24h ≤ m < n < 24h+1

for some h. As in [19], we will average the factors P (m,n) over a range of downscaled
versions of the sets Em and En. More precisely, for k = 1, 2, . . . , let E (k)

n be defined as
En, but with ψ(n)/ek in place of ψ(n). Correspondingly, we define

Pk(m,n) =
λ
(
E (k)
m ∩ E (k)

n

)
λ
(
E (k)
m

)
λ
(
E (k)
n

)
and

Dk(m,n) = max(nψ(m),mψ(n))
ek(m,n) ,

and note that for Pk we have the same estimate as in (3.2.2), only with D replaced by
Dk. At the core of the argument in [19] is the observation that

K∑
k=1

Pk(m,n) �
K∑
k=1

∏
p| mn

(m,n)2 ,

p>ek

(
1− 1

p

)−1

�
K∑
k=1

log log n
k

� (logK)(log log n), (3.2.5)
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where the product in the first line is estimated using Mertens’ second theorem. Thus
when K � (log log n)(log log log n) we have ∑K

k=1 Pk(m,n) � K, and accordingly
there is at least one value of k in this range for which Pk(m,n)� 1. This argument
can be exteded over a range of pairs (m,n) instead of assuming that m,n are fixed.
Together with Lemma 3.2.1 and Gallagher’s zero–one law this allows to deduce the
desired result, provided that we are allowed to divide ψ(n) by eK ≤ eε(log logn)(log log logn)

for all n and still keep the divergence of the sum of measures.

In our proof we will roughly follow the same plan. However, instead of taking
(3.2.2) for granted and then averaging over different reduction factors ek, we will take
the averaging procedure into the proof of the overlap estimate which leads to Lemma
3.2.2. To see where a possible improvement could come from, we note that to obtain
the estimate in Lemma 3.2.2 it is necessary to give upper bounds for sums∑

1≤b≤θ,
(b,t)=1

1,

where we can think of θ � log t as being the number D from (3.2.3), and of t as
being the number mn

(m,n)2 which appears in (3.2.2). It is necessary to relate this sum to
θϕ(t)/t. To obtain Lemma 3.2.2 one applies the classical sieve bound

∑
1≤b≤θ,
(b,t)=1

1� θ
∏
p|t,
p≤θ

(
1− 1

p

)
= θ

ϕ(t)
t

∏
p|t,
p>θ

(
1− 1

p

)−1

, (3.2.6)

and the product on the very right is the one which also appears in (3.2.2). This sieve
bound gives optimal results for some constellations of parameters, but we can use the
fact that we are averaging over different values of k (which determine θ) to save some
factors. We exhibit two extremal cases showing this phenomenon. The factor P (m,n)
can only be large when the product on the right of (3.2.6) is large. However, this
product can only be large if a very large proportion of small primes divides t. Assume
on the contrary that no small prime divides t. Then the sieve inequality in (3.2.6) is
actually an equality, since on both sides we have exactly θ, but the product on the
very right is extremely small and cannot cause problems. As a second extremal case,
assume that all small primes divide t. Then the product on the very right is very large,
but the sieve bound is not sharp, since in the sum on the left the only number we
count is the number 1 (no other small number is coprime to t). So there is a trade-off
between the way how a large proportion of primes dividing t is able to increase the
value of the product on the right of (3.2.6), but at the same time reduces the quality
of the sieve bound. It seems that this should be a very subtle relationship, and in
general this is indeed the case (cf. [50, Proposition 2.6], where this phenomenon is
addressed). However, quite surprisingly, it turns out that in our particular situation it
is possible to exploit this phenomenon using only some simple calculations.

Following [88, Paragraph 3], we write m and n in their prime factorization
m =

∏
p

pup , n =
∏
p

pvp ,
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and define

r =
∏
p,

up=vp

pup , s =
∏
p,

up 6=vp

pmin(up,vp), t =
∏
p,

up 6=vp

pmax(up,vp).

Furthermore, we set

δ = min
(
ψ(m)
m

,
ψ(n)
n

)
, ∆ = max

(
ψ(m)
m

,
ψ(n)
n

)
.

Then for every k from the first displayed formula on page 196 of [88] we have the
estimate

λ(E (k)
m ∩ E (k)

n )� δ

ek
ϕ(s)ϕ(r)2

r

∫ 4∆rte−k

1
St(θ) dθ,

where we write
St(θ) =

∑
1≤b≤θ,
(b,t)=1

1
θ

and where we used that changing ψ(m) 7→ ψ(m)/ek and ψ(n) 7→ ψ(n)/ek also changes
δ 7→ δ/ek and ∆ 7→ ∆/ek. Since

λ(E (k)
m )λ(E (k)

n ) = ϕ(m)ϕ(n)δ∆
e2k

this implies

Pk(m,n) � ekϕ(s)ϕ(r)2 ∫ 4∆rte−k
1 St(θ) dθ

∆rϕ(m)ϕ(n)

= ϕ(t)t
ϕ(t)t

ϕ(s)ϕ(r)2

ϕ(m)ϕ(n)

∫ 4∆rte−k
1 St(θ) dθ

∆re−k

= t

ϕ(t)

∫ 4∆rte−k
1 St(θ) dθ

∆rte−k ,

where the last line follows from ϕ(s)ϕ(r)2ϕ(t) = ϕ(m)ϕ(n). We set K = K(h) =
bεh log 4c. Note that with this choice of K we have

eK � (logm)ε, (log n)ε � eK . (3.2.7)

Summing over k, we deduce that

K∑
k=1

Pk(m,n)�
K∑
k=1

t

ϕ(t)

∫ 4∆rte−k
1 St(θ) dθ

∆rte−k . (3.2.8)

As noted in [88] and [19], if 2∆rte−k ≤ 1 then Pk(m,n) = 0, since in this case
E (k)
m and E (k)

n are disjoint (see the fourth displayed formula from below on p. 195
of [88]). Furthermore, again as noted in [88] and [19], if 4∆rte−k ≥ eK � (log n)ε
then Pk(m,n)� 1, which follows from Lemma 3.2.2 and Mertens’ second theorem.
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Accordingly, for the contribution to (3.2.8) of those k for which 4∆rte−k 6∈ [1, eK) we
have ∑

1≤k≤K,
4∆rte−k 6∈[1,eK)

Pk(m,n)� K. (3.2.9)

To estimate the contribution of the other values of k, we note that there exists a
number c ∈ [1, e) such that({

4∆rte−k, k = 1, . . . , K
}
∩ [1, eK)

)
⊂ {cej, j = 0, . . . , K − 1}.

Thus for the contribution of these k to (3.2.8) we have

∑
1≤k≤K,

4∆rte−k∈[1,eK)

Pk(m,n) � t

ϕ(t)

K−1∑
j=0

1
ej

∫ cej

1
St(θ) dθ. (3.2.10)

For the term on the right-hand side of (3.2.10) we have
K−1∑
j=0

1
ej

∫ cej

1
St(θ) dθ �

K∑
j=1

1
ej

∫ ej

1
St(θ) dθ

=
K∑
j=1

1
ej

∑
1≤b≤ej ,
(b,t)=1

∫ ej

b

dθ

θ

=
K∑
j=1

∑
1≤b≤ej ,
(b,t)=1

j − log b
ej

=
∑

1≤b≤eK ,
(b,t)=1

K∑
j=dlog be

j − log b
ej

�
∑

1≤b≤eK ,
(b,t)=1

1
b

∞∑
i=1

i

ei︸ ︷︷ ︸
�1

�
∑

1≤b≤eK ,
(b,t)=1

1
b
. (3.2.11)

The sum in (3.2.11) can be estimated using a sieve with logarithmic weights. Following
the lines of [50, Lemma 2.1], we have

∑
1≤b≤eK ,
(b,t)=1

1
b

=
∑

1≤b≤eK ,
p|b =⇒ p-t

1
b
≤

∏
p≤eK ,
p-t

(
1− 1

p

)−1

=
 ∏
p≤eK

(
1− 1

p

)−1
 ∏
p≤eK ,
p|t

(
1− 1

p

)
. (3.2.12)
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For the first product in (3.2.12) by Mertens’ theorem we have

∏
p≤eK

(
1− 1

p

)−1

� K.

For the second product we have

∏
p≤eK ,
p|t

(
1− 1

p

)
= ϕ(t)

t

∏
p>eK ,
p|t

(
1− 1

p

)−1

︸ ︷︷ ︸
�1

,

where Mertens’ theorem and (3.2.7) were used to estimate the last product. Inserting
these bounds into (3.2.11), and combining this with (3.2.9) and (3.2.10) we finally
obtain

K∑
k=1

Pk(m,n)� K. (3.2.13)

By the definition of Pk(m,n) we have

K∑
k=1

Pk(m,n) =
K∑
k=1

λ(E (k)
m ∩ E (k)

n )
λ(E (k)

m )λ(E (k)
n )

=
K∑
k=1

e2kλ(E (k)
m ∩ E (k)

n )
λ(Em)λ(En) ,

and consequently (3.2.13) implies that

K∑
k=1

e2kλ(E (k)
m ∩ E (k)

n )� Kλ(Em)λ(En).

Note that the implied constant is independent of m and n. Thus, summing over m
and n yields

K∑
k=1

∑
24h≤m<n<24h+1

e2kλ(E (k)
m ∩ E (k)

n )� K
∑

24h≤m<n<24h+1

λ(Em)λ(En).

Accordingly, there is at least one choice of k = k(h) in the range {1, . . . , K} such that∑
24h≤m<n<24h+1

e2kλ(E (k)
m ∩ E (k)

n )�
∑

24h≤m<n<24h+1

λ(Em)λ(En),

or, equivalently, such that∑
24h≤m<n<24h+1

λ(E (k)
m ∩ E (k)

n )�
∑

24h≤m<n<24h+1

λ(E (k)
m )λ(E (k)

n ), (3.2.14)
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where the implied constant does not depend on h. We replace the original function
ψ(n) by a function ψ∗(n), where

ψ∗(n) =

 0 when n is not in
[
24h , 24h+1

)
for some even h,

ψ(n)e−k(h) when n is in
[
24h , 24h+1

)
for some even h,

and write E∗n, n ≥ 1, for the corresponding sets, which are defined like (3.1.1) but
with ψ∗ in place of ψ. By (3.2.7) we have

ψ∗(n)� ψ(n)
(log n)ε .

Thus the extra divergence condition in the assumptions of Theorem 3.1.1 guarantees
that ∞∑

n=1
λ(E∗n) =∞,

while (3.2.14) guarantees that∑
1≤m,n≤N

λ
(
E∗m ∩ E∗n

)
�

∑
1≤m,n≤N

λ(E∗m)λ(E∗n)

(recall that λ(E∗m ∩ E∗n) � λ(E∗m)λ(E∗n) holds automatically when m and n are not
contained in the same block for some h). Thus by Lemma 3.2.1 we have λ(W (ψ∗)) > 0,
and since E∗n ⊂ En we also have λ(W (ψ)) > 0. By Gallagher’s zero–one law, positive
measure of W (ψ) implies full measure. Thus λ(W (ψ)) = 1, which proves the theorem.
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Chapter 4

Exceptional Sets in the Metric Pair
Correlations problem

“Homo sum, humani nihil a me alienum puto.”1

— Terentius [118, Act I, Sc. 1, l. 25 (77)].

The present chapter is based on joint work with Thomas Lachmann [73].

Let (an)n be a strictly increasing sequence of positive integers. Recent works uncov-
ered a close connection between the additive energy E (AN) of the cut-offs AN =
{an : n ≤ N}, and (an)n possessing metric Poissonian pair correlations which is the
metric version of a uniform distribution property of “second order”. Firstly, the present
chapter makes progress on a conjecture2 of Aichinger, Aistleitner, and Larcher; by
sharpening a theorem of Bourgain which states that the set of α ∈ [0, 1] satisfying
that (〈αan〉)n with E (AN) = Ω (N3) does not have Poissonian pair correlations has
positive Lebesgue measure. Secondly, we construct sequences with high additive
energy which do not have metric Poissonian pair correlations, in a strong sense, and
provide Hausdorff dimension estimates.

4.1 Introduction
In this chapter, we abbreviate that a sequence which has the Poissonian pair correlations
property (cf. Definition 1), by saying it has PPC. We proceed to set the scene.

It is known that if a sequence (θn)n has PPC, then it is uniformly distributed
modulo 1, cf. [12, 77, 113]. Yet, the sequences (〈αnd〉)n do not have PPC for any
α ∈ R if d = 1. For d ≥ 2, Rudnick and Sarnak [98] proved that (nd)n has metric
Poissonian pair correlations (metric PPC). A result of Aistleitner, Larcher, and Lewko
[14], who used a Fourier analytic approach combined with a bound on GCD sums of
Bondarenko and Seip [24], uncovered the connection of the metric PPC property of
(an)n with its combinatoric properties. For stating it, we introduce some notation.

1In English (translated by N.T.): “I am human, and I believe nothing human is foreign to me.
2Recently, said conjecture has been proven by Larcher and Stockinger [78].
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Let (an)n denote throughout this chapter a strictly increasing sequence of positive
integers, and abbreviate the set of the first N elements of (an)n by AN . Moreover,
define the additive energy E (I) of a finite set of integers I via

E (I) := #{(a, b, c, d) ∈ I4 : a+ b = c+ d},

and note that (#I)2 ≤ E (I) ≤ (#I)3 where #S denotes the cardinality of a set S. In
the following, let O and o denote the Landau symbols/O-notation, and � or � the
Vinogradov symbols. The dependence of an implied constant in one of these symbols
will be indicated by mentioning this parameter in a subscript.
Now, a main finding of [14] can be stated as the implication that if the truncations
AN satisfy

E (AN) = O(N3−ε) (4.1.1)
for some fixed ε > 0, then (an)n has metric PPC. Roughly speaking, a set I has large
additive energy if and only if it contains a “large” arithmetic progression like structure.
Indeed, if (an)n is a geometric progression or of the form (nd)n for d ≥ 2, then (4.1.1)
is satisfied.

Recently, Bloom, Chow, Gafni, Walker relaxed — provided that, roughly speaking,
the density of the sequence does not decay faster than 1/(logN)2 — the power saving
bound (4.1.1) for detecting the metric PPC property of (an)n significantly:

Theorem 4.1.1 (Bloom, Chow, Gafni, Walker [23]). If there exists an ε > 0 such
that

E (AN)� N3

(logN)2+ε and 1
N

# (AN ∩ {1, . . . , N})�
1

(logN)2+2ε ,

then (an)n has the metric Poissonian property.

Regarding the optimal bound for E (AN) to ensure the metric PPC property of
(an)n, the two following questions were raised in [14]. For stating those, we use the
convention that f = Ω (g) means for f, g : N→ R there is a constant c > 0 such that
g (n) > cf (n) holds for infinitely many n.

Question 1. Is it possible for (an)n with E (AN) = Ω (N3) to have the metric
Poissonian property?

Moreover, the optimality of the bound (4.1.1) was questioned in the following way.

Question 2. Do all (an)n with E (AN) = o (N3) have metric PPC?

Both questions were answered in the negative by Bourgain whose proofs can be found
in [14] as an appendix, without giving an estimate on the measure of the set that was
used to answer Question 1, and without a quantitative bound on E (AN) appearing in
the negation of Question 2. However, a quantitative analysis, as noted in [125], shows
that the sequence Bourgain constructed for Question 2 satisfies

E (AN) = Oε

 N3

(log logN)
1
4 +ε

 (4.1.2)
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for any fixed ε > 0. Moreover, Nair posed the problem3 whether the sequence of
prime numbers (pn)n, ordered by increasing value, has metric PPC. Recently, Walker
[125] answered this question in the negative by showing that there is a constant c > 0
satisfying that for almost every α ∈ [0, 1] the inequality R ([−s, s] , α,N) > c holds
for infinitely many N . Thereby he gave a significantly better bound than (4.1.2) for
the additive energy E (An) for a sequence (an)n not having metric PPC — since the
additive energy of the truncations of (pn)n is � (logN)−1N3.

For a given sequence (an)n, we denote by NPPC ((an)n) the “exceptional” set of
all α ∈ (0, 1) such that (〈αan〉)n does not have PPC.

Theorem 4.1.2 (Bourgain [14]). If E(AN ) = Ω (N3), then NPPC ((an)n) has positive
Lebesgue measure.

We prove the following sharpening.

Theorem 4.1.3. If E(AN) = Ω (N3), then NPPC ((an)n) has full Lebesgue measure.

For stating our second main theorem, we denote by R>x the set of real numbers
exceeding a given x ∈ R.

Theorem 4.1.4. Let f : R>0 → R>2 be a function increasing monotonically to ∞,
and satisfying f (x) = O(x1/3 (log x)−7/3). Then, there is a strictly increasing sequence
(an)n of positive integers with E(AN) = Θ(N3/f (N)) such that if

∑
n≥1

1
nf(n) (4.1.3)

diverges, then for Lebesgue almost all α ∈ [0, 1]

lim sup
N→∞

R ([−s, s] , α,N) =∞ (4.1.4)

holds for any s > 0; additionally, if (4.1.3) converges and sup {f (2x) /f (x) : x ≥ x0}
is strictly less than 2 for some x0 > 0, then NPPC ((an)n) has Hausdorff dimension
at least (1 + λ (f))−1 where

λ (f) := lim inf
x→∞

log f (x)
log x

denotes the lower order of infinity of f .

We record an immediate consequence of Theorem 4.1.4 by using the convention
that the r-folded iterated logarithm is denoted by logr (x), i.e.

logr (x) := logr−1 (log (x))

and log1 (x) := log (x).
3This problem was posed at the problem session of the ELAZ conference in 2016.
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Corollary 4.1.5. Let r be a positive integer. Then, there is a strictly increasing
sequence (an)n of positive integers with

E (AN) � N3

log (N) log2 (N) . . . logr (N)

such that NPPC ((an)n) has full Lebesgue measure. Moreover, for any ε > 0 there is a
strictly increasing sequence (an)n of positive integers with

E (AN) � (logr (N))−εN3

log (N) log2 (N) . . . logr (N)

such that NPPC ((an)n) has full Hausdorff dimension.

The proof of Theorem 4.1.4 connects the metric PPC property to the notion of
optimal regular systems from Diophantine approximation. It uses, among other things,
a Khintchine-type theorem due to Beresnevich. Furthermore, despite leading to better
bounds, the nature of the sequences underpinning Theorem 4.1.4 is much simpler
than the nature of those sequences previously constructed by Bourgain [14] (who
used, inter alia, large deviations inequalities from probability theory), or the sequence
of prime numbers studied by Walker [125] (who relied on estimates, derived by the
circle-method, on the exceptional set in Goldbach-like problems).

4.2 First main theorem
Let us give an outline of the proof of Theorem 4.1.3. For doing so, we begin by
sketching the reasoning of the proof of Theorem 4.1.2 As it turns out, except for a set
of negligible measure, the counting function in (1.3.1) can be written as a function (of
α) that admits a non-trivial estimate for its mean value. The mean value is infinitely
often too small on sets whose measure is uniformly bounded from below. Thus, there
exists a sequence of sets (Ωr)r of α ∈ [0, 1] such that R ([−s, s] , α,N) is too small for
every α ∈ Ωr for having PPC and Theorem 4.1.3 follows.

Our reasoning for proving Theorem 4.1.3 is building upon this argument of Bourgain
while we introduce new ideas to construct a sequence of sets (Ωr)r that are “pairwise
quasi independent” - meaning that for every fixed t the relation

λ(Ωr ∩ Ωt) ≤ λ(Ωr)λ(Ωt) + o (1)

holds as r →∞ where λ denotes the Lebesgue measure. Roughly speaking, applying
a suitable version of the Borel–Cantelli lemma, combined with a sufficiently careful
treatment of the o (1) term, will then yield Theorem 4.1.3. However, before proceeding
with the details of the proof we collect in the next paragraph some tools from additive
combinatorics that are needed.
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4.2.1 Preliminaries
We start with a well-know result relating, in a quantitative manner, the additive
energy of a set of integers with the existence of a (relatively) dense subset with small
difference set where the difference set B −B := {b− b′ : b, b′ ∈ B} for a set B ⊆ R.
Lemma 4.2.1 (Balog–Szeméredi–Gowers lemma, [116, Thm 2.29]). Let A ⊆ Z be a
finite set of integers. For any c > 0 there exist c1, c2 > 0 depending only on c such
that the following holds. If E(A) ≥ c (#A)3, then there is a subset B ⊆ A such that

1. #B ≥ c1#A,

2. # (B −B) ≤ c2#A.
Moreover, we recall that for δ > 0 and d ∈ Z the set

B (d, δ) := {α ∈ [0, 1] : ‖dα‖ ≤ δ}

is called Bohr set. The following two simple observations are useful.
Lemma 4.2.2. Let B ⊆ Z be a finite set of integers. Then,

λ

α ∈ [0, 1] : min
d∈(B−B)\{0}

‖dα‖ < ε

# (B −B)


 ≤ 2ε

for every ε ∈ (0, 1).
Proof. By observing that the set under consideration is contained in

⋃
m,n∈B
m 6=n

B

(
m− n, ε

# (B −B)

)
,

and
λ

(
B

(
m− n, ε

# (B −B)

))
= 2ε

# (B −B) ,

the claim follows at once.
Lemma 4.2.3. Suppose A is a finite intersection of Bohr sets, and B is a finite union
of Bohr sets. Then, A \B is the union of finitely many intervals.

Furthermore, we shall use the Borel–Cantelli lemma in a version due to Erdős, and
Rényi.
Lemma 4.2.4 (Erdős–Rényi, cf. [58, Lem. 2.3]). Let (An)n be a sequence of Lebesgue
measurable sets in [0, 1] satisfying ∑

n≥1
λ (An) =∞.

Then,

λ
(

lim sup
n→∞

An

)
≥ lim sup

N→∞

(∑
n≤N λ (An)

)2

∑
m,n≤N λ (An ∩ Am) .
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Moreover, let us explain the main steps in the proof of Theorem 4.1.3. Let

ε := ε (j) := 1
10j c

2
1

where c1 > 0 is a constant to be specified later-on, and j denotes a positive integer.
In the first part of the argument, we show how a sequence — that is constructed in
the second part of the argument — can be used to deduce Theorem 4.1.3. For every
fixed j, we find a corresponding s = s(j) and construct inductively a sequence (Ωr)r
of exceptional values α with the following properties:

(i) For all α ∈ Ωr, the pair correlation function admits the upper bound

R ([−s, s] , α,N) ≤ 2c̃s (4.2.1)

for some absolute constant c̃ ∈ (0, 1), depending on (an) only.

(ii) For all integers r > t ≥ 1, the relation

λ (Ωr ∩ Ωt) ≤ λ (Ωr)λ (Ωt) + 2ελ (Ωt) +O
(
r−2

)
(4.2.2)

holds.

(iii) Each Ωr is the union of finitely many intervals (hence measurable).

(iv) For all r ≥ 1, the measure λ (Ωr) is uniformly bounded from below by

λ (Ωr) ≥
c2

1
8 . (4.2.3)

4.2.2 Proof of Theorem 4.1.3
1. Suppose there is (Ωr)r satisfying (i)–(iv). Then, by using (4.2.2), we get∑

r,t≤N
λ (Ωr ∩ Ωt) ≤ 2

∑
2≤t≤N

∑
1≤r<t

(λ (Ωr)λ (Ωt)) + 2εN2 +O (N)

≤

∑
t≤N

λ (Ωt)
2

+ 2εN2 +O (N) .

By recalling that Ωr depends on j, we let

Ω(j) := lim sup
r→∞

Ωr.

By using the inequality above in combination with Lemma 4.2.4 and (4.2.3), we obtain
that the set Ω(j) has measure at least

lim sup
N→∞

(∑
r≤N λ (Ωr)

)2

∑
r,t≤N λ (Ωr ∩ Ωt)

≥ lim sup
N→∞

1
1 + 4εN2(∑

r≤N λ(Ωr)
)2

≥ lim sup
N→∞

1
1 + 256

c4
1
ε

= 1
1 + 256

c4
1
ε
.
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Note that due to (4.2.1), for every α ∈ Ω (j) the sequence (αan)n does not have PPC.
Now, letting j →∞ proves the assertion.

2. For constructing (Ωr)r with the required properties, let c > 0 such that E (AN) >
cN3 for infinitely many integers N . By choosing an appropriate subsequence (Ni)i
and omitting the subscript i for ease of notation, we may suppose that E (AN) > cN3

holds for every N occurring in this proof. Moreover, let c1, c2 and BN be as in Lemma
4.2.1, corresponding to the c just mentioned. Let

s = ε

2c2
.

Arguing inductively, while postponing the base step,4 we assume that there are sets
(Ωr)1≤r<R given that satisfy the properties (i)–(iv) for all distinct integers 1 ≤ r, t < R.
Let N ≥ R. Since, due to Lemma 4.2.1,

s

N
≤ ε

# (B −B) ,

Lemma 4.2.2 implies that the set Ωε,N of all α ∈ [0, 1] satisfying ‖(r − t)α‖ < N−1s
for some distinct r, t ∈ BN has measure at most 2ε. Setting

DN := {(r, t) ∈ (AN × AN) \ (BN ×BN) : r 6= t} ,

we get for α /∈ Ωε,N that

R ([−s, s] , α,N) = 1
N

#{(r, t) ∈ DN : ‖(r − t)α‖ < N−1s}.

Let `R denote the length of the smallest subinterval of Ωr for 1 ≤ r < R, and define
C (Ωr) to be the set of subintervals of Ωr. Note that `R > 0, and max1≤r<R #C (Ωr) <
∞. We divide [0, 1) into

P :=
⌊
1 + 2`−1

R R2 max
1≤r<R

#C (Ωr)
⌋

parts Pi of equal lengths, i.e.
Pi :=

[
i

P
,
i+ 1
P

)
where i = 0, . . . , P − 1. Let 1X denote the characteristic function of a Borel set
X ⊆ [0, 1]. After writing∫
Pi

#{(r, t) ∈ DN : ‖(r − t)α‖ ≤ N−1s}dα =
∑

(r,t)∈DN

∫
Pi

1[0, sN ] (‖(r − t)α‖) dα, (4.2.4)

4The base step uses simplified versions of the arguments exploited in the induction step, and will
therefore be postponed.
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we split the sum into two parts: one part containing differences |r − t| > RkP , and a
second part containing differences |r − t| ≤ RkP where

k :=
⌊

1
log 2 log 8 (4s+ 1)

(c2
1 − 2−1c4

1) s

⌋
+ 1.

The Cauchy–Schwarz inequality implies
∫
Pi

1[0, sN ] (‖(r − t)α‖) dα ≤
√

1
P

2s
N
.

Since for any x > 0 there are at most 2xN choices of (r, t) ∈ DN such that |r − t| ≤ x,
we obtain

1
N

∑
(r,t)∈DN
|r−t|≤PRk

∫
Pi

1[0, sN ] (‖(r − t)α‖) dα ≤ 2PRk

√
1
P

2s
N

which is ≤ P−1R−k if N is sufficiently large. Moreover, for any |r − t| > PRk we
observe that∫

Pi

1[0, sN ](‖(r − t)α‖)dα ≤
2s

N |r − t|
(#{0 ≤ j ≤ |r − t| : j/ |r − t| ∈ Pi}+ 1)

≤ 2s
PN

+ 4s
PRkN

.

Also note that #DN ≤ N2 − (#BN)2 ≤ c̃N2 where c̃ := 1− c2
1. Therefore, the mean

value (4.2.4) of the modified pair correlation counting function on the interval Pi
admits the upper bound

1
N

(#DN)
( 2s
PN

+ 4s
PRkN

)
+ 1
PRk

≤ 2c̃s
P

+ 4s+ 1
PRk

.

Hence, it follows that the measure of the set ∆N (i) of α ∈ Pi with

1
N

#
{

(r, t) ∈ DN : ‖(r − t)α‖ ≤ N−1s
}
≤ 2

(
1− c2

1
2

)
s (4.2.5)

admits, by the choice of k, the lower bound

λ (∆N (i)) ≥ 1
P
− 1
P

2c̃s+ (4s+ 1)R−k

2
(
1− c2

1
2

)
s

≥ 1
P

(
c2

1
2 −

c2
1
8

)
. (4.2.6)

Note that ∆N (i) is the union of finitely many intervals, due to Lemma 4.2.3. So, we
may take ∆′N (i) ⊂ ∆N (i) being a finite union of intervals such that λ (∆′N (i)) equals
the lower bound in (4.2.6). Let

ΩR := ΩR (N) := ∆N \ Ωε,N where ∆N :=
P−1⋃
i=0

∆′N (i) .
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We are going to show now that ΩR satisfies the properties (i) - (iv). Now, ΩR satisfies
property (iv) with r = R since

λ (ΩR) ≥ λ (∆N)− λ (Ωε,N) = c2
1
2 −

c2
1
8 − 2ε ≥ c2

1
8 .

Furthermore, ΩR satisfies property (i) by construction and also property (iii) since all
sets involved in the construction of ΩR were a finite union of intervals. Let 1 ≤ r < R,
and I be a subinterval of Ωr. Then,

λ (I ∩∆N) =
∑

i:Pi∩I 6=∅
λ (Pi ∩ I ∩∆N) ≤ 2

P
+

∑
i:Pi(I

λ (Pi ∩∆N) ≤ 2
P

+
∑
i:Pi(I

λ (∆′N (i)) .

By summing over all subintervals I ∈ C (Ωr), we obtain that

λ (Ωr ∩∆N) ≤
∑

I∈C(Ωr)

 2
P

+
∑
i:Pi(I

λ (∆′N (i))


≤ 1
R2 +

∑
I∈C(Ωr)

Pλ (I) λ (∆N)
P

= 1
R2 + λ (Ωr)λ (∆N) .

We deduce property (ii) from this estimate and Lemma 4.2.2 via

λ (Ωr ∩ ΩR) ≤ λ (Ωr ∩∆N)
≤ λ (Ωr) (λ (∆N)− λ (Ωε,N)) +R−2 + λ (Ωr)λ (Ωε,N)
≤ λ (Ωr)λ (ΩR) + 2ελ (Ωr) +R−2.

This concludes the induction step. The only part missing now is the base step of the
induction. For realizing it, let N denote the smallest integer m with E (Am) > cm3.
We replace Pi in (4.2.4) by [0, 1] to directly derive∫ 1

0

1
N

#
{

(r, t) ∈ DN : ‖(r − t)α‖ ≤ N−1s
}

dα ≤ 2c̃s,

and conclude that the set Ω′1 of α ∈ [0, 1] satisfying (4.2.5) has a measure at least
c2

1/2. Thus, Ω1 := Ω′1 \ ΩN,ε has measure at least as large as the right hand side of
(4.2.3). For property (4.2.2), there is nothing to check and that Ω1 is a finite union of
intervals follows from Lemma 4.2.3 by observing that

Ω′1 =
⋂

d1,...,dbN2c̃sc

(
B
(
d1, N

−1s
)C
∪ . . . ∪B

(
dbN2c̃sc, N

−1s
)C)

where the intersection runs through any set of bN2c̃sc-tuples of differences di =
ri − ti 6= 0 of components of (ri, ti) ∈ DN for i = 1, . . . , bN2c̃sc.

Thus, the proof is complete.
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4.3 Second main theorem
The sequences (an)n enunciated in Theorem 4.1.4 are constructed in two steps. In
the first step, we concatenate (finite) blocks, with suitable lengths, of arithmetic
progressions to form a set PA. In the second step, we concatenate (finite) blocks, with
suitable lengths, of geometric progressions to form a set PG and then define an to be
the n-th smallest element of PA∪PG. On the one hand, the arithmetic progression like
part PA serves to ensure, due to considerations from metric Diophantine approximation,
the divergence property (4.1.4) on a set with full measure or controllable Hausdorff
dimension; on the other hand, the geometric progression like part PG lowers the
additive energy, as much as it can. For doing so, a geometric block will appear exactly
before and after an arithmetic block, and have much more elements.

For writing the construction precisely down, we introduce some notation. Let
henceforth bxc denote the greatest integer m that is at most x ∈ R. Suppose
throughout this section that f is as in Theorem 4.1.4. We set P (1)

A to be the empty
set while P (1)

G := {1, 2}. Suppose P (j−1)
A , P

(j−1)
G for j ≥ 2 are already constructed. Let

Cj = 2 max
{
P

(j−1)
G

}
. Then

P
(j)
A :=

{
Cj + h : 1 ≤ h ≤

⌊(
f(2j)

)−β
2j
⌋}
,

and P (j)
G is defined via

P
(j)
G :=

{
2Cj + 2i : 1 ≤ i ≤

⌊(
f(2j)

)−γ
2j
(
1−

(
f(2j)

)γ−β)⌋}
where 0 < γ < β < 3/4 are parameters5 to be chosen later-on. Letting

PA :=
⋃
j≥1

P
(j)
A , PG :=

⋃
j≥1

P
(j)
G ,

we denote by an the n-th smallest element in PA ∪ PG. For d ∈ Z and finite sets of
integers X, Y , we abbreviate the number of representations of d as a difference of an
x ∈ X and a y ∈ Y by

rX−Y (d) := #{(x, y) ∈ X × Y : x− y = d};

for later reference, we record here that the additive energy of a set X and the pair
correlation counting function can be written as

E (X) =
∑
d∈Z

(rX−X (d))2 , (4.3.1)

and
R ([−s, s] , α,N) = 1

N

∑
d∈Z\{0}

rAN−AN (d)1[0, sN ] (‖αd‖) . (4.3.2)

5No particular importance should be attached to requiring β < 3/4, or using “dyadic steps lengths
2j”. Doing so is for simplifying the technical details only - eventually, it will turn out that β = 2/3 = 2γ
is the optimal choice of parameters in this approach. For proving this to the reader, we leave γ, β
undetermined till the end of this section.
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4.3.1 Preliminaries
For determining the order of magnitude of E (AN), the following considerations are
useful. Since the cardinality P (j)

G ∪ P
(j)
A has about exponential growth, it is reasonable

to expect E (AN) to be of the same order of magnitude as the additive energy of the
last block P (J)

G ∪P
(J)
A that is fully contained in AN - note that J = J (N); i.e. to expect

the magnitude of E(P (J)
G ∪ P (J)

A ) which is roughly E(P (J)
A ). The next proposition

verifies this heuristic.

Proposition 4.3.1. Let (an)n be as in the beginning of Section 3, and f be as in one
of the two assertions in Theorem 4.1.4. Then, E(AN) � N3(f(N))−3(β−γ).

For the proof of Proposition 4.3.1, we need the following technical lemma.

Lemma 4.3.2. Let Fj := 2j(f(2j))−δ, for j ≥ 1 and fixed δ ∈ (0, 1), where f is as in
Theorem 4.1.4. Then, ∑i≤j Fi = O(Fj) and

∑
d∈Z

(∑
j,i≤J

r
P

(j)
G −P

(i)
A

(d)
)2

= O(J622J).

Proof. Suppose that f (x) = O(x1/3 (log x)−7/3) is such that (4.1.3) diverges. Because

∑
j≤J+1

1
f(2j) ≥

∑
k≤2J

1
kf (k)

diverges as J → ∞ and (f(2j)/f(2j+1))j is non-decreasing, we conclude that the
quotient f(2j)/f(2j+1)→ 1 as j →∞. Therefore, there is an i0 such that the estimate

(f(2i))−1f(2i+h) < (3/2)hδ

holds for any i ≥ i0 and h ∈ N. Hence,

1
Fj

∑
i≤j

Fi ≤ o (1) +
∑

i0≤i≤j
2i−j (3/2)j−i = O(1).

If f is such that (4.1.3) converges and f (2x) ≤ (2− ε) f (x) for x large enough, then
we obtain by a similar argument that ∑i≤j Fi is in O(Fj). Further, r

P
(j)
G P

(i)
A

(d) = O (i),
for every j ≥ 1, and non-vanishing for O(22j) values of d which implies the last
claim.

We can now prove the proposition.

Proof of Proposition 4.3.1. Let N ≥ 1 be large and denote by J = J (N) ≥ 0 the
greatest integer j such that P (j−1)

G ⊆ AN . By exploiting (4.3.1),

E(AN) ≥ E(P (J−1)
A )� (#P (J−1)

A )3
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which is seen to be � (f(N))−3(β−γ)N3. Hence, it remains to show that E(AN) =
O((f(N))−3(β−γ)N3). Note that

E(AN) ≤
∑
d∈Z

(rATJ−ATJ (d))2 where TJ := #
⋃
j≤J

(P (j)
A ∪ P

(j)
G ).

Moreover, rATJ−ATJ (d) = S1 (d) + S2 (d) where S2 (d) denotes the mixed sum∑
i,j≤J

(r
P

(j)
A −P

(i)
G

(d) + r
P

(i)
G −P

(j)
A

(d)),

and S1 (d) abbreviates ∑
i,j≤J

(r
P

(i)
G −P

(j)
G

(d) + r
P

(i)
A −P

(j)
A

(d)).

Using that for any a, b ∈ R the inequality (a+ b)2 ≤ 2(a2 + b2) holds, we obtain

E(AN) = O
(∑
d∈Z

(S1 (d))2 +
∑
d∈Z

(S2 (d))2
)
.

Lemma 4.3.2 implies that ∑d∈Z(S2 (d))2 = O((logN)6N2) due to J = O (logN).
Furthermore letting Fj = 2j(f(2j))−β, we observe that r

P
(i)
A −P

(j)
A

(d) is non-vanishing
for at most 4FJ values of d as i, j ≤ J . Since r

P
(i)
A −P

(j)
A

(d) ≤ Fmin(i,j) holds, we deduce
that ∑

i,j≤J
r
P

(i)
A −P

(j)
A

(d) = O
(∑
j≤J

∑
i≤j

Fi

)
= O(FJ).

Since r
P

(i)
G −P

(j)
G

(d) ≤ 1, as i, j ≤ J , is non-zero for at most O(T 2
J ) = O (N2) values of

d, we obtain that∑
d∈Z

(S1 (d))2 = O(F 3
J + (logN)6N2) = O(N3(f(N))−3(β−γ))

Hence, E(AN) = O(N3(f(N))−3(β−γ)).

For estimating the measure or the Hausdorff dimension of NPPC ((an)n) from
below, we recall the notion of an optimal regular system. This notion, roughly speaking,
describes sequences of real numbers that are exceptionally well distributed in any
subinterval, in a uniform sense, of a fixed interval.
Definition 3. Let J be a bounded real interval, and S = (αi)i a sequence of distinct
real numbers. S is called an optimal regular system in J if there exist constants
c1, c2, c3 > 0 - depending on S and J only - such that for any interval I ⊆ J there is
an index Q0 = Q0 (S, I) such that for any Q ≥ Q0 there are indices

c1Q ≤ i1 < i2 < . . . < it ≤ Q (4.3.3)
satisfying αih ∈ I for h = 1, . . . , t, and

|αih − αi` | ≥
c2

Q
(4.3.4)

for 1 ≤ h 6= ` ≤ t, and
c3λ (I)Q ≤ t ≤ λ (I)Q. (4.3.5)
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Moreover, we need the following result(s) due to Beresnevich which may be
thought of as a far reaching generalization of the classical Khintchine theorem, and
the JarnĂk-Besicovitch theorem in Diophantine approximation.

Theorem 4.3.3 ([28, Thm. 6.1, Thm. 6.2]). Suppose ψ : R>0 → R>0 is a continuous,
non-increasing function, and S = (αi)i an optimal regular system in (0, 1). Let KS (ψ)
denote the set of ξ in (0, 1) such that |ξ − αi| < ψ (i) holds for infinitely many i. If∑

n≥1
ψ (n) (4.3.6)

diverges, then KS (ψ) has full measure.
Conversely, if (4.3.6) converges, then KS (ψ) has measure zero and the Hausdorff
dimension equals the reciprocal of the lower order of 1

ψ
at infinity.

For a rational α = p
q
, where p, q ∈ Z, q 6= 0, we denote by H (α) its (naive) height,

i.e. H (α) := max {|p| , |q|}. It is well-known that the set of rational numbers in (0, 1)
— first running through all rationals of height 1 ordered by increasing numerical value,
then through all rationals with height 2 ordered by increasing numerical value, and
so on — gives rise to an optimal regular system in (0, 1). The following lemma says,
roughly speaking, that this assertion remains true for the set of rationals in (0, 1)
whose denominators are members of a special sequence that is not too sparse in the
natural numbers, and hand-tailored for our purposes. The proof can be given by
modifying the proof of the classical case, compare [28, Prop. 5.3]; however, we shall
give the details for making this chapter more self-contained.

Lemma 4.3.4. Let ϑ : R>0 → R>1 be monotonically increasing to infinity with
ϑ(x) = O(x1/4) and ϑ(2j+1)/ϑ(2j)→ 1 as j →∞. For each j ∈ N, we let

Bj := 2j

f (2j)
√
ϑ (2j)

, bj := 2
3Bj.

Let S = (αi)i denote a sequence running through all rationals in (0, 1) whose denomi-
nators are in M := ⋃

j≥1{n ∈ N : bj ≤ n ≤ Bj} such that i 7→ H(αi) is non-decreasing.
Then, S is an optimal regular system in (0, 1).

Proof. Let X ≥ 2. There are strictly less than 2X2 rational numbers in (0, 1) with
height bounded by X. We take J = J (X) to be the largest integer j ≥ 1 such that
Bj ≤ X. Then, for X large enough, there are at least, due to a basic property of the
Eulerian totient function,

∑
j≤J

∑
bj≤q≤Bj

ϕ (q) ≥
∑
j≤J

( 1
3π2B

2
j +O (Bj logBj)

)

≥ 1
6π2

22J

f 2(2J)ϑ (2J) +O(J2J) >
(
X

5π

)2
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distinct such rationals in (0, 1) with height not exceeding X. Hence, we obtain
√
i

2 ≤ H (αi) ≤
√

25π2 (i+ 1) + 1

for i sufficiently large. Let Q ∈ N, I ⊆ [0, 1] be a non-empty interval, and let F denote
the set of ξ ∈ I satisfying the inequality ‖qξ‖ < Q−1 with some 1 ≤ q ≤ 1

1000Q. Note
that F has measure at most

∑
q≤ 1

1000Q

(
2
qQ

qλ (I) + 2
qQ

)
= 1

500λ (I) +O
(

logQ
Q

)
<

1
400λ (I)

for Q ≥ Q0 where Q0 = Q0 (S, I) is sufficiently large. Let
{
pj/qj

}
1≤j≤t

be the set of all
rationals pj/qj ∈ (0, 1) with qj ∈M , 1

1000Q < qj < Q that satisfy∣∣∣∣∣pjqj − pj′

qj′

∣∣∣∣∣ > 2000
Q2

whenever 1 ≤ j 6= j′ ≤ t. Observe that for J as above with X = Q sufficiently large,
it follows that

{q ∈M : bJ ≤ q ≤ BJ} ⊆
{⌊

Q

1000

⌋
,
⌊
Q

1000

⌋
+ 1, . . . , Q

}
holds and hence, there are at least

1
3π2B

2
J +O (BJ logBJ) > 1

400Q
2

choices of pj/qj ∈ (0, 1) with qj ∈M and 1
1000Q < qj < Q. Due to λ (I \ F ) > 399

400λ (I),
we conclude

t ≥ 400 Q2

4000
399
400λ (I) .

Thus, taking c1 := 1/1000, c2 := 2000, and c3 := 399
4000 in (4.3.3), (4.3.4) and (4.3.5),

respectively, S is shown to be an optimal regular system.

Now we can proceed to the proof of Theorem 4.1.4.

4.3.2 Proof of Theorem 4.1.4
We argue in two steps depending on whether or not the series (4.1.3) converges.
Proposition (4.3.1) implies the announced �-bounds on E(AN) in both cases.

(i) Suppose (4.1.3) diverges, and fix s > 0. Let ϑ : R>0 → R>1 be monotonically
increasing to infinity with ϑ (x) = O(x1/4) such that

ψ (n) := 1
nf (n)ϑ (n) (4.3.7)
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satisfies the divergence condition (4.3.6). Thus, ϑ (2j) /ϑ (2j−1) → 1 as j → ∞,
and S = (αi)i from Lemma 4.3.4 is an optimal regular system. Furthermore, if
bJ ≤ n ≤ BJ , for some integer J , then, by the properties of ϑ from Lemma 4.3.4 and
the relation ∑j≤J Fj = O (FJ) from Lemma 4.3.2, we conclude that∑

j≤J−1

∑
bj≤m≤Bj

ϕ (m) � B2
J

implies that αi = m/n entails i ≥ cn2 where c = c (f, ϑ) > 0 is a constant. Therefore,
ψ(i) ≤ c−1n−2(f(cn2)ϑ(cn2))−1. The growth assumption on f and ϑ (x) = O(x1/4)
yields that if j is large enough, then bj ≤ n ≤ Bj implies cn2 > 2j and hence we
obtain ψ(i) ≤ c−1n−2(f(2j)ϑ(2j))−1. Combining these considerations, we infer that

nψ (i) = O(2−j(ϑ(2j))−1/2).

Applying Theorem 4.3.3 with ψ as in (4.3.7), implies that KS (ψ) has full Lebesgue
measure. Therefore, for any α ∈ KS (ψ) we get

‖nα‖ ≤ n |α− αi| = O(2−j(ϑ(2j))−1/2) (4.3.8)

for infinitely many i and j = j (i). Now if bj ≤ n ≤ Bj for j sufficiently large and n, α
as in (4.3.8), then it follows that by taking any integer m ≤ (f(2j))γ(ϑ(2j))1/3 that
also the multiples

nm ≤ 2j(f(2j))γ−1(ϑ(2j))−1/6

satisfy that 1[0,s/Tj ] (‖α(mn)‖) = 1 where Tj = O(2j(f(2j))−γ) is as in the proof of
Proposition 4.3.1. If additionally γ − 1 ≤ −β holds, then we obtain that

rATj−ATj (mn) ≥ 2j−1(f(2j))−β

holds for j sufficiently large. By (4.3.2), we conclude that

R([−s, s] , α, Tj) ≥ C(f(2j))2γ−β(ϑ(2j))1/3

for infinitely many j where C > 0 is some constant. For the optimal choice of the
parameters β, γ > 0, we are therefore led to maximize β − γ where 2γ − β ≥ 0
and γ − 1 ≤ −β have to be satisfied. The solution is given if equality in the first
inequality occurs, leading to β = 2/3 and γ = 1/3. Hence, (4.1.4) follows for α ∈ KS (ψ).

(ii) Suppose the series (4.1.3) converges. We keep the same sequence as in step
(i) while taking ϑ (x) = 1 + log (x), as we may. The arguments of step (i) show that
any α ∈ KS (ψ) satisfies (4.1.4); now the conclusion is that KS (ψ) has Hausdorff
dimension at least equal to the reciprocal of

lim inf
x→∞

− log (ψ (x))
log x = 1 + lim inf

x→∞

log f (x)
log x .

Thus, the proof is complete.
56



Chapter 5

There is No Khintchine Threshold
for Metric Pair Correlations

“All the greatest things are simple, and many can be expressed in a single
word: Freedom; Justice; Honour; Duty; Mercy; Hope.”
— W. Churchill [76].

The present chapter is based on joint work withChristoph Aistleitner, andThomas
Lachmann [13].

Let A (α) denote the sequence (αan)n, where α ∈ [0, 1] and where (an)n is a strictly
increasing sequence of positive integers. If the asymptotic distribution of the pair
correlations of these sequences follows the Poissonian model for almost all α in the
sense of Lebesgue measure, we say that (an)n has the metric pair correlation property.
Recent research has revealed a connection between the metric theory of pair correlations
of such sequences, and the additive energy of truncations of (an)n. Bloom, Chow,
Gafni and Walker speculated that there might actually be a convergence/divergence
criterion which fully characterizes the metric pair correlation property in terms of the
additive energy, similar to Khintchine’s criterion in the metric theory of Diophantine
approximation. In the present chapter we give a negative answer to such speculations,
by showing that such a criterion does not exist. To this end, we construct a sequence
(an)n having large additive energy which, however, maintains the metric pair correlation
property.

5.1 Introduction
Let us keep the notation from the previous chapter. Recall: if for an infinite sequence
(xn)n ⊆ [0, 1) we have R([−s, s] , α,N) → 2s for all s ≥ 0, then we say that the
distribution of pair correlations is (asymptotically) Poissonian. Note that a sequence
of independent, identically distributed (i.i.d.) random points, picked from a uniform
distribution on [0, 1], almost surely has Poissonian pair correlations. The term
“Poissonian” for this asymptotic distribution of pair correlations comes from a similarity
with the distribution of spacings of points in a Poisson process, which, however, only
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becomes really meaningful when also considering higher correlations (triple, quadruple
etc.) or so-called neighbour spacings (which are in general much more difficult to
handle than pair correlations).

The interest in such problems goes back to a paper of Berry and Tabor [22], where
they gave a conjectural framework for the distribution of energy spectra of integrable
quantum systems. Their model led to strong mathematical interest in distributional
properties of spacing of sequences such as (nα)n mod 1 (corresponding to the “harmonic
oscillator”) and (n2α)n mod 1 (corresponding to the “boxed oscillator”). The case of
(nα)n is easier to analyse; one can use considerations based on continued fractions, to
show for example that the pair correlations of this sequence cannot be Poissonian for
any α, since for some N the initial segment (α, 2α, . . . , Nα) mod 1 is too regularly
spaced. The case of (n2α)n is much harder and is far from being well-understood.
It is conjectured that the pair correlations for this sequence should be Poissonian,
unless α is very well approximable by rationals; however, there exist only some partial
results in this direction (see for example [61, 99, 121]). From the metric perspective,
the situation is easier: it is known that the pair correlations of (n2α)n mod 1 are
Poissonian for almost all α in the sense of Lebesgue measure. The same is true if
(n2)n is replaced by (nd)n for some integer d ≥ 3, or by an exponentially growing
sequence (an)n of integers, see [98, 100]. We denote this property by saying that
these sequences have the metric pair correlation property. In a recent paper [14], a
connection was established between the question whether a given sequence has the
metric pair correlation property, and the asymptotic order of its so-called additive
energy. Let (an)n be a given sequence of distinct positive integers, and let AN denote
its initial segment a1, . . . , aN . Then, the additive energy E(AN) is defined as

E(AN) = #{n1, n2, n3, n4 ≤ N : an1 + an2 = an3 + an4}.

Trivially, the additive energy is always between N2 and N3. The main results of [14] say
that (an)n has the metric pair correlation property provided that AN � N3−ε for some
ε > 0, while it does not have the metric pair correlation property if AN ≥ cN3 infinitely
often for some positive constant c. This fits together very well with the examples from
above, since sequences of the form (nd)n for d ≥ 2 and lacunary sequences are known
to have very small additive energy, while the sequence an = n, n ≥ 1, has an additive
energy of the maximal possible order.

So, the general philosophy is that a sequence has the metric pair correlation
property if its additive energy is a bit below the maximal possible order. However,
the precise threshold is not known. Some results in this direction are:

• The primes do not have the metric pair correlation property [125]. The additive
energy of the sequence of primes is, roughly, of order N3

logN .

• There exists a sequence having additive energy of order N3

logN log logN which does
not have the metric pair correlation property [73].
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• For every ε > 0 there exists a sequence having additive energy of order
N3

logN(log logN)1+ε which do have the metric pair correlation property (unpublished,
but not difficult to construct using methods from [23, 73]).

These results indicate that there is a sort of transitional behaviour when the
additive energy lies around the “critical” order of roughly N3

logN log logN . The methods
used in [23, 73] indicate a close connection between this sort of question with problems
from metric Diophantine approximation, where Khintchine’s classical theorem gives
a zero–one law in terms of the convergence, resp. divergence, of the infinite sum
of measures of the target intervals (see for example [58] for the background). It is
tempting to speculate that a similar convergence/divergence criterion might also exist
for the metric theory of pair correlations, where the crucial quantity is the additive
energy of (an)n. This idea was discussed in a recent paper of Bloom, Chow, Gafni,
and Walker [23], where they noted that there “appears to be reasonable evidence to
speculate a sharp Khintchine-type threshold, that is, to speculate that the metric
Poissonian property should be completely determined by whether or not a certain sum
of additive energies is convergent or divergent”. They raised the following problem,
which they called the “Fundamental Question”.

Question 3. Is it true that if E (AN) ∼ N3ψ (N), for some weakly decreasing function
ψ : Z≥1 → [0, 1], then (an)n is metric Poissonian if and only if∑

N≥1
ψ (N) /N (5.1.1)

converges?

The main result of the present chapter is to show that the answer to the question
above is negative, and that the metric pair correlation property cannot be fully
characterized in terms of the additive energy alone. For this purpose, we construct a
sequence (an)n whose additive energy is of order roughly N3/(logN)5/6, and which
does have the metric pair correlation property. Note that the additive energy of
this sequence is significantly larger than the putative threshold, which is around
N3/(logN log logN). Thus, the metric theory of pair correlations cannot be reduced
to a convergence/divergence criterion in terms of the additive energy. Instead, the
picture is more complicated and looks as follows:

• If the additive energy is below a certain threshold, then the sequence does have
the metric pair correlation property.

• If the additive energy is above a certain threshold (for infinitely many N), then
the sequence cannot have the metric pair correlation property. (This threshold
is different from the one in the point above.)

• Between these upper and lower thresholds there is a transition zone, where
the knowledge of the additive energy alone is not sufficient to determine the
metric pair correlation behaviour of the sequence. Thus, in this range the metric
pair correlation property is determined by some additional number-theoretic
properties of the sequence.
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The following theorem is the main result of this chapter.

Theorem 5.1.1. For every ε ∈ (0, 1/12) there exists a strictly increasing sequence
(an)n of positive integers which has the metric pair correlation property, and whose
additive energy satisfies

E (AN)� N3

(logN)5/6+ε . (5.1.2)

Before turning to the proof of the theorem, we note that while our result says
that the metric pair correlation property cannot be characterized in terms of the
additive energy alone, the problem of finding some other way of characterizing the
metric pair correlation property in terms of some arithmetic properties of (an)n is still
open. It is likely that there is a zero–one law in the metric theory of pair correlations,
but actually even this is not known. Also, our result leaves questions concerning
the quantitative connection between additive energy and the metric theory of pair
correlations open. For example, is it possible that a sequence has additive energy of
order N3/(log logN) and also has the metric pair correlation property, or is it possible
that the additive energy is of order N3/(logN)2 and the sequence does not have the
metric pair correlation property? Closing the gaps in our knowledge in this field would
be very desirable. We consider this to be an attractive problem, as phenomena from
both additive combinatorics and Diophantine approximation seem to be at work here.

5.2 Preliminaries

5.2.1 Construction of the sequence
We construct our sequence (an)n as the concatenation of countably many “levels” where
each level consists of a collection of multiple “blocks”; those blocks are either (finite)
arithmetic, or (finite) geometric progressions. Moreover, the levels are constructed in
such a way that the difference set of a level interacts with the difference sets of other
levels in a sufficiently “random” way such that this interaction can be handled through
variance estimates. The interaction between the arithmetic blocks within a given
level is the most delicate issue, and are handled using tools from metric Diophantine
approximation.

The geometric blocks act in a “random” way and are only used to “fill up” our
sequence. Moreover, we separate different levels by adding huge constants to elements
of later levels, to gain additional “independence”, which is profitable for the desired
variance estimates.

The key point of the construction lies in the way how different blocks of arithmetic
progressions are placed in a given level, and how they interact with each other. The
arithmetic blocks are of rather small cardinality, compared to the total number of
elements in a level. The additive energy of the total sequence is made large by taking
many of such short blocks successively within a level. Furthermore, the arithmetic
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progressions have (different) prime numbers as their moduli; these primes are confined
to a certain regime1 depending on the level on which the arithmetic progression is
situated. The purpose for this rather special choice of the moduli for the arithmetic
progressions is twofold. On the one hand, our choice of admissible moduli simplifies the
continued fraction analysis which is used to control the contribution of the arithmetic
blocks. On the other hand, the primality of the moduli, in combination with the
bounds on their size, keeps the number of solution of certain linear Diophantine
equations under control, which enables us to establish sufficiently good variance
estimates to deal with the error terms.

These two features are responsible that we can obtain an exponent smaller than
1 for the logarithm in the estimate for the additive energy in (5.1.2). When calculating
the additive energy we will see the effect of the large number of short blocks being
reflected in the representation function d 7→ rAN−AN (d), (cf. the definitions below),
which looks like a saw-tooth function. This shape increases the additive energy of
the truncations, being only L2-information, while the Poissonian behaviour of the
counting function, being L1-information, is “unharmed”.

Now, we proceed to write down the construction precisely. This is done by induction
over the levels. Fix ε ∈ (0, 1/12), denote by b·c the floor function, let ` (1) := 1, and
for j ≥ 2 let

` (j) := bj1/6−εc. (5.2.1)

Many mathematical objects in this chapter carry two indices, such as mj,i. Here the
first index always refers to the level, and the second index to the block within a given
level. The j-th level consists of ` (j) different blocks. The first of these blocks is a
geometric progression, while the others are all arithmetic progressions.

In the lemma below we construct the moduli of the arithmetic blocks.

Lemma 5.2.1. There exists a constant j0 ≥ 1 such that for every j ≥ j0 there are
prime numbers mj,i satisfying

mj,i �ε j1/3−ε/3 (5.2.2)

uniformly for 1 ≤ i ≤ ` (j), and that if j0 ≤ j − 5 log j < h ≤ j, then mj,i is not equal
to mh,g for any g ≤ ` (h) and i ≤ ` (j).

Proof. For an integer j ≥ 1 in the interval 8d ≤ j < 8d+1, d ∈ Z≥1, we abbreviate by
ι = ι (d, ε) ≥ 1 the largest (integer) power of eight which is not exceeding b2d(1−2ε)c.
Let us now consider the interval(

2d(1−ε),
3
2 · 2

d(1−ε)
)
. (5.2.3)

1Due to this restriction, we need to use a “recycling process”, as we cannot choose completely
different primes for each level, since there are not enough primes for doing so in the range of interest.
This “recycling process” complicates the notation a bit, but it is necessary for our construction.
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The prime number theorem implies that for sufficiently large j this interval contains
3
22d(1−ε)

log
(

3
22d(1−ε)

) − 2d(1−ε)

log (2d(1−ε)) +O
(

2d(1−ε)

d2

)
> 2d(1−ε·3/2)

many primes, and hence there are more than ι primes in the interval (5.2.3) if j ≥ j′′0
with j′′0 sufficiently large.
Denote by pd,1 < . . . < pd,ι the first ι primes in the interval (5.2.3). For j ≥ j′0 := 5j′′0
and i ≤ `(j), we put

mj,i := pd,r(i,j),

where r (i, j) is the unique remainder 0 ≤ r (i, j) < ι satisfying b2d/2c(j − 8d) + i =
qι + r(i, j) for some q ∈ Z. Since (5.2.2) is clearly true, it remains to show the
additional assertion. For doing so, suppose that mj,i = mh,g with h ≤ j. First note
that 3

2 · 2
d(1−ε) < 2(d+1)(1−ε), and hence mj,i = mh,g implies that 8d ≤ j, h < 8d+1 for

some d ∈ Z≥1. By construction mj,i = mh,g entails

b2d/2cj + i ≡ b2d/2ch+ gmod ι,

and thus if (j, i) 6= (h, g), then∣∣∣b2d/2cj + i− b2d/2ch− g
∣∣∣ ≥ ι.

As i, g ≤ 2d/2, we conclude that j−h� 2d(1/2−2ε). Hence, by possibly choosing a large
enough j0 ≥ j′0 and j0 ≤ j, the additional assertion of the lemma holds true.

Let j0 be as in Lemma 5.2.1, and set J0 := max {j0, 412}. To define the numbers on
the first J0 levels, we put PG (j) := PA (j, i) := j for every j ≤ 2J0 , and each i ≤ ` (j).
This defines only finitely many elements at the initial segment of our sequence (an)n,
which will not play any role.

For j > J0 we recursively define constants Cj,i and sets PG (j) and PA (j, i) by
setting

Cj,i :=


bexp(maxPA(j − 1, `(j − 1)))c if i = 1
bexp(maxPG(j))c if i = 2
bexp(maxPA(j, i− 1))c if i = 3, . . . , ` (j) ,

(5.2.4)

where
PG (j) := {Cj,1 + 3jh | h = 0, . . . , 2j − 1}

is a shifted geometric progression and

PA(j, i) := {Cj,i +mj,ih | h = 0, . . . , b2j/j1/3c} (i = 2, . . . , ` (j))

are shifted arithmetic progressions whose union

PA (j) :=
`(j)⋃
i=2

PA (j, i)
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will be important in the following.
Finally, we define an = an (ε) as the n-th (smallest) element of⋃

j≥1

(
PG (j) ∪ PA (j)

)
.

Note that the sets PG(j) and PA (j, i) are arranged in such a way that (elementwise)
we have

PG(j) ≤ PA (j, 2) ≤ PA (j, 3) ≤ · · · ≤ PA (j, `(j)) ≤ PG(j + 1).

Furthermore, the constants Cj,i are chosen to be huge, so as to guarantee that in
the chain of inequalities above elements from one (geometric or arithmetic) block
are always much larger than elements of the previous block. This rapid growth of
elements when changing from one block to the next is a sort of “lacunarity” property,
which creates additional independence and allows us to control the interaction between
elements coming from different blocks.

5.2.2 A useful partition, and short GCD sums
Throughout this chapter, we write X − Y for the difference set

X − Y := {x− y : x ∈ X, y ∈ Y }

of two sets X, Y ⊆ Z. By #X we denote the cardinality of X. Furthermore, we write
rX−Y for the number of ways in which d ∈ Z can be represented as a difference of
elements of X, Y ⊆ Z, that is,

rX−Y (d) := # {(x, y) ∈ X × Y : d = x− y} .

If no confusion can arise, we write r (d) for rX−Y (d), and if nothing else is specified
we understand r ((d) as rAN−AN (d) throughout this chapter. Recall that trivially
rX−Y (d) ≤ min{#X,#Y }.

Moreover, let X+ := X ∩ Z≥1 denote the set of positive elements of X ⊆ Z. Since
AN −AN is symmetric around the origin, we can confine attention to its positive part,
for most of the time. Setting

DN :=(AN − AN)+ \ {1, . . . , Cb(logN)/ log 7c,1},
DN :=(AN − AN)+ ∩ {1, . . . , Cb(logN)/ log 7c,1},

where C·,· are the constants defined in (5.2.4), we can split (AN −AN )+ into the union
DN ]DN , where here and in the sequence the symbol ⊎ always indicates that the union
is disjoint. To analyse the contribution of a number d ∈ DN to the counting function
of the pair correlation distribution, we use a finer decomposition whose components
are described in the next lemma.
In the following we will, tacitly, for given N denote by J = J(N) the positive integer
for which

2J−1 ≤ N < 2J .
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Lemma 5.2.2. (a) If r ≥ 1 is an integer, then

Cj,i �r exp◦r
(
2j
)

(5.2.5)

holds uniformly for all 1 ≤ i ≤ ` (j). Here exp◦r is the r-times iterated exponential
function, that is, exp◦r (x) := exp◦(r−1) (exp (x)), and exp◦1 (x) := exp (x).

(b) Moreover, assume that each of “X” and “Y ” represent one of the letters
{A,G}, that is, (X, Y ) ⊂ {(A,A), (A,G), (G,A), (G,G)}. Let M (XY ) be the union
over (PX(j)− PY (i))+ ∩ DN as J/3 ≤ j ≤ J and i ≤ j. Consider the sets

DN (XY ) := M (XY ) ∪
⋃
i<J

((PX(J)− PY (i))+ ∩ (AN − AN)).

If N is sufficiently large, then DN (AA) ,DN (AG) ,DN (GA) ,DN (GG) are pairwise
disjoint.

Remark 3. Part (b) of the lemma says, roughly speaking, that the difference sets DN
are separated depending on whether the larger one of the two blocks which gives rise to
a difference d ∈ DN is an arithmetic, or a geometric block.

Proof. We note that

Cj,i ≥ Cj,1 ≥ exp
(
Cj−1,1

)
≥ . . . ≥ exp◦r

(
Cj−r,1

)
,

where Cj−r,1 ≥ 2j for sufficiently large j. This implies (5.2.5). Now assume that
X = A, Y = G; all the other cases can be treated by a similar reasoning. As
d ∈ (PX (j)− PY (k))+ can be written as d = Cj,i (1 + o (1)), which holds uniformly
in k ≤ j and i ≤ ` (j), an element d′ ∈ (PX′ (j′)− PY ′ (k′))+ could be equal to d only
if X = X ′ and Y = Y ′.

Thus for sufficiently large N the set DN can be decomposed in the form,

DN = DN (GG) ] DN (AG) ] DN (GA) ] DN (AA)

and accordingly the counting function of the pair correlation distribution

R ([−s, s] , α,N) := 1
N

# {1 ≤ i 6= j ≤ N : ‖(aj − ai)α‖ ≤ s/N} (5.2.6)

can be decomposed as

R (GG) +R (AG) +R (GA) +R (AA) +R,

where for X, Y ∈ {A,G}

R (XY ) := R (XY, α, s,N) := 2
N

∑
d∈DN (XY )

r (d) Is,N (dα) , Is,N (x) :=

1 ‖x‖ ≤ s/N,

0 otherwise,
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and

R := R (s, α,N) := 2
N

∑
d∈DN

r (d) Is,N (dα) .

By using the same methods as in [14], one can easily conclude that

R (GG,α, s,N)→ 2s (5.2.7)

as N →∞, for almost all α ∈ [0, 1] and each s > 0. This follows from the fact that
geometric progressions have small additive energy, and the fact that the cardinality of
the geometric blocks is dominant over the total cardinality of the arithmetic blocks
which implies that 1/N really is the correct normalization factor such that R (GG)
converges as desired for N →∞.

Thus it remains to show that all the remaining terms R (AG) , R (GA) , R (AA) and
R vanish in the limit N →∞, for almost all α. The contribution of R (AG) , R (GA)
and R (AA) is estimated using variance bounds, which we obtain from some Fourier
analysis in combination with estimates on GCD sums. The contribution of R is the
critical part, and is estimated with tools from the metric theory of continued fractions.

For later reference, we note that the Fourier series expansion of the indicator
functions Is,N (α) is given by

Is,N (α) ∼
∑
n∈Z

cne (nα) where cn :=

sin (2πns/N) / (πn) if n 6= 0,
2s/N if n = 0,

(5.2.8)

and e (α) abbreviates exp (2πiα). The next lemma is of a technical nature, and is used
in a decoupling argument for the variance bounds, which are derived in Section 3.

Lemma 5.2.3. Let I, I ′ ⊆ Z≥1 be non-empty sets such that I > I ′ holds elementwise.
Define for integers u, v > 0 the quantity

C (u, v) :=
∑∑

n1,n2∈Z\{0}
n1u=n2v

cn1cn2 .

Then, ∑
u∈I

∑
v∈I′

C (u, v)� (#I ′#I)max {I − I ′}
min I . (5.2.9)

Moreover, for u 6= 0 we have
C (u, u)�s N

−1. (5.2.10)

Proof. We show first that
C (u, v)� gcd (u, v)

max {u, v} (5.2.11)

for distinct u, v > 0. Note that n1u = n2v holds if and only if there is an integer h 6= 0
satisfying n1 = hu/gcd (u, v) and n2 = hv/gcd (u, v). Moreover, we observe that |cn| ≤
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min {2s/N, 1/ |n|} for n 6= 0. Combining these estimates with the Cauchy–Schwarz
inequality yields

|C (u, v)|2 ≤
∑

h∈Z\{0}
c2
h u

gcd(u,v)

∑
h∈Z\{0}

c2
h v

gcd(u,v)

≤
∑

h∈Z\{0}

(gcd (u, v))2

(uh)2
∑

h∈Z\{0}

(gcd (u, v))2

(vh)2 ,

which implies (5.2.11).

Trivially gcd (u, v) ≤ max {u, v} −min {u, v} ≤ max {I − I ′}, and thus (5.2.11)
yields (5.2.9). Furthermore,

|C (u, u)| �
∑
n≤N2s

4s2

N2 +
∑
n>N

2s

1
n2 ,

which yields (5.2.10).

Letting X ∈ {AG, GA, AA} and D := DN (X), then combining equation (5.2.8)
with Parseval’s identity yields

N2 Var(R (X, s, ·, N)) =
∑∑
u,v∈D

r (u) r (v)C (u, v) . (5.2.12)

The main term on the right hand side, as we shall see, is the sum over the diagonal
terms (r (u))2C (u, u). To prove this, the next lemma shows that the contribution
from the off-diagonal terms is small.

Lemma 5.2.4. For D is as in (5.2.12) we have

∑
u∈D

∑
v∈D
v<u

r (u) r (v)C (u, v)� 1
N
. (5.2.13)

Proof. We will give a detailed proof for the case D = DN (AG) — the othe other cases
can be dealt with analogously. Consider i±, j±, k± such that J/3 ≤ j− ≤ j+ ≤ J ,
k± ≤ j±, and 2 ≤ i± ≤ `(j±). If u ∈ D, then u ∈ PA (j+, i+) − PG(k+). If
v ∈ PA(j−, i−)− PG(k−) with (j−, i−) 6= (j+, i+), then by the large difference in size
between elements from different blocks we have v < u1/2. Hence, in this case (5.2.11)
implies that

|C (u, v)| < u−
1/2 � C

−1/2
j+,1 �

(
exp◦3 (N)

)−1
.

If v ∈ PA (j+, i+) − PG (k−) with 1 ≤ k− ≤ j+ is strictly less than u, then (5.2.9)
yields ∑∑

u,v∈PA(j+,i+)−PG(k−)
v<u

r (u) r (v) |C (u, v)| ≤ N2 ∑∑
u,v∈PA(j+,i+)−PG(k−)

v<u

|C (u, v)| .
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For each u ∈ PA (j+, i+)− PG (k−), we let I := {u} and

I ′ := (PA(j+, i+)− PG(k−)) ∩ {1, . . . , u}.

Then, max{I −I ′} ≤ Cj+,1, and u exceeds Cj+,2− 3(j+)N −Cj+,1. By applying (5.2.5)
and summing over u ∈ PA (j+, i+)− PG (k−), we conclude that

∑∑
u,v∈PA(j+,i+)−PG(k−)

v<u

r (u) r (v) |C (u, v)| � N2 (#(PA (j+, i+)− PG (k−)))2Cj+,1

Cj+,2 − 3(j+)N − Cj+,1
.

Due to J � logN , the right-hand side is � N2/ exp◦3 (N). Therefore,∑
u∈D

∑
v∈D
v<u

r (u) r (v) |C (u, v)| ≤
∑∑∑∑∑∑

J/3≤j−≤j+≤J
k±≤j±, i±≤`(j±)

∑∑
u∈PA(j+,i+)−PG(k+)
v∈PA(j−,i−)−PG(k−)

u>v

r (u) r (v) |C (u, v)|

� (logN)6N2

exp◦3 (N) ,

which implies (5.2.13).

5.3 Proof of Theorem 5.1.1
Our strategy is now to deal with R (X, s, ·, N) for X ∈ {AG,GA,AA} by using
variance estimates.

5.3.1 Variance bounds
Proposition 5.3.1. For every fixed s > 0 we have

Var(R (X, s, ·, N))�s
1
N

+ 1
N3

∑
d∈DN (X)

(r (d))2 �ε
(logN)8

N
(5.3.1)

for (X ∈ {AG,GA}), and

Var(R (AA, s, ·, N))�s
1
N

+ 1
N3

∑
d∈DN (AA)

(r (d))2 �ε
1

(logN)1+ε . (5.3.2)

Proof. We first prove (5.3.1). Let D := DN (GA), the case D = DN (AG) being
analogously. Note that trivially #D ≤ N2. Moreover, we claim that r (u)� (logN)4

for every u ∈ D. To see this, first note that r(u) is at most∑∑
k≤j≤J

rPG(j)−PA(k) (u) =
∑∑

k≤j≤(log J)1/2

rPG(j)−PA(k) (u) +
∑∑

(log J)1/2<j≤J, k≤j

rPG(j)−PA(k) (u) .
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Since in the first sum rPG(j)−PA(k) (u) ≤ #PG (j) � exp(O((log logN)1/2)) it follows
that ∑∑

k≤j≤(log J)1/2

rPG(j)−PA(k) (u)� (logN)3,

and in the second sum, due to the growth of base 3j in the geometric progression
PG (j), the bound rPG(j)−PA(k) (u) ≤ (log logN) logN , which holds for N sufficiently
large, implies ∑∑

(log J)1/2<j≤J, k≤j

rPG(j)−PA(k) (u)� (logN)4,

which entails r (u)� (logN)4 for every u ∈ D. Hence, (5.2.10) implies∑
u∈D

(r (u))2 |C (u, u)| �s N (logN)8 .

From this, in combination with (5.2.12) and (5.2.13), we infer (5.3.1).

For the rest of the proof, we let D := DN (AA). Let j± and i± be such that j− ≤ j+

and 2 ≤ i± ≤ `(j±). Assume J/3 ≤ j+ ≤ J , and u ∈ PA (j+, i+) − PA (j−, i−) ⊆ D.
By the trivial estimate r (u)� min{#PA (j±, i±)}, we have

1
N2

∑∑∑∑
j−≤j+<J−5 log J

i±≤`(j±),(j−,i−)6=(j+,i+)

∑
u∈PA(j+,i+)−PA(j−,i−)

(r (u))2 |C (u, u)| � 1
(logN)3 . (5.3.3)

It remains to control the contribution from the range J − 5 log J ≤ j− ≤ j+ ≤ J . We
first remark that the sets PA (j+, i+)− PA (j−, i−) are pairwise disjoint for the indices
in the ranges just specified. Therefore, r (u) is bounded by the number of solutions
(x, y) ∈ Z2 to the linear Diophantine equation

ũ = mj+,i+x−mj−,i−y where ũ := u− Cj+,i+ + Cj−,i− ,

under the additional restriction that 1 ≤ x, y ≤ N/(logN)1/3. Since mj+,i+ and mj−,i−

are prime numbers, the set of integer solutions to this equation admits the form

{(x0 + hmj−,i− , y0 −mj+,i+h) : h ∈ Z},

where (x0, y0) is some solution to the above equation. Moreover, the size of j± together
with (5.2.2) ensures that mj±,i± � (logN)1/3−ε/3 holds uniformly in i± ≤ ` (i±). Hence,

r(u)� N

(logN)2/3−ε/2 . (5.3.4)

Due to
∑∑∑∑

J−5 log J≤j−≤j+≤J
i±≤`(j±),(j−,i−) 6=(j+,i+)

#(PA(j+, i+)− PA(j−, i−))�
∑∑

J−5 log J≤j−≤j+≤J

2j+

(j+)ε/3
(`(j+))2

�ε
N

(logN)−1/3+2ε ,
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we conclude from (5.3.4) that

1
N2

∑∑∑∑
J−5 log J≤j−≤j+≤J

i±≤`(j±),(j−,i−)6=(j+,i+)

∑
u∈PA(j+,i+)−PA(j−,i−)

(r(u))2|C(u, u)| �ε
1

(logN)1+ε .

Combining this with (5.3.3) yields (5.3.2).

5.3.2 Estimates for correlations from the short progressions
Before proceeding further, we recall some results about continued fractions. For a
(possibly finite) sequence (αi)i of strictly positive integers, we denote by

α := [α1, α2, . . .] = 1
α1 + 1

α2+ 1
...

the associated (possibly finite) continued fraction in the unit interval [0, 1]. Moreover,
let pn/qn denote the n-th convergent to α. Then, the following are well-known facts,
cf. for instance [28, Ch.1].

1. Legendre’s theorem: If a/b is a fraction with |α− a/b| < 1/(2b2), then a/b is a
convergent to α.

2. We have ∣∣∣∣∣α− pn
qn

∣∣∣∣∣ � 1
αnq2

n

, (5.3.5)

where the implied constants are independent of α.

3. Borel-Bernstein theorem: Let B := (bn)n be a sequence of (strictly) positive real
numbers, and consider the series over their reciprocals

∑
n≥1

1
bn
. (5.3.6)

If VB ⊂ [0, 1] denotes the set of those numbers α = [α1, α2, . . .] for which αn ≤ bn
holds for all sufficiently large n ≥ 1, then

λ (VB) =
{

1 if (5.3.6) is convergent,
0 if (5.3.6) is divergent.

Proposition 5.3.2. For each ε ∈ (0, 1/12), there exists a set of α ∈ [0, 1] of full
Lebesgue measure such that for

M (j, i) := {q ≤ 2j/j1/3 : ‖mj,iqα‖ ≤ s/2j}

it holds that
#M (j, i)�s j

1/6+2ε/3,

uniformly for all i ≤ ` (j).
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Proof. Let B denote the sequence (n1+ε)n, and suppose that α ∈ VB is an irrational
number. By the Borel–Bernstein theorem, the set of such α has full Lebesgue measure.
We argue now in two steps. Without loss of generality, we may assume that M (j, i)
is non-empty.
(i) We first show the following: If j is sufficiently large, then there is a unique
n = n(j) ≥ 1 such that for qn denoting the denominator of the n-th convergent to α
we have

M (j, i) ⊆ qnZ. (5.3.7)

Indeed, if q ∈ M (j, i) and p ∈ Z is such that ‖qα‖ = |qα− p|, then Legendre’s
theorem implies that there is some n ≥ 1 with

p

q
= pn
qn

i.e. q = p
qn
pn
. (5.3.8)

Since pn and qn are coprime, we conclude that p = pnm and q = mqn for some m ∈ Z;
moreover, observe that (5.3.5) implies

mj,im

αnqn
� ‖mj,iqα‖ ≤

s

2j . (5.3.9)

Suppose that n is the minimal integer n′ with qn′ with qnZ ∩ M(j, i) 6= ∅. The
well-known recursion qn+1 = αnqn + qn−1 yields qn+1 ≥ αnqn �s 2jmmj,i > 2j for
sufficiently large j. However, M(j, i) by definition is a subset of {1, . . . , b2j/j1/3c}.
This shows that n in (5.3.7) is unique.
(ii) Let mmax denote the largest m ≥ 1 with mqn ∈M (j, i). Then, we conclude that
mmax must satisfy both

mmax ≤
2j

qnj
1/3

and mmax � s
αnqn
mj,i2j

,

where we used (5.3.9). Using α ∈ VB and n � j, we conclude from (5.3.9) that
qn � 2j/(j1+ε). Therefore,

mmax � max
2j
j1+ε≤x≤

2j

j
1/3

min
{

2j
xj1/3

, s
αnx

mj,i2j

}

where the x ∈ R maximizing in the right hand side, under the given constraints, is
determined via

2j
xj1/3

= s
αnx

mj,i2j
⇔ x2 = mj,i22j

j1/3sαn
.

Thus,
m2

max �
sαn

j1/3mj,i

which implies the claim since n� j and α ∈ VB.
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Proof of Theorem 5.1.1
The proof of Theorem 5.1.1 splits into two parts. First the bound (5.1.2) for the
additive energy of the truncation AN is demonstrated, and then the metric Poissonian
property of (an)n is shown.

(i) It is easily seen that for two sets A,B we always have E(A ∪B) ≥ E(A) + E(B).
Thus,

E(AN) ≥ ` (J − 1)E(PA(J − 1, i))� (logN)1/6−ε N3

logN ,

where we used that the additive energy of an arithmetic progression is proportional to
the third power of its number of terms, and that by construction #PA (J − 1, i) ≥
2J−1/(J − 1)1/3 for all i. It can be shown that the estimate N3(logN)−5/6−ε for the
additive energy of (an)n is actually tight up to factors of double logarithmic order but
— since this is not really important for the present chapter — we omit the proof.

(ii) It is a standard procedure to use the variance estimates and the results from the
previous section to conclude that the contribution of R (AG) , R (GA) , R (AA) and R
tends to zero in the limit; thus we only give a brief outline. Fix a rational s > 0. Define
the sequence Nm =

⌊
exp(m

1
1+ε/2 )

⌋
, and note that Nm+1/Nm → 1. Suppose for the

rest of the proof that X ∈ {AG,GA,AA}. If N ∈ Z≥1 is such that Nm ≤ N < Nm+1,
then

NR(X, [−s, s] , α,N) ≤ Nm+1R(X,Nm+1/Nm [−s, s] , α,Nm+1).
Denote by EX,s (Nm) the set

{α ∈ [0, 1] : |R(X,Nm+1/Nm[−s, s], α,N)− µX,s (Nm) | ≥ 1/ log logNm}

where µX,s (Nm) is the expected value of R(X,Nm/Nm+1 [−s, s] , α,N); observe that
µX,s (Nm) tends to zero as m→∞ since the indices of those elements of (an)n coming
from the arithmetic progressions form a set of zero density in the total index set. By
combining Chebyshev’s inequality with the variance estimates from Proposition 5.3.1,
we obtain λ (EX,s (Nm))�ε (logm)2m−

1+ε
1+ε/2 . Thus, the Borel–Cantelli lemma implies

that for almost all α ∈ [0, 1] and each rational s > 0, indeed,

R(X, [−s, s], α,N) −→
N→∞

0, (X ∈ {AG,GA,AA}) . (5.3.10)

Furthermore, from Proposition 5.3.2 we have, for almost all α ∈ [0, 1], that

R([−s, s] , α,N)�
∑∑

J−5 log J≤j≤J
i≤`(j)

∑
d∈M(j,i)

1
j1/3
�s

∑∑
J−5 log J≤j≤J

i≤l(j)

1
(logN)1/3

(logN)1/6+2/3ε .

Due to (5.2.1), it follows that

R([−s, s] , α,N)�s
log logN
(logN)ε/3

(5.3.11)

Combining (5.2.7), (5.3.10) and (5.3.11) finishes the proof.
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Appendix A

On the Regularity of Primes in
Arithmetic Progressions

This chapter is based on joint work withChristian Elsholtz, andRobert Tichy [42].

We prove that for k ∈ Z≥1 the primes in certain kinds of intervals cannot distribute
too “uniformly” among the invertible residue classes modulo k. Hereby, we prove a
generalization of a conjecture of Recaman and establish our results in a much more
general setting, in particular for prime ideals in number fields, recall Definition 2.

To this end, the present chapter is organized as follows: Firstly, we deduce a necessary
condition for g ∈ G, where G is always assumed to be as in Definition 2, to be a
P ∗-integer and prove Theorem 1.4.1. This will be done via a combinatorial argument
which leads to inequalities involving sums over the prime counting function x 7→ π(x)
evaluated at certain points. Secondly, we will remove x 7→ π(x) from these inequalities
by approximating it and then deal with the sums in such a manner that we receive
explicit formulas for seeing which large k violate the arising inequalities.

A.1 Preliminaries and Proof of Theorem 1.4.1
We first collect some results which we will need in the proofs.

Lemma A.1.1 (Cf. [120, Thm. 1]). Let θ (x) := ∑
p≤x log p denote the Chebyshev

function where the summation runs through all primes p ≤ x. With

ε (x) :=
√

8 log x
17π · ηe

−
√
η−1 log x for x ≥ 149, η := 6.455 (A.1.1)

we have
|θ (x)− x| < xε (x) , for x ≥ 149. (A.1.2)

Remark 4. We recall that

1. pn ≥ n log n for any n ≥ 1, see [95, p. 69], and
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2. for k ≥ 2 953 652 287 we have, cf. [37, Thm. 6.9],

E0,− := 2π(0.5k)− π(k) > k

log(0.5k)

(
1 + 1

log(0.5k) + 2
log2(0.5k)

)

− k

log(k)

(
1 + 1

log(k) + 2.334
log2(k)

)
. (A.1.3)

3. Moreover, we need the estimates√
2
π

(2S + 1) ≤
S∏
s=1

2s+ 1
2s ≤ 2S + 1√

Sπ
(A.1.4)

which are well-known (in equivalent forms) in the context of Wallis’ product
formula for π, cf. [63, p. 504-505].

4. The following estimate holds, cf. [95, p. 72]:

ϕ (k) ≥ k

1.7811 log log k + 2.51
log log k

, k ≥ 3. (A.1.5)

5. Let li (x) denote the integral
∫ x

2
dτ

log τ for x > 0. If for an arithmetical semi-group
G the counting functions g (x) := # {g ∈ G : |g| ≤ x} takes the form

g (x) = Axδ +O(xδ log−β x), β > 3, δ > 0, x→∞, (A.1.6)

then the prime counting function of G can be written as

πG (x) = li(xδ) +O(xδ log−c x) for any c < β

3 . (A.1.7)

This is due to Wegmann [126]. In particular, the conclusion is true, if G satisfies
Axiom A.

Our method to detect P ∗-integers originates from [55], which we shall describe
in the following. We write πG (x) = π (x) and denote for natural numbers x,K by
xmod K the unique remainder r ∈ {0, . . . , K − 1} such that x = qK + r holds for
some q ∈ N. Let us assume that k is a P ∗-integer and put K := |k|. Then, by the
symmetry of coprime residue classes modulo K about 0.5K, the cardinalities of the
sets

A1 := {p ∈ G : α ≤ |p| ≤ β, p prime, |p| mod K ≤ 0.5K} , (A.1.8)
A2 := {p ∈ G : α ≤ |p| ≤ β, p prime, |p| mod K > 0.5K} , (A.1.9)

differ by at most ι elements. For checking this condition, we need to count the size of
Ai. This counting is done by the following lemma:
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Lemma A.1.2. Let k denote an element of an arithmetical semi-group G, K := |k|,
and put

Ej,1 (k) := π((j + 0.5)K)− π(jK − 1), (A.1.10)
Ej,2 (k) := π((j + 1)K)− π((j + 0.5)K) (A.1.11)

for j ≥ 0, i = 1, 2. If λ,Λ denote integers such that λK ≤ α < (λ+ 1)K, and
ΛK ≤ β < (Λ + 1)K hold, then we have

#Ai = Mi (k) +
∑
j∈I

Ej,i (k) , I := Iλ,Λ := {λ+ 1, λ+ 2 . . . ,Λ− 1} , (A.1.12)

where Mi (k) is defined in (A.1.13), (A.1.14).

Proof. We partition A1 into subsets A1,j of primes having norm in [jK, (j + 0.5)K],
and A2 into subsets A2,j of primes having norm in [(j + 0.5)K, (j + 1)K] where
λ ≤ j ≤ Λ. Note that Ej,i (k) counts how many primes are located in Ai,j for
λ < j < Λ and i = 1, 2. This gives rise to the term ∑

j∈I Ej,i (k). Counting the primes
near the end-points j = λ and Λ demands more care because one needs to distinguish
whether α − λK ≤ 0.5K holds or not and whether β − ΛK ≤ 0.5K holds or not in
order to start or stop counting with the suitable Ai,λ or Ai,Λ. Thus, we get four cases
to which we shall refer to in the following manner:

Table A.1:
condition α− λK ≤ 0.5K α− λK > 0.5K

β − ΛK ≤ 0.5K case (i) case (iii)
β − ΛK > 0.5K case (ii) case (iv)

In view of equation (A.1.12), we can define the proclaimed functions Mi by using
(henceforth) the short hand notation xj := jK, xj := xj+xj+1

2 via

M1 (k) :=


π(xλ)− π (α− 1) + π(β)− π(xΛ) in case (i),
π(xλ)− π (α− 1) + EΛ,1 (k) in case (ii),
π (β)− π(xΛ − 1) in case (iii),
EΛ,1 (k) in case (iv),

(A.1.13)

M2 (k) :=


Eλ,2 (k) in case (i),
Eλ,2 (k) + π(β)− π(xΛ) in case (ii),
π(xλ+1)− π (α− 1) in case (iii),
π(xλ+1)− π (α− 1) + π (β)− π(xΛ) in case (iv).

(A.1.14)

It is useful to put Ej (k) := Ej,1 (k) − Ej,2 (k), M (k) := M1 (k) − M2 (k), for
writing

#A1 −#A2 = M (k) +
∑
j∈I

Ej (k) . (A.1.15)
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Moreover, we say an assertion A (k) concerning natural numbers is eventually true if
there exists a k0 ∈ N such that A (k) holds true for all k ≥ k0.

Proof of Theorem 1.4.1. Since α = 1 we may assume λ = 0, and that either case
(i) or (ii) of Table A.1 occurs. Let 0 < δ ≤ 1 for the moment. Remark 4 gives an
approximation for the prime counting function from which we infer

M (k) ≥ 2li((0.5K)δ)− li(Kδ) + EΛ +O(Kδ log−η(0.5K)), η > 0. (A.1.16)

Moreover, we have

2li((0.5K)δ)− li(Kδ) =
∫ Kδ

2

21−δ − 1 + δ log 2
log(τ)

log(2−δτ) dτ, δ > 0. (A.1.17)

Since the derivative of x 7→ li(xδ) is eventually decreasing, it follows from the mean
value theorem that 2li(xδj)− li(xδj)− li(xδj+1) is eventually positive for any j ≥ 1. Hence,
we conclude that

Λ∑
j=1

Ej (k) > (Λ− 1)O(Kδ log−η(0.5K)), η > 0. (A.1.18)

Using Equation (A.1.15) and the above estimate we find that

#A1 −#A2 >
Kδ log 2

log(Kδ) log(0.5K) + (Λ− 1)O(Kδ log−η(0.5K)), (A.1.19)

which proves the claim in the case 0 < δ ≤ 1. Now let δ > 1. Then the difference
2li(xδj) − li(xδj) − li(xδj+1) is negative for any j ≥ 1. We note that M(k) is bounded
from above by 2li((0.5K)δ)− li(Kδ) up to an error term

O(Kδ log−η(0.5K)) +

li(βδ)− li((xΛ − 1)δ) in case (i),
li(xδΛ+1)− li(βδ) in case (ii).

(A.1.20)

The assumption on β implies that the expressions in the brackets are in O(Kδ−ε) for
some ε > 0 and hence O(Kδ log−η(0.5K)). Therefore, we obtain from (A.1.17) that
for some suitable constant c > 0 the estimate

M (k) < −cKδ

δ log(K) +O(Kδ log−η(0.5K)) (A.1.21)

holds. Because the left hand side of (A.1.18) is bounded by (Λ− 1)O(Kδ log−η(0.5K)),
we conclude from (A.1.15) that −ι < #A1 −#A2 is eventually violated.

A.2 Auxiliary Results
In what follows we investigate conditions for a natural number k to be a P ∗-integer.
It is important to notice, that M is strictly positive in case (i) and (can be) strictly
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negative in case (iv) of table (A.1). Therefore, upper and lower bounds are needed, in
order to derive the asymptotic of the difference in (A.1.15). In order to prove Theorem
1.4.2, it suffices to derive lower a bound, though upper bounds can be derived in the
same way. This is done by the following two results.
Lemma A.2.1. Let k ≥ 2 953 652 287, ε as in Lemma A.1.1, xj = kj, and j be a
natural number. Define the functions

Ej,− (k) := 2xj
1− ε(xj)

log xj
− xj

1 + ε(xj)
log xj

− xj+1
1 + ε(xj+1)

log xj+1
, (A.2.1)

and
rj (k) := kε(xj)

log2 xj
, r0 (k) := 0. (A.2.2)

Then the inequality
Ej,− (k)− rj (k) < Ej (k) (A.2.3)

holds for j ≥ 0.
Proof. We apply the well-known formula

π (x) = θ (x)
log (x) +

∫ x

2

θ (τ)
τ log2 τ

dτ (A.2.4)

to see that Ej (k) equals the sum
2θ(xj)
log xj

− θ(xj)
log xj

− θ(xj+1)
log xj+1

+
∫ xj

xj

θ (τ)
τ log2 τ

dτ −
∫ xj+1

xj

θ (τ)
τ log2 τ

dτ. (A.2.5)

Lemma A.1.1 for j ≥ 1 and Remark 4 for j = 0 yield that the first three terms above
exceed Ej,− (k) for j ≥ 0. By using Lemma A.1.1, we infer∫ xj

xj

θ (τ)
τ log2 τ

dτ −
∫ xj+1

xj

θ (τ)
τ log2 τ

dτ > k

2
1− ε(xj)

log2 xj
− k

2
1 + ε(xj)

log2 xj
= rj (k) (A.2.6)

which implies (A.2.3).

Observing that

M (k) =

Eλ(k) + π(xλ)− π(α− 1) + π(β)− π(xΛ) in case (i),
Eλ(k) + π(xλ)− π(α− 1) + 2π(xΛ)− π(xΛ)− π(β) in case (ii)

(A.2.7)

we derive the following technical but crucial corollary.
Corollary A.2.2. The term M(k) is bounded from below in the cases (i) − (ii) by
Eλ,− (k)− rλ (k)−∆ (λ, k) +R (k) whereas we put

∆ (λ, k) := −

π(α− 1) if λ = 0,
α

log xλ

(
1 + ∆̃(xλ, α)

)
if λ > 0,

(A.2.8)

R (k) := 0 in case (i) and R (k) := EΛ,− (k)− rΛ (k) in case (ii) and define

∆̃(x−, x+) :=
(

1− x−
x+

)1 + ε(x−)
log2 x−

− x−
x+

+ 2ε(x−), 0 < x− ≤ x+. (A.2.9)
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Proof. The inequality

π(x+)− π(x−) < x+

log x−

(
1 + ∆̃(x−, x+)

)
(A.2.10)

can be deduced from Equation (A.2.4) via

π(x+)− π(x−) < x+
1 + ε(x+)

log x+
− x−

1− ε(x−)
log x−

+
∫ x+

x−

1 + ε (t)
log2 t

dt

<
x+

log x+
− x−

log x−
+ 2x+ε(x−)

log x−
+ (x+ − x−)1 + ε(x−)

log2 x−
(A.2.11)

and bracketing out the term x+
log x− on the right hand side. Let λ ≥ 1. Using the

Estimate (A.2.10) with x+ := α and x− := xλ, we get

π(α− 1)− π(xλ) <
α

log xλ

(
1 + ∆(xλ, α)

)
. (A.2.12)

In the cases (i), (ii) the claim follows now by

Eλ,− (k) + π(xλ) = 2π(xλ)− π(xλ+1), EΛ,− (k) < 2π(xΛ)− π(xΛ)− π(β), (A.2.13)

and applying Lemma A.2.1. If λ = 0, then the claim follows in the cases (i), and (ii)
directly from the estimate (A.2.13) and Remark 4.

Since we know explicit bounds for the growth of the term M , we need to derive
explicit bounds for ∑

j∈I
Ej. (A.2.14)

In view of Lemma A.2.1, we can concentrate on dealing with sums

b∑
j=a

Ej,− (k) . (A.2.15)

To this end, we define f (x) := x (log x)−1, and note that Ej,− (k) splits into

2f(xj)− f(xj)− f(xj+1)− 2ε(xj)f(xj)− ε(xj)f(xj)− ε(xj+1)f(xj+1). (A.2.16)

Let E ′j (k) denote the first three terms above, and let E ′′j (k) denote the remaining
three. For deriving explicit lower and upper bounds for sums over Ej,− (k), it suffices
to deal with the (slightly easier) sums over E ′j (k) and E ′′j (k). This will be done in
the following.

Lemma A.2.3. For natural numbers a ≤ b and k ≥ e4 we have the following estimate

8
k

b∑
j=a

E ′j (k) >
log 4b+6

9a
log2(xb+1)

. (A.2.17)
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Proof. Let us note that

E ′j (k) =
∫ xj

xj
f ′ (x)− f ′ (x+ 0.5k) dx. (A.2.18)

Observing that f ′(x)− f ′(x+ 0.5k) equals(
1

log x −
1

log (x+ 0.5k)

)(
1−

(
1

log x + 1
log (x+ 0.5k)

))
(A.2.19)

we infer, since k ≥ e4, the inequality
1
2

log(1 + k
2x)

log(x) log(x+ 0.5k) < f ′(x)− f ′(x+ 0.5k), x ∈ [xj, xj], j ≥ 1. (A.2.20)

Integrating with respect to x from xj to xj, in view of (A.2.18), and summing over j
yields

k

4

b∑
j=a

log(1 + 1
2j+2)

log(xj) log(xj+1) <
b∑

j=a
E ′j (k) . (A.2.21)

By using partial summation, we obtain
b∑

j=a

log(1 + 1
2j+2)

log2(xj+1)
>

log∏b
s=a

2(s+1)+1
2(s+1)

log2(xb+1)
. (A.2.22)

The estimates (A.1.4) imply that the product in the numerator above can be bounded
from below by (4b+ 6)0.5(9a)−0.5. Therefore, we obtain (A.2.17) from (A.2.22).

With the above estimates at hand, we can derive lower bounds on (A.2.15).
Corollary A.2.4. Let j ≥ 1, a ≤ b denote natural numbers and σa,b := ∑b

j=a j. Then
b∑

j=a

Ej,− (k)− rj (k)
k

>
log 4b+6

9a
8 log2(xb+1)

− 5 ε(xa)
log(xa)

σa+1,b+1 (A.2.23)

holds.
Proof. Let us note that

b∑
j=a

ε(xj)j
log(xj)

<
ε(xa)

log(xa)
σa,b and

b∑
j=a

ε(xj) (j + 0.5)
log(xj)

<
ε(xa)

log(xa)
σa+1,b+1 (A.2.24)

hold. Observing σa+1,b+1 ≥ σa,b implies

1
k

b∑
j=a

E ′′j (k) < 4 ε(xa)
log(xa)

σa+1,b+1. (A.2.25)

By using (A.2.17) and (A.2.25), we deduce

1
k

b∑
j=a

(E ′j (k)− E ′′j (k)) >
log 4b+6

9a
8 log2(xb+1)

− 4 ε(xa)
log(xa)

σa+1,b+1. (A.2.26)

Combining this inequality with the obvious upper bounds for 1
k

∑b
j=a rj (k) while using

σa+1,b+1 ≥ (b− a+ 1) yields the claim.
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A.3 Proof of Theorem 1.4.2
Proof of Theorem 1.4.2. It suffices to establish that

S (k) := #A1 −#A2 − ι (A.3.1)

is eventually strictly positive. Assume for the moment that we are in the cases (i) or
(ii) of Table A.1. Equation (A.1.15) and Lemma A.2.1 imply

S (k) > M (k)− ι+
∑
j∈I

(Ej,− (k)− rj (k)). (A.3.2)

By using Corollary A.2.2, we deduce that S (k) exceeds

R(k)−∆ (λ, k)− ι+
Λ−1∑
j=λ

(Ej,− (k)− rj (k)). (A.3.3)

Let λ ≥ 1 and define b = Λ − 1 in case (i) and b = Λ in case (ii). Then applying
Corollary A.2.4 with a = λ, b yields that it suffices to check whether

− α

k

1 + ∆̃(xλ, α)
log xλ

− ι

k
+

log 4b+6
9λ

8 log2(xb+1)
− 5 ε(k)

log(k)σ1,b+1 > 0. (A.3.4)

As xλα−1− 1 < Ck−d1 holds for some C > 0, there is an explicitly computable C1 > 0
such that 1 + ∆̃(xλ, α) < C1ε(k). Hence, we can estimate the left hand side of (A.3.4)
from below by

− Cε(k)− ι

k
+

log 4b+6
9λ

8 log2(xb+1)
− 5ε(k)

log(k)σ1,b+1. (A.3.5)

Using the bounds b+ 2 ≤ C3 logd3 k, ι < C2k
1−d2 with some C2, C3 > 0 yields that it

suffices to prove that

log 4b+6
9λ

8 log2(xb+1)
− 5

4ε(k)C2
3 log2d3−1(k)− C1ε(k)− C2

kd2
> 0 (A.3.6)

is positive. This is certainly true for sufficiently large k if we can establish that 4b+6
9λ

exceeds 1 eventually. Since for a P ∗-integer γ ≥ 1 implies β ≥ pϕ(k), we conclude from
Remark 4 that

β > ϕ (k) logϕ(k)� k
log k

log log k . (A.3.7)

Hence, b can be assumed to be arbitrarily large, as desired. Now let λ = 0. Applying
Corollary A.2.4 with a = 1, and b as before, we deduce from (A.3.3) that it suffices to
check whether

E0,− (k)− π(α) + ι

k
+

log 4b+6
9

8 log2(xb+1)
− 5 ε(k)

log(k)σ1,b+1 > 0. (A.3.8)
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Since π(α) < C1k
1−d1 , ι < C2k

1−d2 and σ1,b+1 ≤ C2
3 log2d3−1 k we see that we need to

check

E0,− (k) +
log 4b+6

9
8 log2(xb+1)

− 5ε(k)C2
3 log2d3−1 k − C1k

−d1 − C2k
−d2 > 0, (A.3.9)

which is satisfied for sufficiently large k. This proves the claim in the cases (i) or
(ii). In the case (iii) or (iv), we write α = xλ −∆ for some 0 < ∆ = O(k1−d1). In
comparison to S(k) in the cases (i) and (ii), we have to add the additional expression
E = π(xλ + ∆)− π(xλ)− (π(xλ)− π(xλ −∆)) to the former S(k). One checks easily
that E = O(xλε(xλ)). Hence, E can not effect the sign of S(k) for large k in the cases
(i) and (ii) since its order is lower than the order of S(k), as we see by considering the
terms in (A.3.6) and (A.3.9). This completes the proof.

Using the above proof we can state explicit bounds on certain kinds of P ∗-integers.

Corollary A.3.1. Let b+ 2 ≤ C3 logd3 k, ι < C2k
1−d2 with some C2, C3 > 0. Under

the assumptions of Theorem 1.4.2 there is an effectively computable number C0 > 0
such that every natural number k ≥ C0 satisfying (A.3.6) if λ ≥ 1, or (A.3.9) if λ = 0
is not such a P (α, β, γ, ι)-integer.

Remark 5. Let us add some further comments:

• It poses no general problem to modify our arguments to study the distribution
of other sequences in residue classes, since we essentially employed the euclidean
structure, properties of the norm function, and the growth properties of the prime
counting function. E.g. one can derive similar results about the distribution of
numbers or elements with s prime factors where s is a fixed natural number,
while considering semi-groups with the just mentioned properties.

• Moreover, one could slightly relax the growth restriction in Theorem 1.4.2 and
still conclude finiteness of such P ∗-integers. However, this would only complicate
the technical aspects of the proof and bring no deeper insight.
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Appendix B

The Maximal Order of Iterated
Multiplicative Functions

The present chapter is based on joint work with Christian Elsholtz, and Marc
Technau [41].

Following Wigert, a great number of authors including Ramanujan, Gronwall, Erdős,
Ivić, Heppner, J. Knopfmacher, Nicolas, Schwarz, Wirsing, Freiman, Shiu et al.
determined the maximal order of several multiplicative functions, generalizing Wigert’s
result

max
n≤x

log d(n) = (log 2 + o(1)) log x
log log x.

On the contrary, for many multiplicative functions, the maximal order of iterations
of the functions remains wide open. The case of the iterated divisor function was
only recently solved, answering a question of Ramanujan (1915). Here, we determine
the maximal order of log f(f(n)) for a class of multiplicative functions f which are
related to the divisor function. As a corollary, we apply this to the function counting
representations as sums of two squares of non-negative integers, also known as r2(n)/4,
and obtain an asymptotic formula:

max
n≤x

log f(f(n)) = (c+ o(1))
√

log x
log log x,

with some explicitly given positive constant c.

B.1 Hypotheses and results
In what follows, we give a description of a class of arithmetic functions for which
we can determine the maximal order of its first iterate. The imposed restrictions
could be relaxed somewhat, but our main objective here is to deal with the function δ.
The important features here are the following: δ is a multiplicative function which
acts affinely on the exponents of primes q from a certain subset of primes Q ⊆ P
(in this case, primes ≡ 1 mod 4), and takes only the values 0, 1 on powers of primes
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p ∈ P \Q (subject to a rule which, as it turns out, is not important for the problem
under consideration, provided that Q is not too sparse, see Assumption (A.1) in
Section B.1).

In [29], the case Q = P with the multiplicative arithmetic function d acting as
d(pν) = ν+ 1 was studied. By elaborating on their method, we obtain upper and lower
bounds on the maximal order of first iterates of arithmetic functions which enjoy similar
properties as those observed from d and δ, see Theorem B.1.1 and Theorem B.1.2.
In particular, we determine the maximal order of δ ◦ δ in Corollary B.1.4. This also
works for other functions, see Corollary B.1.3.

In detail, we start with a strictly increasing sequence of primes (qj)j≥1. As for the
sequence of all primes we know qj = j(log j + log(log j) + O(1)), due to the prime
number theorem; a somewhat regular subsequence of the primes, with some positive
density of the primes, will obtain qj = τj(log j + log(log j) +O(1)), where τ is the
inverse density of Q in P, compare (A.1)) below.

Set Q = {qj : j ∈ N} and let 〈Q〉 be the monoid (multiplicatively) generated by Q.
Furthermore, fix a map g : N0 → N with g(0) = 1 and let1

g†(y) = inf{x ∈ N : g(x) = y}. (B.1.1)

Finally, assume that

1. (qj)j≥1 satisfies the asymptotic expansion

qj = τj
(
log j + log(log j) +O(1)

)
,

where τ > 0 is some constant,

2. g is monotonically increasing,

3. g(N) ⊇ 〈Q〉,

4. g†(b) + c∗bg
†(a) ≤ g†(ab) for all a, b ∈ 〈Q〉 such that q1 ≤ a ≤ b, where c∗ > 1/q1

is some constant,

5. g(i)/g(i− 1) = 1 +O(i−1/2−ε) for some ε > 0,

6. g(x) ≤ cfx for all x ∈ N, where cf > 0 is some constant,

7. g†(q) = c†q +O(q/ log q) as Q 3 q →∞, where c† > 0 is some constant. (Note
that g†(q) is finite due to (A.3).)

Now let f be a multiplicative arithmetic function satisfying

f(pν)

= g(ν) if p ∈ Q,
∈ {0, 1} if p /∈ Q

(B.1.2)

1The symbol g† was chosen to allude to a pseudo inverse.
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for a prime power pν ≥ 1. Furthermore, let f(0) = 1. We write

M(x) = max
n≤x

log f(f(n)). (B.1.3)

On writing logk for the k-fold iterate of the natural logarithm, our main results may
now be stated as follows:

Theorem B.1.1. Let M be as in (B.1.3). Then,

M(x) ≤
√

log x
log2 x

(
C
√
τc†

+O
(

log3 x

log2 x

))
, (B.1.4)

where the implied constant depends on Q, f and

C =
8

∑
j≥1

(
log g(j)

g(j − 1)

)2
1/2

. (B.1.5)

Throughout the rest of the chapter, C will always denote the constant defined
in (B.1.5). We also note in passing that throughout all implied constants may depend
on the function f and the set Q and an ε, where obvious.

Theorem B.1.2. Letting g(ν) = αν + 1 on the above hypotheses, the following holds

M(x) ≥
√

log x
log2 x

 C√
τ/α

+O
(

log3 x

log2 x

). (B.1.6)

Upon combining Theorem B.1.1 and Theorem B.1.2, we immediately deduce the
following corollary:

Corollary B.1.3. Letting g(ν) = αν+1 for some α ∈ N, and on the above hypotheses,
it holds that

M(x) =
√

log x
log2 x

 C√
τ/α

+O
(

log3 x

log2 x

).
Observe that, in the case Q = P, the function f in the setting of Corollary B.1.3

arise naturally as number of divisors of monic monomials, i.e.,

f(n) = d(nα).

Turning back to the function δ given by (1.5.1), and recalling (1.5.3), we obtain
the following result:

Corollary B.1.4. Let δ be given by (1.5.1). Then

max
n≤x

log δ(δ(n)) =
√

log x
log2 x

(
C√

2
+O

(
log3 x

log2 x

))
.
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B.2 Preliminaries

B.2.1 Notation
At this point it is convenient to introduce some additional notation used throughout
the rest of the chapter. We usually use the letter ν to denote an exponent in the
prime factorisation of some integer. We write νi if the primes in this factorisation are
indexed by i and we write νp( · ) for the p-adic valuation. Additionally, let

• Ω(n) = ∑
p|n νp(n), ω(n) = ∑

p|n 1,

• ΠQ(n) = max{m ∈ 〈Q〉 : m | n},

• ΩQ = Ω ◦ ΠQ

• ωQ = ω ◦ ΠQ,

• πQ(x) = #{q ∈ Q : q ≤ x}.

B.2.2 Auxilliary results
We would like to give the reader our perspective on the problem at hand. In order to
keep the notation simple, let Q = P for the moment. Then, for any positive integer n,

log f(f(n)) =
∑
q∈Q
q|f(n)

log g
(
qνq(f(n))

)
.

Vaguely speaking, in order to give estimates on M(x), one needs to exhibit some
control over the prime factors of integers N , which appear as values N = f(n) for
n ≤ x. This sort of control is provided by Lemma B.2.1.

Additionally, one might like to remove g from the above sum and perhaps also
take advantage of the fact that (weighted) sums of νq(f(N)) over q are more readily
controlled than values of νq(f(N)) for some individual q. Lemma B.2.2 makes this
happen and is the source of the main term in Theorem B.1.1 and Theorem B.1.2.

Finally, Lemma B.2.3 is a technical tool used to handle the case when N = f(n)
does not have sufficiently many prime factors q with small exponent νq(N).

Lemma B.2.1. For an N ∈ 〈Q〉, let mN be the least positive integer m such that
f(m) = N > 1. Then

1. mN = qν1
1 · · · qνrr for some νj where ν1 ≥ . . . ≥ νr,

2. if N ′ divides N , then mN ′ ≤ mN ,

3. if qj > q
1/sk
r+1 for some j ≤ r, then Ω(g(νj)) ≤ k, where sk = c∗q

k
1 .

84



Proof. Pick some p /∈ Q and let ν = νp(mN ). Then 1 < N = f(mN ) = f(pν)f(mN/p
ν),

so that mN = mN/p
ν . Hence, ν = 0 and p - mN . Now, writing mN = qν1

1 · · · qνrr , note
that one can permute the exponents without changing the value under f . Therefore,
by minimality of mN , we must have ν1 ≥ . . . ≥ νr. This proves (1).

Turning to (2), if we write mN = qν1
1 · · · qνrr , then N = ∏

j≤r g(νj), and since
N ′ | N there is a partition νk = νk,1 + . . . + νk,r such that N ′j = ∏

k≤s q
νk,j
k | g(νj).

By Assumption (A.3) on g, the value N ′j is attained by g. Hence, we may look at
m∗ = q

ν′1
1 · · · qν

′
r
r , where ν ′j = g†(N ′j). Clearly, f(m∗) = N ′, and, by monotonicity of g,

ν ′j ≤ νj, so that mN ′ ≤ m∗ ≤ mN .
To prove (3), let us assume for the sake of contradiction that qj > q

1/sk
r+1 , ΩQ(g(νj)) >

k. Then there is a decomposition ΠQ(g(νj)) = ab, where a ≥ q1, b ≥ qk1 . Now consider

m∗ = q
g†(b)
j q

g†(a)
r+1

∏
i 6=j

qνii .

Evidently, f(m∗) = f(mN) = N and

m∗

mN

= q
g†(b)−νj
j q

g†(a)
r+1 ≤ q

−c∗g†(a)b
j q

g†(a)
r+1 .

since (A.4) implies

g†(b)− νj ≤ g†(b)− g†(ab) = g†(b)
(

1− g†(ab)
g†(b)

)
≤ −c∗g†(a)b,

which, by assumption, is ≤ −c∗qk1 . But this shows that m∗ < mN , which contradicts
the definition of mN . Hence, ΩQ(g(νj)) ≤ k.

Lemma B.2.2. Let ν1, . . . , νt be positive integers. Then

∑
j≤t

log g(νj) ≤
C

2

(∑
j≤t

jνj

)1/2

, (B.2.1)

where C is given by (B.1.5).
If additionally νt ≥ ν, then

∑
j≤t

log g(νj)�
√

1
ν2ε + (log g(ν))2

ν

(∑
j≤t

jνj

)1/2

,

with ε from (A.5).

Proof. (Compare [29, Lemma 3.3].) First note that the right hand side of (B.2.1)
is minimal if the νjs are decreasing. Hence, we may subsequently assume that
ν1 ≥ ν2 ≥ . . . ≥ νt. Let yi = #{j : νj ≥ i} and observe that

∑
j≤t

jνj =
∑
j≤t

∑
i≤νj

j =
∑
i≥1

∑
j≤yi

j = 1
2
∑
i≥1

yi(yi + 1) ≥ 1
2
∑
i≥1

y2
i . (B.2.2)
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By partial summation,

∑
j≤t

log g(νj) =
∑
i≥1

(yi − yi+1) log g(i) =
∑
i≥1

yi log g(i)
g(i− 1) . (B.2.3)

The first claim now follows by applying the Cauchy–Schwarz inequality to the right
hand side, and taking (B.2.2) into account.

Moreover, if νt ≥ ν, then y1 = y2 = . . . = yν and

∑
i≤A

yi log g(i)
g(i− 1) = y1 log g(ν).

By splitting up the sum in (B.2.3) in sums over the ranges i ≤ ν and i > ν, and
applying the Cauchy–Schwarz inequality, we obtain

∑
j≤t

log g(νj) ≤
(∑
i≥1

y2
i

)1/2
(log g(ν))2

ν
+
∑
i>ν

(
log g(i)

g(i− 1)

)2
1/2

.

By (A.5) and log(1 + 1/i) < 1/i, the second sum is � ν−2ε. In view of (B.2.2), we
have established the second claim.

Lemma B.2.3. For every ε > 0, and s := ωQ(n) ≥ 2,

f(n)�
(

(cf + ε) log n
s log s

)s
.

Proof. See [29, Lemma 3.2] and, recalling that there g is x 7→ x+ 1, use (A.6) instead
of x+ 1 ≤ 2x.

B.3 Proof of Theorem B.1.1
Let n be a positive integer such that f(f(n)) > 1 and N = ΠQ(f(n)). As before,
f(f(n)) = f(N).

We now write N as a product of powers of elements in Q and split these into two
groups according to the size of their exponents. More precisely, we write N = N ′N ′′,
where

N ′ = ub1
1 · · ·ubww , N ′′ = va1

1 · · · vass
and u1 < . . . < uw, v1 < . . . < vs all belong to Q, are all distinct, and ai ≤ (log2 n)K
and bi > (log2 n)K , for K = max{6, 2/ε}, with ε is from (A.5).

Clearly, log f(N) = log f(N ′) + log f(N ′′), so that it suffices to deal with f(N ′)
and f(N ′′) separately, as we shall do in the subsequent subsections. The main term
in (B.1.4) comes from log f(N ′′), see (B.3.3), and the term log f(N ′) is seen to be
somewhat smaller, see (B.3.1).
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B.3.1 Bounding f(N ′)
Write mN ′ = qβ1

1 · · · q
βh
h . Due to Lemma B.2.1 (2) we have mN ′ ≤ mN ≤ n and, hence,

h� log n. Lemma B.2.1 (3) yields Ω(g(βi))� log2 h� log3 n for every i. Therefore,
there are � bj/ log3 n values of i such that uj | g(βi). Furthermore, assuming, as we
may, that n is sufficiently large, Lemma B.2.2 with ν = b(log2 n)Kc shows that, for
ε′ = K/2− 2,

log f(N ′) =
∑
j≤w

log g(bj)� (log2 n)−min{εK,2}
(∑
j≤w

jbj

)1/2

.

Moreover,

1
log3 n

∑
j≤w

jbj ≤
∑
j≤w

ujbj
log3 n

�
∑
i≤h

∑
p|g(βi)

p ≤
∑
i≤h

g(βi)

�
∑
i≤h

βi � logmN ′ ≤ log n.

Hence,

log f(N ′)�

√
(log n) log3 n

(log2 n)2 . (B.3.1)

B.3.2 Bounding f(N ′′)
To estimate f(N ′′) we may assume that

s >

√
log n

(log2 n)K/2 , (B.3.2)

for otherwise Lemma B.2.3 implies that

log f(N ′′)�
√

log n
(log2 n)K/2−1 .

We shall prove the following proposition that is crucial for estimating f(N ′); it is,
relating the upper bound appearing after exploiting Lemma B.2.2 with mN ′′ . However,
the argument is more involved than above.

Proposition B.3.1. Let K = max{6, 2/ε}, with ε is from (A.5). Suppose N ′′ =
va1

1 · · · vass where u1 < . . . < uw, v1 < . . . < vs all belong to Q, are all distinct, and
ai ≤ (log2 n)K, and s satisfies (B.3.2). Then,

logmN ′′ ≥
(

1 +O
(

log3 n

log2 n

))
c†τ

(log2 n)2

4
∑
j≤s

jaj.
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Let us suppose for the moment that Proposition B.3.1 is proved, we can conclude
by Lemma B.2.1 (2) that

log n ≥ logmN ′′ ≥
(

1 +O
(

log3 n

log2 n

))
c†τ

(log2 n)2

4
∑
j≤s

jaj.

Inequality (B.2.1) implies that

log f(N ′′) ≤
√

log n
log2 n

(
C
√
c†τ

+O
(

log3 n

log2 n

))
, (B.3.3)

which concludes the proof of Theorem B.1.1.

Proof of Proposition B.3.1. Denote by mN ′′ = qα1
1 · · · qαrr the minimal element of

f−1(N ′′), as in Lemma B.2.1. Our first goal is to establish that r cannot be too small.
By Lemma B.2.1, and letting s0 = 1 for the moment, the last sum in

Ω(N ′′) =
∑
j≤s

aj =
∑
i≤r

Ω(g(αi)) (B.3.4)

is seen to be

=
∑
k≥1

k
(
πQ
(
q

1/sk−1
r+1

)
− πQ

(
q

1/sk
r+1

))
= r + 1 +

∑
k≥1

πQ
(
q

1/sk
r+1

)
=: r + E.

To handle E, we split the term for k = 1 from the sum and estimate the rest trivially,
thereby obtaining E � π

(
q

1/s1
r+1

)
. Also, by (B.3.4), Ω(N ′′) ≥ r, so that

Ω(N ′′) = r +O
(
π
(
q

1/c∗q1
r+1

))
. (B.3.5)

Hence,
r ≤ Ω(N ′′) ≤ r + rθ, (B.3.6)

where θ ∈ (1/c∗q1, 1) is some constant (recall that by (A.4) this interval is non-empty).
In particular, r � s so that by (B.3.2), r must be large if n is sufficiently large.
The next goal is to determine g(αi) for all i in a suitable range. To this end, first
note that by Lemma B.2.1 (3) we find that g(αi) is prime for all i > rθ. Let
ε = (3K + 1)(log3 n)/ log2 n, and assume that n is sufficiently large as to ensure that
ε < 1− θ. By (B.3.2),

2rθ ≤ 2(Ω(N ′′))θ ≤ 2
(
s(log2 n)K

)θ
≤ s1−ε ≤

∑
s−s1−ε<j<s

aj, (B.3.7)

for n sufficiently large. Hence,∑
j≤s−s1−ε

aj ≤ Ω(N ′′)− 2rθ ≤ r − rθ. (B.3.8)

As explained above, g(αi) is prime for all i > rθ and from (B.3.8) we know that
this surely is the case for all i ≥ r − ∑

k≤j ak, where j ≤ s − s1−ε. Since, by
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Lemma B.2.1 (1) the values g(αi) are decreasing as i increases this yields that g(αi) = vj
for r −∑k≤j ak < i ≤ r −∑k<j ak. By (B.3.6) and (B.3.7),

r −
∑
k≤j

ak = r − Ω(N ′′) +
∑

k≤s−j
aj+k ≥ s− j − rθ ≥ 1

2s
1−ε. (B.3.9)

From (A.7) and (A.1) we deduce that

g†(qj) ≥ c†qj +O(qj/ log qj) ≥ c†τj log j (B.3.10)

for all sufficiently large j. Hence, by (B.3.10) and (B.3.9),

logmN ′′ ≥ c†τ
∑

s1−ε≤j≤s−s1−ε

j(log j)aj(log s+O(log3 n)).

By (B.3.2), we find that the right hand side above exceeds

∑
s1−ε≤j≤s−s1−ε

(1− ε)(log s)2jaj

(
1 +O

(
log3 n

log s

))

≥
∑

s1−ε≤j≤s−s1−ε

(1 +O(ε))(log2 n)2jaj.

By the choice of ε, we get sε � (log2 n)−K−1. Also, ∑j≤s jaj ≥ 1
2s

2. Now recalling
that aj ≤ (log2 n)K for every j, we infer that∑

s1−ε≤j≤s−s1−ε

jaj =
∑
j≤s

jaj +O
(
s2−ε(log2 n)K

)

=
(

1 +O
(

1
log2 n

))∑
j≤s

jaj,

thus completing the proof.

B.4 Proof of Theorem B.1.2
Recall that the main term in the upper bound in Theorem B.1.1 stems from an
application of Lemma B.2.2. Given some large x > 1, we wish to find an integer n
smaller than x, such that

log f(f(n)) =
∑
q∈Q
q|f(n)

log g(νq(f(n)))

is large, the idea is to realise equality in Lemma B.2.2. Therefore, recalling that the
inequality was obtained by applying the Cauchy–Schwarz inequality to (B.2.3), we
would like to have

#{q ∈ Q : νq(f(n)) ≥ i} ≈ const× log g(i)
g(i− 1) (i ≥ 1)
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with some constant, independent of i. Furthermore, to have suitable control over f(n)
it seems reasonable to choose n such that the factorisation of f(n) is known. With
this in mind, let ε = ce

log3 x
log2 x

for ce sufficiently large, where

t =
⌊(

8 log g(1)
C

− ε
)√

log x
log2 x

⌋
,

and consider
νj :=

⌊
1− 1

α
+ 1

(α + 1)j/t − 1

⌋
(1 ≤ j ≤ t).

Evidently,
νj = 1

log(α + 1)
t

j
+O(1) (B.4.1)

Letting
n =

∏
j≤t

∏
i≤νj

q
g†(qj)
ν1+...+νj−1+i,

we find that
f(n) =

∏
j≤t

g(g†(qj))νj =
∏
j≤t

q
νj
j .

Now it remains to give a good lower bound on log f(f(n)) and an upper bound on n.
To obtain the upper bound, let

yi = #{j : νj ≥ i} =
⌊

t

log(α + 1) log
(

1 + 1
i− 1 + α−1

)⌋
. (B.4.2)

Observe that ν1 + . . .+ νt � t log t. Using (A.1) we find that

log qν1+...+νt ≤ log t+ 2 log2 t+O(1).

Hence,

log n ≤
∑
j≤t

νjg
†(qj) log qν1+...+νj

≤ τ

α

(
(log t)2 + 3(log2 t) log t+O(log t)

)∑
j≤t

jνj.

Since yi = O(t/i) and by (B.4.1) and (B.1.5),

∑
j≤t

jνj = 1
2
∑
i≤ν1

yi(yi + 1)

= t2

2(log(α + 1))2

∞∑
i=1

(
log
(

1 + 1
i− 1 + α−1

))2
+O(t log t)

= t2C2

16(log(α + 1))2 +O(t log t).
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By the definition of t, log t = 1
2 log2 x− log3 x+O(1) and log2 t = log3 x+O(1). By

choosing ce sufficiently large, we get(
1 +O

(
log3 x

log2 x

))(
1− Cce

8 log(α + 1)
log3 x

log2 x

)2

≤ 1.

Thus, we infer

log n ≤ τ

α

(
1 +O

(
log3 x

log2 x

))(
1− εC

8 log(α + 1)

)2

log x

so that n ≤ xτ/α if x is sufficiently large. Next, we estimate log f(f(n)): Using partial
summation and (B.4.2),

log f(f(n)) =
∑
j≤t

log g(νj) =
∑
i≥1

(yi − yi+1) log g(i)

=
∑
i≥1

yi log g(i)
g(i− 1) .

Due to the construction of n the last sum simplifies to:

∑
i≤ν1

yi log g(i)
g(i− 1)

=
∑
i≤ν1

 t

log(α + 1)

(
log g(i)

g(i− 1)

)2

+O(1/i)


= C2

8 log(α + 1)t+O(log t)

=
√

log x
log2 x

(
C +O

(
log3 x

log2 x

))
.

Since M(xτ/α) ≥ log f(f(n)), we infer (B.1.6). This concludes the proof.

91



Bibliography

[1] W. W. Adams. Asymptotic diophantine approximations to e. Proc. Nat. Acad.
Sci. U.S.A., 55:28–31, 1966.

[2] W. W. Adams. Asymptotic diophantine approximations and Hurwitz numbers.
Amer. J. Math., 89:1083–1108, 1967.

[3] W. W. Adams. Simultaneous asymptotic diophantine approximations. Mathe-
matika, 14:173–180, 1967.

[4] W. W. Adams. Asymptotic diophantine approximations and equivalent numbers.
Proc. Amer. Math. Soc., 19:231–235, 1968.

[5] W. W. Adams. A lower bound in asymptotic diophantine approximations. Duke
Math. J., 35:21–35, 1968.

[6] W. W. Adams. Simultaneous asymptotic diophantine approximations to a basis
of a real cubic number field. J. Number Theory, 1:179–194, 1969.

[7] W. W. Adams. Simultaneous diophantine approximations and cubic irrationals.
Pacific J. Math., 30:1–14, 1969.

[8] W. W. Adams. Simultaneous Asymptotic Diophantine Approximations to a
Basis of a Real Number Field. Nagoya Math. J., 42:79–87, 1971.

[9] W. W. Adams and S. Lang. Some computations in diophantine approximations.
J. Reine Angew. Math., 220:163–173, 1965.

[10] F. Adiceam, V. Beresnevich, J. Levesley, S. Velani, and E. Zorin. Diophantine
approximation and applications in interference alignment. Adv. Math., 302:231–
279, 2016.

[11] C. Aistleitner, T. Lachmann, M. Munsch, N. Technau, and A. Zafeiropoulos.
The Duffin-Schaeffer conjecture with extra divergence. Preprint, available at
https://arxiv.org/abs/1803.05703, 2018.

[12] C. Aistleitner, T. Lachmann, and F. Pausinger. Pair correlations and
equidistribution. J. Num. Theory, 182:206–220, 2018.

92

https://arxiv.org/abs/1803.05703


[13] C. Aistleitner, T. Lachmann, and N. Technau. There is no Khintchine threshold
for metric pair correlations. Preprint, available at https://arxiv.org/abs/
1802.02659, 2018.

[14] C. Aistleitner, G. Larcher, and M. Lewko. Additive energy and the Hausdorff
dimension of the exceptional set in metric pair correlation problems. With an
appendix by Jean Bourgain. Israel J. Math., 222(1):463–485, 2017.

[15] G. E. Andrews and B. Berndt. Highly Composite Numbers. Chapter in:
Ramanujan’s lost notebook, Part III, pages 359–402, 2012.

[16] B. Babanazarov and Y. I. Podzharskii. On the maximal order of arithmetic
functions. Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, (1):18–23, 1987.

[17] F. Barroero and M. Widmer. Counting lattice points and o-minimal structures.
Int. Math. Res. Not., 2014(18):4932–4957, 2013.

[18] V. Beresnevich. Badly approximable points on manifolds. Invent. Math.,
202:1199–1240, 2015.

[19] V. Beresnevich, G. Harman, A. Haynes, and S. Velani. The Duffin-Schaeffer
conjecture with extra divergence II. Math. Z., 275(1-2):127–133, 2013.

[20] V. Beresnevich and S. Velani. A mass transference principle and the Duffin-
Schaeffer conjecture for Hausdorff measures. Ann. Math. (2), 164(3):971–992,
2006.

[21] V. Bernik and M. Dodson. Metric Diophantine approximation on manifolds.
Cambridge University Press, 1999.

[22] M. Berry and M. Tabor. Level clustering in the regular spectrum. Proc. R. Soc.
London A: Math., Phys. and Engin. Sci., 356(1686):375–394, 1977.

[23] T. F. Bloom, S. Chow, A. Gafni, and A. Walker. Additive energy and the
metric Poissonian property. Mathematika, to appear. Preprint available at
https://arxiv.org/abs/1709.02634.

[24] A. Bondarenko and K. Seip. GCD sums and complete sets of square-free numbers.
Bull. London Math. Soc., 47(1):29–41, 2015.

[25] A. Bondarenko and K. Seip. Large greatest common divisor sums and extreme
values of the Riemann zeta function. Duke Math. J., 166(9):1685–1701, 2017.

[26] J.-B. Bost. Theta invariants of euclidean lattices and infinite-dimensional
hermitian vector bundles over arithmetic curves. Preprint, available at https:
//arxiv.org/abs/1512.08946, 2017.

[27] J. Bourgain and N. Watt. Mean square of zeta function, circle problem and divisor
problem revisited. Preprint, available at https://arxiv.org/abs/1709.04340,
2017.

93

https://arxiv.org/abs/1802.02659
https://arxiv.org/abs/1802.02659
https://arxiv.org/abs/1709.02634
https://arxiv.org/abs/1512.08946
https://arxiv.org/abs/1512.08946
https://arxiv.org/abs/1709.04340


[28] Y. Bugeaud. Approximation by algebraic numbers. Cambridge University Press,
2004.

[29] Y. Buttkewitz, C. Elsholtz, K. Ford, and J.-C. Schlage-Puchta. A problem of
Ramanujan, Erdős, and Kátai on the iterated divisor function. Int. Math. Res.
Not., 2012(17):4051–4061, 2011.

[30] W. B. Cameron. A Casual Introduction to Sociological Thinking. Random House,
1963.

[31] J. Cassels. An Introduction to Diophantine Approximation. Cambridge University
Press, 1957.

[32] S. Chow. Bohr sets and multiplicative diophantine approximation. Duke Math. J.,
to appear. Preprint, available at https://arxiv.org/abs/1703.07016, 2018.

[33] K. L. Chung and P. Erdős. On the application of the Borel-Cantelli lemma.
Trans. Amer. Math. Soc., 72(1):179–186, 1952.

[34] M. Drmota and R. F. Tichy. Sequences, discrepancies and applications. Springer,
1997.

[35] A. A. Drozdova and G. A. Freiman. The estimation of certain arithmetic
functions. Elabuz. Gos. Ped. Inst. Ucen. Zap., 3:160–165, 1958. (In Russian).

[36] R. J. Duffin and A. C. Schaeffer. Khintchine’s problem in metric Diophantine
approximation. Duke Math. J., 8:243–255, 1941.

[37] P. Dusart. Estimates of some functions over primes without R.H. 2010. Preprint.
avaliable at http://arxiv.org/pdf/1002.0442v1.pdf.

[38] M. Einsiedler, A. Katok, and E. Lindenstrauss. Invariant measures and the set
of exceptions to Littlewood’s conjecture. Ann. Math. (2), 164(2):513–560, 2006.

[39] A. Einstein. letter from 11th of March 1952 to C. Seeling, available at
http://www.library.ethz.ch/de/Ressourcen/Digitale-Bibliothek/
Einstein-Online/Princeton-1933-1955.

[40] H. El Gamal, G. Caire, and M. O. Damen. Lattice coding and decoding achieve
the optimal diversity-multiplexing tradeoff of mimo channels. IEEE Transactions
on Information Theory, 50(6):968–985, 2004.

[41] C. Elsholtz, M. Technau, and N. Technau. The maximal order of iterated
multiplicative functions. Preprint, available at https://arxiv.org/abs/1709.
04799, 2017.

[42] C. Elsholtz, N. Technau, and R. Tichy. On the regularity of primes in arithmetic
progressions. Int. J. Number Theory, 13(05):1349–1361, 2017.

94

https://arxiv.org/abs/1703.07016
http://arxiv.org/pdf/1002.0442v1.pdf
http://www.library.ethz.ch/de/Ressourcen/Digitale-Bibliothek/Einstein-Online/Princeton-1933-1955
http://www.library.ethz.ch/de/Ressourcen/Digitale-Bibliothek/Einstein-Online/Princeton-1933-1955
https://arxiv.org/abs/1709.04799
https://arxiv.org/abs/1709.04799


[43] P. Erdős. Some results on diophantine approximation. Acta Arith., 5:359–369,
1959.

[44] P. Erdős and A. Ivić. On the iterates of the enumerating function of finite
abelian groups. Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur., 17:13–22,
1989.

[45] P. Erdős and I. Kátai. On the growth of dk(n). Fibonacci Quart., 7:267–274,
1969.

[46] P. Gallagher. Approximation by reduced fractions. J. Math. Soc. Japan, 13:342–
345, 1961.

[47] O. German. Diophantine exponents of lattices. Proc. Steklov Inst. Math.,
296(2):29–35, 2017.

[48] A. Gorodnik and A. Nevo. Counting lattice points. J. Reine Angew. Math.,
2012(663):127–176, 2012.

[49] A. Granville. Least prime in arithmetic progressions. Théorie des nombres/
Number Theory, pages 306–321, 1989. ed. J.-M. De Koninck and C. Lévesque.

[50] A. Granville, D. Koukoulopoulos, and K. Matomäki. When the sieve works.
Duke Math. J., 164(10):1935–1969, 2015.

[51] A. Granville and C. Pomerance. On the least prime in certain arithmetic
progressions. J. London Math. Soc., 2(2):193–200, 1990.

[52] T. Gronwall. Some asymptotic expressions in the theory of numbers. Trans.
Amer. Math. Soc., 14(1):113–122, 1913.

[53] L. Hajdu and N. Saradha. On a problem of Recaman and its generalization. J.
Number Theory, 131:18–24, 2011.

[54] L. Hajdu and N. Saradha. On generalizations of problems of Recaman and
Pomerance. J. Number Theory, 162:552–563, 2016.

[55] L. Hajdu, N. Saradha, and R. Tijdeman. On a conjecture of Pomerance. Acta
Arith., 155(2):175–184, 2012.

[56] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford University Press, 1979.

[57] G. Harman. Some cases of the Duffin and Schaeffer conjecture. Quart. J. Math.
Oxford Ser. (2), 41(164):395–404, 1990.

[58] G. Harman. Metric number theory. Oxford: Clarendon Press, 1998.

[59] A. K. Haynes, A. D. Pollington, and S. L. Velani. The Duffin-Schaeffer conjecture
with extra divergence. Math. Ann., 353(2):259–273, 2012.

95



[60] D. R. Heath-Brown. Almost-primes in arithmetic progressions and short intervals.
Proc. Cambridge Phil. Soc., 83(3):357–375, 1978.

[61] D. R. Heath-Brown. Pair correlation for fractional parts of αn2. Math. Proc.
Cambridge Phil. Soc., 148(3):385–407, 2010.

[62] E. Heppner. Die maximale Ordnung primzahl-unabhängiger multiplikativer
Funktionen. Arch. Math., 24:63–66, 1973.

[63] H. Heuser. Lehrbuch der Analysis. Teil 1. Vieweg+Teubner, 17th edition, 2009.
(In German).

[64] T. Hilberdink. Maximal order of a class of multiplicative functions. Ann. Univ.
Sci. Budapest. Sect. Comput., 43:217–237, 2014.

[65] A. Ivić. On the maximal order of certain arithmetic functions. Filomat, 9(3):483–
492, 1995.

[66] D. Kleinbock and G. A. Margulis. Logarithm laws for flows on homogeneous
spaces. Invent. Math., 138(3):451–494, 1999.

[67] S. Knapowski and P. Turán. Comparative prime-number theory. I: Introduction.
Acta Math. Hung., 13(3-4):299–314, 1962.

[68] J. Knopfmacher. A prime-divisor function. Proc. Amer. Math. Soc., 40:373–377,
1973.

[69] J. Knopfmacher. Arithmetical properties of finite rings and algebras, and analytic
number theory. VI. Maximum orders of magnitude. J. Reine Angew. Math.,
277:45–62, 1975.

[70] J. Knopfmacher. Abstract analytic number theory. 2nd ed. Dover Publications,
1990.

[71] E. Krätzel. Die maximale Ordnung der Anzahl der wesentlich verschiedenen
abelschen Gruppen n-ter Ordnung. Q. J. Math., Oxford II. Ser., 21:273–275,
1970.

[72] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Courier
Corporation, 2012.

[73] T. Lachmann and N. Technau. On Exceptional Sets in the Metric Poissonian
Pair Correlations problem. Preprint, available at https://arxiv.org/abs/
1708.08599, 2017.

[74] S. Lang. Asymptotic approximations to quadratic irrationalities. I. Amer. J.
Math., 87:488–496, 1965.

[75] S. Lang. Asymptotic Diophantine approximations. Proc. Nat. Acad. Sci. U.S.A.,
55:31–34, 1966.

96

https://arxiv.org/abs/1708.08599
https://arxiv.org/abs/1708.08599


[76] R. M. Langworth. Churchill by himself. Public Affairs, 2008.

[77] G. Larcher and S. Grepstad. On pair correlation and discrepancy. Arch. Math.,
109(2):143–149, 2017.

[78] G. Larcher and W. Stockinger. Pair correlation of sequences ({anα})n∈N with
maximal order of additive energy. Preprint, available at https://arxiv.org/
abs/1802.02901, 2018.

[79] G. Larcher and W. Stockinger. Some negative results related to Poissonian
pair correlation problems. Preprint, available at https://arxiv.org/abs/1803.
05236, 2018.

[80] H. Maier. On the third iterates of the ϕ- and σ-functions. Colloq. Math.,
49(1):123–130, 1984.

[81] H. Maier. Primes in short intervals. Mich. Math. J., 32:221–225, 1985.

[82] D. W. Masser and J. D. Vaaler. Counting algebraic numbers with large height
II. Trans. Amer. Math. Soc., 359:427–445, 2007.

[83] A. Mąkowski. On two conjectures of Schinzel. Elemente der Math., 31:140–141,
1976.

[84] J.-L. Nicolas. Grandes valeurs d’une certaine classe de fonctions arithmétiques.
Studia Sci. Math. Hungar., 15(1-3):71–77, 1980.

[85] J.-L. Nicolas. On highly composite numbers. Ramanujan revisited, Proc. Conf.,
Urbana-Champaign/Illinois., pages 215–244, 1988.

[86] F. Nietzsche. Menschliches, Allzumenschliches. Jazzybee Verlag, 2012.

[87] K. Norton. Upper bounds for sums of powers of divisor functions. J. Number
Theory, 40(1):60–85, 1992.

[88] A. D. Pollington and R. C. Vaughan. The k-dimensional Duffin and Schaeffer
conjecture. Mathematika, 37(2):190–200, 1990.

[89] C. Pomerance. A note on the least prime in an arithmetic progression. J.
Number Theory, 12:218–223, 1980.

[90] A. G. Postnikov. Introduction to analytic number theory, volume 68. American
Mathematical Society, 1988.

[91] S. Ramanujan. Highly composite numbers. Proc. London Math. Soc., 14:347–409,
1915. Republished (2000) in Collected papers of Srinivasa Ramanujan.

[92] S. Ramanujan. The Lost Notebook and Other Unpublished Papers. Narosa, 1988.

[93] S. Ramanujan. Highly composite numbers. Annotated and with a foreword by
Jean-Louis Nicolas and Guy Robin. Ramanujan J., 1(2):119–153, 1997.

97

https://arxiv.org/abs/1802.02901
https://arxiv.org/abs/1802.02901
https://arxiv.org/abs/1803.05236
https://arxiv.org/abs/1803.05236


[94] B. Recaman. Problem 672. J. Recreational Math., 10:283, 1978.

[95] J. B. Rosser, L. Schoenfeld, et al. Approximate formulas for some functions of
prime numbers. Illinois J. Math., 6(1):64–94, 1962.

[96] M. Rubinstein and P. Sarnak. Chebyshev’s bias. Experimental Math., 3(3):173–
197, 1994.

[97] Z. Rudnick. A metric theory of minimal gaps. Preprint, available at https:
//arxiv.org/abs/1710.01911, 2017.

[98] Z. Rudnick and P. Sarnak. The pair correlation function of fractional parts of
polynomials. Comm. Math. Phys., 194(1):61–70, 1998.

[99] Z. Rudnick, P. Sarnak, and A. Zaharescu. The distribution of spacings between
the fractional parts of n2α. Invent. Math., 145(1):37–57, 2001.

[100] Z. Rudnick and A. Zaharescu. The distribution of spacings between fractional
parts of lacunary sequences. Forum Math., 14(5):691–712, 2002.

[101] N. Saradha. Conjecture of pomerance for some even integers and odd primorials.
Publ. Math. Debrecen, 79(3):699–706, 2011.

[102] A. Schinzel. Ungelöste Probleme. Elemente der Math., 14:60–61, 1959.

[103] W. M. Schmidt. A metrical theorem in Diophantine approximation. Canad. J.
Math, 12:619–631, 1960.

[104] W. M. Schmidt. Simultaneous approximation to a basis of a real numberfield.
Amer. J. Math., 88:517–527, 1966.

[105] W. M. Schmidt. The distribution of sublattices of Zm. Monatshefte Math.,
125(1):37–81, 1998.

[106] P. Shiu. The maximum orders of multiplicative functions. Quart. J. Math.
Oxford Ser. (2), 31(122):247–252, 1980.

[107] M. M. Skriganov. The spectrum band structure of the three-dimensional
Schrödinger operator with periodic potential. Invent. Math., 80(1):107–121,
1985.

[108] M. M. Skriganov. Constructions of uniform distributions in terms of geometry
of numbers. Algebra Analiz., 6(3):200–230, 1994.

[109] M. M. Skriganov. Ergodic theory on SL(n), Diophantine approximations and
anomalies in the lattice point problem. Invent. Math., 132:1–72, 1998.

[110] A. Smati. Sur un problème de S. Ramanujan. C. R., Math., Acad. Sci. Paris,
340(1):1–4, 2005.

98

https://arxiv.org/abs/1710.01911
https://arxiv.org/abs/1710.01911


[111] A. Smati. Sur un problème d’Erdős et Kátai. Ann. Univ. Sci. Budap. Rolando
Eötvös, Sect. Comput., 29:213–238, 2008.

[112] P. G. Spain. Lipschitz: a new version of an old principle. Bull. London Math.
Soc., 27:565–566, 1995.

[113] S. Steinerberger. Localized quantitative criteria for equidistribution. Acta Arith.,
180(2):183–199, 2017.

[114] D. Suryanarayana and R. S. Rao. On the true maximum order of a class of
arithmetical functions. Math. J. Okayama Univ., 17(2):95–101, 1975.

[115] M. M. Sweet. A theorem in Diophantine approximations. J. Number Theory,
5:245–251, 1973.

[116] T. Tao and V. H. Vu. Additive Combinatorics. Cambridge University Press,
2006.

[117] N. Technau and M. Widmer. On a counting theorem of Skriganov. Preprint,
available at https://arxiv.org/abs/1611.02649, 2016.

[118] P. A. Terentius. Heautontimorumenos. available at https://la.wikisource.
org/wiki/Heautontimorumenos.

[119] J. R. R. Tolkien. The hobbit, or there and back again., 1997. first published
1937.

[120] T. Trudgian. Updating the error term in the prime number theorem. The
Ramanujan J., 39(2):225–234, 2016.

[121] J. L. Truelsen. Divisor problems and the pair correlation for the fractional parts
of n2α. Int. Math. Res. Not., 2010(16):3144–3183, 2010.

[122] P. Turán. Über die Primzahlen der arithmetischen Progression. Acta Sci.
Math.(Szeged), 8:226–235, 1936.

[123] J. D. Vaaler. On the metric theory of Diophantine approximation. Pacific J.
Math., 76(2):527–539, 1978.

[124] S. S. Wagstaff. Greatest of the least primes in arithmetic progressions having a
given modulus. Math. Comp., 33:1073–1080, 1979.

[125] A. Walker. The primes are not metric Poissonian. Mathematika, 64(1):230–236,
2018.

[126] H. Wegmann. Beiträge zur Zahlentheorie auf freien Halbgruppen. II. Zum
elementaren Beweis des Primzahlsatzes. J. Reine Angew. Math., 221:150–159,
1966.

99

https://arxiv.org/abs/1611.02649
https://la.wikisource.org/wiki/Heautontimorumenos
https://la.wikisource.org/wiki/Heautontimorumenos


[127] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77(3):313–
352, 1916.

[128] M. Widmer. Weakly admissible lattices, Diophantine approximation, and o-
minimality. Mathematika, to appear. Preprint available at https://arxiv.org/
abs/1612.09467.

[129] M. Widmer. Counting primitive points of bounded height. Trans. Amer. Math.
Soc., 362(9):4793–4829, 2010.

[130] S. Wigert. Sur l’ordre de grandeur du nombre des diviseurs d’un entier. Ark.
Mat., 3(18):1–9, 1907.

[131] S. Yang and A. Togbé. Proof of the P-integer conjecture of Pomerance. J.
Number Theory, 140:226–234, 2014.

100

https://arxiv.org/abs/1612.09467
https://arxiv.org/abs/1612.09467

	submitted to: submitted to
	Graz University of Technology: Graz University of Technology
	DOCTORAL THESIS: DOCTORAL THESIS
	First name and surname, university degree already held, e: 
	g: 
	 Dipl: 
	-Ing: Niclas Technau, M.Sc.



	Title and subtitle of the thesis: Counting Lattice Points, 
Diophantine Approximation, 
and Metric Poissonian Pair Correlations
	University degree, first name and surname of the supervisor: O.Univ.-Prof. Dr.phil. Dr.h.c. Robert Tichy
	Name of the institute: Institute of Analysis and Number Theory
	to achieve the university degree of: to achieve the university degree of
	Di: [        Doktor der Naturwissenschaften]
	Supervisor: Supervisor
	optional field: 
	Graz, month and year: Graz, April, 2018


