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Kurzfassung

Diese Arbeit beschäftigt sich mit der Formoptimierung. Diese versucht, ein Gebiet zu
finden, welches ein gegebenes Kostenfunktional über einer Menge zugelassener Ge-
biete minimiert. Um dieses Gebiet zu finden, wird die Geschwindigkeitsmethode
benutzt, welche sukzessive Verformungen an einem Anfangsgebiet vornimmt. Falls
das Anfangsgebiet polygonal berandet ist oder ein Lipschitzgebiet ist, ist diese Ver-
formung nicht unbedingt stabil. Deswegen führt diese Arbeit eine Variation der
Geschwindigkeitsmethode ein, die auch für polygonal berandete Geometrien und Lip-
schizgebiete stabil ist. Die beiden Verformungen werden auf das freie Randwertprob-
leme von Bernoulli angewendet und miteinander verglichen. Dafür werden mit der
Randelementmethode numerische Annäherungen des Gebietes berechnet, welches das
Kostenfunktional minimiert.
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Abstract

Shape optimization is used to minimize a cost functional over a set of admissible ge-
ometries. An example where this can be used is the design of structures. But the
standard speed method, which are used to solve the shape optimization problem, of-
ten have problems, when they are applied to geometries with polygonal boundaries
and Lipschitz domains. Therefore, in this work a modification of the speed method is
introduced, which works for geometries with polygonal boundaries and Lipschitz do-
mains. This modification of the speed method, furthermore, is applied to the Bernoulli
free boundary problem and an approximation of the optimal geometry is calculated
with the boundary element method.
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Introduction

Shape optimization is important for the design and construction of structures, for ex-
ample in the aircraft industry, for electromagnetic devices, in fluid mechanics and in
image processing. For examples of this see [5, Examples 2.1 - 2.4].

Shape optimization is used to find a domain in a set M of admissible domains which
minimizes a cost functional subject to a constraint. In general the constraint takes
the form of a partial differential equation, and the cost functional is an integral over
the domain or boundary of the domain, which depends on the solution of the partial
differential equation, and its first order derivatives.
An iterative method of solving a shape optimization problem is the speed method, see
[9]. The speed method calculates a direction v, such that the cost functional decreases
if the domain is deformed in the direction v. But as shown in Chapter 4 the standard
speed method does has problems with domains with polygonal boundaries.
In this work a modification of the speed method is introduced, which regularizes v
by applying a boundary integral operator. This modification is particularly suitable
for less regular domains, including polygonal domains. Additionally, in Chapter 3.3
Remark 8 a mixed boundary value problem is introduced, which can be used to get
the same regularization.

The model shape optimization problem, on which the modification of the speed method
is applied, is inspired by the optimization of high-voltage electrical devices, where pre-
vention of electrical breakdown is the optimization parameter by limiting the electrical
field strength on critical components.
The electrical field strength is determined by the electrostatic field equation, which
reduces to the Laplace equation. The electrical field strength on the surface is maxi-
mized over all the shapes, where the electrical problem is solvable.

This electrical problem is modeled with the Bernoulli free boundary problem, where a
domain Ω ∈ M has to be found, where the following overdetermined boundary value
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12 Introduction

problem is fulfilled:

−∆û = 0 in Ω := ΩO \ ΩI ,

û = 1 on ΓI := ∂ΩI ,

û = 0 on ΓO := ∂ΩO,

∂û

∂n
= λ on ΓI .

(0.1)

The domain Ω has to be in the set of admissible domains M , that means all Ω are
annulus domains with inner boundary ΓI and outer boundary ΓO. Since the boundary
value problem (0.1) is overdetermined, the inner boundary ΓI is a free parameter.

The shape optimization problem to (0.1) is given as a cost functional

J(Ω) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx for Ω ∈M

subject to the constraint

−∆u = 0 in Ω,

u = 1 on ΓI ,

u = 0 on ΓO.

In this shape optimization problem a domain Ω̃ ∈M has to be found which minimizes
the cost functional

J(Ω̃) = min
Ω∈M

J(Ω).

The partial differential equation is solved using the boundary element method, because
the cost functional J(Ω) can be represented on the boundary ∂Ω, and depends only on
the normal derivative of u. An additional advantage of the boundary element method
is that only the boundary ∂Ω has to be discretized, which simplifies the moving of the
mesh in every step of the shape optimization algorithm.

In Chapter 4 the shape optimization problem with the cost functional J(Ω) is solved
numerically. All domains, which are considered in Chapter 4, are domains with polyg-
onal boundaries. The examples contrast the standard speed method with the modified
speed method.
Additionally, the original problem of finding a domain in M with minimal stress on
ΓO is solved by finding he minimal λ > 0 such that there exist a solution of shape
optimization problem. This is solved for ΩO being a L-shape in Section 4.5.

The presentation of the shape optimization and the speed method in this work are
based on ”Introduction to Shape Optimization” by J. Sokolowski and J. Zolesio [9] and
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”Methods of Shape Optimization in Free Boundary Problems” by Jerico B. Bacani [1]
is used specifically for the shape optimization of the Bernoulli free boundary problem.
The chapter on the boundary element method and the Sobolev spaces are based on
”Numerical Approximation Methods for Elliptic Boundary Value Problems” by O.
Steinbach [10] and ”Strongly Elliptic Systems and Boundary Integral Equations” by
W. McLean [6].





1 Shape Optimization

In this chapter some basic definitions and concepts of shape optimization are intro-
duced:

• The cost functional J(Ω).

• The set of admissible domains M .

• The constraint and the material solution.

• The Fréchet derivative of J(Ω).

• The iterative solution method: The speed method.

This chapter is based on the work [9, Chapter 2.1-2.33]. A good starting point certainly
is a simple example that visualizes the various different concepts.

Example 1. To introduce a shape optimization method this example considers a model
problem in R, where an interval

I ∈MI = {(0, 1 + s) | 0 ≤ s ≤ b} (1.1)

has to be found for a given b > 0. This interval has to minimize the cost functional

J(I) =

∫ 1+s

0

(
ũ(s, y)− y

4

)2

dy. (1.2)

Every interval Is in the set of admissible intervals MI has an ordinary differential
equation of the second order as a constraint

−d
2ũ(s, y)

dy2
+ ũ(s, y) = 0 for y ∈ Is,

ũ(s, 0) = 0,

ũ(s, 1 + s) = 1.

(1.3)

The solution of (1.3) is called the material solution and for this example it is
represented as

ũ(s, y) =
sinh(y)

sinh(1 + s)
for y ∈ Is.

Therefore the cost functional can be represented as a function j(s), see Figure 1.1 for
a plot of this function for s ∈ (0, 3).
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16 Shape Optimization

Figure 1.1: Plot of the cost functional J(Is) = j(s) for s ∈ (0, 3).

The interval Ĩ which minimizes J(Is) in MI is calculated by considering the first
derivative dj

ds
(s) of j(s) with respect to s, which for s > 0 has the stationary point

s1 ≈ 1.67221. The second derivative of j(s) is d2j(s1)
ds2

≈ 0.253653 > 0. Therefore, the

interval Ĩ = Is1 is the minimizing interval of J , where

J(Ĩ) = min
I∈MI

J(I).

In this example all important aspects were introduced, which are considered in the
following section.

• There is a cost functional J in (1.2) which is minimized over a set of admis-
sible domains MI in (1.1).

• The constraint in (1.3) is a differential equation.

• Te set of domains MI is represented as a transformation of an initial domain
(0, 1). This is a transformation in the normal direction.

• A derivative over a set of domains in the direction +1 is introduced, called the
Fréchet derivative of J , i.e. dj

ds
(s). Its stationary points are used to find the

minimizing interval.

• Example 1 calculates the general derivative of J over MI , but in general this is
not possible and an iterative method is necessary. One of these methods is the
speed method, see [9, Chapter 2.9].

1.1 Cost Functionals

A shape optimization problem is a minimization problem over a set of domains. In
this section the cost functional of this minimization problem and the set of admis-



1.1 Cost Functionals 17

sible domains M over which the cost functional is minimized are introduced. The
cost functional generally takes the form of an integral over a domain or its boundary
dependent on a solution u of a partial differential equation. Example 1 is a example
for a shape optimization problem where a interval I has to be found such that the
physical property ũ in (1.3) is as close as possible to the linear function y

4
for y ∈ I.

Definition 1 (Cost Functional, [9, Chapter 2.5]). Let d = 2, 3 and Ω ⊂ R
d be a

Lipschitz domain and u ∈ H1(Ω). Then a cost functional of a shape optimization
problem is defined as

J(Ω) =

∫
Ω

j1(x, u(x),∇u(x)) dx+

∫
Γ

j0(x, u(x),∇u(x)) dsx,

where j0 : (x, p, q)→ j0(x, p, q) with j0 : Γ×R×Rd → R and j1 : (x, p, q)→ j1(x, p, q)
with j1 : Ω×R×Rd → R are continuous.
If the function j0 = 0, the cost functional J(Ω) is called distributed, and if the function
j1 = 0, then J(Ω) is called a boundary cost functional.

A Lipschitz domain is a domain with a Lipschitz continuous boundary, see Definition
12. For the definition of the Sobolev space H1(Ω) see (6.6) in the appendix. This
work considers only distributed cost functionals, but most of the concepts also work
for boundary cost functionals.

Example 2. Examples of cost functionals are

J1(Ω) = meas(Ω) =

∫
Ω

dx,

J2(Ω) = meas(Γ) =

∫
Γ

dsx,

J3(Ω) =

∫
Ω

(u(x)− w(x))2 dx.

The cost functional in (1.2) used in the Example 1 is J3 with w(x) = 1
4
x.

Definition 2 (Admissible Domains). The set M is called a set of admissible domains
Ω for the cost functional J if the following is true:

• Each Ω ∈ M is a domain in Rd, that means ∅ 6= Ω ⊂ Rd and Ω is open and
connected.

• For Ω ∈M the cost functional J(Ω) is well defined and J(Ω) ∈ R.

• All domains Ω ∈ M are bounded and there exists a bounded domain UM with
Ω ⊂ UM for all Ω ∈M .

The existence of a solution to a shape optimization problem can be considered with:
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Theorem 1 (Weierstraß Theorem, [8, Theorem 4.16]). Let K be a compact set and
let f : K → R be a continuous function. Then f is bounded and there exist p, q ∈ K
such that f(p) = supx∈K f(x) and f(q) = infx∈K f(x).

Applying Theorem 1 to a cost functional J as given in Definition 1 and to a set of
admissible domains Ω as introduced in Definition 2 results in the conditions:

• M has to be compact,

• and M 3 Ω→ J(Ω) has to be continuous.

If the cost functional J depends on a solution u of a partial differential equation, then
M 3 Ω → u has to be continuous for J to be continuous. Often this means that
all Ω have to be at least Lipschitz domain, otherwise there exists no solution of the
partial differential equation which is regular enough. Therefore, a transformation of
domains such that Lipschitz domains can only be transformed into Lipschitz domains
is considered in Section 1.2.
For an example of a cost functional which depends on the solution of a differential
equation see (1.2).
But the existence of the optimum for shape optimization problems is not the focus of
this work. In the following it is assumed that the cost functional J(Ω) and the set of
admissible domains M are chosen such that J has a minimum in M .

1.2 Transformation of Domains

This section is based on [9, Chapter 2.7-2.15] and [1, Chapter 2].
Usually a topology on a set of domains M is introduced with the characteristic function
χΩ ∈ L∞(Rd) for Ω ∈M , see Definition 14 for the definition of Lp spaces. This means
that the distance between domains Ω1,Ω2 ∈M is

d(Ω1,Ω2) = ‖χΩ1 − χΩ2‖L∞(Rd). (1.4)

For a series of Lipschitz domains {Ωi}∞i=1, which is convergent in terms of d, it can
not be guaranteed that Ω = limi→∞Ωi is also a Lipschitz domain. Therefore, if the
distance d is used it does not preserve the regularity of the boundary, see [9, Section
2.7]. This is a problem, because the domains Ω ∈M have to be Ck-domains k ≥ 1 or
Lipschitz, for the definition of Ck-domains see Definition 13 in the appendix, to ensure
the existence of a solution in H1(Ω) of a partial differential equation. A topology,
therefore, is defined which preserves the regularity of the domain, when a domain is
transformed during the shape optimization process. So, transformations ψ : Ω1 → Ω2

are considered which preserve the regularity of the domain if the L∞(Ω1)-norm of
ψ(x)− x is small enough. This motivates the following definition of domains Ωs close
to a domain Ω.
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Definition 3. Let Ω ∈ M , for a set of admissible domains M as in Definition 2.
Then Ωs ∈M is defined by

Ωs = {y(s) = ϕ(s, x) for x ∈ Ω} ⊂ Rd

for s ∈ [0, ε) with ε > 0 and with the deformation function ϕ(s, ·) : UM → R
d, which

has the following properties:

1. The initial domain is deformed onto itself: ϕ(0, x) = x for x ∈ Ω.

2. For all s ∈ [0, ε) The deformation is continuously differentiable in UM , i.e.
ϕ(s, ·) ∈ C1(UM ;Rd).

3. for all s ∈ [0, ε) the deformation ϕ(s, ·) is bijective and the inverse of the defor-
mation is also continuously differentiable, i.e. ϕ−1(s, ·) ∈ C1(UM ;Rd).

4. For all s ∈ [0, ε) and for x ∈ UM the determinant of the Jacobi matrix of the
deformation ϕ is positive, i.e. detDxϕ(s, x) > 0. The Jacobi matrix is defined
as

Dxϕ(s, x) =

(
∂ϕi(s, x)

∂xj

)d
i,j=1

.

Here Ck(UM) is the set of continuous differentiable function in UM , see (6.2) in
the appendix, and Ck(UM ,R

d) is the set of continuous differentiable vector valued
functions, see (6.3) in the appendix.

Definition 4. The a deformation ϕ : R+×UM → R
d is defined to be in C1([0, ε);Rd)×

C1(UM ;Rd) if ϕ(·, x) ∈ C1([0, ε);Rd) for all x ∈ UM and ϕ(s, ·) ∈ C1(UM ;Rd) for
s ∈ [0, ε)

A deformation ϕ as given in Definition 3, therefore, fulfills ϕ ∈ C1([0, ε);Rd) ×
C1(UM ;Rd). With such a deformation ϕ a distance between Ω ∈ M and Ωs ∈ M is
defined by

dr(Ω,Ω
s) = ‖ϕ(s, ·)− IΩ‖L∞(UM ), (1.5)

where IΩ = ϕ(0, x) = x for x ∈ Ω. The speed method, which is introduced in Section
1.6, only calculates the speed of the deformation on the boundary Γ = ∂Ω, where the
speed of the deformation ϕ is given by the derivative of ϕ(s, x) with respect to s:

Definition 5. For a given ϕ ∈ C1([0, ε);Rd)×C1(UM ;Rd) the speed vector is defined
as

v(s, x) :=
d

ds
ϕ(s, x).

The speed method gives only the speed vector v(0, ·), hence a deformation ϕv must
be calculated depending on the given speed vector v.
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Lemma 2 ([9, Chapter 2.9, Chapter 2.10]). Let ε > 0 be small enough and let the
speed vector v ∈ C0([0, ε);Rd)× C1(UM ;Rd) fulfill

(v(s, x), n(x)) = 0 for allmost all x ∈ ∂UM

for the normal vector n. (If n is not defined on a singular point x̃ of the boundary
∂UM then let v(s, x̃) = 0.) Then there exists a deformation ϕ with all properties as
stated in Definition 3.

Next it is shown that a deformation ϕ as introduced in Definition 3 transforms
Lipschitz domains into Lipschitz domains. The requirements in the following theorem
on ϕ are actually strong enough to transform C1-domains into C1-domains.

Theorem 3. Let Ω ⊂ Rd be a Lipschitz domain and the deformed domain Ωs be given
as in Definition 4. Then Ωs is also a Lipschitz domain.

Proof. Given y ∈ ∂Ωs then x = ϕ−1(s, y) ∈ ∂Ω. Then there exists an open subset Wj

and a Lipschitz hypograph Ωj such that x ∈ Wj and Ωj = Ω ∩Wj, see Definition 12
in the appendix. Since ϕ−1 is continuous ϕ(s,Wj) is open and ∪jϕ(s,Wj) is a cover
of ∂Ωs. Then Ωs

j = ϕ(s,Ωj) is also a Lischitz hypograph, because Ωj is a Lipschitz
hyopgraph and ϕ(s, ·) ∈ C1(UM ;Rd).

Remark 1. Actually we need only ϕ(s, ·) ∈ C0,1(UM) to prove Theorem 3, but then
Dxϕ(s, x) has to be defined in a weaker form. This is not done in this work. Never-
theless it would not change much in the stated results of this work, excepting that all
the results are only valid for almost all x.

The topology of the deformation introduced in (1.5) is much stronger then the topol-
ogy of the characteristic functions in (1.4), because it transforms Lipschitz domains
into Lipschitz domains, see Theorem 3.

Additional Properties of the Deformation ϕ

Next, a few properties of the deformation ϕ are presented which are needed later.

Corollary 4. Let ϕ be as in Definition 3 with ϕ, ϕ−1 ∈ C1([0, ε);Rd) × C1(UM ;Rd)
and with the deformation y(s) = ϕ(s, x) as given in Definition 3. Then the derivatives
of ϕ and ϕ−1 at s = 0 for fixed y(0) = x ∈ UM have the following properties:

1. The derivative with respect to s of the inverse of ϕ is given by

d

ds

[
ϕ−1
k (s, y(s))

]
s=0

= −vk(0, x)

for k = 1, . . . , d.
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2. The derivative with respect to s of the Jacobi matrix Dxϕ(s, x) of the deformation
ϕ is given by

d

ds

[
∂ϕk(s, x)

∂xl

]
s=0

=
∂vk(0, x)

∂xl

for k, l = 1, . . . , d.

3. The derivative with respect to s of the inverse of the Jacobi matrix of the defor-

mation ϕ, which is Dyϕ
−1(s, y) =

(
∂ϕ−1

k (s,y(s))

∂yl

)d
l,k=1

, is given by

d

ds

[
∂ϕ−1

k (s, y(s))

∂yl

]
s=0

= −∂vk(0, x)

∂xl

for k, l = 1, . . . , d.

4. For s ∈ [0, ε) and ε > 0 small enough the determinant of the Jacobi matrix
Dxϕ(s, x) of the deformation ϕ is given by

detDxϕ(s, x) = 1 + s div v(0, x) +O(s2).

5. The derivative with respect to s at s = 0 of the determinant of the Jacobi matrix
of the deformation is given by

d

ds
[detDxϕ(s, x)]s=0 = div v(0, x).

Proof. 1. Since ϕ−1 is the inverse of ϕ the representation

x = ϕ−1
k (s, ϕk(s, x))

is valid. Then the derivative is applied to both sides of the equation and it results
in

0 =
d

ds

[
∂ϕ−1

k (s, x)

∂xl

]
s=0

+
d

ds

[
∂ϕk(s, x)

∂xl

]
s=0

,

since ϕk(0, x) = ϕ−1
k (0, x) = xk.

2. This is true since ϕ ∈ C1([0, ε);Rd)× C1(UM ;Rd) and so ∂ϕl(s,x)
∂xk

is continuously
differentiable in s and continuous in x.

3. Since ϕ−1 is the inverse of ϕ the representation of I is

I = Dxϕ(s, x)
(
Dyϕ

−1(s, y(s))
)
,

for y(s) = ϕ(s, x). And if the derivative is applied to both sides it follows that

0 =

(
d

ds
Dxϕ(s, x)

)
Dyϕ

−1(s, y(s)) +Dxϕ(s, x)

(
d

ds
Dyϕ

−1(s, y(s))

)
.
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Using that ϕ(0, x) = ϕ−1(0, x) = x results in

0 =
d

ds
[Dxϕ(s, x)]s=0 I + I

d

ds

[
Dyϕ

−1(s, y(s))
]
s=0

.

The stated result follows from property 2.

4. The proof of this is based on [1, Lemma 2.11]: For s small enough the deformation
can be represented with a Taylor series ϕ(x, s) = x+sv(0, x)+O(s2). The Jacobi

matrix of the deformation A(s) = (ai,j)i,j=1,...,d = ∂ϕl(s,x)
∂xk

, therefore, is

ai,i =
∂ϕi(x, s)

∂xi
= 1 + s

∂vi(0, x)

∂xi
+O(s2),

ai,j =
∂ϕj(x, s)

∂xi
= s

∂vj(0, x)

∂xi
+O(s2) for i 6= j.

The determinant can be expressed with the Leibnitz formula

detA(s) =
∑
σ∈Sd

sign(σ)
d∏
i=1

ai,σ(i),

where Sd covers all permutations of {1, . . . , d}.
The sets are defined as

• I includes only the identity permutation,

• Fd = {σ ∈ Sd | ∃k ≤ d such that σ(k) = k} as all permutations where at
least on k ≤ d exists such that the permutation is

σ = {σ(1), . . . , σ(k − 1), k, σ(k + 1), . . . , σ(d)}.

Then Sd can be split into Sd = I ∪ (Fd \ I) ∪ (Sd \ Fd). Consequently the
determinant can be split into three parts as well,

detA =
d∏
i=1

ai,i +
∑

σ∈(Fd\I)

sign(σ)
d∏
i=1

ai,σ(i) +
∑

σ∈(Sd\Fd)

sign(σ)
d∏
i=1

ai,σ(i)

=: A1 + A2 + A3.

These three parts are examined as follows:

• σ = {1, . . . , d} = I results in

A1 =
d∏
i=1

(
1 + s

∂vi(0, x)

∂xi
+O(s2)

)
= 1 + s div v(0, x) +O(s2).
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• For each σ ∈ Fd \ I at least two j1, j2 exist such that σ(j1) 6= j1, σ(j2) 6= j2

and aji,σ(ji) = s
∂vσ(ji)

(0,x)

∂xji
+O(s2), because otherwise σ = {1, . . . , d}. In this

case for each σ ∈ Fd \ I it turns out that

d∏
i=1

ai,σ(i) =

(
s2∂vσ(j1)(0, x)

∂xj1

∂vσ(j2)(0, x)

∂xj2
+O(s2)

) d∏
i=1,i 6=j1,j2

ai,σ(i) = O(s2)

and that means A2 = O(s2).

• From σ ∈ Sd \ Fd it follows σ(i) 6= i for i = 1, . . . , d that means

d∏
i=1

ai,σ(i) = sd
d∏
i=1

(
∂vσ(i)(0, x)

∂xi
+O(s2)

)
= O(s2)

and A3 = O(s2).

It follows that detA(s) = A1 + A2 + A3 = 1 + s div v(0, x) +O(s2).

5. From 4. it follows that

detA(s) = A1 + A2 + A3 = 1 + s div v(0, x) +O(s2)

and the derivative of this determinant is

d

ds
detA(s) = div v(0, x) +O(s).

Eulerian and Lagrangian descriptions

The Eulerian descriptions and the Lagrangian descriptions are defined for functions
living on all Ωs with s ∈ [0, ε) and ε > 0 small enough such that Lemma 2 is true.
This means that any function f̃ defined on Ωs has an Eulerian description f̃ in y and
an Lagrangian description f in x which are convertible into each other with

f̃(s, y) = f̃(s, ϕ(s, x)) = f(s, x),

f(s, x) = f(s, ϕ−1(s, y)) = f̃(s, y),

since the deformation ϕ is bijective.

For a set of functions f̃(s, ·) : Ωs → R for s ∈ [0, ε) the derivative of f̃ in the
direction v ∈ C0([0, ε);Rd)× C1(UM ;Rd) at s = 0 is[

df̃

ds
(s, y(s))

]
s=0

= lim
s→0+

f̃(s, y(s))− f̃(0, y(0))

s
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with y(s) = ϕ(s, x) and ϕ(s, x) is given by Lemma 2. For the functions f(s, x) =
f̃(s, ϕ(s, x)) for s ∈ [0, ε) the derivative of f̃ in the partial direction v ∈ C0([0, ε);Rd)×
C1(UM ;Rd) at s = 0 is[

∂f̃

∂s
(s, y(s))

]
s=0

= lim
s→0+

f(s, x))− f(0, x)

s

with y(s) = ϕ(s, x) and ϕ(s, x) is given by Lemma 2.

1.3 Material and Shape Derivatives

This section is based on [9, Chapter 2.25 - 2.33].
The derivative of the cost functional J(Ω) as given in Definition 1 is represented
by derivatives of the material solution u, this is shown later in Theorem 8. These
derivatives are called the material derivative u̇ and the shape derivative u′. Both
depend on the speed vector v since the domains Ωs are given by v as stated in Lemma
2.
The domain Ωs ∈ M is a transformation of an initial domain Ω as introduced in
Definition 3. For s ∈ [0, ε) the material solution ũ(s, ·) ∈ H1(Ωs) is defined as the
weak solution of

−∆yũ(s, y) = f̃(s, y) for y ∈ Ωs,

ũ(s, y) = h̃(s, y) for y ∈ Γs = ∂Ωs
(1.6)

by finding ũ(s, ·) ∈ Vh = {w ∈ H1(Ωs) | w(y) = h̃(s, y) for y ∈ Γs} such that∫
Ωs

(∇ũ(s, y),∇v(y)) dy =

∫
Ωs
f̃(s, y)v(y) dy ∀v ∈ H1

0 (Ωs).

The Sobolev space H1(Ωs) is defined by (6.6) in the appendix and H1
0 (Ωs) is the

Sobolev space with trace zero on Γ which is defined by (6.11) in the appendix.

Definition 6 (Material derivative, [9, Chapter 2.25]). Let
v ∈ C0([0, ε);Rd) × C1(UM ;Rd) and let a function f̃(s, ·) ∈ L2(Ωs) for all s ∈ [0, ε),
where the domains Ωs with points y(s) = ϕ(s, x) and x = y(0) ∈ Ω. The deformation
ϕ(s, x) is given by Lemma 2. Then the material derivative (or the total derivative) of
f = f̃(0, ·) at s = 0 in the direction v is defined by

ḟ(x; v) =
d

ds
f̃(s, y(s))

∣∣∣∣
s=0

if ḟ(·; v) ∈ L2(Ω).
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Definition 7 (Shape derivative, [9, Chapter 2.30]). Let v ∈ C0([0, ε);Rd)×C1(UM ;Rd)
and let a function f̃(s, ·) ∈ L2(Ωs) for all s ∈ [0, ε), where the domains Ωs with points
y(s) = ϕ(s, x) are defined by v, see Lemma 2. Set f(s, x) = f̃(s, ϕ(s, x)). Then the
shape derivative (or partial derivative) of f at s = 0 in direction v is

f ′(x; v) =
∂

∂s
f(s, x)

∣∣∣∣
s=0

if f ′(·; v) ∈ L2(Ω).

If f is regular enough the shape derivative f ′ in direction v can be expressed by the
following:

Corollary 5. Let f ′(·, v) ∈ H1(Ω), ḟ(·, v) ∈ H1(Ω) and (∇f(0, ·), v(0, ·)) ∈ H1(Ω).
Then the shape derivative of f in the direction v is

f ′(x; v) = ḟ(x; v)− (∇f(0, x), v(0, x)) for x ∈ Ω.

For a Lipschitz domain Ω and its boundary Γ = ∂Ω and let f ′(·, v) ∈ H1(Γ), ḟ(·, v) ∈
H1(Γ) and (∇Γf(0, ·), v(0, ·)) ∈ H1(Γ). Then the shape derivative of f in the direction
v is

f ′(x̃; v) = ḟ(x̃; v)− (∇Γf(0, x̃), v(0, x̃)) for x̃ ∈ Γ.

For x̃ ∈ Γ the surface gradient of f is defined by

∇Γf(x̃) = lim
Ω3x→x̃∈Γ

(∇f(x)− (n(x̃),∇f(x))n(x̃)) .

Proof. This is proven by considering the material derivative ḟ ∈ H1(Ω):

ḟ(x; v) =
d

ds
f̃(s, ϕ(s, x))

∣∣∣∣
s=0

=
∂

∂s
f̃(s, ϕ(s, x))

∣∣∣∣
s=0

+

(
∇yf̃(s, y),

d

ds
ϕ(s, x)

)∣∣∣∣
s=0

= f ′(x; v) + (∇xf(0, x), v(0, x)).

The same can be done on the boundary Γ. From this follows the statement of the
corollary.

Remark 2. If the result of Lemma 5 is applied to a solution of boundary value prob-
lem as in (1.6) the requirement (∇f(0, ·), v(0, ·)) ∈ H1(Ω) is fulfilled if u(0, ·) ∈ H2(Ω)
and vi ∈ C1(UM) for i = 1, . . . , d. If Ω is a C l,1-domain with l ≥ 1 the Theorem in
[4, Theorem 2.5.1.1] states that the solution of (1.6) is u ∈ H l+1(Ω), hence if Ω is a
C1,1-domain then the requirements of Lemma 5 are fulfilled.

Then the material derivative u̇(·; v) ∈ H1(Ω) is

u̇(x; v) =
d

ds
ũ(s, y(s))

∣∣∣∣
s=0

for x ∈ Ω

and the shape derivative u′ ∈ H1(Ω) is

u′(x; v) = u̇(x; v)− (∇u(0, x), v(0, x)) for x ∈ Ω. (1.7)
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In Section 1.5 the shape derivative u′ is explicitly calculated for the general Dirich-
let boundary value problem (1.6). Generally for Lipschitz domains Ω the term is
(∇u(0, ·), v(0, ·)) 6∈ H1(Ω). Therefore, in Section 2.2 u′(·; v) ∈ H1/2(Ω) is calculated
for the Bernoulli free boundary problem.

Next, a representation of

d

ds

[
(Dxϕ(s, x))−>∇xu(s, x)

]
s=0

is given, with the shape derivative u′, which is needed in the following section.

Corollary 6. For ϕ as given in Definition 3 and u′(·, v) ∈ H1(Ω), u̇(·, v) ∈ H1(Ω)
and u(0, ·) ∈ H2(Ω) there holds

d

ds

[
(Dxϕ(s, x))−>∇xu(s, x)

]
s=0

= ∇u′(x; v) +Hu(x)v(0, x) for x ∈ Ω,

where Hu(x) is the Hessian matrix of u given by Hu(x) =
(
∂2u(0,x)
∂xj∂xi

)d
i,j=1

.

Proof. This is proven by differentiating in parts

D :=
d

ds

[
(Dxϕ(s, x))−>∇xu(s, x)

]
s=0

=
d

ds
[∇xu(s, x)]s=0 +

d

ds

[
(Dxϕ(s, x))−>

]
s=0
∇xu(0, x) (1.8)

with Dxϕ(0, x)−> = I. Next, the derivatives with respect to s and x are interchanged:

d

ds
(∇xu(s, x))

∣∣∣∣
s=0

= ∇x
d

ds
ũ(s, y(s))

∣∣∣∣
s=0

= ∇xu̇(x; v),

which results in the gradient of the material derivative u̇ of ũ. Using the expression of
the shape derivative u′ as given in Corollary 5 the material derivative is represented
as

∇xu̇(x; v) = ∇xu
′(x; v) + (Dxv(0, x))>∇u(0, x) +Hu(x)v(0, x).

For the second term in (1.8) it is used that d
ds

(
(Dxϕ(s, x))−1) = −Dxv(0, x), see

Corollary 4. Hence, the second term is

d

ds

[
(Dxϕ(s, x))−>

]
s=0
∇xu(0, x) = − (Dxv(0, x))>∇xu(0, x).

Finally it follows that

D = ∇xu
′(x; v) + (Dxv(0, x))>∇u(0, x) +Hu(x)v(0, x)− (Dxv(0, x))>∇xu(0, x)

= ∇xu
′(x; v) +Hu(x)v(0, x).
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1.4 Fréchet Derivative of Shape Functionals

This section is based on [9, Chapter 3.3].
The derivative of the cost functional J(Ωs) with respect to s is introduced. This is the
same as the derivative in the direction of the speed vector v, because Ωs is given by
v, see Lemma 2. The cost functional considered is of the form

J(Ω) =

∫
Ω

F1(u(x),∇u(x)) dx, (1.9)

where F1(p, q) : R×Rd → R is a given function. As example, the cost functional of
the Bernoulli free boundary problem in Chapter 2 is as in (1.9) with

F1(u(x),∇u(x)) = (∇u(x),∇u(x)).

Definition 8. For v ∈ C0([0, ε);Rd)× C1(UM ;Rd) the Fréchet derivative of the cost
functional J(Ω) at Ω = Ω0 in the direction of v is defined as the limit

dJ(Ω; v) := lim
s→0+

J(Ωs)− J(Ω)

s
, (1.10)

where Ωs is defined by v, see Lemma 2.
The functional J(Ω) is called differentiable if the limit in (1.10) exists for all directions
v ∈ C0([0, ε);Rd)×C1(UM ;Rd) and if the mapping dJ(Ω; v) is continuous and linear
for v ∈ C0([0, ε);Rd)× C1(UM ;Rd).

Theorem 7 (The Hadamard formula, [9, Theorem 2.27]). Let J be a cost functional
which is differentiable for any Ck-domain Ω ⊂ UM for k ≥ 0. Then there exists a
scalar distribution

g = g(Γ) ∈ D−k(Γ),

where D−k(Γ) =
(
Dk(Γ)

)′
is the dual space of Dk(Γ) = Ck(Γ) such that

dJ(Ω; v) = 〈g, (v, n)〉D−k(Γ)×Dk(Γ).

The Hadamard formula shows that if g is smooth enough, the Fréchet derivative of
J(Ω) can be represented as an integral of the form:

dJ(Ω; v) =

∫
∂Ω

g(x)(n(x), v(0, x)) dsx, (1.11)

with a function g which depends on u.
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Optimality Conditions

If the Hadamard formula given in (1.11) is valid and g is regular enough then the
Fréchet derivative of the cost functional J at Ω = Ω0 as introduced in Definition 8 is
given by

d

ds
[J(Ωs)]s=0 = dJ(Ω; v)

and the Fréchet derivative of the cost functional J at s = t > 0 is

d

ds
[J(Ωs)]s=t = dJ(Ωt; v(t, ·)). (1.12)

Hence the second derivative is defined as

d2

ds2
J(Ωs)

∣∣∣∣
s=0

= lim
s→0+

dJ(Ωs; v(s, ·))− dJ(Ω; v)

s
. (1.13)

Let Ω̃ ∈M be the domain which has the minimal value of J , i.e.

J(Ω̃) ≤ J(Ω) ∀Ω ∈M,

then for all speed vectors v(0, ·) ∈ C1(UM ;Rd) which fulfill the condition

(v(0, x), n(x)) = 0 for x ∈ ∂UM

the following necessary optimality conditions hold

dJ(Ω0; v) = 0,

d2

ds2
J(Ωs)

∣∣∣∣
s=0

≥ 0,
(1.14)

where Ωs = ϕ(s, Ω̃) are all deformations close to Ω̃ as introduced in Definition 3 and
n(x) is the normal vector of ∂UM . If UM is a Lipschitz domain the normal vector is
defined by (6.4). For more information on optimality conditions of shape optimization
problems see [9, Section 3.3].

Representation of dJ(Ω; v) by the Shape Derivative u′

The Fréchet derivative dJ(Ω; v) of the cost functional J is expressed using u′ and the
derivatives of F1 : R×Rd → R in p and q, which are given by

∂uF1(u(x),∇u(x)) :=
∂

∂p
F1(p, q)

∣∣∣∣
(p,q)=(u(x),∇u(x))

,

grad∇u F1(u(x),∇u(x)) := gradq F1(p, q)
∣∣
(p,q)=(u(x),∇u(x))

,

if the shape derivative u′ is given.
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Theorem 8. Let u′ ∈ H1(Ω), u ∈ H2(Ω) and let the cost functional J be given as in
(1.9) with F1(p, q) continuous differentiable in p and q. Then the Fréchet derivative
in the direction of v ∈ C0([0, ε);Rd)× C1(UM ;Rd) is

dJ(Ω; v) =

∫
Ω

(∂uF1(u(x),∇u(x)))u′(x) dx

+

∫
Ω

(grad∇u F1(u(x),∇u(x)),∇u′(x)) dx

+

∫
Ω

div [F1(u(x),∇u(x))v(0, x)] dx.

Proof. The deformation ϕ is inserted into the Definition 8 of dJ(Ω; v) and it results in

dJ(Ω; v) = lim
s→0

1

s

(∫
Ωs
F1(ũ(s, y),∇yũ(s, y)) dy −

∫
Ω

F1(u(x),∇u(x)) dx

)
=

∫
Ω

lim
s→0

1

s

(
F1(u(s, x), Dxϕ(s, x)−>∇xu(s, x)) detDxϕ(s, x)− F1(u(x),∇u(x))

)
dx.

Since F1 is differentiable and detDxϕ(0, x) = 1 the limit is equal to the derivative for
s = 0. The Fréchet derivative dJ(Ω; v), therefore, is calculated with the product rule:

dJ(Ω; v) =

∫
Ω

d

ds

[
F1(u(s, x), Dxϕ(s, x)−>∇xu(s, x)) detDxϕ(s, x)

]
s=0

dx

=

∫
Ω

d

ds

[
F1(u(s, x), Dxϕ(s, x)−>∇xu(s, x))

]
s=0

dx

+

∫
Ω

F1(u(0, x),∇xu(0, x))
d

ds
[detDxϕ(s, x)]s=0 dx

=: B1 +B2.

(1.15)

The Fréchet derivative is split in two parts B1 and B2. First, B2 is calculated using
Corollary 4 for the derivative of detDxϕ(s, x). This results in

B2 =

∫
Ω

F1(u(0, x),∇xu(0, x)) div(v(0, x)) dx

=

∫
Ω

div(F1(u(0, x),∇xu(0, x))v(0, x)) dx

−
∫

Ω

(gradx F1(u(0, x),∇xu(0, x)), v(0, x)) dx.

(1.16)

The gradient gradx(F1(u(0, x),∇xu(0, x)) can be expressed as

gradx F1(u,∇u) = (∂uF1(u,∇u))∇u+ (grad∇u F1(u,∇u))Hu, (1.17)



30 Shape Optimization

where Hu(x) is the Hessian matrix of u. Then the term B2 is expressed as

B2 =

∫
Ω

[div(F1(u,∇u)v)− ∂uF1(u,∇u)(∇u, v)− (grad∇u F1(u,∇u), Huv)] dx,

using (1.16) and (1.17). Next, B1 as defined in (1.15) is calculated by using the chain
rule:

B1 =

∫
Ω

∂uF1(u(0, x),∇u(0, x))u̇(x; v) dx

+

∫
Ω

(
grad∇u F1(u(0, x),∇u(0, x)),

d

ds

[
Dxϕ(s, x)−>∇xu(s, x)

]
s=0

)
dx.

(1.18)

Using Corollary 6 for d
ds

[
Dxϕ(s, x)−>∇xu(s, x)

]
s=0

in (1.18), B1 is expressed as

B1 =

∫
Ω

∂uF1(u,∇u)u̇+ (grad∇u F1(u,∇u),∇u′) + (grad∇u F1(u,∇u), Huv) dx.

Inserting B1 and B2 into the expression for the Fréchet derivative in (1.15) gives an
expression of dJ by

dJ(Ω; v) =

∫
Ω

∂uF1(u,∇u)u̇+ (grad∇u F1(u,∇u),∇u′) dx

+

∫
Ω

div(F1(u,∇u)v)− ∂uF1(u,∇u)(∇u, v) dx

=

∫
Ω

∂uF1(u,∇u)u′ + (grad∇u F1(u,∇u),∇u′) + div(F1(u,∇u)v) dx.

In the last step Corollary 5 is used, which states

u′(x; v) = u̇(x; v)− (∇u(0, x), v(0, x))

and the assertion is proved.

Remark 3. If the cost functional J in (1.9) depends additionally on x with

J(Ω) =

∫
Ω

F1(x, u(x),∇u(x)) dx

then the Fréchet derivative of J is

dJ(Ω; v) =

∫
Ω

(∂uF1(x, u(x),∇u(x)))u′(x) dx

+

∫
Ω

(grad∇u F1(u(x),∇u(x)),∇u′(x)) dx

+

∫
Ω

div [F1(u(x),∇u(x))v(0, x)] dx

+

∫
Ω

(∂xF1(x, u(x),∇u(x)), v(0, x)) dx
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with

∂xF1(x, u(x),∇u(x)) :=
∂

∂y
F1(y, p, q)

∣∣∣∣
(y,p,q)=(x,u(x),∇u(x))

.

For an example for this kind of cost functionals see Example 1.

1.5 Shape Derivative for the Laplace Dirichlet

Boundary Value Problem

In this section concepts for elliptic boundary value problems are used, since the Lapla-
cian is a linear, self-adjoint elliptic operator. See the appendix for a short review of
Lipschitz domains Ω and Sobolev spaces Hs(Ω). For a more detailed introduction of
Sobolev spaces see [6, Chapter 3]. And for an introduction to the variational methods
used in this section to solve weak formulation of the Dirichlet boundary value problem,
see [10, Chapter 3].

If the material function ũ(s, ·) : Ωs → R is the solution of a Dirichlet boundary
value problem, the shape derivative u′ is also a solution of a Dirichlet boundary value
problem. In this section the Dirichlet boundary value problem is calculated which has
the solution u′(·; v).
First, the material solution ũ(s, ·) of the boundary value problem in (1.6) is considered
for all domains Ωs for s ∈ [0, ε), which are deformations of Ω by Definition 3. Thus, if
the functions f̃(s, ·) ∈ L2(Ωs) and h̃(s, ·) ∈ H1/2(Γs) are given, the material solution
ũ(s, ·) ∈ V s, for

V s := {ṽ ∈ H1(Ωs) | ṽ(y) = h̃(s, y) for y ∈ Γs},

is the solution of the weak formulation of the boundary value problem in (1.6):∫
Ωs

(∇ũ(s, y),∇v(y)) dy =

∫
Ωs
f̃(s, y)v(y) dy ∀v ∈ H1

0 (Ωs). (1.19)

This problem is uniquely solvable, see [6, Theorem 4.10], since for each bounded Lip-
schitz domain Ωs there exists a solution ũ(s, ·) ∈ V s. Thus, the Eulerian representa-
tions u(s, x), f(s, x) and h(s, x) are used as introduced in Section 1.2. In particular
the functions in Ω = Ω0 are

u(0, x) := ũ(0, ϕ(0, x)), f(0, x) := f̃(0, ϕ(0, x)), h(0, x) := h̃(0, ϕ(0, x)) for x ∈ Ω.

In the following it is assumed that the shape derivatives f ′(·; v) ∈ L2(Ω), h′(·; v) ∈
H1/2(Γ) and u′(·; v) ∈ L2(Ω) as in Definition 5 exist, with the speed vector v as given
in Definition 5.
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Weak Formulation for u′ in Ω

So, to find the boundary value for u′ the weak formulation in (1.19) is considered for
test functions in C∞0 (Ωs) ⊂ H1

0 (Ωs),∫
Ωs

(∇ũ(s, y),∇ψ(y)) dy =

∫
Ωs
f̃(s, y)ψ(y) dy ∀ψ ∈ C∞0 (Ωs). (1.20)

For s small enough the test function ψ ∈ C∞0 (Ωs) is also a test function in Ω = Ω0.
This is the case since Ωs = ϕ(s,Ω) with ϕ continuous and K = suppψ is compact.
Therefore, there exists ŝ > 0 such that K ⊂ Ωŝ and consequently ψ ∈ C∞0 (Ω)∩C∞0 (Ωs)
for all s ≤ ŝ.
Hence, if from both sides of the weak formulation (1.20) the derivative at s = 0 is
taken, it follows that∫

Ω

(∇u′(x; v),∇ψ(x)) dx =

∫
Ω

f ′(x; v)ψ(x) dx ∀ψ ∈ C∞0 (Ω),

using Theorem 8, ψ(x) = ψ(y) and that ψ disappears on the boundary. This means
that u′ ∈ H1(Ω) fulfills the weak formulation of

−∆u′(x; v) = f ′(x; v) for x ∈ Ω.

Dirichlet Condition u′ on Γ

In the next part a Dirichlet condition for u′(x; v) is calculated. Note that for a function
u ∈ H1(Ω) the shape derivative and the trace on Γ are not commutative, see (6.10) in
the appendix for the definition of the trace γint0 . In the following the transformation
from the trace of a shape derivative γint0 (u′) is converted to the shape derivative of the
trace (γint0 u)

′
.

First, the trace of a shape derivative is

γint0 (u′) (x; v) = u̇(x; v)− (∇u(0, x), v(0, x)) for x ∈ Γ.

For u ∈ H1(Ω) its trace belongs to H1/2(Γ), cf. [10, Theorem 2.21]. Secondly, the
shape derivative of the trace is(

γint0 u
)′

(x; v) = u̇(x; v)− (∇Γu(0, x), v(0, x))

= u̇(x; v)− (∇u(0, x), v(0, x)) + (n(x),∇u(0, x))(v(0, x), n(x))

= γint0 (u′) (x; v) +
∂u(0, x)

∂n
(v(0, x), n(x)) for x ∈ Γ. (1.21)

With this the weak formulation of the Dirichlet condition in (1.19) is∫
Γs
γint0 ũ(s, y)ψ(y) dsy =

∫
Γs
h̃(s, y)ψ(y) dsy ∀ψ ∈ C∞0 (Rd).
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If the derivative at s = 0 on both sides is taken the weak formulation is∫
Γ

((
γint0 u

)′
(x; v) + κu|Γ(0, x)(v(0, x), n(x))

)
ψ(x) dsx

=

∫
Γ

(h′(x; v) + κh(0, x)(v(0, x), n(x)))ψ(x) dsx ∀ψ ∈ C∞0 (Rd),

see [9, Section 2.33]. This results in∫
Γ

(
γint0 u

)′
(x; v)ψ(x) dsx =

∫
Γ

h′(x; v)ψ(x) dsx ∀ψ ∈ C∞0 (Rd),

because u(0, ·) ∈ V 0. Thus, u(0, x) = h(0, x) for x ∈ Γ. Note that(
γint0 ψ

)′
(x; v) =

∂ψ(x)

∂n
(v(0, x), n(x)) = 0,

since ∂ψ
∂n

= 0 on Γ. Hence, applying the transformation of the shape derivatives to the
boundary in (1.21) is∫

Γ

(
γint0 (u′) (x; v) +

∂u(0, x)

∂n
(v(0, x), n(x))

)
ψ(x) dsx =

∫
Γ

h′(x; v)ψ(x) dsx

∀ψ ∈ C∞0 (Rd).

Boundary Value Problem for u′

It follows that u′(·; v) ∈ L2(Ω) is the weak solution of

−∆xu
′(x; v) = f ′(x; v) for x ∈ Ω,

u′(x; v) = h′(x; v)− ∂u(0, x)

∂n
(v(0, x), n(x)) for x ∈ Γ,

(1.22)

where f ′(·, v) ∈ L2(Ω) and h′(·, v) ∈ H1/2(Γ).

Remark 4 (Solvability in H1(Ω)). For the solvability of the Dirichlet boundary value
problem (1.22) in H1(Ω) the function

Γ 3 x 7→ l(x; v) :=
∂u(0, x)

∂n
(v(0, x), n(x)) (1.23)

has to be in H1/2(Γ) as well. If Ω is a C1-domain then u ∈ H2(Ω) and (v(0, ·), n) ∈
C(Γ) and then

l(·; v) ∈ H1/2(Γ).

Therefore, there exists a solution u′(·; v) ∈ H1(Ω) of (1.22). But if l(·; v) ∈ H t−1/2(Γ)
with t < 1 the solutions of (1.22) are in H t(Ω), see Section 2.2 for an example of this
for t = 1/2.
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1.6 The Speed Method and Admissible Speed

Vector Fields

In the previous sections the tools for shape optimization were introduced, which are
used in this section to give deformation by the speed method. On the other hand this
section gives an explicit deformation ϕ, which deforms a domain Ω ∈M into a domain
Ωs such that

J(Ωs) ≤ J(Ω),

for a given cost functional as given in Definition 1, a given set of admissible domains
M as introduced in Definition 2 and s small enough. From the optimality conditions
in (1.14) it follows that a deformation ϕ with

d

ds
J(Ωs)

∣∣∣∣
s=0

= dJ(Ω; v) ≤ 0

results in J(Ωs) ≤ J(Ω) for s small enough. This is the case since the speed vector v
gives a deformation ϕ, see Lemma 2. For s small enough this deformation ϕ can be
approximated by

ϕ(s, x) ≈ ϕv(s, x) := x+ sv(0, x). (1.24)

If v(0, ·) ∈ C0([0, ε);Rd)× C1(UM ;Rd) and s is small enough such that all ϕv(s, x) ∈
UM then ϕv ∈ C1([0, ε);Rd)×C1(UM ;Rd) and ϕv fulfills all conditions in Definition 3.
Furthermore, the Fréchet derivative is represented with the Hadamard formula (1.11)
as

dJ(Ω; v) =

∫
Γ

g(x)(v(0, x), n(x))dsx

with a function g depending on the material solution u. Finally, Theorem 8 shows
that dJ(Ω; v) is expressed with the shape derivative u′(·; v), which also depends on
the speed vector v. An example is the Bernoulli free boundary problem, see Section 2.3.

Consequently our original problem of finding a domain Ωs is equivalent to finding
a speed vector v(0, ·) on the boundary with

dJ(Ω; v) ≤ 0, (1.25)

(v(0, x), n(x)) = 0 for x ∈ UM (1.26)

and there exists a shape derivative u′(·, v) ∈ Hr(Ω) for 0 ≤ r ≤ 1. If the conditions
(1.25) and (1.26) are fulfilled the speed vector v is called a valid descent direction.
Generally the first choice is the speed vector

vG(0, x) = −g(x)n(x) for x ∈ Γ (1.27)



1.6 The Speed Method and Admissible Speed Vector Fields 35

and this guarantees that

dJ(Ω; v) = −
∫

Γ

(g(x))2 dx ≤ 0.

If g ∈ L2(Γ), the integral exists and the descent direction vG is valid. In general for
Lipschitz domains Ω the function g 6∈ L2(Γ), because it holds g ∈ H−1/2(Γ) only,
see (2.20) in Chapter 2. The Dirichlet datum of the shape derivative u′, additionally,
depends on

l(x; v) =
∂u(x)

∂n
(v(0, x), n(x)).

For a solution u′(·; v) ∈ H1(Ω) the regularity l(·; v) ∈ H1/2(Γ) is needed.
This all suggests that a higher regularity of v(0, ·) is preferable.

Lemma 9. Let A : H−1/2(Γ)→ H1/2(Γ) be an H−1/2(Γ)-elliptic and bounded boundary
integral operator and let gni ∈ H−1/2(Γ) be for i = 1, . . . , d then the speed vector

vA =
(
v1
A, . . . , v

d
A

)>
with

viA(0, x) = −A(gni)(x) x ∈ Γ for i = 1, . . . , d, (1.28)

(vA(x), n(x)) = 0 x ∈ ∂UM

is a valid descent direction.

Proof. The condition (1.25) is fulfilled since

J(Ω; vA) =
d∑
i=1

〈
viA(0, ·), gni

〉
Γ

= −
d∑
i=1

〈
A(gni), gni

〉
Γ
≤ −c

d∑
i=1

∥∥gni∥∥2

H−1/2(Γ)
≤ 0.

The Lemma 9 introduces a valid descent direction vA which is more or at least as
regular as vG. The two valid directions

vG = −gn,
vA = −A(gn).

are compared in Chapter 4. Nevertheless, it can be stated already:
The descent direction vA is valid for less regular g, and since g generally depends on
the material solution u, and since the regularity of u depends on the regularity of the
boundary of the domain Ω, vA is valid for less regular domains Ω. In Section 2 it is
shown that for the Bernoulli free boundary problem

• vA is valid for Lipschitz domains,

• vG is valid for C1-domains.
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In Section 1.5 it is shown that g dependents on u, for example for the shape optimiza-
tion problem considered in Chapter 2

g(x) =

(
λ2 −

(
∂u(x)

∂n

)2
)
.

For the Bernoulli free boundary problem in Chapter 2 the regularity of the shape
derivative is

• u′(·; vA) ∈ H1/2(Ω) for Lipschitz domains,

• u′(·; vA), u′(·; vG) ∈ H1(Ω) for C1-domains.

The speed vectors vA and vG are not the only possible valid descent directions. But
independent of the choice of the descent direction v, as long as it is valid, a domain
Ωs = ϕv(s,Ω) can be found by (1.24).



2 Free Boundary Shape
Optimization Problem

In Chapter 1 shape optimization problems over Lipschitz domains are discussed and
in Section 1.6 a speed vector vA is introduced, see (1.28), which is in H1/2. The the
Fréchet derivative of the cost functional is given by Theorem 8, if the shape derivative
u′(·; v) exists.
In this chapter the discussed concepts and definitions in Chapter 1 are used and then
they are applied to a model problem. In particular, in Section 2.2 the shape derivative
u′(·; v) is shown to be in H1/2(Ω) if Ω is a Lipschitz domain and v is regular enough.
This stands in stark contrast to u′(·; v) ∈ H1(Ω) if Ω is a C1 domain and the same
regularity for v. This regularity of the shape derivative is necessary to use Theorem 8
in Section 1.4 to calculate the Fréchet derivative dJ of the shape functional J in the
Bernoulli free boundary problem. But the standard descent direction

• vG ∈ H1/2(Γ) if Ω is a C1-domain,

• vG ∈ H−1/2(Γ) if Ω is a Lipschitz domain.

Therefore, the regularized descent direction vA is used as introduced in Section 1.6.

Bernoulli free boundary problem

In high voltage electrical devices the prevention of an electrical breakdown is an impor-
tant concern. High electrical field strength on the boundary can damage the device.
This can be modeled by using the normal flux of the electrical potential.
The electrical field strength on the boundary is minimized for a given electrical po-
tential to reduce the stress on the boundary. Using Ohm’s Law, this problem can be
modeled as the Laplace equation, where a boundary has to be found such that the
conormal derivative is small enough. For a domain Ω ⊂ R2 and for linear homoge-
neous Dirichlet conditions the problem is called the Bernoulli free boundary problem
[1, Section 1.1], but in this work the Bernoulli free boundary problem is also defined
for domains Ω in Rd for d = 2, 3. It is divided into the exterior and the interior free
boundary problem, depending on the location of the free boundary. This work only
considers the interior free boundary problem, which is formulated in the following way:
For a given bounded and connected domain ΩO ⊂ R2 with a fixed boundary ΓO = ∂ΩO

and for a given constant λ > 0 a domain ΩI ⊂ ΩO with ΓI = ∂ΩI has to be found, see

37
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Figure 2.1. Furthermore, the state function û : Ω = ΩO \ ΩI → R should satisfy

−∆û = 0 in Ω = ΩO \ ΩI ,

û = h on Γ = ΓI ∪ ΓO,

∂û

∂n
= λ on ΓI

(2.1)

with

h(x) :=

{
1 for x ∈ ΓI ,

0 for x ∈ ΓO.
(2.2)

This mixed boundary value problem is overdetermined, because a Neumann and a
Dirichlet condition are given on the inner boundary ΓI . This makes it possible to have
the boundary ΓI as a free parameter, when a shape optimization formulation of (2.1)
is considered.

Figure 2.1: A domain Ω of the interior Bernoulli free boundary prob-
lem.

Shape Optimization Problem

As seen in Chapter 1 a shape optimization problem consists of a cost functional, see
Definition 1, which depends on a function u which is the solution of a given partial
differential equation and a set of admissible domains M . There are different ways
of formulating the Bernoulli free boundary problem (2.1) as a shape optimization
problem. For this elaboration the cost functional

J(Ω) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx (2.3)
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is minimized over M , subject to the constraint

−∆u = 0 in Ω,

u = h on Γ.
(2.4)

The solution u of (2.4) is the material solution. The boundary value problem (2.4) is as
in Section 1.5 and the results from this section are applicable, i.e the shape derivative
u′(·; v) ∈ L2(Ω) of u is the weak solution of

−∆xu
′(x; v) = 0 for x ∈ Ω,

u′(x; v) = h′(x; v)− ∂u(0, x)

∂n
(v(0, x), n(x)) for x ∈ Γ.

Admissible Domains

In this work shape optimization problems over Lipschitz domains are considered. In
Section 1.6 a modification of the speed method is introduced where the speed vector
v is in H1/2(Ω) for Lipschitz domains Ω.
Therefore, the shape optimization problem with a cost functional J as in (2.3) is
considered over all Lipschitz domains which are annulus domains, i.e. for a given fixed
bounded simply connected Lipschitz domain ΩO 6= ∅ the set of admissible domains is

M = {Ω = ΩO \ ΩI ⊂ Rd | ∅ 6= ΩI ,ΩI ⊂ ΩO}. (2.5)

This set M fulfills all conditions of Definition 2:

• All Ω ∈M are bounded, because Ω ⊂ UM = ΩO which is bounded.

• For all Ω ∈ M the cost functional in (2.3) is well defined. Since for each Ω ∈ M
the boundary value problem (2.4) has a solution u ∈ H1(Ω), see [6, Theorem
4.10]. This is the case, since Ω ∈M is a bounded Lipschitz domains with ΩI 6= ∅.
The solvability of (2.4) and regularity of u is discussed in more detail in Section
2.1.

The domains in M are described as a transformation of an initial domain Ω ∈ M , as
in Section 1.2. So, for s ∈ [0, ε) the transformed domain Ωs is given by

Ωs = {y(s) = ϕ(s, x) for x ∈ Ω}, (2.6)

where ϕ is a deformation function, see Definition 3.
The domains Ωs = ΩO \ Ω

s

I have the boundary Γs = ∂Ωs, which consists of the free
interior boundary ΓsI = ∂Ωs

I and the fixed exterior boundary ΓsO = ΓO = ∂ΩO, see
Figure 2.1.
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Additional Remarks

The solution û of the Bernoulli free boundary problem (2.1) is a solution of the min-
imization problem with the cost functional (2.3) subject to the constraint (2.4). But
the Bernoulli free boundary problem (2.1) is not solvable for all λ ≥ 0. The possible
λ ≥ 0, for which there exists a domain Ω ∈ M such that a solution of overdetemined
boundary value problem in (2.1) exists, depends on the choice of the outer domain ΩO.
For example, in Section 4.1 it is shown that for a disk with radius 1 as ΩO there exists
no solution for λ < e. This results in the question which is the minimal λ > 0 such
that there exists a domain Ω ∈M , where (2.1) is fulfilled. The question of a which is
the minimal λ is considered in Section 4.5, where a possible solution for a L-shape as
ΩO is calculated. The domain Ω ∈M , where (2.1) is fulfilled with the minimal λ ≥ 0,
is the domain where the electrical field strength on the boundary is minimal.

The cost functional J(Ω) can be transferred to the boundary Γ:

J(Ω) =

∫
Ω

|∇u(x)|2 dx+ α

∫
Ω

dx

=

∫
Γ

∂u

∂n
(x)u(x) dsx + α

∫
Ω

div
(x
d

)
dx

=

∫
ΓI

∂u

∂n
(x) dsx +

∫
Γ

α

d
(x, n(x)) dsx

=

∫
ΓI

(
∂u

∂n
(x) +

α

d
(x, n(x))

)
dsx +

∫
ΓO

α

d
(x, n(x)) dsx. (2.7)

In our setting the cost functional J(Ω) and the descent direction v only depend on the
normal derivative ∂u

∂n
on ΓI . Thus, the material solution u in the domain is not needed

to calculate the value of J(Ω), if ∂u
∂n
∈ H−1/2(Γ) is given.

In the following sections

• the Fréchet derivative dJ of the cost functional J ,

• the shape derivative u′(v; ·) of the material function u for the Fréchet derivative
dJ(Ω; v),

• and multiple speed vector field v such that dJ(Ω; v) < 0,

are calculated. This defines an iterative descent algorithm, which is used to find a
local minimum of J(Ω) in M .
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2.1 Material Solution and its Regularity for the

Free Boundary Shape Optimization Problem

In this section the material solution in (2.4) are calculated and the regularity of the
material solution is considered in different domains Ω. The material solution is the
solution of a Dirichlet boundary value problem:

−∆u = 0 in Ω,

u = h on Γ = ΓI ∪ ΓO.
(2.8)

In our case h is a constant function on Γ, therefore, h is in all Hs(Γ) for s ≥ 0. Thus,
the regularity of h is not noted in the following regularity examination.
First, the weak formulation of the problem (2.8) is considered, where a function u ∈
X = {w ∈ H1(Ω) | w = h on Γ} has to be found which fulfills

a(u, v) :=

∫
Ω

(∇u,∇v) dx = 0 ∀v ∈ H1
0 (Ω).

With the Inverse Trace Theorem in [10, Theorem 2.22] an H1-extension U of the
Dirichlet datum h is defined, which is in Hk(Ω) if Ω is a Ck−1,1-domain for 1 ≤ k ∈ N.
Thus, the solution is split in u = u0 + U ∈ X with U ∈ H1(Ω) being the H1-extension
of h and u0 ∈ H1

0 (Ω) being the solution of

a(u0, v) = −a(U, v) ∀v ∈ H1
0 (Ω).

For a bounded Lipschitz domain Ω, see Definition 12, the theorem in [10, Theorem
4.6] gives u ∈ H3/2(Ω) with

‖u‖H3/2(Ω) ≤ c1‖h‖H1(Γ)

and furthermore the conormal derivative ∂u
∂n

is in L2(Γ) with∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

≤ c2‖h‖H1(Γ),

see [7, Theorem 1.1].
If Ω is a C l,1-domain with l ≥ 1 the theorem in [4, Theorem 2.5.1.1] states that the
solution of (2.8) is u ∈ H l+1(Ω). If Ω is a bounded C l,1-domain and u ∈ H l+1(Ω) then
the conormal derivative is ∂u

∂n
∈ H l−1/2(Γ), see [4, Theorem 1.5.1.2]. Therefore, the

solution of (2.8) is u ∈ H l+1(Ω) and its normal derivative is ∂u
∂n
∈ H l−1/2(Γ), if Ω is a

C l,1-domain with l ≥ 1.

For all the following sections of this chapter Ω is a domain in M . Consequently,
Ω is a Lipschitz domain and only the regularity results proven in [10, Theorem 4.6.]
are applied:
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• u ∈ H3/2(Ω),

• ∂u
∂n
∈ L2(Γ).

But the results for C1,1-domains are needed to explain why the standard speed method
with vG converges for C1,1-domains.

2.2 Material and Shape Derivative for the Free

Boundary Shape Optimization Problem

To calculate the Fréchet derivative of the cost functional J(Ω) the shape derivative of
the material solution u is used, which is a derivative of the material solution over the
deformation, see Section 1.3.
The constraint in (2.4) of the shape optimization problem in (2.3) is a Dirichlet bound-
ary value problem. Therefore, the calculation done in Section 1.5 for general Dirichlet
boundary value problem holds. The constraint (2.4) has for s ∈ [0, ε) the right hand
side

f(s, y) = 0 for y in Ωs,

and the Dirichlet condition

h(s, y) =

{
0 for y on ΓsO,

1 for y on ΓsI .

This means f ′ = 0 and h′ = 0 since they are constant for all s ∈ [0, ε). It follows for
(1.22) that u′(·, v) is the solution of

−∆u′(x, v) = 0 for x in Ω,

u′(x, v) = −∂u(x)

∂n
(v(0, x), n(x)) = −l(x; v) for x on ΓI ,

u′(x, v) = 0 for x on ΓO

(2.9)

with the speed vector v, see Section 1.6. In Section 2.1 it is shown that in Ck+1,1-
domains for k ≥ 0 the conormal derivative fulfills ∂u

∂n
∈ Hk+1/2(Γ) and for Lipschitz

domains it holds ∂u
∂n
∈ L2(Γ). That means for C1-domains l(·; v) is in H1/2(ΓI) if the

speed vector field v is regular enough. Therefore, the shape derivative is u′(·; v) ∈
H1(Ω).
For the unique solvability of the boundary value problem (2.9) in H1(Ω) the Dirichlet
datum l(·; v) ∈ H1/2(ΓI) is needed, but since for Lipschitz domains Ω the conormal
derivative ∂u

∂n
∈ L2(Γ) this is not necessarily fulfilled.
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Ultra weak Formulation of u′(·; v)

In this section the ultra weak solution in H1/2(Ω) of the Dirichlet boundary value
problem in (2.9) is calculated. This is done with a ultra weak formulation but then
l(·; v) ∈ L2(Γ) is needed.

Lemma 10. Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain and v ∈ L2(Γ),
then l(·; v) ∈ L1(Γ) with

‖l(·; v)‖L1(Γ) ≤ c

(
d∑
i=1

‖vi‖2
L2(Γ)

∥∥∥∥∂u∂nni
∥∥∥∥2

L2(Γ)

)1/2

. (2.10)

If Ω ⊂ R2 is a bounded Lipschitz domain and (v, n) ∈ H1/2+ε(Γ) for ε > 0, then it
holds l(·; v) ∈ L2(Γ) with

‖l(·; v)‖L2(Γ) ≤ c

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

‖(v, n)‖H1+ε(Γ). (2.11)

If Ω ⊂ R3 is a bounded Lipschitz domain and (v, n) ∈ H1+ε(Γ) for ε > 0, then it holds
l(·; v) ∈ L2(Γ) with

‖l(·; v)‖L2(Γ) ≤ c

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

‖(v, n)‖H1/2+ε(Γ). (2.12)

Proof. In Section 2.1 the conormal derivative ∂u
∂n

is shown to be in ∈ L2(Γ) for a
Lipschitz domain Ω, this was proven in [7, Theorem 1.1]. And the estimate of the
L1-norm in (2.10) is proven with the Cauchy-Schwarz inequality:

‖l(·; v)‖2
L1(Γ) =

d∑
i=1

∫
Γ

|vi
∂u

∂n
ni|dsx ≤ c

d∑
i=1

‖vi‖L2(Γ)

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

.

The estimate of the L2-norm for Ω ⊂ R
2 in (2.11) is proven with the Imbedding

Theorem of Sobolev [6, Theorem 3.26]. From this theorem it follows that (v, n) ∈
L∞(Γ) and l(·; v) ∈ L2(Γ) with

‖l(·; v)‖2
L2(Γ) ≤ c‖(v, n)‖2

L∞(Γ)

∥∥∥∥∂u∂n
∥∥∥∥2

L2(Γ)

≤ c‖(v, n)‖2
H1/2+ε(Γ)

∥∥∥∥∂u∂n
∥∥∥∥2

L2(Γ)

.

This can be repeated for the case Ω ⊂ R3.

The ultra weak formulation of the Dirichlet boundary value problem in (2.9) for
u′(·, v) ∈ H1/2(Ω) is

〈Bu′, q〉Ω := −〈u′(·; v),∆q〉Ω =

∫
Γ

l(x; v)
∂q(x)

∂n
dsx =: F (q) ∀q ∈ H3/2(Ω) ∩H1

0 (Ω),

(2.13)
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where the operator is defined as B : H1/2(Ω)→
[
H3/2(Ω) ∩H1

0 (Ω)
]′

. For a given v ∈
H

d−1
2

+ε(Γ;Rd) is l(·; v) ∈ L2(Γ) as stated in Lemma 10. Therefore, F : H3/2(Ω)→ R

is a linear bounded functional with

|F (q)| ≤ c‖l(·; v)‖L2(Γ)‖q‖H3/2(Ω), (2.14)

where the Trace Theorem [6, Theorem 3.38] is used.

Theorem 11. Let Ω ⊂ R
d be a bounded Lipschitz domain for d = 2, 3 and v ∈

H
d−1

2
+ε(Γ) for ε > 0 then the ultra weak formulation in (2.13) has a solution u′(·, v) ∈

H1/2(Ω).

Proof. The operator B is linear and bounded since

|〈Bu′, q〉Ω| = |〈u
′(·; v),∆q)〉Ω| ≤ ‖u

′(·; v)‖H1/2(Ω)‖∆q‖H−1/2(Ω)

≤ c‖u′(·; v)‖H1/2(Ω)‖q‖H3/2(Ω).

As shown in (2.14) F is bounded and linear. If F ∈ ImH1/2(Ω)B the problem (2.13)
has a solution, where the image of B is

ImH1/2(Ω)B = {g ∈
[
H3/2(Ω) ∩H1

0 (Ω)
]′ | 〈g, q〉 = 0 ∀q ∈ kerB′},

see the Closed Range Theorem [10, Theorem 3.6].
The space kernel of B′ is given by

kerB′ = {q ∈ H3/2(Ω) ∩H1
0 (Ω) | 〈Bv, q〉 = 0 ∀v ∈ H1/2(Ω)} = {0},

because q ∈ kerB′ is equivalent to q ∈ H3/2(Ω) ∩H1
0 (Ω) which is the solution of

−〈∆q, φ〉Ω = 0 ∀φ ∈ C∞0 (Ω) ⊂ H1/2(Ω).

It holds F ∈ ImH1/2(Ω)B, because F (q) = 0 for all q ∈ kerB′ = {0}.

Remark 5. Theorem 11 only proves the solvability of the ultra weak formulation for
u′(·; v) ∈ H1/2(Ω), because only the existence of a u′(·; v) ∈ H1/2(Ω) is needed. But
the solution is also unique in H1/2(Ω), this can be proven with the inf-sup condition
[10, Theorem 3.7].

2.3 Fréchet Derivative for the Free Boundary

Shape Optimization Problem

The Fréchet derivative of the cost functional J(Ω) is defined in Section 1.4. The
Hadamard formula in Theorem 7 shows that Fréchet derivative dJ(Ω; v) is linear in
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the speed vector v. Additionally, in Section 1.4 it is stated that a necessary condition
for J(Ωs) ≤ J(Ω) is that the Fréchet derivative has to fulfill

dJ(Ω; v) ≤ 0. (2.15)

Then a deformation of the domain Ω can be given as Ωs := ϕ(s,Ω). This domain Ωs

can be calculated only by the speed vector v if a v ∈ C0([0, ε);Rd) × C1(UM ;Rd) is
chosen such that the condition (2.15) is fulfilled. This deformation is shown to exists
by Lemma 2 and can be approximated by

ϕv(s, x) = x+ sv(0, x).

Therefore, the speed vector v, which defines the deformed domain Ωs, is calculated by
finding a v such that the Fréchet derivative dJ(Ω; v) of the current domain Ω ∈ M is
negative.

Calculation of the Fréchet Derivative

For the problem in Section 2 the cost functional is

J(Ω; v) =

∫
Ω

j(x, u(x),∇u(x)) dx

with j(x, q, p) =
(
p, p
)

+ λ2 with q = u(x) and p = ∇u(x), where u := u(0, ·) ∈ H1(Ω)
is material solution in 2.4. The Fréchet derivative is calculated using the derivatives
of j

∂j(x, q, p)

∂q
= 0,

∂j(x, q, p)

∂p
= 2p.

Using these derivatives of j, Theorem 8 is applied to calculate the Fréchet derivative
of J(Ω),

dJ(Ω; v) =

∫
Ω

(
∂j(x, u(x),∇u(x))

∂q
u′(x; v) +

(
gradp j(x, u(x),∇u(x)),∇u′(x; v)

))
dx

+

∫
Ω

div(j(x, u(x),∇u(x))v(0, x)) dx

=

∫
Ω

2(∇u(x),∇u′(x; v)) dx︸ ︷︷ ︸
=:A

+

∫
Ω

div
((
|∇u(x)|2 + λ2

)
v(0, x)

)
dx︸ ︷︷ ︸

=:B

. (2.16)

Thus, the Fréchet derivative dJ(Ω; v) can be represented by two integrals which are
denoted by term A and term B. For the term B in (2.16) Theorem 19 in the appendix
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is used together with (v(0, x), n(x)) = 0 for x on ΓO to conclude∫
Ω

div
((
|∇u(x)|2 + λ2

)
v(0, x)

)
dx =

∫
Γ

(
|∇u(x)|2 + λ

)
(v(0, x), n(x)) dsx

=

∫
ΓI

(
|∇u(x)|2 + λ2

)
(v(0, x), n(x)) dsx =

∫
ΓI

(
∂u(x)

∂n

)2

(v(0, x), n(x)) dsx. (2.17)

In the term A (2.16) the shape derivative u′(·; v) ∈ H1/2(Ω) is inserted which is a
solution of the boundary value problem in (2.9). Additionally, Green’s First Formula
is used to conclude∫

Ω

2(∇u(x),∇u′(x; v)) dx = 2

(∫
Ω

−∆u(x)u′(x; v) dx+

∫
Γ

∂u(x)

∂n
u′(x; v)dsx

)
.

The term A is well-defined by duality since u′(·; v) ∈ H1/2(Ω) and u ∈ H3/2(Ω). The
material solution u ∈ H1(Ω) is a weak solution of −∆u = 0 and the shape derivative
u′(·; v) ∈ H1/2(Ω) ⊂ L2(Ω), then the integral∫

Ω

−∆uu′(·; v) dx = 0,

because C∞0 (Ω) is dense in L2(Ω), see [6, Corollary 3.5]. Here the integral is interpreted
as the duality product. Therefore, the term A has the representation on the boundary:

2

∫
Ω

(∇u(x),∇u′(x; v)) dx = 2

∫
Γ

∂u(x)

∂n
u′(x; v) dsx

= −2

∫
ΓI

∂u(x)

∂n

∂u(x)

∂n
(v(0, x), n(x)) dsx

= −2

∫
ΓI

(
∂u(x)

∂n

)2

(v(0, x), n(x)) dsx. (2.18)

Hadamard representation of the Fréchet derivative

Therefore, the Hadamard representation of the Fréchet derivative of the cost functional
J(Ω)is

dJ(Ω; v) =

∫
ΓI

g(x)(v(0, x), n(x)) dx (2.19)

with

g(x) =

(
λ2 −

(
∂u(x)

∂n

)2
)

for x ∈ ΓI . (2.20)

The function g is only defined on the interior boundary ΓI , because the exterior bound-
ary ΓO is fixed and that means

(v(0, x), n(x)) = 0 for x ∈ ΓO.
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2.4 Deformation and the Speed Vector Field for

the Free Boundary Shape Optimization

Problem

The deformation ϕ is approximated by ϕv(s, x) = x + sv(0, x) for x ∈ Ω and s
sufficiently small, see (1.24). A valid speed vector field v(0, x) has to fulfill∫

ΓI

g(x)(v(0, x), n(x)) dsx = dJ(Ω; v) ≤ 0, (2.21)

(v(0, x), n(x)) = 0 for x ∈ ΓO, (2.22)

see Section 1.6. The condition (2.22) is necessary because the outer boundary ΓO is
fixed. But an easy solution for (2.22) is

v(0, x) = 0 for x ∈ ΓO.

For the free boundary problem with the cost functional J in (2.3) the function g is

g(x) =

(
λ2 −

(
∂u

∂n
(x)

)2
)

for x ∈ ΓI .

Therefore, an example for a valid speed vector field is

v(0, x) = vG(x) := −g(x)n(x) for x ∈ ΓI , (2.23)

because the descent condition in (2.21) is satisfied with

dJ(Ω; vG) = −
∫

Γ

g2(x) dsx ≤ 0.

This is the standard approach, cf. [2]. For domains with C1-boundaries this approach
leads to a normal vector n ∈ C(Γ;Rd) so the function g is in H1/2(Γ) and so v(0, ·) ∈
H1/2(Γ,Rd).
But there are some drawbacks of this approach when the domain regularity changes
over the iteration or the initial domain is not C1. An example is given in Section
4.2, where a initial piecewise C1-boundary with corners has to be transformed into a
smoother boundary. The problems in this example arise when this approach is applied
to Lipschitz boundaries or even piecewise C1-boundaries. The reason is that in general
normal vector n is not in C(Γ). And it can only be guaranteed that

viG = gn ∈ H−1/2(ΓI) for i = 1, . . . , d.

This work, therefore, introduces a different approach, where a speed vector field vA =(
v1, . . . ; vd

)>
with higher regularity is used. For i = 1, . . . , d the speed vector has to
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fulfill at least viA ∈ H1/2(Γ) on the boundaries of Lipschitz domains to guarantee the
existence of an ultra weak shape derivative u′ ∈ H1/2(Ω) in (2.13). A bounded, elliptic
boundary operator A : H−1/2(Γ)→ H1/2(Γ) is used satisfying

〈Aw,w〉Γ ≥ cA1 ‖w‖
2
H−1/2(Γ) ∀w ∈ H

−1/2(Γ),

to achieve viA ∈ H1/2(Γ) for i = 1, . . . , d. Therefore, the speed vector field

v(0, ·) = vA(x) =
(
v1
A(x), . . . , vdA(x)

)>
is

viA(x) = −A
(
gni
)

(x)

= A

(((
∂u

∂n

)2

− λ2

)
ni

)
(x) for x ∈ ΓI (2.24)

for i = 1, . . . , d.

Remark 6. In Section 3.3 the Laplace single layer potential is chosen for the elliptic
boundary operator A, but other choices are possible. In Remark 8 A is chosen as
the the inverse of the Steklov–Poincaré Operator and this results in equivalent mixed
boundary value problem for vA.

The weak formulation of the approach in (2.24) for a speed vector vA =
(
v1
A, . . . , v

d
A

)>
with viA ∈ H1/2(ΓI) is∫

ΓI

viA(x)ψ(x) dsx =

∫
ΓI

A

(((
∂u

∂n

)2

− λ2

)
ni

)
(x) ψ(x) dsx ∀ψ ∈ H1/2(ΓI)

(2.25)

for i = 1, . . . , d. This defines a valid speed vector field since A is elliptic and the
descent condition in (2.21) is fulfilled with

dJ(Ω; vA) = −
∫

ΓI

d∑
i=1

(
A
(
gni
)

(x) g(x)ni(x)
)
dsx

≤ −cA1
d∑
i=1

∥∥gni∥∥2

H−1/2(ΓI)
≤ 0.

The speed vectors in (2.23) and (2.24) are not the only choices for speed vectors. All
speed vectors v which fulfill the conditions (2.22) and (2.21) are possible. On the
other hand, to guarantee the solvability of the problem (2.9) for the shape derivative
u′ ∈ H1/2(Γ) it is assumed that (v, n) ∈ H1/2+ε(Γ). For the regularized approach in
(2.24) it holds that

(vA, n) ∈ H1/2+ε(Γ)

if gn ∈ H−1/2+ε(Γ;Rd) for a ε > 0.
To summarize the iterative algorithm for a valid v is:
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0. Choose an initial domain Ω.

1. Calculate the material solution u.

2. Calculate g(x) =
(
λ2 −

(
∂u
∂n

(x)
)2
)

for x ∈ ΓI .

3. Calculate the speed vector field v on ΓI .

4. Deform the domain Ω into Ωs = {y(s) = ϕ(s, x) = x + sv(0, x), x ∈ Ω} with s
small enough.

5. If |J(Ωs)− J(Ω)| ≤ δ stop, else go to Step 1 with the new domain Ω = Ωs.





3 Discretization with the
Boundary Element Method

In this chapter a numerical formulation of the shape optimization problem (2.3) of the
Bernoulli free boundary problem is given with the boundary element method (BEM)
which is also reviewed in this chapter. This shape optimization problem consists of a
Dirichlet boundary value problem problem as a constraint and a boundary equation
for the speed vector. Therefore, only the Dirichlet boundary value problem

−∆u = 0 in Ω ⊂ Rd,

u = g on Γ = ∂Ω
(3.1)

is examined. The domain Ω ⊂ Rd is a bounded Lipschitz domain and consequently
the Trace Theorem [6, Theorem 3.38] defines the Dirichlet trace γint0 u ∈ H1/2(Γ) and
the conormal derivative γint1 u ∈ H−1/2(Γ) for solutions u ∈ H1(Ω) of (3.1).
In this chapter the concepts used in the boundary element method are only reviewed
for a more in-depth introduction see [6] and [10]. First, the fundamental solution to
the Laplace operator is introduced as given in [6] and [10].

Lemma 12 (Fundamental Solution). Given the Laplace-Operator

(Lu) (x) := −∆u(x) for x ∈ Rd (3.2)

the fundamental solution is

U∗(x, y) =

{
− 1

2π
log(|x− y|) for d = 2,

1
4π

1
|x−y| for d = 3

(3.3)

for x, y ∈ Rd, x 6= y.

Secondly, the representation formula gives a solution of (3.1), see [6, Theorem 7.5]
and [10, p. 90]. With the fundamental solution U∗(x, y) the solution u of the Laplace
equation is given by the following Lemma.

Lemma 13. The solution of −∆u = 0 is given by the representation formula

u(x) =

∫
Γ

U∗(x, y)γint1 u(y) dsy −
∫

Γ

[
γint1,yU

∗(x, y)
]
γint0 u(y) dsy for x ∈ Ω. (3.4)

with the fundamental solution U∗(x, y) as in Lemma 12.

51
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3.1 Boundary Integral Operators

In this section the boundary integral operators are introduced which are needed for
solving the Dirichlet boundary value problem (3.1) with the boundary element method.
Only the single layer potential Ṽ and the double layer potential W are introduced, for
more details see [6].

3.1.1 Single Layer Potential

Definition 9. For a bounded domain and a function w the single layer potential is
defined as (

Ṽ w
)

(x) =

∫
Γ

U∗(x, y)w(y) dsy for x ∈ Ω ∪ Ωext, (3.5)

where Ωext = Rd \ Ω is the exterior domain.

Lemma 14. Let Ω ⊂ Rd be a bounded Lipschitz domain, then the single layer potential
has the following properties:

1. Ṽ : H−1/2(Γ)→ H1(Ω) is bounded and linear with∥∥∥Ṽ w∥∥∥
H1(Ω)

≤ cṼ0 ‖w‖H−1/2(Γ) ∀w ∈ H−1/2(Γ). (3.6)

2. For w ∈ H−1/2(Γ) the single layer potential is a weak solution of the Laplace
equation in Ω ∪ Ωext:

−∆
(
Ṽ w
)

(x) = 0 for x ∈ Ω ∪ Ωext. (3.7)

3. The single layer boundary integral operator V := γint0 Ṽ : H−1/2(Γ)→ H1/2(Γ) is
bounded and linear with

‖V w‖H1/2(Γ) ≤ cV0 ‖w‖H−1/2(Γ) ∀w ∈ H−1/2(Γ). (3.8)

4. For w ∈ L∞(Γ) the single layer boundary integral operator V can be represented
as

(V w) (x) =

∫
Γ

U∗(x, y)w(y) dsy for x ∈ Γ. (3.9)

5. Let Ω ⊂ Rd for d = 2, 3. If d = 2 an additionally requirement is diam(Ω) < 1.
Then the single layer boundary integral operator V is H−1/2-elliptic with

〈V w,w〉Γ ≥ cV1 ‖w‖
2
H−1/2(Γ) ∀w ∈ H−1/2(Γ). (3.10)
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6. γint1 Ṽ : H−1/2(Γ)→ H−1/2(Γ) is bounded and linear with∥∥∥γint1 Ṽ w
∥∥∥
H−1/2(Γ)

≤ c
γint1 Ṽ
0 ‖w‖H−1/2(Γ) ∀w ∈ H−1/2(Γ). (3.11)

7. Let w ∈ H−1/2(Γ). Then the conormal trace of the single layer potential can be
represented as 〈

γint1 Ṽ w, v
〉

Γ
= 〈σw + (K ′w), v〉Γ ∀v ∈ H1/2(Γ), (3.12)

with the adjoint double layer boundary integral operator

(K ′w) (x) = lim
ε→0

∫
y∈Γ: |y−x|≥ε

γint1,xU
∗(x, y)w(y) dsy for x ∈ Γ (3.13)

and

σ(x) = lim
ε→0

1

2(d− 1)π

1

εd−1

∫
y∈Ω: |y−x|=ε

dsy for x ∈ Γ. (3.14)

8. The adjoint double layer boundary integral operator K ′ : H−1/2(Γ)→ H−1/2(Γ)
is bounded and linear:

‖K ′w‖H−1/2(Γ) ≤ cK
′

2 ‖w‖H−1/2(Γ) ∀w ∈ H−1/2(Γ).

Proof. 1. is given in [6, Theorem 6.11] and [10, Lemma 6.6].
2. is given in [6, p. 202] and [10, Lemma 6.6].
3. is given in [6, Theorem 6.11] and [10, p. 119].
4. is given in [6, p. 202] and [10, Lemma 6.7].
5. is given in [6, Theorem 8.12], [6, Theorem 8.16], [10, Lemma 6.22] and [10, Lemma
6.23].
6. is given in [6, Theorem 6.11] and [10, Lemma 6.8].
7. is given in [6, p. 219] and [10, Lemma 6.8].

8. follows from [6, Theorem 6.11] with K ′ = 1
2

(
γint1 Ṽ + γext1 Ṽ

)
.

Remark 7. If the boundary Γ is smooth in a neighborhood of x ∈ Γ, that means at
least differentiable, then it follows that

σ(x) =
1

2
for almost all x ∈ Γ.
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3.1.2 Double Layer Potential

Definition 10. For a bounded domain and a function v ∈ H1/2(Γ) the double layer
potential is defined as

(Wv) (x) =

∫
Γ

[
γint1,yU

∗(x, y)
]
v(y) dsy for x ∈ Ω ∪ Ωext. (3.15)

Lemma 15. Let Ω ⊂ Rd be a bounded Lipschitz domain, then the double layer poten-
tial has the following properties:

1. W : H1/2(Γ)→ H1(Ω) is bounded and linear with

‖Wv‖H1(Ω) ≤ cW0 ‖v‖H1/2(Γ) ∀v ∈ H1/2(Γ). (3.16)

2. For v ∈ H1/2(Γ) the double layer potential is a weak solution of the Laplace
equation in Ω ∪ Ωext:

−∆ (Wv) (x) = 0 for x ∈ Ω ∪ Ωext. (3.17)

3. Let v ∈ H1/2(Γ). Then the Dirichlet trace of the double layer potential is

γint0 (Wv) (x) = (−1 + σ(x)) v(x) + (Kv) (x) for x ∈ Γ (3.18)

with the double layer boundary integral operator

(Kv) (x) = lim
ε→0

∫
y∈Γ |y−x|≥ε

[
γint1,yU

∗(x, y)
]
w(y) dsy (3.19)

and σ as in (3.14).

4. The double layer boundary integral operator K : H1/2(Γ)→ H1/2(Γ) is bounded
and linear:

‖Kv‖H1/2(Γ) ≤ cK2 ‖v‖H1/2(Γ) ∀w ∈ H1/2(Γ).

Proof. 1. is given in [6, Theorem 6.11] and [10, Lemma 6.10].
2. is given in [6, p. 202] and [10, Lemma 6.10].
3. is given in [6, p. 219] and [10, Lemma 6.11].
4. follows from [6, Theorem 6.11] with K = γint1 W + γext1 W .
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3.1.3 Boundary Integral Equation for the Dirichlet Boundary
Value Problem

With the single layer potential Ṽ and the double layer potential W the solution u
of the Dirichlet boundary value problem (3.1) is expressed with the representation
formula in Lemma 13. Therefore, the Dirichlet datum γint0 u and Neumann datum
γint1 u are needed on the boundary Γ. In the case of the Dirichlet boundary value
problem (3.1) the Dirichlet datum γint0 u is given, hence the Neumann datum γint1 u has
to be determined. A boundary integral equations for γint0 u and γint1 u is derived from
applying the Dirichlet trace to the representation formula in Lemma 13 resulting in

γint0 u(x) = (1− σ) γint0 (x)−
(
Kγint0

)
(x) +

(
V γint1

)
(x) (3.20)

For the Dirichlet boundary value problem (3.1) the unknown Neumann datum t =
γint1 u ∈ H−1/2(Γ) can be determined by the boundary integral equation in (3.20)
resulting in

(V t)(x) = σ(x)g(x) + (Kg)(x) for x ∈ Γ. (3.21)

As stated in Lemma 14 the single layer boundary integral operator
V : H−1/2(Γ)→ H1/2(Γ) is bounded and H−1/2-elliptic when assuming the additional
requirement diam(Ω) < 1 if Ω ⊂ R2. Hence the boundary integral equation (3.21) is
uniquely solvable and the solution t ∈ H−1/2(Γ) is bounded with

‖t‖H−1/2(Γ) ≤
1

cV1

∥∥∥∥(1

2
I +K

)
g

∥∥∥∥
H1/2(Γ)

≤ cW1
cV1
‖g‖H1/2(Γ), (3.22)

see [10, Section 7.1]. The unique solvability is proven using the Lemma of Lax Milgram
[6, Lemma 2.32] and [10, Theorem 3.2]. The variational formulation of the boundary
integral equation (3.21) for t ∈ H−1/2(Γ) is

〈V t, ψ〉Γ =

〈
1

2
(I +K)g, ψ

〉
Γ

∀ψ ∈ H−1/2(Γ). (3.23)

In the next section a discrete variational formulation of (3.23) is introduced and the
boundary element method.

3.2 Boundary Element Method

For the discrete solution of the boundary integral equation (3.23) finite dimensional
trial spaces are introduced. These spaces are based on a parametrization of the bound-
ary Γ = ∂Ω. For this it is assumed that the boundary Γ is polygonal or polyhedral.
If Γ is not polygonal or polyhedral, Γ is approximated with a polygonal or polyhedral
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boundary. For a polygonal or polyhedral boundary Γ an exact mesh on Γ is defined
as

ΓN =
N⋃
l=1

τ l (3.24)

with boundary elements τl. For a domain Ω ⊂ R2 the boundary elements τl are line
segments and for a domain Ω ⊂ R

3 the boundary elements τl are assumed to be
triangles. The set of all nodes of the boundary decomposition ΓN is given by

{xk}Mk=1.

It is assumed that this mesh is admissible, globally quasi–uniform and shape regular,
for more information see [10, Section 10].
For the boundary element discretization the spaces of piecewise constant functions
S0
h(Γ) and piecewise linear continuous functions S1

h(Γ) are introduced. The space of
piecewise constant functions

S0
h(Γ) = span{ψ0

l }Nl=1

is defined by the basis functions ψ0
l for l = 1, . . . , N :

ψ0
l (x) =

{
1 for x ∈ τl,
0 else.

The space of piecewise constant functions S0
h(Γ) ⊂ H−1/2(Γ) approximates H−1/2(Γ):

Lemma 16. For u ∈ Hs(Γ) with s ∈ [−1/2, 1] there holds the approximation property
of H−1/2(Γ) by S0

h(Γ)

inf
vh∈S0

h(Γ)
‖u− vh‖H−1/2(Γ) ≤ chs+1/2|u|Hs

PW (Γ).

Proof. The approximation property for Hs(Γ) is proven in [10, Theorem 10.4].

Likewise the space of piecewise linear continuous functions

S1
h(Γ) = span{ψ1

k}Mk=1

is defined by the basis functions ψ1
k for k = 1, . . . ,M :

ψ1
k(x) =


1 for x = xk,

0 for x = xl 6= xk,

linear else.
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Lemma 17. For u ∈ Hs(Γ) with s ∈ [1/2, 2] there holds the approximation property
of H1/2(Γ) by S1

h(Γ)

inf
vh∈S1

h(Γ)
‖u− vh‖H1/2(Γ) ≤ chs−1/2|u|Hs

PW (Γ).

Proof. The approximation property for Hs(Γ) is proven in [10, Theorem 10.9].

Since the space of piecewise constant functions S0
h(Γ) ⊂ H−1/2(Γ) approximate

H−1/2(Γ) as stated in Lemma 16 there is a discrete Neumann datum th ∈ S0
h(Γ) which

approximates γint1 u ∈ H−1/2(Γ) as

th(x) =
N∑
l=1

tlψ
0
l (x) for x ∈ Γ.

The discrete Neumann datum th ∈ Xh = S0
h(Γ) is the solution of the discretized

variational formulation

〈V th, νh〉Γ =

〈(
1

2
I +K

)
g, νh

〉
Γ

∀νh ∈ Xh, (3.25)

which is derived from the continuous variational formulation in H−1/2(Γ) given in
(3.23). From Céa’s Lemma [10, Theorem 8.1] and the boundedness of the double layer
boundary operator in Lemma 15 a stability estimate follows

‖th‖H−1/2(Γ) ≤
cW2
cV1
‖g‖H1/2(Γ),

and from Céa’s Lemma and the approximation property of S0
h(Γ) in Lemma 16 the

error estimate

‖t− th‖H−1/2(Γ) ≤ chs+1/2|t|Hs
PW (Γ),

is concluded for t ∈ Hs(Γ) with s ∈ [−1/2, 1]. For t ∈ H s̃(Γ) with s̃ ∈ [0, 1] an L2-error
estimate is given by

‖t− th‖L2(Γ) ≤ chs̃|t|H s̃PW (Γ),

see [10, Lemma 12.2]. The solution of the Dirichlet boundary value problem (3.1) is
given by the representation formula in Lemma 13:

u(x) =
(
Ṽ γint1 u

)
(x)−

(
Wγint0 u

)
(x) for x ∈ Ω.

With this a discrete solution in the domain Ω can be given by

uh(x) =
(
Ṽ th

)
(x)− (Wg) (x) for x ∈ Ω. (3.26)

For the discrete solution uh the following error estimate is given by [10, Theorem 12.4]:
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Theorem 18. Let u ∈ H1(Ω) be the weak solution of the Dirichlet boundary value
problem (3.1), let uh the discrete solution of (3.1) given by (3.26), let t ∈ H−1/2(Γ) be
the solution of (3.23) and let th ∈ S0

h(Γ) be the discrete Neumann datum which is the
solution of (3.25). Then there holds the global error estimate

‖u− uh‖H1(Ω) ≤ c‖t− th‖H−1/2(Γ).

If t ∈ H1
PW (Γ) and u ∈ H5/2(Ω) there holds the error estimate in H1(Ω) is

‖u− uh‖H1(Ω) ≤ ch3/2|t|H1
PW (Γ).

Inserting th(x) =
∑N

i=1 tiψ
0
i (x) into (3.25) and choosing νh = ψ0

l results in

N∑
i=1

ti
〈
V ψ0

i , ψ
0
l

〉
Γ

=

〈(
1

2
I +K

)
g, ψ0

l

〉
Γ

for l = 1, . . . , N.

This is a equivalent linear system for t = (t1, . . . , tN)> and can be written as:

V 0,0
h t = f (3.27)

with

V 0,0
h [l, k] =

〈
V ψ0

k, ψ
0
l

〉
Γ
,

f [l] =

〈(
1

2
I +K

)
g, ψ0

l

〉
Γ

,
(3.28)

for l, l = 1, . . . , N . The matrix V 0,0
h is symmetric, bounded and positive definite, since

V is self-adjiont and H−1/2-elliptic and therefore the linear system (3.27) is uniquely
solvable.

3.3 Discretization of the Free Boundary Shape

Optimization Problem

3.3.1 The Material Solution

For the free boundary problem in (2.1) as introduced in Chapter 2 the material solution
is u ∈ H1(Ω) for Ω ∈M which is the weak solution of

−∆u(x) = 0 for x ∈ Ω,

γint0 u(x) = h(x) for x ∈ Γ
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Figure 3.1: A domain Ω of the Bernoulli’s free interior boundary prob-
lem.

with

h(x) =

{
1 for x ∈ ΓI ,

0 for x ∈ ΓO.

This problem is solved in every iteration with a different Ω ∈M , see Figure 3.1 for an
example domain Ω. The Dirichlet datum

h =
N∑
i=1

hiψ
0
i ∈ S0

h(Γ) (3.29)

is zero if τi ⊂ ΓO and is 1 if τi ⊂ ΓI . The discrete variational formulation for th ∈ S0
h(Γ),

therefore, is

〈V th, ν〉Γ =

〈(
1

2
I +K

)
h, ν

〉
Γ

∀ν ∈ S0
h(Γ). (3.30)

This can be rewritten into the equivalent linear system for t = (t1, . . . , tN)>

V 0,0
h t =

(
1

2
M0,0

h +Kh

)
h (3.31)

where V 0,0
h is defined as in (3.28), h as with (3.29) and

M0,0
h [l, k] =

〈
ψ0
k, ψ

0
l

〉
Γ
,

K0,0
h [l, k] =

〈
Kψ0

k, ψ
0
l

〉
Γ

for l, k = 1, . . . , N .
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3.3.2 The Speed Vector Field

The speed vector v =
(
v1, . . . , vd

)>
with vi ∈ H1/2(Γ) is the solution of the weak

formulation (2.25) in Chapter 2.4 which states〈
vi, φ

〉
ΓI

=
〈
V (gni), φ

〉
ΓI
∀φ ∈ H1/2(Γ). (3.32)

In Section 1.6 a generic boundary integral operator A was used, but the single layer
boundary integral operator V fulfills the requirement of being H−1/2-elliptic.
To solve the equation (3.32) numerically for i = 1, . . . , d the following problems have
to cleared up:

1. The variational formulation (3.32) is only formulated on the inner boundary ΓI .

2. The Hadamard function g = (γint1 u)
2 − λ ∈ H−1/2(Γ) is discretized in S0

h(Γ).

3. It has to be decided if each component vi for i = 1, . . . , d is considered separately
and the single layer potential for the Dirichlet problem is used. Or a vector valued
single layer operator V is used, to consider all parts vi at the same time.

Some remarks on these problems and how they have been addressed in this work are
summarized in the following:

1. This is solved with a submesh

ΓNI =

NI⋃
l=1

τl

of the closed boundary ΓI ⊂ Γ. Therefore, the boundary mesh ΓN can be split
into two submeshes

ΓN = ΓNI ∩ ΓNO ,

because the inner boundary ΓI is separated from the outer boundary ΓO. Here
ΓNI has all elements τj ⊂ ΓI with j = 1, . . . , NI and ΓNO has all elements τk ⊂ ΓO
with k = NI + 1, . . . , NI + NO, since the elements are ordered in this way that
the first NI elements are on the inner boundary ΓI .
Similarly the nodes can be separated in {xk}MI

k=1 on ΓI and {xk}MI+MO
k=MI+1 on ΓO

with the number of all nodes M = MI +MO.

2. This results in an unsymmetrical matrix representation of V , since 〈V g, ψh〉Γ is
given with g ∈ S0

h(Γ) and ψh ∈ S1
h(ΓI).

3. The single layer potential V from the Laplace problem is chosen in this work but
a vector valued V is possible as well. An example for this kind of single layer
potential is the linear elastostatic single layer potential, see [10, Section 6.7].
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Remark 8. Another interesting possible boundary integral operator for A is the Steklov–Poincaré

Operator S : H1/2(Γ) → H−1/2(Γ), see [10, Section 6.6.3]. Then vS =
(
v1
S, . . . , v

d
S

)>
is the solution of the boundary integral equation

SviS = gni on ΓI .

This is equivalent to a Fredholm integral equation of the second kind

(σI +K)
(
viS
)

(x) = V
(
gni
)

(x) for x ∈ ΓI ,

which is equivalent to a mixed boundary value problem where the speed vector is viS =
γint1 wi and the funcion wi ∈ H1(Ω) is the solution of

−∆wi(x) = 0 for x ∈ Ω,

γint1 wi(x) = g(x)ni(x) for x ∈ ΓI ,

γint0 wi(x) = 0 for x ∈ ΓO

for i = 1, . . . , d.

This work takes A = V and then the discrete variational formulation for the speed
vector field vih =

∑MI

n=1 v
i
nψ

1
n ∈ S1

h(ΓI) is〈
vih, ψh

〉
ΓI

= 〈V (gni), ψh〉ΓI

=

NI∑
j=1

〈
V
((

(tj)
2 − λ

)
nijψ

0
j

)
, ψh
〉

ΓI
∀ψh ∈ S1

h(ΓN) (3.33)

for i = 1, . . . , d, where th =
∑N

j=1 tjψ
0
j ∈ S0

h(Γ) is the solution of (3.31) and ni =∑NI
j=1 n

i
jψ

0
j is the normal vector on ΓI . Thus, the equivalent linear system of (3.33) for

vi =
(
vi1, . . . , v

i
MI

)
for i = 1, . . . , d is

M1,1
h,Iv

i = V 0,1
h,I g

i (3.34)

with

M1,1
h,I [l̃, k̃] =

〈
ψ1
k̃
, ψ1

l̃

〉
ΓI
,

V 0,1
h,I [l̃, k] =

〈
V ψ0

k, ψ
1
l̃

〉
ΓI
,

gi[k] =
(
(tk)

2 − λ
)
nik

for i = 1, . . . , d, l̃, k̃ = 1, . . . ,MI and k = 1, . . . , NI . This linear system is uniquely
solvable since M1,1

h,I is symmetric and positive definite. Then the deformation for ΓI is

ϕh(s, x) = x+ svh(x) for x ∈ Γ
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and s suitable small. The boundaries are ΓsI = {ϕh(s, x) for x ∈ ΓI} and Ωs = ΩO \Ωs
I

where Ωs
I is chosen such that ∂Ωs

I = ΓsI .
The step size s is chosen such that J(Ωs) ≤ J(Ω), see Section 1.6. A possible step size
s can be found with the Arminjo rule:

J(Ωs) ≤ J(Ω) + µsdJ(Ω; vh) for 0 < µ < 1.

The resulting procedure to find a domain Ωs such that

J(Ωs) ≤ J(Ω)

from a domain Ω is:

1. Calculating an approximation th =
∑N

i=1 tiψ
0
i of ∂u

∂n
by

V 0,0
h t =

(
1

2
M0,0

h +Kh

)
h.

2. Calculating the speed vector vih =
∑MI

n=1 v
i
nψ

1
n by

M1,1
h,Iv

j = V 0,1
h,I g

j,

gj[k] =
(
t2k − λ

)
njk for j = 1, . . . , d

for k = 1, . . . , NI .

3. Calculating the deformed inner boundary ΓsI by

ΓsI = {x+ svh | x ∈ ΓI}

and Ωs = ΩO \ Ωs
I where ∂Ωs

I = ΓsI . The parameter s fulfills

J(Ωs) ≤ J(Ω) + µsdJ(Ω; vh)

for a µ ∈ (0, 1).

In Chapter 4 this procedure is used to solve the Bernoulli free boundary problem. In
that chapter domains are considered with different outer boundaries ΓO and different
initial domains Ωinit. Furthermore, it is examined how different choices of vh affect
the convergence of domains.



4 Examples

In this chapter some numerical examples of the interior free boundary shape optimiza-
tion problem are investigated. This shape optimization problem is the model problem
of this work which is introduced and discussed in detail in Chapter 2. The bound-
ary element method is used to solve these examples numerically, see Chapter 3. All
example domains Ω ⊂ R2 are bounded Lipschitz domains.

Domains in the Examples

The numerical examples in Sections 4.2 - 4.4 consider a simple domains ΩO which is a
disk with radius 1 around the center (0, 0). For this outer domain ΩO the minimizer

domain Ωopt = ΩO \Ωopt
I is calculated analytically in Section 4.1. The focus in Sections

4.2 - 4.4 is on the different initial inner domains Ω0
I and the effect they have on the

convergence towards Ωopt, especially if the initial domain Ω0
I is not a C1 domain and

the optimal domain Ωopt is. The initial inner domains Ω0
I considered are:

• A square with side length 0.4 around the center (0, 0), see Figure 4.1.

• A square with side length 0.4 around the center (0.2, 0), see Figure 4.2.

• A L-shape with an inner angles 90◦, see Figure 4.3.

• A L-shape with an inner angles 120◦, see Figure 4.4.

Initial domains investigated in this work.

Figure 4.1: Ini-
tial domain in
Section 4.2.

Figure 4.2: Initial
domain in Section
4.3.

Figure 4.3: Initial
domain in Section
4.4.

Figure 4.4: Initial
domain in Section
4.4.

Additionally, in the examples in Sections 4.2 and 4.3 the difference in the shape opti-
mization process for different choices of the speed vector field v are demonstrated for
polygonal domains.

63
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In Section 4.5 a L-shape as a outer domain ΩO is examined. This shape is more
complicated and the focus is on the optimal domain Ωopt and the deformation towards
Ωopt. The initial inner domains Ω0

I are:

• A square with side length 0.2 around the center (0.1, 0.1), see Figure 4.5.

• A square with side length 0.4 around the center (−0.5, 0.5), see Figure 4.6.

Initial domains investigated in this work.

Figure 4.5: Initial domain in Section
4.5.

Figure 4.6: Initial domain in Section
4.5.

Additionally, in these examples the smallest possible λ > 0 is calculated such that the
shape optimization problem (2.3) is solvable. As stated in Chapter 2 this λ can be
interpreted as the stress on the inner boundary ΓI .

4.1 Analytical Solution

Before the above mentioned examples are solved numerically, the analytical solution
for a disk as outer domain ΩO is calculated, because in Sections 4.2 - 4.4 the solutions
of the iterative speed method are validated using this analytical optimal solution. The
analytical optimal domain is called Ωopt.
The shape optimization problem introduced in Chapter 2 consists of the cost functional

J(Ω) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx (4.1)

subject to the constraint

−∆u = 0 in Ω,

u = 1 on ΓI ,

u = 0 on ΓO.

(4.2)
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The analytical solution of the optimal domain Ωopt is calculated for ΩO being a disk
with radius 1 and ΩI is assumed to be a disk with radius 0 < rI < 1. Therefore, the
admissible domains Ω = ΩO \ ΩI ∈M are of the form

Ω = ΩrI = {(r cos(φ), r sin(φ)) | rI < r < 1, φ ∈ [0, 2π)}. (4.3)

4.1.1 Calculation of the Anayltical Solution

First, the boundary value problem for the Laplace equation in (4.2) is solved using a
transformation in polar coordinates. This results in the solution of (4.2):

u(r, φ) = u(r) =
ln(r)

ln(rI)
for r ∈ (rI , 1), φ ∈ [0, 2π).

This solution u(r, φ) is inserted in the cost functional (4.1), which is expressed as a
function of the interior radius rI by

J(ΩrI ) = J(rI) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx

=

∫ 1

r=rI

∫ 2π

φ=0

1

r2 ln(rI)2
r dr dφ+ λ2π(1− r2

I )

= − 2π

ln(rI)
+ λ2π(1− r2

I ). (4.4)

Remark 9. Let λ = 0. Then it holds J(rI) ≥ 0 and limrI→0 J(rI) = 0. Consequently,
the shape optimization problem with the cost functional

J̃(Ω) =

∫
Ω

|∇u|2 dx

does not have a solution domain in M , which minimizes J̃ . Therefore, the shape
optimization problem (4.1) does not have a solution for every λ ≥ 0.

To find the radius rI ∈ (0, 1) such that the cost functional (4.4) is minimal the
derivative of (4.4) with respect to rI is calculated as

dJ(ΩrI )

drI
= 2π

(
1

ln(rI)2rI
− λ2rI

)
, (4.5)

d2J(ΩrI )

dr2
I

= −2π

(
2 ln(rI) + ln(rI)

2

(ln(rI)2rI)2
+ λ2

)
. (4.6)

Then the radius roptI ∈ (0, 1), which defines the extrema domain ΩroptI
of J by (4.3), is

calculated by

0 =
dJ(ΩrI )

drI

∣∣∣∣
rI=roptI

= 2π

(
1

ln(roptI )2roptI

− λ2roptI

)
,
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depending on the chosen λ > 0. This reduces to

ln(roptI )roptI = −1

λ
, (4.7)

because ln(roptI ) < 0 for roptI ∈ (0, 1). Substituting roptI = ex in (4.7) gives

xex = −1

λ
. (4.8)

The solution of equation (4.8) is calculated with Lambert’s W-Funktion, see [3]. The
Lambert’s W-Funktion is defined as inverse function of

f(x) := xex,

see Figure 4.7, and fulfills
z = W (z)eW (z), z ∈ C.

The Lambert’s W-function is a multi-valued function in [−1
e
, 0) and it is not defined

Figure 4.7: Plot of function f(x) = xex

in [−4, 1].
Figure 4.8: Plot of the two branches of
Lambert’s W-function.

for x < −1
e

and there are two real-valued branches W0 and W−1, see Figure 4.8.
Therefore, the value W (− 1

λ
) ∈ R exists only for λ ≥ e2. Thus, for all λ ≥ e there

exists at least one solution roptI , which is explicitly given by

roptI = eW (− 1
λ

). (4.9)

Since W is a multi-valued function in [−1
e
, 0) and − 1

λ
< 0 for e ≤ λ ∈ R there exist

two possible roptI as in (4.9) for λ > e and one solution for λ = e. But if the second
derivative of J(rI) in (4.6) is considered it is seen that the minimizer of J is

Ωopt = Ωr0
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with
r0 = eW0(− 1

λ
).

But for both domains ΩroptI
with roptI as in (4.9) the value of the conormal derivative

of u in (4.2) on the interior boundary Γ
roptI
I = ∂ΩroptI

∂u(x)

∂n

∣∣∣∣
x∈ΓI

= − 1

roptI ln(roptI )
= λ. (4.10)

This shows that both domains ΩroptI
are solution of the Bernoulli Free Boundary Prob-

lem.

4.1.2 Comparison between Solutions of the Bernoulli Free
Boundary Problem and the Shape Optimization
Problem

The shape optimization problem in (4.1) and (4.2) is derived from the Bernoulli free
boundary problem (2.1), where a domain Ω ∈ M is found, such that û fulfills the
boundary value problem

−∆û = 0 in Ω,

û = 1 on ΓI ,

û = 0 on ΓO,

∂û

∂n
= λ on ΓI .

(4.11)

Generally the problem (4.11) does not have a unique solution. This is illustrated in
Figure 4.9, where ∂û

∂n
on ΓI is plotted for Ω as in (4.3) with the inner radius rI ∈

(0.05, 0.95). This shows that

• for λ > e the problem (4.11) has two solutions,

• for λ = e the problem (4.11) has one solution,

• for λ < e the problem (4.11) has no solution.

This behavior corresponds to the solutions ΩroptI
of

dJ(ΩrI )

drI
= 0 given by (4.9), where

the number of solutions is the same as above, and these solution are the branches of
the Lambert’s W-function. For λ = 4 and ΩO being a disk with radius 1 the extrema
ΩroptI

are given by (4.9). The two roptI ∈ R which fulfill (4.9) are

r0 = eW0(−1/4) = 0.69949,

r1 = eW−1(−1/4) = 0.11610.
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Figure 4.9: Conormal derivative ∂u(x)
∂n

described in (4.10). The marker ◦ rep-

resents the radii where ∂u(x)
∂n

= 4 for
x ∈ ΓI .

Figure 4.10: Cost functional J(Ω) de-
scribed in (4.4) for λ = 4.

Therefor there are two solutions to the Bernoulli free boundary problem (4.11) with
λ = 4, see Figure 4.9, which are the inner disk with radius rI = r0 and rI = r1. But
Figure 4.10 shows that this domains are not both minimizer of the cost functional J .
This illustrates, that all solutions of the shape optimization problem are solutions of
the Bernoulli free boundary problem. On the other hand there are solutions of the
Bernoulli free boundary problem which are not solutions of the shape optimization
problem (4.1). This is not a general property of all shape optimization problems.
Other cost functionals, which model the problem (4.11) differently, have both Ωr0 and
Ωr1 as solutions.
Additionally, Figure 4.10 shows that for any initial domain with inner radius rI < r1

the speed method tends to a local infimum of M which is not in M this is the set
where ΩI = ∅.
To summarize:

• An optimal domain does not exist for every λ ∈ R+.

• Not every domain which fulfills the Bernoulli free boundary problem (4.11) is
a solution of the shape optimization problem. But every solution of the shape
optimization problem fulfills (4.11).

Overview of the next few Sections

In the following sections some variations of the shape optimization problem are exam-
ined:
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• Sections 4.2 - 4.4 uses λ = 4, that means the optimal radius is

roptI ≈ 0.6995

and the cost functional has the value

J(Ωopt) ≈ 43.2106.

But the circle is discretized with a polygonal domain, therefore, the optimal value
of the cost functional J(Ω) is slightly different.

• In Section 4.2 the outer domain is a disk with radius 1 but the initial inner domain
ΩI is a square. Thus, the shape optimization algorithm has to deform a domain
with corners into a domain without corners, because the optimal domain is the
annulus domain in (4.3) with rI = roptI ≈ 0.6995.

• In Section 4.5 the outer domain ΩO is a L-shape, which is a non-convex piecewise
C1-domain. Therefore, the domain Ωopt, which minimizes J(Ω), is not the same
as in Subsection 4.1.1. Additionally, in that section the minimal λ > 0 such that
there exists a domain Ωopt ∈M , which minimizes J(Ω), is calculated.

In the examples in Section 4.2 - 4.3 the normal approach with the speed vector vG and
the regularized approach with the speed vector vA are compared to each other. Both
are introduced in Section 2.4 and they only differ in the choice of the speed vector
field v.

1. In the normal approach the speed vector field is

v(0, x) = vG(x) := −g(x)n(x) for x ∈ ΓI . (4.12)

The speed vector vG is needed for each node xl with l = 1, . . . , N but g and n are
only given for each element τk for k = 1, . . . , N . In the following it is assumed
that there are two element τl1 and τl2 which are neighbors of the node xl. Then
the vG is approximated by

v(xl) = vG(xl) = −g(u)n(xl) =

(
16−

(
∂u(xl)

∂n

)2
)
n(xl)

≈ 1

2

(
16−

(
∂u(τl1)

∂n

)2
)
n(τl1) +

1

2

(
16−

(
∂u(τl2)

∂n

)2
)
n(τl2).

2. In the regularized approach the speed vector field is

v(0, ·) = vA(x) =
(
v1
A, ·, . . . , vdA

)>
,

viA(x) := −V
(
gni
)

(x) for x ∈ ΓI i = 1, . . . , d.
(4.13)

For the regularized approach no additional approximation is needed since vA is
naturally given on each node xl for l = 1, . . . ,M .
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The analysis of these two approaches is provided in Section 2.4. Most of these examples
two aspects are examined:

1. Validation: The approximated optimal domains are compared to the theoretical
optimal domain (4.3):

a) Is the optimal domain a disk?

b) Is the radius of the optimal domain roptI ≈ 0.6995?

c) Is the cost functional J(Ωopt) ≈ 43.2106 for the optimal domain Ωopt?

This is only possible if the outer domain ΩO is a disk with radius 1. This is the
case in Sections 4.2 - 4.4.

2. Comparison: The two different speed vectors (4.12) and (4.13) are compared
to each other and the effect they have on the convergence of the domains:

a) The constraint to the step size ε. In other words, the largest ε has to be
found such that the speed method converges with s < ε.

b) Rate of convergence: Namely, how many steps does it take until the optimal
domain is reached?

The comparison of the two speed vectors is only done in Sections 4.2 - 4.3, because
in the other sections no parameters were found such that the domains converge
with vG.

4.2 Box in a Circle

4.2.1 Overview

• The outer domain is ΩO = {x ∈ R2 | x2
1 + x2

2 < 1}.
• The initial inner domain is Ω0

I = {x ∈ R2 | −0.2 < x1, x2 < 0.2}.
• The boundary Γ0 of Ω0 = ΩO \Ω0

I is discretized with N = 64 number of elements.

• The regularization parameter is λ = 4.

• The constraint ε to the step size s is:

– ε = 0.5 for the regularized approach,

– ε ∈ {0.5, 0.005} for the normal approach, where it converges for ε = 0.005
and diverges for ε = 0.5.

• The boundary element method (BEM) is used resulting in linear systems, see
(3.27) and (3.34).

As in Section 4.1 the outer domain ΩO is a disk with radius 1 and λ = 4. But the
initial domain Ω0

I is not a disk as seen in Figure 4.11. The optimal inner domain Ωopt
I

is still, as outlined in Section 4.1, a disk with radius

roptI ≈ 0.6995.
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Figure 4.11: Starting domain Ω0

Figure 4.12: An irregular domain.

And the value of the cost functional for the optimal domain Ωopt = ΩO \ Ωopt
I is

J(Ωopt) ≈ 43.2106.

The regularized approach with

v(x) = vA(x) = −V (gn)(x) for x ∈ ΓI

manages the transition of a non-smooth initial domain to a smooth optimal domain
Ωopt very well, see Subsection 4.2.3. But the normal approach with

v(x) = vG(x) = −g(x)n(x) for x ∈ ΓI

does not manage the transition as well, see Subsection 4.2.2. This means the normal
approach with the speed vector vG results in a less stable convergence from the initial
domain to the optimal domain Ωopt. This is seen in the needed constraint ε on the
step size s:

• For the normal approach with vG the domains Ωi
n converge if the step size s is

constraint by
s < ε = 0.005,

where Ωi
n is the deformation in step i, see Section 4.2.2.

• For the regularized approach with vA the domains Ωi
r converge if the step size is

constraint by
s < ε = 0.5,

where Ωi
r is the deformation in step i, see Section 4.2.3.

Therefore, the regularized approach with vA is much more stable than the normal with
vG if applied to domains with corners, because it deals differently with inward corners,
see Remark 10.

But both algorithms do not work if the domain becomes irregular, i.e. if the do-
main is deformed in a way that a point is moved to far towards another element, see
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Figure 4.12. If that happens then the deformation Ωs /∈ M and hence J(Ωs) and
dJ(Ωs; v) do not make any sense any more. That means J(Ωs) can have values smaller
than the minimal value and dJ(Ωs; v) is negative for random directions v. This could
be fixed if a control for irregular domains is implemented. In the current algorithm
this can only be achieved with a restriction ε to the step size s.

4.2.2 Normal Approach with vG

Domains for the Normal Approach for ε = 0.5, Steps 1, 2 and 3

Figure 4.13: Domain
after step 1 and
J(Ω1

n) = 51.3872

Figure 4.14: Domain
after step 2 and
J(Ω2

n) = 51.1645

Figure 4.15: Domain
after step 3 and
J(Ω3

n) = 51.1217

Domains for the Normal Approach for ε = 0.5 Steps 4, 5 and 6

Figure 4.16: Domain
after step 4 and
J(Ω4

n) = 49.7556

Figure 4.17: Domain
after step 5 and
J(Ω5

n) = 48.8473

Figure 4.18: Domain
after step 6 and
J(Ω6

n) = 33.1433

The Figures 4.13 - 4.18 show the domains Ωi
n calculated with the normal approach

(4.12). When the parameter is ε = 0.5 the domains Ωi
n do not converge, because in

the corners the domains oscillate and eventually get irregular. But as seen later if ε
is small enough the first deformation from the initial domain transforms ΩI in a disk.
Then the normal approach produces domains that converge to the optimal domain
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Ωopt = Ω0 \ Ωopt
I .

The normal approach has deformed ΩI into an irregular domain after the second
step, see Figure 4.14. The algorithm could stop here, because Ω2

n 6∈ M . When the
irregular ΩI is deformed again with the normal approach it transforms back into a
regular domain for some steps, see Figures 4.15 - 4.16. This is already unforeseen,
because in the irregular elements the normal vector n points in the wrong direction.
The problem with the normal approach is seen in the steps 3-6:

• Figure 4.14 shows that the initial outward corners of ΩI are transformed into
inward corners.

• But in contrast to the regularized approach, the normal approach transforms
inward corners into outward corners again and the domains start to oscillate and
become irregular, see Figure 4.15 - 4.18.

As seen in Subsection 4.2.3, the regularized approach does not directly transform
inward corners into outward corners, but makes these corners smaller until they disap-
pear when the domain oscillates around the optimal domain. But if a restriction s < ε

Domains for the Normal Approach for ε = 0.005

Figure 4.19: Do-
main before step
1.

Figure 4.20: Do-
main after step
1.

Figure 4.21: Do-
main after step
22.

Figure 4.22:
J(Ω) for the
normal ap-
proach with
v = gn

with ε small enough is placed on s the normal approach deforms the initial domain Ω0

in a smooth domain. And from there on it works perfectly. For instance if

s < ε = 0.005

is chosen, the normal approach does converge. But only because the first deformation
transforms ΩI into a disk. This shows that the normal approach only works if smooth
domains are transformed. Therefore, it has to deform the domain Ω0 in the first step
to a smooth domain to deform the domain further.
To improve the speed of convergence, this condition could be weakened in later steps,
when the shape is more regular, but this is not implemented at the moment.
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Figures 4.19 - 4.21 show the domains with the normal approach for s < 0.005. The
first step transforms ΩI into disk, see Figure 4.20, and after that only the radius rI
grows until it reaches the optimal inner radius

rI = 0.6995

which results in the optimal domain seen in Figure 4.21. Hence, the domains converge
to the correct optimal domain, but only if the step size is kept very small and if the
domain is transformed in a smooth domain in the first step.
The cost functional J(Ω) for the normal approach for s ≤ 0.005 is seen in Figure 4.22.
The figure shows that the algorithm converges and that it takes 22 steps to converge
and the cost functional descends uniformly.

4.2.3 Regularized Approach with vA

Domains for the Regularized Approach for ε = 0.5, Steps 0, 1 and 2

Figure 4.23: Domain
before step 1 and
J(Ω0

r) = 51.9769

Figure 4.24: Domain
after step 1 and
J(Ω1

r) = 48.0404

Figure 4.25: Domain
after step 2 and
J(Ω2

r) = 43.3318

The Figures 4.23 - 4.27 show the same initial domain deformed with the regularized
approach in (4.13) with vA. The restriction ε = 0.5 is used again and the regularized
approach produces domains Ωi

r which converge to Ωopt.
In Figures 4.24 - 4.25 it is seen that the speed vector v is larger in the corners compared
to the smoother parts of the boundary, because the corners get smaller. But v is not
so large as in Section 4.2.2, because the inward corner do not transform into outward
corners. In step 3 onward the smooth parts are close to the optimal circle and the
speed vector v on these parts is very small, see Figure 4.25. In those steps the inward
corners of ΩI get smaller (Figure 4.26) until they disappear (Figure 4.27). In the last
8 steps the domain oscillates around the optimal domain until the error is

|J(Ωi−1
r )− J(Ωi

r)| < 10−7,

then it stops. The value of the cost functional J is shown in Figure 4.28. The regu-
larized approach with vA shows a different behavior to the normal approach in Figure
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Domains for the Regularized Approach for ε = 0.5 Steps 3, 4 and the Cost
Functional Value

Figure 4.26: Domain
after step 3 J(Ω3

r) =
43.2515

Figure 4.27: Domain
after step 4. J(Ω4

r) =
43.2368

Figure 4.28: J(Ω)
for the regular-
ized approach with
v = −V (gn)

Cost Functional Value for ε = 0.005

Figure 4.29: J(Ω) for the normal ap-
proach with v = −gn

Figure 4.30: J(Ω) for the regularized
approach with v = −V (gn)

4.22. The cost functional value decreases rapidly in the first 2 steps and then the
gradient is

dJ(Ωi
r)

di
≈ 0

as the domain oscillates around the optimal inner domain ΩroptI
with radius roptI =

0.6995. Some of this behavior could also come from the different restriction ε, especially
the above mentioned cost functional behavior.

4.2.4 Comparison

Figures 4.29 - 4.30 show the cost functional value for both approaches. But in this
simulation the restriction is ε = 0.005 for both approaches, so that the speed of
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the convergence can be compared. The regularized approach with vA (Figure 4.30)
converges more slowly than the normal approach with vG (Figure 4.29). This and
the above mentioned results suggest that the stability for general Lipschitz domains
is improved with a regularized speed vector like

vA = −V (gn),

but the speed of the convergence is reduced.

Remark 10. As seen in Sections 4.2.2 and 4.2.3 the different choices of the speed
vector field v in the two approaches has a large effect on the behavior in the inward
corners. For the normal approach the speed vector is

v(x) = −g(x)n(x)

with

g(x) =

((
∂u

∂n
(x)

)2

− 16

)
.

The normal derivative before the first step on the initial inner boundary Γ0
I is

∂u(x)

∂n
≈

{
4.3 on the corners,

2 everywhere else.

That means g(x) is much smaller in the corners. It follows that v is smaller in the
corners which get deformed less. That means the initial outward corners get deformed
into inward corners.
Nearly the same happens if the regularized approach with the speed vector

vi(x) = −V (gni)(x) for i = 1, 2

is applied, except that the inward corners have a larger angle. That means the differ-
ence of v in the corners to v in the rest of Γ0

I is smaller.

When the normal approach is applied to the domain Ω1
n after step 1, the normal deriva-

tive for x ∈ ΓI is

∂u

∂n
(x) ≈


0 in the inward corners,

5 in the straight,

2 in between.

That means the inward corners get deformed more than the straights, and because of
the 90◦ angle of the inward corner it deforms into an irregular domain.
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For the regularized approach the normal derivative for x ∈ ΓI is

∂u

∂n
(x) ≈

{
2 in the inward corners,

3.7 else.

That would mean the inward corners have to be transformed more than the straights.
This does happen but the regularization with V has the effect that the inward corners
stay inward corners. Additionally, the angles get bigger and the corners get smaller.
This behavior for inward corners makes it a lot stabler for domains with corners,
because the oscillation between inward and outward corner does not happen.

4.3 Off-Center Box in a Circle

4.3.1 Overview

• The outer domain is ΩO = {x ∈ R2 | x2
1 + x2

2 < 1}.
• The initial inner domain is

Ω0
I = {x ∈ R2 | 0 < x1 < 0.4; −0.2 < x2 < 0.2}.

• The boundary Γ0 of Ω0 = ΩO \ Ω0
I is discretized with N = 64 elements.

• The regularization parameter is λ = 4.

• The constraint ε to the step size s is:

– ε = 0.4 for the regularized approach.

– ε ∈ {0.005, 0.001} for the normal approach where the normal approach only
converges for ε = 0.001.

• The boundary element method (BEM) is used resulting in linear systems, see
(3.27) and (3.34).

In this example ΩO is again a disk with radius 1 as before, but the initial domain Ω0
I

is not rotational symmetric. Thus, the deformation is not the same in all directions.
The regularized approach with vA given in (4.13) is compared to the normal approach
with vG given in (4.12), which is a regularly used approach in shape optimization.

The following issues are especially relevant in this section:

1. The maximal constraint εmax needed for the domains to converge to the optimal
domain for the different approaches is vastly different:

• For the regularized approach ε = 0.4 is needed for convergence,

• For the normal approach ε = 0.001 is needed for convergence of the domains.
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2. The inner boundary converges differently towards the optimal domain, since the
domain is not rotational symmetric. Consequently, the −x1 side and the +x1

behave differently. There are two possible ways the points of the inner domain
deform:

a) Every point deforms towards the −x1 direction, which means in the optimal
domain the point distribution is equal on the −x1 and +x1 side. This is
called moving the center.

b) Only the points on the −x1 sides are deformed, which means in the optimal
domain there are less points on the −x1 side. This is called stretching in
the −x1 direction.

The point distribution on the x1 axis illustrates this and in the figures of the
domain

Ωi = ΩO \ Ωi
I in steps i

the nodes are plotted as black dots.

3. The change of the normal derivative on the inner boundary during the conver-
gence of the domains shows that the regularized approach generally oscillates
more around the optimum value of 4.

4.3.2 Normal Approach with vG

Domains for the Normal Approach for ε = 0.005 steps 0, 1 and 2

Figure 4.31:
J(Ω0

n) = 52.2321

Figure 4.32:
J(Ω1

n) = 50.4851
Figure 4.33:
irregular domain

First, the normal approach is applied with the speed vector vG, as in Section 4.2.2.
Figures 4.31 - 4.33 show the domains Ωi

n in step i when the normal approach is
used with the restriction ε = 0.005. The domains do not converge although ε is
already very small. The corners oscillate between inward and outward corners and the
domain deforms into an irregular domain. The behavior of the normal and regularized
approach in the corners is described in more detail in Remark 10.
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Domains for the Normal Approach for ε = 0.001

Figure 4.34:
J(Ω0

n) = 51.8746
Figure 4.35:
J(Ω1

n) = 50.8148
Figure 4.36:
J(Ω8

n) = 46.0547
Figure 4.37:
J(Ω15

n ) = 43.1742

Cost Functional Values, Neumann Data and Point Distribution for the
Normal Approach

Figure 4.38: Cost func-
tional J(Ω).

Figure 4.39: Neumann
Data on the inner bound-
ary ΓiI .

Figure 4.40: Distribution
of x1-coord of the Points
on ΓiI .

This behavior only appears because the corners get deformed so differently then the
C1-parts between the corners. If the restriction ε is small enough the domain with
corners gets deformed into a circle. And with this smooth domain the normal approach
works very well. Figures 4.34 - 4.37 show the domains

Ωi
n = ΩO \ Ωi

I in step i

for the normal approach with the restriction ε = 0.001.

1. The domains converge in 25 steps, see the value of the cost functional J(Ωi
n) in

the Figure 4.38 over step i.

2. Figure 4.39 shows that the Neumann data on ΓiI = ∂Ωi
I is almost constant after

step 2, because the step size is so small that Γ0
I deforms into a circle in step 1

and stays a circle after that.

3. Figure 4.40 shows that the distribution of the points on ΓiI over the x1 coordinate
are centered around x1 = 0.1 and not around 0.0 which is the center of the circle.
So, the inner boundary ΓI is only stretched in the −x1 direction to achieve the
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correct center. But most points have a positive x1 coordinate. This is also visible
in Figure 4.37 which shows that the half circle on the +x1 side is modeled by
more points as the one on the −x1 side. In Figure 4.37 the black dots are the
nodes on Γ15

I .

To summarize, the domains converge with the normal approach but the restriction
εmax = 0.001 is very small. This and the results from Section 4.2 suggests that the
normal approach is unstable for domains with corners, because it only converges
when the inner boundary ΓI is transformed into a circle at the beginning
and stays a circle.

4.3.3 Regularized Approach with vA

Domains for the Regularized Approach for s < 0.4 Steps 0,1 and 2

Figure 4.41:
J(Ω0

r) = 51.8746
Figure 4.42:
J(Ω1

r) = 45.5652
Figure 4.43:
J(Ω2

r) = 44.5571

This subsection uses the regularized approach, where the speed vector is

v(x) = −V (gn) (x),

which regularizes the piecewise constant vector gn, which depends on u, with an elliptic
boundary operator. This results in a continuous piecewise linear vector v. Therefore,
the speed vector v in a node xl does not have to be approximated as in Subsection
4.3.2.

The regularized approach (4.13) is applied to the given geometry with the restric-
tion ε = 0.4 on the step size s. Figure 4.47 shows the value of the cost functional
depending on the steps and shows that the domains converge in 9 steps.
The regularized approach seems to be much more stable than the normal approach for
domains with corners, because the maximum εmax = 0.4 is much larger.

The domains Ωi
r, produced with the regularized approach, behave generally in a
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Domains for the Regularized Approach for s < 0.4 Steps 3,4 and 5

Figure 4.44:
J(Ω3

r) = 44.4006
Figure 4.45:
J(Ω4

r) = 43.1743
Figure 4.46:
J(Ω5

r) = 43.1022

Cost Functional Values, Neumann Data and Point Distribution for the
Regularized Approach

Figure 4.47: Cost functional
J(Ωi).

Figure 4.48: Neumann data
on the inner boundary ΓiI .

Figure 4.49: Distribution of
x1 coordinates of Points on
ΓiI .

similar way as the normal approach as seen in Figures 4.31 - 4.32. That means if the
difference ∣∣∣∣∣λ2 −

(
∂u

∂n
(x)

)2
∣∣∣∣∣

is large, the deformation of the domain is large at the point x, see Remark 10. Figure
4.42 shows the domain after the first step. This shape has inward corners as in the
normal approach in Section 4.3.2. But the angle is not so small in the regularized
approach, this is important for the convergence as explained in Section 4.3.

Figures 4.44 - 4.46 show that the corners are smoothed out when the shape becomes
close to the optimal domain. This is a big difference to normal approach where the
shape has to be smooth first and then it is scaled up to the optimal radius. Next,
some effects are discussed which only occur if the step size is large enough:
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1.) Oscilation around the optimum: Figure 4.48 shows that the Neumann data
in step 2 is nearly constant on ΓI and has the value 5. This is the case because
the domain in step 2 is larger than the optimal domain. After that the radius of
ΓI and the average Neumann data on ΓI oscillates around the optimum. After
step 5 the oscillation becomes very small but is still there.

2.) Moving of the center: Figure 4.49 shows the distribution of points on the
x1-axis for the regularized approach. In step 2 the center of ΓI is moved close to
0, that means all points are moved in contrast to Subsection 4.3.2 where only the
points on the −x1 side are moved.

These effects do not occur if the step size s is forced to be small enough. For example
if ε = 0.001 then 1) and 2) do not happen. Most likely this is the reason that they do
not occur in the deformation with the normal approach in Subsection 4.3.2.

4.3.4 Conclusion

The regularized approach with vA seems to be more stable than the normal approach
for domains with corners, since the domains converge for a much larger value of ε.
This was expected as the speed vector field v belongs to H1/2(ΓI) if Ω is a Lipschitz
domain and vG belongs to H−1/2(ΓI), see Section 1.6. Moreover, all points of the
geometry propagate in a uniform way. But the two approaches have another significant
difference:

• The normal approach first transforms the domain ΩI in a disk and then expands
and moves ΩI .

• The regularized approach first expands and moves ΩI and then transforms ΩI

into a disk.

The reason for this is that for general Lipschitz domains ΩI the speed vector vG =
(v1
G, v

2
G)
>

fulfills

viG = −gni ∈ H−1/2(ΓI) for i = 1, 2,

and the speed vector vA = (v1
A, v

2
A)
>

fulfills

viA = −V (gni) ∈ H1/2(ΓI) for i = 1, 2.

Therefore, the shape derivative is u′(·; vA) ∈ H1/2(Ω), but for v = vG this regularity is
not achieved and maybe u′(·; vG) does not even exists, see Section 2.2. On the other
hand the shape derivative u′(·; v) ∈ H1/2(Ω) is needed for the shape optimization
problem to be solvable, see Section 2.3. But if ΩI is a C1-domain then viG ∈ H1/2(ΓI),
u′(·; vA), u′(·; vG) ∈ H1/2(Ω). Consequently, the normal approach does converge if the
inner domain ΩI is a disk.
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4.4 L-Shape in a Circle

4.4.1 Overview

• The outer domain is a circle ΩO = {x ∈ R2 | x2
1 + x2

2 < 1}.
• The two initial inner domains are domains with inward corners:

Ω0
I1

={x ∈ R2 | 0 < x1 < 0.4; −0.2 < x2 < 0.2}
\ {x ∈ R2 | 0.2 ≤ x1 ≤ 0.4; −0.2 ≤ x2 ≤ 0},

Ω0
I2

={x ∈ R2 | 0 < x1 < 0.4; −0.2 < x2 < 0.2}

\ {x ∈ R2 | 0.2 ≤ x1 ≤ 0.4; −0.2 ≤ x2 ≤ 3x1 − 0.8; x2 ≤
1

3
x1 −

2

15
}.

• The boundary Γ1 of Ω0
1 = ΩO \ Ω0

I1
is discretized with N = 96 elements, 32

elements make up ΓO and 64 make up ΓI1 .

• The boundary Γ2 of Ω0
2 = ΩO \ Ω0

I2
is discretized with N = 36 elements, 16

elements make up ΓO and 20 make up ΓI2 .

• The regularization parameter is λ = 4.

• The constraint ε to the step size s is 0.2 if Ω0
1 is used and 0.1 if Ω0

2 is used.

• Only the regularized approach (4.13) is used to deform Ω0
1 and Ω0

2.

• The boundary element method (BEM) is used resulting in linear systems, see
(3.27) and (3.34).

This section uses only the regularized approach (4.13) with

vA = −V (gn),

because no parameters were found where the domains calculated with normal the
direction approach (4.12) with

vG = −gn,
converges, because the initial inner domains have a inward corner. The normal
approach only works if the domain deforms into a smooth domain at the
start, see Sections 4.2 and 4.3. In Sections 4.2 - 4.3 this was possible but here Ω0

I1

or Ω0
I2

are used as initial inner domains and it is not possible, because of the inward
corner.

4.4.2 Regularized Direction applied to Ω0
I1

The regularized approach also has problems with inner domains ΩI with inward corner
with an angle ω < 120◦, as is seen in the following figures. But the domains still con-
verge and the resulting optimal domain has the correct radius roptI almost everywhere,
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Domains in Steps 0, 4 and 8 for initial Domain Ω0
1.

Figure 4.50:
J(Ω0) = 52.2321

Figure 4.51:
J(Ω4) = 51.1652

Figure 4.52:
J(Ω8) = 48.7558

Domains in Steps 12, 19 for initial Domain Ω0
1 and Cost Function Value

over all Steps.

Figure 4.53:
J(Ω12) = 44.6899

Figure 4.54:
J(Ω19) = 43.1025

Figure 4.55: J(Ωi) for
i ∈ [0, 19]

see Figure 4.54.

Figures 4.50 - 4.53 show that the smooth parts of the inner boundary ΓI are trans-
formed more than the corners, this is the same behavior as in the previous examples.
But because the initial angle is 90◦ the inner domain gets sliced. This behavior was
not a problem in the previous examples, where the inward corners had larger angles
and got smoothed when the domains oscillated around the optimum domain, because
two conditions where met:

1. During the convergence towards the optimal domain the angle of the corner did
not get smaller.

2. The number of elements in the corner has to be two, before it smooths out.

Both of this conditions are not met in this example. The angle gets smaller during
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the convergence until the two sides of the corner are parallel in step 12, see Figure
4.53. And the number of elements is 16 before step 1 and 6 elements in step 12, where
4 elements are parallel to each other. And when the elements are parallel they are
only transformed toward each other, because vA is still a regularization of gn, i.e it
deforms the element in the normal direction. Nevertheless, the regularized approach
does still converge to a shape resembling a circle with the optimal radius, see Figure
4.54. The shape even gets temporally irregular in step 13, as shown in Figure 4.56.
And the absolute value of the Neumann data explodes to 150 on the irregular part of
the inner boundary ΓI . But this does not affect the average Neumann data much as
is seen in Figure 4.57 and the shape still converges.

Irregularity of the Domain in Step 13 for initial L-shape with 90◦ Angle.

Figure 4.56: Zoom in on the slit in
step 13.

Figure 4.57: Statistical distribution
of Neumann data on ΓiI .

Inward Corners: Next, the inward corners and their transformation are examined.
Figures 4.58 and 4.59 show the corner P1 and four surrounding points P2, P3, P4,
P5 and the speed vector vA is represented as a vector.
The Figures 4.58 - 4.59 show that the ‖vA‖2 is almost the same in all five points and
that the points are deformed towards each other. The speed vector is split into a
normal direction n and a tangential direction t as

vA = an+ bt,

and since a 6= 0 the sides of the corner gets transformed towards each other. Because
the speed vector vA = −V (gn) is a regularization of −gn, the transformation in the
tangential direction bt is not large enough in comparison to the transformation in the
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Speed Vector v in the Corner for Step 1 and 4 for initial Domain 90◦ L-
shape.

Figure 4.58: v1 after step 1 Figure 4.59: v4 after step 4

normal direction an. And so, the corner does not get smoothed out.

To fix this a speed vector v with a larger tangential component could be considered.
This means a term could be added to the original speed vector vA:

v(0, x) = vA(x) + βt(x). (4.14)

A term βt can always be added because the Fréchet derivative of the cost functional
J(Ω) is always zero for βt:

dJ(Ω; v) =

∫
ΓI

g(va(x) + βt(x), n(x)) dsx =

∫
ΓI

g(va(x), n(x)) dsx.

But this is only theoretical and has not be proven to work yet. But Section 4.4.5
contains an example where the forming of the split is prevented using different meshes.

4.4.3 Regularized Direction applied to Ω0
I2

The in Section 4.4.2 described problems only occur if the initial inward angle is too
small. For the instance if the same algorithm is applied to the initial domain Ω0

2, where
Ω0
I2

has an inward angle w ≥ 120◦, the domains do converge to a domain without slit,
see Figures 4.60 - 4.64. The vector in the figures represents the speed vector v as in
Figure 4.58 and 4.59.
For this example the inward corner is transformed in the same manner as the outward
corners in Section 4.2. That means the angle of the Ωi

I does not get smaller during the
convergence and the number of elements in the corner reduces from 8 elements before
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Domains in Steps 0, 1 and 3 for an initial Domain Ω0
2

Figure 4.60:
J(Ω0) = 51.1540

Figure 4.61:
J(Ω1) = 50.4477

Figure 4.62: Starting do-
main J(Ω3) = 46.8986

Domains in Steps 5, 6 and the Neumann Data for an initial Domain Ω0
2

Figure 4.63: Starting do-
main J(Ω5) = 42.7579

Figure 4.64: Domain after
step 1 J(Ω6) = 42.7027

Figure 4.65: Statistical
distribution of Neumann
data on ΓiI .

step 1 (Figure 4.60) to 2 elements in step 3 (Figure 4.62).
This happens because the normal vectors in the corner are not pointed toward each
other and thus the domain does not get sliced.

This underlines the importance of the angle of the inward corners which come up
often, because both the regularized approach and the normal approach transforms
outward corners into inward corners, see Remark 10. But the regularized approach
transforms outward corners into inward corners with angle larger than 120◦, see Section
4.2, and these corners are stable as seen in Section 4.4.

4.4.4 Multiresolution method

A multisresolution method is a method where more than one mesh is considered at
the same time or after each other. As seen in this section, a part of the problem is the
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The Regularized Approach applied on the Shape ΩI1, discretized with 16
Elements.

Figure 4.66: Shape and
points before step 1.

Figure 4.67: Shape and
points after the last step.

Figure 4.68: Statistical
distribution of Neumann
data on ΓiI .

number of elements in the corner and a method with different meshes is used to stop
the developing of a slit.
In this subsection the regularized approach is applied to Ω0

I1
. But a coarser mesh is

used, where there are only 2 elements in the corner, see Figure 4.66. The resulting
shape from this optimization is called ΩI3 , see Figure 4.67. When the regularized
approach is applied to ΩI1 with a coarser mesh no parallel elements develop. But the
shape is transformed into a regular shape closer to the optimized shape, as seen in
Figure 4.67.

The Regularized Approach applied on the Shape ΩI3, discretized with 64
Elements.

Figure 4.69: Shape
and points before
step 1.

Figure 4.70: Shape
and points after
step 1.

Figure 4.71: Shape
and points after
the last step.

Figure 4.72: Statis-
tical distribution
of Neumann data
on ΓiI .

When the shape ΩI3 is remeshed with 64 elements and the regularized approach is
applied to this shape, the optimal shape is neither sliced nor has any corners, see
Figure 4.69 - 4.71.
Figure 4.68 shows that, iff the coarser mesh is used, the Neumann data converges
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towards 4 from the bottom and does not oscillate around the optimum 4. But Figure
4.72 shows that the Neumann Data does oscillate around the optimum 4 if the finer
mesh is used. This means that the corner is not changed when the coarser mesh is
used. But when the finer mesh is used on ΩI3 the corner is smoothed out because the
shape is already closer to the optimal shape.

In conclusion it has been shown that the regularized approach has problems with
corners with small angles but a solution to this problem has been shown by using
different meshes with different coarseness, so that the shape converges to the optimal
shape.

4.4.5 Conclusion

In conclusion, this approach and probably every approach which is based on the trans-
formation in the normal direction n has problems with inner corners with small angles.
This approach has problems with angles w < 120◦. But it does still converge to a do-
main with the correct optimal radius nearly everywhere which is sliced as seen in
Figure 4.54. This shows that the regularized approach also works on Lipschitz do-
mains like the sliced domain in Figure 4.52.
Solutions for domains which small corners are:

• Remeshing and smoothing out any elements, which are parallel to each other and
are very close to each other. After that the shape optimization could be restarted
with the smoothed domain and the domains converge.

• A multiresolution method with different meshes and different element size h could
be applied, see Subsection 4.4.4.

• A different speed vector field v(0, x) = v1(x) + βt(x) could be used, see (4.14).

4.5 L-Shape

4.5.1 Overview

• The outer domain is a L-shape

ΩO = {x ∈ R2 | −1 < x1; x2 < 1} \ {x ∈ R2 | 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 0}.

• The initial inner domains are

– An off-center domain

Ω0
I1

= {x ∈ R2 | −0.1 < x1, x2 < 0.3}.

– A more centered domain

Ω0
I2

= {x ∈ R2 | −0.7 < x1 < −0.3; 0.3 < x2 < 0.7}.
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– An larger of center domain

Ω0
I3

= {x ∈ R2 | 0.2 < x1 < 0.5; 0.3 < x2 < 0.6}.

• The boundary Γ1 of Ω0
1 = ΩO \ Ω0

I1
is discretized with N = 320 elements, 192

elements make up ΓO and 128 make up ΓI1 .

• The boundary Γ2 of Ω0
2 = ΩO \ Ω0

I2
is discretized with N = 80 elements, 48

elements make up ΓO and 32 make up ΓI2 .

• The boundary Γ3 of Ω0
3 = ΩO \ Ω0

I3
is discretized with N = 80 elements, 48

elements make up ΓO and 32 make up ΓI3 .

• The regularization parameters used are λ ∈ {
√

14,
√

15,
√

17.5,
√

20, 5,
√

28.5, 6}.
• The constraint ε to the step size s is 0.01.

• Only the regularized approach (4.13) is used to deform Ω0
1, Ω0

2 and Ω0
3.

• The boundary element method (BEM) is used resulting in linear systems, see
(3.27) and (3.34).

In this example a different outer domain is examined, than in the previous examples.
This outer domain ΩO is a so called L-shape. The change of the outer domain changes
the problem significantly:

• The optimal domain Ωopt = ΩO \ Ωopt
I for each given λ changes,

• the minimum λ changes,

• the deformation algorithm has to deal with a corner in the outer domain, which
it has to deform the inner domain around.

This section examines two different aspects:

• How does the regularized approach deal with a corner in the outer domain ΩO,
see Subsection 4.5.2.
In Subsection 4.5.2 an initial inner domain is used which is far from the optimal
domain and λ = 6 to investigate the deformation process. This initial inner
domain Ω0

I1
is a very small square in the right-hand side corner of the L-shape

ΩO. This means during the shape optimization process the inner domain has to
deform around the inward corner of ΩO. The focus is on how this initial inner
domain is deformed and how the stages of deformation are different. Only the
regularized approach is used, because as in Section 4.4 no parameter was found
such that the normal direction approach converges.

• In Subsection 4.5.3 the minimal λ > 0 is calculated such that the shape algorithm
converges.
In Subsection 4.5.3 different initial domains Ω0

I2
and Ω0

I3
are considered, which

are closer to the optimal domain. The domain Ω0
I2

is centered and does not have
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to deform around the inward corner of ΩO. The domains Ω0
I3

is similar to Ω0
I1

but
the hole is larger. The domains Ω0

I2
and Ω0

I3
are used because if the initial domain

ΩI is to small it tends towards ∅. A reason for this convergence toward ∅ is that
the cost functional rises monotonically for a domain with a very small radius,
which means the derivative of the cost functional dJ(Ω; v) is always negative for
an inward direction v = −n, see Figure 4.10 for an example of this behavior. This
affect the minimum λ > 0 such that the regularized approach produces domains
Ωi which converge towards Ωopt.

4.5.2 Optimal Domain for Ω0
I1

and λ = 6

First, the deformation of the inner domain ΩI1 with the regularized approach is exam-
ined. The focus is on how the regularized approach with the speed vector

v(0, x) = vA(x) = −V (gn)(x) for x ∈ ΓI

deals with more complicated shapes. In total there are 64 steps until the domain Ωopt =

ΩO \ Ωopt
I is reached which minimizes J(Ω) in M . In this section the regularization

parameter is λ = 6. The Figures 4.73 - 4.84 show critical steps.

Domains for the Regularized Approach Steps 0, 1 and 4 applied on initial
domain Ω0

1

Figure 4.73:
J(Ω0) = 110.89

Figure 4.74:
J(Ω1) = 110.64

Figure 4.75:
J(Ω4) = 110.32

Visual Behavior: First, the visual behavior of the domains

Ωi = ΩO \ Ωi
I in step i

is examined. Five different visual stages can be recognized where the deformation of
Ωi is different in each stage. In the beginning the inner domain Ωi

I is a square which
is off center and situated in the right hand side corner of ΩO.
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Domains for the Regularized Approach Steps 6, 12 and 20 applied on initial
domain Ω0

1

Figure 4.76:
J(Ω6) = 110.11

Figure 4.77:
J(Ω12) = 108.67

Figure 4.78:
J(Ω20) = 102.49

Domains for the Regularized Approach Steps 24, 28 and 32 applied on
initial domain Ω0

1

Figure 4.79:
J(Ω24) = 98.36

Figure 4.80:
J(Ω28) = 93.77

Figure 4.81:
J(Ω32) = 89.80

1. Steps i = 1, . . . , 4: The square moves upwards (Figure 4.74) to make the distance
between Ωi

I and the outer boundary ΓO larger. The domain Ωi
I also becomes

rounder as it moves upwards (Figure 4.75).

2. Steps i = 5, . . . , 20: The square Ωi
I deforms into a circle and increases the radius

until it fills nearly the whole right-hand side (Figures 4.76 - 4.78). Here the circle
Ωi
I is deformed into an ellipse with similar distance of x̃ ∈ ΓiI to ΓO on three

sides. The domain Ωi
I expands towards the open part in the center. In this stage

it can already be seen that the optimal inner domain Ωopt
I has the same distance

from ΓO everywhere.

3. Steps i = 21, . . . , 32: The ellipse ΓiI slowly deforms around the inner corner of
the L-shape (Figures 4.79 - 4.81). Additionally, the right-hand side deforms such

that it holds for the Neumann data ∂u(x)
∂n

= 6, since the distance between ΓiI and
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Domains for the Regularized Approach Steps 36, 50 and 64 applied on
initial domain Ω0

1

Figure 4.82:
J(Ω36) = 87.48

Figure 4.83:
J(Ω50) = 82.80

Figure 4.84:
J(Ω64) = 82.68

ΓO determines the value of the Neumann data on ΓiI .

4. Steps i = 33, . . . , 50: The inner domain Ωi
I grows into the bottom corner of ΩO

to achieve the correct distance to ΓO there as well. At the same time the rest of
the boundary ΓiI smooths out and is adjusted such that it holds for the normal
derivative ∂u

∂n
λ = 6, see Figures 4.82 - 4.83.

5. Steps i = 51, . . . , 64: The inner boundary ΓiI is smoothed and adjusted so that
∂u
∂n

= λ = 6, as seen in Figure 4.84.

Nodes at step 64, the cost functional and the Neumann data on ΓI

Figure 4.85: Nodes J(Ω64)
Figure 4.86: J(Ωi) over
steps i

Figure 4.87: Statistical
distribution of Neumann
data on ΓiI .

Cost Functional Behavior: Figure 4.86 shows the value of the cost functional J
depending on the steps. The value of the cost functional J(Ω) for the initial domain
is 100.89, and the minimum value of J(Ω) is 82.68. But the cost functional decreases
not as fast as in previous examples. There are at least two reasons for this:

• The first is that for the restriction to the steps size s is ε = 0.01,
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• The second reason is that the inner domain has to deform around the inward
corner of ΩO before the cost functional decreases significantly, which happens in
the step 20 in Figure 4.78.

From the cost functional value only 4 different stages can be recognized:

1. A very slow decrease between steps 1-15.

2. In steps 15-35 is the fastest decrease.

3. In steps 35-50 the decrease slows down.

4. In steps 50-64 the decrease is the smallest, i.e. almost 0.

In stage 1 the initial domain grows in the right-hand corner. In stage 2 the cost
functional J decreases the fastest, and in this stage ΩI deforms around the corner. In
stage 3 the cost functional decreases slower again. In stage 4 the cost functional does
not change much anymore.
The visual stages 1-2 are a single cost functional stage 1. But the other visual stages
3-5 are the same as in the stages shown in the cost functional value 2-4.

Neumann Data Behavior: The last perspective is the Neumann data which is
examined in the statistical distribution of the Neumann data, see Figure 4.87. This
results in three stages:

I. In steps 1-15 the mean Neumann data decreases from 5 to 4.35. This happens
even so the optimal Neumann data is 6, because at the same time the maximum
and minimum tend toward each other.

II. In steps 15-35 the mean increases towards the optimum 6, but the minimum gets
smaller again.

III. In steps 35-64 the mean is 6 and the minimum and maximum also converge
towards 6.

The Stage 3 and Stage 4 are lumped together into Stage III. Figure 4.88 shows how
the different stages overlap. The stages shown by the statistical distribution of the

Visual Stages J(Ω) Stages Neumann Stages Steps
1. 1. I. 1-4
2. 1. I. 5-15
3. 2. II. 16-35
4. 3. III. 36-50
5. 4. III. 51-64

Figure 4.88: Table showing how the different stages overlap.

Neumann data show a different process happening:
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• In Stage I. the inner domain tries to find the optimal domain only in the right
hand side corner of the L-shape.

• In Stage II. the inner domain deforms around the inner corner of the L-shape.

• In Stage III. the inner domain deforms into the optimal domain in the bottom
corner of the L-shape.

The transition from Stage I to Stage III only happens, because there is no other local
minimal domain which is only in the right-hand side. Since the speed method only
finds the nearest local minimal domain. But this cost functional J only has two local
minimal domains: ∅ 6∈ M and the Ωopt ∈ M , where M is the set of all admissible
domains, i.e.

M = {Ω = ΩO \ ΩI ⊂ Rd | ∅ 6= ΩI ,ΩI ⊂ ΩO},
where ΩI is a bounded Lipschitz domain. The optimal domain

Ωopt = ΩO \ Ωopt
I

for the L-shape ΩO is seen in Figure 4.84.
The statistical distribution of the Neumann data in ΓI in Figure 4.87, shows that gen-
erally the Neumann data is smaller than the optimum 6, because the initial domain
Ω0

1 is much smaller than the optimal domain Ωopt, excepting for the Neumann data on
parts of the inner boundary of the domains Ω20 −Ω35 where ΓI oscillates around ΓoptI

in the right-hand side corner.

Next, the node distribution on the inner boundary ΓI in step 64 is considered, see
Figure 4.85. Most points stay in the right-hand side corner, where the initial inner
domain Ω0

I1
is located. In the beginning the center of the square is moved upwards,

but later the left side is only stretched around the corner, not moved.

Conclusion: When the regularized approach is used the domains converge to the
optimal domain, even though it has to deform in many stages and around the corner.
But the center does not move the shape only gets stretched.

4.5.3 Optimal Domain for Different Relaxation Parameter λ.

In the previous subsection it is shown how the initial domain Ω0
I1

converges to the
optimal domain for the relaxation parameter λ = 6. But the question remains: For
which minimum λ ≥ 0 can a optimal domain be found and how does it look
like?

Experiments show that if the initial domain Ω0
1 is used and λ ≤

√
28.5 is chosen

the domain tend towards ∅ and becomes irregular eventually. Therefore, different
initial domains Ω0

I2
, Ω0

I3
are examined to investigate λ ≤

√
28.5 . Additionally, the
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domains Ω0
I2

, Ω0
I3

are used to show that the domain Ωopt which minimize the cost
functional

J(Ω) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx

for λ > 0 depends on the initial domain.

Figure 4.89: Optimal domains
with initial domain ΩI2 for
λ2 ∈ {15, 17.5, 20, 25, 28.5} and
divergent domain for λ =

√
14 .

Figure 4.90: Optimal domains
with initial domain ΩI3 for
λ2 ∈ {20, 25, 28.5} and divergent
domain for λ =

√
17.5 .

Figures 4.89 - 4.90 show the different optimal domains for the different regulariza-
tion parameters λ > 0 and different initial domain. If the domains calculates with the
regularized approach tend toward ∅ the last regular domain is shown.

Observations:

1. For each the relaxation parameter λ the optimal domain are the same independent
of the initial domain, if they converge. This is seen for λ =

√
28.5 , 5,

√
20 .

2. For the initial domain ΩI2 the domains converge for λ ≥
√

15 and for ΩI3 the
domains converge only for λ ≥

√
20 .

3. With decreasing λ the distance of ΓoptI to ΓO gets larger.

4. The points on ΓI are not equally distributed if the initial domain Ω0
I3

is used.
This is especially true in the two corners, because there are a lot less points in
the bottom corner.

5. For the optimal domain it holds

∂u(x)

∂n
= λ for x ∈ ΓI ,
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this is not shown in the Figures 4.89 - 4.90 but is true nonetheless. This agrees
with the results shown in Section 2.3.

The Observation 2 shows us that the possible relaxation parameter λ for which a
optimal domain can be calculated with regularized approach dependents on the initial
domain. But Observation 1 also says that if the domains converge the optimal domain
is independent on the initial domain. Even so the mesh of the optimal domains is
not the same for different initial domains. When the initial domain is Ω0

I3
the mesh

stretches around the corner of ΓO, as in Subsection 4.5.2, that means that the mesh
is coarser in the bottom corner if the initial domain is ”further away”.
Figure 4.89 show that the last regular domain for λ =

√
14 is a very small circle. This

happens because the inner domain ΩI tends towards ∅. This is the same for Figure
4.90 and λ =

√
17.5 . The divergence of small domains in M and for small λ is a

property of the cost functional

J(Ω) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx.

The same happens when ΩO is disk with radius 1 the cost functional J(Ω) has two
extrema Ω̃1 and Ωopt, see Section 4.1. The domain Ω̃1 is the local maximizer of J(Ω).
Therefore, if the inner domain ΩI ⊂ Ω̃1 is smaller than the local maximizer domain
then dJ(Ω; v) < 0 for v = −n, that means the inner domain ΩI tends towards ∅. The
same seems to be true if ΩO is a L-shape.

Figure 4.91: Neumann data on optimal boundary ΓI , for different optimal
domains.

Conclusion: The minimal λ > 0 for which the shape optimization with the cost
functional J(Ω) converges is

λ =
√

15 = 3.87.
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On the inner boundary ΓoptI of the minimizer domain Ωopt of J the Neumann data is

∂u(x)

∂n
= λ = 3.87 for x ∈ ΓoptI .

The domain Ωopt, which is calculated with the regularized approach, is seen in Figure
4.89 in orange. But Ωopt can not be calculated from any initial domain. This again
emphasizes that the speed method only finds the closest local minima and for ΩI = ∅
the cost functional has an infimum but Ω0 \ ∅ 6∈ M . This is true for the regularized
direction approach with vA as for the normal direction approach with vG.



5 Conclusions

In this work the Bernoulli free boundary problem (5.1) is examined and it is reformu-
lated as a shape optimization problem (5.2). This shape optimization problem is used
as an example to introduce a variation of the speed method (5.6), which is more stable
for deformations of Lipschitz domains into Lipschitz domains.
The domain Ω = ΩO \ ΩI is a solution to the Bernoulli free boundary problem if the
state function û satisfies

−∆û = 0 in Ω = ΩO \ ΩI ,

û = 1 on ΓI = ∂ΩI ,

û = 0 on ΓO = ∂ΩO,

∂û

∂n
= λ on ΓI

(5.1)

for a given λ ≥ 0 and a given outer Lipschitz domain ΩO ⊂ Rd. The inner domain
ΩI ⊂ ΩO with ∅ 6= ΩI is a free parameter.
In Chapter 2 a possible reformulation of the Bernoulli free boundary problem (5.1)
as a shape optimization problem is introduced. A solution to this shape optimization
problem is a domain

Ω ∈M = {Lipschitz domain Ω̃ = ΩO \ ΩI | ΩI ⊂ ΩO, ΩI 6= ∅}

for a given bounded Lipschitz domain ΩO. A domain Ω ∈M is a solution of the shape
optimization problem for a given λ ≥ 0 if Ω minimizes the cost functional

J(Ω) =

∫
Ω

|∇u|2 dx+ λ2

∫
Ω

dx (5.2)

subject to the constraint

−∆u = 0 in Ω,

u = 1 on ΓI ,

u = 0 on ΓO.

For the shape optimization problem (5.2) it has been shown that the derivative of J
at Ω is the Fréchet derivative

dJ(Ω; v) =

∫
Γ

g(x)(v(0, x), n(x)) dsx

99
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with

g(x) =

(
λ2 −

(
∂u(x)

∂n

)2
)

for x ∈ ΓI .

Additionally, this work shows that a deformation

Ωs = {ϕ(s, x) | x ∈ Ω},

of Ω is found such that
J(Ωs) ≤ J(Ω), (5.3)

if s is small enough. The domain Ωs fulfills (5.3) if the descent vector v(0, x) =
d
ds

[ϕ(s, x)]s=0 fulfills

dJ(Ω; v(0, ·)) ≤ 0. (5.4)

In Chapter 3 a numerical formulation of the shape optimization (5.2) is introduced
with the boundary element method.

In Chapter 4 the numerical formulation is used to find a approximation of the do-
main which minimizes J(Ω) in M . In that Chapter the initial domain seen in Figures
5.1 - 5.4 are examined.

Initial Domains investigated in this Work.

Figure 5.1: Ini-
tial domains in
Section 4.2.

Figure 5.2: Initial
domains in Sec-
tion 4.3.

Figure 5.3: Initial
domains in Sec-
tion 4.4.

Figure 5.4: Initial
domains in Sec-
tion 4.5.

The main focus of this work is to introduce a different descent direction vA =
(
v1
A, . . . , v

d
A

)>
to the normally used descent direction vG =

(
v1
G, . . . , v

d
G

)>
, which are defined as

viG(x) = −g(x)ni(x) for x ∈ ΓI , i = 1, . . . , d, (5.5)

viA(x) = −V (gni)(x) for x ∈ ΓI , i = 1, . . . , d, (5.6)

where V is the single layer boundary integral operator. This work contrasted the two
descent direction vA and vG to each other by comparing the two deformed domains

Ωs
G = {x+ svG(x) | x ∈ Ω},

Ωs
A = {x+ svA(x) | x ∈ Ω}.
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An important difference between the two descent direction is the regularity of the
speed vector:

• Let gni ∈ Hr(Γ) with r ∈ [−1, 0],

• then viG ∈ Hr(Γ),

• and viA ∈ Hr+1(Γ)

for i = 1, . . . , d. This has an impact on the solvability of the shape optimization prob-
lem (5.2), see Section 1.6. An example for this is if gni ∈ Hr(Γ) with r < 0 then the
integral in dJ(Ω; vG(0, ·) is not necessarily defined.

Likewise the numerical examples in Chapter 4 of the shape optimization problem
(5.2) show that:

• The deformation with vG (5.5) is faster for C1-domains.

• The deformation with vA (5.6) is more stable for domains with polygonal bound-
aries.

In this work these two descent directions are compared, but other descent direction

vi(x) = A
(
gni
)

(x) for x ∈ ΓI and i = 1, . . . , d

with a H−1/2-elliptic boundary integral operator A, are possible. The Steklov-Poincaré
Operator

S = V −1 (σI +K) : H1/2(Γ)→ H−1/2(Γ)

is a interesting example forA−1. This would result in the speed vector vS =
(
v1
S, . . . , v

d
S

)>
as the solution of the boundary integral equation

Svis = −gni on ΓI , (5.7)

⇔ (σI +K) vis = −V
(
gni
)

on ΓI ,

for i = 1, . . . , d. If S is H1/2(ΓI)-elliptic and bounded, (5.7) is uniquely solvable and
vS is a valid descent direction, since

dJ(Ω; vS) = −
∫

ΓI

(vS, S (vS))dsx ≤ −
d∑
i=1

cS1
∥∥viS∥∥2

H1/2(ΓI)
≤ 0.

The boundary integral equations (5.7) are equivalent to the mixed boundary value
problem, where wi ∈ H1(Ω) is the weak solution of

−∆wi = 0 in Ω,

wi = gni on ΓI ,

wi = 0 on ΓO,

(5.8)
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for i = 1, . . . , d. This results in the descent direction viS = γint0 wi ∈ H1/2(Γ). The solu-
tion wi is aH1-extension of the descent direction viS, if gni ∈ H−1/2(ΓI) for i = 1, . . . , d.
To our knowledge this is not yet examined, and would be an interesting deformation to
investigate. Especially since the mixed boundary value problem (5.8) can be solved in
various different ways for example with the finite element method (FEM). Therefore,
the speed vector with vi = γint0 wi for i = 1, . . . , d can be used without using the BEM
at all.

In Section 4.4 it is considered how inward corners affect the approach with speed
vector vA. In that section it is demonstrated that the approach has problems with
domains ΩI which have inward corners with small angels.

The question of ”What is the minimal λ > 0 for a given outer domain ΩO

so that the shape optimization problem (5.2) is solvable?” is discussed in Sec-
tion 4.5. A domain is found which is a local minimizer of J(Ω) in M for the initial
domain in Figure 5.4 and the minimal parameter is λ = 3.7417. That means it holds

min
Ω∈M

[
∂û

∂n

]
ΓI

≤ 3.7417,

where û is the solution of (5.1).

Additionally, to the investigation of different speed vectors like vS, there are some
matters which could be examined in the future:

• This work only applies the shape optimization to example domains Ω ⊂ R2, this
approach would be interesting for example domains Ω ⊂ R3.

• Here the shape optimization process is only applied to problems where the optimal
domain is a C1-domain. How does this approach behave if the optimal domain
has corners?

• For Lipschitz domains Ω ⊂ R3 the Theorem 11 shows that v ∈ H 3
2

+ε(Γ) is needed
for the existence of the shape derivative u′(·; v) ∈ H1/2(Ω). How can the speed
method be used if v ∈ H t(Γ) with t < 3

2
?

• Can a speed vector v be chosen with lower regularity than H1/2(Γ) and can the
existence of u′(·; v) ∈ L2(Ω) be still proven?

• The speed vector is chosen as v = −V (gn), what other boundary integral operator
like S can be used? Or can a completely different v be used?
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Notations

N− the set of all positve integers,

Z− the set of all integers,

Z+ − the set of all non-negative integers,

R− the set of real numbers,

R
d −R× . . .R d factors,

{x ∈ X | P (x)} − the subset of X containing all elements that have property P(x),

E ⊂ X − E subset of metric space X,

E − the closure of E in X,

∂E − boundary of E,

X ′ − dual space of X.

For vectors v, w ∈ Rd the scalar product is (v, w) =
∑d

i=1 viwi.

Function Spaces

Here Ω ⊂ Rd is a bounded domain, which is a open and connected subset of Rd for
d ∈ N.

For k ≥ 0 the space Ck(Ω) is the space of all functions defined in Ω, which are k
times continuously differentiable:

Ck(Ω) := {u ∈ C(Ω) | Dαu ∈ C(Ω) for |α| ≤ k}, (6.1)

Dαu(x) :=
∂|α|u(x)

∂α1
x1 ∂

α2
x2 · · · ∂αdxd

(6.2)

with α = (α1, . . . , αd), |α| = α1 + . . .+αd and C(Ω) = C0(Ω) is the space of continuous
function defined in Ω.
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The set Ck
0 (Ω) is the set of functions u, which are k times continuously differentiable

and the support of u is compact and contained in Ω:

Ck
0 (Ω) := {f ∈ Ck(Ω) | suppu ⊂ Ω}.

The set of test functions C∞0 (Ω) is

C∞0 (Ω) :=
∞⋂
k=0

Ck
0 (Ω),

and the set of infinitely often differentiable function in in Ω is

C∞(Ω) := {u|Ω | u ∈ C
∞(Rd)}

where C∞(Rd) =
⋂∞

0 Ck(Rd), for more information see [6, page 61].

The set of Lipschitz continuous functions is denote by C0,1(Ω), i.e. a function u ∈
C0,1(Ω) fulfills

|u(x)− u(y)| ≤ C‖x− y‖ for all x, y ∈ Ω.

Here only functions u : Ω→ R are considered, if a function is v : Ω→ R
d then

v ∈ Ck(Ω;Rd) if vi ∈ Ck(Ω) for i = 1, . . . , d. (6.3)

The same is considered for the function spaces C0,1(Ω;Rd), C∞0 (Ω;Rd) and C∞(Ω;Rd).

Domains

The definition of Lipschitz domains and Ck-domains is based on [6, Definition 3.28].

Definition 11 (Hypograph). If there exists a function ζ : Rd−1 → R such that

Ω = {x = (x1, . . . , xd) ∈ Rd : xd < ζ(x′) and x′ = (x1, . . . , xd−1) ∈ Rd−1},

and ζ ∈ C0,1(Rd−1), then Ω is a Lipschitz hypograph. If ζ ∈ Ck(Rd−1) then Ω is a Ck

hypograph.

Definition 12 (Lipschitz Domains). The open and connected set Ω ⊂ Rd is a Lipschitz
domain if its boundary Γ = ∂Ω is compact and if there exists finite families {Wj} and
{Ωj} having the following properties:

1. The family {Wj} is an open cover of Γ, i.e. each Wj is an open subset of Rd and
Γ ⊂ ∪jWj.

2. Each Ωj can be transformed to a Lipschitz hypograph by a rigid motion, i.e. by a
rotation and a translation.
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3. The set Ω satisfies Wj ∩ Ω = Wj ∩ Ωj for each j.

Definition 13 (Ck-Domains). The open and connected set Ω ⊂ Rd is a Ck-domain
for k ≥ 0 if its boundary Γ = ∂Ω is compact and if there exists finite families {Wj}
and {Ωj} having the following properties:

1. The family {Wj} is an open cover of Γ, i.e. each Wj is an open subset of Rd and
Γ ⊂ ∪jWj.

2. Each Ωj can be transformed to a Ck hypograph by a rigid motion, i.e. by a
rotation and a translation.

3. The set Ω satisfies Wj ∩ Ω = Wj ∩ Ωj for each j.

For a Lipschitz hypograph Ω the function ζ is Fréchet-differentiable with

‖grad ζ‖L∞(Rd−1) ≤M,

where M is a Lipschitz constant for ζ, see [11, Theorem 11A]. Then the normal vector
is

n(x) =
1√

1 + | grad ζ(x′)|2
(− grad ζ(x′), 1)

>
for x = (x′, xd) ∈ Γ (6.4)

and the surface measure is

dsx =
√

1 + | grad ζ(x′)|2 dx′ for x = (x′, xd) ∈ Γ,

see [6, p. 97].

Theorem 19 ([6, Theorem 3.34]). Let Ω be a Lipschitz domain and let F : Rd → R
d

be a C1 vector field with compact support. Then∫
Ω

divF (x) dx =

∫
Γ

(F (x), n(x))dsx.

Sobolev Spaces

Let Ω ⊂ Rd be a Lipschitz domain.

Definition 14 ([6, page 58]). The Banach spaces Lp(Ω) are defined with the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|p dx
)1/p

for 1 ≤ p <∞,

and L∞(Ω) is defined with the essential supremum and the norm

‖u‖L∞(Ω) := esssupx∈Ω |u(x)|.
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The scalar product is defined by

〈u, v〉Ω :=

∫
Ω

u(x)v(x) dx (6.5)

whenever uv ∈ L1(Ω).
The space L2(Ω) is a Hilbert space with the scalar product in (6.5).
The space L2(Γ) is also a Hilbert space with the scalar product

〈u, v〉Γ :=

∫
Γ

u(x)v(x) dsx.

Theorem 20. Let Ω ⊂ Rd be a Lipschitz domain and v, w ∈ C1(Ω). Then the Green
formula ∫

Ω

∂w(x)

∂xi
v(x) dx = −

∫
Ω

w(x)
∂v(x)

∂xi
dx+

∫
Γ

w(x)v(x)ni(x) dsx

holds, where ni is the i-th component of the unit vector of the outward normal n to
Γ = ∂Ω.

From Theorem 20 follows the first Green identity for W ∈ C2(Ω), v ∈ C1(Ω):∫
Ω

(∇v(x),∇w(x)) dx =

∫
Γ

w(x)
∂w(x)

∂n
dsx −

∫
Ω

v(x)∆w(x) dx

with the normal derivative

γint1 w(x) =
∂w(x)

∂n
:= lim

Ω3x̃→x∈Γ
(∇w(x̃), n(x)),

where for Lipschitz domains the normal vector n is defined by (6.4). The weak partial
derivative of u ∈ L2(Ω) is ∂αu = f , if there exists a function f ∈ L2(Ω) such that

〈u,Dαφ〉Ω = (−1)α〈f, φ〉Ω ∀φ ∈ C∞0 (Ω).

For k ≥ 0 the Sobolev space Hk(Ω) is

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) for |α| ≤ k}, (6.6)

with the Sobolev norm

‖u‖Hk(Ω) =

∑
|α|≤k

∫
Ω

|∂αu(x)2 dx

1/2

.
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For 0 < µ < 1 the Slobodeckij semi norm is

|u|µ,Ω =

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2µ
dx dy

)1/2

and with this norm the Sobelv space for s = k + µ ≥ 0 is

Hs(Ω) = {u ∈ Hk(Ω) : |∂αu|µ,Ω <∞ for |α| = k}

with the norm

‖u‖Hs(Ω) =

(
‖u‖2

Hk(Ω) +
∑
α=k

|∂αu|2µ,Ω

)1/2

.

Function Spaces on the Boundary

Let Ω be a bounded domain and let there exist a overlapping decomposition

Γ =

p⋃
i=1

Γi, with Γi = {x ∈ Rd | x = χi(x
′), x′ ∈ τi ⊂ Rd−1}. (6.7)

Furthermore, there exists a partition of unity (φi)
p
i=1 in terms of the decomposition

(6.7) with non-negative cut-off functions φi ∈ C∞0 (Rd) with

1 =

p∑
i=1

φi(x) for x ∈ Γ, φi(x) = 0 for x ∈ Γ \ Γi. (6.8)

Then

v(x) =

p∑
i=1

φi(x)v(x) for x ∈ Γ.

For i = 1, . . . , p let

ṽi(x
′) := φi(χi(x

′))v(χi(x
′)) for x′ ∈ τi ⊂ Rd−1

with the local parametrization χi in (6.7). Let k ≥ 1 and let Ω be a Ck-domain. Then
there exists a decomposition (6.7) and partition of unity (6.8) with χi ∈ Ck(τi) for
i = 1, . . . , p. The function v fulfills v ∈ C l(Γ) for 0 ≤ l ≤ k if

p∑
i=1

ṽi ∈ C l(Rd−1).
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Let Ω be a Lipschitz domain. Then there exists a decomposition (6.7) and partition
of unity (6.8) with χi ∈ C0,1(τi) for i = 1, . . . , p, see [6, p. 97- 98]. The function v
fulfills v ∈ Hs(Γ) for 0 ≤ s < 1 if

ṽi ∈ Hs(τi) for i = 1, . . . , p

with the norm

‖v‖Hs
χ(Γ) :=

[
p∑
i=1

‖ṽi‖2
Hs(τi)

]1/2

.

The L2 norm

‖v‖L2(Γ) :=

[∫
Γ

|v(x)|2 dsx
]1/2

is a equivalent norm to ‖·‖H0
χ(Γ), see [10, Lemma 2.19]. For s ∈ (0, 1) the Sobolev-

Slobodeckij norm

‖v‖Hs(Γ) =

[
‖v‖2

L2(Γ) +

∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|d−1+2s
dsxdsy

]1/2

is a equivalent norm to ‖·‖Hs
χ(Γ). And for −1 < s < 0 the Sobolev space is the

dualspace
Hs(Γ) :=

[
H−s(Γ)

]′
with the norm

‖w‖Hs(Γ) := sup
06=v∈H−s(Γ)

|〈w, v〉Γ|
‖v‖H−s(Γ)

,

see [6, p. 98]. For a closed boundary Γ which is piecewise smooth, i.e

Γ =

p⋃
i=1

Γi, Γi ∩ Γj for i 6= j,

with Γi being C1 hypograph. For s > 0 the set of piecewise smooth function is defined
by

Hs
PW (Γ) := {v ∈ L2(Γ) | v|Γi ∈ H

s(Γi) for i = 1, . . . , p}, (6.9)

with the norm

‖v‖Hs
PW (Γ) := {

p∑
j=1

∥∥∥v|Γj∥∥∥2

Hs(Γj)
}1/2,

see [10, p. 37]. For s < 0 set of piecewise of piecewise function is defined by

Hs
PW (Γ) :=

p∏
j=1

H̃s(Γj)
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with the norm

‖v‖Hs
PW (Γ) :=

p∑
j=1

sup
06=wj∈H−s(Γj)

〈
v|Γj , wj

〉
Γj

‖wj‖H−s(Γj)
,

see [10, p. 37].

Properties of Sobolev Spaces

Let Ω be a Lipschitz domain and s ≥ 0, than Hs(Ω) is the closure of the space C∞(Ω)
with the norm ‖·‖Hs(Ω):

Hs(Ω) = C∞(Ω)
‖·‖Hs(Ω)

.

The trace on Γ = ∂Ω for f ∈ C(Ω) is defined as

γint0 f(x) := lim
Ω3x̃→x∈Γ

f(x̃) for x ∈ Γ. (6.10)

Theorem 21 ([10, Theorem 2.21]). Let Ω ⊂ R
d be a Lipschitz domain. For s ∈

(1/2, 1] the trace on Γ = ∂Ω is

γint0 : Hs(Ω)→ Hs−1/2(Γ)

a bounded linear operator, i.e.∥∥γint0 v
∥∥
Hs−1/2(Γ)

≤ cT‖v‖Hs(Ω) for v ∈ Hs(Ω),

as extension of v|Γ = γint0 u for u ∈ C(Ω).

The space Hs
0(Ω) is the space of Sobolev function in Hs(Ω), which vanish on the

boundary Γ = ∂Ω:

Hs
0(Ω) = {u ∈ Hs(Ω) | γint0 u(x) = 0 for x ∈ Γ}. (6.11)

For Lipschitz domains Ω ⊂ Rd and s ≥ 0 the space Hs
0(Ω) is the closure of the space

of test functions with the norm ‖·‖Hs(Ω):

Hs
0(Ω) = C∞0 (Ω)

‖·‖Hs(Ω) ,

and there also is
H̃s(Ω) = C∞0 (Ω)

‖·‖
Hs(Rd) .

For s < 0 the Sobolev space Hs(Ω) is the dual space

Hs(Ω) =
(
H̃−s(Ω)

)′
with the norm

‖v‖Hs(Ω) = sup
0 6=w∈H−s(Ω)

|〈v, w〉Ω|
‖w‖H−s(Ω)

.
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Theorem 22 ([10, Theorem 2.5]). Let Ω ⊂ Rd be a bounded Lipschitz domain and
d
2
< s. Then for u ∈ Hs(Ω) the function u ∈ C(Ω) satisfies

‖u‖L∞(Ω) ≤ c‖u‖Hs(Ω) ∀u ∈ Hs(Ω).
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