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Abstract

This work covers space-time finite element methods. Two dynamic problems which are
closely related to each other are presented. In particular, the wave equation for the elas-
tic bar and the acoustic fluid in the one dimensional case are discussed. Therefore, we
give a derivation of the mechanical problems and formulate a variational problem for each
initial boundary value problem. A Bubnov Galerkin method for the elastic bar and a dis-
continuous Petrov Galerkin method for the acoustic fluid are presented. Both methods are
formulated in the space-time setting. The variational problems are transferred to a discrete
setting in which standard finite element technology is utilised for an entire initial boundary
value problem. Finally, a verification of the proposed space-time methods is done by a
numerical approach and several examples are investigated.

Zusammenfassung

In dieser Arbeit werden Raum-Zeit Finite Elemente Methoden behandelt. Dazu werden
zwei dynamische Probleme hergeleitet und vorgestellt. Im Speziellen handelt es sich hier-
bei um den elastischen Dehnstab und das akustische Fluid im ein-dimensionalen Fall. Bei-
de mechanische Probleme werden durch die Wellengleichung beschrieben. Es wird für das
Problem des Dehnstabs, sowie des Fluids jeweils eine Variationsformulierung vorgestellt.
Ein Bubnov-Galerkin Verfharen wird für den elastischen Dehnstab und ein diskontinu-
ierliches Petrov-Galerkin Verfahren für das akustische Fluid behandelt. Beide Methoden
werden in Raum-Zeit formuliert, um eine gewöhnliche Finite Elemente Technologie für
das gesamte Anfangsrandwertproblem anzuwenden. Schließlich werden die Raum-Zeit
Methoden durch einen numerischen Ansatz verifiziert und es werden mehrere numerische
Beispiele untersucht.
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1 INTRODUCTION

Time dependent problems arise in many engineering applications such as fluid dynamics,
structural dynamics or signal processing. One can investigate such problems in the time
or frequency domain. While treating such problems in the frequency domain is useful
for harmonic excitations, time domain methods play an important role for problems with
transient dynamic repsones. Within this work we focus on transient problems, in partic-
ular we restrict ourselves to the wave equation in the one dimensional case. Here, two
physical problems are investigated, on the one hand the wave equation for the elastic bar
and on the other hand for acoustic fluids. Their governing equations are derived from the
fundamental theory of continuum mechanics. There are several textbooks on the topic of
continuum mechanics such as [3, 27, 31]. There are analytical solutions available for the
wave equation with special initial and boundary conditions. However, this is not the case
in general. Therefore, one resorts to numerical solution techniques. Common methods are
the finite difference method (FDM), finite element method (FEM) or boundary element
method (BEM). The method of choice in this line of work is the FEM. For introductory
information on this topic see, e.g. [11,18,24,34,36]. The finite element method makes use
of a variational formulation of the governing equation. For time dependent problems it is
standard practise to use a semi discretization where space and time are meshed indepen-
dently. One approach is the method of lines [33], where first a discretization is deployed
spatially and afterwards in time. After discretizing the spatial problem with a method of
choice such as FEM one obtains a system of ordinary differential equations with respect
to time which can be solved with classical finite differences such as forward/central/back-
ward differences. Furthermore, there is Rothe’s method [32], which discretizes in time
first and afterwards in space leading to a system of stationary problems which is in general
a system of partial differential equations and can be solved with the same set of methods.
However, here, we use space-time methods which regard the time variable as an addi-
tional coordinate. Therefore, in contrast to above mentioned methods a discretization of
the entire space-time domain is conducted. To illustrate this, a comparision of an approxi-
mation via a classic approach and a space-time approach is made. As seen in Figure 1.1a
common approaches use only a spatial discretization which calculates a spatial solution
at certain time positions only. In contrast to this, we observe a complete discretization of
the space-time slab in 1.1b and, hence, obtain a solution everywhere in the space-time do-
main directly. Although space-time methods exist already for a longer period (cf. [22,23]),
they were not commonly utilised until recently. Due to increasing computing performance
space-time methods attract more attention recently. A big advantage of space-time meth-
ods is the ability to consider moving boundaries directly, since they grant direct acces to
the defomerd configuration at all times. Furthermore, one can benefit from the ability
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(b) Space-time approach

Figure 1.1: Approximated solution uh(x, t) for a problem in dynamics

to refine a given mesh locally. This is of advantage when resolving local features of the
analytical solution in space and time. Known adaptive space-time methods can be found
in [1, 15, 30, 35].

In this work we will present two space-time methods. First, we will develop a Bubnov
Galerkin method [28], which is a continuous Galerkin (CG) method for the wave equation
of the elastic bar. The derived formulation has only the primal variable as its unknown, i.e.
the displacement field. The initial and boundary conditions are imposed via the penalty
method [7, 8] and the discretization is done with the use of the Argyris element [17].
Furthermore, we present a discontinuous Petrov Galerkin method (cf. [13, 14, 16]) for the
first order system of the wave equation in acoustics according to [20]. Here, the pressure
and velocity field are the unknowns. In a Petrov Galerkin formulation the test space differs
from the trial space see, e.g. [6]. The central idea of the discontinuous Petrov Galerkin
(DPG) method is to approximate the optimal test functions for a given trial space. This
can be done locally, since a discontinuous formulations is used. For reference of classical
discontinous Galerkin (DG) methods see, e.g. [5]. Furthermore, the DPG method has
a built-in error estimator which allows for automatic adaptive refinement schemes. The
discretization uses polynomial finite elements of Lagrangian type for the trial spaces and
the test space. For a more comprehensive description of the Galerkin method the reader is
referred to [28].
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1.1 Outline

First, the mechanical problem setting is introduced in Chapter 2. Here, all governing equa-
tions for one dimensional dynamics are derived from the theory of continuum mechanics
and two initial boundary value problems are constructed. In Chapter 3, a continuous varia-
tional formulation is obtained for the wave equation of the elastic bar and a discontinuous
variational formulation for the wave equation of the acoustic fluid is presented. This is
followed by Chapter 4 which deals with discretization techniques and brings both varia-
tional problems to a discrete setting resulting in a CG method for the elastic bar and a DPG
method for the acoustic fluid. Furthermore, a short introduction in finite element spaces is
given. Applications of the introduced space-time methods are given in Chapter 5. First,
a verification example where convergence studies are conducted is investigated for both
methods. Afterwards, we present a model problem showcasing typical features of the re-
spective space-time methods and discussing its advantages and disadvantages. In the last
chapter, a short conclusion is given.
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2 MECHANICAL PROBLEM SETTING

In this chapter, two mechanical problems are discussed. In particular the dynamic be-
haviour of an elastic bar and of an acoustic fluid are investigated. In both cases, only
geometries where one dimension is predominating are considered. This leads to the one
dimensional wave equation for the solid and the fluid. We assume small changes of the
state variables, such as the pressure field of the acoustic fluid and the displacement field of
the elastic bar. This means higher order terms in the kinematic relations can be neglected.
Furthermore, only linear constitutive models are considered. Due to these assumptions
linear partial differential equations for both described cases are obtained.

2.1 Wave Equation for the Elastic Bar

ρ, A

L

Figure 2.1: Elastic bar

This section deals with the derivation of the wave equation for the elastic bar. A bar is body
where one of its dimensions is significantly larger than the others. Therefore, all relevant
mechanical quantities of the bar can be described as functions along its axis. In particular
a bar is defined between 0 and L where L > 0 is the length of the bar. Furthermore, it has
a cross section area A > 0 and a density ρ > 0. These physical quantities define the mass
m= ρAL of the bar. A bar has to have at least one support to be fixed in location and can be
loaded by axial forces. Exemplary a bar which is fixed on the left side and is not supported
on the right side is depicted in Figure 2.1. Here, only homogeneous and isotropic materials
are considered. We call the displacement field of the elastic bar u(x, t).

2.1.1 Kinematics

The relation between the deformation u(x, t) and the strain ε(x, t) is described by the kine-
matic relations. In Figure 2.2 the kinematic relation for a deformed infinitesimal bar ele-

5
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dx

u u+du

Figure 2.2: Deformed infinitesimal bar element

ment is illustrated. This leads to the relation of the infinitesimal strain for the one dimen-
sional case. It reads

ε =
u+du−u

dx
= ∂xu. (2.1)

2.1.2 Balance Laws and Kinetics

Independent of the material properties for a given physical object, there are relations be-
tween the external loading and the internal response which are expressed by the kinetics
of the given body. Thus, the kinetic relations hold for every solid or fluid. Within this
work only mechanical loadings are considered. We distinguish between body forces f (x, t)
which act on the whole body and traction forces q(t) which act only on the boundary of
the body. The external forces produce internal forces which can be described by the stress
state σ(x, t). In the one dimensional case only stresses in x-direction appear. We define the
internal normal force N(x, t) with

N =
∫
A

σ dA. (2.2)

At an infinitesimal bar element as depicted in Figure 2.3 one can observe the kinetic equi-
librium which results in the balance of linear momentum or equilibrium of forces

dm∂ttu = N +dN−N + f Adx, (2.3)

dm ∂ttuN N +dN

f dx

dx

Figure 2.3: Free body diagram
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with dm = ρAdx. This equation is rewritten as

ρA∂ttu = ∂xN + f A. (2.4)

2.1.3 Constitutive Relations

The constitutive model connects kinematics and kinetics and thus a relation between σ(x, t)
and ε(x, t). As stated above only homogeneous and isotropic materials are considered.
Here, we use the Kelvin-Voigt model whose rheological model connects a spring element
and a dash pot in parallel. It reads

σ = Eε +D∂tε, (2.5)

where E > 0 is the Young’s modulus and D > 0 the viscosity. For further information on
this topic the reader is referred to [12].

2.1.4 Initial Boundary Value Problem

ρ, A, E, D

L

f (x, t)

q(t)

Figure 2.4: Elastic bar under load

Before we construct the initial boundary value problem we derive the governing equation
for this problem. Exemplary, an elastic bar which is fixed on the left side and subjected to
a time dependent traction force q(t) and an axial body force f (x, t), is depicted in Figure
2.4. Combining relation (2.1), (2.4) and (2.5) results in the following governing equation
for the damped axial vibration

∂ttu− c2
∂xxu−d2

∂xxtu =
f
ρ
, (2.6)

where c2 = E/ρ , d2 = D/ρ . In order to define an initial boundary value problem we
introduce the space-time domain Q which is constructed as follows. We consider a time
interval ϒ = (0,T ) where T > 0 is an arbitrary end time and a space domain or spatial
interval Ω=(0,L). Furthermore, we introduce the boundary Γ of the space domain defined
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Ω0

ΣD ΣNQ

x

t

Figure 2.5: The space-time domain for the elastic bar element

by Γ = ∂Ω = {0,L}. The boundary can be decomposed as follows Γ = ΓD ∪ΓN while
ΓD defines the Dirichlet boundary of the domain Ω relating to displacement boundary
conditions and ΓN defines a Neumann type boundary of Ω relating to boundary conditions
which impose traction forces. Thus, the space-time domain is defined by Q = Ω×ϒ with
its lateral boundary denoted by Σ = Γ×ϒ with ΣD = ΓD×ϒ, ΣN = ΓN ×ϒ and its initial
boundary Ω0 = Ω×{t = 0}. The graphical representation of this setting is depicted in
Figure 2.5. Thus, the initial-boundary value problem for the elastic bar element reads

∂ttu− c2
∂xxu−d2

∂xxtu =
f
ρ

in Q

u = u0 on Ω0

∂tu = u̇0 on Ω0

u = ũ on ΣD

c2
∂xu+d2

∂xtu =
q

ρA
on ΣN .

(2.7)

2.2 Wave Equation for the Acoustic Fluid

In this section, we derive the first order system of the wave equation for acoustic fluids.
This can be done in different ways, for a more comprehensive derivation see [19, 29]. A
fluid is called acoustic fluid if it is homogeneous, isotropic, perfectly elastic and at rest
in the initial state. With these restrictions we denote the total density ρ̂(x, t) and pressure
field p̂(x, t). Furthermore, the states at rest of the density and pressure are denoted by ρ0
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and p0. Hence, the density and pressure field are decomposed as follows

ρ̂(x, t) = ρ(x, t)+ρ0,

p̂(x, t) = p(x, t)+ p0.

In the following only small fluctuations of the density ρ� ρ0 and the pressure p� p0 are
considered. Note that v(x, t) = ∂tu(x, t).

2.2.1 Kinematics

The volume change, also known as dilatation ε(x, t) can be written as

ε =
dV −dV0

dV0
, (2.8)

where V denotes the volume at a certain point (x, t) and V0 the initial volume at position x.
Since it holds ρ̂(x, t)dV (x, t) = ρ0 dV0(x), we rewrite the kinematic relation (2.8) with

ρ =−ρ̂ε. (2.9)

Assuming that the fluctuations are sufficiently small, we can linearize (2.9) which results
in

ρ =−ρ0ε. (2.10)

2.2.2 Balance Laws and Kinetics

In the case of acoustic fluids the balance of mass and balance of linear momentum are
observed. The balance of mass is given with

∂t ρ̂ +∂x(ρ̂v) = g, (2.11)

where g(x, t) is a mass source. Only small fluctuations and homogeneous fluids are as-
sumed, hence (2.11) can be linearised and we obtain

∂tρ +ρ0∂xv = g. (2.12)

In an acoustic fluid the stress tensor is hydrostatic. This means in the three dimensional
space σ(x, t) =−p(x, t) I, where I denotes the identity matrix. In the one dimensional case
this relation reads

σ =−p. (2.13)

Consequently, with (2.13) the balance of linear momentum in the one dimensional case is
obtained

ρ0∂tv−∂x p = f . (2.14)
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Ω0

Σ ΣQ

x

t

Figure 2.6: The space-time domain for the acoustic fluid

2.2.3 Constitutive Relations

The constitutive relation of an acoustic fluid is given with a relation between the density
ρ(x, t) and the pressure p(x, t). In particular, it reads

p =−Kε, (2.15)

with the bulk modulus K > 0.

2.2.4 Initial Boundary Value Problem

We obtain the governing system of equations by combining (2.10), (2.12), (2.14) and (2.15)
which results in

∂tv−
1
ρ0

∂x p =
f

ρ0
,

1
K

∂t p−∂xv =
g
ρ0

.

(2.16)

We construct a similar space-time domain Q as shown in Section 2.1.4. We consider the
same spatial interval Ω and time intervals ϒ such that Q = Ω×ϒ where Ω0 = Ω×{t =
0}, with the initial conditions for the pressure and velocity. However, we only consider
boundary conditions for the pressure field which are given on Σ = {0,L}×ϒ. Thus, the
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initial-boundary value problem for the acoustic fluid reads

ρ0∂tv−∂x p = f in Q
1
K

∂t p−∂xv =
g
ρ0

in Q

p = p0 on Ω0

v = v0 on Ω0

p = p̃ on Σ.

(2.17)

2.3 Comparison of the Elastic Bar and the Acoustic Fluid

Both presented mechanical problems correlate to each other since the first order system of
the wave equation can be transformed in a second order wave equation which relates to
(2.6). This can be done for both variables v(x, t) and p(x, t). We assume that the source
term g(x, t) vanishes. We start with deriving the second order wave equation for the pres-
sure field p(x, t). The first equation of (2.16) is differentiated with respect to x while the
second equation is differentiated with respect to t. Lastly, both equations are inserted into
each other leading to

ρ0

K
∂tt p−∂xx p = ∂x f , (2.18)

for (x, t) ∈ Q. For velocity v(x, t) we differentiate the first equation of (2.16) with respect
to t and the second equation with respect to x and obtain

ρ0∂ttv−K∂xxv = ∂t f , (2.19)

for (x, t) ∈ Q. Lastly by integrating (2.19) with respect to time one obtains

ρ0∂ttu−K∂xxu = f +C, (2.20)

for (x, t)∈Q and where C is some constant which is zero for suitable boundary conditions.
At this point, one can observe the direct connection between both mechanical problem
settings.
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3 VARIATIONAL FORMULATIONS

In the course of this chapter, a variational formulation of the wave equation for the elastic
bar and of the wave equation for the acoustic fluid is derived. In the case of the elastic
bar we obtain a weak formulation with respect to space. However, the variational formu-
lation is kept in a strong form with respect to time. Due to this fact, this method requires
sufficiently smooth functions.

For the acoustic fluid the space-time domain is decomposed and a variational formulation
which allows discontinuities between the partitions is presented. This results in a mesh
dependent variational formulation which is a typical feature of DG methods. The obtained
formulation is also called a broken weak formulation. The DPG method which calculates
the test space according to the trial space is built on this formulation. From here on, we
use the notation u for trial functions and v for test functions.

3.1 CG Formulation for the Elastic Bar

In order to solve (2.7) we reformulate it in a weak sense. To this end, we multiply (2.6)
with the time derivative of the test function v and apply integration by parts with respect to
space. This leads to the problem: Find u(x, t) ∈U such that∫

Q

∂ttu∂tvdQ+
∫
Q

(
c2

∂xu+d2
∂xtu

)
∂xtvdQ

−
∫
Σ

(
c2

∂xu+d2
∂xtu

)
∂tvdΣ =

∫
Q

f
ρ

∂tvdQ (3.1)

holds for all v(x, t) ∈ U , where U is a suitable space. Note that within this work the
well-posedness of this variational formulation is not further investigated and is still an
open question. In particular, we assume that all partial derivatives in (3.1) are in L2(Q). To
avoid restrictions for the space U when imposing initial and Dirichlet boundary conditions,
a penalty method [7, 8] is applied. Therefore, the exact Dirichlet boundary condition

u− ũ = 0, (3.2)

on ΣD is replaced by an approximate condition

u− ũ+ γB

(
c2

∂xu+d2
∂xtu

)
= 0, (3.3)

13
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where γB > 0 is the penalty parameter. In order that (3.3) approximates the the boundary
condition (3.2) good enough γB must be chosen sufficiently small. By multiplying (3.3)
with the time derivative of the test function and integration over Σ we get∫

Σ

(
c2

∂xu+d2
∂xtu

)
∂tvdΣ =

∫
ΣN

q
ρA

∂tvdΣN−
1
γB

∫
ΣD

(u− ũ)∂tvdΣD. (3.4)

Analogously, a penalty term for the initial conditions

u−u0 = 0,

∂tu− u̇0 = 0
(3.5)

is formulated. These conditions are, then, imposed by adding following integral

u−u0 =
1
γB

∫
Ω0

(u−u0)∂tvdΩ0,

∂u− u̇0 =
1
γB

∫
Ω0

(∂tu− u̇0)∂tvdΩ0

(3.6)

to (3.1). The combination of (3.1), (3.4), and (3.6) gives the penalized variational formu-
lation to be solved. For further explanations we introduce the bilinear form b(u,v) and the
linear form `(v) defined as

b(u,v) =
∫
Q

(
∂ttu∂tv+ c2

∂xu∂xtv+d2
∂xtu∂xtv

)
dQ

+
1
γB

∫
ΣD

u∂tvdΣD +
∫

Ω0

(u∂tv+∂tu∂tv)dΩ0

 ,
`(v) =

∫
Q

f
ρ

∂tvdQ+
∫

ΣN

q
ρA

∂tvdΣN +
1
γB

∫
ΣD

ũ∂tvdΣD +
∫

Ω0

(u0∂tv+ u̇0∂tv)dΩ0

 .
(3.7)

Then, the problem reads: Find u ∈U such that

b(u,v) = `(v) (3.8)

holds for all test functions v ∈ U . The realisation of this method is given in Chapter 4,
where this problem is formulated in a discrete setting.
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3.2 DPG Formulation for the Acoustic Fluid

The variational formulation for the acoustic fluid is derived according to [20]. That is why
the function spaces are defined more rigorously. In this setting we use a notation where the
physical meaning of the state variables is represented via subscripts. In particular uv for v
and up for p. Thus, we partition the trial function u block wise leading to

u =

[
uv

up

]
, (3.9)

where uv,up ∈ L2(Q) and consequently u ∈ L2(Q)2. We introduce a wave operator A :
W (Q)→ L2(Q)2 with

Au =

[
ρ0∂tuv−∂xup
1
K ∂tup−∂xuv

]
, (3.10)

where W (Q) is defined by

W (Q) = {u ∈ L2(Q)2 : Au ∈ L2(Q)2}. (3.11)

With the scalar product (u,v)L2(Q)2 =
∫

Q u · vdQ from Appendix A (Au,v)L2(Q)2 is given
with

(Au,v)L2(Q)2 =
∫
Q

[
ρ0∂tuv−∂xup
1
K ∂tup−∂xuv

]
·

[
vv

vp

]
dQ. (3.12)

For sufficiently smooth functions we apply integration by parts on (3.12) and obtain

(Au,v)L2(Q)2 = ρ0

∫
∂Q

uvvvnt d∂Q−
∫

∂Q

upvvnx d∂Q+
1
K

∫
∂Q

upvpnt d∂Q−
∫

∂Q

uvvpnx d∂Q

−ρ0

∫
Q

uv∂tvv dQ+
∫
Q

up∂xvv dQ− 1
K

∫
Q

up∂tvp dQ+
∫
Q

uv∂xvp dQ.

(3.13)
The boundary term of (3.13) induces the operator D : W → W ∗ and is for sufficiently
smooth functions u,v represented by

(Du)(v) =
∫

∂Q

[
uv(ρ0ntvv−nxvp)+up(−nxvv +

1
K

ntvp)
]

d∂Q, (3.14)

where n denotes the unit normal vector (nx,nt) of Q. Furthermore, one can observe that
the volumetric term of (3.13) is the application of A on the second argument in the inner
product. This leads to the reformulation of (3.14) as follows

〈Du,v〉W := (Du)(v) = (Au,v)L2(Q)2 +(u,Av)L2(Q)2 , (3.15)
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where 〈·, ·〉W denotes the duality pairing in W . In order to arrive at the variational formu-
lation the trial space for given space time domain Q will be broken. Therefore, a decom-
position of the space-time domain Qh = Q is obtained defined by

Qh =
⋃

τ∈Qh

τ, (3.16)

where τ is an open subset of Q and h relates to the size of the subset. For a more compre-
hensive definition see Chapter 4 where the details of discretization techniques are covered
and h and τ are introduced properly. We define the piecewise wave operator Ah by

(Ah w)|τ = A(w|τ), (3.17)

for w ∈W (τ). In a way, Ah represents the piecewise application of A with respect to the
decomposition which means the governing equation must only hold on element level. We
define

Wh = {w ∈ L2(Q)2 : Ah w ∈ L2(Q)2}. (3.18)

Analogously the operator Dh : Wh→W ∗h is introduced for which holds

〈Dh w,v〉Wh = (Ah w,v)L2(Q)2 +(w,Ah v)L2(Q)2. (3.19)

for all w,v ∈Wh.

We introduce the space R := Dh(V ) where V ⊂W (Q) is a Hilbert space. For details on V
see [20]. Then, the bilinear form reads

b((u,r),w) =−(u,Ah w)L2(Q)2 + 〈r,w〉Wh, (3.20)

where (u,r) ∈ L2(Q)2×R and w ∈Wh. Then, the variational problem is formulated: Find
u ∈U = L2(Q)2 and r ∈ R such that

b((u,r),w) = `(w) (3.21)

holds for all w ∈Wh.

Note that the wellposedness of this formulation is established, the proof for this can be
found in [20]. The ideal DPG method uses the trial to test operator T : U ×R→Wh to
construct optimal test functions from trial functions. For each (u,r) ∈U×R define T(u,r)
by

(T(u,r),w)Wh = b((u,r),w) ∀w ∈Wh. (3.22)
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This operator is well-defined by the Riesz representation theorem (Theorem A.1). The
given trial to test operator T allows for the calculation of optimal test functions. We show
in the following that w = T(u,r) realises the supremum in the inf-sup condition. It holds

sup
w∈Wh\{0}

b((u,r),w)
‖w‖Wh

= sup
w∈Wh\{0}

(T(u,r),w)Wh

‖w‖Wh

, (3.23)

and with w = T(u,r) we obtain directly

sup
w∈Wh\{0}

(T(u,r),w)Wh

‖w‖Wh

≥
(T(u,r),T(u,r))Wh

‖T(u,r)‖Wh

= ‖T(u,r)‖Wh. (3.24)

Furthermore, we use the Cauchy-Schwarz inequality (A.1) to arrive at

sup
w∈Wh\{0}

(T(u,r),w)Wh

‖w‖Wh

≤ sup
w∈Wh\{0}

‖T(u,r)‖Wh‖w‖Wh

‖w‖Wh

= ‖T(u,r)‖Wh. (3.25)

This means the supremum is a maximum and it holds

‖T(u,r)‖Wh = sup
w∈Wh\{0}

(T(u,r),w)Wh

‖w‖Wh

. (3.26)

Thus, the inf-sup condition translates directly onto the discretization when using the exact
trial to test operator T. However, T is not known in a continuous setting. It has to be
constructed in an approximate analogue leading to the discrete trial to test operator Th.
This is presented in Chapter 4.
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4 DISCRETIZATION

After obtaining a variational formulation, a discretization of the given domain is con-
structed which means in particular, the variational problem is reformulated from an infinite
dimensional space to a finite dimensional space. This form is also called discrete varia-
tional formulation. The finite dimensional spaces are also known as finite element spaces
which span a subspace of the given infinite space. Thus, variational problems formulated
on discrete spaces assemble systems of equations which are in this line of work sparse. For
further information on discretization techniques the reader is referred to [11, 24, 34].

4.1 Triangulations

The space-time domain Q is discretized by a sequence of finite elements. In particular, a
triangulation with N finite elements is defined by

Q = T N =
N⋃

l=1

τ l, (4.1)

where τl denotes the l-th element of the discretization. In this line of work, only one
dimensional mechanical problems are discussed. Therefore, the space-time domain of
such a problem has an additional coordinate and, hence, is two dimensional, i.e. Q ⊂ R2.
Furthermore, no moving boundaries are considered which means the space-time domain
Q is a rectangle and consequently is displayed exactly. As geometric representation of
the finite elements τl we use triangles. They are described by three nodes xl

1,x
l
2,x

l
3. The

reference element τ̂ has the reference nodes x̂1 = (0,0), x̂2 = (1,0), x̂3 = (0,1). We

x̂1 x̂2

x̂3

τ̂

xl
1

xl
2

xl
3

τl

χ l

Figure 4.1: Affine mapping χ l

19
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introduce an affine mapping χ l : τ̂→ τl which maps from the reference triangle to the real
triangle as depicted in Figure 4.1 and is given with

x = χ l(x̂) = Jl x̂+xl
1. (4.2)

The matrix Jl denotes the Jacobi matrix of τl defined by

Jl =

[
xl

2− xl
1 xl

3− xl
1

t l
2− t l

1 t l
3− t l

1

]
. (4.3)

This matrix is invertible and detJl is proportional to the area of τl , in particular

∆l =
∫
τl

dτl =
∫
τ

|detJl|dτ̂ =
1
2
|detJl|, (4.4)

We denote the size of τl by
hl =

√
∆l. (4.5)

Furthermore, we introduce the global mesh parameter h with

h = max
τl∈TN

hl. (4.6)

Exemplary, a uniform triangulation on the unit square is depicted in Figure 4.2.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0
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0.4

0.6
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Figure 4.2: A standard triangulation T18
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4.2 Finite Element Spaces

A finite element space approximates the infinite dimensional space from variational for-
mulation. In this work we introduce three different finite element spaces also known as
trial spaces. They are piecewise polynomial on the given triangulation and define the so
called basis functions ϕ which are related to the M global degrees of freedom in the finite
element space of a given triangulation TN . In particular, for a given space V it holds

Vh = span{ϕi : i = 1, ...,M} ⊂V, (4.7)

where Vh is a finite dimensional space which relates to V . The construction of the basis
functions ϕ is done locally by means of the shape functions ψ. Therefore, the shape
functions are defined element-wise, i.e. they are defined on the reference element τ̂ and
transformed to a real element τl of a given triangulation. In particular, the shape functions
for a Lagrangian space are defined by

ψi(x j) = δi j, (4.8)

where xi denotes the i-th node of the triangle and δi j Kronecker delta defined by

δi j =

0 if i 6= j,

1 if i = j.
(4.9)

Exemplary, the linear shape functions are illustrated in Figure 4.3. In Appendix B more
information on the construction of the shape functions on the reference element is given.
Consequently, one basis function ϕi is associated with a set of shape functions ψ j, as illus-
trated in Figure 4.4. We remark that in case of linear shape functions, the nodes coincide
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Figure 4.3: Linear Lagrange shape functions ψ j(x, t) ∈ P1(τl)
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Figure 4.4: A linear basis function ϕ(x, t) of the space S1,0
h (T18)

with the vertices of the triangle. However, for shape functions with a higher polynomial
degree additional nodes between the vertices and inside the element are necessary. For
information on this topic see, e.g. [26]. With Lagrangian shape functions only a contin-
uous function space can be constructed. In order to built spaces with higher continuity
requirements one has to resort to other finite element spaces. In this line of work, we use
the space of Argyris elements. The shape functions of the Argyris element also use the
Kronecker delta property. However, they consider not only the nodal values but also their
derivatives and the normal derivatives of the edges

ψi(x j) = δi j,

∂◦ψi(x j) = δi j, ◦ ∈ {x, t}
∂

2
◦ψi(x j) = δi j, ◦ ∈ {xx,xt, tt}

∇ψi(m j) ·n j = δi j,

(4.10)

where m j denotes the midpoint of the j-th edge of the triangle and n j the corresponding
unit normal vector. This results in 21 shape functions which are illustrated in Figure 4.5
and Figure 4.6. For the explicit representation of the shape functions on the reference
element see Appendix B. Due to high continuity requirements of these shape functions, it
is rather difficult to transform them from the reference to the real triangle. However, there
are computation techniques to realise this transformation for unstructured meshes. In this
work, the Argyris element is implemented according to [17].

Then, a trial space Vh is used to construct an approximated function vh(x, t) via its basis
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Figure 4.5: Argyris shape functions ψ j(x, t) ∈ P5(τl) for j ∈ {1, ...,12}
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Figure 4.6: Argyris shape functions ψ j(x, t) ∈ P5(τl) for j ∈ {13, ...,21}

function. In particular, vh(x, t) is defined by

vh(x, t) =
M

∑
i=1

ϕi(x, t)vi, (4.11)

where vi are constant scalar values and build the solution of the discrete variational prob-
lem. For more comprehensive information about finite elements see [11, 26].

To conclude this section we provide the definitions of all employed finite element spaces.
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The space of discontinuous Lagrange polynomials of degree k on Q is given with

Sk,−1
h (TN) = {v ∈ L2(TN) : v|τl ∈ Pk(τl), l = 1, ...,N}. (4.12)

The space of continuous Lagrange polynomials on Q reads

Sk,0
h (TN) = {v ∈C0(TN) : v|τl ∈ Pk(τl), l = 1, ...,N} ⊂ H1(Q). (4.13)

The space of the Argyris elements on Q is given with

S5,1
h (TN) = {v ∈C1(TN) : v|τl ∈ P5(τl), l = 1, ...,N} ⊂ H2(Q). (4.14)

4.3 CG Method for the Elastic Bar

The derived Galerkin method for the elastic bar is transferred to discrete setting. Therefore,
the trial space U is approximated with the finite element space from (4.14) and reads

Uh = S5,1
h (TN). (4.15)

Consequently, the variational formulation (3.8) can be written in a discrete way: Find
uh ∈Uh such that

b(uh,vh) = `(vh) (4.16)

holds for all vh ∈Uh. We remark that the penalty parameter γB in (4.16) must be sufficiently
small. In this work, γB is scaled according to the mesh size to obtain optimal convergence
rates. In particular, we set 1/γB = 104N2.

4.4 DPG Method for the Acoustic Fluid

We replace the trial space U with the finite element space Uh ⊂U . Since, it is difficult to
construct R directly we compute Rh by Rh = Dh(Vh) where Vh ⊂ V . Then, the variational
problem in the ideal DPG method reads: Find (uh,vh) ∈Uh×Vh such that

b((uh,Dh vh),wh) = `(wh) ∀wh ∈ T(Uh×Rh). (4.17)

As mentioned, the operator T is not known. Therefore, we approximate it with Th : Uh×
Rh→ Yh where Yh ⊂Wh is an enriched finite element space. This leads to

(Th(uh,rh),wh) = b((uh,rh),wh) ∀wh ∈ Yh. (4.18)
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Thus, the variational problem of the practical DPG method reads: Find (uh,vh) ∈Uh×Vh
such that

b((uh,Dh vh),wh) = `(wh) ∀wh ∈ Th(Uh×Rh). (4.19)

The choice of the polynomial degree k for the trial spaces and test spaces is not straight-
forward. In [20], some remarks on this choice are given and a suggestion to obtain optimal
convergence rates is made. Within this work we stay with their recommendation and use
the following finite element spaces

Uh = Sk,−1
h (TN)×Sk,−1

h (TN),

Vh = Sk+1,0
h (TN)×Sk+1,0

h (TN),

Yh = Sk+2,−1
h (TN)×Sk+2,−1

h (TN).

(4.20)

When implementing Dh vh one can observe that kerDh is non trivial. In order to take
care of this null space we clear the space Vh of all basis functions which are zero on the
element boundaries, since they are definitely in kerDh. In particular, we replace Vh by
Ṽh = Vh \ {ϕ ∈ Vh : ϕ|∂τ = 0 ∀τ ∈ TN}. However, this only takes care of the null space
partly. We recall a simplified version of (3.19) given by∫

∂τ

(ρ0nt−nx)+(−nx +
1
K

nt)d∂τ. (4.21)

It can be observed instantly that for certain (nx,nt) and combinations of ρ0 and K a non
trivial kernel is obtained. Despite this behaviour, there are solving techniques to avoid
this problem (cf. [20]). Since only the component Uh is of interest one can resort to the
conjugated gradient method to obtain a solution despite the null space and extract the
unique solution uh afterwards. However, in this work we regularise the equation system
by applying a penalty term on certain parts of the equation system. In particular, we add
the mass matrix of the space Ṽh multiplied by a penalty parameter γP onto the part of
the equation system associated to b((0,Dh vh),wh) for wh ∈ T({0}× Rh). The penalty
parameter γP must be sufficiently small, in all numerical examples we used γP = 10−9.

4.4.1 Error Estimator

In order to obtain an error estimate for u−uh in U we recall the ideal DPG method

uh ∈Uh : b((uh,rh),wh) = `(wh) ∀wh ∈ T(Uh×Rh). (4.22)
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By inserting (u−uh,r− rh) in the trial to test operator it follows

b((u−uh,r− rh),w) = (T(u−uh,r− rh),w)W ∀w ∈W. (4.23)

From (3.21) we can replace b((u,r),w) by `(w) and obtain

(T(u−uh,r− rh),w)W = `(w)−b((uh,rh),w) ∀w ∈W. (4.24)

Thus, the exact solution u does not have to be known in order to calculate the estimate
‖T(u− uh,r− rh)‖W . It is sufficient to compute uh. Moreover, this error estimate has
good properties which are shown in the following. From the boundedness and the inf-sup
condition follows

cE‖(u−uh,r− rh)‖U×R ≤ ‖T(u−uh,r− rh)‖W ≤ cS‖(u−uh,r− rh)‖U×R. (4.25)

Consequently, the error in U can be estimated by T(u−uh,r− rh). Since, the test space is
broken

‖T(u−uh,r− rh)‖2
W = ∑

τ∈Qh

(
(T(u−uh,r− rh))|τ ,(T(u−uh,r− rh))|τ

)
W

(4.26)

holds and we can formulate the element error by

η
2
τ = ‖(T(u−uh,r− rh))|τ‖2

W . (4.27)

Therefore, ητ can be used as an a posteriori error estimate per element and used in algo-
rithms for adaptive mesh refinements. In this work element subdivisions are done by the
means of the newest vertex bisection (NVB) which is implemented according to [25].
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5 VERIFICATION AND NUMERICAL EXAMPLES

In the course of this chapter, the previously introduced space-time finite element methods
are applied to several examples. Therefore, a framework was implemented in MATLAB.
Within this framework classes for meshes, finite element spaces, etc. were written to ob-
tain an object oriented application for finite element computations. Additionally, methods
for plotting, assembling, evaluating form functions and so forth were implemented. We
remark that for evaluating integrals standard Gauß-Legendre quadrature rules are used.

5.1 Wave Equation for the Elastic Bar

This section covers the numerical examples for the mechanical problem setting of the elas-
tic bar where the derived CG method is verified and two different numerical experiments
are investigated. In particular, an initial boundary value problem is considered in subsec-
tions 5.1.2 and 5.1.3 where a wave front enters the space-time domain.

5.1.1 Verification

ρ, A, E

L

q(t)

Figure 5.1: Elastic bar

We consider a mixed problem meaning we impose a Dirichlet and Neumann type boundary
condition with the given setting as depicted in Figure 5.1. No damping is imposed and
ρ,E,A,L,T are set to unit values which leads to the governing equation

∂ttu−∂xxu = 0. (5.1)

We obtain a solution via the representation formula (cf. [2]) given with

u(x, t) =
t+x−1∫

0

q(λ )dλ , (5.2)

29
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Figure 5.2: Approximated displacement uh(x, t) for a smooth exact solution u(x, t)

for x ∈ Ω = (0,L) and t ∈ ϒ = (0,T ). The initial conditions are given with u0(x) = 0 and
u̇(x) = 0 for x ∈ Ω while the Dirichlet condition is ũ = 0 for t ∈ ϒ. The loading on the
Neumann type boundary is set to

q(t) = t3 sin(2πt), (5.3)

where t ∈ ϒ. This example serves the purpose of verification. We use a standard triangula-
tion for the space-time domain Q = Ω×ϒ and conduct a convergence study using uniform
mesh refinements. Exemplary, an approximate solution uh(x, t) for N = 2048 elements is
depicted in Figure 5.2. We verify the implementation by investigating the experimental
rate of convergence (eoc) of the error in the L2(Q) norm given by ‖u−uh‖L2(Q). In Table
5.1 the L2-error and the eoc in mesh size h are displayed for uniform mesh refinements. As
expected the full rate of convergence k+ 1 = 6 for ‖u− uh‖L2(Q) is obtained. This is due
to the sufficiently smooth solution which allows for the optimal convergence rates of the
finite element space S5,1

h (Q) of the Argyris element which is of polynomial degree k = 5.
Moreover, it can be observed in Table 5.1 that good technical solutions can be obtained
already with 32 elements. Here, the relative error amounts to 0.11% only.
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N M ‖u−uh‖L2(Q) eoc

2 29 3.792e-03 -
8 70 6.677e-05 5.828

32 206 2.332e-06 4.839
128 694 2.310e-08 6.658
512 2534 2.961e-10 6.285
2048 9670 4.114e-12 6.169
8192 37766 6.044e-14 6.089

Table 5.1: Convergence study on uniform meshes

5.1.2 Wave Front with Damping

In the second example we deploy a similar setting, the material parameters ρ,E,A,L are
set to unit values while the end time is given with T = 1. The propagation velocity of the
wave is given with c =

√
E
ρ
= 1. However, a small value for the viscosity is defined with

D = 10−3. Given this setting we construct a Dirichlet boundary value problem with zero
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Figure 5.3: Approximated solution uh(x, t) for a wave propagation with damping



32 5 Verification and Numerical Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.4: Approximated solution uh(
L
2 , t)

initial conditions. On the lateral boundary Σ of the space time domain Q the boundary
displacement ũ(t) is defined by

ũ0(t) = 0,

ũL(t) = H(t− 1
3
),

(5.4)

for t ∈ (0,1) and where ũ0 denotes the Dirichlet data at x = 0 and ũL the Dirichlet data at
x = L. Note that H(t) denotes the Heaviside step function. On the initial boundary Ω0 of
the space time domain Q we impose

u0(x) = 0,

u̇0(x) = 0,
(5.5)

for x ∈ (0,1). An approximated solution uh(x, t) is obtained as depicted in Figure 5.3. It
can be observed that the solution at x= L of the space time domain oscillates, although here
the solution is given by the boundary condition ũL(t). These oscillations occur because the
given trial space cannot resolve the space of solution and because stability problems arise
due to the imposing of the boundary conditions via the penalty method. However, the given
viscosity smooths the displacement field which can be observed in Figure 5.4 as the wave
propagates through the space time domain resulting in a good technical approximation.
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5.1.3 Wave Front without Damping

The restrictions of the derived CG method are showcased in this example. We consider the
same setting as in the last example Q = (0,1)2 with the exception of the viscosity which is
set to zero D = 0. Here, an exact solution is given by

u(x, t) = H((x− 4
3
)+ t), (5.6)

where x = 4
3 represents a source position. The exact solution from (5.6) leads to the same

initial and boundary conditions as observed in (5.4) and (5.5). As seen in Figure 5.5 the ap-
proximated displacement field uh(x, t) oscillates strongly around the exact solution u(x, t)
which is depicted in Figure 5.6. This results in discrepancies between the approximated
solution uh(x, t) and the exact solution u(x, t) most notably around the discontinuity. This
is due to the fact that the space of the Argyris elements is not able to resolve such a rough
solution. Additionally, it can be seen that the approximated solution differs from the ex-
act solution at the lateral boundary of the space-time domain although uh(x, t) is given
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Figure 5.5: Approximated solution uh(x, t) for a wave propagation without damping
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Figure 5.6: Exact solution u(x, t)

by the boundary condition there. This behaviour arises since the boundary conditions are
imposed via the penalty method.

5.2 Wave Equation for the Acoustic Fluid

In this section the DPG method for the acoustic fluid is investigated. We proceed in as in
section 5.1 verifying the DPG method and analysing two numerical examples. As before
subsections 5.2.2 and 5.2.3 cover a wave front which enters the space-time domain.
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5.2.1 Verification

The first example for the acoustic fluid is used to verify the presented approach. We stick
to the space-time domain Q = (0,1)2 and set ρ0 and K to unit values. Furthermore, we
consider a problem with initial and boundary conditions equal to zero. The governing
system of equations is given by

∂tv−∂x p = f in Q,

∂t p−∂xv = g in Q.
(5.7)

We use the method of manufactured solutions and obtain an analytical solution for v(x, t)
and p(x, t) given by [

v
p

]
=

[
sin(πx)sin2(πt)
sin(πx)sin2(πt)

]
, (5.8)

for (x, t) ∈ Q. Once observe in (5.8) that this solution fulfils the initial and boundary
conditions. Using (5.8) in (5.7) gives the following loading functions

f (x, t) = π sin(πt)
[
2sin(πx)cos(πt)− cos(πx)sin(πt)

]
,

g(x, t) = π sin(πt)
[
2sin(πx)cos(πt)− cos(πx)sin(πt)

]
.

(5.9)

After discretizing the space-time domain a convergence study is conducted. We use an uni-
form mesh refinement and increase the polynomial degree k of the trial space. Exemplary,
an approximated solution for ph(x, t) of the polynomial degree k = 0 for the trial space is
depicted in Figure 5.7a and for k = 1 in Figure 5.7b. Note that a standard triangulation
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Figure 5.7: Approximated solution for the pressure ph(x, t)
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with N = 512 elements for both approximations is deployed. Furthermore, in Figure 5.8
the error in the L2-norm ‖p− ph‖L2(Q) for the trial space where k ∈ {0,1,2,3,4} is dis-
played. One can observe the increase of the eoc according to the polynomial degree k of
the trials space. We remark that the eoc which is used here relates to the number of degrees
of freedom (eocM) and not to the mesh size (eoch). However, eocM is proportional to eoch.
This relation is given by

eoch ∼ 2eocM. (5.10)

From here on eoc refers to eocM.

5.2.2 Wave Front

In this numerical example we construct the same setting as presented in 5.1.3, where a
wave front enters the space-time domain Q = (0,1)2. This leads with the given material
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Figure 5.9: Approximated solution for the pressure ph(x, t)

parameters to the governing system of equations

∂tv−∂x p = 0 in Q,

∂t p−∂xv = 0 in Q.
(5.11)

For this problem setting the exact solutions p(x, t) and v(x, t) are given by

p(x, t) = v(x, t) = H((x− 4
3
)+ t), (5.12)

for (x, t) ∈ Q. We remark that (5.12) and (5.6) coincide. The boundary and initial con-
ditions are given directly from the analytical solutions p(x, t) and v(x, t). We conduct a
convergence study by increasing the polynomial degree of the trial space and by refining
the mesh uniformly. In Figures 5.9a and 5.9b an approximate solution on a mesh with
N = 512 elements using trial spaces with k = 0 and k = 1 is depicted. Since the DPG
method is formulated in a broken space the discontinuity produced by the wave is resolved
nicely and in contrast to the CG method in example 5.1.3. However, using an uniform
refinement here leads not to full convergence rates. In case of k = 0 only an eoc = 0.25 is
achieved.

5.2.3 Adaptivity

The last example illustrates the potential of local refinement for solutions with local fea-
tures such as the analytical solution (5.6) of the investigated initial boundary value problem
from subsection 5.1.3 and 5.2.2. Again, we assume the same problem setting as in sub-
section 5.2.2 with Q = (0,1)2 and the analytical solution (5.12). An adaptive method is
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conducted where the error estimate from subsection 4.4.1 is used. Furthermore, in this
example k = 0 is used. The initial configuration of setting is depicted in Figure 5.10a. We
compute the DPG error indicator η from (4.27) for each element. Then, all elements hav-
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Figure 5.10: Adaptive refinement with polynomial degree of k = 0

ing an error which is greater than 50% of the total indicated error are marked and refined.
As Figures 5.10a to 5.10d show, the wave front is resolved by local refinements. Although
this is an artificial example where the error appears only in elements at the jump of the
Heaviside one can observe an increase in the eoc using an adaptive scheme. A comparison
of the L2(Q)-error between an uniform and adaptive refinement can be seen in Figure 5.11.
Thus, good technical approximations without refining the whole space-time domain can be
obtained if only certain sub domains show specific behaviour.

Lastly, we show the potential of adaptivity for an example which cannot be represented
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exactly by piecewise polynomials. We stay in the setting Q=(0,1)2 with the same material
parameters and f (x, t) = g(x, t) = 0. We construct a solution with the function

λ (ξ ) = H(ξ )|sin(
3
2

πξ )|. (5.13)

Then, an exact solution for this problem setting can be given with

p(x, t) = v(x, t) = λ (x− 2
3
+ t), (5.14)

for (x, t) ∈ Q. This solution has kinks because of the absolute value function and cannot
be represented exactly by piecewise polynomials because of the sine function. Therefore,
we make use of a higher polynomial degree and approximate this solution with k = 2. We
deploy an adaptive refinement starting with the same initial configuration as in last exam-
ple. Here, all elements having an error above 60% of the total indicated error are refined.
In Figures 5.12a - 5.12d the mesh of each refinement step is depicted. The discontinuity
of the solution is resolved well by the local refinements. In Figure 5.13 the approximated
solution uh(x, t) after 8 refinement steps is shown. One can observe the two kinks of the
solution travelling through the space-time domain and smoothness of the solution in be-
tween. The potential of the DPG method can be seen in this example since the mesh can
be refined adaptively for rough local features and a high polynomial degree for smooth
features of the solution can be utilised.
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Figure 5.12: Adaptive refinement with polynomial degree of k = 2
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6 CONCLUSION

In the course of this work two different space-time formulations for time dependent me-
chanical problems have been presented and investigated. In Chapter 2, the wave equation
for the elastic bar and the first order system of the wave equation for the acoustic fluid
have been derived. Assuming linear kinematic behaviour as well as linear elastic constitu-
tive behaviour, all derived governing partial differential equations are linear. A variational
formulation for both mechanical problems was introduced in Chapter 3 leading to a Bub-
nov Galerkin method for the elastic bar and a discontinuous Petrov Galerkin method for
the acoustic fluid. The most notable difference between classic approaches and the ones
presented here is the discretization technique. Space-time methods discretize Ω×ϒ as a
whole. In contrast to classic methods which discretize the spatial domain Ω and the time
domain ϒ separately. Here, an approximation over the spatial domain at every time can be
calculated. This allows for unstructured triangulations over the space-time domain Q and
more importantly the possibility for local refinement in space-time. Discretization tech-
niques and a short introduction on finite elements were given in Chapter 4. Both methods
have been studied and verified. Several numerical examples were shown and investigated
in Chapter 5. As expected all obtained convergence rates matched their respective theoret-
ical rate.

We summarise shortly the advantages and disadvantages of both methods. With the contin-
uous Galerkin method for the elastic bar it was possible to obtain numerical solutions with
high convergence orders given a sufficiently smooth enough analytical solution. However,
problems arise when approximating rough solutions due to the high continuity require-
ments of the trial space. Furthermore, imposing initial and boundary conditions by the
penalty method can lead to stability problems of the method. The discontinuous Petrov
Galerkin method has the ability to resolve rough solutions due to the broken formulation.
Moreover, the rate of convergence can be increased by increasing the polynomial degree
of the trial space. One important feature of the method is also the potential for local mesh
refinements since an efficient error estimate is directly given by the method. Therefore, it
was without effort to conduct an adaptive scheme for physical problems with local features
in the solution. One drawback of this method is that an equation system has to be solved
to obtain the test functions. However, this computational effort is insignificant since this
equation system can be solved locally and, thereby, in parallel.
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A MATHEMATICAL PRELIMINARIES

An overview of mathematical definitions is given here which are partly adapted from [21,
37].

In this line of work only the field of real numbers R is considered.

Definition A.1 (Vector space) Let V be a set with real numbers R as its field, a vector
addition + : V ×V →V and a scalar multiplication · : R×V →V . Then (V,+, ·) is called
a vector space over R if the vector addition satisfies

u+(v+w) = (u+ v)+w, associativity

u+ v = v+u, commutativity

v+0 = 0+ v = v, existence of neutral element 0 ∈V

v+(−v) = (−v)+ v = 0, existence of inverse element −v ∈V

for all u,v,w ∈V , and the scalar multiplication satisfies

λ · (u+ v) = λ ·u+λ · v, left distributive property

(λ +µ) · v = λ · v+µ · v, right distributive property

(λ µ) · v = λ · (µ · v), compatibility

1 · v = v, neutrality of 1 ∈ R

for all u,v ∈V and λ ,µ ∈ R.

Definition A.2 (Scalar product) A mapping (·, ·) : V ×V → R is called scalar product if

(v,v)≥ 0 ∧ (v,v) = 0 ⇔ v = 0, positive definiteness

(u,v) = (v,u), symmetry

(λu,v) = λ (u,v), linearity in the first argument

(u+ v,w) = (u,w)+(v,w), linearity in the first argument

for all u,v,w ∈V and λ ∈ R.

From symmetry and linearity in the first arguments follows linearity in the second argu-
ment. A vector space with a scalar product is called pre-Hilbert space.

45
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Definition A.3 (Norm) A mapping ‖·‖ : V → R≥0 := {x ∈ R : x≥ 0} is called norm if

‖v‖= 0 ⇔ u = 0, definiteness

‖λ · v‖= |λ |‖v‖, absolute homogeneity

‖u+ v‖ ≤ ‖u‖+‖v‖, triangle inequality

holds for all u,v ∈V and λ ∈ R.

The scalar product induces a norm on a vector space ‖·‖=
√
(·, ·). A vector space with a

norm is called normed space.

Remark A.1 A pre-Hilbert space V with induced norm is a normed space and the Cauchy-
Schwarz inequality holds

|(u,v)| ≤ ‖u‖‖v‖

for all u,v ∈V .

Definition A.4 (Hilbert space) A Hilbert space is a complete pre-Hilbert space.

For a rigorous definition the interested reader is referred to [21]. From here on we restrict
the exposition to Hilbert spaces only.

Definition A.5 (Linear operator) Let U and V be vector spaces. A mapping T : U → V
is called linear if

T(u+ v) = Tu+Tv,

T(λu) = λ ·Tu,

for u,v ∈ domT and λ ∈ R.

In above definition domT denotes the domain of definition of T. Furthermore, the range
of T is defined by

ranT = {v ∈V : ∃u ∈ domT : Tu = v},

and the null space or kernel of T is defined by

kerT = {u ∈ domT : Tu = 0}.
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Definition A.6 (Bounded operator) Let U and V be Hilbert spaces. A mapping T : U →
V is called bounded if there exists a c≥ 0 such that

‖Tu‖V ≤ c‖u‖U

for all u ∈ domT.

Further, let L(U,V ) = {T : U → V, bounded linear and domT = U} be the space of
bounded linear operators from U to V defined on U . From here on we only consider
operators T ∈ L(U,V ).

Definition A.7 (Linear form) A linear form is a bounded linear operator that maps from
a vector space to its field ` : V → R.

Definition A.8 (Bijection) The mapping T : U → V is bijective if it is surjective and in-
jective. The mapping T is surjective if ranT = V and injective if from Tx = Ty follows
x = y.

Note that a linear operator T is injective if and only if kerT = {0}.

Definition A.9 (Isometric isomorphism) A mapping T : U → V is an isometric isomor-
phism if T is bijective and norm preserving which means

‖Tu‖V = ‖u‖U ,

for all u ∈U.

Definition A.10 (Dual space) A dual space V ∗ = L(V,R) is the space of all linear forms
on the vector space V .

Theorem A.1 (Riesz representation theorem) Let V be a Hilbert space. Then RV : V →
V ∗ defined by

v 7→ RV v, (RV v)(u) = (u,v),

for all u,v∈V is an isometric isomorphism. This means for every u∗ ∈V ∗=L(V,R) exists
one and only one v ∈V with u∗(u) = (u,v) and ‖v‖V = ‖u∗‖V ∗ .

For the proof see [21].
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Definition A.11 (Bilinear form) A bilinear form maps two vector spaces to their common
field b : U×V → R, which is linear with respect to its first and second argument.

Function spaces are vector spaces with functions as elements. In the following, we intro-
duce some function spaces which are used later on.

Definition A.12 (Cp function space) The space of p-times continuously differentiable scalar-
valued functions v : Ω⊂ Rd → R is defined by

Cp(Ω) = {v : v is p-times continuously differentiable}.

Definition A.13 (L2 function space) The space L2(Ω) is the space of square integrable
functions on a domain Ω. It is a Hilbert space and defined by

L2(Ω) = {v :
∫
Ω

[v(x)]2 dx < ∞}.

Definition A.14 (H p function space) The space H p(Ω) is the space of square integrable
functions on a domain Ω which has square integrable weak derivatives up to order p and
is defined by

H p(Ω) = {v : Dαv exists and Dαv ∈ L2(Ω) ∀α : |α| ≤ p},

The weak differential operator Dα is defined as in [34].

As mentioned in the introduction in this work, variational formulations are applied on
mechanical problems. Therefore, a short overview on variational problems is given. Let
U,V be Hilbert spaces and b : U×V →R a bilinear form. For given ` ∈V ∗ the variational
problem reads

Find u ∈U : b(u,v) = `(v) ∀v ∈V,

The variational problem is well-posed (there exists a unique solution u∈U for any `∈V ∗)
if and only if

• b is bounded, which means there exists a cS ≥ 0 such that

b(u,v)≤ cS‖u‖U‖v‖V , ∀u ∈U,v ∈V,
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• the inf-sup conditions holds, which means there exists a cE > 0 such that

∀u ∈U ∃v ∈V : b(u,v)≥ cE‖u‖U‖v‖V
⇔

sup
v∈V\{0}

b(u,v)
‖v‖V

≥ cE‖u‖U , ∀u ∈U

⇔

inf
u∈U\{0}

sup
v∈V\{0}

b(u,v)
‖u‖U‖v‖V

≥ cE ,

• for every v ∈V \{0} there exists a u ∈U such that

b(u,v) 6= 0.

Furthermore, this leads to the stability relation

‖u‖U ≤
1
cE
‖`‖V ∗.

For further information of the well-posedness of variational formulations the reader is
referred to [9, 10].
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B EXPLICIT SHAPE FUNCTIONS

Here, we give some remarks on shape functions. In particular, an introduction of the
Lagrangian shape functions and the Argyris shape functions in the reference element is
given. For further information and a more comprehensive definition on Lagrangian shape
functions see, e.g. [9,26]. Definitions of the Argyris element can be found in [4,17,26].

B.1 Lagrangian Shape Functions

First, we describe the definition of the shape functions in the linear case. In this case, there
are three shape functions ψi, each described by three coefficients ci, j. Then, the i-th shape
function ψi is given with

ψi(ξ ,η) = c1,i + c2,iξ + c3,iη ,

for (ξ ,η) ∈ τ̂ . The coefficients ci, j are, then, obtained by solving the problem (4.8). This
leads in the linear case to the matrix

C =

 1 0 0
−1 1 0
−1 0 1

 .
In order that this problem is well-posed. The number of Nodes must coincide with the
number of shape functions. This implies that the coefficient matrix C is square. Conse-
quently, for shape functions of the polynomial degree k a number of nodes on the reference
element have to be defined, i.e. K = 1

2(k+ 1)(k+ 2) nodes. This means, the solution of
the stated problem leads to a K×K coefficient matrix C. Exemplary, for k = 2 this leads
to the coefficient matrix

C =



1 0 0 0 0 0
−3 −1 0 4 0 0
−3 0 −1 0 0 4
2 2 0 −4 0 0
4 0 0 −4 4 −4
2 0 2 0 0 −4


.

Then the i-th quadratic shape function ψi(ξ ,η) is given with

ψi(ξ ,η) = c1,i + c2,iξ + c3,iη + c4,iξ
2 + c5,iξ η + c6,iη

2.

Analogously, the matrix C can be computed for higher polynomial degrees k.
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B.2 Shape Functions of the Argyris Element

The solution of the problem (4.10) leads to a 21× 21 coefficient matrix C. Using the
employed reference element this leads to

C =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
−10 10 0 −6 0 −4 0 0 0 −1.5 0 0 0.5 0 0 0 0 0 0 0 0

0 0 0 0 −11 0 −5 0 0 0 −4 0 0 1 0 0 0 0 16 0 0
0 0 0 −11 0 0 0 −5 0 0 −4 0 0 0 0 0 1 0 0 −16 0
−10 0 10 0 −6 0 0 0 −4 0 0 −1.5 0 0 0 0 0 0.5 0 0 0
15 −15 0 8 0 7 0 0 0 1.5 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 18 0 14 0 0 0 5 0 0 −3 0 0 0 0 −32 0 0
−30 15 15 10 10 −3.5 18.5 18.5 −3.5 −1.5 10 −1.5 0.25 −3.5 1.25 1.25 −3.5 0.25 −32 32 8

√
2

0 0 0 18 0 0 0 14 0 0 5 0 0 0 0 0 −3 0 0 32 0
15 0 −15 0 8 0 0 0 7 0 0 1.5 0 0 0 0 0 −1 0 0 0
−6 6 0 −3 0 −3 0 0 0 −0.5 0 0 0.5 0 0 0 0 0 0 0 0
0 0 0 0 −8 0 −8 0 0 0 −2 0 0 2 0 0 0 0 16 0 0

30 −15 −15 1 −10 3.5 −18.5 −13.5 3.5 1.5 −6 1 −0.25 3.5 −0.75 −1.25 2.5 −0.25 32 −16 −8
√

2
30 −15 −15 −10 1 3.5 −13.5 −18.5 3.5 1 −6 1.5 −0.25 2.5 −1.25 −0.75 3.5 −0.25 16 −32 −8

√
2

0 0 0 −8 0 0 0 −8 0 0 −2 0 0 0 0 0 2 0 0 −16 0
−6 0 6 0 −3 0 0 0 −3 0 0 −0.5 0 0 0 0 0 0.5 0 0 0



.

Then the i-th shape function ψi(ξ ,η) is given with

ψi(ξ ,η) = c1,i + c2,iξ + c3,iη

+ c4,iξ
2 + c5,iξ η + c6,iη

2

+ c7,iξ
3 + c8,iξ

2
η + c9,iξ η

2 + c10,iη
3

+ c11,iξ
4 + c12,iξ

3
η + c13,iξ

2
η

2 + c14,iξ η
3 + c15,iη

4

+ c16,iξ
5 + c17,iξ

4
η + c18,iξ

3
η

2 + c19,iξ
2
η

3 + c20,iξ η
4 + c21,iη

5.
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