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Abstract

Microarchitectural attacks exploit design choices made by hardware vendors. Cache attacks, or
attacks like Meltdown and Spectre, target the CPU. Microarchitectural attacks either target design
choices or exploit bugs introduced by mistakes in the hardware or the microcode. Rowhammer
attacks exploit a design flaw in DRAM chips. Hardware vendors steadily decreased sizes and
lowered refresh rates of the cells. With specially crafted memory access routines it is possible to
access DRAM cells fast enough to create interference between cells, which will cause them to
change their load, hence, changing their logical state.

Rowhammer attacks use this phenomenon to target memory areas where bitflips would benefit the
attacker. Researchers have shown that bitflips in page tables can cause privilege escalation and
bypass security mechanisms implemented in modern operating systems. It has also been shown
that similar attacks work for memory chips used by solid-state disks. Besides flipping bits in page
tables, researchers showed that when flipping bits in executables, the program’s behaviour can
change. With such changes, it is possible for an attacker to abuse programs for privilege escalation,
or to bypass authentication-checks.

In this thesis, we present a way of testing binaries for possible execution-path changes introduced
by bitflips. In our work, we pre-define an outcome for a program and then search for all single
bitflips which cause the program to behave in the desired way. We scan the entire address space
of the program, including all dynamically loaded libraries. We show results for searched bitflips
in programs used for authentication on Linux-based systems. We bypass user privilege checks,
which lead to privilege escalation, or make login possible without knowing the user's password. We
also show a bypass of HTTP basic authentication, allowing an attacker to download files which
unauthenticated users are not allowed to access. In addition to searching for bitflips in executable
files, we also look at possible other attack vectors for Rowhammer. We show that bitflips applied
to the runtime of cryptographic calculations can break assumptions made by the communicating
parties and can even allow key leakage. We apply bitflips to the implementation of AES-GCM in
OpenSSL and show how Rowhammer can be used to cause reusing of nonces.

With our work, we want to increase the awareness of Rowhammer and show how software security
is affected by bitflips. We call on to all vendors of hardware to not forget to keep their systems
secure and do not put lower prices and higher performance ahead of security, which would harm
their users.
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Kurzfassung

Angriffe auf die Mikroarchitektur zielen meistens auf Fehler von Hardwareherstellern ab. Attacken
auf Caches nutzen hierbei ein gewolltes Verhalten des Systems aus. CPU Lücken wie Meltdown und
Spectre machen sich Fehler im Design der Hardware zu Nutzen, welche vom Hersteller entweder
durch Mikrocode Updates oder einem Tausch der CPU berichtigt werden müssen. Rowham-
mer macht sich einen Designfehler in DRAM Chips zu Nutze. Hersteller dieser Speicherchips
produzieren immer kleinere Chips mit geringeren Refresh-Zyklen. Spezielle Reihenfolgen von Spei-
cherzugriffen ermöglichen es Interferenzen zu erzeugen welche Ladungsänderungen in benachbarten
Speicherzellen verursachen, diese können dadurch ihren logischen Zustand wechseln.

Rowhammer Angriffe machen sich dieses Verhalten zu Nutze und zielen damit auf Speicherbereiche
ab, welche durch eine Änderung dem Angreifer einen Vorteil verschaffen. Forscher haben gezeigt,
dass es möglich ist mit Bitflips in Page Tables Privilegien einen Superusers zu bekommen. Ebenso
wurde gezeigt, dass ähnliche Angriffe auch auf Speicherchips in Solid-State-Disks möglich sind.
Neben Flips in Page Tables wurde auch gezeigt, dass Änderungen in ausführbaren Files Folgen
auf das Verhalten des Programms haben, sie ändern dieses durch das Wechseln eines einzigen
Bits. Dies kann zum Beispiel dazu führen dass Berechtigungsüberprüfungen umgangen werden.

Wir zeigen eine Möglichkeit Programme auf solche Verhaltensänderungen durch Bitflips zu tes-
ten. Wir geben hier ein gewünschtes Verhalten vor und suchen danach nach allen möglichen
Bitflips welche das Verhalten in den gewünschten Zustand ändern. Im Gegensatz zu früheren
Arbeiten haben wir diesen Vorgang automatisiert um eine größere Anzahl von Programmen
abzudecken, zusätzlich betrachten wir den gesamten Speicher in ausführbaren Files und dynamisch
geladenen Software-Bibliotheken. Wir zeigen die gefundenen Bitflips welche Sicherheitsüberprü-
fungen umgehen, wie zum Beispiel Passwortabfragen. Auch zeigen wir Bitflips, welche es erlauben
HTTP-Authentication Checks in einem Webserver zu umgehen. Zusätzlich zur Untersuchung von
statischen Files betrachten wir auch die Auswirkung von Bitflips auf kryptographische Algorith-
men. Hier untersuchen wir, wie Rowhammer dazu genutzt werden kann um in der AES-GCM
Implementation von OpenSSL eine falsche Verwendung von Noncen zu verursachen.

Unsere Arbeit soll auf die Sicherheitsrisiken die durch Fehler wie Rowhammer entstehen hinweisen
und als Aufruf an die Hersteller von Hardware dienen, damit diese nicht billigere Hardware und
bessere Performance über die Sicherheit ihrer Anwender stellen.
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1 Introduction

With the latest releases of Microarchitectural attacks like Meltdown [50] and Spectre [67], the
topic of flaws in hardware implementations was presented to the general public. Media outlets, like
BBC [8] and NBC [53], reported on these issues of modern CPUs. Vendors of x86-architectures,
like Intel or AMD, are affected, but also ARM, and with it, most mobile devices have similar flaws.
Such issues show that these vendors have set performance above security. The demand for faster
hardware is rising all the time, and not only vendors of CPUs are influenced by this demand.
Another field of silicon chip design ran into a similar problem in the past, namely DRAM chip
vendors.

In 2014, Kim et al. [93] showed how specially crafted memory-access routines can cause bits in
DRAM chips to flip, without accessing them directly. This work showed how higher memory
densities caused faults where interfering voltages and leaking currents influence storage cells. While
at first, this was just seen as a stability issue, Seaborn and Dullien [68] showed how this effect,
called Rowhammer, can be used for privilege escalation and sandbox escapes. With reports like
this, the interest in researching the field of Rowhammer increased. Gruss et al. [14] showed that it
is not only possible to target systems by executing native code, but also that Rowhammer can be
triggered by using JavaScript. Van der Veen et al. [89] published work named “Drammer”, where
it is shown that not only desktop computers are affected by the Rowhammer flaw, but also mobile
devices. In 2019, Gruss et al. [51] released a way to trigger bitflips by sending specially-crafted
network requests. Publications like these show that Rowhammer is an active research topic, where
still new findings come up.

This thesis builds on work released by Gruss et al. [15], which states that application-binary code
can directly be attacked with Rowhammer. They show, for example, that a bitflip applied to sudo
can result in a bypass of the password check. They report some bitflips causing this bypass. They
look at the disassembly of the authentication-check code and find opcodes, which when changed,
would result in a different outcome. With our work, we want to automate, and therefore simplify,
this process. With this, we predict a finding of a higher number of bitflips in a shorter time. In
addition to that, we want to provide a toolset, which allows us to apply similar searches to other
applications. This tool should be able to run lots of tests in parallel and verify the outcomes.
Therefore, we want to make use of modern testing techniques.

Testing and debugging were always a significant part of software technology, and with rising
sizes of projects and an increasing number of old code bases, it is more vital than ever. Not only
developers are putting much work into these topics, but also researchers releasing new ways of
testing regularly. As the bug reports of “american fuzzy lop” [100] in many open-source software
show, modern approaches for testing like fuzzying make bug searching in unknown code more
successful. Also, the field of proving software's correctness got much attention. With symbolic
execution techniques, the possibility to prove each software state on its own got more practical.
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1 Introduction

The release of the open-source symbolic-execution framework angr [91] made it possible for a
wide range of users to apply symbolic execution to programs. This tool mostly gets used in
testing, in combination with fuzzing, like Stephens et al. [56] showed in their work “Driller”. Also,
security researchers use angr to find exploitable code segments and execution paths, such as
Shoshitaishvili et al. [90] showed with their work “Firmalice”, where angr was used to detect
authentication bypasses in firmware images.

Understanding what programs do, and how they are executed by the CPU, gets harder with every
improvement and change in hardware design. Instrumentation is a technique to inject code into
programs, providing the possibility to collect runtime information. With tools like Intel Pin [7] it is
possible to check changes to processor registers, log accessed memory, and performance measuring
at machine code level.

1.1 Goals and Motivation for the Thesis

As we know from previous work done by Gruss et al. [15], there are bitflips in the ELF files loaded
by the sudo program which allow privilege escalation by providing a bypass of the password
check. However, Gruss et al. [15] only look at the code section providing the permission check.
They could not claim to find all bitflips, and their approach is very time-consuming. We want to
simplify the search by automatic testing of bitflips. Also, we want to make it easier for future
applications to be tested for possible bitflip outcomes by providing a framework for such tests.

Common Linux-based operating systems use package management to roll out applications to users.
Every instance of the operating system uses the identical binaries for execution of programs. With
this in mind, a bitflip found in the sudo application distributed by a GNU/Linux distribution,
can be used to attack all instances of this operating system. An attacker, therefore, could use our
framework to find bitflips in widely distributed binaries.

With our work, we want to present an easy-to-apply framework to search for bitflips providing a
pre-defined outcome. To show how this framework works, we apply it to real-world applications
and compare our results to the ones reported by Gruss et al. [15]. Also, we want to show how
likely it is to introduce exploits in applications by Rowhammer.

1.2 Contributions of our Work

Our contribution to the field of microarchitectural attacks and Rowhammer is providing a practical
analysis of real-world applications and how bitflips can affect them. We present a framework
which can be used to find bitflips, which change a program's behaviour to a pre-defined outcome.
The structure of the framework is designed to be extensible and adaptable for multiple testing
purposes.

We apply our tool to real-world applications to show the impact of bitflips on users of personal
computers. On the one hand, we show how privilege escalation is made possible by bitflips. We
show bits, which when flipped, allow us to skip the password check. On the other hand, we
also analyse attacks benefiting remote attackers. We show bitflips, which allow an attacker to

2



1 Introduction

1 # include <stdio.h>
2 int main(void)
3 {
4 int x = 0;
5 if(x == 1)
6 printf (" success \n");
7 else
8 printf ("fail\n");
9 return 0;

10 }

Listing 1.1: Simple branching code to illustrate how a single bitflip can change the execution path.

1 0x063a push rbp
2 0x063b mov rbp , rsp
3 0x063e sub rsp , 0x10
4 0x0642 mov dword [ local_4h ], 0
5 0x0649 cmp dword [ local_4h ], 1 ; [0x1 :4]=0 x2464c45
6 0x064d jnz 0x65d
7 0x064f lea rdi , str. success . ; 0x6f4 ; " success "
8 0x0656 call sym.imp.puts ; int puts(const char *s)
9 0x065b jmp 0x669

10 0x065d lea rdi , str.fail. ; 0x6fd ; "fail"
11 0x0664 call sym.imp.puts ; int puts(const char *s)
12 0x0669 mov eax , 0
13 0x066e leave
14 0x066f ret

Listing 1.2: Disassemby of the main function created by the code in Listing 1.1. Shows disassembly at the given
address range inside the ELF file, starting at 0x063a.

bypass HTTP basic authentication. We present results for four applications and if there exist bits,
which when flipped, allow us to achieve our set outcome. Besides analysing the bits in the main
program's executable, we also examine any dynamically loaded library programs use. By that, we
cover possibilities where external functions change the application's outcome.

In addition to that, we look at possible cryptographic vulnerabilities introduced by bitflips. As a
basis, we take the work by Böck et al. [29], who showed how it is possible for web servers to misuse
nonces when using AES-GCM. We build on their approach to bypass the fixes applied by server
software to re-introduce this nonce misusage via bitflips. We look at the current implementation
of AES-GCM in the TLS library OpenSSL. We show that nonce misusage can be reintroduced by
bitflips, and give a probability for them to happen during a Rowhammer attack.

1.3 Motivational Example

Gruss et al. [15] present a novel showing the impact of a single bitflip in binaries. This thesis
is about automating this process. Therefore we look at how a single bitflip can influence the
execution path of a program. As an example, see the code in Listing 1.1. We want to change the
binary in a way that it will print success instead of fail by just toggling a single bit in the

3
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Opcode Hex Value Describtion Output
JZ 0x74 Jump short if zero/equal success.
JNBE 0x77 Jump short if not below or equal/above success.
JNO 0x71 Jump short if not overflow fail.
JNL 0x7D Jump short if less or equal/not greater success.
GS 0x65 GS segment override prefix Illegal instruction
PUSH 0x55 (50 + r) Push onto the Stack Illegal instruction
XOR 0x35 Logical Exclusive OR Segmentation fault
CMC 0xF5 Complement Carry Flag Illegal instruction

Table 1.1: Possible opcodes resulting from changing a single bit in JNZ 0x75 and the output when applied in the
assembly showed in Listing 1.2.

binary executing this code. Looking at the disassembly of the code in Listing 1.2, we find that we
can start with changing the 1 to a 0 at the mov instruction on address 0x0642. Besides that, the
opcode of jnz (namely 0x75 or 1110101), can be changed into a jz (0x74 or 1110100, at address
0x064d.

We flip each bit of the instruction opcode jnz to illustrate the possible outcomes with just a single
flip. We apply all possible eight flips and check the resulting output of the binary. Table 1.1 shows
the flips and results. We can see that in three cases the program would print success, in one case
the output would not change and in four cases the program would crash for various reasons.

From this, we gain the knowledge that at least three bitflips in the opcode give us our desired
behaviour. Additionally, we can add the bitflip to the 1, which makes it four. These flips we can
find manually quite fast. Now, the question arises how do we automate this searching process?

1.4 Outline of this Work

This thesis is structured as follows: In Section 2, we describe general terms and technologies
our work is build on or makes use of. We discuss other microarchitectural attacks, and give an
overview of the functionality of programs which our work targets. In Section 3, we discuss our
work regarding the automatic bitflip search. We present our testing framework and discuss how
bitflips could be introduced to systems. In Section 4, we show our results and present multiple
tested applications and what adaptions had to be applied to the framework for successful testing.
In Section 5, we discuss our work regarding Rowhammer attacks targeting dynamic memory. We
thereby show how the OpenSSL implementation of AES-GCM can be attacked by flipping bits.
In Section 6, we discuss countermeasures which could be applied to improve system security. We
discuss countermeasures against microarchitectural attacks in general, and discuss what could
be done to reduce the impact of our tests. In Section 7, we show possible future works, and
an overview of directions the research in the field of microarchitectural attacks could take. In
Section 8, we close our thesis with a summary and give a conclusion of our work.
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2 Background

In this chapter, we describe the basics, techniques, tools, and programs used in this thesis. It
provides a general overview that is required to understand the details of the work in the following
chapters. We start by showing how modern computers load programs and execute them. We
discuss file formats used to describe programs and how common computing architectures structure
machine code. We then look at how programs and source code is tested and what technologies
evolved in that matter. As we deal with Linux-based operating systems, we take a look at the
permission system used by these systems.

Additionally, we discuss topics in secure communication. We describe the basic principles of
network connections, web servers, and the related security. As the thesis provides automation
for searching for bits to flip with Rowhammer, we look at this kind of attack, how it works, and
discuss microarchitectural attacks in general.

2.1 Executing Programs

Processing units execute machine code. Any device running programs contains at least one
processing unit. Usually, the central processing unit (CPU) runs programs and triggers other
processing units to run tasks if needed. Often referred to as the main processor, the CPU carries
out the instruction given to it by the machine code representing a program. A CPU can only step
over single instructions and execute them one by one. This is done by moving the instruction
pointer to different memory locations. Simple processors may only execute one single program.
On ordinary desktop computers, the operating system is the main program which can load other
programs as processes and manage them. CPUs can only execute machine code, but programs
are usually written in human-readable programming languages which are then translated to
machine language by either a compiler or an interpreter. We refer to files created by a compiler
as executables or binaries. These files can directly be loaded into memory by the operating
system. Operating systems use defined structures for executables to make this loading possible,
for example, GNU/Linux systems use the executable and linkable format (ELF), and Windows
systems use the portable executable format (PE).

2.1.1 CPU Instructions

Machine code, in general, is a list of instructions, encoded in some binary format. Usually, an
instruction consists of an operation code (opcode), telling the CPU what to do, and parameters
for the opcode, which the processor uses for the operation. Instructions can operate on registers
or locations in memory directly. Available instructions and their design are depending on the
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2 Background

architecture used. The most common instruction set architectures (ISA) are Intel x86, which
exists in 32-bit mode (x86_32), and 64-bit mode (x86_64 or AMD64), and the ARM ISA which is
the architecture used by many mobile processors.

Prefix Opcode ModR/M SIB Displacement Immediate
bytes 1 per prefix 1, 2 or 3 0 or 1 0 or 1 0, 1, 2 or 4 0, 1, 2 or 4

Table 2.1: Instruction Format for Intel 64 and IA-32 architectures [31], showing how many different instruction
lengths are possible in modern architectures and also which parts they may contain.

Table 2.1 shows the instruction format for Intel 64 and IA-32 Architectures. An instruction is
divided into six possible parts, which all have different functionality for the CPU executing it.
The parts are described in detail by the Intel manual [31] Section 2.1.

Prefix

The instruction prefix can be used to change the behaviour of the CPU for the following opcode.
It can be used as a lock (0xF0), which ensures shared memory is protected between multiple
processing cores. It also can be used as a prefix for repeating an instruction (0xF2 - repeat-not zero
or 0xF3 - repeat-if-zero), which could be used for strings or I/O-operations. Besides repeat, the
0xF2 prefix is also mandatory for some instructions, such as CPUID. The prefix can also indicate a
larger operand-size by 0x66 or a larger address-size by 0x67. This address-size prefix provides
programs with the ability to switch between addressing modes. There are also branch-hint prefixes
(0x2E - branch not taken, 0x3E - branch taken), but according to the Intel manual [31], their
usage is deprecated for current architectures.

Streaming SIMD Extensions (SSE)

“Single instruction multiple data”-instructions use the 0x66 prefix to indicate a particular behaviour
of the CPU. The instruction can perform the same operation on multiple data pointers at the
same time. These instructions are often used in signal processing or graphics processing. Registers
used with SIMD contain mostly with single precision floating point data. According to the Intel
manual [31] Section 5.5, CPUs supporting this feature provide at least eight SIMD registers,
namely XMM0 to XMM7. Newer generations of Intel CPUs might also provide double-precision
floating point 64-bit registers.

Opcode

Opcodes describe what the instruction does, if it needs parameters, like registers or addresses
to physical memory. An opcode is usually one byte long, there exist two-byte opcodes, which
would be declared by a prefix. The primary opcode also defines so-called fields, which are used to
declare the direction of operation, size of displacements, register encoding, or sign extension. The
ModR/M byte, therefore, also holds a 3-bit opcode field.

6



2 Background

ModR/M and SIB Bytes

The ModR/M byte is split into three parts. First is the Mod field, it is combined with the R/M
field to provide eight registers and twenty-four addressing modes. Second is the reg/opcode field.
It is used to provide a register number or three additional bits for the opcode. The R/M field is
either used in combination with the mod field to name addressing modes, or it specifies a register
as an operand for the opcode.

Some addressing modes given by the ModR/M byte require a second byte of information. This
information is given by the Scale Index Base (SIB) byte. The CPU uses this byte as follows: 3
bits give the base, 3 bits give the index, and the last 2 bits give the scale. To get the address the
value stored in the index register is multiplied with the scale and added to the value stored in the
base register.

Displacement and Immediate Data

Besides using the ModR/M and SIB bytes for addressing, the mod field can also state to use a
so-called displacement as an additional address offset. The calculated address from the SIB byte
is then added to the value in the displacement. The displacement can have a size between zero
and four bytes.

Some operands may use data directly provided by the instruction instead of loading it from
memory or a register. Such data is given in the immediate field of an instruction. Most arithmetic
instructions allow immediate data to be passed, but also instructions like mov allow such parameters.
The usage of immediate data is declared by the ModR/M byte.

2.1.2 Virtual Memory

To prevent direct memory accesses between processes, CPUs provide the possibility of memory
translation. Every process holds its virtual memory, and the CPU translates the virtual address to
an address in physical memory on memory accesses. As described in the Intel Manuel [31] Section
3.3.2, the address space is divided into pages which are mapped to virtual memory. As this paging
is transparent to programs running, processes still work on a linear virtual address space. Pages
are usually 4 kB, but larger sizes are also supported. In both address spaces, addresses of pages
are aligned to their used page size.

The translation between page addresses is required to be as fast as possible. Storing a direct
lookup table per process might be possible but slower than for example memory array accesses.
The usual address size on 64-bit processors is 48 bit. To address single bytes on a 4 kB page 12 bit
are required. This leaves 36 bit to address the pages. Storing an array for a direct lookup of page
numbers would require multiple gigabytes of data, which is not practical. Therefore, a multi-level
translation with so-called tables is provided, which keeps the memory overhead in the area of
some pages.

Figure 2.1 shows the 4 levels of tables for translating a virtual address to the position in physical
memory used by Intel [31] on x86_64 systems. The highest level is the page map level 4 (PML4),
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CR3

CPU register

PML4(9b) PDPT(9b) PD(9b) PT(9b) Page(12b)

Offsets stored in a 48-bit address

entry

entry

entry

entry

entry

PML4

PDPT

Page Directory

Page Table

4kB Page

Figure 2.1: Address translation for 4 kB pages for x86_64 CPUs. The 48-bit address is split into multiple offset
parts which are added for different tables. The lookup starts with the PML4, which location is stored in
the CR3 CPU register and ends with the byte entry in the addressed page.
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the position of the PML4 is stored in the CR3 CPU register for the running process. The PML4
holds 512 entries of 8 byte each, which point to so-called page directory pointer tables (PDPT).
The PDPT again has 512 entries, where every entry either points to a page directory (PD) or
a memory page of the size of 1 GB. The PD entry either maps to a 2 MB page or a page table
(PT), which then holds entries to the 4 kB pages. For every level of paging, 9 bit of the address
are used to the define the offset used in the tables.

An entry in tables is 8 byte large, but not all of them are required to address pages. Therefore,
the entries also defines properties of the addressed memory. For example, the entries hold bits
giving information about access rights, cache behaviour, or tell if the addressed memory is present.
These properties are checked by the memory management unit on memory access. If accesses
fail, for example because of writing read-only memory or, accessing memory which is not present,
a so-called page fault interrupt is thrown, and the running operating system kernel has to deal
with it, by either signaling the running process, killing it, or resolving the issue by for example
mapping a missing memory page.

2.1.3 Executable and Linkable Format (ELF)

ELF is an object file format. It is used to describe a program and gives instructions on how to
load it into memory to make it ready for execution by the processor without applying changes to
the binary-content itself. A linker creates ELF files after an assembler turned the program's source
code into machine code. Most modern Linux-based operating systems follow the ELF specification
released by the Tool Interface Standard Committee [87]. Therefore, we need to understand the
layout of such executable files before introducing bitflips in them.

Structure of an ELF file

There are two views of an ELF file, the linking view and the execution view. Those are also
called section and segment view respectively. They share the same ELF header but serve different
purposes for the operating system. Figure 2.2 show the connection between sections and segments
via the two different headers. Sections and segments can be seen as follows.

Sections

Sections describe the binary for the linking view. A section can contain instructions, data, a
symbol table and relocation information. Sections reserved for the system, start with a dot. There
can be additional sections defined by the user. Sections are created and managed by the linker.
Sections that are directly loaded into the program's memory image are initialized data (.data,
.data1), read-only data (.rodata, .rodata1), and executable instructions (.text).
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ELF Header Program Header Table

Section Header Table
.text

.rodata

.data

.bss

02

03

Figure 2.2: Schematics of the structure of an ELF file showing the four main sections inside an executable. Sections
and segments are connected via the program header table and the section header table. Segments usually
are just numbers and can refer to multiple sections inside the section header table.

Segments

Segments describe the virtual memory layout of a loaded binary. Figure 2.2 shows how segments
are used in an ELF file. Usually, the linker splits segments into different behaviours the loader
has to apply. For example, all read-only data sections are in the same segment. When loading the
image into memory, references inside the ELF file need to be resolved and loaded into the memory
too. After successfully loading the image and its dependencies the program can be executed.

Loading ELF files into Memory

The ELF specification [87] was released by the Tool Interface Standard (TIS) in 1995 for UNIX
System-V Release 4-based operating systems. Many operating systems, such as GNU/Linux-based
or BSD-based ones, adapted this standard to execute programs. As we focus on GNU/Linux
operating systems, we look at how to handle ELF files in order to create running programs. Most
operating systems used on computers or mobile phones do not use physical addresses during the
execution of programs, and the operating system is free to change the position of sections in the
virtual address space. Therefore, in an ELF file, a section only contains a base address and offsets
to that address. For certain compilation settings, the operating system is free to change the base
address in the programs virtual address space.

Dynamic Linking

In modern systems, it is common to have multiple functions used by different programs. Shared
libraries can be used to provide such general functions. When deploying programs, developers
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usually make sure all required shared libraries exist on the target platform or ship their software
with those included. When depending on such system libraries, the loader will insert the shared-
library functions into memory at the given entry point. This technique is called dynamic linking.
The loader fetches the information about the required library from the ELF file and then searches
the library paths provided by the operating system environment to find the library files. If they
cannot be found in the given paths, an error occurs, and the program cannot be executed.

2.2 Analysis and Testing of Executables

Testing is a significant part of software development. There are many different approaches and
styles for testing. One approach to test a program is to provide input to it and check if the
code operates as expected by validating the output. With an increasing amount of code and an
increasing number of bugs found, the style of testing changed over the years. On the one hand,
developers nowadays ideally provide unit tests inside their code to test single functions and make
sure they work as intended.

On the other hand, sometimes the source code is not available to a tester, or it is way too
much work to read the entire source code to create such tests. Therefore, developers came up
with techniques to test binaries without knowing the entire source code. Black-box testing is an
approach where a program is tested without knowing its source code.

2.2.1 Fuzzing

Fuzzing is a form of black-box testing, where knowledge about the program itself is just minimal.
Duran et al. [37] already showed in the 80s that trying random inputs on programs provides a
way to rate its robustness. Tools applying automatically-generated, pseudo-randomised, inputs to
programs are called fuzzers. Fuzzers attempt to reach corner cases in programs without knowing
which exist and detect undefined behaviour or crashes. Generally, fuzzers give an overall view of
the robustness of a program. They are relatively easy to apply to programs and can even find
bugs usual white-box tests would miss.

If a fuzzer would only apply random inputs, testing would take a very long time, as many
unnecessary tests would run. Because of this, the technology improved over time and different
fuzzers evolved. For simple programs, just testing common input mistakes, like negative numbers,
newlines, end of file characters, format strings, or just very long strings might be enough. More
advanced software requires better ways of fuzzing, for example, network protocols, file systems, or
image formats have complex structures which make it less likely to crash by just random data input.
Fuzzers for such kind of software generate inputs from given examples and apply small changes to
them. Xmlfuzzer [41] is a tool crafted specially to test XML schemes in programs. Besides special
format fuzzers, there are more advanced ones which directly interact with the target, allowing to
track execution paths, and therefore, create even more test cases automatically. “American Fuzzy
Lop” (AFL), is a fuzzer which is used to find bugs in open source software, their website [100]
presents a list of bugs found with it. AFL contains algorithms which take usual test inputs which
would cause successful runs of a program, parses those inputs and applies random changes to it.
These algorithms allow better code coverage than just generating random input. Another more
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advanced fuzzer is Steelix by Yuekang et al. [96], which uses program-state-based binary fuzzing.
Steelix applies static analysis and binary instrumentation to provide more information about the
fuzzing process, and therefore yields better test cases and code coverage.

Shoshitaishvili et al. [90] showed that fuzzing can find authentication bypasses in binary firmware
with their tool Firmalice. Wang et al. [79] showed how in-memory fuzzing can be used to detect
similarities in binary code. This is done by fuzzing every function available and comparing traces
of program behaviours with machine learning models. They show that they can find similarities
in binaries even when different compilers, and optimisations are used, or when obfuscation is
applied.

2.2.2 Symbolic Execution

Fuzzing provides a pseudo-random input to a program to test it. Therefore, it might not cover all
possible execution paths of a program. Simplifying a program to cover all possible execution paths
is done in symbolic execution. James C. King was the first to mentioned this technique in 1976 [34].
Symbolic execution simplifies possible inputs for programs by replacing them with a logic symbol
which could hold fewer possible states than usual data types. For example, a number can be
represented by the following states: maximal value, minimum value, positive, negative, and zero.
The possible symbolic-state inputs then run through the program to report possible violations of
the program's specification. King [34] used a decision tree to cover all possible execution paths in
a binary. Modern frameworks, like angr [91], use different techniques to analyse a binary.

On the one hand angr can still use a tree structure to cover program paths, on the other hand,
it also provides a fuzzing assisted symbolic execution technique. AFL is used to provide a crash
report, and the symbolic execution path is used to identify what code sections are reached by
the mutation of the input. By this, the user running the test gets better knowledge about where
in the code the program crashes and why it crashes. Besides the symbolic execution of binaries,
angr also allows various other analysis methods such as control-flow graph recovery, automatic
exploit generation or automatic binary hardening.

Stephens et al. [56] showed how symbolic execution could be beneficial to fuzzing approaches.
Symbolic execution reduces the number of execution paths to test while covering much code as
possible. Stephens et al. [56] use concolic execution for the path exploring. Concolic execution is
the combination of symbolic and concrete execution of a program.

2.2.3 Instrumentation

Instrumentation comes down to adding new code to already existing one in an automated manner.
Developers use instrumentation as a tool for debugging, or performance measurements by adding
calls to timing functions, or information logging to the code. Information from instrumentation
can be something like what functions are called and how often, what execution branches are
taken, how long a subroutine takes, what memory is accessed, and many more. It also allows
the developer to change the runtime environment of a program, like change return values or skip
instruction calls.
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Two different styles of instrumentation exist, one is source instrumentation, and one is binary
instrumentation, so-called instrumenter calls are either added to the source of the program before
compilation or later added to the machine code of the program. The first style can be easier
to apply. Furthermore, the structure of the program is known to the instrumenter. Calls for
performance checks over functions can be done by adding timer calls at the entry and exit points.
However, binary instrumentation also has advantages. For example, users do not require the
source of the program, which might not be available for proprietary programs. Also, recompilation
of the program is not required if the code for the instrumentation changes. Given enough debug
information in the binary the instrumentation information might not differ much from the source-
based one. With binary instrumentation, it is also possible to change and read register values
before and after specific CPU instructions are executed, which might not be possible at the source
code level, as used registers and memory areas are unknown to the instrumenter at this point.

Intel Pin

Intel Pin [7] is a proprietary, dynamic, binary instrumentation framework developed and released
by Intel, who supply it for free. The framework provides a large number of API calls which
abstracts most of the work done by Pin and gives easy access to binary analysis. As Pin is a
binary instrumentation framework, the source of the program to be analysed is not needed, and
the program does it need to be recompiled if the instrumentation tool changes. The framework
allows to log and modify the runtime of a program, whereas it is no problem to log register values
or change those before or after desired instruction calls or even inject code to be run before given
calls. Intel Pin provides a C++ API to write so-called pintools to analyse programs. Besides the
C++ bindings for Pin, also a wrapper for Python exists, in python-pin [2].

Luk et al. [7] describe the system of Pin and how the written pintool is combined with an
application in more detail. When instrumenting a program, three binaries are used. One is the
application to instrument, one is the compiled pintool, and one is Pin itself. Pin can be seen
as a userland virtual machine. When the instrumentation starts, Pin is loaded into the address
space of the application. Then the ptrace system call is used to capture the program's behaviour.
When Pin has initialised itself the tool overtakes the entry point of the program, or the current
program counter if it was attached to a running application. It then uses its just-in-time (JIT)
compiler to continue the execution. Luk et al. [7] state that their approach of loading Pin has
various advantages over other instrumentation tools, which mostly use LD_PRELOAD, which would
not work on statically linked binaries.

The JIT compiler inside Pin is used to inject the instrumentation API into the application to
allow the pintool to use it. The code is loaded into a preserved code-cache and then executed. Pin
always tries to execute as many instructions as possible without interrupting it for debugging.
Luk et al. [7] state, execution of the code happens one trace at a time. A trace runs either
until a control change happens, such as a branch, a call, or a return instruction, or a Pin-API
call is reached. With this approach, they gain better performance than other instrumentation
techniques.

Luk et al. [7], also state that the JIT is not the bottleneck but the instrumenting code inside
the application. That is the reason why Pin optimises the injected code as much as possible. Pin

13



2 Background

inlines all analysis functions. Luk et al. [7] state that this approach is faster as no calls happen,
which would cause registers to be used for the arguments. Luk et al. [7] also state that most other
debugging tools use the eflags CPU registers, which is not ideal, as storing and restoring these
flags is time-consuming, and an extra stack has to be used, as the original stack is not allowed to
be modified. Pin detects in the JIT if the eflag content is needed later on, and only if it is, saving
routines are called. Another optimisation for their framework is the API call IPOINT_ANYWHERE,
which specifies that the analysis call can happen anywhere in the instrumentation context, which
allows better optimisation of the instruction order. Luk et al. [7] claim, that Pin performs better
than tools like valgrind [55] and DynamoRIO [17], two open source binary runtime analysis
frameworks.

2.3 Permission Model in Linux-based Systems

The POSIX standard [85] defines interfaces to provide compatibility between operating systems.
It includes a description of permissions for users and their groups and how they are set. For
convenient reasons, a user can be part of multiple groups. A unique integer ID per user and group
provides identification to the system. The POSIX-defined permission structure applies to files,
which can have properties like readable, writable, executable. On creation, the user can set these
properties separately for the owner, the group of the owner and others. POSIX also allows users
with special privileges to ignore such permission checks, or change them. Such users are called
superusers.

Besides permissions for files, most Linux-based systems also provide permission checks for processes
and their owners. For example, only processes owned by a superuser might be allowed to use
certain syscalls. In most systems, only one superuser exists, namely root. Usually, users do not
want to login another time if they need permissions of a superuser for a task. Operating systems,
therefore, often ship tools such as su or sudo. su stands for switch user and allows a user to change
the current context to another user or execute a command with the other user's permissions,
providing the correct password of the other user. sudo includes the same functionality as su.
Additionally, it has a more advanced management system in the background and given the correct
permissions the user does not need to know the other user's password to execute commands as
the target user.

2.3.1 setuid Binary Property

setuid [86] stands for “set user identity”. It allows an executable to change its user ID during
execution. An additional bit in the file permissions represents the setuid property, namely
S_ISUID. This property allows a user to run a program with the permissions of the file's owner.
Tools like su and sudo require this permission in order to change the current context. It is
also convenient to allow normal users to use tools like ping or ip, without requiring them to
authenticate as root. We refer to the GNU libc documentation [25] for more details on this file
property.

While the setuid property might seem convenient, it also brings security risks. A bug allowing
code execution in such a program allows an attacker to execute that code with the permission of
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another user. Therefore, the number of setuid binaries should be low and programs having that
property must be well audited and tested to not jeopardise the system's security and integrity.

2.3.2 chroot

chroot [84] stands for “change root directory”. One can either use it directly via a system call or
via a wrapper program. A chroot call changes the root directory for the running process, resulting
in a change of the environment the program runs in. It is not possible to access files from outside
the new environment nor to interact with processes running in the outside environment, without
any measures applied from the outside environment. chroot is either used for testing purposes, to
create packages in clean environments, to check compatibility, as the chrooted environment could
provide a different operating system userland, or for sandboxing, and privilege separation.

2.3.3 Pluggable Authentication Module (PAM)

PAM can be used by Linux-based operating systems to authenticate users. PAM is a collection of
authentication schemes which should provide a general API to allow authentication with abstracting
the actual functionality implemented from developers. According to the PAM manpage [19],
modules are split into four groups:

• The account group verifies if the user is permitted access and if the password is not expired.
• The authentication group verifies the user's credentials. These could be given in various

ways, like a common password input, biometric data, or as a combination of multiple ways.
• The password groups is used to update and manage authentication mechanisms. Modules

from this group are usually connected with those from the authentication group.
• The session group provides ways to manage permissions for users after authentication. It

ensures the user stays authorised and also modules could implement ways to log out users
or check session termination from other sources.

Usually, Linux-based operating systems use the default pam_unix.so for all groups. Additionally,
modules as pam_deny.so and pam_permit.so are used to provide access right management for
single services per default.

2.4 Connecting Computers

People are exchanging data between devices for several decades now. The Internet started when
scientists found a way for universities to share research results between computers over the back
then used Advanced Research Projects Agency Network (ARPANET). Clark [10] released a paper
in 1988 about the protocols used by the ARPANET and gives arguments on why stated protocols
were used. The network already used the TCP/IP protocol and showed requirements for future
interconnection networks. Furthermore, Clark [10] also explains the evolution of the Internet by
stating the plans of connecting other networks with the ARPANET.
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With easier access to computers, more universities, companies and private households wanted to
be connected and exchange data. The Internet provided the possibility to do this. The standard
for Hyper-Text Transfer Protocol (HTTP) [70] was introduced to provide files from servers to
users. The standard for network mail [1] provides a uniform way to send messages between users
over the Internet. With the growing amount of users, security in the network and the connected
devices became more relevant. Therefore, protocols to ensure security for the participants were
introduced as standards.

2.4.1 Web Server

Web servers provide users with content on the Internet. There are many different software
implementations for such servers available, some of them being open source and free, such as
Apache [23] and nginx [54], which are according to Netcraft the two most used open source web
servers [52].

Web servers use the Hyper-Text Transfer Protocol (HTTP) [70] to handle requests and deliver
the content to the client. Web servers deliver websites encoded in Hypertext Markup Language
(HTML) but can also deliver all kinds of files including JavaScript (JS) and Content Style Sheet
(CSS), which are rendered together with HTML by web browsers on the client.

A client requests content from the server by sending a Uniform Resource Locator (URL) [81]. The
server then looks up the given path in the URL and answers the request by sending the requested
file or an error, if one occurs during the handling of the request. As not all requests and answers
should be publicly visible, web servers adopted TLS for security and privacy reasons to provide
content over HTTPS. The client, most of the time a web browser, can thereby verify the server's
identity and apply encryption to the connection if required.

HTTP - Basic Access Authentication

A standard for access control was added to HTTP, as described in RFC 7617 [72], to allow only
authorised users to access specified paths on web servers. This technique makes use of a header field
in HTTP, namely WWW-Authenticate. Basic Access Authentication is an access-control technique
which does not protect the transmitted credentials. Therefore, it should be used together with
HTTPS to protect the transmitted data. The client has to transmit the credentials with every
request, and there is no logout function as in other techniques using cookies, or session identifiers.

Access control in Apache and nginx

Apache makes use of so-called ht files, which are an extension to the usual server configuration
for users with limited permissions [82]. Apache introduced htpasswd-files to make use of Basic
Authentication, these files store user credentials. The developers of nginx adapted these files for
their web server implementation. The htpasswd-files keep the data either in plaintext or hashed.
To create these files Apache provides the tool htpasswd [83]. This tool uses MD5 hashing per
default (as of version 2.2.18), but it is possible to change the hashing algorithm to something
more secure, like bcrypt by Provos et al. [57]. On a request including Basic Authentication, the
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web server checks the htpasswd file to verify the given credentials, and then returns the requested
content, or a permission error according to RFC 7231 [70].

2.4.2 Transport Layer Security

Transport Layer Security (TLS) is a protocol proposed by the Internet Engineering Task Force
(IETF). TLS was released to provide secure communication on the Internet. The current version of
TLS, 1.2, as in RFC 5246 [18], will be obsolete with the upcoming release of TLS 1.3, as described
in RFC 8446 [73].

TLS is used by web servers to provide secure connections with their clients. Also, applications
like Virtual Private Networks (VPNs) and Secure Shell (SSH) make use of methods and cyphers
described in the TLS standard. OpenSSL [63] is an open source library providing the functionality
described by the standard.

TLS provides a secure connection between various devices, usually clients and a server. The
connection holds the following properties.

Authenticated Identities

Parties using TLS want to ensure that the other party is the one they claim to be. To protect users
from phishing or accidentally accessing wrong servers, TLS provides certificates to authenticate
identities. The client requests the certificate from the server, which contains its public key and
possible key exchange methods it supports. The certificates may be signed by a certificate authority
which the client already trusts.

Private Connections

According to the TLS handshake protocol, described in RFC 5246 [18] Section 7. The server and
the client agree on a cypher to encrypt data sent between them. TLS 1.2 states that 128-bit AES
needs to be supported, but parties may agree on another cypher during the handshake. As AES
uses a symmetric key to encrypt data, this key has to be exchanged between the two parties.
Therefore the parties agree on a key exchange protocol during the handshake. TLS 1.2 states that
RSA [76] needs to be supported, but parties can choose a different method, such as Diffie-Hellman
key exchange [44], or use a pre-shared key.

Reliability

The TLS standard describes message authentication codes (MAC) to allow parties to detect
alteration of sent messages. These codes are cryptographic hashes, which use the data contained
in a message plus some secret data. Methods to protect message integrity in such a way are
described in RFC 2104 [28]
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2.4.3 Cryptographic Nonces

In the early days of encrypted communication, replay-attacks were a common problem, as Syverson
showed in his taxonomy of replay attacks in 1994 [80]. Rogaway [75, 74], published a solution to
this problem. In his work, he proposes to use one-time, pseudo-random data to protect symmetric
cryptography from replay-attacks. He calls such data nonce. Rogeway [74] states, that to ensure
that nonces will not be reused, they should be used as a counter with a random start value.

However, even with this idea of replay-attack protection, current protocols and technologies still
face problems with nonces, like Vanhoef et al. [42] showed in 2017, that it is possible to force
nonce reuse in WPA2.

2.4.4 Advanced Encryption Standard (AES)

The Advanced Encryption Standard is a block cypher proposed to the US National Institute of
Standards and Technology (NIST) by Rijmen and Daemen in 1999 [13]. In 2001, NIST released
AES as a specification for encryption of electronic data. It is the successor of the Data Encryption
Standard (DES). AES is also part of ISO/IEC 18033-3 [33], an ISO standard related to security
techniques and encryption algorithms.

As Rijmen and Daemen et al. [13] proposed, AES is a block cypher which operates on data
blocks. The blocks are stored in a memory array, represented as a matrix of bytes. The algorithm
consists of four steps, which are reused in multiple rounds, the steps operate on the memory
matrix by shifting entries or replacing them with using a substitution box (S-BOX), this provides
non-linearity to the algorithm. The algorithm works very similar for encryption and decryption.
Most steps can be reused, this makes it very convenient to provide these functionalities directly in
hardware. Intel processors already provide instructions, which can directly be used for AES [27].

Attacks on AES

Researchers and attackers targeted AES since it was proposed for cryptographic usage. Most
of these attacks targeted a smaller number of rounds than the algorithm describes. In 2011,
Bogdanov et al. [3] showed an attack against AES which targets all of the rounds. Their attack
weakens the security of AES slightly, where for 128-bit key recovery the computational complexity
drops to 2126.1 and for 256-bit keys to 2254.4. As these are still very high complexities, the attack
does not affect real-world usages of AES.

Way more common than cryptoanalysis attacks on AES are attacks targeting software and
hardware implementations. For example, O’Flynn et al. [11] showed an attack against an AES
implementation used to decrypt a firmware image during the bootup process. Whereas most
attacks target 128 bits, they showed one against a 256 bit implementation. O’Flynn et al. [11] use
a correlation power analysis on the software run by the bootloader which loads an AES-256-CBC
encrypted image. Besides recovering the full key, also the initialisation vector is recovered by the
attack.
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Lo et al. [65] published another hardware side-channel attack. The attack targets the implemen-
tation of the S-BOX used in AES-128. Besides using correlation power analysis, they also use
differential power analysis. They compare both methods and recover cypher keys from function
calls accessing the S-BOX.

Neve et al. [45], show that increasing the key-size in AES from 128 to 256 bits does not increase the
complexity of side-channel attacks by the same factor. Neve et al. [45] show that for cache-based
side-channel attacks an upgrade from 128 bits to 256 only increases the complexity of an attack
by a factor between 6 and 7.

2.4.5 AES-GCM

Galois Counter Mode (GCM) [12] was proposed as a standard by NIST [21] to combine counting
nonces with block cyphers, such as AES. This combination allows the creation of a stream cypher
where each block is encrypted with a different nonce. With the addition of GCM, also a MAC
is generated, in this algorithm called an authentication tag. Figure 2.3 shows the schematic of
the proposed AES-GCM. For the description of the algorithm, a similar notation is used as
Böck et al. [29] use in their paper about attacks against GCM.

CNTi The i-th counter block, computed using the concatenation of the initialisation vector (IV ),
with a size of 96 bits, and the counter value cnt, cnt = (i + 1) mod 232, to gain a 128-bit
value. CNT0 = IV ‖ 031 ‖ 1.

Ek AES encryption with symmetric key k.
a⊕ b XOR operation between a and b.

Pi The i-th plaintext block.
Ci The i-th ciphertext block.

multH Multiplication H ·X in Galois Field GF(2128), with the irreducible polynomial g = g(x) =
x128 + x7 + x2 + x + 1.

A Authenticated data.
len(X) Bit-length of X.

a ‖ b Concatenation of a and b.
TAG Authentication tag.

The following steps describe how AES-GCM is used to encrypt data:

1. An initialisation vector IV of 96 bits is generated.
2. The counters CNTi of 128 bits are computed with CNTi = IV ‖ cnt, where cnt =

(i + 1) mod 232, for i ∈ {0..n}, n represents the number of plaintext blocks.
3. The ciphertexts Ci are generated by encrypting the counter values CNTi and XORing them

to the plaintext Pi, Ci = Pi ⊕ Ek(CNTi).

To get the authentication tag TAG, the GHASH function, GHASH(H, A, C) = Xm+n+1, is
applied. Where, H is the hash key, computed by encrypting 128 zero bits with the AES block
cypher, C is the ciphertext, and A is non-encrypted but authenticated data. Figure 2.3 shows
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CNT0 CNT1 CNT2

Ek Ek Ek

P1 P2

C1 C2

multH multH

multHA

len(A)||len(C)

multH

TAG

Figure 2.3: Schematic of AES-GCM. The Ek blocks apply AES-encryption with the key k. The multH blocks apply
a multiplication in the Galois-field. A represents a block of authenticated data, which is added to the
MAC T AG but not encrypted.
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how the GHASH is computed for one block of authenticated data and two blocks of plaintext.
The following steps describe the computation of the TAG:

1. The Galois field multiplication is applied to the block of authenticated data. R0 = multH(A1).
2. The result of this is XORed to the first ciphertext. The output of this XOR is again

multiplied in the Galois field. R1 = multH(R0 ⊕ C1).
3. This output is then XORed to the second ciphertext and again multiplied. R2 = multH(R1⊕

C2)
4. Then the length of the authenticated data and the ciphertext is added. R3 = multH(R2 ⊕

(len(A) ‖ len(C)))
5. The hash key is added in the end to form the tag TAG. TAG = H ⊕multH(R3).

The authenticated tag TAG can therefore be found by solving the polynomial g(X) = A1Xm+n+1+
· · ·+ AmXn+2 + C1Xn+1 + · · ·+ CnX2 + LX + S, as g(H) = TAG. L is the combined length of A
and C, and S is the nonce plus the counter. We refer to the NIST standard about AES-GCM [21]
for more details.

OpenSSL source code

The libraries souce code is structured in a way that each part of a cypher is implemented
on its own. For our thesis and analysis we want to refer to version 1.1.0g of OpenSSL [64].
The AES-GCM code part is located at crypto/evp/e_aes.c. The structures used are defined
in crypto/evp/evp_locl.h, crypto/include/internal/evp_int.h and ssl/ssl_locl.h. The
file crypto/evp/evp_lib.c shows the implementation for the creation of the cypher data.

In the OpenSSL library, the IV for AES-GCM is computed by using 12 bytes, where 4 bytes are
a salt computed during the TLS handshake, and additional 8 bytes represent the used nonce.

AES-GCM Nonce Reuse Attack

Joux [5] calls his attack against GCM a “forbidden attack” because in cryptography the uniqueness
of nonces is seen as given. Böck et al. [29] describe how relevant nonce reuse still is in real-
world applications and why clear definitions for nonces in protocols are required for software
development.

Böck et al. [29] present an attack based on the simplified attack by Joux, which he presented in
his comment on the NIST proposal [5]. In those attacks, it is assumed that the same nonce is used
for two messages. Each of those messages consists of a single ciphertext block and no additional
authenticated data. It is also noted, that all values beside S, the secret nonce value, are known to
the attacker.

g1(X) = C1X2 ⊕ L1X ⊕ S

g2(X) = C2X2 ⊕ L2X ⊕ S

We add the corresponding tag TAG to each polynomial to get g′i(X) as follows.
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g′1(X) = C1X2 ⊕ L1X ⊕ S ⊕ TAG1

g′2(X) = C2X2 ⊕ L2X ⊕ S ⊕ TAG2

Knowing that g′x(H) = 0, because gx(H) = Tx, we combine those two formulas to the following
polynomial.

g′1+2(X) = (C1 + C2)X2 + (L1 + L2)X + TAG1 + TAG2

This polynomial should be 0 for the point H, g′1+2(H) = 0. Therefore, an attacker can calculate a
list of values for H which solve this equation. The number of possible solutions for the polynomial
is reduced with an increasing number of nonce reuses. Therefore, by using the same nonce more
often it gets easier for an attacker to find H and therefore break the used cryptography.

2.5 Software-based Microarchitectural Attacks

Computers can leak information by behaving differently during the computation of different data.
Aciicmez et al. [60, 62, 61] released work on timing leaks which leak information about used key or
data. Aciicmez et al. [62] show how RSA implementations were attackable with microarchitectural
analysis. For the implementation in OpenSSL, it was possible to detect called reduction steps
in the Montgomery multiplication, which lead to a total break of the RSA implementation.
Aciicmez et al. [61], also show further microarchitectural attacks against OpenSSL, which break
other functions implemented in the open source library.

2.5.1 Low-Level Performance Measuring

Many side-channel attacks are based on timings. Like, predicting what a machine currently
does because of the time it takes to compute something. Researchers and attackers using time
measurement as an information source, therefore usually try to find a way to measure time with a
high resolution.

Native Timing Measurement

In native code, the highly precise timestamp counter (TSC), provided on x86 architectures since
the first Pentium CPU [31], can be used for timing measurement. The Intel manual [31] Section
4, states that the current timestamp is stored in a model-specific 64-bit register (MSR). It also
states that the value in the MSR is increased with every clock cycle and reset to zero on every
processor reset.

Calling the instruction RDTSC will load the current value of the MSR into the EDX:EAX registers.
The EDX register is loaded with the higher-order 32 bits, and the EAX register with the lower-order
32 bits. On architectures using Intel 64 the higher-order 32 bits of RAX and RDX are cleared.
RDTSC is not a serialising instruction, that means the counter MSR could be read before the
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previous instruction is finished. This behaviour is often not wanted, as results may not be accurate
enough. In the Intel manual [31] it is therefore recommended to use either the serialising RDTSCP
instruction or use the sequence LFENCE;RDTSC, if it is required for RDTSC to be called after previous
instructions finished.

JavaScript Timing Measurement

Calls to the RDTSC instruction are generally only possible in native code. Van Goethem et al. [88]
showed how modern web browsers allow new side-channels by providing accurate timing measure-
ments. They show how the JavaScript timestamp function performance.now() can be used for
timing measurements. Mozilla reacted to the released timing attack by lowering the resolution
of the timing API to five microseconds [101]. Schwarz et al. [46] show how this countermeasure
can be bypassed and give an evaluation of new sources of timing information in JavaScript.
Lipp et al. [49, 48] show how a counting thread can be used as an accurate timing source in
JavaScript and also state that the time measurement is accurate enough to detect keystroke
interrupts. Schwarz et al. [46] state that with this accuracy of timings it is possible to perform
cache-attacks and Rowhammer inside web browsers.

2.5.2 Caches

C1 − L1 C2 − L1 C3 − L1 C4 − L1

C1 − L2 C2 − L2 C3 − L2 C4 − L2

L3

Memory Controller

DRAM DRAM

Figure 2.4: Schematic of Intel caching architecture. Cx represents each processing core and Lx the level of the cache.
Intel [32] states that cache content and memory requests are handled by a memory controller inside the
processor.

Vendors of processors introduced the principle of caching to memory management to speed up
access times for memory. According to the Intel architecture white paper [32], modern CPUs
implement three or four levels of caching. As shown in Figure 2.4, the design in Intel Kaby Lake
and Intel Haswell assigns caches for level one and two (L1, L2) to each core and the cores share the

23



2 Background

level three cache (L3) between each other. L1 caches can be split up in a data and an instruction
cache. There might also be an L0 cache for micro-operations, as it is also implemented in the two
described architectures.

Caches are managed and updated by the CPU's memory controller. Inclusive caching is a form of
managing the caches in a way where data stored on one level of caching is also placed in lower
cache levels. The microarchitecture defines if the CPU uses inclusive caches and which ones are
inclusive to others. The memory controller of the processor needs to keep caches up to date to
make sure memory accesses do not get wrong data from other cache levels or the DRAM.

We refer to the Intel manual [31] chapter 11.1 and the Intel white paper about the architecture [32]
for more details about cache management in modern CPUs.

Cache Attacks

Cache attacks are part of microarchitectural attacks where scientists have shown that caching
also introduces security risks to systems. Dan Page [66] showed that caches can be used for
side channels in 2002. Tsunoo et al. [97] published an attack on Data Encryption Standard
implementations in 2003, using timing-side-channel information gathered from the CPU delays
caused by cache accesses. Knowledge gained from cache attacks is reused in the exploitation of
Rowhammer, and other attacks, such as Meltdown [50] and Spectre [67].

FLUSH+RELOAD

This cache attack is a low noise, L3 cache side-channel attack, discovered by Yarom et al. [98]. The
attack allows leaking information about memory accesses on pages shared between two processes.
As the attack targets the last-level cache, it does not require the two processes to run on the same
core. Pages are either shared when actively mapped with such property or mapped as shared with
copy-on-write when a process is forked. One process is referred to as the spy and the other as the
victim. The attack is build of rounds of attack, where one round is split into three phases:

1. The spy uses the instruction clflush to remove the monitored memory line from all CPU
caches.

2. The spy waits a pre-defined time to allow the victim to access the memory line.
3. The spy measures how long it takes to read the flushed memory line. If the victim accessed

the line, the memory would be back in the cache, which would take a significantly shorter
time than reloading the memory from the DRAM.

With this attack, information can be leaked to the spy processes. For example, in cryptographic
algorithms, accessed code lines could leak the private key to the attacker.
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2.5.3 Other Microarchitectural Attacks

With growing knowledge on the CPU and caching level, researchers found major security vulnera-
bilities in modern CPUs. Attacks like Meltdown [50], Spectre [67] and Foreshadow [36].

Lipp et al. [50] target the memory isolation between the operating system's kernel and the userland
memory and shows how the CPU's out-of-order execution can lead to a leak of information from
kernel memory to a user program. Meltdown uses cache-accesses timings to transmit data from
the out-of-order execution to the userland program. Spectre [67] uses a similar technique to leak
information, by exploiting the branch-prediction unit of modern CPUs. The attack is used to leak
memory between processes, where Meltdown is used to leak kernel memory. Kocher et al. [67]
state that this attack is also possible in JavaScript. Bulck et al. [36] showed that it is possible
to use another similar approach to attack the Guard eXtension (SGX) in Intel CPUs. In the
so-called Foreshadow attack memory from inside this secure environment is leaked to an attacker.
This attack bypasses security layers inside Intel's microcode and cannot be fixed inside the
operating system's kernel. Gruss et al. [16] proposed a countermeasure against Meltdown, where
memory is separated between the userland and the kernel. By applying this current Linux-based
operating systems might be secured against Meltdown but remain attackable against some Spectre
variants.

2.6 Rowhammer

Technology is steadily changing and improving, with vendors of computer parts being forced to
produce cheaper and better hardware every year. For DRAM this resulted in faster memory chips,
with less space required for the same amount of memory and less energy required to store electric
load, to represent data. After years of decreasing memory densities, researchers like Kim et al. [93]
found a flaw in the DRAM chip design. With the little space used and energy stored it was
possible to use changes of charges in memory rows to interfere with data of nearby cells. This
interference resulted in a change of bits in other memory rows.

This behaviour caused researchers to dig deeper into the possibilities, and several attacks were
found based on Rowhammer. For example, Seaborn and Dullien [68] show that it is possible to use
Rowhammer for privilege escalation and sandbox escapes. Van der Veen et al. [89] state that this
attack not only affects desktop computers but also memory in mobile devices. Gruss et al. [14]
published work showing that it is possible to trigger bitflips from JavaScript. Gruss et al. [15] also
show that flipping bits in memory has further risks than previously thought and that Rowhammer
defences need a general overhaul. They state that the only solution is to fix the hardware.

2.6.1 Design of Dynamic Random-Access Memory (DRAM)

Random-access memory is designed to store information as bits. A simplified view of RAM is
a circuit containing amplifiers, one-bit storage cell matrix, an address decoder, and buffers for
input and output of the memory. Figure 2.5 shows a simple schematic of a DRAM module. A
DRAM chip contains multiples of such modules, stored in so-called banks. The storage matrix is
a two-dimensional array of 1-bit storage cells. Accesses to DRAM do not happen per bit but per
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Figure 2.5: Schematic of a single DRAM module. The memory controller is managing the memory array and has a
Bus connection to other memory controllers and the CPU. The decoders are used to access bits in the
memory array according to the sent address. The amplifier is used because the bit voltage differences
are usually too small to change the memory in the buffer directly.

row, which has a size of 4096 bit. The memory controller of the CPU sends a request, which then
is translated for the DRAM chip to access the corresponding bank, holding the memory array
which then loads the columns needed from the memory row. A memory array usually holds 2 MB.
Therefore 8 GB of DRAM memory are stored in 4096 memory arrays.

bit line

word line

C

Figure 2.6: Schematic of a 1-T memory storage element. The capacitor C is used to store information. The transistor
makes it possible to access the storage by applying charge on the connected lines. Depending on the
voltage used it is a read or a write access.

A one-transistor (1-T) memory cell, as seen in Figure 2.6, is used to store a single bit. To access
memory, first, the desired bit lines are charged with VCC

2 , then the word line is also charged to
switch on the transistors. An amplifier is then used to detect changes of charge on the bit lines. A
discharged capacitor would cause the voltage on the bit line to drop, whereas a charged capacitor
would raise the voltage to its load. If a charged or discharged capacitor represents true or false for
the bit state, depends on the design of the DRAM chip. Writing the bits works in a similar way,
where the bit lines of a row are either set to VCC or 0, and then the word line is used to switch on
the capacitors on the row, making the capacitors change their charge to the level of the connected
bit line.
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1 code1a :
2 mov (X), %eax
3 mov (Y), %ebx
4 clflush (X)
5 clflush (Y)
6 mfence
7 jmp code1a

Listing 2.1: Code to trigger the Rowhammer bug, as of Kim et al. [93]. The repeating accesses to the aggressor
locations cause bitflips in a third victim row. The CFLUSH is required to make sure the DRAM rows are
accessed directly. According to Seaborn and Dullien [68] the mfence is not needed and even lowered the
number of flips.

The capacitor used for the 1-T cell will lose load over time and on read accesses. Therefore, these
capacitors need to be periodically refreshed. The JEDEC standard [35] sets the refresh cycle to
a 64 ms interval. For a usual chip with 8192 rows, this means a refresh happens all 7.8 µs. The
easiest way to do this is by reading a bit and writing the response back to it. So-called Row Access
Strobes (RAS) are sent to switch on the transistors in the addressed row. Column Access Strobes
(CAS) are then used to read the values of the capacitors holding the load storing one bit. As
refresh cycles need to be applied, DRAM chips usually cycle over all rows, read them into their
data buffer and write them back into memory. This refreshing is done to keep the capacitors on a
certain charge level.

Jung et al. [43] present a study about the exact neighboorhood relation of single DRAM cells.
In the presented work, the location of memory bits in the DRAM banks is found by analysing
temperature changes of the device.

2.6.2 Introducing Bitflips to DRAM

Kim et al. [93] show how it is possible to cause bits to flip inside memory by certain access
patterns. Two memory rows are used as so-called aggressors, and one as a victim row. As the code
in Listing 2.1 shows, the two aggressor rows are read repeatedly. The clflush instructions are
used to empty the memory in the used cache lines, causing the System to access the DRAM for
each read instead of getting the value out of the cache. The changes in electrical charge caused by
the read accesses will by chance interfere with the loads in the target row and change content
there. These accesses happen so fast that even with correct refresh cycles applied, the DRAM
controller is unable to keep the load of the capacitors on their level.

The memory addresses to be accessed to gain the rows next to each other are not obvious to find,
as operating systems use virtual addresses instead of direct physical addresses. Linux provides a
file, /proc/<PID>/pagemap, where the mapping between virtual and physical addresses is stored.
Some systems allow huge pages, where 2 MB of memory are used continuously. These 2 MB will
use more than one row, other than normal pages with the size of 4 kB. In the paper, Kim et al. [93]
use addresses by the scheme of Y = X + 8M , as previous work reverse engineered this address
mapping for Intel CPUs [39, 58]. By using these addresses, they get accesses resulting in the same
bank of DRAM but different rows. Kim et al. [93] state in their paper that they use two memory
locations as by using just a single one, no bitflips occurred in their tests. Seaborn and Dullien [40]
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describe single-sided Rowhammer as a technique where only one row is used as the aggressor, but
multiple memory accesses are applied to this row. The advantage of the single-sided hammering is
that no knowledge about the DRAM address mapping is needed.

Yim [92] presents a framework to identify, validate and evaluate Rowhammer attacks. The
framework can be used to find defective DRAM chips being attackable with Rowhammer. Also,
the framework provides automatic exploit generation to be applied via Rowhammer attacks.

2.6.3 Exploits using Rowhammer

Seaborn and Dullien [68] show how it is possible to use Rowhammer to escape the NaCl sandbox
and how to gain privilege escalation on x86_64 based systems by flipping bits in page table entries.
As Kim et al. [93] state, bitflips might be very likely to reoccur in the same position, but it is still
a challenge to target an exact memory location when just a virtual address is known. To provide
higher reliable attacks memory spraying [68, 14, 95] is used. Memory spraying fills the memory of
a system with as much targetable memory as possible. For example, Seaborn and Dullien [68]
would spray the memory with page tables.

Bhattacharya et al. [78] show how Rowhammer can be combined with timing analysis to break
implementations of RSA. In the described attack, the last-level cache is monitored by a spy
process to determine the position of the targeted memory and then use timing measurements
to determine the DRAM bank which holds this memory to apply a Rowhammer attack to this
bank. Razavi et al. [38] present their work “Flip Feng Shui”, which allows introducing bitflips in
a fully controlled way. In their work, it is shown how to target specific memory areas by using
Rowhammer and memory deduplication. Razavi et al. [38] present an attack which allows breaking
of OpenSSH public-key authentication and thereby successfully login to a co-hosted VM on the
same hypervisor.

Qiao et al. [77] present new approaches of Rowhammer attacks, where they use non-temporal
instruction of Intel CPUs to trigger Rowhammer instead of using a clflush approach. Also, it is
shown how it is possible to trigger Rowhammer by using malicious inputs on programs instead of
running malicious code. The input on running programs causes calls to memset or memcpy which
can be abused to trigger Rowhammer.

2.6.4 Flipping bits in Binaries

Targeting files with Rowhammer is an improved attack on previously shown usages of the
vulnerability. Gruss et al. [15] showed, that besides targeting page table entries, it is also possible
to target shared libraries or ELF files directly. Thereby, the possible attack vector for Rowhammer
grew. To flip the bit in the binary using Rowhammer an attacker needs to make sure the file is
loaded to DRAM.

Most operating systems use a disk cache. Meaning the OS will keep file content in DRAM as long
as the memory is used. When a file is opened the system loads the content to the memory, which
in case of loading an ELF would put the entire file into the DRAM, making it possible to apply
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bitflips. Therefore, a later call to the program would execute the flipped version already cached in
DRAM.

Another idea would be to use Rowhammer on storage devices. As Kurmus et al. [4] showed it
is possible to find a similar behaviour as Rowhammer for solid-state drives (SSD). They refer
to a problem in MLC NAND chips, showing the possibility of a similar attack. They show that
corrupting a block inside the SSD is enough to gain privilege escalation. A similar attack could
also be used to flip bits inside the stored ELF files.
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In this chapter, we present a novel to automate finding bitflips in ELF which yield exploitable
execution path changes. Gruss et al. [15] already have shown a similar approach by disassembling
binaries and manually looking for exploitable bitflips. We start by discussing this approach and
point out the downsides of this mainly manual searching.

We go on with describing our used approach and the framework we created to find exploitable
bitflips in binaries to change the behaviour to result in a pre-defined outcome. We start with a
general overview of the framework design and go on with discussing the details on how we find
bits to check, how the definition for searching works, how we test the bitflips and how results are
captured and verified.

3.1 Analysing the Manual Search Approach

Gruss et al. [15] introduce so-called opcode flipping to bypass the Rowhammer countermeasure of
physical kernel memory isolation, which was proposed to prevent bitflips in page tables. With
opcode flipping, it is possible to gain privilege escalation by flipping bits in pages storing executable
memory. Gruss et al. [15] describe their approach as follows. First, a memory area in the binary is
defined, which holds bits to test with flipping. Secondly, all bits in the defined area are flipped,
resulting binaries are executed, and grouped by the outcoming results. In the end, the results are
analysed manually, and exploitable behaviours are noted and then attacked with Rowhammer.
Gruss et al. [15] show a case study of this approach where the sudo program is analysed and
report 29 bitflips which give an attacker superuser permissions without knowing the calling user's
password.

As this approach seems feasible, we claim that it is not practical. Gruss et al. [15] analysed the
program's binary, and the dynamically loaded libraries to identify targetable memory areas, by
this choice, areas might be missed. Also, each bit in a defined area is tested, which could include
memory which is never accessed during the execution. Manually analysing the results may take
much time and might not be feasible for a larger number of bitflips. Besides flipping opcodes,
also prefixes and parameters of instructions should be tested for bitflips. Also, not only specific
memory areas holding executable code should be tested but all memory in binaries accessed during
the runtime of the program. As Gruss et al. [15] only check a specific version of a program, the
reported bitflips might not work in a newer version, and the same work has to be done again.
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Figure 3.1: Flowchart showing each part of the framework and their connections.

3.2 Automating the Finding of Feasible Bitflips

Flipping all bits inside a binary, reporting each output and check for a successful outcome might be
a way to generate a list of all exploitable bitflips. Looking at the compiled binary from Listing 1.1,
in Section 1.3, it would result in a binary size of 8288 byte. Following the approach of testing
all possible bits, would result in 66 304 bitflips to test. With an execution time of approximately
0.003 s per run, a complete test would take close to 200 s.

Looking at sudo, the program's main binary alone has 149 080 byte, without dynamic libraries.
The execution time is around 0.03 s. The same approach applied to sudo would, therefore, take
around 35 780 s, which is approximately 10 h. Such a long time is not feasible, as dynamic libraries
used also need to be tested. Including those libraries, would result in 3 219 208 byte. Testing all
these bitflips would require approximately 215 h or 9 days.

For our automation of the exploitable bitflip search, we want to require way less time than with
testing all bits, as we target larger real-world applications.
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Figure 3.2: File system structure of the framework and the chroot loaded for the test runs, whereas the chroot is
created from a templated loaded from the proj.root and the run_tool_chroot.sh is copied over to
the created chroot.

1 {
2 " instrumenter_call ": "./ instr_tool .sh",
3 " instrumenter_outfile ": "tool.out",
4 " chroot_template ": " chroot_tmpl / bionic ",
5 " tmp_chroot_folder ": "/media/ ramdisk / chroot /",
6 " folder_with_flips ": "/media/ ramdisk /flips/",
7 " num_of_parallel_checks ": 1,
8 " CR_exec_file ": "./ run_tool_chroot .sh",
9 " CR_flip_folder ": "/media/flips",

10 " CR_success_folder ": "/media/ success /",
11 " CR_log_file ": "/tmp/succ.file"
12 }

Listing 3.1: JSON style config file for the framework, showing all parameters used to tweak each part of the
framework. Entries starting with CR_ are used inside the testing chroot.

3.2.1 Design of the Testing Framework

We have implemented a framework to search for exploitable bitflips in programs. Figure 3.1 shows
a diagram describing the framework's design. We split it into multiple parts:

1. Accessed memory areas are logged from all the ELF files the program uses.
2. Pre-defined filters are applied to the reported memory areas.
3. ELF files for each of the bitflips are generated.
4. Each ELF file gets executed, and the behaviour is checked against a pre-defined success

state

Each part of the framework is designed to work on its own and has a clearly defined in- and output-
interface. Each part can be adopted or easily used for other testing purposes. The configuration
file for the framework defines how each step is applied to the application, as instrumentation and
verification may differ for each program. The file in Listing 3.1 shows an example configuration
file for the framework. Figure 3.2 shows the layout of the framework in the file system. The
configuration file defines where to find each of the required files. The template chroot describes
the system which is used for testing.
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1 ADDRINT ins_addr = INS_Address (ins);
2 IMG img = IMG_FindByAddress ( ins_addr );
3 ADDRINT base = IMG_LowAddress (img);
4 img_offsets [base] = IMG_LoadOffset (img);
5

6 for( size_t i = 0; i < INS_Size (ins); i++)
7 accesses . insert (std :: make_pair ( ins_addr + i, base));
8

9 UINT32 memOperands = INS_MemoryOperandCount (ins);
10 for ( UINT32 memOp = 0; memOp < memOperands ; memOp ++)
11 {
12 if( INS_MemoryOperandIsRead (ins , memOp))
13 {
14 INS_InsertPredicatedCall (
15 ins , IPOINT_BEFORE , ( AFUNPTR ) RecordMemRead ,
16 IARG_INST_PTR ,
17 IARG_MEMORYREAD_EA ,
18 IARG_ADDRINT , base ,
19 IARG_MEMORYREAD_SIZE ,
20 IARG_END );
21 }
22 if( INS_MemoryOperandIsWritten (ins , memOp))
23 {
24 INS_InsertPredicatedCall (
25 ins , IPOINT_BEFORE , ( AFUNPTR ) RecordMemWrite ,
26 IARG_INST_PTR ,
27 IARG_MEMORYWRITE_EA ,
28 IARG_ADDRINT , base ,
29 IARG_MEMORYWRITE_SIZE ,
30 IARG_END );
31 }
32 }

Listing 3.2: Example C++ code for a pintool logging memory accesses. The tool stores the locations of instructions
and parameters if they point to memory. The tool stores accesses for reading and writing seperately.

The framework starts with executing instr_tool.sh to generate a report showing all bitflips to
test. Additionally, it can also filter them. After the script's execution, the tool.out-file contains
a list of all byte positions to test. Afterwards, the defined number of chroots are created by
copying the template from chroot_tmpl. The flipped binaries are copied to each /media/flips
folder in the testing chroot. The run_tool_chroot.sh file is copied to each testing environment
and executed there. This script runs in each of the chroot, replaces the original binary with a
flipped version, runs the configured program and checks it's outcome. If the outcome matches a
pre-defined success state, the flipped binary is stored and reported by the framework.

Instrumenting Programs

We use Intel Pin [7] for instrumentation. Every memory access during execution of the program is
logged. We want to log all accesses which happen inside of ELF files, which means the program's
binary and all libraries it uses during runtime. The pintool we use to achieve this, adds instrumenter
calls to all memory accesses. The tool logs all accesses per binary and the offsets of the address
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in the corresponding ELF file. This information is required to determine which accessed area is
mapped to which file later on.

Listing 3.2 shows a code snippet of the used pintool which logs all memory accesses as it instruments
each instruction and logs the opcode position and its parameters if they address memory. For
Pin, the image img refers to an ELF file, the images represent the program's executable and the
dynamic libraries loaded during execution. The INS_InsertPredicatedCall function is used to
insert a function call on the machine code layer. The function can have an arbitrary number of
parameters, as the user has to define the function with each parameter and type. Pin then inserts
a call to the given function pointer and manages the handling of the parameters and return values
in a way that the instrumented program's execution is not affected.

We instrument the program with a run resulting in a failed state, after the run, we filter the
accessed memory areas for each file and check if areas were written before reading. If so, we can
also skip testing those bits, as the program would overwrite the flips again.

Instrumentation is done via the configured instrumenter_call in the config file shown in
Listing 3.1. The instrumenter_call generates the configured instrumenter_outfile. The
output file contains the memory accesses formated in the following manner:

<hex:position_in_file> - str:filename.

Generating and Testing the Flips

Next, we create a new ELF file for each bit, for each of the reported bytes. Depending on the
configured number of parallel checks, chroots are created. Afterwards, the framework makes sure
the number of created ELF files does not require more than the memory available. If there are
more files to test than the available memory allows, the framework takes multiple runs, as shown
in Figure 3.1. A test run starts by running the configured CR_exec_file which will copy a flipped
file from the CR_flip_folder to the original position, then run it and check if the output matches
a defined success state. If the flipped file reaches the success state, the framework writes the
flipped address to the CR_log_file and copies the flipped ELF file to the CR_success_folder.
The framework passes the file to replace to the CR_exec_file when it calls it. To keep track of
which bitflip is tested the filename for generated ELF files is structured as follows:

<original_filename>_<address_in_file>_<bit_number>.

3.2.2 Tweaks added to the Framework

As our framework reports all accessed memory areas, we apply some tweaks to these reported
memory areas generated with Pin. The additions help us to either filter unnecessary flips and also
to add memory areas which would be missed by instrumentation as they are only accessed during
the setup phase of the program.
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1 extern const char * __progname ;
2

3 __attribute__ (( constructor )) void init(void)
4 {
5 if(! strcmp (__progname , " instrumented_program "))
6 {
7 size_t i = 0;
8 while(i++ < 600000000) ;
9 }

10 }

Listing 3.3: Code of the preloaded library to keep the process waiting for some milliseconds, which gives enough
time for Pin to attach to the process.

Filtering Memory Accesses

As seen in Listing 3.2 we log accesses separated by reading and writing. This separation is done
to apply a simple filter on the reported memory areas. It is not practical to test a memory area
which is written before being read, as the program will overwrite the memory area before a bitflip
would influence the execution path. We, therefore, test memory areas which are either only read
or read before write access.

Testing flips in the ELF structure

As described in Section 2.1.3, the ELF structure contains information for the linker on where to
load different segments of the binary in the virtual address space. Applying flips in this section
could lead to misplaced libraries or different offsets for segment mappings. A call of a function
might result in executing different code as intended and lead to a different outcome of the program.
Therefore, we also test each bit which is used for representing ELF structures.

Instrumenting Binaries Running as Superuser

Some binaries behave differently when being run by a superuser. For example sudo is a setuid
binary owned by root, therefore the active user running the binary is root. If Pin is running
as a regular user, it is not allowed to access the memory of a superuser's process, it, therefore,
cannot instrument sudo. Running Pin as superuser is possible, but starting sudo as root does not
trigger any authentication checks, as the calling user already got superuser permissions, therefore
a change of the current user is not required.

Therefore, we use the attach-to-process functionality of Pin to bypass this behaviour. In that
way, we can start sudo as a regular user and run Pin as superuser. We would start sudo and
then attach to the resulting process ID. The problem here is that getting the process ID takes
time and during that time sudo could already perform accesses which then would be missed
by instrumentation. Therefore, we preload a shared library which keeps the sudo program in a
defined state for some time to give the framework enough time to look up the process ID and
instrument all relevant code parts.
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Listing 3.3 shows the code used to generate such a preloaded library. We use the counting while-
loop instead of a call to the sleep system call because attaching Pin to a process in sleeping state
results in a state where the process cannot wake up again. We also experienced the same issue
with debugging tools on our Linux-based environment, such as gdb. The number of increments in
the loop was chosen to have enough time to search the process ID and attach to it. The compiler
attribute constructor makes sure the program executes this code on loading the library before
any other code. We add the path to our library to the /etc/ld.so.preload file, which makes
sure the library is preloaded by any executed program. The name of the executable is checked in
Line 5 of Listing 3.3 to only execute the while-loop when the binary is our instrumentation target.
Otherwise, all executed programs would execute the time-consuming while-loop during startup.

3.2.3 Comparing our Approach to other Techniques

Our described approach for finding exploitable bitflips is built on a simplified fuzzing-like approach.
We want to look at other ideas we tried to adapt or use for the searching and argument on why
we stuck with our described framework.

Symbolic Execution

angr [91] offers many tools and functions for binary analysis and symbolic execution. For this,
it can load a binary, search all possible states and provides locations in the executable where a
state has more than one possible successor. angr allows searching for inputs and arguments which
would end up in a state defined as successful. This state could either be defined by an address
reached during execution or on the output of the program. The approach angr seems useful for
our task of searching bitflips to change to a success state. However, angr is very limited when
changing the executed machine code to find new states. It works well for finding inputs for the
program to result in a success state. Testing bitflips with angr results in a limited application of
the tool's possibilities, where the binary is loaded, a bitflip is applied, and a single run is made
which is then checked if it ends up in the defined success state. Changing inputs or arguments
will not be tested. angr could be used to test bitflips, but the time needed would be about 10 to
15 times longer than our approach, because of the time it takes angr to load the program and its
libraries.

Using AFL

Fuzzers like AFL [100] test programs by applying different forms of input and generate those
applying a form of edge coverage to learn from changes from the control flow. AFL uses instru-
mentation to document the program's control flow and adapt its test cases based on changes
of it. AFL offers source code based instrumentation, which might not be suitable for testing
bitflips in binaries as with that approach, the tested executables would change. According to their
documentation [99], AFL also offers instrumentation of binary-only applications. Here they use
the QEMU processor emulator [6] as a userland virtual machine. They state in Section 4 of the
documentation [99], that in this mode execution is 2-5 times slower than for the compile-time
instrumentation approach.

36



3 Bitflip Attacks on ELF Files

For testing bitflips, the adaption of test cases can be ignored, as we always stick to the same
environment and external inputs. The AFL techniques to learn from control flow changes could
be adapted but as we do not want to build on source-based instrumentation because of binary
changes the additional execution time for their binary instrumentation made the AFL adaption
not practical.

Using an AFL-like Approach

The described instrumentation based fuzzing of AFL can be adapted for instrumentation based
bitflip testing. We used Intel Pin [7] for this approach, as it is the best performing tool for
binary instrumentation. The implementation would instrument every instruction of the program,
fork multiple times. One time for each bit in the instruction and the addressed memory by the
instruction. After the forks, individual bitflips are applied to the memory of the new processes, and
the new processes continue execution without instrumentation. The outputs of the new processes
are then checked for resulting in a successful state.

This approach turned out to be practical and performed well enough for simple programs.
However, we ran into problems with applications which had the setuid property and the solution
we described in Section 3.2.2 did not work for this implementation. Looking at the execution times
for simple programs they were just a little lower, about 5 % as for running pre-generated binary
files. However, the time needed for the generation would be saved, and the memory footprint
would be lower as the processes memory would be copy-on-write. We decided to not go with this
approach, as we wanted to test all kind of binaries, also setuid ones, such as sudo.

For our framework, we generated the binaries containing the bitflip still in DRAM memory, to
speed up the procedure of copying and applying a bitflip. This generation phase of the framework
showed to take less than 1 % of the whole testing process time. Therefore, running multiple
generation phases, because of the increased memory usage, was accepted as a downside of our
chosen testing approach.
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4 Case Study: Rowhammer targets in real-world
Applications

In this thesis, we want to apply the framework to larger, real-world applications, with realistic
bitflip targets. As Gruss et al. [15] already showed, there are bits in the sudoers library which,
when toggled, allow using sudo without or with a wrong password to still gain the privileges of
a superuser. We show that our framework can find a larger number of exploitable bitflips. We
present the results of the framework applied to real-world applications, which are commonly
used in GNU/Linux operating systems. In this section, we present all the applications we tested,
the pre-defined outcomes, and the bitflips leading to the desired behaviour. For the results, we
discuss how many exploitable bitflips were found, in what memory section they were and if in
an instruction, in which part. In the end, we want to give some statistic about the exploitable
bitflips and also point out the ones which were exploitable in multiple applications.

For testing, we used a Debian GNU/Linux 9.5 operating system. The testing environment inside
the chroot used the same. The CPU used was a Intel(R) Core(TM) i7-960 and a total of
16 GB DRAM memory was installed.

4.1 sudo - Privilege Escalation

sudo is a tool used for privilege management on Linux-based operating systems. Users can use it
to execute commands as another user, if the tool's configuration allows it, also as the superuser
root. For the tool to run the given command as another user, the user has to provide their
password.

We want to find all exploitable flips which allow an attacker to run sudo without knowing the
password. This exploit results in a privilege escalation as the user can become superuser with a
bypass of the credential check.

For testing we call sudo and provide a wrong password for the credential check. As command we
provide reading a file which is owned by root and can not be read by the calling user. We define
the success state as the call of sudo must print the content of the file owned by the superuser.
We tested version 1.8.19p1 of sudo.

4.1.1 Results

We present 425 exploitable bitflips in total. Table 4.1 shows the ELF files where the flips were
found and also shows how many bitflips were exploitable in different ELF sections. Most bitflips
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ELF File .text .rodata .got.plt .plt Sum of flips:
ld-linux-x86-64.so.2 1 0 0 0 1

libpthread.so.0 2 0 0 0 2
sudo 6 0 0 0 6

libnns_compat.so.2 6 0 1 0 7
libpam.so.0 64 0 0 0 64
pam_unix.so 85 0 0 1 86
sudoers.so 219 35 5 0 259
Sum of flips: 383 35 6 1 425

Table 4.1: List of ELF files used by the sudo(1.8.19p1) program and the number of flips causing privilege escalation
listed per section.

1 351b: 0f 84 90 00 00 00 je 35b1
2 3521: 48 89 ee mov %rbp ,% rsi
3 - 3524: e8 47 dc ff ff callq 1170 <strcmp@plt >
4 + 3524: e8 c7 dc ff ff callq 11f0 <malloc@plt >
5 3529: 85 c0 test %eax ,% eax
6 352b: 0f 85 3e ff ff ff jne 346f

Listing 4.1: Diff for a bitflip applied to libnss_compat.so.2 in order to bypass a user privilege check. The call to
strcmp is exchanged because the offset used for the lookuptable is flipped.

were found in the sudoers library, but also bitflips in the linker (ld-linux-x86-64.so.2) and
the threading library (libpthread.so.0) were exploitable.

We can see that most exploitable bitflips are in the .text sections of binaries, which is the section
holding the executed machine code. The .plt section refers to the Procedure Linkage Table,
which is used to resolve mappings between position-independent functions and their absolute
addresses. Close to the same is the .got.plt section, which represents the global offset table,
which resolves mappings for position-independent code parts.

ELF File opcode parameter Sum of flips:
ld-linux-x86-64.so.2 0 1 1

libpthread.so.0 0 2 2
sudo 2 4 6

libnns_compat.so.2 2 5 7
libpam.so.0 17 47 64
pam_unix.so 36 50 86
sudoers.so 87 172 259
Sum of flips: 144 281 425

Table 4.2: List of bitflips causing privilege escalation in sudo(1.8.19p1) and what they change in instructions.

From the 425 exploitable flips 144 were placed in the opcodes of instructions and 281 were in
parameters. Table 4.2 shows how the flips are divided in that two sections for the different ELF
files. It is shown for all files, that about one third of the flips are applied in the opcodes and the
other two in the parameters.
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Listing 4.1 shows a diff of the libnss_compat.so.2 ELF file, where a call to strcmp is replaced
with a call to malloc by a single bitflip, causing the later jne instruction to behave differently.

Testing the sudo program for exploitable bitflips took about 8 hours of CPU time. The testing
was parallelised and split into 24 chroot environments. Testing all bits in the sudo binary itself
took about two to three times longer with an equal configuration.

4.2 nginx - HTTP Basic Authentication Bypass

nginx is a web server, available on for GNU/Linux operating systems [54]. The tool can be used
to serve websites, and it can also be configured to support basic authentication schemes.

We want to find all exploitable bitflips which allow an attacker to access websites protected with
HTTP basic authentication. Such an exploit bypasses the credential check of the configured web
server, which uses htpasswd for basic authentication, as described in Section 2.4.1.

For testing, we start nginx, wait for the server to go into an initialised state. Then we request a
website protected with HTTP basic authentication, providing credentials containing the correct
username but a wrong password. If the response contains the content of the requested website, we
add the flipped bit to the list of exploitable bitflips. We do not care if the response is malformed.
We rate the response as successful as long as the protected site is leaked by it. We tested version
1.10.4 of nginx.

4.2.1 Results

For the authentication bypass in nginx we can report that only bitflips in the program's binary
itself were exploitable. We can show 298 exploitable bitflips in the executable, where all of them
were found in the .text section of the ELF file.

65 bitflips changed the opcode of an instruction 231 changed parameters. 2 bitflips changed the
execution context of the executable memory area because the instruction length was changed by
the flip and therefore the context was changed. In Listing 4.2 we can see how changing the lenght
of the add instruction can result in a different outcome for the execution.

Testing the nginx ELF files took a total of about 18 h CPU time. Most of this time was spent
during the startup of nginx. For testing, we used 8 testing-chroot instances.

4.3 sshd - Secure Shell Server Login Bypass

sshd is a secure shell server implementation which runs on GNU/Linux operating systems. It is
used together with the ssh client, which allows to log in on remote hosts via the ssh protocol.
According to the documentation [20], not only log in via username and password credentials is
supported, but also public key cryptography can be used for authentication.
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1 2f1365: 00 00 add %al ,(% rax)
2 2f1367: 00 91 7a 0c 00 00 add %dl ,0 xc7a (% rcx)
3 2f136d: 00 00 add %al ,(% rax)
4 2f136f: 00 10 add %dl ,(% rax)
5 - 2f1371: 00 00 add %al ,(% rax)
6 - 2f1373: 00 00 add %al ,(% rax)
7 - 2f1375: 00 00 add %al ,(% rax)
8 - 2f1377: 00 a1 7a 0c 00 00 add %ah ,0 xc7a (% rcx)
9 - 2f137d: 00 00 add %al ,(% rax)

10 - 2f137f: 00 14 00 add %dl ,(% rax ,%rax ,1)
11 - 2f1382: 00 00 add %al ,(% rax)
12 - 2f1384: 00 00 add %al ,(% rax)
13 - 2f1386: 00 00 add %al ,(% rax)
14 - 2f1388: b2 7a mov $0x7a ,%dl
15 - 2f138a: 0c 00 or $0x0 ,%al
16 - 2f138c: 00 00 add %al ,(% rax)
17 - 2f138e: 00 00 add %al ,(% rax)
18 - 2f1390: 0d 00 00 00 00 or $0x0 ,% eax
19 + 2f1371: 40 00 00 add %al ,(% rax)
20 + 2f1374: 00 00 add %al ,(% rax)
21 + 2f1376: 00 00 add %al ,(% rax)
22 + 2f1378: a1 7a 0c 00 00 00 00 movabs 0 x1400000000000c7a ,% eax
23 + 2f137f: 00 14
24 + 2f1381: 00 00 add %al ,(% rax)
25 + 2f1383: 00 00 add %al ,(% rax)
26 + 2f1385: 00 00 add %al ,(% rax)
27 + 2f1387: 00 b2 7a 0c 00 00 add %dh ,0 xc7a (% rdx)
28 + 2f138d: 00 00 add %al ,(% rax)
29 + 2f138f: 00 0d 00 00 00 00 add %cl ,0x0(% rip) <ngx_http_headers_out >
30 2f1395: 00 00 add %al ,(% rax)
31 2f1397: 00 c7 add %al ,%bh
32 2f1399: 7a 0c jp 2f13a7 <ngx_http_headers_out >
33 2f139b: 00 00 add %al ,(% rax)

Listing 4.2: Diff of the disassembly for a bitflip applied to the nginx binary in order to bypass the credential check.
The add instruction is prefixed with a 0x40, which is the Intel REX prefix used to change addressing
modes. This prefix changes the computation before the jump to ngx_http_headers_out at address
0x2f1399.
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1 1341 c5: 74 ad je 134174 <EVP_MD_CTX_cleanup >
2 1341 c7: be 04 00 00 00 mov $0x4 ,% esi
3 - 1341 cc: 49 89 df mov %rbx ,% rdi
4 + 1341 cc: 48 89 df mov %rbx ,% r15
5 1341 cf: e8 dc e5 f3 ff callq 727 b0 <EVP_MD_CTX_test_flags@plt >
6 1341 d4: 85 c0 test %eax ,% eax

Listing 4.3: Diff for a bitflip applied to the libcrypto.so.1.0.2 binary in order to bypass a credential check.
The move from rbx to rdi is exchanged with a move to r15, this changes the parameter for
EVP_MD_CTX_test_flags, which is highly likely to result in a different outcome.

We want to find all exploitable bitflips which would allow an attacker to log into a remote machine
without knowing the correct password of the user. The ssh server is configured to allow accesses
from users using password authentication.

For testing, we start sshd, wait for the server to start and be ready to accept connections. We then
use a ssh client to execute commands in the testing environment via the secure shell connection.
We defined a success state when the output of the client showed a successful login. We verified
the login by executing whoami, which returns the name of the logged in user. We tested version
7.4p1 of the ssh server.

4.3.1 Results

For the used ssh server we can only report working bitflips in the loaded libraries. Additional,
all of the 41 reported exploitable bitflips were found in the .text section of the ELF files. Most
bitflips were found in the libc library. Also, the cryptographic library libcrypto.so.1.0.2 and
the linker contain exploitable bits.

ELF File opcode parameter Sum of flips:
ld-linux-x86-64.so.2 0 1 1
libcrypto.so.1.0.2 0 6 6

libc.so.6 4 30 34
Sum of flips: 4 37 41

Table 4.3: List of bitflips causing a bypass of the credential check in the ssh server and what part of the instruction
they change.

Table 4.3 lists the bitflips exploiting the remote login and also lists what parts of the instructions
are flipped to gain the credential check bypass. We can see that only about 10 % of the bitflips
are in the opcode of instructions, the rest is in the parameters.

In Listing 4.3, we show a diff for the libcrypto library used by ssh. We can see how changing the
function parameters (rdi) for EVP_MD_CTX_test_flags@plt changes the outcome of the libary
call in a way ssh will think it is working with correct credentials.

Testing the ssh server took about 12 h CPU time. A large time of the testing was waiting for the
startup of the server. We ran the tests in 12 parallel test environments.
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4.4 Local Login Bypass

When a local login is attempted on GNU/Linux operating systems, it can be handled via the
login program. The program provides different authentication methods via PAM modules, as
described in Section 2.3.3. The /bin/login binary is checking credentials via a PAM module and
if the given credentials are correct, the login shell for the given user is started with the user as
process owner.

We want to find all bitflips which allow bypassing of a setup where login credentials consist of
username and password. Also, we assume the attacker knows the username but not the password.

For testing, we run the login binary and give credentials containing the correct username and a
wrong password. If the login succeeds, a shell will be started by the program. We run whoami
to check if the login as the provided worked. If so, the bitflip provides a successful state for our
testing. We tested the version 4.4 of shadow-utils, which provides /bin/login.

4.4.1 Results

We show exploitable bitflips in the login binary and loaded libraries. All the 178 exploitable
bitflips were in the .text section of the ELF files. Most flips were found in libraries related to
PAM, which is a major part of the user management in Linux-based operating systems.

ELF File opcode parameter Sum of flips:
pam_nologin.so 0 2 2

pam_securetty.so 0 5 5
libpam.so.0 11 39 50

login 14 42 57∗
pam_unix.so 30 34 64
Sum of flips: 55 122 178∗

Table 4.4: List of bitflips causing a bypass of the credential check in the local login service and what part of the
instruction they change. (∗) One bitflip in the login binary changed the execution context.

Table 4.4 shows the bitflips which result in a successful bypass of the login credential check,
allowing the login of a user without providing the correct password. We can see that about one
third of the bitflips are in the opcodes of instructions and the others are in the parameters.

In Listing 4.4, we show a diff for the disassembly of the login binary, where the execution
context has been changed by flipping a bit in the mov instruction opcode, resulting in a longer
add instruction and some other pointless instruction calls before the call of test. These changes
provide other values which cause a successful login.

The testing of the local login service took about 35 h of CPU time. This long time is due to
the longer response time by the program itself, which is used as a countermeasure against local
brute-forcing.
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1 4c09: 48 89 e2 mov %rsp ,% rdx
2 4c0c: be 02 00 00 00 mov $0x2 ,% esi
3 4c11: e8 da e3 ff ff callq 2ff0 <pam_get_item@plt >
4 4c16: 85 c0 test %eax ,% eax
5 - 4c18: 89 c5 mov %eax ,% ebp
6 - 4c1a: 75 45 jne 4c61 <freeaddrinfo@plt +0 x1b99 >
7 - 4c1c: 48 8b 3b mov (% rbx) ,%rdi
8 - 4c1f: 48 85 ff test %rdi ,% rdi
9 - 4c22: 74 05 je 4c29 <freeaddrinfo@plt +0 x1b61 >

10 - 4c24: e8 0f e1 ff ff callq 2d38 <free@plt >
11 - 4c29: 48 8b 3c 24 mov (% rsp) ,%rdi
12 + 4c18: 81 c5 75 45 48 8b add $0x8b484575 ,% ebp
13 + 4c1e: 3b 48 85 cmp -0x7b (% rax) ,%ecx
14 + 4c21: ff 74 05 e8 pushq -0x18 (%rbp ,%rax ,1)
15 + 4c25: 0f e1 ff psraw %mm7 ,% mm7
16 + 4c28: ff 48 8b decl -0x75 (% rax)
17 + 4c2b: 3c 24 cmp $0x24 ,%al
18 4c2d: 48 85 ff test %rdi ,% rdi
19 4c30: 74 26 je 4c58 <freeaddrinfo@plt +0 x1b90 >
20 4c32: e8 d9 28 00 00 callq 7510 <freeaddrinfo@plt +0 x4448 >

Listing 4.4: Diff for the disassembly after an exploitable bitflip was applied to the login binary in order to bypass
the credential check. Changing the instruction for mov to an add with addressing modes sets changes
the execution calls until the test instruction is called. These changes affect register values and the
outcome of the program.

4.5 Summary of the Results

We report that all tested programs can be exploited via bitflips. We show that Rowhammer can
be used for privilege escalation and bypasses of security measures in applications provided for
GNU/Linux operating systems. Most exploitable bitflips were in the .text section of ELF files.
Also, we show that not only the program's main binaries contain exploitable bitflips, but also
dynamically loaded libraries are exploitable via bitflips.

Program name opcode parameter context Sum of flips:
sudo 144 281 0 425
nginx 65 231 2 298
sshd 4 37 0 41
login 55 122 1 178

Sum of flips: 268 671 3 942

Table 4.5: Summary of all exploitable bitflips and what part of instructions is changed by them.

As Table 4.5 shows, most of the exploitable bitflips were found in the parameters of instructions.
From our results, only 28.45 % of the exploitable bitflips were in opcodes. What also can be
concluded from our research is, that only a few bitflips exploit the program by changing more
than a single instruction in the ELF file. From our tests only 3 happen to exploit programs in
this way.

For sudo, we found the same exploitable 29 bitflips as Gruss et al. [15] in the sudoers library.
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ELF File shared flips
pam_unix.so 52
libpam.so.0 18
Sum of flips: 70

Table 4.6: Number of flips which work for a login bypass and a sudo privilege escalation.

1 fc64: 41 57 push %r15
2 fc66: 41 56 push %r14
3 fc68: 41 55 push %r13
4 fc6a: 41 54 push %r12
5 - fc6c: 53 push %rbx
6 + fc6c: 57 push %rdi
7 fc6d: 48 83 ec 38 sub $0x38 ,% rsp
8 fc71: 48 8b 05 c8 4c 21 00 mov 0 x214cc8 (% rip) ,%rax <_rtld_global@GLIBC >
9 fc78: 48 83 e8 01 sub $0x1 ,% rax

10 fc7c: 48 89 45 c8 mov %rax ,-0 x38 (% rbp)

Listing 4.5: Diff for the disassembly of the linker binary with a bitflip exploiting the sudo and ssh program. The
bitflip changes the register pushed on the stack.

Besides these bitflips, we show 230 additional exploitable bitflips in the library and also report
multiple other bitflips to achieve the same exploit as Gruss et al. [15] with our automated bitflip
search.

Besides that, we can report that some bitflips can exploit multiple applications. For example,
many flips in PAM can exploit login and sudo as both check against the user management. An
attacker, therefore, could introduce a flip in the libpam.so.0 file, log in as the user and gain
superuser access if the user is allowed to use sudo. Table 4.6 show the shared bitflips between
these two applications.

Also, for sudo and sshd, there was one shared bitflip found, one in the ld-linux-x86-64.so.2
file. The change introduced the by bitlfip is shown in Listing 4.5. The bitflip changes the behaviour
of the linker library and because of this change the outcome of the two programs lead to a
successful state.
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5 Bitflip Attacks on Dynamic Data

In this chapter, we take a look at data created at the runtime of a program and how bitflips
applied to that memory could benefit an attacker. We will go into details about OpenSSL and
how bitflips can enable for instance nonce-misuse attacks. We want to apply a similar attack as
Böck et al. describe in their work about “practical nonce misusage attacks” [29]. By this, we want
to show how Rowhammer can introduce new attack vectors to applications.

5.1 Analysis of OpenSSL for possible Nonce Misuse Flips

We look at the implementation of AES-GCM inside OpenSSL. We see the general AES-GCM
context struct in Listing 5.1. Additional to that, we take a look at the cypher-context struct in
Listing 5.2. The connection between those two is the initialisation vector iv which is updated on
each call of the GCM function.

To apply the described attack by Böck et al. [29], we require the iv to be reused by multiple
GCM calls. OpenSSL uses a counter for the iv for AES-GCM instead of a random value, flipping
a bit to zero in the iv causes a decrement of the counter which makes reuse likely. The counter
starts at a random value and is increased after. Therefore, a flip in the lower bits is more likely
to result in reuse of the nonce. Böck et al. [29] state that this reuse constitutes breakage of
the cryptography for future messages and the attacker can craft valid ciphertexts and overtake
sessions. For the attack with Rowhammer, we target the iv array in the EVP_CIPHER_CTX struct,
as seen in Listing 5.2.

5.1.1 Likelihood of a Nonce-Misuse introduced by Rowhammer

Lipp et al. [51] show that it is possible to send network requests which cause memory accesses
that induce Rowhammer faults. With this knowledge and the possibility of nonce-misuse attacks
in OpenSSL via bitflips, an attacker could overtake TLS sessions with only remote access.

Looking at the OpenSSL source code, we can see that for each TLS connection at least these two
context structs are generated. There is one general SSL struct needed, one AES-GCM context
struct and two cypher contexts, as one is used for sending and one for receiving. The working IVs
make 32 byte of this memory. The sum of the structs for one TLS connection is 1960 byte. If we
fill the DRAM with just these structs, Only 1.5 % of the memory would hold IVs. Therefore, the
attack is already quite unlikely to succeed. As also, only lower bits should be flipped, to make a
nonce counter reuse likely. We cannot just hold these structs in memory, and operating systems
usually limit the number of parallel TLS connections.
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1 typedef struct {
2 union {
3 double align;
4 AES_KEY ks;
5 } ks; /* AES key schedule to use */
6 int key_set ; /* Set if key initialised */
7 int iv_set ; /* Set if an iv is set */
8 GCM128_CONTEXT gcm;
9 unsigned char *iv; /* Temporary IV store */

10 int ivlen; /* IV length */
11 int taglen ;
12 int iv_gen ; /* It is OK to generate IVs */
13 int tls_aad_len ; /* TLS AAD length */
14 ctr128_f ctr;
15 } EVP_AES_GCM_CTX ;

Listing 5.1: Struct used by OpenSSL to describe the AES-GCM context. The IV used is stored in the memory
pointed to by iv. Source is taken from OpenSSL version 1.1.0g

1 struct evp_cipher_ctx_st {
2 const EVP_CIPHER * cipher ;
3 ENGINE * engine ; /* functional reference if
4 * ’cipher ’ is ENGINE - provided */
5 int encrypt ; /* encrypt or decrypt */
6 int buf_len ; /* number we have left */
7 unsigned char oiv[ EVP_MAX_IV_LENGTH ]; /* original iv */
8 unsigned char iv[ EVP_MAX_IV_LENGTH ]; /* working iv */
9 unsigned char buf[ EVP_MAX_BLOCK_LENGTH ]; /* saved partial

10 * block */
11 int num; /* used by cfb/ofb/ctr mode */
12 /* FIXME: Should this even exist? It appears unused */
13 void * app_data ; /* application stuff */
14 int key_len ; /* May change for variable length cipher */
15 unsigned long flags; /* Various flags */
16 void * cipher_data ; /* per EVP data */
17 int final_used ;
18 int block_mask ;
19 unsigned char final[ EVP_MAX_BLOCK_LENGTH ]; /* possible final
20 * block */
21 } /* EVP_CIPHER_CTX */ ;

Listing 5.2: Context struct describing the Cipher used in TLS. This struct is used as the SSL context inside
OpenSSL. Source is taken from OpenSSL version 1.1.0g
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1 if ( SSL_accept (ssl) <= 0) {
2 ERR_print_errors_fp ( stderr );
3 }
4 else {
5 int run = 1;
6 while(run)
7 {
8 if( SSL_write (ssl , reply , strlen (reply)) < 0)
9 run = 0;

10 sleep (1);
11 }
12 }
13 SSL_free (ssl);
14 close( client );

Listing 5.3: Code showing an example for a simple TLS server, keeping sending a reply until the client disconnects.

5.1.2 Analysis of Practical Nonce-Reuse caused by Rowhammer

We set up two versions for the practical analysis of the nonce reuse, where one uses multiple
processes, and one uses multithreading. In both cases, we implemented a simple endless sending
loop which will keep the TLS connection to clients open and sent a string every second. Listing 5.3
shows the code parts used in both cases. The code makes sure the connection will send the reply
every second, as long as the client accepts the write.

For our tests, we set the cypher suite to ECDHE-RSA-AES256-GCM-SHA384 during the TLS hand-
shake, by this, we make sure the described GCM structs are used by OpenSSL.

For our experiments, we had a memory increase of about 5440 byte for each forked process. With
threading, the increase was slightly less. We never achieved filling a larger of the memory with
TLS structs so that we came near the 1.5 %. Thus, the probability in practical implementations is
therefore even lower. If it is possible to get 1000 parallel connections, with 5440 bytes each, with
32 bytes in initialisation vectors, it will result in 5.19 MB of memory representing TLS connections,
with 0.59 % of this being IVs. In a server setup with 4 GB of DRAM, the IVs would only occupy
74.5× 10−6 % of memory. Even if an attacker could gain knowledge about the 4 kB pages used to
store TLS structs, it would be difficult to hit IVs with Rowhammer. Given this knowledge, we
can conclude that a remote attack on TLS nonces with Nethammer is very unlikely to succeed.
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In this chapter, we discuss countermeasures. First, we look at countermeasures against microar-
chitectural attacks in general. Secondly, we look at countermeasures against Rowhammer. In the
end we discuss measures that make our testing less practical, and our results less useful for an
attacker.

6.1 Microarchitectural Attacks

Fixes for microarchitectural attacks can be applied to different layers of a system. The KAISER
patch for kernel page-table isolation by Gruss et al. [16] is applied to the kernel to prevent leakage
of kernel memory by Meltdown [50]. For other attacks, such as Spectre, Kocher et al. [67] state
that lower layers, like the CPU's microcode, have to be fixed. Kocher et al. [67] also state that a
long-term solution to prevent microarchitectural attacks is a fundamental change of instruction
set architectures.

6.1.1 Rowhammer

Besides fixing systems to prevent microarchitectural attacks, it is also possible to prevent the
exploitation of microarchitectural flaws by checking programs for malicious behaviour. Irazo-
qui et al. [26] present a microarchitectural-side-channel-attack trapper (MASCAT), which uses
static analysis of binaries to detect microarchitectural attacks. Irazoqui et al. [26] state character-
istics of attacks and what code parts indicate a microarchitectural attack. To detect a possible
use of Rowhammer, MASCAT checks for cache evictions in binaries. Irazoqui et al. [26] show that
using clflush in a loop is likely part of a Rowhammer attack. Also, monvnti and movntdq are
listed as suspicious, as these instructions allow direct access to the DRAM and bypass caching
mechanisms. Besides looking for these instructions, Irazoqui et al. [26] also state, that a program
using self-map translation to resolve the mapping between physical and virtual memory is likely
to be a threat to the system as knowledge about this mapping is part of Rowhammer attacks.

Besides statically checking binaries, checking the behaviour of a program also can detect an ongoing
attack. Aweke et al. [102] present a software-based solution to detect ongoing Rowhammer attacks,
namely ANVIL. ANVIL uses hardware performance monitoring to monitor DRAM row accesses.
If a row is accessed repeatedly, ANVIL forces refreshing of neighbouring rows. Aweke et al. [102]
implemented ANVIL as a kernel module for Linux and state that their detection and prevention
system leads to an average slowdown of 1 % and a worst-case slowdown of 3.2 % of the system.

Brasser et al. [22] show another software mitigation against Rowhammer attacks. Their coun-
termeasure prevents an attacker to corrupt kernel memory from user mode. Brasser et al. [22]
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extend the physical memory allocator of the Linux kernel to isolate the memory of the kernel
and the userspace on DRAM storage. The mitigation by Brasser et al. [22], CATT, does not
prevent bitflips from happening but removes the possibility to exploit bitflips in kernel memory.
CATT splits the memory layout into security domains and makes sure that memory from different
domains is not placed in neighbouring rows on the DRAM chip. This placing prevents an attacker
from using kernel memory as a target for Rowhammer.

Gruss et al. [15] show that it is still possible to mount privilege-escalation attacks with such
countermeasures present. For the approach by Brasser et al. [22], they show that the isolation
from kernel memory does not prevent privilege escalation as they introduce bitflips to ELF
files, which then allow an attacker to gain superuser privileges. For defeating static analysis
and performance counter based mitigations, Gruss et al. [15] present attacks based on the SGX
enclave. Gruss et al. [15] state that this defeats performance counter monitoring countermeasures
as executions inside the enclaves are not monitored by the CPU's performance counters.

To prevent exploiting ELF files with bitflips introduces to the storage devices operating systems
can store a hash of the executables and check the checksums before execution. Bitflips attacks on
storage devices are described by Kurmus et al. [4]. Cai et al. [94] show how MLC NAND flash
memory devices can be targeted to introduce exploitable memory corruptions to solid-state drives.
Checking the hash of the executable before execution would detect such a change of the ELF file
and can prevent the execution of a binary containing an exploitable bitflip.

6.2 Making Bitflip Testing Less Practical

With our testing framework, we can search for exploitable bitflips in ELF files which are identical
for every user of the software distribution. For example, the same exploitable bitflips have the same
position in all installations of the current version of the Debian operating system. Distributing
randomised ELF files would make the search for exploitable bitflips harder as an attacker would
need to run the search framework for each target.

However, randomised binaries would not comply with the current trend of research in the field
of reproducible builds. The Debian-close organisation reproducible-builds [9] works on making
building packages for Debian reproducible. With their techniques, it is possible to produce the
same binary using the same compiler, build configuration and same source code. Reproducible
builds make binary changes detectable and allow a bit-by-bit verification of the full build chain.
Consequently, changes or backdoors introduced by a malformed compiler or linker are detected.

Reproducible builds can also help to introduce other countermeasures against Rowhammer. The
operating system can verify ELF files by using stored checksums. Suh et al. [24] show how memory
integrity verification can bring a similar check to programs at runtime. Gelbart et al. [59] present
a secure program execution environment (SPEE) providing static verification before execution and
code block verification at runtime. During compilation, SPEE adds a signature and hashes to each
ELF section of the executable. The operating system checks these additions before performing the
execution. To allow checking during runtime, SPEE adds a security module to the Linux kernel
which performs additional checks during execution. Andre Rein [71] present a software component
for dynamic runtime integrity verification and evaluation (DRIVE). DRIVE adds monitoring for

50



6 Countermeasures

memory changes during the runtime of a program. It uses data gained from the ELF file to check
the memory of the process during the runtime.

Encryption of binaries can be seen as a countermeasure against exploitable bitflips, if decryption
happens on each access to the file content based in DRAM. If a bit is flipped inside an encrypted
ELF file, decryption is likely to produce garbage machine code for the CPU to execute, meaning
the program would crash in case of an applied bitflip.
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In this chapter, we present an outlook for attacks in the field of Rowhammer. We derive possible
future attack vectors from current trends. We also look at combinations of attacks, where
Rowhammer could reintroduce exploits, especially regarding attacks in cryptography. Finally, we
find possibilities to extend our testing framework in future works.

7.1 Future Work regarding Rowhammer

Kim et al. [93] state that it is not possible to make definitive claims on how word lines interact
in DRAM chips and how the bitflips happen in detail. Kim et al. [93] also state that there are
possible ways of interaction based on their studies and findings but research of DRAM chips at
the device-level, regarding Rowhammer, is still missing.

While vendors could fix the exploitation in DRAM chips, by increasing refresh rates or built
non-load-leaking chips, there is other hardware which already faces similar issues, as Cai et al. [94]
show for MLC NAND flash memory used by solid-state drives.

We show how nonce misusage can be introduced by single bitflips to target an AES-GCM
implementation. Attackers could use this idea to target other cryptographic implementations as
well, especially those using counter nonces.

We show all exploitable bitflips in binaries to achieve a defined outcome of a program. We aim to
find all exploitable bitflips in a time way slower than testing all bits in a binary. Searching for a
single bitflip to achieve the same outcome in a short time is another research task for the future.

7.2 Improving and Reusing our Framework

For attacks based on memory accesses, we can take away that tools such as Pin [7] or angr [91]
will be a significant factor for analysis. The work of Chabbi et al. [47] could also be taken to
improve our testing framework as they provide an even more in-depth view of execution paths
in binaries. By using such detailed graphs, more bytes-to-test could be filtered, speeding up the
framework.

On the other side, we can view our framework as a base implementation for other test environments
for parallel testing use cases. The environment is easy to adapt, and developers can exchange
single components without much effort. Testing inside chroot could be changed to container
environments like Docker [30], to provide more safety or better abstraction of the host operating
system. Also, virtual machines could be used, if the software has to be tested on other kernels
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or operating systems. The testing scripts could be replaced to work with multiple input files for
a program instead of different binaries. This would make it possible to use the framework as a
basis for a fuzzer. Even a combination with fuzzers would be possible, as the framework could
be combined with afl [100] to provide a parallel fuzzing framework, which would either allow
fuzzing in multiple environments or as a general way to parallelise afl.

Instead of instrumenting binaries with Intel Pin, replacements or other sources for analysis could
be used. For instance, the QBDI [69] tool for dynamic instrumentation could be used instead,
which supports a wider range of software architectures, such as x86_32, and AArch64. Also,
QBDI supports instrumentation on the Android platform used by mobile phones. Additionally, a
complete open source solution for instrumentation is available in DynamoRIO [17], which could
also replace Pin.
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8 Conclusion

We have shown that the Rowhammer bug is still relevant to system engineers and that users and
vendors need to be aware of this issue.

We present a framework to test any binary to find bitflips which change the execution path to
a given, pre-defined outcome. We apply this framework to programs available for GNU/Linux
operating systems. We gain privilege escalation by exploiting sudo, bypass the credential check
for local and remote login measures, and bypass HTTP basic authentication implemented by the
nginx web server.

For sudo, Gruss et al. [15] show 29 bitflips which yield privilege escalation, which they find by
manual analysis of the ELF files used by the program. We show that our framework finds over 10
times more bitflips gaining the same outcome in a few hours of testing time.

Besides searching for exploitable bitflips in ELF files, we also look at the consequences of bitflips
applied to memory generated and used at the runtime of programs. As an example, we show how
bitflips can introduce nonce reuse in the AES-GCM implementation of OpenSSL.

We present a summary of countermeasures already applied to systems against Rowhammer and
how developers need to extend them. Also, we discuss measures which make systems more secure
by checking the ELF files before execution, or check the memory of the process during the
runtime.

We close with a recommendation for vendors of hardware, such as CPUs or DRAM chips,
that besides increasing performance and space reduction, also the security of products should
be improved. Hardware vendors and researchers should work together more often to find new
microarchitectural flaws in hardware, and thereby improve the security for users.
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