
Gregor David Sitter, BSc

Recommendations Based on Tags and
Extensions for Catrobat’s Community Site

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Keutschach, June 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Due to the strong increase of mobile devices such as smartphones and
tablets, as well as the spread of social software and the use of social networks
like Facebook, Google+ and Twitter, the data sent via the World Wide
Web (WWW) are also increasing. Moreover, the data is not only sent but
also stored, which results in a massive data overload. Thus, users are
often overwhelmed when they are trying to find relevant information or
other materials that they may be interested in. To tackle this problem
various mechanisms are used for sorting, searching and managing this data
overload. Recommender Systems (RSs) and tagging systems are two of these
mechanisms, which are also in the focus of this Masters’s thesis. RS is a
well-studied area which offers many approaches to rely on. Therefore, only
the popular systems and approaches such as collaborative, content-based
and knowledge-based, are discussed in this thesis. Further, tagging systems
have also a good potential to filter and search for relevant content. Tags
have their origin in simple annotations, which were used for extending data
in the web with additional information. In social media, tags are used to
mark pictures, books, music or other digital content for sorting and sharing
it with other users. To understand the concepts of annotations and tags and
the resulting system a short overview over Web 2.0 and social networks is
given in this thesis.

Another focus in this thesis is the implementation of a tagging systems and
a RS which is based on the implemented tagging system for the community
site of Catrobat. Data gained from the implementation of these systems,
are evaluated and analyzed to verify if the activity on the community site
and the downloads of programs can be increased thereby. Afterwards, the
results are discussed followed by a conclusion. Finally, this thesis ends
with a summary of relevant findings and possible features with which the
implemented system can be extended and improved.

v

Keywords
Catrobat, Pocketcode, Recommendations, Recommendation Systems, Tags,
Tagging Systems, Collaborative, Content-based, Knowledge-based

vi

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 2

1.2 Thesis overview . 3

2 Catrobat 5
2.1 Functionality . 6

2.2 Overview of the Catrobat Free and Open Source Software
(FOSS) project . 7

2.3 Pocket Code . 8

3 Recommendation System 11
3.1 Background . 11

3.2 Techniques . 14

3.2.1 Collaborative Recommendations 14

3.2.2 Content-based Recommendations 16

3.2.3 Knowledge-based Recommendations 18

3.2.4 Hybrid Recommendations 19

3.2.5 Non-personalized Recommendations 22

3.3 Purpose . 23

3.4 Knowledge Sources . 24

3.4.1 Social . 25

3.4.2 Individual . 26

3.4.3 Content . 26

3.4.4 Knowledge Sources Example 27

3.5 Netflix Prize . 28

vii

Contents

4 Annotations and Tags 29
4.1 Semantic Web . 29

4.1.1 Semantic Annotation . 29

4.2 Web 2.0 . 30

4.2.1 Social Web and Social Software 31

4.2.2 Types of Social Software 32

4.3 Tagging . 34

4.3.1 Tags . 34

4.3.2 Social Tagging Systems 35

4.3.3 Tags and Recommendation Systems 38

5 Practical Part 43
5.1 Methodology . 43

5.1.1 Research Questions . 43

5.1.2 Activity and Download Numbers 44

5.2 Requirements and Evaluation 45

5.2.1 Tagging System . 45

5.2.2 Recommendation System 46

5.2.3 Evaluation Methods . 46

5.3 Implementations . 47

5.3.1 General Information of the System 47

5.3.2 Existing Implementation 49

5.3.3 Implementation of Tagging System 49

5.3.4 Implementation of Recommendation System 56

6 Results 59
6.1 General Statistics and Information 59

6.1.1 Program Statistics . 60

6.1.2 Tag and Extension Distribution 60

6.2 Evaluation of Results . 62

6.2.1 Results of the Tagging System 62

6.2.2 Results of the Recommendation System 63

6.3 Discussion and Conclusion . 64

6.3.1 Tagging System . 64

6.3.2 Recommendation System 66

viii

Contents

7 Summary and Future Work 67
7.0.1 Summary . 67

7.0.2 Future Work . 68

List of Abbreviations 69

Appendix 73

Bibliography 75

ix

List of Figures

2.1 Logos of Catrobat and Pocketcode 5

2.2 Pocket Code - Program . 6

2.3 Pocket Code - Application . 8

2.4 Homepage for sharing programs 9

3.1 Classification of Information Filtering. Adopted from (Hanani
et al., 2001) . 12

3.2 Weighted Hybrid System. Adopted from (Le et al., 2017) . . . 20

3.3 Switching Hybrid System. Adopted from (Le et al., 2017) . . . 20

3.4 Mixed Hybrid System. Adopted from (Le et al., 2017) 20

3.5 Features Combination Hybrid System. Adopted from (Le et
al., 2017) . 21

3.6 Features Augmentation Hybrid System. Adopted from (Le
et al., 2017) . 21

3.7 Cascade Hybrid System. Adopted from (Le et al., 2017) 22

3.8 Meta-Level Hybrid System. Adopted from (Le et al., 2017) . . 22

3.9 Knowledge Sources. Adopted from (Felfernig and Burke, 2008) 25

3.10 Recommender and their knowledge Sources. Adopted from
(Burke, 2005) . 27

4.1 Annotation Example. Adopted from (Arndt et al., 2007) . . . 30

4.2 Social Software Triangle. Adopted from (Richter et al., 2007) . 32

4.3 Model of a Tagging System. Adopted from (Marlow et al., 2006) 36

4.4 Example of a Tag-cloud. Adopted from (Szomszor et al., 2007) 41

4.5 Extended user-item matrix Adopted from (Tso-Sutter et al.,
2008) . 42

5.1 User Flow Chart . 47

5.2 Additional Tag Layer . 50

xi

List of Figures

5.3 XML Snippet . 51

5.4 Database Schema of Programs, Tags and Extensions 54

5.5 Structure of Tags and Extensions 55

5.6 Recommender Section on Detail Site 58

6.1 Distribution of Tags and Extensions 61

6.2 Activity on the Community Site 62

6.3 Download Uploads . 63

6.4 Downloads of Germany and Russia 65

xii

List of Tables

2.1 Catrobat Team Overview. Adopted from (Schnedlitz, 2016) . . 7

3.1 Item Representation . 17

3.2 Item-User Matrix . 25

4.1 Examples of differences between Web 1.0 and Web 2.0. Adopted
from (O’Reilly, 2007) . 31

6.1 General Statistics . 60

6.2 Click Statistics of Tags . 63

6.3 Statistics of Versions A and B 64

.2 API Functions - Server Side . 73

xiii

Listings

5.1 Tag Entity . 48

5.2 Adding Tags . 52

5.3 Adding Extensions . 53

5.4 Core of the Recommender . 56

xv

1 Introduction

With the constant advancement of online devices, such as the evolution
from single-purpose to multi-purpose devices like smartphones and tablets,
the mobile ecosystem is steadily growing (Böhmer et al., 2013). One key
purpose of these online devices is to produce and transfer information –
resulting in a huge overload of information. To overcome this problem,
the concept of information filtering was introduced (Morita et al., 1994).
According to Belkin et al. (1992), information filtering describes a set of
processes like bringing information only to users who have a need for
this particular information. There are several approaches to instigate and
achieve information filtering. For example, if an individual is exploring a
new city and is trying to find a fancy place for lunch, it might happen that
there are too many options and that the individual might not be able to
decide on which place to choose. One possible solution could be that this
individual either decides to ask a local friend to recommend a place, or
the person decides to go with a recommendation out of a traveler guide.
Based on this scenario, two approaches can be identified. The latter example
(conducting the travel guide) is called the “search method”, where users
can define the base for getting information, which is also the most common
method. On the other hand, consulting a local friend would be called the
“expert recommendation”. However, in this case the information from the
expert is only suited for the user, if both parties have related and similar
preferences (Davidsson, 2010).

The two approaches stated above can be problematic, because not all possible
information is considered. That means a system is required which can
extract and deliver relevant information to a user. This extraction system
is then called a Recommender System (RS). Such systems can filter unseen
information (so called items1) and try to predict whether the item is liked by

1Items can be digital (eBooks, online magazines) or physical (books, dvd’s).

1

1 Introduction

a user2 or not. There are many types of RSs, such as collaborative, content-
based or hybrid systems. The collaborative type tries to recommend items
that are liked from users which are similar to the target user, while Content-
based systems recommend similar items which are liked by the target user
and Hybrids are combinations from two or more different RS (Ghazanfar
et al., 2010).

Emerging from Web 2.0, social tagging systems are providing additional in-
formation which can be used in RS. More precisely, tags are used to describe
items with keywords such as “Sport” or “Game”. With this information,
existing traditional algorithms can be enhanced, or new RSs can be built
from scratch (Costa-Montenegro et al., 2012).

1.1 Motivation

The motivation of this thesis is to capture and analyze the concept of
constantly improving website usability by implementing RSs based on tags.
Therefore, the community website of Catrobat is used. Catrobat is a FOSS
project and also the name of a visual programming language at the Technical
University of Graz (TUGraz). On the community website, programs which
are created with Catrobat, can be downloaded, uploaded and shared with
other users.

The main point of this thesis is to investigate if the implemented tagging
and recommendation system benefits user activity and raises download
numbers of programs. Therefore, collected data will be analyzed in order to
prove or to argue the suitability of those systems. Two research questions
were formulated:

Question 1

Can the activity on the community site be raised by adding a tagging system which
helps users to sort and find programs?

2The user who gets the recommendation is called the target user in this thesis.

2

1.2 Thesis overview

Question 2

Can the download numbers on the community site be increased by implementing a
RS based on tags?

1.2 Thesis overview

This thesis is structured as follows. Chapter 2 contains a more detailed
explanation about the project Catrobat, including background information
and an overview of the project structure. Chapter 3 contains an overview of
the topic RS and explains several underlying approaches. In Chapter 4, a
short summary of Web 2.0, the Social Web and an explanation of tagging
systems will be given. The practical part of this thesis can be found in
Chapter 5, including a short overview of the existing implementations and
the requirements of the tagging system and the RS. Chapter 6 analyzes and
discusses the results which are provided by the implemented systems from
Chapter 5. Finally, a summary of the most essential findings and ideas for
future work in this field is provided in the last Chapter 7.

3

2 Catrobat

Catrobat1 (Figure 2.1a illustrates the logo) is the name of a FOSS project
founded by Wolfgang Slany, head of Institute of Software Technology (IST)
and professor at the TUGraz.

Furthermore, Catrobat (former called Catroid) is also the name of the visual
programming language which is being developed during the course of
the FOSS project. The basis for the visual language is Scratch2, a program-
ming system developed by the Lifelong Kindergarten Group at the MIT
Media Lab (Slany, 2014). Still, there is a difference between Scratch and
Catrobat: Catrobat is running on smartphones and tablets, so no PC is nec-
essary to program as this can be easily done via apps. Scratch on the other
hand depends on hardware such as keyboard, mouse and a large screen
whereas Catrobat targets mobile devices with multi-touch sensitive screens.
These differences are leading to opposing challenges in user interaction and
usability (Slany, 2012).

(a) Catrobat Logo (b) Pocketcode Logo

Figure 2.1: Logos of Catrobat and Pocketcode

1Catrobat, 2018b.
2Scratch, 2018b.

5

2 Catrobat

Figure 2.2: Pocket Code - Program

2.1 Functionality

Catrobat uses Pocket Code (PCo) (see Section 2.3) as an Integrated Develop-
ment Environment (IDE). This IDE enables writing, editing and interpreting
in one single tool.

Figure 2.2 shows the use of the visual programming language in the PCo
app. Users only need to bring the pre-built blocks (bricks) together to create
a program. Ultimately, individuals do not need to gain coding skills, because
with the help of the bricks and the very easy and user-friendly handling, no
programming knowledge is required to develop programs. With this set-up
it is also simple to make games, stories and more. Another advantage is,
that the user learns more about loops, variables and conditions, which are
the basics of programming and developing software.

6

2.2 Overview of the Catrobat FOSS project

2.2 Overview of the Catrobat FOSS project

Catrobat as a project has many external contributers. However, the main de-
velopers are students3. Students can participate in the project when writing
their thesis for the university degree Bachelor of Science in Engineering (BSc)
or Master of Science (MSc). The FOSS project has the following structure:

1. Project head. Leader of the Catrobat project and the community. Wolf-
gang Slany, founder of Catrobat, is also the head of the project.

2. Project management. Organizational and administrative work such as
handling account permissions or managing student participations in
the project.

3. Coordinators. Leading the sub-teams and coordination between the
teams.

4. Developers. They implement features and continue to develop the
project.

Table 2.1 shows an overview of sub-teams and sub-projects of Catrobat.
Students can choose to join one of these groups.

Name Description
Catroweb Responsible for homepage of pocketcode

Chromecast Responsible for Google Chromecast support in Pocket Code
Core Core team of Pocket Code

Design Responsible for the design
Drone Responsible for controlling the AR Drone via Pocket Code

HTML5 Responsible for HTML5 implementation
iOS Responsible for implementation of Pocket Code for smart phones with iOS

Jenkins Responsible for the test-server environment
Lego Robot Responsible for controlling the Lego Mindstorm robots via Pocket Code
Musicdroid Responsible for playing music on your mobile phone

NFC Responsible for Near Field Communication (NFC) support Pocket Code
NPO Marketing Responsible for the marketing

Paintroid Responsible for drawing pictures on your mobile phone
Phiro Responsible for controlling the Phiro robot via Pocket Code

Physics Engine Responsible for physic engine support in Pocket Code
RasperIno Responsible for controlling the RasperyPi and Arduino with Pocket Code

Table 2.1: Catrobat Team Overview. Adopted from (Schnedlitz, 2016)

3Catrobat, 2018a.

7

2 Catrobat

Figure 2.3: Pocket Code - Application

2.3 Pocket Code

PCo (Figure 2.1b illustrates the logo) is developed for more than one plat-
form such as the most widely used Operating Systems (OSs) of Google4 and
Apple5. At the time of writing this thesis, the application is only available
for android devices and can be downloaded6 via Google Play Store7.

Figure 2.3 shows PCo on an android device. The Graphical User Interface
(GUI) is well structured and intuitive. The user can access programs fast via
the GUI on the mobile device also share these and download new ones.

There is a community site for sharing and downloading shown in Figure 2.4.
Not only the mobile app but also the community site has gone through
many changes and several features were implemented. The upgrade of the
web framework is one example of a fundamental change, which provided an

4Google, 2018a.
5Apple, 2018.
6Catrobat, 2018d.
7Google, 2018d.

8

2.3 Pocket Code

Figure 2.4: Homepage for sharing programs

easy way of further development. The web framework is called Symfony8,
the tool with which the comment section was integrated. The comment
section is a space on the page, where users can comment on and discuss
programs with others. In addition, social media channels, such as Facebook9,
Google+10 or Twitter11 are integrated in the community site.

8Symfony, 2018.
9Facebook, 2018.

10Google, 2018b.
11Twitter, 2018.

9

3 Recommendation System

This chapter gives an overview of RS and their approaches and techniques
such as collaborative, content-based, knowledge-based. Further, the knowl-
edge sources where RS acquire their data for recommendations are ex-
plained in more detail. How important the research of these systems are,
shows the Netflix price at the end of this chapter.

3.1 Background

In this digital age people are using the internet for communication and
services. Products, such as books and movies are used online by millions
of people. The number of these so called items is growing every day. As
a result, it is getting more difficult for the users to get through this large
amount of available online data (Dareddy, 2017).

If people are looking for advice or recommendations, they usually tend to
ask friends or experts. They talk about movies, gossip about latest fashion,
ask a librarian for a good book or talk with a seller at the news stand.
However, this form of recommendation has a weakness, because not all
relevant information might be included. There is maybe a new movie or
a new book released which might be of interest, but none of the involved
parties can recall or access these “bits of information”. Therefore, in order
to acquire proper information, a computer-based system can be used, which
is called RS (Ekstrand et al., 2011). RSs are a part of information filtering
systems. Information filtering provides individual or sets of data from a
larger assortment, which might be of interest for the user (Van Meteren
et al., 2000).

11

3 Recommendation System

Figure 3.1: Classification of Information Filtering. Adopted from (Hanani et al., 2001)

Therefore, these systems can be used for answering questions such as “what
should I buy next?” or “which movie should I see next?” (Felfernig, Jeran,
et al., 2014).

As can be seen in Figure 3.1, Hanani et al. (2001) describes four parameters
to classify information filtering systems.

• Initiative of operation: Information filtering systems can be active or
passive and describe who initiates the filtering process. Active systems
use the profiles of the users and search, collect and send the relevant
information to the user. Passive systems look over an incoming data
stream and omit irrelevant information.

• Location of operation: A system operates at the information source, at
the server site or at the user site. When if operating at the information
source, the user can send their profile to the information provider and
the wanted information is send back to the user. On the other hand, if
the system runs on a server, the user sends the profile to the server
and the server processes the data and requests the information from
the information provider. The server receives the data and sends it
back to the user. The most popular location is on the user site. An

12

3.1 Background

incoming stream is evaluated and filtered locally. This variant is a
passive filtering system.

• Filtering approach: System can use either cognitive or sociological fil-
tering. The cognitive approach uses the content of the data for the
filtering process, therefore it is also called content-based filtering. The
sociological approach or also called collaborative filtering, is a recom-
mendation process, which is used to recommend items according to
the habits of the user. Systems based on the collaborative approach are
now being referred to recommendation systems which are explained
in more detail in Section 3.2.1.

• Methods for acquiring knowledge about users: Methods for acquiring
knowledge on users can be explicit, implicit or a combination of both.
In the explicit approach, the users usually fill out a form, which
describes their areas of interest whereas, the implicit approach creates
the knowledge automatically by recording the user’s behavior.

These days, the collaborative approach is the most commonly used filtering
method in terms of RSs. Generally, this approach uses the similarity of users
and their ratings to compute a recommendation for the target user (Gong
et al., 2008). Filtering approaches and methods are explained in more detail
in Section 3.2.

According to Resnick et al. (1997), the term Collaborative Filtering (CF) was
coined by the developer of Tapestry, one of the first RSs.

Tapestry was an experimental mail system in which users were being
included in the filtering process by using annotations. For example, if user
A wants to acquire specific information annotated by user B with “Must
Read”, user A can filter all available data by this annotation (Goldberg et al.,
1992).

Resnick et al. (1997) preferred the term recommender system (synonym for
Recommendation System) instead of CF. The term recommender systems
widely gained acceptance and the definition of this term was expanded
gradually. Therefore, this term includes all recommendations of items that
can be of any interest to the user, no matter how these recommendations
are generated (Burke, Felfernig, et al., 2011).

13

3 Recommendation System

3.2 Techniques

Traces of RSs can be found in various areas, such as information retrieval,
forecasting theories and management science. However, the beginning of in-
dependent research on RSs starts not until the mid-1990s, when researchers
started to concentrate on recommendation problems that occur by using
rating structures (Adomavicius et al., 2005).

As a result, many techniques and approaches such as collaborative and
content-based filtering have been developed over the years (Park et al., 2012).
These filtering methods and concepts such as knowledge-based and hybrid
methods, which are commonly known as the traditional techniques, will
be explained in more detail. Other methods such as social network-based,
context awareness-based and group recommendation approaches are more
advanced and more recently developed (Lu et al., 2015).

3.2.1 Collaborative Recommendations

Pure collaborative recommendations are based on the rating information
history of other users which have a similar rating profile as the target user
to recommend unseen and not yet evaluated items. There is no need to
know specific details about the items (for example genre or author of books)
for recommendation since only the rating is important (Balabanović et al.,
1997).

The collecting of ratings or user opinions can be implicit or explicit. Implicit
ratings are based on the behavior of the user, such as browsing data or
purchasing information. If a user purchases a product, this can be inter-
preted as a positive rating. There is no need for the user to do something
personally. On the other hand, explicit ratings are actively submitted by the
users themselves, for example by rating products on a scale from 1 (very
bad) to 5 (very good) (Breese et al., 1998).

Recommendations can be provided to the users in two ways. The first one
is prediction. The system predicts if the user likes the item or not and based
on this prediction the recommendation is generated. The second one is

14

3.2 Techniques

ranking, where the user is provided with a ranked list of recommended
items. Generally, the latter one is more widely used (Lam, 2005).

In order to generate these recommendations, the algorithm used for fil-
tering in collaborative systems can be split into two methods: memory-
based (neighborhood-based) and model-based. The memory-based uses data from
databases, where all previous user-item ratings are stored. Then, the nearest
neighbors are calculated with algorithms such as k-nearest-neighbors (kNN).
On the other hand, the model-based method uses the data to develop a predic-
tive model. In practice, many approaches in the model-based method such as
Bayesian Clustering, Latent Semantic Analysis or Support Vector Machines
exist (Desrosiers et al., 2011). Combining algorithms from both methods
create a hybrid filtering approach. These hybrid algorithms usually have a
better performance than a pure memory-based or model-based approach (Su
et al., 2009).

User-based Collaborative Filtering

User-based CF uses the similarity of users to predict the interest of the target
user on a specific item. Users are matched as similar, if the rating history
of same items is very much alike. To limit the number of similar users, a
threshold can be defined or only the top-N users are selected. In order to
measure the similarity of users, the Cosine similarity and Pearson correlation
are commonly used (Wang et al., 2006).

Item-based Collaborative Filtering

In contrast to the already mentioned user-based CF, item-based CF is not
using the similarity of users but rather the similarity of items and their
ratings. Therefore, Cosine similarity or Pearson correlation are used to measure
whether items are similar or not. However, there is one problem with the
measurement, namely the difference of the rating behavior of the users.
In order to alleviate this problem, an adjusted Cosine measure is applied
where the user’s average rating is subtracted from the ratings. Similar to the

15

3 Recommendation System

user-based CF, not all similar items are taken into account for the prediction.
Only the top-N items are used (Wang et al., 2006).

Problems

There are two main challenges in collaborative systems: the data sparsity
and cold-start problem. The data sparsity problem occurs, when users only
rate or buy specific items. Therefore, users are quickly measured similar.
Additionally, with no additional information about these users, the RS has
problems to recommend items which the target user might like. One solution
might be a hybrid approach, where additional information about the users,
such as age, gender or education, is taken into account. Furthermore, the
assignment of default values in databases can be used. Items get predefined
ratings in order to fill in the blanks (Jannach et al., 2010, pp. 22–25).

The cold-start problem also occurs because of data sparsity (Jannach et al.,
2010, p. 25). It can be divided into three groups, such as the new-user, new-
item and new-community problem. The new-community problem describes
the start-up difficulties, when a new system goes online. After initialization
of the system, there is no data for the RS. One solution is to encourage the
users to rate items. Another is to wait until enough data is collected to show
recommendations. The new-item problem occurs when new items are being
added to the system. Usually, these items have no ratings. One solution is to
have a group of users which are responsible for evaluating each new item
in order to get some ratings. However, one of the greatest challenges is the
new-user problem. In contrast to the new-item problem, new users joining
the system have no ratings or have not bought anything yet. To tackle this
problem, the use of hybrid systems is common (see Section 3.2.4) (Bobadilla
et al., 2013).

3.2.2 Content-based Recommendations

This approach tries to recommend items that are similar to items which the
user liked in the past. The main difference to the collaborative approach,
especially the Item-based filtering (see Section 3.2.1) is, that no rating is

16

3.2 Techniques

needed for the similarity measurement, only the content of the items is
used (Van Meteren et al., 2000).

The content of an item is also called attribute, characteristic, feature or variable
and can be structured or unstructured. Table 3.1 shows a structured movie
database. The values of the content are well-defined, for example the genre
can be action, fantasy, romance or drama, or a mix of them. Unstructured
data has no well-defined values and often comes in form of free-text like in
newspapers. Besides the author, the text of the newspaper is used as content.
To deal with this free-text, the usual procedure is to create structured data
out of the unstructured data, for example with calculating the tf*idf weight.
tf is the term frequency and idf is the inverse document frequency. A high
calculated weight of a term for a specific document means that the term
provides the most information about this document (Pazzani et al., 2007).

ID Title Producer Genre Type
1 Title A Producer 1 Action, Fantasy DVD, Blue-ray
2 Title B Producer 2 Romance Streaming Media
3 Title C Producer 3 Drama DVD

Table 3.1: Item Representation

Furthermore, a user profile is needed for generating the recommendations.
As already explained in collaborative recommendations (Section 3.2.1), the
preferences of the user can be given explicit, for example by selecting check-
boxes to say if the items is liked, or implicit, like purchasing an item. With
the preferences of the users, algorithms can learn a user model for recom-
mendation. Such algorithms are for example decision trees, rule inductions,
nearest neighbor methods, relevance feedback or probabilistic methods (Pazzani
et al., 2007).

Problems

Contend-based recommendations have also known limitations. One of these
limitations is the shallow content analysis. For example, the users get rec-
ommendations based on the keywords used in an article. However, the RS

17

3 Recommendation System

does not differentiate in their quality, e.g. if an article is well-written or
not. Another example is the recommendation of jokes. Most jokes are short,
which means that there is not much content to extract. Therefore, a solution
is to use annotations like tags, such as “very funny” (see Chapter ??). An-
other problem is overspecialization. After learning the preferences of a user,
the system tends to recommend items that are too similar. One example
would be the recommendation of news articles, where the users receive
other articles which they might have already read. One solution for this
problem is to define a threshold. With this threshold, the system filters not
only the items which are too different, it also filters items that are too similar.
Another method is to insert random items to get “randomness” (Jannach
et al., 2010, pp. 75–76).

Similarly to collaborative systems, contend-based methods have also the
cold-start problem (Section 3.2.1), more specifically the new-user problem.
In order to acquire data about the preferences of the new users, the user
can provide some keywords or can choose from a list of keywords, after
entering the system (Jannach et al., 2010, pp. 76–77).

3.2.3 Knowledge-based Recommendations

RSs with collaborative or content-based approaches are well suited for items
which are being bought very frequently, such as books, dvds or newspapers.
On the other hand, items such as houses, cars or computers are difficult
to recommend since these items are not being bought on a regular basis.
As a consequence, there are not many ratings which would be needed for
the collaborative approach. Furthermore, old recommendations such as a
rating of a five year old computer is misplaced for content-based recom-
mendations. To fill this gap, knowledge-based techniques were introduced.
This approach uses domain knowledge and the user requirement for rec-
ommendations. Section 3.4 explains the knowledge sources which are used
by RSs. Knowledge-based systems can be distinguished into case-based and
constraint-based recommender (Felfernig, Friedrich, et al., 2011).

18

3.2 Techniques

Case-based Recommendation

Case-based approaches are using similarity measures to recommend items.
For example, a user enters particular requirements into the system. The sys-
tem searches for items which are similar to the requirements and presents
an item as a solution. If the user is unsatisfied with the solution, the require-
ments can be changed and the system starts a new search (Lorenzi et al.,
2005).

Constraint-based Recommendation

Similar to the case-based approaches, the constraint-based recommender
works with the particular requirements entered. The difference is, that
constraint-based techniques additionally take explicitly defined constraints
for the recommendations. Based on that, only items are recommended which
are not violating the constraints. If there are no items with this requirement
available, the user must redefine the requirements (Jannach et al., 2010,
pp. 81–87).

Problems

The problem of knowledge-based recommender lies in the knowledge
acquisition, namely to gather the knowledge about items and to convert it to
usable data. It has no cold-start problem since this approach needs no rated
items or similarity between users, only the similarity between items and
user requirements (case-based) or items which do not match the constraints
(constraint-based) (Felfernig, Friedrich, et al., 2011).

3.2.4 Hybrid Recommendations

Hybrid recommender consist of more than one RS. Combining multiple
systems is used to mitigate their disadvantages and to increase perfor-
mance (Sharma et al., 2013). In the following sections, a variety of hybrid
systems are discussed.

19

3 Recommendation System

Figure 3.2: Weighted Hybrid System. Adopted from (Le et al., 2017)

Figure 3.3: Switching Hybrid System. Adopted from (Le et al., 2017)

In weighted hybrid systems, the scores of items from all available recom-
mender in the system are used to compute the final score of the item, which
is illustrated in Figure 3.2. The simplest implementation would be a linear
combination of these scores. The weight can be adjusted, because collab-
orative recommender are not good with items that are not rated often by
users (Burke, 2002).

A switching hybrid can switch between the available recommender in the
system, which can be seen in Figure 3.3. Based on the switching criteria, the
system decides which recommender should be used to present its result.
Therefore, it is possible to use different RSs for different user profiles with
this hybrid (Burke, 2007).

In mixed hybrid systems, the recommendations of all available recommender

Figure 3.4: Mixed Hybrid System. Adopted from (Le et al., 2017)

20

3.2 Techniques

Figure 3.5: Features Combination Hybrid System. Adopted from (Le et al., 2017)

Figure 3.6: Features Augmentation Hybrid System. Adopted from (Le et al., 2017)

in the system are combined to one single recommendation and is presented
to the user (Burke, 2002). This system is shown in Figure 3.4.

Hybrid system, which use a feature combination approach, consist only
of one component with a recommendation algorithm. The inputs for the
algorithm are the features of different data sources from other recommender
(see Figure 3.5). Although there is only one component used for recom-
mendation, feature combination is still a hybrid system. The reason is the
underlying knowledge sources (Burke, 2007).

In feature augmentation, one recommender creates features which are used
as an input for the next recommender (see Figure 3.6). The difference to
feature combination is that feature augmentation is not using only raw data
from different knowledge sources; it also uses additional functionality from
the recommender before (Burke, 2002).

In cascade hybrid systems, the first recommender creates a rough ranking
of the recommended items. The next recommender gets the ranking as an
input (see Figure 3.7). This input can only be refined, not overturned (Burke,
2007).

21

3 Recommendation System

Figure 3.7: Cascade Hybrid System. Adopted from (Le et al., 2017)

Figure 3.8: Meta-Level Hybrid System. Adopted from (Le et al., 2017)

In the meta-level approach, a model learned by the previous recommender
is used as an input for the next recommender (see Figure 3.8). It must be
ensured, that the produced model can be used by the next recommender
logic (Burke, 2007).

3.2.5 Non-personalized Recommendations

Non-personalized recommender use the average rating or votes over a
product from all users who have rated or voted for the item. Thus, the rating
of the user is not necessarily the same as the average rating. Furthermore,
this has the effect that all users are getting the same recommendation.
Recommender which are built on non-personalized recommendations are
automatic (no user effort) and ephemeral (no user recognition) (Schafer et al.,
1999).

Another option is to recommend the top-N items with the most ratings
regardless of the ratings itself. Here, the user gets only a ranked list of items
which are popular (Cremonesi et al., 2010).

22

3.3 Purpose

3.3 Purpose

According to Ricci et al. (2011), the function of RSs differs for the user
and the service that provides the recommendations. They identified five
functions or rather reasons, why the service providers are interested in this
field.

• Increase sales: Selling more items to the users is the primary reason for
most providers of RSs. In addition, providers which only offer online
content, such as newspapers, journals or magazines, are not especially
interested in increasing sales but in increasing the number of items
read.

• Increase sales of diverse items: Similar to the first point, increasing sales
of diverse items is also an important reason. The provider not only
wants to sell the most popular item, but also items which are hard to
find without using a RS.

• Increase satisfaction: An effective, in other words accurate RS can in-
crease the user satisfaction, which concludes that the user enjoys the
system and this results in a longer system usage.

• Increase fidelity: The more often the user visits the system or homepage,
the more accurate the RS becomes. The loyalty to the system or the
site increases, if the RS recognizes the user by each visit and gives the
feeling of being important.

• Increase user understanding: Another important reason is the better
understanding of the user. If the provider knows the preferences of
the user, they can use this knowledge, for example to adjust the stock
of items.

On the other side, the user has also reasons to use the recommendations.
Herlocker et al. (2004) mentioned ten of them:

• Context annotation: A RS annotates existing context, such as a list of
books, in order to show the user which books are worth reading.

• Discover good items: Users desire not only items, they want good items.
Therefore, RS presents a ranked list. This list has a prediction of each
item, which forecasts how much they would like them.

23

3 Recommendation System

• Discover all good items: In a few cases the users not only want to see
some good items, they wish to see all possible good items available.
For example, in the medical sector it might be vital to see all possible
items due to the fragmented and broad area.

• Sequences of recommendations: Some RSs benefit from presenting more
than just one item. For example, after listening to one song, the RS
displays a sequence of music tracks.

• Just browsing: There are users who are using the RS just for browsing.
They have no intentions to buy something.

• Find trustworthy recommenders: Primary, the RS helps the user to find
items, but some users have no trust in the recommendation and there-
fore they “play” with the system to see what recommendation they
get.

• Better profile: Many users improve their profile by rating more items,
in order to get more precise recommendations.

• Express themselves: The RS is not important for all users. They just want
to rate items, for the rating’s sake.

• Help other users: There are users who rate items for others, because
they want to help the community.

• Influence other users: Some users use the RS not to improve their own
recommendations, but rather to influence others. Therefore, they pro-
mote items that then other users get as recommendations.

3.4 Knowledge Sources

Every intelligent system needs knowledge to work properly. This is also the
case in RSs. The algorithm used in recommender can be classified by this
knowledge sources (Burke, Felfernig, et al., 2011). According to Felfernig
and Burke (2008) there are four sources where RSs can gain knowledge.
These four knowledge sources are listed below:

1. The target user itself (Individual)
2. Other users (Social)
3. Data of the recommended items (Content)
4. The domain of the recommendation (Content)

24

3.4 Knowledge Sources

Figure 3.9: Knowledge Sources. Adopted from (Felfernig and Burke, 2008)

In Figure 3.9, the authors present a taxonomy of the knowledge sources and
they explain that “Content” describes all elements, which are not generated
from users.

3.4.1 Social

The social knowledge uses all users and their profiles of the system. This
knowledge is a major part of the collaborative algorithm. The opinions of
the users are often represented as a m × n matrix, where m stands for the
users and n for the items. The entries in this matrix reflect a rating of an item
from a user (Table 3.2 shows this matrix). Other opinion-options, besides
ratings, are for example tags or reviews in form of text. RSs can also use
demographic data for predictions (Burke and Ramezani, 2011).

Item 1 Item 2 Item 3
User X 1 4 3
User Y 4 2 1
User Z 1 5 5

Table 3.2: Item-User Matrix

25

3 Recommendation System

3.4.2 Individual

The individual knowledge of the user is important for the personalization
of recommendations. Whether the opinion or demographic data is social
or individual is a pure viewpoint. For example, it is individual if a specific
user is getting recommendations based on their opinion or demographic
data. Otherwise, if other users receive recommendations and use the data
from the specific user, it is social. Additional to opinion and demographic
data, users can have special requirements. The system must process these
requirements that come in different forms, such as in queries, constraints,
preferences or as context. Queries are user interface specific, for example
to tick a box to specify a particular requirement for the recommendation.
Constraints cannot be violated, such as giving no vegan food restaurant
recommendations to users which are only eating vegan. On the other hand,
preferences can be violated to some degree. For example, a user wants to
buy a product below a certain price, e.g. e 10 but would also buy it for
e 15 (Felfernig and Burke, 2008).

3.4.3 Content

The content knowledge covers a large area. In some systems, there is only
knowledge about the items and their attributes. Such knowledge is consid-
ered to be basic and often taken from a database, where the items are stored.
Context can be vital in order to determine or match individual requirements,
such as finding a restaurant for a business meeting as opposed to find a
restaurant for a birthday party. More complex is the domain knowledge
such as means-end, where the user has a specific item (“means”) for a special
purpose in mind (“end”), as well as feature ontology, which links items to
each other, or constraints, because items can have constraints that cannot be
violated (Burke and Ramezani, 2011).

26

3.4 Knowledge Sources

Figure 3.10: Recommender and their Knowledge Sources. Adopted from (Burke, 2005)

3.4.4 Knowledge Sources Example

Three approaches of RSs were selected, to give an insight into where they
are acquiring knowledge. These three are collaborative, content-based and
knowledge-based recommender.

Collaborative recommendations compare the current user profile (individ-
ual knowledge 3.4.2) with the user profiles of other users (social knowl-
edge 3.4.1) to find similarities for recommendations. Instead of the user
profiles, the content-based recommendation needs the item list with the
attributes (content knowledge 3.4.3) and the current user profile. Items are
recommended similar to items which the user rated high. Like content-
based recommendations, knowledge-based recommendations use the item
list as well but in addition it also uses domain knowledge (content knowl-
edge 3.4.3), the connection between the item and the benefit to the user.
Figure 3.10 illustrates the three recommender and their knowledge sources
graphically (Burke, 2005).

27

3 Recommendation System

3.5 Netflix Prize

Netflix1 is an online platform with a subscription service. This service offers
streaming movies and TV shows on a variety of devices. The devices must be
connected to the internet but the service can be used any time (Gomez-Uribe
et al., 2015).

How important it is to research and improve RSs, shows Netflix with its
competition: The Neflix Prize2.

In October 2006, Netflix has given access to a large amount of data. This
data contains over 100 million anonymous ratings and come from over 480
thousand anonymous subscribers which are randomly chosen. The ratings
are collected between the years 1998 and 2005 and consist of a scale from 1
to 5 (Bennett et al., 2007).

The challenge was to develop a RS that has at least a 10% reduction of
the Root Mean Square Error (RMSE) compared to the RMSE of the system
Cinematch, the recommender of Netflix. The team who first reached the 10%
mark won $ 1 million (Bell et al., 2007).

The challenge had more than 50, 000 participants from 186 countries. After
three years, on September 21th, 2009, the team BellKor’s Pragmatic Chaos
(BPC) won the challenge. They submitted 20 minutes before the team The
Ensemble, who also managed to get above the 10% mark (Hallinan et al.,
2016).

1Netflix, 2018b.
2Netflix, 2018a.

28

4 Annotations and Tags

This chapter contains an overview of annotations and tagging and their
usage. For understanding the annotations and tags a short detour through
the Semantic Web as well through Web 2.0 is given. Further, it is shown how
tagging can be used to support or improve RSs.

4.1 Semantic Web

The Semantic Web extends the World Wide Web (WWW) and its data with
additional information. This information is called semantic annotations. With
these annotations, the web is made understandable not only for humans
but also for machines to make the automatic processing easier (Chirita et al.,
2007).

4.1.1 Semantic Annotation

As already mentioned above, annotations extend the WWW, more precisely
semantic annotations are generating metadata that can be used for new and
also existing information access methods (Kiryakov et al., 2004).

Semantic annotations are not simple textual annotations which are primarily
used by the creators of the data, it identifies relations between concepts.
For example, the annotation of “Paris” would connect it to the concept
“City” and “Country”. That is because Paris is a city in France which is a
country. Therefore, there is no more uncertainty of meaning of the word
“Paris” (Uren et al., 2006).

29

4 Annotations and Tags

Figure 4.1: Annotation Example. Adopted from (Arndt et al., 2007)

Imagine a picture of three well-known personalities like Franklin D. Roo-
sevelt, Winston Churchill and Joseph Stalin on it. Figure 4.1 shows an
example of a metadata file for this picture, with semantic and textual anno-
tations. Regions with id 1 to 3 marks sections in the picture annotated with
the names of the persons. Only regions with the id 1 and 3 are semantic an-
notations which means that an authoring tool can connect to other concepts
such as the biography of the persons. Region with the id 2 is only a textual
annotation and is ignored by these tools (Arndt et al., 2007).

4.2 Web 2.0

The term “Web 2.0” emerged at a conference for the further development
of the WWW in the year 2004. One point of the Web 2.0 is, that the users
are no longer limited to consuming; they can now participate actively in
designing the web through providing content. Other parts of Web 2.0 are
new techniques such as Asynchronous JavaScript and XML (Ajax) and
Rich Site Summary (RSS) or applications like Wikis and Weblogs. More
specifically, Web 2.0 is not just one technique or an application, it is a
combination of both (Richter et al., 2007, pp. 4–6).

30

4.2 Web 2.0

O’Reilly (2007) shows the difference between Web 1.0 and Web 2.0 based on
examples. Some of these examples are shown in Table 4.1.

Web 1.0 Web 2.0
DoubleClick Google AdSense

Ofoto Flickr
Akamai BitTorrent

mp3.com Napster
Britannica Online Wikipedia
personal websites blogging

publishing participation
directories tagging

Table 4.1: Examples of differences between Web 1.0 and Web 2.0. Adopted from (O’Reilly,
2007)

4.2.1 Social Web and Social Software

The social web is a part of Web 2.0, which focuses on the support and inter-
action of social structures (Ebersbach et al., 2016). It stands for a category of
websites and applications, where the contributions of the users are in the
center (Gruber, 2008).

Applications or dynamic websites which are using the web as a channel
for communication are called social software. The primary function of this
software is not to connect servers or send data between them, it is the
connection and communication between users, users and a community or
among multiple communities. The difference to the social web is, that the
social web also includes the data of users, the used application and data of
the social bond between users (Ebersbach et al., 2016).

Schmidt (2006) presents three basic functions of social software. These
functions are listed below, including a short description:

• Information management. Software for searching, managing and sharing
information.

• Identity management. Software for the presentation of its own.

31

4 Annotations and Tags

Figure 4.2: Social Software Triangle. Adopted from (Richter et al., 2007)

• Relation management. Software for managing or finding new relation-
ships.

Not every social software covers all functions equally. In the next Sec-
tion 4.2.2, different types of social software are explained in more detail.

4.2.2 Types of Social Software

Richter et al. (2007, pp. 11–12) distinguishes between four types of social
software, such as Weblogs, Wikis, Social Networking and Social Tagging.

Richter et al. (2007, p. 12) defines a “Social Software Triangle” that assigns
the four types to the basic functions, which are explained in Section 4.2.1.
Figure 4.2 shows the assignment of the four types graphically. Weblogs,
wikis and social networks are explained in more detail in the following
subsections. Social tagging is explained in Section 4.3.

32

4.2 Web 2.0

Weblogs

A “Blog”, the short form for Weblog, is a website in which users, called
“blogger”, can publish or “post” almost everything. The published material,
called “posts”, are mostly textual but can also contain photos or multimedia
content. The posts are typically in reversed order, which means the newest
post is on the top of the website. Many blogs contain hyperlinks to external
websites and also a comment section, where the users can leave a comment
to a post. Blogs in the form as today started around 1997 with Dave Winer’s
Scripting News1 blog. Like the Scripting News blog, most blogs are online
diaries or personal journals (Nardi et al., 2004).

Creating and maintaining blogs is not very difficult. Users can benefit from
certain software, so called “blogware”. WordPress2 and Blogger3 are two
blogwares which are supporting the user in creating and managing blogs.
The user does not need technical knowledge for this, as opposed to other
platforms such as Movable Type4, where the user should know how to install
and manage the software on a webserver (Murugesan, 2007).

Wikis

The word wiki derived from the Hawaiian word wiki-wiki, which means
quick. A wiki allows users not only to view but also to create and edit the
content, which makes a wiki a collaborative website. It simplifies the process
of creating a Hypertext Markup Language (HTML) page with information.
An additional system that records changes of the pages in the wiki can be
used to reset the page to an older version if needed. It is possible that some
pages can only be edited by registered users or a group of members although
everyone can view the page. There are also wikis without a restriction for
editing and viewing. Wikis are a popular form to spread information and
knowledge among people, because they can share information and discuss
it in groups (Parker et al., 2007).

1Winer, 2018.
2WordPress, 2018.
3Blogger, 2018.
4Type, 2018.

33

4 Annotations and Tags

Wikis gained popularity through the encyclopedia Wikipedia5, the biggest
wiki online. Furthermore, wikis are used for a collection of websites like
wikiindex6, which contains a collection of other wikis (Richter et al., 2007,
pp. 19–24).

Social Networking

Social networks such as Facebook7, myspace8 or business networks like XING9

are community sites, where users can connect with other people. It usually
starts with creating a profile. In this profile, information such as birthday,
address, hometown, interests and more, can be included. Instead of using
their real names, users can also use a pseudonym. In order to get in contact
with other people, a friend request must be sent to the other user. This
request must be accepted to establish a link between the two profiles.
Mostly, users whose friend requests are accepted, are managed in friend
lists. The primary usage for this community sites is to stay in contact with
others or meet new people. In addition, popular uses are sharing photos and
information or get updates on the activity of friends (Dwyer et al., 2007).

4.3 Tagging

4.3.1 Tags

Providing online content with keywords can be helpful for later filtering,
searching and managing. These keywords are called “tags”. The collabo-
rative form of adding tags to content is called “collaborative tagging” or
“folksonomy”, which is made up of two words, “folk” and “taxonomy”.
Traditionally, categorizing was performed by the author of the document
or an authority, such as the librarian of digital libraries. In collaborative

5Wikipedia, 2018.
6WikiIndex, 2018.
7Facebook, 2018.
8Myspace, 2018.
9XING, 2018.

34

4.3 Tagging

tagging, anyone can add tags to content, which is most useful when there is
no authority or there is too much content (Golder et al., 2006). An applica-
tion of collaborative tagging is the social bookmarking system Pinboard10.
User can tag their bookmarks and share them among each other (Ovadia,
2012).

Golder et al. (2006) identified several functions on how tags can describe
content of bookmarks:

• Identifying what (or who) it is about. Describes the topic of the bookmark,
for example “Sport”.

• Identifying what it is. Describes the kind of bookmark, for example
“Blog”.

• Identifying who owns it. Identifying who is the creator or the owner of
the bookmark content, for example “John Doe”.

• Refining Categories. Instead of creating new categories, refine old ones,
best with round numbers, for example “Categorie100”.

• Identifying qualities or characteristics. Describes the opinion of the tagger,
for example “Good”.

• Self reference. Describes the relation to the tagger, for example “my-
Blog”.

• Task organizing. Describes the task which is performed on the content,
for example “readLater”.

4.3.2 Social Tagging Systems

Social tagging systems such as Flickr11, CiteULike12 or Last.fm13 allows users
to share, tag and manage their resources. Tags in these systems are used as
links to resources, tagged by the owner and other people. Tagging systems
also struggle with problems such as ambiguity, synonyms and discrepancies
in granularity. An example for the ambiguity problem is the tag “bat”. It
can refer to a flying little animal or a wooden stick for playing baseball.

10Pinboard, 2018.
11Flickr, 2018.
12CiteULike, 2018.
13Last.fm, 2018.

35

4 Annotations and Tags

Figure 4.3: Model of a Tagging System. Adopted from (Marlow et al., 2006)

Synonyms are making it hard to retrieve all desired resources, for example
the user wants all resources relevant to “tasty”. Some resources may be
tagged “delicious”, so they are ignored and not retrieved. Hence, in order
to get all resources, the users would have to know all possible synonyms
of a tag. The problem with the level of granularity is, that tags may be too
specific for some users or the other way round. An example for the level
of granularity is the tag “JavaScript”. It may be too specific, but the tag
“programming” would not be sufficient (Specia et al., 2007).

In Figure 4.3, a conceptual model of a tagging system is presented. This
model consists of three elements: users, tags and resources. Users can assign
tags to resources and also can be connected to other users via social software.
Furthermore, the resources can be connected to each other, for example
through links between web pages (Marlow et al., 2006).

Marlow et al. (2006) developed two tagging taxonomies which analyze how
the resultant tags are influenced in tagging systems. This comprises the
characteristics of system designs on the one hand and the user incentives and
motivations on the other hand. The user incentives and the key dimensions
of the systems design are listed below with a short description.

36

4.3 Tagging

System Design

• Tagging rights. Tagging systems can restrict the allocation of tags. Is the
restriction set to free-for-all tagging, then any user can tag any resource.
Otherwise, if it is set to self-tagging, user can only give tags to resources
which they created. The restriction can also vary between these two
levels, e.g. the system can decide which resources can be tagged by
which user. Restriction can also be set for deleting tags, for example
not every user can delete any tag of a resource.

• Tagging support. Tagging systems can have different levels of support
for the user during the tagging process. The supporting level can be
blind tagging, viewable tagging or suggestive tagging. Blind tagging means
that the user cannot see assigned tags from other users while tagging
the resources. Viewable tagging allows users to look at the tags already
assigned to the resources. If tags are offered to the user while tagging,
then the system uses suggestive tagging. The suggested tags can be
generated from already existing tags which the user used or from tags
of other users which assigned tags to the resources.

• Aggregation. There are two approaches, namely the bag-model and
the set-model. The first approach allows a multiplicity of tags for one
resource, which can result in duplicated tags. In the second approach
the system requests a group of users to collectively tag a resource. This
prevents the duplication of tags.

• Type of object. An important consideration is the type of the resource.
Well-known types are web pages, blog posts, images, videos or audio
objects. In fact, any object can be tagged if the object can be virtually
represented.

• Source of material. The resources provided can come from users or
from the systems itself. The system can also be an open system, which
allows to tag any web resource, such as links.

• Resource connectivity. The resources in the system can be linked to each
other. There are three categories: linked, grouped or none.

• Social connectivity. Users can also be linked to each other via social
software. Similarly to resources, the connection between users can be
categorized in linked, grouped or none.

37

4 Annotations and Tags

User Incentives

• Future retrieval. A resource or a collection of resources are tagged for
personal retrieval. For example, user tag a collection of books with “to
read” for reading at another time or tag songs with “power-walk” and
create a playlist for sport activities.

• Contribution and sharing. Resources can be shared with friends, family
or any other user with the use of tags, e.g. tag vacation websites for
the family.

• Attract attention. Own resources can be tagged with popular tags to
get other users to view them.

• Play and competition. Users create tags based on a set of rules. In some
systems, the systems itself create this rules, like in tag games where
users are stimulated to tag a resource which others might also tag.
In other systems, a group of users develops the rules, e.g. to seek all
resources with a particular feature.

• Self presentation. Users can use the tagging to write their own identity
into the system or rather leave a personal mark on a particular resource.
For instance, the tag “seen live” marks an identity or personal relation
to the resource.

• Opinion expression. Tags can express a personal opinion of a resource.
As a result, users convey an opinion to other users.

4.3.3 Tags and Recommendation Systems

There are two aspects of the relationship between tags and RSs which
are described below in more detail. The first is the explanation of how
recommendation technologies can be used for the recommendation of tags.
The second is how tags and their information about the resources can be
integrated in the recommendation process to suggest useful items to the
user.

38

4.3 Tagging

Tag Recommendations

As described in Section 4.3.1, tags can be assigned to resources for orga-
nizational purpose, filtering or sharing. However, not all resources have
tags, because tagging is a time-consuming task and not every user is going
through the process of tagging. In order to support and to encourage users
to tag their resources, tag recommendation systems are used. There are two
main types of these systems: personalized and non-personalized. The personal-
ized systems take the users interests and preferences into account, whereas
the non-personalized systems do not (Nguyen et al., 2017).

Song et al. (2011) distinguish between two approaches for tag recommen-
dation systems: the user-centered and the document-centered approaches. The
user-centered approach recommends tags based on the historical tagging
data and similar users, similar to CF techniques. On the other hand, the
recommendations of the document-centered approach are based on the data
from the document itself, for example author or title. This approach also
applies to other object types, such as videos or images and not only to
documents. Thus, it is better to call it a content-based technique.

In addition to content-based, graph-based is one of the most popular tech-
niques for tagging recommendations. A graph-based algorithm is FolkRank14

which is based on PageRank15. The basic idea is that resources, which are
marked as important by users that are important or influential, become
important itself. Furthermore, combinations of the two techniques content-
based and graph-based are possible (Shu et al., 2010).

Recommendations using Tag Information

RSs which use tags as additional resources for creating more effective
recommendation algorithms are called tag-based or tag-aware recommender
systems. The tags can reflect on the user’s opinion and preferences because
the user can freely choose and assign tags. Further, tags can be used to
evaluate the qualities of the resources because they show the semantic

14Jäschke et al., 2007.
15Brin et al., 2012.

39

4 Annotations and Tags

relations between them. In addition, the co-occurring properties of tags
make it easier to find similar resources (clustering items) or users (building
user communities). However, even if they are useful for managing and
searching resources, not all tags are suitable for using in RSs. Tags have
their limitations such as ambiguity or synonyms (see Section 4.3.2). There are
many researches concerned with solving the problems with tags, such as the
clustering-based methods from Shepitsen et al. (2008) and Capocci et al. (2008),
who are trying to alleviate the word reduction problem. Other researchers,
like Mika (2007) and Kim et al. (2008), use ontology-based algorithms to reveal
the semantic relations among tags. Another example is the research from
Zhang et al. (2010) and Liu et al. (2010), which uses graph-based methods to
solve the sparsity problem (Zhang et al., 2011).

For the RSs, there are two approaches to use tags and their information
in the recommendation process. One of them is using tag as additional
information about the content of the resource. This information can be used
by content-based RSs for suggesting items. The other approach is to extend
the user-item matrix with a third tag dimension. This approach is suitable
for collaborative techniques (Jannach et al., 2010, p. 262).

An example for a content-based approach is provided by Szomszor et
al. (2007), who base recommendations on tag-clouds. They are using two
datasets for generating the tag cloud, which they call the rating tag-cloud.
They use the ratings of movies from the Netflix rating database and the
movie tagging data from Internet Movie Database (IMDb)16. These two
datasets can be combined through an easy string matching with the titles
of the movies. The rating scale lies between 1 to 5, where 1 is bad and 5 is
very good. Based on these ratings and the tagging data, this method tries to
estimate the future ratings of not rated movies by the user. Thus, a rating
tag-cloud for the user is created. Figure 4.4 shows an example of a rating
tag-cloud for a rating of 5 for a user. It is possible to generate different
tag-clouds for the user for every rating. The size of tags results from the
frequency of occurrence, for example in Figure 4.4, most of the movies with
the tag “Fantasy” were rated with 5. Few movies with a rating of 5 had the
tag “Horror”.

16IMDb, 2018.

40

4.3 Tagging

Figure 4.4: Example of a Tag-cloud. Adopted from (Szomszor et al., 2007)

Based on this, the system can build a list of recommendations with movies
that are not rated but have the same tags as movies with a high rating
because the user might also like these movies. Szomszor et al. (2007) have
also shown that a RS can be built purely on tags that are assigned by
collaborative tagging.

As already mentioned, a collaborative approach usually extends the user-
item matrix (see Section 3.4.1) by adding a third dimension. An example
for this is provided by Tso-Sutter et al. (2008). They handle the three di-
mensionality (<user, item, tag>) by projecting it as a three two-dimensional
problem (<user, item> and <item, tag> and <user, tag>). This can be done
by expanding the user-item matrix horizontally and vertically with user tags
and item tags, which is shown in Figure 4.5. User tags are viewed as items
and item tags are viewed as users in the user-item matrix. The user tags are
tags from a certain user who tagged an item, where the item tags describe a
particular item. In addition, it is possible to use clustering methods to group
similar tags together, instead of viewing each single tag as a user or an
item. Tso-Sutter et al. (2008) then recompute and fuse user- and item-based
CF with the new user-item matrix. They show that this approach is more
effective as standard baseline models without the use of tag information.

41

4 Annotations and Tags

Figure 4.5: Extended user-item matrix. Adopted from (Tso-Sutter et al., 2008)

42

5 Practical Part

The practical part of this thesis contains the implementation of the two
previously discussed systems: the tagging system and the recommendation
system. Furthermore, this chapter includes a more detailed explanation of
the aforementioned problem and how the research questions were devel-
oped. After this, there is a description of the already existing implementa-
tions. Last but not least, it is explained and shown how the tagging and the
recommendation system are implemented. The analysis of the data which
are obtained through the implementation, is discussed in Chapter 6.

5.1 Methodology

5.1.1 Research Questions

Online systems need to be constantly developed and extended with new
features for the users. Catrobat is no exception.

Since the system consists of an app (client side) and a server, there are two
possibilities to enhance the system and offer users new features. First, in the
app itself, where for example new bricks for programming can be added or
the design can be changed with new themes. Second, and that is what this
thesis is about, to enhance the server and thus the community site. Since it
is a site where people interact with each other, it is only obvious that the
focus should be on user features. More precisely, on how to gain more users,
raise the activity and download numbers of the community site. To achieve
these goals, a tagging and recommendation system was implemented in
order to find answers to the following research questions:

43

5 Practical Part

1. Can the activity on the community site be raised by adding a tagging system,
which helps users to sort and find programs?

2. Can the download numbers on the community site be increased by implement-
ing a RS based on tags?

5.1.2 Activity and Download Numbers

To increase the activity and raise the download numbers, several options
were considered, such as to try to increase the activity by changing the
design or to organize more events, like the Galaxy Game Jam1 where users
can participate and compete against each other. However, these options are
not effective enough, as the design changes may not appeal to all users and
the events are not permanent, but only available for some time.

As already mentioned, the main focus of the community site is to interact
with each other. Thus, possible interaction points were examined more
closely in order to increase the activity. One of these points, which is already
implemented, is the comment section, where users can communicate directly
with one another. However, not every user is interested in commenting and
discussing. Since, the main interaction point is uploading your own created
programs and download programs from other users, the implementation
of a tagging system would be the best choice. For the requirements of the
tagging system see further below in Section 5.2.1 and the implementation
can be found in Section 5.3.3.

Additionally, further considerations had to be made to increase the down-
load numbers. For this, a closer look at the download process was necessary.
Users can download the program directly to the app or create a standalone
program and install it on their mobile device. If the program it is tried out
and liked by the user, they will probably download more of this kind of pro-
gram. Therefore, a RS is a good choice in order to increase downloads. The
RS can use the tag information to generate a list of similar programs. This
system is also called a tag-based recommendation system (see Section 4.3.3
for more details). The requirements of the RS is discussed in Section 5.2.2
and the implementation can be found in Section 5.3.4.

1Catrobat, 2018c.

44

5.2 Requirements and Evaluation

5.2 Requirements and Evaluation

5.2.1 Tagging System

The tagging system helps the user to categorize and group programs.
Thereby, programs which have the same tag can be found easier. By clicking
on the tag, other programs with this tag are displayed. Furthermore, users
can directly search with the search bars after programs by simply typing
the tag name in.

In order to get the users acquainted with the new system, only six tags
were added and users are restricted to these tags. The six tags are: Game,
Animation, Story, Music, Art and Experimental. To overcome the problem with
“tag spam”, which means to tag a program with irrelevant tags, a user can
only use up to three tags and of course giving none is also an option. This
concept is based on the tagging of Scratch2.

To make the tags available to several users from different countries, multi-
language support is necessary. For starters, the tags were only translated
into three different languages, such as German, Italian and French.

As additional information to the tags, extensions of the programs should
be used. Users can not give the extension tag to the program, because
extensions in Catrobat are special bricks. These bricks are used to control
external devices such as a drone or a Lego Mindstorm robot. Thus, these
bricks are automatically recognized by the system and the extension tag is
added after the upload. The extensions do not need to be translated because
they are proper names, such as Arduino, Drone, Lego, Phiro and Raspberry
Pi.

The implementation of the tagging system is created in a way that it is
easily expandable. An overview of the implementation can be found in
Section 5.3.3.

2Scratch, 2018a.

45

5 Practical Part

5.2.2 Recommendation System

A RS generates a ranked list of items that may be of interest to the user.
Many algorithms and approaches were investigated and some are explained
in more detail in Chapter 3. Since users are not always active on a reg-
ular basis, too little data may be available to use a collaborative system
(Section 3.2.1). The RS should be available to all users, whether the user
is regularly active on the page or uses it only now and then. Therefore,
the system for the community site of Catrobat should use tag information
for generating the recommendations. This tag-based recommender system
shows similar programs on the detail site of the currently watched program.
More information about tag-based recommender system can be found in
Section 4.3.3.

The ranking of the recommended programs is based on their similarity.
If two or more programs are ranked the same, the order among them is
random. An overview of the implementation can be found in Section 5.3.4.

5.2.3 Evaluation Methods

In order to evaluate the two systems and to answer the research questions,
two different evaluation approaches are used. First, the evaluation is being
done via a tracking system. The data is collected via the clicks on tags
as well as the clicks on the recommendation system. In addition, Google
Analytics3 tracks the activity on the community site.

The second approach is rather a testing approach than a tracking, as it
measures the impact of the RS on the downloads via a A/B test. This test,
also called split-run testing, compares two versions (A and B) with each
other (Kohavi et al., 2015). In this case, there are two versions of the commu-
nity site. One without the RS, version A, and one with it, version B. Version
A is only visible to Russia. Version B is visible to all other countries, whereby
Germany is being used for the evaluation, as it is a comparable country
based on the fact that it has a similar user base as Russia. Figure 5.1 shows
an example of a user flow to the program details page, first visiting the

3Google, 2018c.

46

5.3 Implementations

Figure 5.1: User Flow Chart (Source: Googly Analytics)

index page4, then clicking on a program and going to detail site5. In total
Russia had 11, 000 sessions while Germany had 11, 000 sessions accessing
the index page. From these sessions, 4, 800 from Russia and 3, 700 from
Germany were browsing further to the details page of a program.

5.3 Implementations

This section provides an overview of the existing implementation meth-
ods, including the implementation of the tagging and recommendation
systems. Since giving a detailed explanation of the implementations would
be beyond of the scope of this thesis, only the core functions are ex-
plained. The complete implementation can be viewed on Github - https:
//github.com/Catrobat/Catroweb-Symfony.

5.3.1 General Information of the System

The complete system is build up on the web framework Symfony (version
2.7) as already mentioned in Chapter 2. Symfony uses Doctrine6 (version
2.5) for communication with the Database (DB). Unlike Structured Query
Language (SQL) Doctrine uses an object-oriented dialect to write queries.

4https://share.catrob.at/pocketcode/
5https://share.catrob.at/pocketcode/program/XXX
6Doctrine, 2018.

47

https://github.com/Catrobat/Catroweb-Symfony
https://github.com/Catrobat/Catroweb-Symfony

5 Practical Part

Listing 5.1 shows a shortened version of the tag entity. The columns of the
tables in a DB are linked to a php object class with annotations.

1 /**

2 * @ORM\Entity

3 * @ORM\HasLifecycleCallbacks

4 * @ORM\Table(name="tags")

5 * @ORM\Entity(repositoryClass =" Catrobat\AppBundle\Entity\

TagRepository ")

6 */

7 class Tag

8 {

9 /**

10 * @ORM\Id

11 * @ORM\Column(type=" integer ")

12 * @ORM\GeneratedValue(strategy ="AUTO")

13 */

14 protected $id;

15

16 /**

17 * @ORM\Column(type=" string", nullable=true)

18 */

19 protected $en;

20

21 /**

22 * @ORM\Column(type=" string", nullable=true)

23 */

24 protected $de;

25

26 /**

27 * @var \Doctrine\Common\Collections\Collection|Program []

28 *

29 * @ORM\ManyToMany(targetEntity ="\ Catrobat\AppBundle\Entity\

Program", mappedBy ="tags")

30 */

31 protected $programs;

32

33 //...

34 }

Listing 5.1: Tag Entity

This is more comfortable to work with than the standard SQL queries. New
objects can be easily created ($tag1 = new Tag()), filled with data ($tag->setEN

48

5.3 Implementations

(’Tag’)) and saved in the DB ($entityManager->persist($tag1) $entityManager

->flush()). Querying objects from the DB is possible with the entity man-
ager ($tag = $repository->find($tagId)) or with more complex queries with
the Query Builder7($QueryBuilder->select(’t’)->from(’Tag’, ’t’)->where(’t.id

= ?1)). It is also possible to write queries with Doctrine’s native SQL-like
language called Doctrine Query Language (DQL)8($tag = $entityManager->

createQuery(’SELECT t FROM Tag t WHERE t.id=:id)->setParameter(’id’,1)->getResult

()’)). Most queries in the project are built with the Query Builder. Special
functions, such as the search function, are written with DQL.

5.3.2 Existing Implementation

Some features were already implemented by the work of Stefan Jaindl
during his master thesis9. Thus, the download of all programs can already
be logged and there is an own section in the admin area with the logged
data.

For this master thesis, this feature is used as a basis for further logging for
the tagging and recommendation systems. The data consists of information
of all downloads. For analysis and evaluation, only the download behavior
of the two countries (Germany and Russia) are important. Furthermore,
the data must be extended with the name of the program from which the
downloaded program has been recommended and for the activity logging
with information of the tags.

5.3.3 Implementation of Tagging System

Users can choose tags during the upload process, which are then shown on
the community site. Therefore, the implementation of the tagging system
is split into two tasks: implementation on the client side and on the server
side. The client side is uploading and chooses the tags, whereas the server
side is getting the uploaded program and manages the tags.

7Builder, 2018.
8Language, 2018.
9Jaindl, 2016.

49

5 Practical Part

Figure 5.2: Additional Tag Layer

Client Side

The implementation on the client side is done by the Catroid team. They
added an additional layer in the uploading process, which is shown in
Figure 5.2. To get the tags which are currently supported, the client makes a
Hypertext Transfer Protocol (HTTP) request to the server. In the appendix
a reference to the implemented web Application Programming Interface
(API) functions is given. From there, up to three tags can be chosen, while
choosing no tag is also an option.

Afterwards, the tags are added to the program’s Extensible Markup Lan-
guage (XML) files. In these files, all relevant information is stored, such as
the Catrobat language version, creators name and program name. Figure 5.3
shows a part of an XML file. The server can extract all information from the
XML after the program is uploaded.

50

5.3 Implementations

Figure 5.3: XML Snippet

Server Side

The implementation on the server side is structured in various steps, start-
ing with the uploading process up to managing and displaying tags and
extensions on the community site. Below is a list with all implemented
steps. After that, the steps are explained in more detail with code for better
understanding.

• Create relations between tags, extensions and the uploaded program in the
upload process. This step includes the extraction of the tags from the
XML, creation of extensions and also the creation of relations between
tags, extensions and programs in the DB.

• Displaying tags and extensions. Display the tags and extensions which
are connected to the program on the details page of the program.

• Managing extensions. In the admin area, extensions can be added and
updated. Tags are translated in the supported languages. Therefore,
tags can only be added if they are translated and saved in the DB.

• Searching programs with tags and extensions. Tags and extension names
can be used to look for programs with these tags and extensions or
list programs by clicking on them.

The uploading process starts on the server side with the upload of the
program via the API (see appendix for reference). Listing 5.2 shows how tags

51

5 Practical Part

are extracted and added to the DB during the uploading process. The code
is shortened and in-line commentary was added for better understanding.
Important to mention is that the code is written in such way that it is not
possible to add tags which are not in the DB and it is not possible to add
more than three tags. The addTag call in line 21 creates the relation between
the program and the tag, for example for the program “HupiFlupi” the tag
“Game” is added, and also for the tag “Game” the program is added.

1 //...

2 public function addTags($program , $extracted_file , $language)

3 {

4 //Gets all supported languages from the database. If the

language is not supported , English is set as default.

5 $metadata = $this ->entity_manager ->getClassMetadata(’Catrobat

\AppBundle\Entity\Tag’)->getFieldNames ();

6 if (! in_array($language , $metadata))

7 $language = ’en’;

8

9 //Get the tags from the extracted program.

10 $tags = $extracted_file ->getTags ();

11 if (!empty($tags))

12 {

13 $i = 0;

14 foreach ($tags as $tag)

15 {

16 //Lookup , if the tag is in the database.

17 $db_tag = $this ->tag_repository ->findOneBy ([$language =>

$tag]);

18 if ($db_tag != null)

19 {

20 //If the tag is in the database , the tag is added to

the program. A relation is created.

21 $program ->addTag($db_tag);

22 $i++;

23 }

24 //Not more than three tags can be added to a program.

25 if ($i == 3)

26 break;

27 }

28 }

29 }

30 //...

Listing 5.2: Adding Tags

52

5.3 Implementations

Unlike adding tags to a program, extensions and the relation to programs is
created automatically. Therefore, the adding mechanism is implemented as
a listener. After the successful upload but before the program is added to the
DB, an event is dispatched. The event is called catrobat.program.before.persist.
The extension listener is called and the program’s XML is parsed for special
bricks, like Lego or drone bricks. These bricks have an attribute which
is called category. This attribute has a value like LEGO EV3 SPEED. The
listener gets all nodes with this attribute, extracts the value and shortens it
to the first underscore, the prefix. After that, the listener browses the DB
whether this extension exists or not. If it exists, the relation between the
extension and the program is established. The code of the parsing for the
extensions is shown with some in-line commentary in shortened form in
Listing 5.3.

1 public function checkExtension($extracted_file , $program)

2 {

3 $xml = $extracted_file ->getProgramXmlProperties ();

4

5 //Get all nodes with the attribute category.

6 $xpath = ’// @category ’;

7 $nodes = $xml ->xpath($xpath);

8

9 $program ->removeAllExtensions ();

10 if (empty($nodes))

11 return;

12

13 // Extaction of the prefix.

14 $prefixes = array_map(function ($element) { return explode("_

", $element[’category ’], 2)[0]; }, $nodes);

15 $prefixes = array_unique($prefixes);

16

17 //Get all saved extensions from the database.

18 $extensions = $this ->extension_repository ->findAll ();

19

20 //The extension is added to the program.

21 foreach ($extensions as $extension) {

22 if (in_array($extension ->getPrefix (), $prefixes)) {

23 $program ->addExtension($extension);

24 }

25 }

26 }

Listing 5.3: Adding Extensions

53

5 Practical Part

Figure 5.4: Database Schema of Programs, Tags and Extensions

Tags and extensions have a so called many-to-many relationship which
means that one program can have many tags and one tag can be assigned
to many programs. This is also true for extensions. Figure 5.4 shows the
DB schema with the many-to-many relationship between programs and tags,
also programs and extensions. The columns of programs are shortened for
a better overview.

After building the relationships between the programs via extensions and
tags, they can be a useful tool to search for other programs which are also
tagged with the same searched tag or extension. On the details page of
the programs, the tags and extensions are designed as buttons. With a
click on those buttons, the search site is called and an API request is made.
The server makes a query and gets all programs with the searched tag or
extension. The programs are sorted in descending order by the upload time,
which means the newer programs are at the top of the list. Furthermore, the
search was improved to include tags and extensions. For this to work, the
already existing search query was extended with an additional query. The
new query also searches in all supported languages. Therefore, there is no
difference in searching for “Game” or the German word “Spiele”. Figure 5.5
shows the structure of the tags and extensions table in the DB. For now, four
languages, six tags and six extensions are supported.

54

5.3 Implementations

(a) Extensions (b) Tags

Figure 5.5: Structure of Tags and Extensions

The translations are made by contributors all over the world and managed
within crowdin10. After translating, the translations can be downloaded as
yml files and imported into the project. Each supported language has its
own file. The file is structured in identifiers and translations. An identifier
can have many sub-identifiers, for example the identifier “tags” has a sub-
identifier “constant” which also has a sub-identifier “tag1”. This would
be “tags.constant.tag1”. This makes it possible to create groups. Currently,
there are five tags, “tag1” to “tag5” in “tags.constant”. In the German
file, the first identifier “tag1” has an associated translation “Spiele”, the
second has “Bewegte Animation” and so on as can be seen in Figure 5.5b.
The template engine twig11, which is used for front-end programming,
calls the translations for the tags from the yml files. The call has the form
“(”tags.constant.tag” tag.id)—trans(, ”catroweb”)”. The id in the DB is also
the id in the translations (tag1, tag2, ...). Extensions, such as “Lego” are not
translated because the names are proper names.

For managing the extensions, new sections are added in the admin area.
There it is possible to add and change existing extensions. To add a new
extension, only a name must be assigned and the prefix should be known.
After an upload of a program, the server automatically searches for the
newly added extension. If the prefix changes of one or more extensions, it
can be updated in the admin area by clicking on “edit”. When an extension
is added, it is possible that programs were already uploaded with this
extension. To create a relationship between the program and extensions,

10Crowdin, 2018.
11Twig, 2018.

55

5 Practical Part

a function was implemented which deletes all existing relationships and
scans all uploaded programs anew to search for the added extensions in the
system.

5.3.4 Implementation of Recommendation System

The implementation of the RS is based on the implementation of the tag-
ging system described in the section above. More precisely, the tags of the
programs are used to generate a list of similar programs. After accessing the
details site of a program, the RS is initialized via an API request. The server
gets the id of the program for which the recommendation should be made.
Generating the recommendation or - more specific - an array of programs is
the core of this RS, which consists of a DQL query. The function with this
query is shown in Listing 5.4. The code is shortened for better reading.

1 public function getRecommendedProgramsById($id , $flavor = ’

pocketcode ’, $limit , $offset)

2 {

3 // Getting tag and extension ids

4 $tag_ids = (...);

5 $extensions_id = (...);

6

7 // Building the dql string for the query

8 $dql = "

9 SELECT COUNT(e.id) cnt , e.id

10 FROM Catrobat\AppBundle\Entity\Program e

11 LEFT JOIN e.tags t

12 LEFT JOIN e.extensions x

13 WHERE (

14 t.id IN (: tag_ids)

15 OR

16 x.id IN (: extension_ids)

17)

18 AND e.flavor = :flavor

19 AND e.id != :pid

20 AND e.visible = TRUE

21 GROUP BY e.id

22 ORDER BY cnt DESC

23 ";

24

25 // Creating the query and setting the parameters

56

5.3 Implementations

26 $qb_program = $this ->createQueryBuilder(’e’);

27 $q2 = $qb_program ->getEntityManager ()->createQuery($dql);

28 $q2 ->setParameters(

29 [

30 ’pid’ => $id ,

31 ’tag_ids ’ => $tag_ids ,

32 ’extension_ids ’ => $extensions_id ,

33 ’flavor ’ => $flavor

34]);

35 $q2 ->setFirstResult($offset);

36 $q2 ->setMaxResults($limit);

37

38 // Getting only the ids of the recommended programs

39 $id_list = array_map(function ($value)

40 {

41 return $value[’id’];

42 }, $q2 ->getResult ());

43

44 // Fetch the program object and returning the array with the

recommendations

45 $programs = [];

46 foreach ($id_list as $id)

47 array_push($programs , $this ->find($id));

48

49 return $programs;

50 }

Listing 5.4: Core of the Recommender

First, tag and extension ids of the program are requested with a simple
query from the DB. After that, the DQL is constructed which should get only
an array of ids of similar programs because the query is faster with only
fetching numbers instead of whole objects. Simply put, the DQL fetches an
array of ids of programs and the more the program has the same tags and
extensions, the more often its id occurs in the array. Afterwards, the same ids
are grouped and their frequency is counted. The array is ranked according
to this frequency in descending order. Finally, this array of program ids is
iterated over and the program objects for the recommendations are fetched
and returned via the API. This array of programs objects is displayed on
the detail site of the program shown in Figure 5.6.

57

5 Practical Part

Figure 5.6: Recommender Section on Detail Site

58

6 Results

This chapter contains program statistics and some general information
about the tags and extensions used on the community site. After this,
the evaluation of the results from the implementation of the tagging and
recommendation system is presented followed by a discussion of these
results. Because of the small usage of extensions, they are not included in
the results.

6.1 General Statistics and Information

The data used for this thesis evaluation is provided by DB and some parts
are provided by activity measurement from Google Analytics. The tagging
system was implemented into the main system on June 1st, 2016 and the
active logging of the clicks on January 21th, 2017. The RS is online since
January 1st, 2017. Six days later, the cross validation between German and
Russia was added. The observation period for the evaluation started on
February 1st, 2017 and ended on October 31th, 2017 - enough time for the
user to get used to the system.

The following subsections will show some statistics of the community site,
such as program statistics and the distribution of the tags and extensions.
Furthermore, only programs that are visible and not marked as inappro-
priate are considered. Uploaded programs include newly uploaded and
re-uploaded programs unless it is explicitly mentioned. Re-uploaded pro-
grams are programs which were already online and were then uploaded
again. The purpose of re-uploading lies in changing things, for example
change the code or the description. Programs can also be re-uploaded in
order to add tags or extensions.

59

6 Results

6.1.1 Program Statistics

Table 6.1 provides an overview of the amount of users and programs which
are extracted from the DB. Additionally, the amount of programs with and
without tags and extensions are listed. A total number of 35, 794 programs
were uploaded during the observation period. 23, 605 of these uploaded
programs were programs with tags, which is equal to 65.95%. Only 339
uploaded programs had extensions and only 308 programs had combination
of tags and extensions, which equals about 0.86% of the total uploaded
programs. The user base can be considered as relatively high with 38, 970
users. However, it must be considered, that not all users are regularly
active.

Users 38, 970
Total programs 35, 794
Programs with tags 23, 605
Programs with extensions 339
Programs with tags and extensions 308

Table 6.1: General Statistics

6.1.2 Tag and Extension Distribution

As mentioned in the previous section, 23, 605 programs (Table 6.1) were
uploaded with tags. Figure 6.1 shows how the tags are distributed over the
uploaded programs. Obviously, the tag “Game” is the most popular and the
most used tag. This is probably because the target group are young people.
On the other site, as mentioned in the section above, extensions have barley
been used (e.g. Drone was not used at all). The most used extension is Phiro
which is used 282 times in programs, which could be due to the fact that
the majority of the users use the app only on smartphone or tablet and do
not buy the hardware which is needed for the use of extensions.

60

6.1 General Statistics and Information

Figure 6.1: Distribution of Tags and Extensions

61

6 Results

Figure 6.2: Activity on the Community Site

6.2 Evaluation of Results

6.2.1 Results of the Tagging System

In this evaluation the activity is defined as a visit of the user. A visit is the
period where the user interacts actively with the community site. The visits
statistics are provided from Google Analytics and the clicks and download
statistics coming directly from the DB. Figure 6.2 shows the visits on the
y-axis of the community site and the date on the x-axis. The inserted trend-
line is represented as a dot line and shows the long-term movement, which
slightly increases during the evaluation period. Generally, the course of th
line is constant. However, there are some peaks, especially during the end
of August and the beginning of September.

During the evaluation period, a total of 34, 588 programs were uploaded,
from which 23, 070 programs had tags assigned. Figure 6.3 represents the
number of downloads and uploads of programs with a particular tag.
The tag “Game” is uploaded 16, 868 and downloaded 135, 142 times. All
other tags are far behind, for example the second most downloaded tag is
“Experimentell” with 49, 696 downloads and the second most uploaded tag
is “Animation” with 5, 886 uploads.

62

6.2 Evaluation of Results

Figure 6.3: Download Uploads

Additionally, the click-through rate is calculated. Table 6.2 shows in detail
how often the tags are clicked on in relation to the visits where the program
detail site is included. The click-through rate of the tags is overall low and
the highest rate is provided by the tag “Game” with 6.66%. On the other
side, the lowest rate is provided by the tag “Art” and has just 0.08%. In sum
the total click-through rate equals 9.20%. The evaluation and analysis of the
extensions can be neglected due of their small usage.

Measure Game Animation Story Music Art Experimentell
Total visits of the community site 302, 211
Visits including the detail site 58, 218
Number of clicks 3, 880 691 173 101 46 463
Click-through rate (in %) 6.66 1.19 0.30 0.17 0.08 0.80

Table 6.2: Click Statistics of Tags

6.2.2 Results of the Recommendation System

For the A/B test, Germany and Russia were chosen because of their similar
user base. An example of user flow on the community site can be found in
the previous Chapter 5 in Section 5.2.3.

63

6 Results

All further analyzes take all visits into account, where the program detail
site has been viewed. Table 6.3 summarizes all data of version A (Russia)
and version B (Germany). The total visits of the community site and also
the visits which include the detail site are pretty much equal. A had a visit
rate for the detail site of 5.98%, whereas B had a visit rate for the detail site
of 7.35%. The download rate of A is slightly higher than the download rate
of B. Recommended programs had 700 clicks and led to 217 downloads in
B, which equals 31.00%. The total download rate achieved in both versions
is over 50.00%.

Measure Version A Version B
Total visits of the community site 28, 155 27, 694
Visits including the detail site 1, 684 2, 035
Total downloads 18, 694 14, 313
Downloads via RS - 217
Clicks on recommended programs - 700
Total download rate (in %) 66.40 51.68
Click-through rate (in %) - 34.40

Table 6.3: Statistics of Versions A and B

Figure 6.4 shows the downloading behavior of the two countries. The
download count on the y-axis is compared with the date on the x-axis.
Russia without the RS is always higher than Germany with the RS. However,
the overall download behavior is much the same. The low download count
of Russia in the month April is also reflected in the line of Germany.

6.3 Discussion and Conclusion

6.3.1 Tagging System

The results of the tagging system should answer the first research question
which was formulated in the beginning of this thesis:

“Can the activity on the community site be raised by adding a tagging
system, which helps users to sort and find programs?”

64

6.3 Discussion and Conclusion

Figure 6.4: Downloads of Germany and Russia

In Figure 6.2, the trend-line shows a slight increase in the activity. This
is not due to the implementation of the tagging system but rather of the
high increase at the beginning of September. This increase is probably due
the beginning of school. Without this peak, the trend-line would be more
stable.

Unfortunately, the usage of extensions is very low and therefore not worth
analyzing in more detail. The usage of the tags on the program detail site
lies only by 9.20%. This is because only 19.26% of all users were viewing
the program detail site.

On the other side, from 34, 588 uploaded programs, 23, 070 programs were
provided with tags, which equals 66.70%. The tags are maybe not much used
directly on the site, but they are used frequently in the uploading process.
As can be seen in Figure 6.3, which shows the upload and download count
of programs with tags, the most popular tag is “Game”. This is probably due
to the fact that the app is built to teach programming easy and playful. With
this available data which is achieved by the tagging system, the research
question cannot be answered in full, but there is some potential in the
tagging system and especially in the tag “Game” itself.

65

6 Results

6.3.2 Recommendation System

The results of the RS should answer the second research question which
was:

“Can the download numbers on the community site be increased by
implementing a RS based on tags?”

As summarized in Table 6.3, the data shows no increase in the download
behavior of B where the RS was implemented. During the evaluation period,
only 217 downloads were made over this system. However, it is important
to note that only 2, 035 users have accessed the program detail site where
the RS was shown. A had 1, 684 visits on the detail site which is less than B,
but had a higher download count.

On probable conclusion could be that users find the programs they desire
easier with an implemented RS and therefore the download rate is lower
in Germany than in Russia. However, the difference of 4, 381 downloads
between Germany and Russia cannot be compensated by the 217 downloads
via the RS. Furthermore, Figure 6.4 shows that the download behavior is
overall the same. During the observation period, the download count of A
was always higher than the download count of B with the RS.

Furthermore, it is possible that the position of the RS on the site was not
beneficial, because most users are browsing the community site with a
smartphone or tablet. This would mean that the users must scroll/swipe to
the bottom of the site to see the RS. With only 700 clicks on recommended
programs during 2, 035 visits this is highly probable. Additionally, not all
users are going to the program detail site. Based on the achieved data by
the implemented recommendation system, the research question can not be
affirmed.

66

7 Summary and Future Work

7.0.1 Summary

This thesis is constructed in two parts. The first part is theoretical and
includes a short introduction where the research questions are defined and
also an overview of techniques and approaches of RS, annotations and tags
are provided. The second part is practical and deals with the implementation
of a tagging system and a RS which is based on the tagging system. This
part also includes the results as well as their evaluation and discussion.
Furthermore, a summary and ideas for further work is provided.

For the decision which system should be used for answering the research
questions, some considerations were made, such as design changes or
hosting more events for the users. The best decision was to implement a
tagging system and a RS. The tagging system should raise the activity on the
community site of Catrobat and the RS should increase the downloads of
programs. For the measurement of the activity, the visits on the community
site, which were provided from Google Analytics, were used. The results
of the RS were evaluated through an A/B test, where A (Russia) was not
provided with a RS. The data for both measurements and tests were tracked
and logged on the community site.

The results from the tagging system and the RS were evaluated and used to
try to answer the research questions. The first question where the data of the
tagging system was used, cannot be fully answered because the data is not
sufficient enough to make a reliable statement. Nevertheless, the upload of
programs with tags shows that the tagging system had potential for further
improvement and testing.

On the other side, the data of the RS implies that this system was barely
used. There was no increase in the download count of B with the RS.

67

7 Summary and Future Work

Furthermore, the data shows that the download behavior is much the same
of both versions, regardless that B has less downloads than A. The reason
for not using the RS probably lies in the position of the recommendation
area, but to be sure a closer examination would be needed. Furthermore,
the low visit rate of the program detail site can be a reason for the bad
performance.

7.0.2 Future Work

Both systems which are implemented in this thesis have room for improve-
ment. The tagging system can be extended with new tags or sub-tags can
be provided for the tag “Game” such as “Puzzle” or “Role Playing Game
(RPG)”. In order to achieve more activity on the community site, the tagging
system could be advertised more with an own banner. Another way would
be to advertise the app on social media channels in order to gain more data
for this system. Further, it is possible to ask an influencer, who are people
which have a strong presence and high reputation on social media networks,
to advertise the app with its features. Additionally, the tagging system could
be upgraded to show a tag cloud on the community site with the most used,
downloaded or uploaded tags. The tag cloud can also be personalized, to
highlight tags in which the user is may be interested. Thus, it can be made
possible that users can not only choose from given tags but create their own.
For the use of user created tags a bad word filter would be necessary and a
dictionary should be implemented for multi-language support.

To test the use of the RS in more detail, the position of the recommended
programs should be changed, e.g. it could be placed on the index page or a
pop-up window can be made which shows the recommended programs. Ad-
ditionally, another recommendation approach can be used. A hybrid would
be a great choice here, because the user would get programs recommended
based on the tagging or content-based approaches. When the system has
enough information about the user, it can switch to a collaborative approach.
However, the problem is to define the threshold when to switch between
the systems.

68

List of Abbreviations

Ajax Asynchronous JavaScript and XML
API Application Programming Interface
BPC BellKor’s Pragmatic Chaos
BSc Bachelor of Science in Engineering
CF Collaborative Filtering
DB Database
DQL Doctrine Query Language
FOSS Free and Open Source Software
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IMDb Internet Movie Database
IST Institute of Software Technology
kNN k-nearest-neighbors
MSc Master of Science
NFC Near Field Communication
OS Operating System
PCo Pocket Code
RMSE Root Mean Square Error
RPG Role Playing Game
RS Recommender System
RSS Rich Site Summary
SQL Structured Query Language
TUGraz Technical University of Graz
WWW World Wide Web
XML Extensible Markup Language

69

Appendix

71

Implementation Code

The complete code of the Tagging and Recommendation System - Im-
plementation can be found on Github - https://github.com/Catrobat/

Catroweb-Symfony

Web API Reference

HTTP Request Method and Parameters Description
/api/tags/getTags.json taggingAction(Request $request) Gives all supported tags in the

supported languages back.
/api/upload/upload.json uploadAction(Request $request) Programs are uploaded via the

API. The file from the request is
further processed in the program
manager.

/api/projects/search/tagProg-
rams.json

tagSearchProgramsAction(Request
$request)

Returns a list object with pro-
grams which has the given tag.
The list is in descending order by
upload time.

/api/projects/search/extension-
Programs.json

extensionSearchPro-
gramsAction(Request $request)

Returns a list object with pro-
grams which has the given ex-
tension. The list is in descending
order by upload time.

/api/projects/recsys.json listRecsysProgramAction(Request
$request)

Returns a list object with similar
programs for the target program.

Table .2: API Functions - Server Side

73

https://github.com/Catrobat/Catroweb-Symfony
https://github.com/Catrobat/Catroweb-Symfony

Bibliography

Adomavicius, G. and A. Tuzhilin (2005). “Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions.” In: IEEE Transactions on Knowledge and Data Engineering 17.6,
pp. 734–749. issn: 1041-4347. doi: 10.1109/TKDE.2005.99 (cit. on p. 14).

Apple (2018). iOS - iOS10 - Apple (AT). url: http://www.apple.com/at/
ios/ios-10/ (visited on 06/16/2018) (cit. on p. 8).

Arndt, Richard et al. (2007). “COMM: Designing a Well-Founded Multi-
media Ontology for the Web.” In: The Semantic Web: 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15, 2007. Proceedings. Ed. by Karl
Aberer et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 30–43.
isbn: 978-3-540-76298-0. doi: 10.1007/978-3-540-76298-0_3. url:
http://dx.doi.org/10.1007/978-3-540-76298-0_3 (cit. on p. 30).

Balabanović, Marko and Yoav Shoham (1997). “Fab: Content-based, Col-
laborative Recommendation.” In: Commun. ACM 40.3, pp. 66–72. issn:
0001-0782. doi: 10.1145/245108.245124. url: http://doi.acm.org/10.
1145/245108.245124 (cit. on p. 14).

Belkin, Nicholas J and W Bruce Croft (1992). “Information filtering and
information retrieval: Two sides of the same coin?” In: Communications
of the ACM 35.12, pp. 29–38 (cit. on p. 1).

Bell, Robert M. and Yehuda Koren (2007). “Lessons from the Netflix Prize
Challenge.” In: SIGKDD Explor. Newsl. 9.2, pp. 75–79. issn: 1931-0145.
doi: 10.1145/1345448.1345465. url: http://doi.acm.org/10.1145/
1345448.1345465 (cit. on p. 28).

Bennett, J. and S. Lanning (2007). “The Netflix Prize.” In: Proceedings of the
KDD Cup Workshop 2007. New York: ACM, pp. 3–6 (cit. on p. 28).

Blogger (2018). Blogger.com - Create a unique and beautiful blog. It’s easy and
free. url: https://www.blogger.com/ (visited on 06/15/2018) (cit. on
p. 33).

75

https://doi.org/10.1109/TKDE.2005.99
http://www.apple.com/at/ios/ios-10/
http://www.apple.com/at/ios/ios-10/
https://doi.org/10.1007/978-3-540-76298-0_3
http://dx.doi.org/10.1007/978-3-540-76298-0_3
https://doi.org/10.1145/245108.245124
http://doi.acm.org/10.1145/245108.245124
http://doi.acm.org/10.1145/245108.245124
https://doi.org/10.1145/1345448.1345465
http://doi.acm.org/10.1145/1345448.1345465
http://doi.acm.org/10.1145/1345448.1345465
https://www.blogger.com/

Bibliography

Bobadilla, J. et al. (2013). “Recommender systems survey.” In: Knowledge-
Based Systems 46, pp. 109–132. issn: 0950-7051. doi: http://doi.org/10.
1016/j.knosys.2013.03.012. url: http://www.sciencedirect.com/
science/article/pii/S0950705113001044 (cit. on p. 16).

Böhmer, Matthias, Lyubomir Ganev, and Antonio Krüger (2013). “App-
Funnel: A Framework for Usage-centric Evaluation of Recommender
Systems That Suggest Mobile Applications.” In: Proceedings of the 2013
International Conference on Intelligent User Interfaces. IUI ’13. Santa Mon-
ica, California, USA: ACM, pp. 267–276. isbn: 978-1-4503-1965-2. doi:
10.1145/2449396.2449431. url: http://doi.acm.org/10.1145/
2449396.2449431 (cit. on p. 1).

Breese, John S., David Heckerman, and Carl Kadie (1998). “Empirical Anal-
ysis of Predictive Algorithms for Collaborative Filtering.” In: Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI’98.
Madison, Wisconsin: Morgan Kaufmann Publishers Inc., pp. 43–52. isbn:
1-55860-555-X. url: http://dl.acm.org/citation.cfm?id=2074094.
2074100 (cit. on p. 14).

Brin, Sergey and Lawrence Page (2012). “Reprint of: The anatomy of a
large-scale hypertextual web search engine.” In: Computer Networks
56.18. The WEB we live in, pp. 3825–3833. issn: 1389-1286. doi: https:
/ / doi . org / 10 . 1016 / j. comnet . 2012 . 10 . 007. url: http : / / www .

sciencedirect.com/science/article/pii/S1389128612003611 (cit.
on p. 39).

Builder, Query (2018). 15. The QueryBuilder - Doctrine 2 ORM 2 documentation.
url: http://docs.doctrine-project.org/projects/doctrine-orm/
en/latest/reference/query-builder.html (visited on 06/11/2018)
(cit. on p. 49).

Burke, Robin (2002). “Hybrid Recommender Systems: Survey and Experi-
ments.” In: User Modeling and User-Adapted Interaction 12.4, pp. 331–370.
issn: 1573-1391. doi: 10.1023/A:1021240730564. url: http://dx.doi.
org/10.1023/A:1021240730564 (cit. on pp. 20, 21).

Burke, Robin (2005). “Hybrid Systems for Personalized Recommendations.”
In: Intelligent Techniques for Web Personalization: IJCAI 2003 Workshop,
ITWP 2003, Acapulco, Mexico, August 11, 2003, Revised Selected Papers. Ed.
by Bamshad Mobasher and Sarabjot Singh Anand. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 133–152. isbn: 978-3-540-31655-8. doi:

76

https://doi.org/http://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/http://doi.org/10.1016/j.knosys.2013.03.012
http://www.sciencedirect.com/science/article/pii/S0950705113001044
http://www.sciencedirect.com/science/article/pii/S0950705113001044
https://doi.org/10.1145/2449396.2449431
http://doi.acm.org/10.1145/2449396.2449431
http://doi.acm.org/10.1145/2449396.2449431
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=2074094.2074100
https://doi.org/https://doi.org/10.1016/j.comnet.2012.10.007
https://doi.org/https://doi.org/10.1016/j.comnet.2012.10.007
http://www.sciencedirect.com/science/article/pii/S1389128612003611
http://www.sciencedirect.com/science/article/pii/S1389128612003611
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/query-builder.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/query-builder.html
https://doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1023/A:1021240730564

Bibliography

10.1007/11577935_7. url: http://dx.doi.org/10.1007/11577935_7
(cit. on p. 27).

Burke, Robin (2007). “Hybrid Web Recommender Systems.” In: The Adap-
tive Web: Methods and Strategies of Web Personalization. Ed. by Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 377–408. isbn: 978-3-540-72079-9. doi:
10.1007/978-3-540-72079-9_12. url: http://dx.doi.org/10.1007/
978-3-540-72079-9_12 (cit. on pp. 20–22).

Burke, Robin, Alexander Felfernig, and Mehmet H Göker (2011). “Recom-
mender systems: An overview.” In: Ai Magazine 32.3, pp. 13–18 (cit. on
pp. 13, 24).

Burke, Robin and Maryam Ramezani (2011). “Matching Recommendation
Technologies and Domains.” In: Recommender Systems Handbook. Ed.
by Francesco Ricci et al. Boston, MA: Springer US, pp. 367–386. isbn:
978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_11. url: http:
//dx.doi.org/10.1007/978-0-387-85820-3_11 (cit. on pp. 25, 26).

Capocci, Andrea and Guido Caldarelli (2008). “Folksonomies and clustering
in the collaborative system CiteULike.” In: Journal of Physics A: Mathemat-
ical and Theoretical 41.22, p. 224016. url: http://stacks.iop.org/1751-
8121/41/i=22/a=224016 (cit. on p. 40).

Catrobat (2018a). Catrobat. url: http://developer.catrobat.org/ (visited
on 06/13/2018) (cit. on p. 7).

Catrobat (2018b). Catrobat Website. url: https://www.catrobat.org/ (vis-
ited on 06/15/2018) (cit. on p. 5).

Catrobat (2018c). Galaxy Game Jam. url: http://www.galaxygamejam.com/
(visited on 06/14/2018) (cit. on p. 44).

Catrobat (2018d). Pocket Code: Programmiere Apps. url: https : / / play .

google.com/store/apps/details?id=org.catrobat.catroid (visited
on 06/15/2018) (cit. on p. 8).

Chirita, Paul - Alexandru et al. (2007). “P-TAG: Large Scale Automatic
Generation of Personalized Annotation Tags for the Web.” In: Proceedings
of the 16th International Conference on World Wide Web. WWW ’07. Banff,
Alberta, Canada: ACM, pp. 845–854. isbn: 978-1-59593-654-7. doi: 10.
1145/1242572.1242686. url: http://doi.acm.org/10.1145/1242572.
1242686 (cit. on p. 29).

CiteULike (2018). CiteULike: Everyone’s library. url: http://www.citeulike.
org/ (visited on 06/16/2018) (cit. on p. 35).

77

https://doi.org/10.1007/11577935_7
http://dx.doi.org/10.1007/11577935_7
https://doi.org/10.1007/978-3-540-72079-9_12
http://dx.doi.org/10.1007/978-3-540-72079-9_12
http://dx.doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-0-387-85820-3_11
http://dx.doi.org/10.1007/978-0-387-85820-3_11
http://dx.doi.org/10.1007/978-0-387-85820-3_11
http://stacks.iop.org/1751-8121/41/i=22/a=224016
http://stacks.iop.org/1751-8121/41/i=22/a=224016
http://developer.catrobat.org/
https://www.catrobat.org/
http://www.galaxygamejam.com/
https://play.google.com/store/apps/details?id=org.catrobat.catroid
https://play.google.com/store/apps/details?id=org.catrobat.catroid
https://doi.org/10.1145/1242572.1242686
https://doi.org/10.1145/1242572.1242686
http://doi.acm.org/10.1145/1242572.1242686
http://doi.acm.org/10.1145/1242572.1242686
http://www.citeulike.org/
http://www.citeulike.org/

Bibliography

Costa-Montenegro, Enrique, Ana B. Barragáns-Martı́nez, and Marta Rey-
López (2012). “Which App? A recommender system of applications in
markets: Implementation of the service for monitoring users’ interac-
tion.” In: Expert Systems with Applications 39.10, pp. 9367–9375. issn: 0957-
4174. doi: https://doi.org/10.1016/j.eswa.2012.02.131. url: http:
//www.sciencedirect.com/science/article/pii/S0957417412003946

(cit. on p. 2).
Cremonesi, Paolo, Yehuda Koren, and Roberto Turrin (2010). “Performance

of Recommender Algorithms on Top-n Recommendation Tasks.” In:
Proceedings of the Fourth ACM Conference on Recommender Systems. RecSys
’10. Barcelona, Spain: ACM, pp. 39–46. isbn: 978-1-60558-906-0. doi:
10.1145/1864708.1864721. url: http://doi.acm.org/10.1145/
1864708.1864721 (cit. on p. 22).

Crowdin (2018). Localization Management Platform: collaborative international-
ization and easy to use translation system - Crowdin. url: https://crowdin.
com/ (visited on 06/15/2018) (cit. on p. 55).

Dareddy, Manoj Reddy (2017). “Recommender Systems: Research Direc-
tion.” In: Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining. WSDM ’17. Cambridge, United Kingdom: ACM,
pp. 831–831. isbn: 978-1-4503-4675-7. doi: 10.1145/3018661.3022748.
url: http://doi.acm.org/10.1145/3018661.3022748 (cit. on p. 11).

Davidsson, Christoffer (2010). Mobile application recommender system (cit. on
p. 1).

Desrosiers, Christian and George Karypis (2011). “A Comprehensive Survey
of Neighborhood-based Recommendation Methods.” In: Recommender
Systems Handbook. Ed. by Francesco Ricci et al. Boston, MA: Springer US,
pp. 107–144. isbn: 978-0-387-85820-3. doi: 10.1007/978-0-387-85820-
3_4. url: http://dx.doi.org/10.1007/978-0-387-85820-3_4 (cit. on
p. 15).

Doctrine (2018). Home - Doctrine Project. url: http : / / www . doctrine -

project.org/ (visited on 06/15/2018) (cit. on p. 47).
Dwyer, Catherine, Starr Hiltz, and Katia Passerini (2007). “Trust and privacy

concern within social networking sites: A comparison of Facebook and
MySpace.” In: AMCIS 2007 proceedings, pp. 1–3 (cit. on p. 34).

Ebersbach, Anja, Markus Glaser, and Richard Heigl (2016). Social Web. UTB
GmbH, pp. 24–33. isbn: 9783825239336. url: https://books.google.
at/books?id=lSn3DAAAQBAJ (cit. on p. 31).

78

https://doi.org/https://doi.org/10.1016/j.eswa.2012.02.131
http://www.sciencedirect.com/science/article/pii/S0957417412003946
http://www.sciencedirect.com/science/article/pii/S0957417412003946
https://doi.org/10.1145/1864708.1864721
http://doi.acm.org/10.1145/1864708.1864721
http://doi.acm.org/10.1145/1864708.1864721
https://crowdin.com/
https://crowdin.com/
https://doi.org/10.1145/3018661.3022748
http://doi.acm.org/10.1145/3018661.3022748
https://doi.org/10.1007/978-0-387-85820-3_4
https://doi.org/10.1007/978-0-387-85820-3_4
http://dx.doi.org/10.1007/978-0-387-85820-3_4
http://www.doctrine-project.org/
http://www.doctrine-project.org/
https://books.google.at/books?id=lSn3DAAAQBAJ
https://books.google.at/books?id=lSn3DAAAQBAJ

Bibliography

Ekstrand, Michael D., John T. Riedl, and Joseph A. Konstan (2011). “Collab-
orative Filtering Recommender Systems.” In: Foundations and Trends R©
in Human–Computer Interaction 4.2, pp. 81–173. issn: 1551-3955. doi:
10.1561/1100000009. url: http://dx.doi.org/10.1561/1100000009
(cit. on p. 11).

Facebook (2018). Facebook - Log In or Sign UP. url: https://www.facebook.
com/ (visited on 06/15/2018) (cit. on pp. 9, 34).

Felfernig, Alexander and Robin Burke (2008). “Constraint-based Recom-
mender Systems: Technologies and Research Issues.” In: Proceedings of the
10th International Conference on Electronic Commerce. ICEC ’08. Innsbruck,
Austria: ACM, 3:1–3:10. isbn: 978-1-60558-075-3. doi: 10.1145/1409540.
1409544. url: http://doi.acm.org/10.1145/1409540.1409544 (cit. on
pp. 24–26).

Felfernig, Alexander, Gerhard Friedrich, et al. (2011). “Developing Constraint-
based Recommenders.” In: Recommender Systems Handbook. Ed. by Francesco
Ricci et al. Boston, MA: Springer US, pp. 187–215. isbn: 978-0-387-85820-
3. doi: 10.1007/978-0-387-85820-3_6. url: http://dx.doi.org/10.
1007/978-0-387-85820-3_6 (cit. on pp. 18, 19).

Felfernig, Alexander, Michael Jeran, et al. (2014). “Basic Approaches in Rec-
ommendation Systems.” In: Recommendation Systems in Software Engineer-
ing. Ed. by Martin P. Robillard, Robert J. Maalej Walidand Walker, and
Thomas Zimmermann. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 15–37. isbn: 978-3-642-45135-5. doi: 10.1007/978-3-642-45135-5_2.
url: http://dx.doi.org/10.1007/978-3-642-45135-5_2 (cit. on
p. 12).

Flickr (2018). Find your inspiration. — Flickr. url: https://www.flickr.com/
(visited on 06/14/2018) (cit. on p. 35).

Ghazanfar, Mustansar Ali and Adam Prugel-Bennett (2010). “A scalable,
accurate hybrid recommender system.” In: Knowledge Discovery and Data
Mining, 2010. WKDD’10. Third International Conference on. IEEE, pp. 94–98

(cit. on p. 2).
Goldberg, David et al. (1992). “Using Collaborative Filtering to Weave an

Information Tapestry.” In: Commun. ACM 35.12, pp. 61–70. issn: 0001-
0782. doi: 10.1145/138859.138867. url: http://doi.acm.org/10.
1145/138859.138867 (cit. on p. 13).

Golder, Scott A. and Bernardo A. Huberman (2006). “Usage patterns of
collaborative tagging systems.” In: Journal of Information Science 32.2,

79

https://doi.org/10.1561/1100000009
http://dx.doi.org/10.1561/1100000009
https://www.facebook.com/
https://www.facebook.com/
https://doi.org/10.1145/1409540.1409544
https://doi.org/10.1145/1409540.1409544
http://doi.acm.org/10.1145/1409540.1409544
https://doi.org/10.1007/978-0-387-85820-3_6
http://dx.doi.org/10.1007/978-0-387-85820-3_6
http://dx.doi.org/10.1007/978-0-387-85820-3_6
https://doi.org/10.1007/978-3-642-45135-5_2
http://dx.doi.org/10.1007/978-3-642-45135-5_2
https://www.flickr.com/
https://doi.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867

Bibliography

pp. 198–208. doi: 10.1177/0165551506062337. eprint: https://doi.
org/10.1177/0165551506062337. url: https://doi.org/10.1177/
0165551506062337 (cit. on p. 35).

Gomez-Uribe, Carlos A. and Neil Hunt (2015). “The Netflix Recommender
System: Algorithms, Business Value, and Innovation.” In: ACM Trans.
Manage. Inf. Syst. 6.4, 13:1–13:19. issn: 2158-656X. doi: 10.1145/2843948.
url: http://doi.acm.org/10.1145/2843948 (cit. on p. 28).

Gong, S., H. Ye, and X. Shi (2008). “A Collaborative Recommender Com-
bining Item Rating Similarity and Item Attribute Similarity.” In: 2008
International Seminar on Business and Information Management. Vol. 2,
pp. 58–60. doi: 10.1109/ISBIM.2008.190 (cit. on p. 13).

Google (2018a). Android. url: https://www.android.com/ (visited on
06/15/2018) (cit. on p. 8).

Google (2018b). Goggle+. url: https://plus.google.com/ (visited on
06/15/2018) (cit. on p. 9).

Google (2018c). Google Analytics Solutions - Marketing Analytics & Mea-
surement. url: https : / / www . google . com / analytics/ (visited on
06/08/2018) (cit. on p. 46).

Google (2018d). Google Play. url: https://play.google.com/store (visited
on 06/18/2018) (cit. on p. 8).

Gruber, Tom (2008). “Collective knowledge systems: Where the Social Web
meets the Semantic Web.” In: Web Semantics: Science, Services and Agents
on the World Wide Web 6.1. Semantic Web and Web 2.0, pp. 4–13. issn:
1570-8268. doi: http://dx.doi.org/10.1016/j.websem.2007.11.
011. url: http://www.sciencedirect.com/science/article/pii/
S1570826807000583 (cit. on p. 31).

Hallinan, Blake and Ted Striphas (2016). “Recommended for you: The
Netflix Prize and the production of algorithmic culture.” In: New Media
& Society 18.1, pp. 117–137. doi: 10.1177/1461444814538646. eprint:
http://dx.doi.org/10.1177/1461444814538646. url: http://dx.doi.
org/10.1177/1461444814538646 (cit. on p. 28).

Hanani, Uri, Bracha Shapira, and Peretz Shoval (2001). “Information Fil-
tering: Overview of Issues, Research and Systems.” In: User Model-
ing and User-Adapted Interaction 11.3, pp. 203–259. issn: 0924-1868. doi:
10.1023/A:1011196000674. url: http://dx.doi.org/10.1023/A:
1011196000674 (cit. on p. 12).

80

https://doi.org/10.1177/0165551506062337
https://doi.org/10.1177/0165551506062337
https://doi.org/10.1177/0165551506062337
https://doi.org/10.1177/0165551506062337
https://doi.org/10.1177/0165551506062337
https://doi.org/10.1145/2843948
http://doi.acm.org/10.1145/2843948
https://doi.org/10.1109/ISBIM.2008.190
https://www.android.com/
https://plus.google.com/
https://www.google.com/analytics/
https://play.google.com/store
https://doi.org/http://dx.doi.org/10.1016/j.websem.2007.11.011
https://doi.org/http://dx.doi.org/10.1016/j.websem.2007.11.011
http://www.sciencedirect.com/science/article/pii/S1570826807000583
http://www.sciencedirect.com/science/article/pii/S1570826807000583
https://doi.org/10.1177/1461444814538646
http://dx.doi.org/10.1177/1461444814538646
http://dx.doi.org/10.1177/1461444814538646
http://dx.doi.org/10.1177/1461444814538646
https://doi.org/10.1023/A:1011196000674
http://dx.doi.org/10.1023/A:1011196000674
http://dx.doi.org/10.1023/A:1011196000674

Bibliography

Herlocker, Jonathan L. et al. (2004). “Evaluating Collaborative Filtering
Recommender Systems.” In: ACM Trans. Inf. Syst. 22.1, pp. 5–53. issn:
1046-8188. doi: 10.1145/963770.963772. url: http://doi.acm.org/10.
1145/963770.963772 (cit. on p. 23).

IMDb (2018). IMDb - Movies, TV and Celebrities - IMDb. url: http://www.
imdb.com/ (visited on 06/17/2018) (cit. on p. 40).

Jaindl, Stefan (2016). “Social Media Software Integration for the Symfony
Web Framework and Android and iOS Versions of the Catrobat Project.”
MA thesis. Graz University of Technology, pp. 115–149 (cit. on p. 49).

Jannach, Dietmar et al. (2010). Recommender systems: an introduction. Cam-
bridge University Press (cit. on pp. 16, 18, 19, 40).

Jäschke, Robert et al. (2007). “Tag Recommendations in Folksonomies.” In:
Knowledge Discovery in Databases: PKDD 2007: 11th European Conference
on Principles and Practice of Knowledge Discovery in Databases, Warsaw,
Poland, September 17-21, 2007. Proceedings. Ed. by Joost N. Kok et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 506–514. isbn: 978-
3-540-74976-9. doi: 10.1007/978- 3- 540- 74976- 9_52. url: https:
//doi.org/10.1007/978-3-540-74976-9_52 (cit. on p. 39).

Kim, Hak Lae et al. (2008). “The state of the art in tag ontologies: a semantic
model for tagging and folksonomies.” In: International Conference on
Dublin Core and Metadata Applications, pp. 128–137 (cit. on p. 40).

Kiryakov, Atanas et al. (2004). “Semantic annotation, indexing, and re-
trieval.” In: Web Semantics: Science, Services and Agents on the World Wide
Web 2.1, pp. 49–79. issn: 1570-8268. doi: https://doi.org/10.1016/j.
websem.2004.07.005. url: http://www.sciencedirect.com/science/
article/pii/S1570826804000162 (cit. on p. 29).

Kohavi, Ron and Roger Longbotham (2015). “Online controlled experiments
and A/B tests.” In: Encyclopedia of machine learning and data mining, pp. 1–
11 (cit. on p. 46).

Lam, Chuck P. (2005). “Collaborative Filtering Using Associative Neural
Memory.” In: Intelligent Techniques for Web Personalization: IJCAI 2003
Workshop, ITWP 2003, Acapulco, Mexico, August 11, 2003, Revised Selected
Papers. Ed. by Bamshad Mobasher and Sarabjot Singh Anand. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 153–168. isbn: 978-3-540-
31655-8. doi: 10.1007/11577935_8. url: http://dx.doi.org/10.1007/
11577935_8 (cit. on p. 15).

81

https://doi.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://www.imdb.com/
http://www.imdb.com/
https://doi.org/10.1007/978-3-540-74976-9_52
https://doi.org/10.1007/978-3-540-74976-9_52
https://doi.org/10.1007/978-3-540-74976-9_52
https://doi.org/https://doi.org/10.1016/j.websem.2004.07.005
https://doi.org/https://doi.org/10.1016/j.websem.2004.07.005
http://www.sciencedirect.com/science/article/pii/S1570826804000162
http://www.sciencedirect.com/science/article/pii/S1570826804000162
https://doi.org/10.1007/11577935_8
http://dx.doi.org/10.1007/11577935_8
http://dx.doi.org/10.1007/11577935_8

Bibliography

Language, Doctrine Query (2018). 14. Doctrine Query Language - Doctrine
2 ORM 2 documentation. url: http://docs.doctrine-project.org/
projects/doctrine-orm/en/latest/reference/dql-doctrine-query-

language.html (visited on 06/19/2018) (cit. on p. 49).
Last.fm (2018). Last.fm - Listen to free music and watch videos with the largest mu-

sic catalogue online. url: https://www.last.fm/ (visited on 06/15/2018)
(cit. on p. 35).

Le, Hoang Lam, Quoc Cuong Nguyen, and Minh Tri Nguyen (2017). “An im-
provement on recommender systems by exploring more relationships.”
In: International Journal of Advanced Computer Research 7.29, pp. 42–51

(cit. on pp. 20–22).
Liu, Zhiyuan, Chuan Shi, and Maosong Sun (2010). “FolkDiffusion: A

Graph-Based Tag Suggestion Method for Folksonomies.” In: Information
Retrieval Technology: 6th Asia Information Retrieval Societies Conference,
AIRS 2010, Taipei, Taiwan, December 1-3, 2010. Proceedings. Ed. by Pu-Jen
Cheng et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 231–240.
isbn: 978-3-642-17187-1. doi: 10.1007/978-3-642-17187-1_22. url:
https://doi.org/10.1007/978-3-642-17187-1_22 (cit. on p. 40).

Lorenzi, Fabiana and Francesco Ricci (2005). “Case-Based Recommender
Systems: A Unifying View.” In: Intelligent Techniques for Web Personal-
ization: IJCAI 2003 Workshop, ITWP 2003, Acapulco, Mexico, August 11,
2003, Revised Selected Papers. Ed. by Bamshad Mobasher and Sarabjot
Singh Anand. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 89–
113. isbn: 978-3-540-31655-8. doi: 10.1007/11577935_5. url: http:
//dx.doi.org/10.1007/11577935_5 (cit. on p. 19).

Lu, Jie et al. (2015). “Recommender system application developments: a
survey.” In: Decision Support Systems 74, pp. 12–32. issn: 0167-9236.
doi: http://doi.org/10.1016/j.dss.2015.03.008. url: http:

//www.sciencedirect.com/science/article/pii/S0167923615000627

(cit. on p. 14).
Marlow, Cameron et al. (2006). “Position paper, tagging, taxonomy, flickr,

article, toread.” In: In Collaborative Web Tagging Workshop at WWW’06,
pp. 31–40 (cit. on p. 36).

Mika, Peter (2007). “Ontologies are us: A unified model of social networks
and semantics.” In: Web Semantics: Science, Services and Agents on the
World Wide Web 5.1. Selected Papers from the International Semantic
Web Conference, pp. 5–15. issn: 1570-8268. doi: https://doi.org/10.

82

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html
https://www.last.fm/
https://doi.org/10.1007/978-3-642-17187-1_22
https://doi.org/10.1007/978-3-642-17187-1_22
https://doi.org/10.1007/11577935_5
http://dx.doi.org/10.1007/11577935_5
http://dx.doi.org/10.1007/11577935_5
https://doi.org/http://doi.org/10.1016/j.dss.2015.03.008
http://www.sciencedirect.com/science/article/pii/S0167923615000627
http://www.sciencedirect.com/science/article/pii/S0167923615000627
https://doi.org/https://doi.org/10.1016/j.websem.2006.11.002
https://doi.org/https://doi.org/10.1016/j.websem.2006.11.002
https://doi.org/https://doi.org/10.1016/j.websem.2006.11.002

Bibliography

1016/j.websem.2006.11.002. url: http://www.sciencedirect.com/
science/article/pii/S1570826806000552 (cit. on p. 40).

Morita, Masahiro and Yoichi Shinoda (1994). “Information filtering based on
user behavior analysis and best match text retrieval.” In: Proceedings of the
17th annual international ACM SIGIR conference on Research and development
in information retrieval. Springer-Verlag New York, Inc., pp. 272–281 (cit.
on p. 1).

Murugesan, San (2007). “Understanding Web 2.0.” In: IT Professional 9.4,
pp. 34–41. issn: 1520-9202. doi: 10.1109/MITP.2007.78 (cit. on p. 33).

Myspace (2018). Featured Content on Myspace. url: https://myspace.com/
(visited on 06/15/2018) (cit. on p. 34).

Nardi, Bonnie A., Diane J. Schiano, and Michelle Gumbrecht (2004). “Blog-
ging As Social Activity, or, Would You Let 900 Million People Read
Your Diary?” In: Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work. CSCW ’04. Chicago, Illinois, USA: ACM,
pp. 222–231. isbn: 1-58113-810-5. doi: 10.1145/1031607.1031643. url:
http://doi.acm.org/10.1145/1031607.1031643 (cit. on p. 33).

Netflix (2018a). Netflix Prize Home. url: http://www.netflixprize.com
(visited on 06/14/2018) (cit. on p. 28).

Netflix (2018b). Netflix - Watch TV Shows Online, Watch Movies Online. url:
https://www.netflix.com/ (visited on 06/09/2018) (cit. on p. 28).

Nguyen, Hanh T. H. et al. (2017). “Personalized Deep Learning for Tag Rec-
ommendation.” In: Advances in Knowledge Discovery and Data Mining: 21st
Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017,
Proceedings, Part I. Ed. by Jinho Kim et al. Cham: Springer International
Publishing, pp. 186–197. isbn: 978-3-319-57454-7. doi: 10.1007/978-3-
319-57454-7_15. url: https://doi.org/10.1007/978-3-319-57454-
7_15 (cit. on p. 39).

O’Reilly, Tim (2007). What Is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software. MPRA Paper. University Library of
Munich, Germany, pp. 17–18. url: http://EconPapers.repec.org/
RePEc:pra:mprapa:4578 (cit. on p. 31).

Ovadia, Steven (2012). “Syncing Bookmarks: An Overview of Current Op-
tions.” In: Behavioral & Social Sciences Librarian 31.1, pp. 76–79. doi:
10.1080/01639269.2012.657571. eprint: http://dx.doi.org/10.1080/
01639269.2012.657571. url: http://dx.doi.org/10.1080/01639269.
2012.657571 (cit. on p. 35).

83

https://doi.org/https://doi.org/10.1016/j.websem.2006.11.002
https://doi.org/https://doi.org/10.1016/j.websem.2006.11.002
https://doi.org/https://doi.org/10.1016/j.websem.2006.11.002
http://www.sciencedirect.com/science/article/pii/S1570826806000552
http://www.sciencedirect.com/science/article/pii/S1570826806000552
https://doi.org/10.1109/MITP.2007.78
https://myspace.com/
https://doi.org/10.1145/1031607.1031643
http://doi.acm.org/10.1145/1031607.1031643
http://www.netflixprize.com
https://www.netflix.com/
https://doi.org/10.1007/978-3-319-57454-7_15
https://doi.org/10.1007/978-3-319-57454-7_15
https://doi.org/10.1007/978-3-319-57454-7_15
https://doi.org/10.1007/978-3-319-57454-7_15
http://EconPapers.repec.org/RePEc:pra:mprapa:4578
http://EconPapers.repec.org/RePEc:pra:mprapa:4578
https://doi.org/10.1080/01639269.2012.657571
http://dx.doi.org/10.1080/01639269.2012.657571
http://dx.doi.org/10.1080/01639269.2012.657571
http://dx.doi.org/10.1080/01639269.2012.657571
http://dx.doi.org/10.1080/01639269.2012.657571

Bibliography

Park, Deuk Hee et al. (2012). “A literature review and classification of
recommender systems research.” In: Expert Systems with Applications
39.11, pp. 10059–10072. issn: 0957-4174. doi: http://doi.org/10.1016/
j.eswa.2012.02.038. url: http://www.sciencedirect.com/science/
article/pii/S0957417412002825 (cit. on p. 14).

Parker, Kevin and Joseph Chao (2007). “Wiki as a teaching tool.” In: Interdis-
ciplinary Journal of e-learning and Learning Objects 3.1, pp. 57–72 (cit. on
p. 33).

Pazzani, Michael J. and Daniel Billsus (2007). “Content-Based Recommen-
dation Systems.” In: The Adaptive Web: Methods and Strategies of Web
Personalization. Ed. by Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 325–341. isbn:
978-3-540-72079-9. doi: 10.1007/978-3-540-72079-9_10. url: http:
//dx.doi.org/10.1007/978-3-540-72079-9_10 (cit. on p. 17).

Pinboard (2018). Pinboard: social bookmarking for introverts. url: https://
pinboard.in/ (visited on 06/15/2018) (cit. on p. 35).

Resnick, Paul and Hal R. Varian (1997). “Recommender Systems.” In: Com-
mun. ACM 40.3, pp. 56–58. issn: 0001-0782. doi: 10.1145/245108.245121.
url: http://doi.acm.org/10.1145/245108.245121 (cit. on p. 13).

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2011). “Introduction to
Recommender Systems Handbook.” In: Recommender Systems Handbook.
Ed. by Francesco Ricci et al. Boston, MA: Springer US, pp. 1–35. isbn:
978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_1. url: http:
//dx.doi.org/10.1007/978-0-387-85820-3_1 (cit. on p. 23).

Richter, Alexander and Michael Koch (2007). Social software: Status quo und
Zukunft. Fak. für Informatik, Univ. der Bundeswehr München (cit. on
pp. 30, 32, 34).

Schafer, J. Ben, Joseph Konstan, and John Riedl (1999). “Recommender
Systems in e-Commerce.” In: Proceedings of the 1st ACM Conference on
Electronic Commerce. EC ’99. Denver, Colorado, USA: ACM, pp. 158–166.
isbn: 1-58113-176-3. doi: 10.1145/336992.337035. url: http://doi.
acm.org/10.1145/336992.337035 (cit. on p. 22).

Schmidt, Jan (2006). “Social Software: Onlinegestütztes Informations-, Iden-
titäts-und Beziehungsmanagement.” In: Forschungsjournal Neue Soziale
Bewegungen 19.2, pp. 37–47 (cit. on p. 31).

84

https://doi.org/http://doi.org/10.1016/j.eswa.2012.02.038
https://doi.org/http://doi.org/10.1016/j.eswa.2012.02.038
http://www.sciencedirect.com/science/article/pii/S0957417412002825
http://www.sciencedirect.com/science/article/pii/S0957417412002825
https://doi.org/10.1007/978-3-540-72079-9_10
http://dx.doi.org/10.1007/978-3-540-72079-9_10
http://dx.doi.org/10.1007/978-3-540-72079-9_10
https://pinboard.in/
https://pinboard.in/
https://doi.org/10.1145/245108.245121
http://doi.acm.org/10.1145/245108.245121
https://doi.org/10.1007/978-0-387-85820-3_1
http://dx.doi.org/10.1007/978-0-387-85820-3_1
http://dx.doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1145/336992.337035
http://doi.acm.org/10.1145/336992.337035
http://doi.acm.org/10.1145/336992.337035

Bibliography

Schnedlitz, Adrian (2016). “TimePunch - An Online Timetracking Tool for
Education.” MA thesis. Graz University of Technology, p. 28 (cit. on
p. 7).

Scratch (2018a). Project Tags - Scratch Wiki. url: https://wiki.scratch.mit.
edu/wiki/Project_Tags (visited on 06/19/2018) (cit. on p. 45).

Scratch (2018b). Scratch - Imagine, Program, Share. url: https://scratch.
mit.edu/ (visited on 06/15/2018) (cit. on p. 5).

Sharma, Lalita and Anju Gera (2013). “A survey of recommendation system:
Research challenges.” In: International Journal of Engineering Trends and
Technology (IJETT) 4.5, pp. 1989–1992 (cit. on p. 19).

Shepitsen, Andriy et al. (2008). “Personalized Recommendation in Social Tag-
ging Systems Using Hierarchical Clustering.” In: Proceedings of the 2008
ACM Conference on Recommender Systems. RecSys ’08. Lausanne, Switzer-
land: ACM, pp. 259–266. isbn: 978-1-60558-093-7. doi: 10.1145/1454008.
1454048. url: http://doi.acm.org/10.1145/1454008.1454048 (cit. on
p. 40).

Shu, Zhaoxin, Li Yu, and Xiaoping Yang (2010). “Personalized Tag Rec-
ommendation Based on User Preference and Content.” In: Advanced
Data Mining and Applications: 6th International Conference, ADMA 2010,
Chongqing, China, November 19-21, 2010, Proceedings, Part II. Ed. by Long-
bing Cao, Jiang Zhong, and Yong Feng. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 348–355. isbn: 978-3-642-17313-4. doi: 10.1007/
978-3-642-17313-4_34. url: https://doi.org/10.1007/978-3-642-
17313-4_34 (cit. on p. 39).

Slany, Wolfgang (2012). “A mobile visual programming system for Android
smartphones and tablets.” In: 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pp. 265–266. doi: 10.1109/
VLHCC.2012.6344546 (cit. on p. 5).

Slany, Wolfgang (2014). “Pocket Code: A Scratch-like Integrated Develop-
ment Environment for Your Phone.” In: Proceedings of the Companion
Publication of the 2014 ACM SIGPLAN Conference on Systems, Programming,
and Applications: Software for Humanity. SPLASH ’14. Portland, Oregon,
USA: ACM, pp. 35–36. isbn: 978-1-4503-3208-8. doi: 10.1145/2660252.
2664662. url: http://doi.acm.org/10.1145/2660252.2664662 (cit. on
p. 5).

Song, Yang, Lu Zhang, and C. Lee Giles (2011). “Automatic Tag Recommen-
dation Algorithms for Social Recommender Systems.” In: ACM Trans.

85

https://wiki.scratch.mit.edu/wiki/Project_Tags
https://wiki.scratch.mit.edu/wiki/Project_Tags
https://scratch.mit.edu/
https://scratch.mit.edu/
https://doi.org/10.1145/1454008.1454048
https://doi.org/10.1145/1454008.1454048
http://doi.acm.org/10.1145/1454008.1454048
https://doi.org/10.1007/978-3-642-17313-4_34
https://doi.org/10.1007/978-3-642-17313-4_34
https://doi.org/10.1007/978-3-642-17313-4_34
https://doi.org/10.1007/978-3-642-17313-4_34
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1145/2660252.2664662
https://doi.org/10.1145/2660252.2664662
http://doi.acm.org/10.1145/2660252.2664662

Bibliography

Web 5.1, 4:1–4:31. issn: 1559-1131. doi: 10.1145/1921591.1921595. url:
http://doi.acm.org/10.1145/1921591.1921595 (cit. on p. 39).

Specia, Lucia and Enrico Motta (2007). “Integrating Folksonomies with
the Semantic Web.” In: The Semantic Web: Research and Applications:
4th European Semantic Web Conference, ESWC 2007, Innsbruck, Austria,
June 3-7, 2007. Proceedings. Ed. by Enrico Franconi, Michael Kifer, and
Wolfgang May. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 624–
639. isbn: 978-3-540-72667-8. doi: 10.1007/978-3-540-72667-8_44. url:
https://doi.org/10.1007/978-3-540-72667-8_44 (cit. on p. 36).

Su, Xiaoyuan and Taghi M. Khoshgoftaar (2009). “A Survey of Collaborative
Filtering Techniques.” In: Adv. in Artif. Intell. 2009, pp. 1–19. issn: 1687-
7470. doi: 10.1155/2009/421425. url: http://dx.doi.org/10.1155/
2009/421425 (cit. on p. 15).

Symfony (2018). Symfony, High Performance PHP Framework for Web Devel-
opment. url: https://symfony.com/ (visited on 06/15/2018) (cit. on
p. 9).

Szomszor, Martin et al. (2007). “Folksonomies, the Semantic Web, and
Movie Recommendation.” In: Bridging the Gap between Semantic Web
and Web 2.0 (SemNet 2007), pp. 71–84. url: http://www.kde.cs.uni-
kassel.de/ws/eswc2007/proc/Folksonomies.pdf (cit. on pp. 40, 41).

Tso-Sutter, Karen H. L., Leandro Balby Marinho, and Lars Schmidt-Thieme
(2008). “Tag-aware Recommender Systems by Fusion of Collaborative
Filtering Algorithms.” In: Proceedings of the 2008 ACM Symposium on
Applied Computing. SAC ’08. Fortaleza, Ceara, Brazil: ACM, pp. 1995–
1999. isbn: 978-1-59593-753-7. doi: 10.1145/1363686.1364171. url:
http://doi.acm.org/10.1145/1363686.1364171 (cit. on pp. 41, 42).

Twig (2018). Home - Twig - The flexible, fast, and secure PHP template engine.
url: https://twig.symfony.com/ (visited on 06/15/2018) (cit. on p. 55).

Twitter (2018). Twitter. Alles, was gerade los ist. url: https://twitter.com/
(visited on 06/10/2018) (cit. on p. 9).

Type, Movable (2018). Movable Type - Content Management System, Blog Soft-
ware & Publishing Platform. url: https://www.movabletype.com/ (vis-
ited on 06/15/2018) (cit. on p. 33).

Uren, Victoria et al. (2006). “Semantic annotation for knowledge manage-
ment: Requirements and a survey of the state of the art.” In: Web Se-
mantics: Science, Services and Agents on the World Wide Web 4.1, pp. 14–28.
issn: 1570-8268. doi: https://doi.org/10.1016/j.websem.2005.10.

86

https://doi.org/10.1145/1921591.1921595
http://doi.acm.org/10.1145/1921591.1921595
https://doi.org/10.1007/978-3-540-72667-8_44
https://doi.org/10.1007/978-3-540-72667-8_44
https://doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
https://symfony.com/
http://www.kde.cs.uni-kassel.de/ws/eswc2007/proc/Folksonomies.pdf
http://www.kde.cs.uni-kassel.de/ws/eswc2007/proc/Folksonomies.pdf
https://doi.org/10.1145/1363686.1364171
http://doi.acm.org/10.1145/1363686.1364171
https://twig.symfony.com/
https://twitter.com/
https://www.movabletype.com/
https://doi.org/https://doi.org/10.1016/j.websem.2005.10.002
https://doi.org/https://doi.org/10.1016/j.websem.2005.10.002
https://doi.org/https://doi.org/10.1016/j.websem.2005.10.002

Bibliography

002. url: http://www.sciencedirect.com/science/article/pii/
S1570826805000338 (cit. on p. 29).

Van Meteren, Robin and Maarten Van Someren (2000). “Using content-based
filtering for recommendation.” In: Proceedings of the Machine Learning in
the New Information Age: MLnet/ECML2000 Workshop, pp. 47–56 (cit. on
pp. 11, 17).

Wang, Jun, Arjen P. de Vries, and Marcel J. T. Reinders (2006). “Unifying
User-based and Item-based Collaborative Filtering Approaches by Simi-
larity Fusion.” In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR
’06. Seattle, Washington, USA: ACM, pp. 501–508. isbn: 1-59593-369-7.
doi: 10.1145/1148170.1148257. url: http://doi.acm.org/10.1145/
1148170.1148257 (cit. on pp. 15, 16).

WikiIndex (2018). WikiIndex. url: http : / / wikiindex . com (visited on
09/20/2017) (cit. on p. 34).

Wikipedia (2018). Wikipedia. url: https://www.wikipedia.org/ (visited on
06/19/2018) (cit. on p. 34).

Winer, Dave (2018). Scripting News. url: http://scripting.com/ (visited
on 06/10/2018) (cit. on p. 33).

WordPress (2018). WordPress.com: Create a free website or blog. url: https:
//wordpress.com/ (visited on 06/15/2018) (cit. on p. 33).

XING (2018). XING - For a better working life. url: https://www.xing.com/
(visited on 06/15/2018) (cit. on p. 34).

Zhang, Zi-Ke, Tao Zhou, and Yi-Cheng Zhang (2010). “Personalized recom-
mendation via integrated diffusion on user–item–tag tripartite graphs.”
In: Physica A: Statistical Mechanics and its Applications 389.1, pp. 179–186.
issn: 0378-4371. doi: https://doi.org/10.1016/j.physa.2009.08.
036. url: http://www.sciencedirect.com/science/article/pii/
S0378437109006839 (cit. on p. 40).

Zhang, Zi-Ke, Tao Zhou, and Yi-Cheng Zhang (2011). “Tag-Aware Recom-
mender Systems: A State-of-the-Art Survey.” In: Journal of Computer
Science and Technology 26.5, pp. 767–777. issn: 1860-4749. doi: 10.1007/
s11390-011-0176-1. url: https://doi.org/10.1007/s11390-011-
0176-1 (cit. on p. 40).

87

https://doi.org/https://doi.org/10.1016/j.websem.2005.10.002
https://doi.org/https://doi.org/10.1016/j.websem.2005.10.002
https://doi.org/https://doi.org/10.1016/j.websem.2005.10.002
http://www.sciencedirect.com/science/article/pii/S1570826805000338
http://www.sciencedirect.com/science/article/pii/S1570826805000338
https://doi.org/10.1145/1148170.1148257
http://doi.acm.org/10.1145/1148170.1148257
http://doi.acm.org/10.1145/1148170.1148257
http://wikiindex.com
https://www.wikipedia.org/
http://scripting.com/
https://wordpress.com/
https://wordpress.com/
https://www.xing.com/
https://doi.org/https://doi.org/10.1016/j.physa.2009.08.036
https://doi.org/https://doi.org/10.1016/j.physa.2009.08.036
http://www.sciencedirect.com/science/article/pii/S0378437109006839
http://www.sciencedirect.com/science/article/pii/S0378437109006839
https://doi.org/10.1007/s11390-011-0176-1
https://doi.org/10.1007/s11390-011-0176-1
https://doi.org/10.1007/s11390-011-0176-1
https://doi.org/10.1007/s11390-011-0176-1

