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Abstract

The prediction of the radiative heat transfer in furnaces remains a time-
consuming component towards the development of new furnace designs. The
goal of this thesis was to research the basis for a new simulation technique based
on the lattice Boltzmann method to model both time and cost efficiently the
radiative heat transfer in industrial furnaces. Existing approaches to solve the
radiative transport equation as well as the heat transport equation based on the
lattice Boltzmann method were analysed. A two-dimensional lattice Boltzmann
based model was developed and validated against established radiative heat
transfer models such as the spherical harmonics method (P1) or the discrete
ordinates method (DOM). Subsequently, the lattice Boltzmann model for the
heat transfer equation was coupled with the radiative transfer equation to
take into account radiation in participating media. The validated model was
further adapted to simulate the radiative heat transfer in a walking hearth
type reheating furnace in order to examine the heat fluxes transferred to the
furnace load consisting of 64 steel billets. The results showed good comparison
to existing radiation modelling methods. Furthermore, points for improvement
for future development of the method especially concerning the simulation
runtime and accuracy of results are shown.
The fundamentals of calculating radiative heat transfer in industrial furnaces
using the lattice Boltzmann method were evaluated, allowing the possibility of
future application in the development of industrial furnaces.
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Kurzfassung

Bei Hochtemperaturprozessen und insbesondere in Industrieöfen wird ein Groß-
teil der Wärmeleistung durch Wärmestrahlung übertragen. Eine möglichst
genaue Vorhersage der übertragenen Wärmeleistung ist daher unerlässlich für
einen effizienten Betrieb beziehungsweise die Entwicklung neuer Ofendesigns.
Im Rahmen dieser Masterarbeit wurde ein Simulationsmodell auf Basis der Lat-
tice Boltzmann Methode entwickelt, mit welchem es möglich ist den Strahlungs-
wärmetransport in einem vereinfachten zweidimensionalen Industrieofenmodell
zu berechnen. Im ersten Schritt wurde die Anwendbarkeit der Lattice Boltzmann
Methode für den erläuterten Anwendungsfall untersucht. Neben analytischen
Lösungen, wurden etablierte, in kommerziellen Softwarepaketen enthaltene
Strahlungsmodelle zur Validierung herangezogen. Als Referenzlösung diente
beispielsweise das

”
discrete ordinates model” (DOM) und das

”
spherical har-

monics model” (P1). Des Weiteren wurde das Modell mit der Energiegleichung
gekoppelt um den Strahlungswärmetransport in beteiligten, insbesondere in
absorbierenden, Medien zu berechnen. Mithilfe des validierten Modells konnte
der Strahlungswärmetransport in einem Hubbalkenofen ermittelt werden. Die
Ergebnisse zeigten gute Übereinstimmung mit jenen der mittels

”
computational

fluid dynamics” (CFD) berechneten Referenzlösungen.
Die Grundsätze des Strahlungswärmetransportes in Industrieöfen mittels der
Lattice Boltzmann Methode wurden erarbeitet sowie Möglichkeiten zur weiter-
gehenden Anwendung aufgezeigt.
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1. Introduction

The goal of this thesis was to identify the potential of the lattice Boltzmann
method (LBM) to predict the radiative heat transfer in industrial furnaces. The
importance for the accurate prediction of the radiative heat transfer is motivated
by the urge to reduce CO2 emissions, thus requiring efficient furnaces designs [1].
Furthermore, an accurate knowledge of the energy fluxes allows an economical
usage and consumption of expensive natural gas resources. According to Prieler
et al. [2] numerical models offer the possibility to analyse and optimise the
heating processes and workflow conditions. Introductory current methods in use
for furnace simulations are briefly described. Following the general introduction
of the fundamentals of the radiative heat transfer, radiative modelling methods
are summarized in Ch. 2. The third chapter (Ch. 3) gives an overview over the
exploited LBMs for both solving the radiative transport equation (RTE), as
well as the energy or heat transport equation. Subsequently, in Ch. 4 the results
of the LBM simulation are given and the validation process is outlined. After
successful validation of the elaborated model Ch. 5 is devoted to a walking
hearth furnace, which was simulated in three consecutive steps. Apart from the
gaseous phase also the heat transport inside the billets was calculated using
the LBM.
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1. Introduction

1.1. Fundamentals of radiative heat transfer

The following chapter is intended to give a brief overview of the necessary
background information on thermal radiation. It is based on Modest [3] as well
as Howell et al. [4].

Heat can be generally transported by [3]:

� conduction
� convection
� radiation

In contrast to conduction and convection, which both require the presence of
a medium for the energy transfer, thermal radiation is transferred by electro-
magnetic waves or photons, thereby does not require a medium for its transfer.
Another major difference between the above-mentioned is the heat transfer
range. Conduction and convection allow an energy balance on an ‘infinitesimal
volume’ (conservation of energy) leading to the formulation of a partial dif-
ferential equation. Thermal radiation is a long-range phenomenon.This leads
to an integral equation in up to seven independent variables (the frequency of
radiation, three space coordinates, two coordinates describing the direction of
travel of photons, and time) [3].
There are two possible approaches to describe thermal radiative energy (elec-
tromagnetic wave theory or quantum mechanics), however neither one is able
to describe all observed radiative phenomena. Figure 1.1 illustrates the de-
pendency of the above-mentioned different variables, for different forms of
radiation, with respect to characteristics such as frequency, wavenumber and
wavelength.
Regarding the intervening medium the radiation travels through one needs to
differentiate between participating and non-participating media. A medium
affecting the quantity of radiation is denoted ‘participating’ [4].
Radiation is a three-dimensional phenomenon, thus the most crucial parameters
will be briefly described (in accordance with Fig. 1.2). The energy flux emitted
from the point P into the environment, displayed as a unit hemisphere, may
vary in different directions. The surface area of the hemisphere is denoted as
‘total solid angle’ with a value of 2π. The solid angle Ω itself describes the
angle from which an area dAj gets irradiated by the source in point P .

2



1.1. Fundamentals of radiative heat transfer

Figure 1.1.: Electromagnetic wave spectrum (for radiation travelling through vacuum, n=1)
[3]

The mathematical context is given by Eq. 1.1,

dΩ =
dAjp
S2

=
cos ΘjdAj

S2
(1.1)

in which S denotes the distance between the irradiated surface dAj and the
point P . The projection of the irradiated surface dAj on the hemisphere is given
by the surface element dAjp, which is related via the polar angle (or zenith) Θj .
The polar angle Θj is determined by the angle between the surface normals
of the surface elements dAj and dAjp. The irradiated surface is spanned by
the polar angle and the azimuthal angle, the latter is measured between the
projection of the unit vector ŝ of the direction vector S and an arbitrary axis
on the base surface dA. Consequently the solid angle can be expressed as a
function of the polar angle and the azimuthal angle, describing an infinitesimal
surface element on the unit hemisphere as given by Eq. 1.2.

dΩ = sin ΘdΘdΨ (1.2)

3



1. Introduction

In summary the three descriptive angle definitions are listed below:

� solid angle Ω: The solid angle is similar to a planar angle by definition,
but is given in three dimensional space. [...] The solid angle is the ratio
of base area to the square of the chord length. [4]

� azimuthal angle Ψ: measured between an arbitrary axis (usually measured
from the x-axis) on the surface and the projection of ŝ onto the surface

� polar angle or zenith Θ: measured from the surface normal to n̂ [3]

Figure 1.2.: Emission direction and solid angles as related to a unit hemisphere [3]

One of the most important parameters for the radiative heat transfer is the
radiative intensity, in its spectral Eq. 1.3 or total (integral over all wavelengths)
Eq. 1.4 form: [3]

Iλ =
radiative energy flow

time · area normal to ray · solid angle · wavelength
(1.3)

I =
radiative energy flow

time · area normal to ray · solid angle
(1.4)

Specifically, the spectral intensity refers to radiation in an interval dλ around a
single wavelength, while the total intensity refers to combined radiation including
all wavelengths. [4]

4



1.2. Radiation characteristics

1.2. Radiation characteristics

In order to describe the energy loss in radiation the terms scattering, described
by the scattering coefficient σS, and absorption, described by the absorption
coefficient κa, are introduced. Scattering of radiation can occur due to following
mechanisms as illustrated in Fig. 1.3:

� diffraction: altering of the photon path without collision
� reflection: change in direction the photon travels
� refraction: penetration of the photon into the particle

Absorption describes the penetration of an electromagnetic wave into a particle.
The extinction coefficient β expresses the decrease in radiation due to absorption

I

δ

diffraction

I

reflection

I

refraction

I

absorption

Figure 1.3.: Interaction of electromagnetic wave with a particle [3]

and scattering losses. It is a physical property and therefore dependent on the
wavelength λ as well as other local properties.

β = κa + σS

The scattering phase function describes the probability of a ray from one
direction being scattered into another by an angle θ. The relative importance
of scattering is given by the single scattering albedo as following, whereas ω = 0
relates to zero scattering and ω = 1 pure scattering (no absorption).

ω =
σS

κa + σS
=
σS
β

Two major difficulties make the study of radiation transfer in absorbing, emit-
ting, and scattering media quite challenging. The first difficulty is the spatial
variation in radiative properties throughout the medium; absorption, emission,
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1. Introduction

and scattering can occur at all locations within the medium at different strengths
depending on the concentration of gases and local temperature variations. A
complete solution for energy exchange requires knowing the radiation intensity,
temperature, and physical properties throughout the medium. The mathematics
describing the radiative field is inherently complex. A second difficulty is that
spectral effects are often much more pronounced in gases, translucent solids,
and translucent liquids than for solid surfaces, and a detailed spectrally de-
pendent analysis may be required. Most of the simplifications introduced for
solving radiation problems in gases and other translucent materials are aimed
at decreasing one or both of these complexities. [4]

1.3. The radiative transport equation

The RTE in general form can be written as [3]:

dI

ds
= κIb − κI − σSI +

σS
4π

∫
4π

I(ŝj)Φ(ŝj, ŝ)dΩj (1.5)

The term on the left-hand-side describes in general the change of radiative
intensity I in space s. Whereas the right-hand-side describes the cause for those
changes, induced due to emission, scattering and absorption of radiation. The
term Ib denotes the blackbody intensity which links, according to Planck’s law,
the temperature influence on the emission spectrum and energy of a body [4].
The last term describes the increase of radiative intensity from other directions,
indicated by the index j [3]. In this context the scattering phase function Φ
is given, which describes the probability of a ray being scattered from one
direction in another.

6



2. Solution methods for the
radiative transfer equation

This section gives a brief overview of existing and well established solution
methods for the radiative transfer equation. It has been deliberately summa-
rized, as the main focus of this thesis rests upon the implementation of the
LBM presented in the upcoming Ch. 3. There are various different methods to
solve the RTE, most of which are given in Fig. 2.1.
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2. Solution methods for the radiative transfer equation

Solution
Methods for
the Radiative

Transfer
Equation

Analytical Integral Differential

Deterministic

Angular
discretization

Discrete
ordinates SN

YIX

Discrete trans-
fer, discrete
volume

Multiflux

Direct transfer
among volume
elements

Zone

Finite volume

Finite element

Finite differ-
ences

Stochastic

Monte Carlo

Markow Chains

Approximate

Exponential
kernel

Mean beam
length

Cold medium

Emission

Series
truncation

Milne -
Eddington

PN and SPN

Diffusion

Flux

Schuster -
Schwarzschild

Two-flux

Approximate

Taylor series
expansion

Weakly absorb-
ing medium

Cold medium

Figure 2.1.: Solution methods for the radiative transfer equation [4]
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2.1. Method of spherical harmonics

Of those solution methods presented in Fig. 2.1 only a few are suited for the
simulation of the radiative heat transfer in furnaces. This restriction is due to
the various assumptions that have to be made in order to use these methods.
Figure 2.2 gives an abstracted overview of the established methods in solving
the RTE in furnace simulations in which the LBM has been marked as a possible
future solution method.

Radiative transfer
solution methods

in furnace applications

spherical harmonics (PN / P1)

discrete ordinates (DOM /SN )

zone method

lattice Boltzmann method

Figure 2.2.: Overview of different radiative solution methods used in furnace simulation

2.1. Method of spherical harmonics

Basis for the PN approximation forms the radiative intensity field I (r, ŝ), which
represents the location of the radiative intensity I at the position r as a function
of a scalar expressed through a generalized Fourier series.

I (r, ŝ) =
∞∑
l=0

l∑
m=−l

Iml (r) Υm
l (̂s) (2.1)

The sub- and superscripts l and m denote the positional dependency of the
coefficient, the spherical harmonics are given by the term Υm

l (̂s), which can be
expanded to,

Υm
l (Θ,Ψ) =

{
cos (mΨ)Pm

l (cos Θ) , for m ≥ 0

sin (|m|Ψ)Pm
l (cos Θ) , for m < 0

(2.2)
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2. Solution methods for the radiative transfer equation

in which the associated Legrende polynomials Pm
l were introduced.

Pm
l (µ) = (−1)m

(1− µ2)
|m|
2

2ll!

dl+|m|

dµl+|m|
(
µ2 − 1

)l
(2.3)

Substitution of the radiative intensity given by Eq. 2.1 in the RTE yields,

ŝ · ∇τI + I = (1− ω) Ib +
ω

4π

∫
4π

I (̂s) Φ (̂s · ŝ′) dΩ′ (2.4)

This leads to an infinite number of partial differential equation (PDE) which is
simplified by the truncation of the series in Eq. 2.1. The highest level of the
coefficient l is eponymous for the method. The most common form of the PN

method is the lowest order approximation, namely the P1 approximation.
An excerpt of examples of the usage of the P1 method is subsequently given.
For instance Kuang et al. [5] applied the P1 method in solving the radiative
heat transfer in a coal fired furnace in regards to lowering NOx emissions. Zhang
et al. [6] applied the P1 method to study the heat transfer in a regenerative
slab reheating furnace.

2.2. Discrete ordinates method

Similar to the previously presented PN method, the discrete ordinates method
(DOM) or SN approximation transforms the RTE into a set of PDEs [3]. The
RTE is solved for n different directions as follows,

ŝi · ∇I (r, ŝi) = κ (r) Ib (r)− β (r) I (r, ŝi)

+
σs (r)

4π

n∑
j=1

wjI (r, ŝj) Φ (r, ŝj, ŝi)︸ ︷︷ ︸
∗

(2.5)

The directional integrals (marked by an asterisk) over the hemisphere have
been replaced by numerical quadrature in Eq. 2.5. Using the DOM requires
discretisation of the entire solid angle (4π) along a finite number of directions.
Weight factors (wj) correspond to the solid angle increments. The discretisation
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2.3. Zone method

sΘ

Φ

y

z

x

Figure 2.3.: Angular coordinate system [9]

is done using angular quadrature, thus conservation of energy cannot be ensured
[7] [8]. Angular discretisation has a major influence on the gained results, as
the angular space of 4π is discretized into NΘ ×NΦ solid angles. The angles Θ
and Φ are the polar and azimuthal angles respectively, and are measured with
respect to the global Cartesian system (x, y, z) [...]. The Θ and Φ extents of the
control angle, ∆Θ and ∆Φ, are constant. In two-dimensional calculations, only
four octants are solved due to symmetry, making a total of 4NΘNΦ directions in
all. In three-dimensional calculations, a total of 8NΘNΦ directions are solved.
[9] Increasing discretisation leads to an increase of accuracy, however, at a high
computational cost.
A vast majority of publications upon the issue of radiative heat transfer
modelling in industrial furnaces is currently based on the DOM. Morgado
et al. [10] analysed a walking beam furnace using the DOM. Prieler et al. [2]
investigated the heating characteristics of steel billets using the DOM in a
walking hearth furnace. Furthermore Landfahrer et al. [11], [12], Han et al. [13]
as well as Tang et al. [14] investigated reheating furnaces using the DOM.

2.3. Zone method

In this method the enclosure is subdivided into a finite number of isothermal
volume and surface area zones. An energy balance is then performed for the
radiative exchange between any two zones, employing pre-calculated ‘exchange
areas.’ This process leads to a set of simultaneous equations for the unknown
temperatures or heat fluxes. [3]
The zoning procedure is illustrated in Fig. 2.4 for an arbitrary enclosure, at
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2. Solution methods for the radiative transfer equation

which the enclosure was subdivided into n isothermal zones of temperature Tn
and emissivity εn. At the heart of the zone method lie the generic exchange

Figure 2.4.: Zonal method: arbitrary surface enclosure (left), subdivided by isothermal
surfaces (right)

factors, which can be distinguished in three subcategories, namely the energy
exchange between:

� two volume elements,
� a volume element and a surface element, and
� two surface elements.

The exchange factor forms the correlation between the emitted radiation of a
surface or volume element and the amount of absorbed or scattered radiation
on the second surface or volume element [15]. Due to the complex derivation
of the zone method, which is also known as zonal method in literature, the
derivation of selfsame is at this point forgone, thus referring to [3], [4], [15] for
further information.
First advances using the zone method could be achieved by Li [16]. Wu et
al. [17] used the zone method to simulate the heat transfer in a roller-hearth
furnace. Recent work has been done by Ebrahimi et al. [18] who compared the
solution of radiative heat transfer in a furnace with the P1-approximation, in
particular the effect of the flame position on the furnace performance.
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3. Radiative heat transfer - lattice
Boltzmann method

The LBM has been developed in the last couple of decades as a versatile tool for
conventional computational fluid dynamics (CFD) applications, however, the
usage for thermal or radiative heat transfer simulation is still at an early stage
of development. As the computing of radiative information is the most time
consuming component [19], due to the physically fast progression of radiation,
there is a need for minimizing the computing time. Existing methods such
as previously described in chapter 2 already have the potential to solve the
radiative transfer equation, however it is expected that by applying the LBM
the computational costs can be drastically improved [19].
The expected advantage of using the LBM over existing methods such as
the DOM or P1 model, is justified by the fundamental simple parallelisation
principle of the method, and thus anticipating a reduced computational effort.
Subsequently, a brief overview regarding existing publications on the subject is
given.

3.1. Introduction to the lattice Boltzmann
method

The Boltzmann transport equation origins from the Austrian physicist Ludwig
Eduard Boltzmann (1844-1906) and his research on kinetic theory (a mesoscopic
theory). The description of the theory is motivated by the different levels of
approach often encountered in context with fluids. In general three possible
descriptive levels are applicable, namely the microscopic, mesoscopic and
macroscopic descriptions, which are illustrated in Fig. 3.1. Using a microscopic
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3. Radiative heat transfer - lattice Boltzmann method

approach molecular descriptions (e.g molecular dynamics (MD)) are of interest,
whereas the macroscopic approach is set up on a continuum level with respective
quantities (e.g. CFD), such as density or velocity. The mesoscopic approach
constitutes an intermediate level in between the microscopic and macroscopic
scale. The quantity of interest are distributions or representative collections
of molecules. A well known example for the macroscopic level would be the
Navier-Stokes equations (NSE) used in fluid dynamics. On the microscopic
level the Newton’s dynamics are accordingly used [20].

Figure 3.1.: The hierarchy of length and time scales in typical fluid dynamics problems.
Depending on the level of details required, different simulation techniques are
suitable [20]

The LBM itself provides a similar approach independently from the problem
under consideration. One considers a basic quantity (e.g. velocity) which
is represented by a particle distribution function (PDF) f (x, c, t). The PDF
considers a statistical description of the system of molecules in space x, travelling
with the velocity c in time t. If an external force F acts on the molecules a
change in the PDFs position and velocity is expected. The number of molecules
prior to the collision is the same as after, if no collisions between the molecules
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3.1. Introduction to the lattice Boltzmann method

occur, as stated in Eq. 3.1.

f (x+ cdt, c+ Fft, t+ dt) dxdc︸ ︷︷ ︸
post−collision

− f (x, c, t) drdx︸ ︷︷ ︸
pre−collision

= 0 (3.1)

Though if collisions occur between the molecules, the collision term Γ is
introduced, which describes the rate of change between the initial and final
state of the PDFs.

f (x+ cdt, c+ Fdt, t+ dt) dxdc− f (x, c, t) drdx = Γ(f)dxdcdt (3.2)

Dividing Eq. 3.2 by dxdcdt and writing the limit (dt→ 0) for the PDF leads
to,

df

dt
= Γ(f) (3.3)

The change of the PDF can be expanded as follows,

df =
∂f

∂r
dr +

∂f

∂c
dc+

∂f

∂t
dt (3.4)

Division of Eq. 3.4 by dt yields,

df

dt
=
∂f

∂x

dx

dt︸︷︷︸
c

+
∂f

∂c

dc

dt︸︷︷︸
a= F

m

+
∂f

∂t
= Γ(f) (3.5)

The Boltzmann equation is written according to [21] as following,

∂f

∂t
+ c

∂f

∂x
+
F

m

∂f

∂c
= Γ (f) (3.6)

in which the first term on the left-hand-side denotes the temporal change of the
quantity f under consideration, whilst the second term represents the spatial
change of the quantity associated with the velocity c. The third term on the
left-hand-side represents the specific body forces F/m. Thus Eq. 3.6 can be
seen as an advection equation. The term on the right-hand-side Γ is a source
term representing the redistribution of the PDF caused by collisions, hence,
declared as the collision operator. Discretisation of the Boltzmann equation in
velocity space, physical space, and time, renders the lattice Boltzmann equation
as follows,

fi (x+ ci∆t, t+ ∆t) = fi (x, t) + Ωi (x, t) (3.7)
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3. Radiative heat transfer - lattice Boltzmann method

in which the index i denotes the different lattice directions. The transport of
the PDF along the lattice directions is organised through the so-called lattice
arrangements, in which each discrete PDF gets assigned to a specific direction
vector as illustrated in Fig. 3.2. Details on the lattice arrangements are given
in Sec. 3.7. The differences in modelling physical quantities with the above

Figure 3.2.: Exemplary lattice arrangement used for the transport of particle distribution
functions

described equation lie in the formulation of the collision term Ωi, as well as the
appending of necessary source terms if needed. The working principle of the
LBM is characterised by a collision and streaming step of the quantity under
consideration (see Fig. 3.3).

c3

c7c4c8

c1

c5 c2 c6

collision

c1

c5c2c6

c3

c7 c4 c8

streaming

Figure 3.3.: Schematics of the pre- and post-collision PDFs

By observing a representative distribution of the quantity of interest in the
lattices nodes, and applying the above described steps for information exchange
a versatile algorithm can be developed. Pertaining to the information exchange
steps, the streaming step describes the broadcast in a specific direction, whilst
the collision step is a mechanism that prevents a particle from infinite following
a ray path. [22]
The collision operator Γ respectively Ωi can be modelled in various ways, thus,
only the most commonly used Bhatnagar-Gross-Krook (BGK) collision operator
is introduced. The main difficulty in handling the full Boltzmann equation arises
from the complicated nature of the collision terms [23]. Each collision term
handles two parts, the first representing the removed and absorbed particle,
the second representing collision caused emission of particles. The emission
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3.1. Introduction to the lattice Boltzmann method

term is replaced in the BGK model by a term representing a Maxwellian
distribution of the emitted particles [23], thus allowing conservation of the
required quantities.

Ωi =
(f eqi − fi)

τi
(3.8)

As evident in Eq. 3.8 the model is a single-relaxation-time (SRT) model and thus
the relaxation constant τi can be related to the problem under consideration,
using the Chapman-Enskog (C-E) analysis. The C-E analysis is in general
terms used to determine a connection between the lattice Boltzmann equation
(LBE) and the macroscopic equation. The Chapman–Enskog expansion is
a vehicle to derive macroscopic equations from stream and collide equations.
This is a crucial step of the LBM development, since it is not guarantied or
even clear whether the computations in mesoscale generate suitable solutions of
macroscopic target equations or not [sic!]. [24]
Due to the complex nature of the C-E the reader is referred to the appendix A
for the RTE and appendix B for the energy equation for details.

3.1.1. Literature overview of modelling the radiative
transfer equation using the lattice Boltzmann method

The quantity of interest for solving the RTE is the radiation intensity, more
precisely the intensity or PDF of selfsame in lattice nodes. Currently two
different approaches towards the modelling of radiative transport with the
LBM exist, namely the phenomenological approach and the direct discretisation
approach. The former proposes kinetic equations heuristically and has been
previously used in lighting simulations by Geist et al. [25]. The information is
transported in time and space using a Markovian update, at which, following a
‘Markov chain’, the probability of a PDF being deflected in any direction is
uninfluenced by prior events [4]. The latter derives kinetic equations by analogy
to classical discretisation of the Boltzmann equation, as previously described
in section 3.1, and is amongst others widely used in thermal heat radiation
transfer.
First advances in radiation heat transfer modelling using the LBM were made
by Mishra et al. [26]–[31]. Major advances followed upon the publication of
Ma et al. [32] who successfully derived a macroscopic conservation of radiation
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3. Radiative heat transfer - lattice Boltzmann method

energy and momentum on basis of radiation hydrodynamics (Note: radiation
hydrodynamics describe the effects of radiation on the dynamics of fluids.
[33]). Up until this moment the computed results for the RTE were tied to
the meso-scale. The derivation of macroscopic equations is rather difficult to
achieve and to review using analytical solutions for proper error analysis [24].
The majority of existing publications at the moment is restricted to one- or two-
dimensional examples involving various assumptions concerning scattering and
angular discretisation [29], [34]–[36]. The first publication on three-dimensional
radiative LBM application was written by Mink et al. [24], regarding the light
simulation in participating media using a derivation strongly linked to the P1
method. Another practical approach was presented by McCulloch and Bindra
[22], [37] who successfully showed the application of a RTE based LBM in
multi-physics problems.
The sections 3.2 and 3.3 are intended to highlight two methods considering
radiative transfer in participating media. The method by McCulloch and
Bindra [37], hereinafter denoted as ‘Method 1’, was selected as it provides an
up-to-date profound basis for further coupling in multi-physics problems. The
method by Asinari et al. [19], subsequently denoted as ‘Method 2’, was chosen
as a reference solution. Both methods were developed in view of the rather
inconvenient, in terms of computational expenses, existing modelling methods
for high temperature processes.

3.2. Method 1

The first method described is based upon a derivation of the LBE developed by
[32], without explicitly providing of a conservation of the macroscopic quantities.
However [37] provided a simple and economical approach to couple the RTE
with the energy equation to observe the temperature influence on the radiation
intensity. The radiative transfer equation for non-equilibrium monoenergetic
radiative transfer can be written as [37]:

∂I (r,Ω, t)

∂t
+ Ω∇I (r,Ω, t) = κa

[
1

4π
σT (r, t)4 − I (r,Ω, t)

]
+ σS

[
1

4π

∫
4π

I (r,Ω, t) dΩ− I (r,Ω, t)

]
+ S (r,Ω, t) (3.9)
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3.2. Method 1

The terms on the left-hand-side describe the changes in the radiative field due
to temporal and spatial effects. Whereas the terms on the right-hand-side asso-
ciated with κa represent the radiative source and sink due to absorption, and
those associated with σS represent the same due to scattering. The remaining
term S describes all additional sources.
According to [22] the inter-particle collision rate is negligible, therefore the
collision operator for radiative transport is linear and may be described by ab-
sorption and scattering integrals. The above described Eq. 3.9 was subsequently
derived to a LBM formulation.

3.2.0.1. From the Boltzmann equation of photon transfer to the
radiative transfer lattice Boltzmann equation

The foundation amongst many publications concerning the modelling of ra-
diative transfer using the LBM is an article written by Ma et al. [32], details
are given in appendix A. Through derivation of the macroscopic conservation
equations of radiation energy and radiation momentum from the radiation
hydrodynamics and eulerian equations Ma et al. developed a LBM for radiative
transfer (Eq. 3.10) in a uniform refractive index medium without scattering.
Selfsame is a two step model based on the macroscopic conservation equations
and a C-E expansion method.

Iν,Ω (r + cΩ∆t, t+ ∆t)− Iν,Ω (r, t) = −1

τ

[
Iν,Ω (r, t)− Ieqν,Ω (r, t)

]
+ Sν,Ω (r, t) ∆t+ wΩIν,Ω (r, t) ∆t (3.10)

3.2.1. One-dimensional cartesian radiative transfer lattice
Boltzmann equation

The following sections describe the method developed by McCulloch and Bindra
[37][22].
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3. Radiative heat transfer - lattice Boltzmann method

Assuming a steady state situation the one-dimensional form Eq. 3.9 can be
formulated as following:

µ
dI (x, µ)

dx
= κa

[
1

2
σT (x)4 − I(x, µ)

]
+

σS

[∫ 1

−1

I(x, µ)dµ− I(x, µ)

]
+ S (x, µ) (3.11)

The factor µ describes the directional cosine of the azimuthal direction. Note
that the factor 1

2
(in two-dimensional applications 1

4π
) is an arbitrary constant

[3]. Introducing non-dimensional variables is the first step in order to receive
the desired LBE.

rx =
βx

τW
τW = βW T̃ =

T

Tref
χ =

I

σT 4
ref

S∗ =
S

σT 4
ref

(3.12)

rx represents the non-dimensional optical thickness in direction x (Note: the
definition of selfsame can vary on the chosen scaling W ), Ψ is the dimensionless
radiative heat flux.
The scattering albedo is defined as ω = σS

κa+σS
. By definition κa = β − σS, with

β being the extinction coefficient. [3]
Hence the RTE can be written as:

µ
dχ

drx
= τW

[
(1− ω)

T̃ 4

2
− χ+

ω

2

∫ 1

−1

χdµ+
1

β
S∗

]
(3.13)

The equivalent LBE in the discrete direction i, neglecting volumetric energy
sources, and thus, implying radiative equilibrium is:

fi (rx + ci,rx∆t, t+ ∆t) = fi (rx, t) +

∆tβW

(
wi (1− ω) T̃ 4 − fi (rx, t) + ωwi

∑
j

fj (rx, t)

)
(3.14)

The non-dimensional radiative intensity χ has been replaced by the PDF fi
representing the radiative intensity in the discrete direction i. The lattice
arrangements weights are represented by wi as described in the section 3.7.
The scattering integral has to be approximated by numerical quadrature.
As the developed LBE formally lacks of an equilibrium term, it is difficult to
apply a C-E analysis to ensure macroscopic conservation of the quantities of
interest.
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3.3. Method 2

3.2.2. Two-dimensional cartesian radiative transfer lattice
Boltzmann equation

The two-dimensional LBE of the RTE is rather similar to Eq. 3.14 in which ~r
represents the non-dimensional optical thickness in the x- and y-direction.

fi (~r + ~ci∆t, t+ ∆t) = fi (~r, t) +

∆tβW

(
wi (1− ω) T̃ 4 − fi (~r, t) + ωwi

∑
j

fj (~r, t)

)
(3.15)

The computational collision and streaming step can now be derived from
Eq. 3.15 as following:

f ∗i (~r, t) = fi (~r, t)

+ ∆tβW

(
wi (1− ω) T̃ 4 − fi (~r, t) + ωwi

∑
j

fj (~r, t)

)
(3.16)

fi (~r + ~ci∆t, t+ ∆t) = f ∗i (~r, t) (3.17)

3.3. Method 2

This section describes the method developed by Asinari et al. [19]. The second
method uses a different approach to resolve the RTE in their LBE formulation
and thus conserves the macroscopic quantities of interest by nature. Based on
this work Mishra et al. [31] recently published a one-way coupling approach to
solve the conduction-radiation heat transfer using the LBM.

The derivation for the LBE starts once again from the RTE as given by
[3], where β = κa + σS.

dI

ds
= ŝ · ∇I = −βI + κaIb +

σS
4π

∫
4π

Ip (Ω,Ω′) dΩ′ (3.18)

Under the assumption of isotropic scattering (p (Ω,Ω′) = 1) and the application
of a radiative equilibrium condition Eq. 3.18 can be written as given in Eq. 3.19.
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3. Radiative heat transfer - lattice Boltzmann method

The radiative equilibrium condition implies that incoming and outgoing energy
are in balance [38], whereas radiation is the primary mechanism of energy
transfer [4], which implies that the volumetric emission 4πIb equals the volu-
metric absorption G. In doing so the radiative heat flux and its divergence are

zeroised, thus the following relation ∇ · ~qR = κa(4πIb −G)
!

= 0 allows further
calculation [34].

dI

ds
= ŝ · ∇I = β

(
G

4π
− I
)

(3.19)

and respectively for the discrete directions i:

dIi
ds

= ŝ · ∇Ii = β

(
G

4π
− Ii

)
(3.20)

The transient form of the RTE can be written in analogy to [3]:

1

c

∂Ii
∂t

+ ŝ · ∇Ii = β

(
G

4π
− Ii

)
(3.21)

As radiation is a three-dimensional phenomenon, but the solution sought for is
in the two-dimensional space, isotropy has to be assumed. Further since we
are constrained to be in the solution plane and have to cover all directions now
confined to the solution plane, at any point, for the radiation contained in the
4π spherical space, we assume isotropy in the polar direction Θ (0 ≤ Θ ≤ π)
[...] and thus we consider angular dependence of intensity only in the azimuthal
direction Ψ (0 ≤ Ψ ≤ 2π). [19]. Figure 3.4 gives the geometrical context for the
statement above. Weights have to be applied in each discrete direction i for the
streaming PDF, in order to enforce the isotropy conditions. The corresponding
weights are computed using Eq. 3.51 as described in section 3.7.
Assuming that the generic component of the lattice equals the fictitious speed
of light (~ci = c) the RTE can be written as:

∂Ii
∂s

+ ~ci · ∇Ii =
DiIi
Dt

= ciβ

(
G

4π
− Ii

)
(3.22)

Integrating the above equation leads to the following equation,

Ii (~r + ~ci∆t, t+ ∆t) = Ii (~r, t) + ∆tciβ

(
G

4π
− Ii

)
(3.23)
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x
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z
Θ

Ψ

Figure 3.4.: Coordinate system used based on [19]

Next the relaxation time τi is introduced. As the PDF between the lattice
nodes is transferred through collision and streaming steps, the relaxation time
describes the duration until the equilibrium state after the collisions step is
reached. It can be seen as a scale in terms of strength of the diffusion process.

τi =
1

ciβ
(3.24)

The key difference here is that τi is a straightforward function of the transport
coefficient β, which is already defined in the original physical problem given by
Eq. 3.19, and hence there is no need to introduce any asymptotic expansion
technique (e.g. Chapman-Enskog). Moreover, even though different τi are used
for different azimuthal directions, this formulation is still substantially based
on a single-relaxation-time approach, because the differences among τi are due
to differences among the magnitudes of the lattice velocities ci, which are purely
geometrical parameters prescribed by the considered lattice. Summarizing, the
relaxation times τi depend on combinations of the physical parameter β and
lattice-dependent geometrical parameters ci , according to Eq. 3.24. [19]
fi represents the particle distribution function and it is the carrier for radiative
energy, whereas G

4π
= Ieq is the equilibrium particle distribution function. Thus

Eq. 3.23 can be written as:

fi (~r + ~ci∆t, t+ ∆t) = fi (~r, t) +
∆t

τi
[f eqi (~r, t)− fi (~r, t)] (3.25)

In order to compute the equilibrium particle distribution function the before
mentioned weights are needed, whereat in Eq. 3.26 i represents the lattice link
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3. Radiative heat transfer - lattice Boltzmann method

and M is the total number of discrete directions.

f eqi =
M∑
i=1

fiwi (3.26)

Collision step:

f ∗i (~rn, t) = fi (~rn, t) +
∆t

τi
[f eqi (~rn, t)− fi (~rn, t)] (3.27)

Streaming step:

fi (~rn + ~ci∆t, t+ ∆t) = f ∗i (~rn, t) (3.28)

3.4. Solving the energy equation using the lattice
Boltzmann method

The energy equation is modelled using the LBM on basis of an advection-
diffusion equation (ADE) or convection-diffusion equation (CDE) as given
by [20]:

∂T

∂t
+∇ (Tu) = α∇2T + q (3.29)

The first term on the left-hand-side of Eq. 3.29 describes the temporal change
of temperature, the second term describes the spatial change due to convection.
The first term on the right-hand-side describes the spatial change due to
conduction and the last term includes source terms. The parameter α in the
conduction term describes the thermal diffusivity of the medium and is related
via the thermal conductivity k, the specific heat capacity cP and the materials
density ρ as follows,

α =
k

ρ · cP
= const. (3.30)

The corresponding ‘standard’ LBM algorithm for a discrete direction i is given
by Eq. 3.31.

gi (r + ci∆t, t+ ∆t)− gi (r, t) = Ωi (r, t) +Qi (r, t) (3.31)
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3.4. Solving the energy equation using the lattice Boltzmann method

The simplest collision model is given by the BGK operator as following (cf.
appendix B):

Ωi (r, t) = − 1

τg
(gi (r, t)− geqi (r, t)) (3.32)

An approach for the relaxation-time-term (see Eq. 3.33 for a two-dimensional
problem) has been proposed in [27], including physical properties of the medium
through the thermal diffusivity given by α.

τg =
3α

U2
+

∆t

2
(3.33)

The propagation (or lattice) speed U is defined as U = ∆x
∆t

, whereat ∆x
denotes the distance between the nodes and ∆t represents the time step. The
equilibrium distribution function geqi is given according to [20] following a linear
approach.

geqi = wmi T̃ (3.34)

The non-dimensional temperature itself is computed as the sum of discrete
temperature distribution functions (TDF) as illustrated in Fig. 3.5.

T̃ =
∑
i

gi (3.35)

g3

g4

g1

g2

g0

TDF

Figure 3.5.: Composition of the temperature distribution function for the D2Q5 lattice
arrangement
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3. Radiative heat transfer - lattice Boltzmann method

3.5. Coupling of the energy and radiative transfer
lattice Boltzmann equations

The presented methods are different in modelling the radiative source term in
the energy equation. The Stark number N , which is also known in literature as
conduction-radiation-parameter, forms an important parameter in the coupling
of the energy equation and RTE [4].

N =
βk

4σT 3
ref

(3.36)

The conduction-radiation-parameter relates the extinction coefficient β and
the thermal conductivity k with the Boltzmann constant σ and the reference
temperature Tref . The N does not directly give the relative values of conduction
to emission because the ratio of these values depends on both temperature
difference and temperature level. [4]
For high values of N , conduction is the dominating heat transfer mechanism,
whereas for small values of N , radiation dominates. [39]

3.5.0.1. Method 1

The set of non-dimensional variables used for the energy equation is given
below, for the temperature T̃ , intensity χ and space ~r.

rx =
βx

τW
ry =

βy

τW
τW = βW T̃ =

T

Tref
χ =

I

σT 4
ref

(3.37)

The source term in Eq. 3.31 was derived from the dimensionless energy equation
3.29 as following,

ρCp
∂T (r, t)

∂t
+ρCpu∇T = ∇ (k∇T )+κa

[∫
4π

I (r,Ω, t) dΩ− σT (r, t)4

]
︸ ︷︷ ︸

∗

(3.38)

in which the radiative source term is given for a non-scattering medium, thus,
only the absorptive terms (marked by an asterisk) of the RTE given by Eq. 3.9
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3.5. Coupling of the energy and radiative transfer lattice Boltzmann equations

are left. Regarding a steady state medium in the two-dimensional space Eq. 3.38
is reduced to:

k

(
d2T

dx2
+
d2T

dy2

)
= κa

(
σT 4 −

∫
Ω=4π

I (x, y,Ω) dΩ

)
(3.39)

Thus, the energy equation can be written as:

d2Θ

dr2
x

+
d2Θ

dr2
y

=
κσT 3

ref

k
W 2

(
Θ4 −

∫
χdΩ

)
(3.40)

In case of a non-scattering medium and by setting W = κ−1 the right-hand-side
is simplified to:

d2Θ

dr2
x

+
d2Θ

dr2
y

=
1

4N

(
Θ4 −

∫
4π

χdΩ

)
(3.41)

The right-hand-side of Eq. 3.41 represents the source term in the later LBM
formulation of Eq. 3.29. The one-dimensional lattice Boltzmann formulation
of the energy equation has been derived by [37], however the two-dimensional
derivation for a non-scattering is written in analogy as following:

gi (~r + ~ci∆t, t+ ∆t) = gi (~r, t)

− 1

τ
[gi (~r, t)− geqi (~r, t)] + wmi

(
1

4N

(
T̃ 4 −

∫
4π

χdΩ

))
∆t (3.42)

The source term is given by the difference of the sum of non-dimensional
discrete temperatures gi represented through T̃ , and the spatial integral of the
non-dimensional radiative intensity χ, which is calculated from the discrete
radiative intensity fi through numerical integration [22].

3.5.0.2. Method 2

Mishra et al. presented a transient model for solving the radiative-heat exchange
in [31]. The set of non-dimensional variables used for the energy equation is

given below, for the temperature T̃ , intensity χ, space ~r and time ζ.

rx = xβ ry = yβ T̃ =
T

Tref
χ =

I

σT 4
ref

ζ = αβ2t (3.43)
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3. Radiative heat transfer - lattice Boltzmann method

In the absence of convection and heat generation, for a homogeneous medium,
the energy equation is given by

ρcp
∂T

∂t
= k∇2T −∇ · ~qR (3.44)

where ∇ = (∂/∂x+ ∂/∂y) and ~qR is the radiative heat flux. [31]
The divergence of the radiative heat flux in Eq. 3.44 is dependent on the
incident radiation G and the blackbody intensity Ib as given by [4]:

∇ · ~qR = κa (4πIb −G) = κa

(
4π
σT 4

π
−G

)
(3.45)

The non-dimensional form of the radiative source term is calculated from the
non-dimensional temperatures T̃ and the incident radiation, which is composed
of the radiative intensities’ PDFs and their corresponding weights as follows,

∇∗ · χ = κa

4T̃ −

∑
i

fiwi

π

 (3.46)

This approach is so far similar to the P-1 radiation model. The non-dimensional
form of the energy equation is given as follows,

dT̃

dζ
=
d2T̃

dr2
x

+
d2T̃

dr2
y

− 1

4N
∇∗χ (3.47)

The corresponding LBE can be written as:

gi (~r + ~ci∆ξ, ξ + ∆ξ) = gi (~r, ξ)

− ∆ξ

τ
[gi (~r, ξ)− geqi (~r, ξ)]− wi

(
∆ξ

4N

)
∇ · χ (3.48)

3.6. Hybrid approach

For the sake of completeness hybrid model approaches shall be mentioned
as well. In hybrid models, such as given in [40], the discretisation of the
radiative transfer directions is computed using the SN quadrature scheme
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3.7. Lattice arrangements and corresponding weighting factors

(DOM approach), whereupon the rest of the calculation is done using a lattice
Boltzmann scheme. Other forms include a conventional numeric approach
for the computation of the radiative information, and coupling it in so called
multi-physics problems. Exemplary for such a multi-physics coupling of the
radiative information with conduction, calculated using a lattice Boltzmann
scheme, is [29]. However, using the LBM to solve both the RTE and the
energy equation is appealing because of a consistent approach, which shows
high potential for parallelisation. Subsequently, Fig. 3.6 illustrates the solution
procedure of a hybrid model according to [27].

Initialisation of known temperature field

Initialisation of radiative field via temperature field

Calculation of the radiative information using for example the DOM

Computation of the equilibrium distribution function geqi

Calculation of gi

Streaming step

Calculation of new temperature field

Check convergence and modify gi locally to satisfy BC

Iteration loop

Figure 3.6.: Hybrid model solution procedure

3.7. Lattice arrangements and corresponding
weighting factors

The mesh, referred to as lattice in the LBM, is of great importance to every
numerical simulation. In dealing with the LBM the lattice arrangements
commonly used are squares as well as hexagons in two-dimensional space and
cube cells in three-dimensional space [41]. There is a common terminology in
the naming of the lattice arrangements known as DnQm. The dimension of
the problem (one-, two-, three-dimensional) is given by the factor n, whilst the
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3. Radiative heat transfer - lattice Boltzmann method

number of lattice directions is given by the factor m. [21] Subsequently the
difference between different lattice arrangements depending on their purpose
will be explained.

3.7.1. Commonly used lattice arrangements in fluid
dynamics

Figure 3.7 illustrates the possibilities of two-dimensional lattice arrangements,
however, the hexagonal D2Q7 lattice arrangement represents rather an excep-
tional case. An example for the usage of the D2Q7 lattice arrangement is the
simulation of shallow water flows as given by Zhou [41]. The commonly used

c1

c2

c3

c4

D2Q5

c0

c1

c5c2c6

c3

c7 c4 c8

D2Q9

c0

c1

c2c3

c4

c5 c6

c0

D2Q7

Figure 3.7.: Square and hexagonal two-dimensional lattice arrangements: D2Q5 (left), D2Q9
(middle) and D2Q7 (right)

D2Q9 lattice arrangement has eight velocity vectors starting from the central
node. The PDF is transported in each discrete direction with the corresponding
velocity. The weights for directions with identical speeds are equal for reason of
symmetry. [42]
The lattice velocities for the D2Q5 respectively the D2Q9 lattices are given in
literature [21] as following:

c0 = (0, 0) c1,3 = (±1, 0) c2,4 = (0,±1) c5,6,7,8 = (±1,±1)

The corresponding weights for the D2Q5 lattice are:

wi =

{
1
3
1
6

i = 0

i = 1− 4
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3.7. Lattice arrangements and corresponding weighting factors

The corresponding weights for the D2Q9 lattice are:

wi =


4
9
1
9
1
36

i = 0

i = 1− 4

i = 5− 8

Depending on their application the lattice arrangements, respectively their
velocity sets, have to obey certain requirements. These are generally based
on the conservation of mass and momentum and rotational isotropy of the
lattice.

3.7.2. Lattice arrangements for the purpose of radiation
modelling

Lattice arrangements for radiative transfer simulations are slightly different
than those used for fluid dynamics. The difference is based on the fact that there
is no stationary node in radiation modelling, as this is physically impossible
[22], due to the fast propagation of radiation (speed of light) compared to
fluid dynamics. Figure 3.8 shows two representative lattice arrangements for
the purpose of radiation modelling. On the left a single speed D2Q4 lattice
arrangement is illustrated, whereas to the right a multi speed (MS) lattice
arrangement is given. A MS describes in general a lattice arrangement with
several different lattice velocities [42]. Apart from those lattice arrangements

c1

c2

c3

c4

D2Q4

c1

c5c2c6

c3

c7 c4 c8

D2Q8

Figure 3.8.: Two-dimensional lattice arrangements: D2Q4 and D2Q8

mentioned above, there are many others but substantially more complex models,
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3. Radiative heat transfer - lattice Boltzmann method

such as for example the D2Q16 model which is also a MS model. In these
models, the discrete velocities are coupled with the associated lattices, and so
such models are also termed as space-filling models. [43] Unfortunately the
terminology is ambiguous, regarding for example the D2Q16 model as can be
seen in Figure 3.9.

c1

c5c2c6

c3

c7 c4 c8

c9

c10c11

c12

c13

c14 c15

c16

D2Q16

c5c6

c7 c8

c13

c9c10

c14

c15

c11 c12

c16

c1c2

c3 c4

D2Q16

Figure 3.9.: Multi-speed lattice: left D2Q16 by [19], right D2Q16 by [44]

The D2Q16 lattice experimented on was based on the geometry in [19] (left in
Fig. 3.9), due to the ideal evenly spaced angular resolution it provides. The
following sections deal primarily with the previously illustrated D2Q8 lattice
arrangement.

3.7.2.1. Lattice velocities

In order to define the lattice weights one needs to describe the lattice velocities
first. These are given below for a D2Q8 lattice.

ci =

c
(

cos
(

(i−1)π
2

)
, sin

(
(i−1)π

2

))
√

2c
(

cos
(

(i−5)π
2

+ π
4

)
, sin

(
(i−5)π

2
+ π

4

)) i = 1− 4

i = 5− 8
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3.7. Lattice arrangements and corresponding weighting factors

The lattice velocities for a D2Q16 lattice are given below [37].

ci =


c
(

cos
(

(i−1)π
2

)
, sin

(
(i−1)π

2

))
√

2c
(

cos
(

(i−5)π
2

+ π
4

)
, sin

(
(i−5)π

2
+ π

4

))
√

5c
(

cos
(

(i−9)π
4

+ π
8

)
, sin

(
(i−9)π

4
+ π

8

))
i = 1− 4

i = 5− 8

i = 9− 16

3.7.2.2. Lattice weights

Unfortunately, there is no uniform method for the calculation of the lattice
weights established in literature. Weighting factors can be interpreted as
‘general conditions a velocity set has to obey’ [20]. A common rule is that
lattice weights are the same if the lattice velocities are the same for their
respective direction reasoned by symmetry. In the following, three methods to
determine the lattice weights are described:

� McCulloch et al. [37] [22]:
McCulloch and Bindra derived the lattice weights from generalized lattice
tensors, a common approach in the application of the LBM. The weights
for each cardinal and diagonal direction lead to isotropic generalized
lattice tensors of rank 2 and 4 [...]. This is achieved by conservation of
lattice angular moments up to the fourth order over scattering or any
other radiation interaction. In case of anisotropic function w(µ), the odd
moments vanish. [37]
According to Guo and Shu [43] an isotropic tensor of n-th rank describes
a tensor which is invariant to rotations and reflections, thus any arbitrary
orthogonal transformation. A theorem describing isotropic tensors up to
the fourth rank is given by [42] and [43]:

– There are no isotropic tensors of rank 1 (vectors).
– An isotropic tensor of rank 2 is proportional to the 2nd Kronecker

delta tensor δαβ.
– An isotropic tensor of rank 3 is proportional to εαβγ
– There are three different (linear independent) tensors of rank 4,

δαβδγη, δαγδβη, δαηδβγ
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3. Radiative heat transfer - lattice Boltzmann method

which can be combined to the most general form

Tαβγη = aδαβδγη + bδαγδβη + cδαηδβγ

where a, b, c are arbitrary constants.

The odd moments, which are zeroised because of the symmetry condition,
are given below. The cartesian components of the lattice velocities ci are
given by ciα, ciβ and ciγ. ∑

i

wiciα = 0∑
i

wiciαciβciγ = 0
(3.49)

The even moments are given subsequently.∑
i

wi = 1∑
i

wiciαciβ = δαβ∑
i

wiciαciβciγciη = δαβδγη + δαγδβη + δαηδβγ

(3.50)

The Kronecker Symbol or Kronecker Delta function is given by [45]

δαβ =

{
0 α 6= β

1 α = β

An evaluation performed by McCulloch and Bindra of the above stated
system of equations 3.49 and 3.50 led to the following weighting factors:

wi =

{
0.20

0.05

i = 1− 4

i = 5− 8
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3.7. Lattice arrangements and corresponding weighting factors

� Asinari et al. [19]:
According to [19] the weight corresponding to the discrete direction i is
computed by Eq. 3.51. The angular regions of influence of the PDFs is in
general not the same (see Fig. 3.10). Although in the case of the D2Q8
lattice arrangement the angular space (2π) is discretised in eight equally
spaced divisions resulting in the same ∆δi for all.

wi =

(
1

4π

) π∫
0

sin γdγ

δi+
∆δi

2∫
δi−

∆δi
2

dδ =
∆δi
2π

(3.51)

c1

c5c2c6

c3

c7 c4 c8

D2Q8

c1

c5c2c6

c3

c7 c4 c8

D2Q8 energy shells

Figure 3.10.: Regions of influence (marked grey) for the D2Q8 lattice based on [19] and
corresponding energy shells (marked red)

Based upon the interpretation of the left-aligned figure 3.10, where the
region of influence for the nodes 5-8 is slightly bigger than that of the
remaining nodes (1-4), the nodes 5-8 therefore have a bigger value. Anal-
ysis of the area ratios renders the following values for the lattice weights:

wi =

{
0.10355

0.14645

i = 1− 4

i = 5− 8

Regarding the above stated weights in connection with the different en-
ergy shells the nodes are located in (see Fig. 3.10 right), the diagonal
weighting factors (5-8) can be derived through division by the factor of√

2, to the same weighting factor as those from nodes one to four, thus,
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3. Radiative heat transfer - lattice Boltzmann method

showing once again the strong geometrical linkage between the weighting
factors and the lattice arrangement.
The correlation between the lattice speed and the streaming step is given
as U = ∆x

∆t
in which is assumed that ∆x = ∆y. The magnitude of the

lattice velocity set can be expressed as ci = εiU , where according to [19]
εi is a constant depending on the energy shell of the considered velocity.
For the D2Q8 under consideration lattice arrangement ε1−4 = 1 and
ε5−8 =

√
2. The relation between the lattice speed and the lattice velocity

is given as follows,

c1,3 = (±1, 0) · U , c2,4 = (0,±1) · U , c5,6,7,8 = (±1,±1) · U (3.52)

� Yi et al. [40]:
Although in [40] no explicit derivation of the D2Q8 lattice arrangement
is given, a modified D2Q9 lattice arrangement was used for the modelling
of the radiative source term in accordance to the application in CFD (cf.
Sec. 3.7.1). Using the D2Q9 as a basis they split the weighting factor of
node zero (central node) to equal parts onto the remaining nodes. This
results in the following weighting factors:

wi =


0
1
9

+ 1
18

= 1
6

1
36

+ 1
18

= 1
12

i = 0

i = 1− 4

i = 5− 8

3.8. Boundary conditions

3.8.1. Radiative transfer lattice Boltzmann equation

The boundary conditions for the radiative transport lattice Boltzmann equation
(RTLBE) are the same for both methods. Boundary conditions for the radiation
equation are calculated based on emissivities of the walls along with the known
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temperatures at the boundary [...] [37]. According to [30] the boundary intensity
for a diffuse-gray surface is given by

Ii,wall =
εσT 4

wall

π
+

(
1− εwall

π

)
qwall (3.53)

The first term on the right-hand-side denotes the black body intensity, the
second term represents the heat flux at the wall caused by the incident radiation.
In case of a black body (ε = 1) Eq. 3.53 is reduced to:

Ii,wall =
σT 4

wall

π
(3.54)

The non-dimensional form of Eq. 3.54 can be written as following:

Ψi = Θ4
wall (3.55)

In order to implement the boundary condition the below stated boundary
conditions were used:

� Dirichlet: in case of a known radiative heat flux at surface
� Neumann: in order to implement zero flux or adiabatic conditions [21]

3.8.1.1. Dirichlet boundary condition

The Dirichlet boundary condition was implemented as a bounce-back boundary
as illustrated in figure 3.11. The working principle of bounce-back boundaries
is that populations hitting a rigid wall during propagation are reflected back
to where they originally came from. [20] Thus for the coupled model the
temperature values are imposed on the outgoing lattice PDF.

fi(t) fi(t + ∆t)

Figure 3.11.: Bounce back boundary condition
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3.8.1.2. Neumann boundary condition

The implementation of the Neumann boundary condition assumes a vanishing
diffusion flux between the node at the boundary and the node prior to the
boundary. Therefore the value of the node prior to boundary was imposed on
the boundary node, as illustrated in Fig 3.12. [20]

wall / boundary node last node before boundary⇐=

Figure 3.12.: Schematics of the Neumann boundary condition

3.8.1.3. Multi-speed lattice arrangement boundary conditions

The fact that lattice nodes are not restricted anymore to their nearest neighbours
demands for an adapted boundary treatment. Two approaches are currently
used to treat multilayer lattices, namely, the external treatment, where layers
of nodes are grouped to represent identical boundary conditions, or the internal
treatment, where the outer layer of nodes represents the boundary condition and
the inner layers belong to the fluid domain. However, there are currently
no insightful discussions into which treatment is suitable or more
favorable for multispeed lattices. [46]
In this connection the affected lattice directions were imposed with the same
value on the nodes next to the boundary as on the boundary in order to ensure
numerical stability.
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3.8.2. Heat transfer lattice Boltzmann equation

Similar to the above described boundary conditions for radiative heat transfer,
Dirichlet and Neumann boundary conditions are used to solve the energy equa-
tion. The Neumann boundary condition is similar as described in Sec. 3.8.1.2, as
for the Dirichlet boundary condition a new scheme is subsequently presented.

3.8.2.1. Dirichlet boundary condition

The implementation of Dirichlet boundaries in style of an Anti-Bounce-Back
Scheme based on an approach by Mishra et al. [26] was examined and extended
for multiple lattice arrangements (cf. appendix C). The meaning of anti-bounce-
back is essentially that the outgoing PDF is represented by a given temperature
(TW ) which is combined with the incoming PDF. Assuming the wall has zero
velocity the boundary condition can be written as follows,

gi (xb, t+ ∆t) = −g∗i (xb, t) + 2 · wiTW (3.56)

in which gi represents the outgoing PDF, whilst g∗i represents the incoming
PDF. In case of an anti-bounce-back rule the wall is located between the solid
node (xs) and the boundary node (xw) as illustrated below. [20]

wall node last node before boundary

boundary nodexS xW

Figure 3.13.: Schematics of the Dirichlet anti-bounce-back boundary condition

3.8.2.2. Corner treatment

Due to the fact that corners in a rectangular geometry are influenced by the
two adjacent walls they theoretically have two (sometimes different) bound-
ary conditions. For example the south-east corner of a rectangular geometry
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is affected by the south and east wall’s temperature. In order to avoid un-
intentional overwriting of corner nodes, selfsame were set by default to the
higher wall temperature, following the approach by [26]. Below in Fig. 3.14 the
participating PDFs are illustrated.

c3

c2c6

c9

Figure 3.14.: Corner bounce back condition for a concave corner
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4. Code validation -
two-dimensional test case

The aim of this chapter was to test the LBM based simulation tool for the
prediction of radiative heat transfer in industrial furnace applications. The
energy equation was solved using the LBM in different media and the results
were compared with a reference solution. Furthermore the previously presented
‘Method 1’ (see Ch. 3.2) was validated for solving the radiative heat transfer in
both non-participating and participating media. A mesh study was performed
for the radiative transfer in non-participating media with regards to different
absorption coefficients and levels of discretisation. The terms ‘temperature
field’ and ‘radiative field’ denote the temperature respectively the radiation
intensity node values of a lattice as a whole.

4.1. Steady state energy equation

In order to calculate the temperature effect on the radiative heat transfer a
LBM temperature model was implemented and validated. The energy equation
was solved for a steady state heat exchange on a rectangular slab geometry (see
Fig. 4.1). Two different cases were studied and validated using an analytical
reference and ANSYS Fluent.
In the first case the north and south wall were set to two different temperatures,
whilst the east and west wall were exposed to a zero flux condition.
In the second case studied the boundary conditions of the north, east and south
wall were set to a value of T0 = 300 K whilst the west wall was defined as
source wall with a higher temperature T .
Both cases were subject to analysis with fictional physical property parameters
as well as the physical properties of air, which were assumed to be constant.
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south wall

north wall

west wall east wall

x = 0 x = 1

y = 0

y = 1

Figure 4.1.: Rectangular slab geometry

The imposed values are listed in the table (Tab. 4.1). An error analysis and
validation was performed for both the D2Q5 and the D2Q9 lattice arrangement.

Table 4.1.: Physical properties for validation test case

physical property fictitious medium air
density ρ in (kg/m3) 1 1.225
specific heat capacity Cp in J/(kgK) 1 1006.43
thermal conductivity k in W/(mK) 1 0.0242

4.1.1. Error analysis

The error of the LBM solution was investigated by Eq. 4.1, where the LBM
results were compared to a reference solution.

ErrorLBM =
||ΨLBM −Ψreference solution||
||Ψreference solution||

(4.1)

Furthermore numerical methods are in general prone to the following errors:
[48]
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4.1. Steady state energy equation

� round-off errors: are caused by the numerical precision of the computer
used

� iteration errors: describe the difference between a converged solution and
the corresponding solution after a large infinite number of iterations

� discretisation errors: describe the difference between the exact solution
on a high-resolution mesh compared to the converged solution of a com-
putational reasonable mesh

� model errors: are intrinsic caused by the modelling equations in compari-
son with reality

4.1.2. Energy transfer lattice Boltzmann equation

The energy equation (Eq. 3.42) presented in the previous chapter (Ch. 3) was
validated without the radiative influence term. Thus, the LBE for the energy
transport is written as:

gi (~r + ~ei∆t, t+ ∆t) = gi (~r, t)−
1

τ
[gi (~r, t)− geqi (~r, t)] (4.2)

The relaxation time parameter τ which has a strong influence on the overall
convergence and error was calculated using the approach by [27]. The resulting
LBE is given subsequently by Eq. 4.3.

gi (~r + ~ei∆t, t+ ∆t) = gi (~r, t)−
1

τ

[
gi (~r, t)− wmi

∑
i

gi (~r, t)

]
(4.3)

4.1.3. Analytical reference

An analytical reference solution was used for the validation of the first case, as
for the second the influence of the north-south temperature gradient could not
be considered in the one-dimensional analytical solution. The heat equation as
given by [20] for a steady state problem (∂t = 0) without source terms (q = 0)
in a resting medium (u = 0) was simplified as following:

�
�
�S
S
S

∂T

∂t
+���

��XXXXX∇ · (T~u) = α∇2T + �Aq (4.4)
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4. Code validation - two-dimensional test case

Thus, the temperature gradient in any direction (e.g. x-direction) is given as a
linear function for constant material properties (T 6= T (α)):

T (x) = T (x = 1)︸ ︷︷ ︸
north boundary

·x+ T (x = 0)︸ ︷︷ ︸
south boundary

· (1− x) (4.5)

4.1.4. ANSYS Fluent

A reference was also provided by ANSYS Fluent for both cases under con-
sideration. For validation the geometry (see Fig. 4.1) was modelled using a
uniform mesh with 2025 cells and one with 9801 cells. A mesh independence
study showed no significant deviations between the solutions of the two meshes.
The energy equation that was solved is given by Eq. 4.6, where the first term
on the left hand side describes the temporal change of energy and the second
term on selfsame side describes the spatial change. The first three terms on
the right-hand side of equation 4.6 represent energy transfer due to conduction,
species diffusion, and viscous dissipation, respectively. Sh includes the heat of
chemical reaction, and any other volumetric heat sources [...] . [9]

∂

∂t
(ρE)+∇·(~u (ρE + p)) = ∇·

(
keff∇T −

∑
j

hj ~Jj +
(
τ eff · ~v

))
+Sh (4.6)

Simplification of the above equation for the problem present leads to the same
formulation as described in the previous analytical reference section:

0 = ∇2T . (4.7)

4.1.5. Results - Case 1

The error between the LBE formulation and the analytical solution is primarily
dependent on the relaxation time value τ . In comparison the influence of the
overall convergence tolerance on the PDFs is rather negligible. The calculated
error values were computed from the centreline temperature data in reference
to their respective analytical reference solution. A separate illustration of the
ANSYS Fluent temperature field plots was forgone due to the high similarity
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4.1. Steady state energy equation

to the energy transport lattice Boltzmann equation (ETLBE) results. The
temperature boundary condition was implemented using an anti-bounce-back
scheme. For the implementation of the zero flux condition a Neumann boundary
condition was used as described in the previous chapter (Ch. 3.8).

4.1.5.1. Fictitious medium

The influence of five different time step parameters listed in table 4.2 and
table 4.3 was analysed. The corresponding marching step was defined in all
simulations as ∆x = 1

Nx−1
. Variant A represents a common approach [20],

thus it is usually used in context with a marching step of the same size - the
results showed to be poor as expected . Variant B was chosen according to [22],
variants D and E present the doubled and halved value of selfsame in order to
determine the overall influence. Variant C was found empirically to resolve the
problem with good accuracy.

Table 4.2.: Time step variations for an adiabatic validation test case D2Q5 with the hot wall
at 1300 K in exchange with the cold wall at 300 K

variant time step simulation time in s (mesh 100× 100) max. Error in %
A 1 1062 1.772
B 1/(Nx − 1) 28.0 0.0667
C 1/(Nx) 28.6 0.0682
D 2/(Nx − 1) 8.3 0.0103
E 1/[2(Nx − 1)] 187.4 0.6539

Table 4.3.: Time step variations for an adiabatic validation test case D2Q9 with the hot wall
at 1300 K in exchange with the cold wall at 300 K

variant time step simulation time in s (mesh 100× 100) max. Error in %
A 1 1841 8.6733
B 1/(Nx − 1) 48.5 0.0667
C 1/(Nx) 49.7 0.0683
D 2/(Nx − 1) 14.8 0.1612
E 1/[2(Nx − 1)] 319.8 0.6524

The different variations of time steps had great impact on the overall simulation
runtime and quality of the results. Analysis showed that by increasing the
relaxation time the simulation runtime was drastically reduced. In addition
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4. Code validation - two-dimensional test case

the error decreased slightly. Apart from the increased simulation runtime and
number of iterations for the D2Q9, there was no noticeable difference between
the two lattice arrangements under investigation. The impact of a higher mesh
discretisation on the solution is illustrated in table 4.4 for the D2Q9 lattice
arrangement.

Table 4.4.: Time step variations for an adiabatic validation test case D2Q9 with the hot wall
at 1300 K in exchange with the cold wall at 300 K

variant time step simulation time in s (mesh 200× 200) max. Error in %
A 1 14800 9.0878
B 1/(Nx − 1) 340 0.2682
C 1/(Nx) 345 0.2714
D 2/(Nx − 1) 100 0.068
E 1/[2(Nx − 1)] 2014 2.562

All other simulation parameters, such as the physical properties of the medium,
were fixed for the validation. The relaxation time term is grid dependent,
thus, was the only parameter that was changed during the simulations. The
grid-dependency of the relaxation time led to a grid dependent error of the
solution, which increased exponentially with higher levels of discretisation.
However it was found out, through analysis of different hot wall temperature
boundaries up to a temperature of 2300 K, that with increasing temperature
gradients the increase of the error is lower for the time step variants B - E.
Table 4.5 shows the results of the different time steps for a mesh of the size
200× 200, where the hot wall’s boundary was set to a temperature of 2300 K
and the cold wall’s boundary was set to a temperature of 300 K.

Table 4.5.: Time step variations for an adiabatic validation test case D2Q9 with the hot wall
at 2300 K in exchange with the cold wall at 300 K

variant time step simulation time in s (mesh 200× 200) max. Error in %
A 1 9163 10.0223
B 1/(Nx − 1) 247 0.2312
C 1/(Nx) 249 0.2339
D 2/(Nx − 1) 61 0.0552
E 1/[2(Nx − 1)] 1491 2.2083

Figure 4.2 (left) shows the temperature profile for the investigated case for
given wall temperatures of 1300 K and 300 K calculated using the time step
‘Variant B’. The corresponding errors calculated from the analytical reference
solution for the time step variants B, C and D are displayed in Fig. 4.2 (right).
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4.1. Steady state energy equation

Due to the different magnitude of the error of variant A and E, the display of
selfsame was forgone. The error of the variants B and C show, as expected, only
small deviations among one another. For the time step variant D a significant
lower error is visible, as well as a shift of the peak towards the cold temperature
boundary.

Figure 4.2.: Temperature field of the solved ETLBE (D2Q9 - time step variant B) for mesh
size of 200 × 200 with a comparison of different time steps in analysis of the
analytical error
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4. Code validation - two-dimensional test case

4.1.5.2. Medium air

The change in media properties had great impact on the solution for the
different time step variants under consideration. Due to the influence of the
media’s physical properties, which are represented in the relaxation term via
the thermal diffusivity α, the formerly labelled as ‘variant A’ time step of
∆t = 1 was the only variant, of those analysed, that led to results. Figure 4.3
shows the temperature field and the corresponding error calculated from the
ANSYS Fluent reference solution, using the same mesh size and a D2Q9 lattice
arrangement for the ETLBE solution.

Figure 4.3.: Comparisons of the ETLBE (D2Q9) with ANSYS Fluent and error analysis
using the same mesh size of 100 × 100 for a hot wall temperature of 1300 K
(medium air)

There appears to be no grid dependency of results as further analysis using a
200× 200 lattices has shown no significant change in error between the LBM
and the solution computed with ANSYS Fluent.

4.1.6. Results - Case 2

The results showed in both media overall good comparison. A separate il-
lustration of the ANSYS Fluent temperature field plots was forgone due to
the high similarity to the ETLBE results. The second case was focused on
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4.1. Steady state energy equation

the D2Q9 lattice arrangement in view of the coupling of the ETLBE with
the RTLBE. The temperature boundary condition was implemented using an
anti-bounce-back scheme as described in the previous chapter (Ch. 3.8).

4.1.6.1. Fictitious medium

Figure 4.4 shows the comparison of the ETLBE solution and the ANSYS Fluent
solution, in which the high temperature wall was set to 1300 K whilst the
remaining walls were set to a temperature of 300 K. The time step was set to
∆t = 1/ (Nx − 1) as previously introduced as ‘Variant B’.

Figure 4.4.: Comparisons of the ETLBE (D2Q9) with ANSYS Fluent using a mesh size of
100× 100; the hot wall temperature was set to 1300 K whilst the remaining walls
were set to 300 K

The results for the different time steps, for the investigated case, are given
in table 4.6. The results show strong deviations between the different time
steps. A comparison with the results of the first case investigated (see Tab. 4.3)
reveals a reduction of the simulation time. Furthermore the error of the time
step variants B, C and E is reduced.
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4. Code validation - two-dimensional test case

Table 4.6.: Time step variations for an adiabatic validation test case D2Q9 with the hot wall
at 1300 K in exchange with the cold wall at 300 K

variant time step simulation time in s (mesh 100× 100) max. Error in %
A 1 681 30.7714
B 1/(Nx − 1) 8.4 0.0341
C 1/(Nx) 8.4 0.0341
D 2/(Nx − 1) 3.4 2.7286
E 1/[2(Nx − 1)] 48.3684 0.2236

The error for this specific case was calculated at the centre line from the north
to the south wall from the ANSYS Fluent reference solution, and is given in
Fig. 4.5. The ETLBE, with the time step referred to as ‘variant B’, shows good
comparison over the whole range of temperatures under consideration with the
ANSYS Fluent results and the analytical reference solution.

Figure 4.5.: Error analysis between the ANSYS Fluent solution and ETLBM (D2Q9) using
a mesh size of 100 × 100; one wall temperature was set to 1300 K whilst the
remaining walls were set to 300 K
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4.1. Steady state energy equation

4.1.6.2. Medium Air

Figure 4.6 shows the comparison of the ETLBE solution and the ANSYS Fluent
solution, in which the high temperature wall was set to 1300 K whilst the
remaining walls were set to a temperature of 300 K. The time step was set to
∆t = 1 as previously introduced as ‘Variant A’.

Figure 4.6.: Comparisons of the ETLBE (D2Q9) with ANSYS Fluent using a mesh size of
100× 100; the hot wall temperature was set to 1300 K whilst the remaining walls
were set to 300 K (medium air)

The error for this specific case was calculated at the centre line from the north
to the south wall from the ANSYS Fluent reference solution, and is given in
figure 4.7.

The ETLBE shows good comparison over the whole range of temperatures
under consideration with the ANSYS Fluent results and the analytical reference
solution. However, the detailed error analysis of the centreline data (see
Fig. 4.7) reveals in comparison to the centreline error of the fictitious medium
(see Fig. 4.5) a higher deviation. This is very likely caused by the different
relaxation times τ , which are composed of the media’s physical properties.

51



4. Code validation - two-dimensional test case

Figure 4.7.: Error analysis between the ANSYS Fluent solution and ETLBM (D2Q9) using
a mesh size of 100 × 100; one wall temperature was set to 1300 K whilst the
remaining walls were set to 300 K
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4.2. Radiation

4.2. Radiation

The two methods described in the previous chapter (Ch. 3) were investigated for
the usage of the calculation of the RTE. Natural gas, which is commonly used
as fuel in industrial high temperature applications, allowed for the scattering
term to be neglected. This is reasoned by the low particle concentration in the
flue gas, hence scattering effects have only a minor influence on the results [47].
Therefore, Eq. 1.5 can be written as:

dI

ds
= κIb − κI (4.8)

According to [4] the source function equals the local blackbody intensity for
radiative equilibrium with a nonzero absorption coefficient. Thus Eq. 4.8 is
written as:

dI

ds
= κ

σT 4

π
− κI (4.9)

4.2.1. Participating medium without consideration of the
temperature influence

The case used for the validation of the radiative heat exchange is illustrated
in Fig. 4.8. At the source wall (west wall) a radiative flux was given, whilst
at the recipient wall the incoming radiative flux was analysed. A rectangular
geometry of the size 1× 1 m (see Fig. 4.1) was used for this process, at which
only the discretisation in the x-direction (primary direction of interest) was
varied. The discretisation in the y-direction was set to a value of 2. The north,
south and east walls were subjected to a Neumann boundary condition. A
D2Q8 lattice arrangement, with the weighting factors introduced by McCulloch
in [22], was used in order to calculate the radiative information.

4.2.1.1. Simplified radiative transfer lattice Boltzmann equation

Method 1 forms the basis for further calculations, as it is identical with Method
2 in this specific case, where the black body intensity is neglected. The one-
dimensional approximation of the RTE (Eq. 4.9) is given below.
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4. Code validation - two-dimensional test case

source wall recipient wall

participating medium

1 m

Figure 4.8.: Schematical setup for the analytical solution calculation

One-dimensional approximation
The left-hand-side represents the spatial change in radiative intensity caused
by the absorption term on the right-hand-side.

µ
dI

dx
= −κaI (4.10)

The non-dimensional form is missing the absorptive information, as the scaling
variable W described in the previous chapter (Ch. 3) eliminates the absorption
coefficient. Thus a different set of non-dimensional variables was used to
preserve the absorptive information in which the scaling factor W was set to a
value of one.

µ
dχ

drx
= −κaχ (4.11)

The equivalent LBE is:

fi (rx + ci,rx∆t, t+ ∆t) = fi (rx, t)−∆tκafi (4.12)

Two-dimensional approximation
The two-dimensional equation is given below,

fi (~r + ~ci∆t, t+ ∆t) = fi (~r, t)−∆tκafi (~r, t) (4.13)

where the spatial directions are given by ~r = (rx, ry).
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4.2. Radiation

4.2.1.2. Analytical reference

In order to validate the calculated LBM solution a simplified RTE was solved
analytically. For the previously presented LBM procedure scattering was
neglected as well as the intensity augmented by local emission. This case is
referred to in literature as ‘absolute absorption’ [3].

(dI)abs = −κaIds (4.14)

I (s) = I (0) exp

− s∫
0

κads

 = I (0) e−τ (4.15)

The optical thickness τ describes the transmissivity of a homogeneous isothermal
gas layer. The analytical solution for the investigated case is given subsequently
in Fig. 4.9 for an absorption coefficient of value 1 m−1 and a given radiative
flux of 1 W/(m2K).

Figure 4.9.: Analytical solution of the simplified radiative transfer equation κa = 1 m−1
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4. Code validation - two-dimensional test case

4.2.1.3. Error analysis and grid convergence study

The LBM solution was compared to the analytical solution, and the resulting
error was calculated using Eq. 4.1. The absorption coefficient value was varied
from 0.1 m−1 to 5.0 m−1. The LBM solution proved to be very accurate for
high levels of discretisation. However, with increasing absorption coefficients
the error increased as well, as can be seen in Fig. 4.10 in which a constant
discretisation of 15000 nodes was applied.

Figure 4.10.: Influence of absorption coefficient on error for constant number of nodes Nx =
15000

The subsequent figure (Fig. 4.11) shows the influence of different levels of
discretisation on the calculated error for a constant absorption coefficient value
of 1 m−1. The curve characteristics of different absorption coefficients were
shown to be similar. However, as previously shown in Fig. 4.10, higher levels
of the absorption coefficient lead to an increase of the error especially for a low
number of lattice nodes.
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4.2. Radiation

Figure 4.11.: Influence of mesh discretisation on error for constant absorption coefficient
κ = 1 m−1

4.2.2. Participating medium with consideration of the
temperature influence

The consideration of the black body intensity on radiative heat transfer requires
the coupling of the RTLBE and the ETLBE. Due to the high adaptability of
the first method described, only ‘Method 1’ was further analysed.
The sample problem consisted of the same rectangular slab geometry as illus-
trated in Fig. 4.1 in the previous section (Sec. 4.1). The temperature influence
was investigated at five different levels, ranging from 400 K to 2300 K with a
respective reference temperature set at 300 K. Three different values for the
absorption coefficient κa (0.5 m−1, 0.75 m−1, 1 m−1) were investigated for the
two-way coupled model. In order to examine the influence of different physical
properties two cases were investigated. The first using fictitious physical prop-
erties and the second by assuming constant physical properties of the medium
air. The imposed values are listed in the table (Tab. 4.1) below.
In all of the subsequently investigated cases, the Stark number N did not
exceed a value of 0.1, thus, proving that radiation was the dominating heat
transfer mechanism.
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4. Code validation - two-dimensional test case

4.2.2.1. Radiative transfer lattice Boltzmann equation - Method 1

In order to estimate the temperature influence, the RTE has to be coupled
with the energy equation. The basis for the RTE form once again Eq. 3.15 and
Eq. 3.41 for the energy equation. The problem was solved using a single speed
lattice for both the RTLBE (D2Q8) and the ETLBE (D2Q9). Additionally
a MS lattice arrangement (D2Q16) was investigated to predict the radiative
information. In order to distinguish between the lattice weights of the different
lattice arrangements used, the lattice weights of the ETLBE are hereinafter
denoted as wmi .

RTLBE two-dimensional approximation

fi (~r + ~ci∆t, t+ ∆t) = fi (~r, t)−∆t
[
wiT̃

4 + fi (~r, t)
]

(4.16)

Energy Equation

gi (~r + ~ci∆t, t+ ∆t) = gi (~r, t)−
1

τ
(gi − geqi ) +

wmi

(
1

4N

(
T̃ 4 −

∫
Ω=4π

χdΩ

))
(4.17)

The radiation integral has been approximate by the local sum of all radiative
PDFs.

gi (~r + ~ci∆t, t+ ∆t) = gi (~r, t)−
1

τ
(gi − geqi ) +

wmi

(
1

4N

(
T̃ 4 − 1

4

∑
i

fi

))
(4.18)
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4.2.2.2. Coupling Methods

The coupling of the radiative transfer LBE and the energy LBE leads to the
solving procedure oriented on the coupling procedure of a hybrid model (see
Sec. 3.6) developed by Mishra et al. [26] (see Fig. 4.12).

Initialisation of temperature field via BC

Initialisation of radiative field via temperature field

1st Iteration geqi (~r, 0)

Calculation of f∗
i / radiative collision step

Calculation of fi / radiative streaming step

Calculation of g∗i / energy collision step

Calculation of gi / energy streaming step

Check convergence and modify gi locally to satisfy BC

Compute geqi from new temperature field

Iteration loop

Figure 4.12.: Coupling procedure

The coupling procedure has been further adapted neglecting the influence
of radiation on the energy equation respectively the temperature field, thus
representing a one-way coupling model. In figure 4.13 the first loop was exper-
imentally replaced by a given temperature field to examine the influence of
selfsame on the radiative field calculated using the RTLBE.
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4. Code validation - two-dimensional test case

Initialisation of temperature field via BC

1st Iteration geqi (~r, 0)

Calculation of g∗i / energy collision step

Calculation of gi / energy streaming step

Check convergence and modify gi locally to satisfy BC

Compute geqi from new temperature field

Initialisation of radiative field via temperature field

Calculation of f∗
i / radiative collision step

Calculation of fi / radiative streaming step

Check convergence and modify gi locally to satisfy BC

Compute geqi from new radiative field

Loop 1

Loop 2

Figure 4.13.: Adapted one-way coupling procedure
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The various coupling models investigated are listed below:

� two-way coupled model: RTLBE and ETLBE are solved simultaneously
� one-way coupled model:

– Variant 1: RTLBE and ETLBE are solved simultaneously, but the
radiative source term in the ETLBE is not solved

– Variant 2: a temperature field is given a priori and the RTLBE is
solved

4.2.2.3. Reference solution: P-1 Model - ANSYS Fluent [9]

The P1 model allows modelling of gray radiation and is the simplest case of
the PN model. The radiative flux qr is calculated using Eq. 4.19, where κa is
the absorption coefficient, σS the scattering coefficient, C the linear-anisotropic
phase function coefficient and G the incident radiation.

qr = − 1

3 (κa + σS)− CσS
∇G (4.19)

Assuming a non scattering medium Eq. 4.19 can be further simplified:

qr = − 1

3κa
∇G (4.20)

The transport equation for the incident radiation G without additional sources
is given in Eq. 4.21 where σ represents the Boltzmann constant and n the
refractive index of the medium.

−∇qr − κaG+ 4κan
2σT 4 = 0 (4.21)

The combination of Eq. 4.20 and Eq. 4.21 yields:

1

3κa
∇2G− κaG+ 4κan

2σT 4 = 0 (4.22)

As the analysed problem considered only a homogeneous phase, the refractive
index n was set to a value of one.

1

3κa
∇2G− κaG+ 4κaσT

4 = 0 (4.23)
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4. Code validation - two-dimensional test case

4.2.2.4. Reference solution: Discrete Ordinates (DO) Model - ANSYS
Fluent [9]

The discrete ordinates (DO) radiation model solves the radiative transfer equa-
tion (RTE) for a finite number of discrete solid angles, each associated with a
vector direction ~s fixed in the global Cartesian system (x, y, z).[9]. The RTE
stated in Eq. 4.24 is considered as a field equation in the direction ~s, where
I (~r, ~s) is the total intensity.

∇ · (I (~r, ~s)~s) + (κa + σS) I (~r, ~s) = κan
2σT

4

π
+

σS
4π

∫ 4π

0

I (~r, ~s) Φ (~s · ~s′) dΩ (4.24)

Assuming a non scattering medium Eq. 4.24 can be further simplified:

∇ · (I (~r, ~s)~s) + κaI (~r, ~s) = κan
2σT

4

π
(4.25)

The DOM solution was calculated using an angular discretisation of five Θ and
Φ divisions each.

4.2.2.5. One-way coupled model

In order to examine the effects of a given temperature field on the radiative
field a ‘one-way’ coupled model was tested (see Fig. 4.13). As the physical
properties of the medium are only present in the formulation of the ETLBE, a
further sub-division into different media can be omitted. The one-way coupled
model was investigated further given an equidistant temperature field. Fur-
thermore, temperature solutions calculated using the DOM coupled with the
energy equation in Fluent, were patched in the LBM code and the radiative
information was calculated. The temperatures under consideration ranged
from 300 K up to 2300 K. In order to avoid a change of the given temperature
field in Fluent, through the coupling of RTE and heat equation, the thermal
conductivity was set to an artificially high level.
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The results of the model with given temperature values proved to be in coher-
ence with those calculated using the DOM, due to the relatively small influence
of the temperature related source term in the RTE. In this context the temper-
ature influence in the RTE, given by the term T̃ , was set to a value of one, as
proposed by [37], leading to similar results. As for the influence of the radiative
field on the temperature a significant influence was recognisable, especially
concerning the numerical stability of the model at hand. Subsequently, in
Fig. 4.14 the results for the one-way coupled model are given. The radiative
information was calculated using a D2Q4 lattice arrangement. The temper-
ature was pre-set by a linear temperature gradient ranging from 800 K to 300 K.

Figure 4.14.: Comparison of DOM and LBM (D2Q4) results for given linear temperature
gradient from 800 K to 300 K and a mesh size of 200× 200 in both solution
methods

4.2.2.6. Two-way coupled model

The focus of the error analysis was set on the two-way coupled model, as it is
of capital importance for the further intended applications. Subsequently the
results of the analysis are given for a fictitious medium, followed by the results
of the medium air.
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4.2.2.6.1. Fictitious medium
The ETLBE was solved using a time step of ∆t = 1/ (Nx − 1). The results
showed overall good comparison for the D2Q8-D2Q9 model. The subsequent
figures (Fig. 4.15, 4.16, 4.17) illustrate the influence of different absorption co-
efficient values for the same boundary temperature of 1800 K with a respective
reference temperature on the opposite wall of 300 K. With increasing absorp-
tion coefficient values the similarity of the LBM solution to the P1 solution is
visible. Furthermore a deviation is visible at the temperature boundary, as the
prescribed temperature boundary value was not reached in any of the LBM
simulations. However, with increasing absorption coefficient selfsame deviation
was reduced. The Stark number, being dependent on the absorption coefficient
κa, showed in all three cases that the heat transfer was dominated by radiation.
The results for the same case, solved using the MS lattice arrangement D2Q16
for the RTLBE, are given in figures 4.18, 4.19 and 4.20. The higher angular res-
olution did not lead to any improvement of the results. However, as mentioned
in the previous chapter (see Sec. 3.8.1.3), it is suspected that the implemented
boundary condition is the source of the altered results. The results show,
opposite as for the D2Q8 lattice arrangement, good comparison for decreasing
values of the absorption coefficient κa.
The visible boundary error in the temperature solution was boosted by the low
resolution mesh (100× 100) used, higher discretisation led to a considerable
improvement of the results, as previous findings have shown (see Fig. 4.11).
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Figure 4.15.: Radiative (D2Q8) and temperature (D2Q9) field validation: κa = 0.5 m−1

Figure 4.16.: Radiative (D2Q8) and temperature (D2Q9) field validation: κa = 0.75 m−1

Figure 4.17.: Radiative (D2Q8) and temperature (D2Q9) field validation: κa = 1 m−1
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Figure 4.18.: Radiative (D2Q16) and temperature (D2Q9) field validation: κa = 0.5 m−1

Figure 4.19.: Radiative (D2Q16) and temperature (D2Q9) field validation: κa = 0.75 m−1

Figure 4.20.: Radiative (D2Q16) and temperature (D2Q9) field validation: κa = 1 m−1

66



4.2. Radiation

4.2.2.6.2. Medium air
In order to explore the effects of physical properties on the model, the medium
air was chosen as a start. The results of the RTLBE are in correspondence
with those calculated using the DOM and P1 model. With an increasing
number of lattice nodes the error on the boundaries of the ETLBE increases
in dependence of the temperature gradient. Subsequently, a sample case for a
wall temperature of 800 K, with a respective reference temperature of 300 K, is
illustrated using different values of absorption coefficients and the D2Q8 lattice
arrangement on a mesh consisting of 100× 100 nodes (see Fig. 4.21, 4.22, 4.23).
The results of the radiative field reveal a strong similarity to the P1 model
with increasing levels of the absorption coefficient. However, the boundary
condition of the temperature field does not match the given value. The same
case was further investigated using a D2Q16 lattice arrangement, as illustrated
in the figures 4.24, 4.25 and 4.26. The results of the radiative field show, in
analogy to those calculated for the fictitious medium, good accordance with
the P1 model for low values of the absorption coefficient κa. However, a strong
deviation is visible in the temperature field results, especially in the vicinity of
the lower temperature boundary.
The strong gradient in the temperature profile near the boundary is reflected
in the solutions of the radiative field in form of a slight peak. The source of
deviation in the temperature field remains uncertain, various approaches to
adapt the algorithm have been unsuccessful. It is assumed that this decrease
in numerical stability, caused by the decrease of the spatial grid step ∆x, is
related to the time step ∆t which remains mesh independent for the energy
equation. Thus, according to [26] should decrease like ∆t = O (∆x2).
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4. Code validation - two-dimensional test case

Figure 4.21.: Radiative (D2Q8) and temperature (D2Q9) field validation: κa = 0.5 m−1

Figure 4.22.: Radiative (D2Q8) and temperature (D2Q9) field validation: κa = 0.75 m−1

Figure 4.23.: Radiative (D2Q8) and temperature (D2Q9) field validation: κa = 1 m−1
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4.2. Radiation

Figure 4.24.: Radiative (D2Q16) and temperature (D2Q9) field validation: κa = 0.5 m−1

Figure 4.25.: Radiative (D2Q16) and temperature (D2Q9) field validation: κa = 0.75 m−1

Figure 4.26.: Radiative (D2Q16) and temperature (D2Q9) field validation: κa = 1 m−1
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4. Code validation - two-dimensional test case

4.2.2.7. Limitations

A major obstacle in coupling the RTLBE and the ETLBE turned out to be
the different relaxation time parameters τ . As for the RTLBE any artificial
relaxation parameter would be linked to the absorption coefficient. Thus, any
variation has an immanent influence on the absorptive properties. On the other
hand, lowering of the relaxation time parameter in the ETLBE may result in
stability issues of the solution.
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5. Application of the LBM for
radiative simulation of
industrial furnaces

The common purpose of industrial furnaces, ovens or kilns is to transfer a
certain amount of heat Q to a load. The required amount of heat can be
calculated from Eq. 5.1 from the loads weight, specific heat and temperature
rise. [49]

Q = m · c ·∆T (5.1)

There is a large variety of different industrial furnaces available, however, this
chapter will focus on the application of the LBM on a walking hearth furnace. A
walking hearth furnace is a heating chamber with loads placed on large refractory
slabs for product advancement, with top firing only. [49]
Furnaces of this kind are used in general as continuous furnaces for the pur-
pose of billet reheating during the production of steel [14]. It is of immense
importance to the quality of steel that the temperature distribution inside the
slab is uniform when the steel is discharged from the furnace [50].

Figure 5.1.: Walking hearth furnace, cross-section detail [49]

One of the major disadvantages of walking hearth furnaces is that the load
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5. Application of the LBM for radiative simulation of industrial furnaces

is only heated from the top. Nevertheless, these types of furnaces have the
advantage that apart from rectangular billets, also round billets can be pushed
through the furnace. The load advancement is realized through a shift and
lift mechanism by the refractory slabs. In figure 5.1 a cross-section through
a walking hearth furnace is given, in which the load is heated from the top
through a burner positioned on the side wall.

5.1. Furnace configuration

The walking hearth furnace under consideration was already investigated by
Prieler et al. [2]. The furnace is natural gas fired and primarily used for the
reheating of steel billets. Subsequently figure 5.2 gives a schematic overview of
the furnace operation. The furnaces is subdivided in different heating zones, as
illustrated. These zones imply different temperature marks and thus a different
number as well as configuration of the flat flame burners in use. The billets
entering the furnace are initially heated up by the exiting flue gas, before
entering the actual pre-heating zone consisting of 8 burners. Subsequently,
a cooling wall separates the pre-heating zone from the heating and soaking
zone. The number of burners in the heating zone and in the soaking zone is 24
and 16 respectively. The purpose of the cooling wall is, on the one hand, to
minimize the heat losses during the loading of the furnace, in order to maintain
a constant zone of high temperatures in the heating and soaking zone. On the
other hand, the cooling wall represents a reduction of the cross-section of the
furnace, and thus, the velocity is locally increased, therefore the convective
heat transport is increased as well. The division in separate zones is necessary
to sustain a uniform temperature distribution.
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5.1. Furnace configuration

Figure 5.2.: Schematic figure of the furnace operation [2]

The physical properties of the furnace medium are given in table 5.1. They
represents mass-weighted average values of the three-dimensional CFD simula-
tions from [2].

Table 5.1.: Physical properties of the gas phase in the furnace

physical property furnace medium
density ρ in (kg/m3) 0.284
specific heat capacity Cp in J/(kgK) 1360.3
thermal conductivity k in W/(mK) 0.0454
absorption coefficient κa in 1/m 0.266
molecular viscosity η in kg/(ms) 1.72e-05

A separate validation of the LBM model with the physical properties listed
above was performed, which showed similar performance as the results using
the medium air.

73



5. Application of the LBM for radiative simulation of industrial furnaces

5.2. Applied lattice Boltzmann radiation
modelling approach

The walking hearth furnace was modelled using the LBM in three consecutive
steps illustrated in Fig. 5.4 - 5.6. A two-dimensional model of the furnace was
built, using the longitudinal symmetry plane of the three-dimensional model as
a reference (see Fig. 5.3). The flue gas outlet as well as the in- and outlet for
the loading of the furnace was not considered. In the first step (Fig. 5.4) the
outermost gas enclosure was modelled, which was extended in the second step
by the cooling wall (Fig. 5.5). The final model (Fig. 5.6) included a furnace
load of 64 billets. The Stark number has a value of 1.7244e− 05 in all of the
above described simulation steps, thus, illustrating once again the dominating
role of radiation in the heat transfer.

Figure 5.3.: Configuration of the walking hearth furnace without walls [2]
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5.2. Applied lattice Boltzmann radiation modelling approach
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Figure 5.4.: Empty furnace geometry without cooling wall
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Figure 5.5.: Empty furnace geometry with cooling wall
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Figure 5.6.: Furnace geometry with cooling wall and 64 billets loaded
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5. Application of the LBM for radiative simulation of industrial furnaces

5.2.1. Furnace configuration 1: empty furnace geometry
without cooling wall

The gas enclosure of the walking hearth furnace investigated was modelled in
this first step as a rectangular geometry (see Fig. 5.4). The boundary temper-
ature values were provided through the three-dimensional model by [2]. The
temperature profile of the bottom wall was assumed to be linearly increasing
from approximately 740 K to 1400 K. The reference solution was provided
by a first-order DOM calculation. The validation was performed along the
horizontal centre line of the furnace, as illustrated in figure 5.7. The furnace
was discretised using a uniform mesh with 400 lattice nodes representing the
furnace height, and 4250 lattice nodes representing the furnace length.

17 m

1.
6
m

Figure 5.7.: Furnace validation reference lines

In order to demonstrate the effect of the boundary conditions on the LBM solu-
tion, figure 5.8 shows the radiative intensity and temperature of the horizontal
centre line of the furnace. The temperature calculated using the LBM deviates
from the reference solution in the vicinity of the high-temperature boundary,
where the values are over-predicted. Consequently, this led to a deviation of
the radiative intensity at the high-temperature boundary.
Subsequently, in figure 5.9 a comparison of results is given for a mesh of the size
400× 4250, hence equalling an evenly distributed spatial resolution of a node
every 40 mm. The results show in general good comparison, however, in the
vicinity of the boundaries deviations are visible. The maximum temperature
and radiative intensity values illustrated by the colour-bar are limited to a
small region in the north-east corner of the furnace, and thus are not noticeable
in the figure itself.
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5.2. Applied lattice Boltzmann radiation modelling approach

Figure 5.8.: Furnace configuration 1: comparison of the radiative intensity on the horizontal
centre line of the furnace 77



5. Application of the LBM for radiative simulation of industrial furnaces

Figure 5.9.: Furnace configuration 1: comparison of the LBM and DOM results
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5.2. Applied lattice Boltzmann radiation modelling approach

5.2.2. Furnace configuration 2: empty furnace geometry
with cooling wall

In the second step the cooling wall was added to the furnace geometry (see
Fig. 5.5). The cooling wall itself was modelled by a temperature gradient given
between the pre-heating zone and the heating zone. The temperature gradient
caused by the cooling wall has been set for this case to approximately 109K
and is assumed to be linear. The furnace was discretised using a uniform mesh
with 400 lattice nodes representing the furnace height, and 4250 lattice nodes
representing the furnace length.

Results (Fig. 5.10) show in general good comparison with the DOM solution,
however, in the vicinity of the boundaries major deviations are detectable.
This was presumably caused by the temperature boundary condition. Previous
results of the empty furnace geometry (see Sec. 5.2.1) have shown that in the
vicinity of high temperature gradients the developed LBM is prone to error.
Furthermore, a slight over-prediction of quantities is visible in the soaking zone
of the furnace, as compared to the reference solution.
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5. Application of the LBM for radiative simulation of industrial furnaces

Figure 5.10.: Furnace configuration 2: comparison of the LBM and DOM results
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5.2. Applied lattice Boltzmann radiation modelling approach

5.2.3. Furnace configuration 3: furnace geometry with
cooling wall and billets loaded

In the last step billets were added to the furnace geometry. The reference
solution was calculated once again in Fluent using a first order DOM as well
as the P1 model. Initially the same uniform mesh of the size 400× 4250 was
used for both the LBM and their respective reference solutions calculated in
Fluent. Due to the high computational effort the mesh was only discretised
further for the LBM model, as given by the table 5.2 below.

Table 5.2.: Mesh size for the modelling of the final furnace simulation using the LBM

initial mesh high resolution mesh
size 400× 4250 800× 8500

The results for the initial mesh of the size 400× 4250 are given in figure 5.11,
in which the good comparison between the LBM and DOM is evident for
the main gas phase. The increased radiation and temperature levels in the
soaking zone of the LBM solution were caused by the boundary conditions.
The same behaviour of the developed LBM was encountered in the validation
test case. The boundary conditions for the billets in the Fluent solution was
implemented using an increasing linear temperature profile provided by a user-
defined function (UDF). Subsequently, the results of the furnace simulation
using the P1 model are illustrated (Fig. 5.12). The solution was calculated in
Fluent using the same mesh as was previously used for the calculation with
the DOM. The results are en bloc comparable to those calculated using the
DOM.

Further discretisation of the mesh, to a size of 800 × 8500 nodes, for the
LBM model led to a lower maximum temperature, presumably caused by
the decrease of artefacts through better mesh resolution, as can be seen in
figure 5.13. Evidently the mesh resolution seems to have only minor effects on
the radiative field.
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5. Application of the LBM for radiative simulation of industrial furnaces

Figure 5.11.: Furnace configuration 3: comparison of the LBM and DOM results
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5.2. Applied lattice Boltzmann radiation modelling approach

Figure 5.12.: Furnace configuration 3: comparison of the LBM and P1 results
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5. Application of the LBM for radiative simulation of industrial furnaces

Figure 5.13.: Furnace configuration 3: comparison of the LBM and DOM results (high
resolution mesh)
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5.3. Billet heating

5.2.3.1. Truncation criterion

In all of the presented LBM calculations the solution was deemed to be stable
if the maximum change of one cell node value prior to the last simulation was
smaller than 1E − 06. Analysis of the error development showed a steady but
slow decrease for the radiative solution, whilst the solution of the energy trans-
port equation was achieved significantly faster. This led to a total simulation
runtime of the final furnace model (see Fig. 5.6) of approximately 36 hours for
the high resolution mesh, using a computer with an Intel i3 CPU with 3.4 GHz
and 8 GB RAM.

5.3. Billet heating

The radiative intensity in the cells prior to the billets was compared amongst
the three methods (LBM, DOM, P1). Figure 5.14 shows the mean average
radiative intensity per billet, calculated from their respective adjacent cells.

Figure 5.14.: Mean radiative intensity in gaseous phase prior to billets
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5. Application of the LBM for radiative simulation of industrial furnaces

In the first third of the furnace the results of the LBM are in good accor-
dance with the reference solution. However, in the vicinity of the cooling wall
the high temperature gradients cause deviations. With increasing temperature
in the heating and soaking zone of the furnace the deviation between the LBM
solution and the reference solutions increases.
The radiative heat flux transferred onto the billets was calculated from the
difference of the incident radiation on the boundary and the nodes prior to
selfsame (see Fig. 5.15).

Figure 5.15.: Lattice nodes used for the calculation of the radiative heat flux on the billets

For better visualisation the mean value of the three resulting billet wall fluxes
was calculated and compared to those computed in Fluent. It is clearly visible
in Fig. 5.16, that with increasing proximity to the cooling wall the heat fluxes,
which were calculated using the LBM, deviate strongly from the CFD solutions.
The ongoing deviation in the heating and soaking zone of the furnace is linked
to the increased incident radiation in these zones (see Fig. 5.14).
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5.3. Billet heating

Figure 5.16.: Comparison of transferred heat onto billets between the LBM, DOM and P1
model

5.3.1. Temperature distribution inside the solid steel billet

The heat equation given below was used to calculate the billet heating, as heat
inside the billets is only transferred through conduction. The holding time of
each billet at its respective position was 100 s. Thus, the heat transfer could
be calculated for each billet, starting from the known initial condition for the
first billet, which was supplied to the furnace at an ambient temperature of
20◦ C. The density of the steel billets was assumed to be 7800 kg/m3.

∂ρh

∂t
= ∇ (k∇T ) (5.2)

The left-hand-side of Eq. 5.2 denotes the temporal temperature change respec-
tively the temporal change of enthalpy which relates to the temperature as
following,

h = c · T (5.3)

in which c denotes the specific heat capacity of the steel and T denotes to the
temperature of the billet whereat the reference temperature was set to zero.
The right-hand-side of Eq. 5.2 denotes the spatial change in temperature due to
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5. Application of the LBM for radiative simulation of industrial furnaces

conduction, described by the thermal conductivity parameter k. The physical
properties parameters of the steel were assumed to be constant.
The boundary temperature values were calculated from the radiative field
reversing the previously described boundary condition.

TWall =
11

18
· 4

√
I

σ
(5.4)

The factor 11
18

introduced in Eq. 5.4 represents the sum of node weighting
values of the lattice used for solving the heat transfer equation in the furnace,
as illustrated in figure 5.17 (centre node, one primary direction node an two
diagonal nodes). The conversion factor is needed in order to gain the surface

Figure 5.17.: Node weights used for the calculation of the conversion factor of boundary
temperature values

temperature values of the gas enclosure from the incident radiation values.
The heat transfer equation was solved using a LBE (cf. Sec. 3.4) with both
a D2Q5 and D2Q9 lattice arrangement. The advantage of the D2Q5 lattice
arrangement in this particular case is the significantly reduced calculation time,
as well as the fact, that the initial boundary condition data from the furnace
provided relatively low resolution for the billet surfaces.
In case of such low resolution source data a high resolution lattice arrangement
such as the D2Q9 showed less advantageous, because of a higher affinity for
artefacts in the solution caused by the diagonal streaming steps.
Exemplary the heat conduction for the eighth billet was calculated in a steady
state simulation at the end of its holding time (tBillet = 100 s). A comparison
of results was provided by a Fluent solution. Both solutions were initialised
with the same set of boundary conditions calculated from the LBM solution, in
order to meaningfully compare results in regard to the heat conduction. The
pseudo-time step for the ETLBE was set to ∆t = 0.5 for this particular case.
The results for the horizontal and vertical centre lines are given in Fig. 5.18.
An exceedingly good comparison of the LBM results with those of the CFD
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5.3. Billet heating

solution is visible. The increase of the temperature values towards the right
side of the billet is caused by the incoming radiation from the ninth billet. As
the distance between the neighbouring billets is closer than the top wall of the
furnace, thus, meaning a shorter path of transport for the PDFs, the billets
side walls have a higher temperature than the billets top wall.

Figure 5.18.: Comparison of heat conduction between the Fluent and LBM solution for the
heating of the eighth billet

The heat distribution for the eighth billet is given by Fig. 5.19. The overall
good comparability between the solution methods for the same given set of
boundary conditions is evident.

Figure 5.19.: Comparison of the heat distribution in the eighth billet; left LBM (D2Q5),
right Fluent solution
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5. Application of the LBM for radiative simulation of industrial furnaces

5.4. Discussion of results

With increasing complexity of the furnace geometry deviations between the
LBM and the CFD solutions are visible. The boundary conditions used, in
particular the energy equations boundary condition, is prone to error as quasi fic-
titious values are imposed through the weighting of the given temperature value
in different directions (cf. appendix C). The overestimation of the temperature
values especially in the vicinity of the billet outlet at the end of the furnace,
which is reflected in the incident radiation results, could be overcome through an
adaptation of the pseudo-time step in the formulation of the ETLBE. However,
caution is advised since any change of the pseudo-time step is linked to the
relaxation time parameter, and thus the physical properties of the gas enclosure.
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6. Conclusions

The LBM was successfully applied to predict the radiative heat transfer in a
gas enclosure. The model was thoroughly validated, for both the calculation of
the radiative transfer and the energy transfer, as well as the resulting two-way
coupled model to simulate radiative heat transfer in participating media. The
effect of different physical properties (e.g. κa) on the results were studied, as
well as different geometrical solution approaches. The LBM furnace simulations
were carried out using a customary budget computer with an Intel i3 CPU
with 3.4 GHz and 8 GB RAM.
The code validation revealed that the implemented temperature boundary
condition is prone to error, depending on the temperature gradients and the
absorption coefficient chosen. Thus, these errors occur only in the close proxim-
ity of the boundary itself. Overall, a good comparison between the LBM and
the CFD solutions, respectively the DOM and P1 method, could be achieved.
The gas enclosure of the investigated walking hearth furnace was successfully
modelled using the LBM. However, the same issues were encountered as in the
validation test case. Especially in zones of high temperatures and temperature
gradients an over-prediction of quantities was visible.
Major issue throughout the development process remained the numerical sta-
bility of the code, this was especially the case for the energy equation and
its dependency of the relaxation-time parameter on the chosen grid. Apart
from the numerical stability the implemented boundary condition of the energy
equation proved to be prone for errors with increasing temperature gradients.
Future development of the radiative LBM models should target three-dimensional
calculation of the radiative heat transfer, as well as the option to include dif-
ferent wall emissivities and in general enhanced boundary conditions. Due to
the increasing computational effort it is highly recommended to focus further
code design on C or C++ type programming languages to enable an optimized
workflow. The extension to a transient model might prove useful, especially
under consideration of future coupling of the LBEs in multi-physics problems.
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6. Conclusions

An accurate knowledge of the numerical accuracy of the method and in par-
ticular the boundary conditions, which have substantial influence on selfsame,
will decide the future of the LBM in the prediction of radiative heat transfer in
industrial furnaces.
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Appendix A.

Macroscopic conservation
equations of radiation

The foundation amongst many publications concerning the modelling of radia-
tive transfer using the LBM is an article written by Ma et al. [32], whereupon
this section is primarily based.

The starting point is the Boltzmann equation of photon transfer in phase
space derived from the equations of radiation hydrodynamics by [33]. The
discipline of radiation hydrodynamics is the branch of hydrodynamics in which
the moving fluid absorbs and emits electromagnetic radiation, and in so doing
modifies its dynamical behavior. [51]
In phase space, the Boltzmann equation of photon transfer can be written as

∂fν (r,Ω, t)

∂t
+∇ · [vfν (r,Ω, t)] +∇ν · [a fν (r,Ω, t)] = Qν (r,Ω, t) (A.1)

where ν is the frequency associated with each photon; r is the vector of spatial
position; Ω is the direction of travel of the photon; t is time; v and a are
microscopic velocity and acceleration, respectively; ∇ and ∇ν are the divergence
operators in geometric space and velocity space, respectively; fν(r,Ω, t) is the
distribution function of the photon; and Qν(r,Ω, t) is the source of photons, in-
cluding the contributions of absorption, emission, and scattering in the radiation
field. For a medium with a uniform refractive index, ignoring the relativistic
effect, a = 0 and v = cΩ, Eq. A.1 can be simplified and written as:

∂fν (r,Ω, t)

∂t
+ c∇ · [Ωfν (r,Ω, t)] = Qν (r,Ω, t) (A.2)
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where c is the velocity of light in space. [32]
Regarding only absorption and thus neglecting scattering the source term in Eq.
A.2 is supplemented with an emission source function of photons qν (r,Ω, t).

∂fν (r,Ω, t)

∂t
+ cΩ · ∇fν (r,Ω, t) = qν (r,Ω, t)− cκa,ν (r, t) fν (r,Ω, t) (A.3)

The number of absorbed photons is described by the term fν (r,Ω, t). Next
the radiative intensity Iν (r,Ω, t) is introduced. Selfsame is a function of the
speed of light, the Planck’s constant, the frequency and the number of absorbed
photons; Iν (r,Ω, t) = chνfν (r,Ω, t).

∂Iν (r,Ω, t)

∂t
+ Ω · ∇Iν (r,Ω, t) = Sν (r,Ω, t)− κa,νIν (r,Ω, t) (A.4)

The term Sν represents a source term which denotes the rate of energy emission
caused by spontaneous processes. Selfsame is defined as

Sν (r,Ω, t) = hνqν (r,Ω, t) = n2κa,νIbν (A.5)

in which the refractive index n and the specific black body emission intensity
Ibν is introduced. Rewriting the second term on the left-hand-side of Eq. A.4
in which s represents the length along Ω,

Ω · ∇Iν (r,Ω, t) =
∂Iν (r,Ω, t)

∂s
(A.6)

the RTE, without scattering for a medium with a uniform refractive index, can
be written as following:

∂Iν (r,Ω, t)

c∂t
+
∂Iν (r,Ω, t)

∂s
= n2κa,νIb,ν − κa,νIν (r,Ω, t) (A.7)

Integration of the initial RTE given by Eq. A.4 over all directions in space
holds, ∫

4π

∂Iν (r,Ω, t)

c∂t
dΩ +

∫
4π

Ω · ∇Iν (r,Ω, t) dΩ =∫
4π

Sν (r,Ω, t) dΩ−
∫

4π

κa,νIν (r,Ω, t) dΩ

(A.8)
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which can be rewritten by factoring out the constants

∂

c∂t

(∫
4π

Iν (r,Ω, t) dΩ

)
+∇ ·

(∫
4π

ΩIν (r,Ω, t) dΩ

)
=∫

4π

Sν (r,Ω, t) dΩ− κa,ν
∫

4π

Iν (r,Ω, t) dΩ

(A.9)

Next the radiative energy density (Eq. A.10), the radiative heat flux (Eq. A.11)
and the radiative momentum (Eq. A.12) are in introduced.

Eν =

∫
4π

hνfν (r,Ω, t) dΩ =
1

c

∫
4π

Iν (r,Ω, t) dΩ (A.10)

Fν =

∫
4π

Ωhνcfν (r,Ω, t) dΩ =

∫
4π

ΩIν (r,Ω, t) dΩ (A.11)

Pν =
1

c

∫
4π

ΩΩhνcfν (r,Ω, t) dΩ =
1

c

∫
4π

ΩΩIν (r,Ω, t) dΩ (A.12)

The radiative energy conservation equation is given from the above as following,
where Qν represents the source of radiative energy:

∂Eν
∂t

+∇ · Fν = Qν − cκa,νEν (A.13)

Equation A.13 can alternatively be gained from Eulerian hydrodynamics. As
opposed to the Lagrangian equations which move with the fluid at fluid velocity
the Eulerian description is streamed through by the fluid and thus describes
parameters at each point in time and space. The radiation energy density (Eq.
A.14), radiation momentum (Eq. A.15), radiation energy flux (Eq. A.16) as
well as the radiation momentum flux (Eq. A.17) are given below.

Er,ν =

∫
4π

hνfν (r,Ω, t) dΩ = Eν (A.14)

MR,ν =

∫
4π

(
hνΩ

c

)
fν (r,Ω, t) dΩ =

Fν

c2
(A.15)

ERF,ν =

∫
4π

hνcΩfν (r,Ω, t) dΩ = Fν (A.16)

MRF,ν =

∫
4π

cΩ

(
hνΩ

c

)
fν (r,Ω, t) dΩ = Pν (A.17)
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The Eulerian conservation equation in vector notation can be written as

∂D

∂t
+∇F = W (A.18)

where D, F, and W express density, flux, and source for any quantity, respec-
tively [32]. Substitution of the radiation momentum (Eq. A.15), radiation
energy flux (Eq. A.16) and the radiation momentum flux (Eq. A.17) in the
Eulerian conservation equation (Eq. A.18) renders,

∂Eν
∂t

+∇Fν = Wν (A.19)

∂Fν

c2∂t
+ +∇Pν = 0 (A.20)

in which external radiative energy sources, including emission and absorption of
energy, are denoted by the term Wν . The above derived macroscopic radiative
conservation equations form the basis of connection to be considered with the
LBM.
The LBM for this specific case has been constructed using a SRT approach as
following:

Iν,Ω (r + cΩ∆t, t+ ∆t)− Iν,Ω (r, t) = −1

τ

[
Iν,Ω (r, t)− Ieqν,Ω (r, t)

]
+ Sν,Ω (r, t) ∆t+ wΩIν,Ω (r, t) ∆t (A.21)

The equilibrium PDF should obey the conservation conditions stated by Eqs.
A.10 - A.12.

Eν =
1

c

∫
4π

Iν,Ω (r, t) =
1

c

∑
Ω

Ieqν,Ω (r, t) (A.22)

Fν =
∑
Ω

ΩIν,Ω (r, t) =
∑
Ω

ΩIeqν,Ω (r, t) (A.23)

Pν =
1

c

∑
Ω

ΩΩIν,Ω (r, t) =
1

c

∑
Ω

ΩΩIeqν,Ω (r, t) (A.24)

The one-dimensional form of Eq. A.21 is written as following:

Iν,Ω (x+ cΩ∆t, t+ ∆t)− Iν,Ω (x, t) = −1

τ

[
Iν,Ω (x, t)− Ieqν,Ω (x, t)

]
+ Sν,Ω (x, t) ∆t+ wΩIν,Ω (x, t) ∆t (A.25)
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where Ω denotes the direction of radiative transfer. The PDF of the radiative
intensity has been formally written as fi as introduced in Ch. 3. A Taylor
series expansion of the left-hand-side yields:

fi (x+ cΩ∆t, t+ ∆t) =
∞∑
n=0

∆tn

n!
(∂t + cΩ∇)n fi (x, t) (A.26)

Next the Taylor series expansion up to the second order is introduced in Eq
A.25,

∆t (∂t + cΩ∇) fi (x, t) +
∆t2

2
(∂t + cΩ∇)2 fi (x, t) =

− 1

τ
[Iν,Ω (x, t)− f eqi (x, t)] + S (x, t) ∆t+ wΩfi (x, t) ∆t (A.27)

Introducing perturbation series of the PDF the time and spatial scale as well
as the source term lead to Eqs. A.28 - A.31. Note that the one-dimensional
form of the spatial derivation is now written instead of ∇ as ∂

∂x
= ∂x.

fi =
∞∑
n=0

εnf
(n)
i = f

(0)
i + εf

(1)
i + ε2f

(2)
i + ... (A.28)

∂t =
∞∑
n=0

εn∂tn = ∂t0 + ε∂t1 + ε2∂t2 + ... (A.29)

∂x =
∞∑
n=0

εn∂xn = ∂x0 + ε∂x1 + ε2∂x2 + ... (A.30)

S =
∞∑
n=0

εnS(n) = S(0) + εS(1) + ε2S(2) + ... (A.31)

Thus inserting the above perturbations up to the second order in A.27 yields:

ε

(
2∑

n=0

εn∂tn + cΩ
2∑

n=0

εn∂xn

)
2∑

n=0

εnf
(n)
i

+
ε2

2

(
2∑

n=0

εn∂tn + cΩ
2∑

n=0

εn∂xn

)
2∑

n=0

εnf
(n)
i =

1

τ

(
2∑

n=0

εnf
(n)
i − f

eq
i

)
+ ε

(
2∑

n=0

εnS(n)

)
+ εwi

(
2∑

n=0

εnf
(n)
i

)
(A.32)
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Appendix A. Macroscopic conservation equations of radiation

The reformulated equation can be written in the consecutive order of the
parameter ε.

ε0 : f
(0)
i = f eqi (A.33)

ε1 : ∂tf
(0)
i + cΩ∂x0f

(0)
i = −1

τ
f

(1)
i + S(0) + wif

(0)
i (A.34)

Substituting Eq. A.33 into Eq. A.34 yields:

∂f eqi
∂t

+ cΩ∂x0f
eq
i +

1

τ
f

(1)
i = S(0) + f eqi (A.35)

Spatial summation of the above equation leads to:∑
Ω

∂f eqi
∂t

+
∑

Ω

cΩ∂xf
eq
i =

∑
Ω

S +
∑

Ω

wif
eq
i (A.36)

Which can be presented for the one-dimensional case as given by [32], thus
formally neglecting the frequency associated influence:∑

Ω

∂f eqi
∂t

+
∑

Ω

cΩ
f eqi
∂x

=
∑

Ω

S +
∑

Ω

wif
eq
i (A.37)

Thus for weights w given as a function of the absorption coefficient κa and the
speed of light c, the recovered macroscopic equation is given as

∂I

c∂t
+∇I = S − κaI (A.38)

100



Appendix B.

Macroscopic conservation
equations of the energy equation

Mishra et al. showed in [26], whereupon this chapter is primarily based, a
numerical analysis of a transient conduction-radiation problem whereat a LBM
for the energy equation was derived. The general form of the LBM equations
without external sources or fluxes is written as following:(

∂

∂t
+ ξ(i) · ∇

)
g(i) (r, t) = Ωi (B.1)

in which i denotes the directions of the PDFs given by g(i) (r, t). The collision
term is approximated using the BGK operator. The main difficulty in handling
the full Boltzmann equation arises from the complicated nature of the collision
terms. [23] Each collision term handles two parts, the first representing the
removed and absorbed particle, the second representing collision caused emission
of particles. The emission term is replaced in the BGK model by a term
representing a Maxwellian distribution of the emitted particles [23], thus allowing
conservation of the required quantities.

Ωi =
(geqi − gi)

τ
(B.2)

As evident in Eq. B.2 the model is a SRT model and thus according to [26] the
relaxation constant τ can be related to the diffusivity of the medium, using
the C-E analysis. The C-E analysis is in general terms used to determine
a connection between the LBE and the macroscopic equation, in this case
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Appendix B. Macroscopic conservation equations of the energy equation

the energy equation. The Chapman–Enskog expansion is a vehicle to derive
macroscopic equations from stream and collide equations. This is a crucial step
of the LBM development, since it is not guarantied or even clear whether the
computations in mesoscale generate suitable solutions of macroscopic target
equations or not [sic!]. [24]
Rewriting Eq. B.1 with the BGK collision operator given in Eq. B.2 yields,(

∂

∂t
+ ξ(i) · ∇

)
g(i) (r, t) =

(geqi − gi)
τ

(B.3)

which when applied a zero-order moment gives a diffusion equation for the
evolution of the scalar, with a diffusivity proportional to τ [26]. If the zeroth,
first and second order moments of both PDFs coincide, mass, momentum and
energy are conserved through the BGK operator [24].
Recalling the corresponding LBE given below, renders the basis for further
derivation of the macroscopic energy equation.

gi (τx + ~ei∆t, τy + ~ei∆t, t+ ∆t) = gi (τx, τy, t)−
∆t

τ
[gi − geqi ] (B.4)

A Taylor series expansion of the left-hand-side up to the second order following
[24] was performed.

gi (~x+ ~ei∆t, t+ ∆t) = gi (~x, t) +

∆t (∂t + ~ei∇) gi (~x, t) +
∆t2

2
(∂t + ~ei∇)2 gi (~x, t) (B.5)

Substitution of Eq. B.5 in Eq. 4.2 gives the following equation:

∆t (∂t + ~ei∇) gi (~x, t) +
∆t2

2
(∂t + ~ei∇)2 gi (~x, t) =

− ∆t

τ
[gi (~x, t)− geqi (~x, t)] (B.6)

Division by ∆t renders:

(∂t + ~ei∇) gi (~x, t) +
∆t

2
(∂t + ~ei∇)2 gi (~x, t) = −1

τ
[gi (~x, t)− geqi (~x, t)] (B.7)

Next the scaling parameter ε (Note: in no connection to the radiative emissivity)
is introduced which relates to the time step ∆t as following:

ε = ∆t2 (B.8)
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Furthermore the time and space derivation are written according to the diffusive
limit, [21], [24],

∂t ∼ ε∂t ∇ ∼ ε∇ (B.9)

and the PDF gi is expanded up to the second order by ε, as terms of higher
order tend to be rather small and can be neglected according to [20].

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i (+...) (B.10)

Deploying the scaling (B.8) and the expansion (B.10), the reformulated Eq.
(B.7) can be rewritten in the consecutive orders of parameter ε as [24]

(
ε2∂t + ~eiε∇

)
gi (~x, t) +

ε2

2

(
ε2∂t + ~eiε∇

)2
gi (~x, t) =

− 1

τ
[gi (~x, t)− geqi (~x, t)] (B.11)

ε0 : g
(0)
i = geqi (B.12)

ε1 : ~ei∇g(0)
i = −1

τ
g

(1)
i (B.13)

ε2 : ∂tg
(0)
i + ~ei∇g(1)

i = −1

τ
g

(2)
i (B.14)

Inserting the zeroth and first orders of ε in the second order equation gives:

∂tg
eq
i − τ |~ei|2|∇|2g

eq
i = −1

τ
g

(2)
i (B.15)

For the D2Q5 lattice |~ei|2 equals one. Recalling that all PDFs are close to their
equilibrium, and the sum of all discrete equilibria represents the temperature,
the recovered heat equation can be written as following:

∂T

∂t
− α∇2T = 0 (B.16)

The relation between the thermal diffusivity and the relaxation time was found
by Mishra et al. in [27] as following:

τ =
3α

|ei|2
+

∆t

2
(B.17)
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Appendix C.

Boundary conditions for the
energy lattice Boltzmann equation

The Dirichlet boundary conditions are dependent on the lattice arrangement
used, as they incorporate the lattice directions at the boundary. The imple-
mentation for the D2Q9 lattice arrangements was done by Mishra et al. [26].
Selfsame implementation has been adapted for usage of a D2Q5 lattice as
described by [20]. Capital letters describe the respective directional maximum
value, lower case letters the iterating directional variable.

C.1. D2Q9

This section is based on the findings of Mishra et al. [26].

� north boundary

g4 (x, Y, t) = (2/9) · Tnorth boundary − g2 (x, Y, t)

g7 (x, Y, t) = (1/18) · Tnorth boundary − g5 (x, Y, t)

g8 (x, Y, t) = (1/18) · Tnorth boundary − g6 (x, Y, t)

� east boundary

g3 (X, y, t) = (2/9) · Teast boundary − g1 (X, y, t)

g6 (X, y, t) = (1/18) · Teast boundary − g8 (X, y, t)

g7 (X, y, t) = (1/18) · Teast boundary − g5 (X, y, t)

105



Appendix C. Boundary conditions for the energy lattice Boltzmann equation

� south boundary

g2 (x, 0, t) = (2/9) · Tsouth boundary − g4 (x, 0, t)

g5 (x, 0, t) = (1/18) · Tsouth boundary − g7 (x, 0, t)

g6 (x, 0, t) = (1/18) · Tsouth boundary − g8 (x, 0, t)

� west boundary

g1 (0, y, t) = (2/9) · Twest boundary − g3 (0, y, t)

g5 (0, y, t) = (1/18) · Twest boundary − g7 (0, y, t)

g8 (0, y, t) = (1/18) · Twest boundary − g6 (0, y, t)

C.2. D2Q5

� north boundary

g4 (x, Y, t) = (1/3) · Tnorth boundary − g2 (x, Y, t)

� east boundary

g3 (X, y, t) = (1/3) · Teast boundary − g1 (X, y, t)

� south boundary

g2 (x, 0, t) = (1/3) · Tsouth boundary − g4 (x, 0, t)

� west boundary

g1 (0, y, t) = (1/3) · Twest boundary − g3 (0, y, t)
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Appendix D.

From the Boltzmann equation to
the lattice Boltzmann equation

This section is based on [42] and shows the basic modus operandi behind the
derivation of the LBE.

Boltzmann equation:
∂f

∂t
+ v∇f = Q

Boltzmann equation (BGK approximation):

∂f

∂t
+ v∇f = −1

τ
(f − f eq)

discrete Boltzmann equation:

∂fi
∂t

+ vi∇fi = −1

τ
(fi − f eqi )

non-dimensional discrete Boltzmann equation:

∂Fi

∂t̂
+ ci∇̂Fi = − 1

τ̂ ε
(Fi − F eq

i )

discretized Boltzmann equation:

Fi
(
x̂, t̂+ ∆t̂

)
− Fi

(
x̂, t̂
)

∆t̂
+cix

Fi
(
x̂+ ∆x̂, t̂+ ∆t̂

)
− Fi

(
x̂, t̂+ ∆t̂

)
∆t̂

... = − 1

τ̂ ε
(Fi − F eq

i )

lattice Boltzmann equation:

Fi (x+ ci∆t, t+ ∆t)− Fi (x, t) = −1

τ
(Fi − F eq

i )
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