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Abstract

Transport mode detection (TMD) is the process of recognizing the means
of transportation (such as walking, cycling, driving, taking a bus, riding a
metro etc.) by a given sensory input. When this input consists exclusively of
audio data then it is called acoustic TMD.
This thesis recherches and presents the methodology for creating datasets,
which fulfill all critical requirements for the highly complex task of acoustic
TMD. It provides a step-by-step guideline on what needs to be considered
when designing, producing and enhancing the dataset.
In order to compile this guideline a recording application was developed,
a 9-class dataset with over 245 hours of recordings was created, and experi-
ments were run using this dataset. Those experiments aimed to shed light
onto the required number and diversity of recordings, the ideal number of
total classes, what is an appropriate sample length, how to remove samples
of low quality and which evaluation strategy should be used. Finally, exist-
ing external datasets were used to evaluate the classification capabilities.
With the help of our findings it should be easier for future projects to create
their own acoustic datasets, especially for TMD.
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1. Introduction

Since their introduction a decade ago, smartphones have rapidly gained in
popularity. Nowadays most people own a smartphone. These devices are
usually taken everywhere their owner goes. This opens up a market for
context sensitive applications.

In order for those applications to work, the phone has to be able to make
predictions about its environment. Since smartphones are equipped with
several sensors (accelerometers, GPS, compass etc.) there are many possibil-
ities how this can be done. One possibility is to use audio data which can
be gained form the microphone.

When using audio data only the task to determine which environment a
given recording belongs to is called acoustic scene classification (ASC). ASC
can be a form of transport mode detection (TMD) when the environments
(the acoustic scenes) are all means of transport (for example bus or train
etc.). One use-case of TMD is to provide more relevant information to the
user for example by providing traffic information when in a car or inform
about delays when in trains. Another use case is to trace back the users
taken path by using TMD in combination with real place detection.

Phones as well as computers have been becoming more and more powerful
which has allowed advances to be made in many fields. Among them is
the field of machine learning, where deep neural networks (DNNs) have
become widely adopted even though they have their limitations and are not
safe against adversaries [22]. Convolutional Neural Networks (CNNs) are a
type of DNNs which have been proven to work for a range of applications
such as image classification. They are also applied to ASC and TMD tasks.
In general they are very robust and can handle a lot of noise but they also
require large amounts of training data.
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1. Introduction

We developed Android application to ease the creation of a dataset for
acoustic TMD. The source code of this application is publicly available
online1. The created dataset has 9 classes and consists of a total of 245 hours
of recordings. The recordings were made in different cities, by different
people, using different smartphones. After its creation the dataset has been
analyzed and processed to obtain better results in a TMD task.

The EU has recently passed a law called General Data Protection Regulation
(GDPR) which took effect in May 2018. This makes it very hard for any
EU based research group to publish their acoustic TMD datasets since they
usually contain voices (or other identifiable sounds) from other people. A
dataset that can be published would have to be post-processed to remove
those sounds or to be created in a controlled environment (for instance
empty buses). However, both of those strategies would result in a dataset
that does not represent a real world environment. Thus strategies on how
to create an acoustic TMD dataset are discussed but the dataset will not be
published.

The following research question is the basis for this work:

What is an effective way to design and create a dataset that can be used
for acoustic transport mode detection?

The main focus of this thesis is to provide a set of guidelines that are useful
when it comes to creating an audio dataset for transport mode detection.
This is done in two phases. The first phase is the recording phase where the
audio data is gathered. It tries to answer the following questions: What can
be done to simplify the recording procedure? How many different classes
should be chosen? How much data should be acquired? What are the quality
requirements of the recordings? How diverse do the recordings need to be?
The second phase is the processing phase where the given data is analyzed
and filtered to yield better results. It deals with questions such as: How
to detect mislabeled recordings? What is an appropriate sample size to
split the recordings into? How to detect and remove samples that do not
represent the class? How to handle high inter-class variability, low intra-class
variability and ambiguous classes?

1 https://github.com/aschmidhofer/TMDAudioRecorder
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Chapter 2 provides an outline of previous work done on the subjects of
dataset creation as well as transport mode detection. Chapter 3 discusses
the principles and implementations used. Chapter 4 contains the results
and their evaluation. The findings and lessons learned are compiled into a
guide which is presented in chapter 5. Finally, a conclusion can be found in
chapter 6.
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2. Related Work

This chapter discusses previous work as well as the state of the art of the
different aspects of the thesis. Background on the topics of transport mode
detection (TMD), acoustic scene classification (ASC) and dataset creation is
provided. The two search engines Google Scholar1 and Scopus2 have been used
to find publications on those topics. The selection given in this chapter is by
no means exhaustive but should include the most relevant publications.

2.1. Acoustic Scene Classification

In 1995 Saint-Arnaud [27] described longterm audio events such as rain or
the sound of crowds as Sound Textures. Their thesis tried to classify such
Sound Textures using a clustering approach. Their main focus however was a
comparison with the human perception of Sound Textures.

Sawhney from the Speech Interface Group of the MIT Media Lab [28]
worked on classifying environmental sounds. In their study from 1997 they
used frequency bands from filter-banks as features and nearest neighbor
classification, as a result they were able to obtain a 68% accuracy on a 5

class problem.

In 2003 Eronen et al. [7] used mel-frequency cepstral coefficients (MFCCs) as
feature sets and a 2-state fully connected hidden markov model (HMM) for
classification. They reached recognition rates of 61% on 18 classes and 86%
when using 6 higher level categories. They also conducted a study on human
recognition ability which outperformed their system by reaching 64% and

1https://scholar.google.com/
2https://www.scopus.com/
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90% respectively. MFCCs are still widely used in ASC tasks nowadays
because they provide a good representation of the spectral properties of the
audio signal.

Additional to the MFCCs and HMMs Eronen et al. [6] performed linear
data-driven feature-transformations such as PCA and ICA to increase classi-
fication accuracy. Furthermore they tested different sequence lengths and
found that they converge after 30s to 60s. On a data set with 24 classes
they achieved a maximum of 72% accuracy. A 50% accuracy can already
be reached with a sequence length of 400ms. Humans were able to classify
69% with an average reaction time of 14s. Those findings are relevant to us
because finding an appropriate sequence length is one of the sub-tasks of
this work.

A convolutional neural network consists of one ore more pairs of convolution
and max-pooling layers and one or more fully connected layers that perform
the classification in the end. Abdel-Hamid et al [1] have used principles
of CNNs for speech recognition which is a similar problem as ASC. They
have used a hybrid model where CNN handles the frequency domain and a
HMM the time domain. The results showed an improvement in recognition
performance which lead to further studies being conducted on CNNs on
audio data.

In 2013 Sainath et al. [26] analyzed which architecture and feature vectors
produce the best results when performing speech recognition with CNNs.
They found that two convolutional and four fully connected layers, as well
as a pooling size of three, works best for their tasks. Their CNN showed
a relative improvement of 13-30% compared to a baseline GMM. The two
CNN layers seem to work well as this architecture of CNNs is still found in
state of the art systems.

The key to a good study is its reproducibility. Vandewalle et al. [34] suggest
that data as well as algorithms should be made publicly available. Following
this initiative, Stowell et al. [33] introduced a challenge in detection and clas-
sification of acoustic scenes and events (DCASE). The first DCASE challenge
was released in 2013 providing a dataset as well as baseline algorithms. This
was important for the field of ASC, since a research community formed
around this challenge. Most of the submissions to the challenge used an
SVM as the final classifier.

6



2.2. Transport Mode Detection

The DCASE challenge has become an annual event with repetitions in the
years 2016, 2017 and 2018. It always contains several tasks, one of which is
always in the field of ASC. In 2016, most of the submissions which solved
the ASC problem used MFCCs as features and CNNs as classifiers [20]. The
best performing approach was delivered by Eghbal-Zadeh et al. [4], who
fused a deep convolutional network on spectrogram data with binaural
i-vectors on MFCC features. It should be mentioned that several approached
reached similar accuracy using traditional machine learning techniques like
SVMs [15], but a trend towards CNNs can be observed.

The state of the art in ASC is demonstrated by research solving task 1 of the
DCASE 2017 [19]. The best performance on the validation set was achieved
by the algorithm of Mun et al. [21], who used SVM and a fully connected
neural network as classifiers. However, what had set them apart was the
use of generative adversarial networks to generate additional training data.
The other two approaches in the top 3 both used CNNs for classification.
Han et al. [11] worked on log-mel energies whereas Weiping et al. [37]
combined standard spectrograms with CQT spectrograms. Most approaches
that perform well in the ASC challenge combine several features and/or
classification strategies to achieve the best results.

As by the time of writing, the DCASE challenge 2018 is still ongoing.
Therefore, the results have not yet been published. However, the baseline
system which was released with the challenge [18] is a state-of-the-art ASC
approach. As it is a comparatively light-weight algorithm, and the code is
publicly available, it is used as the basis for classification in this work.

2.2. Transport Mode Detection

In the era before smartphones, transport mode detection was performed
using GPS data only. Zheng et al. [40] used GPS enabled devices to collect
data. From that data, they were able to gather information about the mode
of transportation using decision trees. They distinguish between four modes:
walking, car, bus and bike. The knowledge they obtained is used to improve
geographic applications on the web.

7
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Smartphones allow for access to various sensory data, which lead to most
TMD procedures to use a combination of GPS and accelerometer data. Reddy
et al. [25] used GPS and accelerometer to classify the modes of stationary,
walking, running and motorized travel. Classification was performed using
a decision tree followed by a discrete hidden markov model (DHMM),
achieving 93.6% accuracy.
Widhalm et al. [38] generated features using GPS and accelerometer data. A
combination of randomized ensemble of classifiers and a DHMM were used
for classification. They differentiate between eight transport modes (bus, car,
bike, tram, train, subway, walk and motorcycle) and report an accuracy of
78%.

A study conducted by Wang et al. [36] use only accelerometer input to
predict the mode of transportation. They supported the following 6 classes:
bike, bus, car, stationary, subway and walking.
Two years later Hemminki et al. [12] improved the classification, using
accelerometer only for the following 7 classes: Stationary, walk, bus, train,
metro, tram and car. They introduced features which better characterize
acceleration and breaking patters of motorized transport. The mean pre-
cision and recall recorded were above 80% which means their approach
outperformed those by Wang (around 60%) and Reddy (which reach 66% in
a comparable setting).

One of the rare studies that uses audio for TMD was done by Lee et al.
[16]. They developed a system called VehicleSense which uses accelerometer
input to provide triggers for the classification performed with audio data.
Their system claims to have an accuracy of 98.2% on a 5-class problem
(stationary, walking, bus, taxi, subway). For sound classification a standard
SVM-based machine learning approach is used. To improve the classific-
ation results. a pre-processing strategy is applied. The frequency space
is transferred from the standard herz scale to a transformed scale. Sev-
eral different scales have been analysed (including MFCC and LFCC) and
the one providing best results (which they called Steep) was used as pre-
processing. VehicleSense only requires samples of 0.5 seconds to perform a
classification.

In their review [23] Prelipcean et al. put TMD papers into three groups: Loc-
ation Based Services (LBS), Transportation Science (TSc) and Human Geography

8



2.2. Transport Mode Detection

(HG). The first group (LBS) tries to determine the mode of transportation in
as close to real time as possible to provide the user with useful information.
In those scenarios the device predicts the transportation mode based only
on the data which is collected at the moment. Possible use cases would be
to inform the user of relevant traffic jams, weather reports, or time tables
for public transport. The second group (TSc) has its focus on reconstructing
the mode of transportation taken given a recording of sensory input. The
result are travel diaries, which can be used to study how people are trav-
eling, and assess the impact of infrastructural changes. In the third group
(HG), not only the transportation mode is predicted, but also segments with
domain-specific semantics. One basic segmentation is whether the subject
(be it person or vehicle) moves, or stands still.
As for our work, the classification problem is of type LBS, even though the
actual implementation follows TSc strategies, since at the point of classifica-
tion the recording has already been made. However, after the training phase
the classification could be performed on live data, which would make it a
LBS use case.
The paper also outlines the difficulty of generating a dataset (i.e. collecting
data) and having a benchmark dataset which is agreed upon by the scientific
community. The main complications mentioned are the magnitude of the
collection, the willingness of users to record and share their data and the
legal efforts to publish such a data set.

Fang et al. [8] improved upon previous techniques by introducing improved
features for data recorded on accelerometer, magnetometer and gyroscope
of a smartphone. They used three machine learning algorithms: decision
trees, k-nearest neighbor (KNN) and support vector machines (SVM), and
compared their performances. In addition to transport mode detection on
ten classes (still, walking, running, biking, motorcycle, car, bus, metro, train,
HSR), they also performed vehicle mode detection on the 6 vehicle classes.
KNN performed best for vehicle mode detection and for TMD both KNN
and SVM show comparable results.

Since there is no public benchmark data set available for TMD, it is difficult
to determine which approach yields the best results. However, the segment-
based approach proposed by Guvensan et al. [10] is among the overall best
performing. Their algorithm takes input from accelerometer, gyroscope and
magnetometer sensors of a smartphone. The novelty of their approach is

9
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to first distinguish between pedestrian activity (walking, stationary) and
vehicle activity (bus, train, etc.). This allows them to get a high accuracy on
the walking class, which is a key element for their post processing: the heal-
ing algorithm. Without post processing they reach a recall of 84.4% (which
already outperforms the 83.6% by Fang et al. [8]), but after applying the
health algorithm the recall is as high as 91.6%. The key idea of the healing
algorithm is that the mode of transportation does not change rapidly, but
there are usually longer periods on the same vehicle and usually during a
change the person in walking. With those two assumptions the algorithm
replaces misclassified windows. On their own dataset they were able to
achieve an overall recall rate of 94.5%.

In 2017 Liang et al. [17] finally published a deep learning approach for TMD.
They used a CNN with 6 convolution and max-pooling layers, one fully con-
nected layer and one classification layer. Since they only used accelerometer
input their data collection is comparatively lightweight compared to other
approaches. An accuracy of 94.5% is achieved using this approach, which
outperforms all traditional machine learning models. This demonstrates,
once again, the potential of CNNs for TMD.

2.3. Dataset Creation

The book Designing and Conducting Health System Research Projects [35] has a
whole chapter on data collection techniques. Even though it is written for
medical research, the core concepts also apply to other fields. They state
that there are different data collection techniques that can be used: using
available information, observing, and interviewing. In the context of the
creation of an audio dataset, one also has the choice to use available data
from other research projects or extracted it from public data. Alternatively
the data can be recorded in the field. As with conducting interviews, this
is more expensive, but it can be tailored to the very needs of the research
project. To keep costs low, but still gather enough data, a combination of
both approaches can be used.
Furthermore, the book provides a list of sources of bias that might influence

10
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data quality. First on the list are defective instruments. This also applies to
audio data since recording devices have different directionality patterns,
frequency responses, and might even add a specific level of noise. Second
on the list is the observer bias, which states that the data collector will miss
information that they are not interested in. Although this is less common
when recording audio data, it is still possible that the person operating the
microphone does not deem something worthy of recording, even though
it would be crucial for the study. Third item on the list is the effect of the
interview on the informant. In the context of an audio recording this would
be the presence of the microphone, which might influence the people around
it who realize they are being recorded. The final item is the information bias.
Sometimes the data was created for a different purpose, or is incomplete,
which results in a bias. This is important to note when available data is
used, but also when it is newly created. One example in the context of
TMD is that buses are more busy at rush hour, so if the recordings are only
made during that time they will have a bias. Those four biases should be
considered before a dataset is created.

Homburg et al. presented in [13] how to create an audio dataset from data
publicly available on the Internet. They crawled about two thousand songs
from Garageband3, a website that allows artists to upload their music and
others to download it for free. For each song, a 10 second representational
sample was extracted at a random position. The songs were classified into
9 music genres. Additionally to the sample and the label, some metadata
(title, artist, length etc.) is stored. The dataset was intended as a benchmark
for audio classification tasks. A benchmark algorithm was described and
features were extracted. Those temporal, spectral and custom developed
features are also part of the dataset.

A free and open dataset with a focus on acoustic scenes, rather than music
was created by Stowell et al. [32] in 2013. They downloaded tracks form the
audio archive Freesound4, which contained the tag field-recording. Samples of
10 seconds in length were extracted from those tracks and stored alongside
some metadata, including further tags (such as city, train, voice, water etc.),
which are used for partitioning. The dataset has a total of 7690 entries. In an

3 GarageBand.com (service was shut down in June 2010)
4 https://freesound.org/
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experiment, they proved that the size is sufficient to perform auto-tagging.

The Million Song Dataset [2] provides features of music tracks on a larger
scale. As the name suggests it contains information of a million tracks.
Each track is described by metadata and acoustic features, such as pitches,
timbre, loudness, tatums, beats, bars and sections. The dataset was created
using The Echo Nest API5, an online resource providing audio analysis and
metadata for music tracks. Since the dataset does not contain audio samples
for the tracks, it avoids the legal difficulties of re-publishing copyrighted
music. However, the use-cases are limited, since further research is restricted
to the features available.

Another example for a dataset being created from available data on a larger
scale is ImageNet [3]. This dataset contains images labeled in a hierarchical
fashion. In its first releasem it contained 3.2 million images in 5247 synsets.
The current version has more than 14 million images in over 21 thousand
synsets. ImageNet has been widely used for image classification tasks (such
as [14] and [29]), because of its high accuracy and diversity.
To create the dataset, images were retrieved using several image search
engines on the web. The cleaning process was performed by humans. To
do this on such a large scale, the service of Amazon Mechanical Turk
(AMT)6 was used. Since humans make mistakes or disagree with each other,
the labeling setup was designed to cope with mislabeling. The resulting
accuracy reported was 99.7%.

In 2017 Gemmeke et al. [9] tried to create a dataset similar to ImageNet,
but for audio events. Their so called Audio Set contains over 1.7 million
10second samples of audio events in 632 classes. The samples were extracted
from YouTube7 videos, which were queried partly using titles and keywords
and partly by an internal video-level automatic annotation system. Those
samples were then rated by humans. Each sample was checked by three
people and a majority vote was applied. More than three quarters of the
samples were identified unanimously, leaving less than a fourth of the
samples relying on majority vote.

5 http://the.echonest.com
6 https://www.mturk.com/
7 https://www.youtube.com/
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To the best of our knowledge there are no studies available that focus purely
on design aspects and creation guidelines of an audio dataset.

2.4. Available Datasets

There are several dataset already publicly available that contain recordings
that can be used for TMD. Even though, for this work our own dataset was
created and used for training and validation, samples of other datasets were
used for evaluation.

One of the first datasets that contained modes of transportation was the one
provided with the DCASE 2013 challenge [33]. It was recorded in London
and split into 30 second samples. The two relevant classes are bus and tube.
Also other classes such as busystreet, park or tubestation can be used to
represent the not a transportation mode class. The dataset contains 10 samples
(5min) per class which amounts to a total of 50 minutes. Each sample
has been handpicked to avoid microphone handling noises. Therefore, the
quality of the samples is high but the quantity is quite low which makes it
ideal for evaluation purposes.

A dataset that contains more different modes of transportation is the LITIS
Rouen dataset [24]. It has 19 classes, 7 of which can be used for TMD: plane,
bus, car, metro of Paris (metro-paris), metro of Rouen (metro-rouen), train
(train-ter) and high speed train (train-tgv). Their selection is comparatively
fine grained since they distinguish between slow and fast trains and metro
lines in different cities. Other classes such as train station or tube station
can again be used to represent no current transportation mode. In total the
dataset contains 3026 samples of 30 seconds in length which amounts to 25

hours of material; 1157 samples (9.6h) belong to the previously mentioned 7

relevant classes.

The DCASE ASC challenges are another valuable source for TMD data. The
2016 challenge contained the classes bus, car, train and tram (among 11 other
classes) all of which were recorded in Finland. The authors of the challenge
have released a development dataset, which contains 78 samples (38min)
per class and (after the challenge was finished) an evaluation dataset with 26
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samples (13min) per class. Furthermore, they specify that each vehicle was
moving when the recording was made (this is something that is not true
for our dataset). In total this dataset holds 208 minutes worth of recordings
that we can use for TMD.
For the 2017 challenge they kept the same classes, but changed the sample
lengths from 30 seconds to 10 seconds. This is interesting, because 10 seconds
of audio seem to contain enough information to perform a classification.
The number of samples was increased to 312 per class (52min) in the
development dataset and 108 per class (18min) in the evaluation dataset.
That yields a total of 280 minutes of audio for TMD.
The dataset for the recent DCASE 2018 challenge also contains modes of
transportation, but they are limited to tram, bus and metro. They kept the
sample size of 10 seconds, so it can be assumed that this length has proven
to provide satisfactory results. In total the dataset holds 8640 samples (24h),
so approximately 7 hours are usable for TMD.

There are several more datasets being used for research purposes on ASC,
such as the one created by the authors of VehicleSense [16]. We requested
access to this dataset, but this was denied, since the data is owned by a
company and there is a privacy issue. Those are usually the reasons for
why it is hard to get create a public dataset. Either the data is owned by
a sponsor who payed for data collection, or the data was collected in an
environment where not every person gave their consent to the recording
being published. The latter is also the reason why we cannot publish the
dataset we create.
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3.1. Dataset Creation

There are two main ways to create an audio dataset: using available audio
data or recording audio. Examples for the former can be found in section 2.3.
Recording new audio data is the more flexible approach which is why
we used it for this project. This section discusses the steps required for
generating the dataset.

3.1.1. Choice of Classes

One of the primary decisions to be made when planing the creation of a
dataset for a classification task is the choice of classes. It can be split into
two sub-questions: How many classes should there be in total? And which ones
in particular?

It is easier to merge existing classes than it is to split them. Therefore it is
advisable to choose more classes at the creation step ,because they can still
be combined at a later point. For instance, the classes city bus and coach can
easily be merged to a parent class bus, however, it is not simple to split the
bus class into the sub-classes, if there was no distinction recorded in the
meta data.

The more classes that are required, the higher the effort to record. Not only
because more data has to be recorded, but also because it is usually more
complicated. For example if you were to record the classes electric bus and
combustion engine bus in one city: The city might have a huge fleet of buses,
but only a few of them are electric buses. Thus the chance to randomly enter
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an electric bus is a lot smaller and therefore you would have to specifically
look out for electric buses and ride them. That is more than twice the effort,
than if you were to just have one single bus class since it could be recorded
in your regular commute.

Our Approach

We selected 9 of the most common transport modes for personal transport,
namely: walking, bike, car, bus, coach, tram, metro, train and plane. Other data-
sets have a taxi class, which in our case is included in the class of car. There
are several other popular modes of transportation that we did not include
in our dataset. Some were excluded because they are not available in most
cities we recorded in (such as ferries, magnetic rails, cable cars etc.). Others
were excluded because they are not popular enough among the people
performing the recording (such as running, skiing, inline skates, scooters,
motor bikes) and some are just too exotic (such as trucks, helicopters, light
aircrafts, hot air balloons etc.).
Furthermore there is no stationary class in the dataset. That type of class
makes sense when using accelerometers, but it does not work for an acoustic
dataset. However, we did include a not a transport mode class. More details
in section 3.2.7.

3.1.2. Choice of Recording Device

When it comes to creating an audio dataset one of the essential decisions
is the choice of recording device. There are different types of microphones
that give different results. The two main types of studio microphones are
condenser microphones which usually record from all directions (having an
omni-directional or bi-directional polar pattern) and dynamic microphones
which are usually used to record sound from one particular direction (having
a cardioid or lobar polar pattern).

The quality of a recording depends on the sensitivity of the microphone
used. A high end microphone will be able to pick up more detail than a
standard voice tracer, which itself would outperform a mobile phone. The
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more detail in a recording, the more information is available for performing
a classification. Depending on the type of classification performed it might
be sufficient to provide recordings with little detail. However, in general
the classification performance is equally good or better when more detail is
provided.

The same can be said about the sampling rate. The higher the sampling rate,
the higher the highest frequency that can be encoded. For some applications,
those frequencies might be valuable information. So the higher the sampling
rate, the better the classification (in general), but it might have an impact on
the performance of the algorithm.

Whatever the choice of recording device may be it, is important to be
consistent. If one class is recorded with one type of microphone, but another
is recorded using a different microphone, then the classification might
pick up the differences of the recording devices, instead of the actual class
differences. To avoid this falsification, it is important to use the same audio
recording device for all classes. If different recording devices have to be used
(for instance because several people in different locations create recordings),
then they should record (equal amounts of) several (ideally all) classes.

Our Approach

In this project only smartphone microphones were used to create the dataset.
This is due to the intended use-case, which is a classification suite for
smartphones. Since most people have a smartphone with them, but they
rarely carry around studio microphones. All recordings were sampled
with 44.1kHz as that is the highest available sampling rate, using standard
Andoid. Comparing different recording devices and sampling rates is out
of scope for this work.

3.1.3. Quantity and Quality

There is always a trade off between the quality of the dataset and the
minimum time spent to create it. In general the more data (and the more
diverse data), the better the results will be but also the more work has to
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be put into the creation of the dataset. This section will help you answer
the following two question: How many recordings are required? And of which
quality do they need to be?

In order to properly answer those questions, we need to first outline the task.
What is it that we want to achieve? How many resources are we willing
to spend? How reliable does the system need to be? It makes a difference,
whether we run a recommender system, where an 80% accurate guess of
the transportation mode is already a sufficient hint, compared to if we want
to reason with the classification result in a court case, where an accuracy of
over 99% is required. So the first step is to define the desired accuracy1.

The relationship between the amount of data and the accuracy of a given
classification task depends on many variables. The main contributors are
the number and diversity of classes, the algorithm used and the quality
of the data. Given similar quality of the data (for acoustic TMD the data
would be the recordings) it usually holds that the more data is available the
higher the classification accuracy. However, this relation is hardly ever linear.
When there is not enough data adding a bit more can already increase the
accuracy significantly. Contrariwise, if there is already a lot of data available
then adding more barely affects the accuracy.

A good strategy would be to continue gathering data, until
the resulting improvements are not worth the collection efforts
anymore.

Under quality of a recording we understand how well it actually represents
the class it is supposed to represent. Reasons for poor quality include noise
(that does not originate form the mode of transportation), other sounds
(such as music or people talking etc.), or silence.

There is a trade-off between quality and quantity. The higher the quality
requirements are, the harder it is to create recordings that meet those
requirements. On the other hand, it is easy to create long recording if
quality is sacrificed. Similarly, if there is a high quantity of recordings
available, it can make up for a lack of quality (given that the algorithm can

1whether this is the actual accuracy or an F1-score or similar measure can be defined
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handle it), but if there are only a few recordings then the quality must be
good in order to get decent results.

Our Approach

Our strategy is to go for high quantity and medium quality. We want to
work with real life recordings and that means that there will be disturbances.
It is not supposed to be a lab environment, since an application that does
acoustic TMD will also have to deal with noise. Given enough data, deep
neural networks are usually quite robust, so the algorithm should be able to
handle it. Furthermore, we perform data processing to increase the quality
of the dataset (see secton 3.3).

3.1.4. Diversity

When talking about diversity in the context of acoustic TMD, we mean the
extend to which the recordings within a given class are different. There
is also the diversity between classes, but that is usually given by the class
definitions.

Having a diverse dataset brings advantages and disadvantages. The more
different recordings there are in a class (given an appropriate quantity and
a good enough algorithm), the more diverse input the trained network will
be able to predict correctly. However, the higher the diversity, the higher the
chance that one class overlaps with another one, making proper classification
impossible. So there is a trade-off between the classification accuracy and
the diversity of input that can be handled by the classification.

How diverse your dataset should be, once again, depends on the task at
hand. If you only need to detect transportation modes of one particular
city, then it is enough to have training data from just this city. However,
if it is supposed to work in any city around the world then you will have
to provide more diverse recordings for training. Of course, you could also
provide a more diverse dataset when you do not need it, but you might
loose accuracy and you risk having more confounding variables. Besides,
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creating a more diverse dataset requires more effort. Therefore, it makes
economic sense to provide just enough diversity to fulfill the task.

Our Approach

We aim to be as diverse as possible, while still maintaining a decent accuracy.
Therefore, we tried to get recordings from transportation modes in different
cities across Europe. The goal is to be able to correctly classify samples from
external datasets. Those external recordings from different cities are not
used for training, but merely for evaluation purposes. The degree of success
is described in section 4.9.

3.1.5. An Application for Recording

An Android application was developed to record audio using smartphones.
The advantage of having a custom-developed application is that it can be
set up to suit the user needs. The application was specifically designed for
creating our acoustic dataset for transport mode detection.

Metadata

The most obvious feature of the application is the storing of metadata. For
each recording the user can pick the mode of transportation, the phone’s
position, and the sampling rate using drop-down menus (so called spinners
in Android). Furthermore, the location (usually the name of the city) as well
as additional notes can be entered using text input. All metadata is stored
in the filename to avoid having to parse additional files when grouping
recordings.
An example filename might look as follows:

1536661337142︸ ︷︷ ︸
timestamp

Rv6︸︷︷︸
vers.

Train︸ ︷︷ ︸
TM

lyingOpen︸ ︷︷ ︸
phone pos.

Munich︸ ︷︷ ︸
city

ICE emptycoach︸ ︷︷ ︸
notes

.wav
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The filename consists of the time of recording (in ms since 1970), the ver-
sion of the app, the transport mode, the phones location, the recording
location and notes, each separated with underscore. If the notes contain
more than one term, then they are also separated with underscores. All
files are stored to the external storage (usually an SD-card) of the phone as
wavelets (.wav).

Lessons learned

Several people have tested the application over several months and sugges-
ted some improvements.

The first suggestion we received was to add trimming functionality. The
request was to be able to listen back to the recording and set new start
and stop points. This is helpful, because people sometimes forget to stop
recording, especially if they are not used to using the application. Or when
they board a train and it doesn’t start for another 10 minutes. Trimming can
be useful the increase the quality of the recording.

Another feature that was requested is a timer. The user should be able
to set a time after which the recording stops automatically. This is useful
because people often know how far they are going with their chosen mode
of transportation (be it tram/metro/bus but also car and bike) and they
usually also know how long it will take them approximately. So they might
want to set the timer to not have to think about stopping the recording
later.

The last feature that was added is the ability to overwrite metadata when
stopping the recording. This has many usecases, for instance, when the user
set the wrong mode of transportation, but only realize it after taking out
the phone to stop the recording. Often, the settings seem to fit, but while
recording the phone was mainly in the hand, instead of the pocket where it
started out. Or when the environment changes and it suddenly begins to
rain while on the bike, or there suddenly is a screaming baby on the train
(which should be added as a note). In all those cases, it is very helpful, if
changes are applied when the recording is stopped. The application now
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features a checkbox that allows the user to select whether or not the file
should be renamed when stopping the recording.

User Interface

Figure 3.1 shows the user interface of the application. It was not made to
look aesthetically pleasing, since the application is only used internally and
to us functionality is more important than style. Hence a default Android
look and feel is sufficient.

(a) The main activity (b) The timer (c) A spinner

Figure 3.1.: Examples of the user-interface of the Android application.

There is one main activity as shown in figure 3.1a, which handles all user
input. It contains a button to start and one to stop the recording. There are
text fields for input and spinners for choosing metadata for the recording.
One example is the spinner to select the phone position, which is shown in
figure 3.1c.

When the set timer button is pressed, a time picker dialogue is displayed,
as shown in figure 3.1b. Once a duration is selected (in this case 15 minutes),
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a new recording will stop after the specified amount of time. This feature
cannot be combined with the overwrite-on-stop feature. However, the re-
cording can be stopped before the maximum duration in which case the
changes are applied.

Availability

The source code of the application, as well as a compiled version can be
found online2. It is provided as is, and licensed under the MIT License,
which allows anyone to use, modify, and redistribute the software.

3.2. Classification

The crucial step of any transport mode detection is the classification. This
is where a given data sample is labeled with a class prediction. Most
classification algorithms require a training phase, where audio samples with
the correct label are provided (supervised learning) to create a model. After
the training phase, the model can be used to perform the actual classification
of unlabeled data. In our case the audio sample is labeled with a predicted
mode of transportation.

3.2.1. Difficulties

The classification of audio samples is not a trivial task. This is due to
the complexity of the problem. There are two main complications: high
intra-class variability and low inter-class variability.

2 https://github.com/aschmidhofer/TMDAudioRecorder
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Low Inter-Class Variability

Samples from different classes sound similar. On the one hand this is the
case because some classes are inherently similar, such as bus and coach.
Also, all transport modes operating on rails are similar in the sounds they
produce. Especially in a bigger city, where the train performs like a metro in
the inner city, and the metro sounds like a train further out. One example
is the S-Bahn (suburban train) in Berlin, which looks (see figure 3.2a) and
behaves like a metro line.
That it does not just appear like a metro, but also sound like one is demon-
strated in figure 3.3 which compares the log mel-band energies. It shows
that the Berlin S-Bahn (3.3a), which travels underground, produces sounds
closer to the Hamburg U-bahn (3.3b) than the Dresden S-Bahn (3.3b) or the
Intercity-Express, which (3.3d) both travel above ground. Further details on
log mel-band energies can be found in section 3.2.4 and more plots from
different classes are available in section 4.1.4.

(a) S-Bahn Berlin (b) U-Bahn Hamburg

Figure 3.2.: A suburban train of Berlin compared to a metro in Hamburg.

The second reason for low inter-class variability is identical surrounding
sounds. Walking on the sidewalk picks up the same street noises as riding
the bike on the same street. Another example are passengers whose talking
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(a) S-Bahn Berlin (b) U-Bahn Hamburg

(c) S-Bahn Dresden (d) DB ICE

Figure 3.3.: Feature comparison between the Hamburg metro (top right) and different
German trains. It shows the low inter-class variability between the train and
metro class and the high intra-class variability inside the train class.

sounds the same whether they ride a tram, or a train (or any other transport
mode).
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High Intra-Class Variability

Samples within the same class sound significantly different. There are
several possible reasons for this. Firstly, it depends on where the recording
is taken. The front of the cabin of a plane, for instance, does sounds different
to the rear of the cabin. The same is true for a bus, which usually has the
engine in the back.
Broad class definitions are another reason for high-intra class variability. An
electric car sounds vastly different from one with a combustion engine, yet
they are both part of the class car. The same is true for regional trains and
fast trains which are both part of the class train.
Another contributing factor is the mode of operation. A car on the motorway
sounds different to a car in city traffic. Also the driving style is crucial,
because a high-revving engine from a car that is raced produces a noise
distinctive from one that is driven by a calm driver.
Then, of course, there are external influences such as people. An empty bus
sounds different from a full one. It also makes a difference whether you
ride your bike in the city in the middle of the night, or during rush hour
where there is the most traffic and noise on the street.

3.2.2. Training, Validation and Evaluation Set

The whole dataset, consisting of recordings of different lengths, is split into
three subsets: The training set, the validation set and the evaluation set. The
training set is used in the learning process (also called training) of the deep
neural network. Features of the samples are provided with a ground truth
to allow for the network to adjust its weights, using backpropagation of
error.
The validation set is used to check the results to avoid over-fitting (which is
when the network adjusts too much to the training set). Some algorithms
implement a stopping criterion (eg. when the validation accuracy starts to
drop), after which the training is ended. Others (like the one we use) train
from a fixed number of epochs and select the model of the epoch where the
validation set performed best.
The purpose of the evaluation set is to rate the network once the training

26



3.2. Classification

is complete. All the samples in the set are classified and the results are
compared to the real label. This is how the confusion matrix, as well as
statistics, such as recall, accuracy, and F1-score are created.

The evaluation set is taken from roughly 10% of the data. It is selected by
hand, to assure that the evaluation set is as diverse as possible, but at the
same time not too overloaded. This is done by selecting shorter recordings,
but from different locations, operation modes, facilitators etc. Doing this
split manually requires some effort by a human, but it is essential to get a
representative evaluation result especially when the number of recordings
is not very high.
This split is based on raw recordings, which means that either all or none of
the samples from one recording are in the evaluation set. The reason being
that samples from one recording might sound almost identical (especially
consecutive samples). Identical training and evaluation data cause unrealist-
ically high evaluation results so it should be avoided.

The remaining recordings which are not in the evaluation set are again split
into 70% training and 30% validation data. This split is done automatically
at runtime, which means that the recordings are already split into samples
(see section 3.2.3). Samples are associated with validation or training set
based on the identifier of the sample. The identifier (in our case this is the
timestamp) is identical for all samples in a recording which means that
there can not be samples from the same recording in both sets. The selection
is random but consistent throughout tests (so the same samples will be in
the validation set for each execution).
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3.2.3. Splitting Recordings

The raw recordings have to be split into samples. This has to be done
because the algorithm expects samples of equal length. However, the length
of the recordings vary. So a python script was created that breaks down the
raw recordings into 10 second samples. The samples are created in such
a fashion that they do not overlap and there is no unused space between
them. In other words, if they were to be put together sequentially one could
obtain the original recording. Only as many samples are created, as fully
fit in the length of the recording. There is no padding in the end. A few
seconds of the recording (anything less than the sample length) might not
be used.

Splits for Sample Length Analysis

Special rules apply when creating the samples for analyzing different sample
lengths. The script works as described above with two extensions: Firstly,
there is an initial offset of one minute. So the first sample that is created
starts at second 60. This is to counteract the fact that some recordings require
trimming. Secondly, not the full length of the recording is used. To ensure
that each class has similar amounts of training data only a percentage of
the recording is split into samples. This percentage is calculated using the
minimum total length of training data per class and dividing it by the total
length of training data of the current class. The recordings of the evaluation
set are split in their entire length (excluding offset).

3.2.4. Algorithm

The choice of algorithm is an important one. There are several algorithms
that can perform acoustic transport mode detection. Simpler algorithms
are usually quicker and can work with smaller training sets. More com-
plex algorithms are more robust to noisy input data and in general, given
enough training samples, they will produce better results. As pointed out
by Wolpert [39], there is no single best algorithm, just one that fits the given
task and dataset.
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The current trend for acoustic sound classification is to use convolutional
neural networks (CNNs). CNNs were originally developed for image clas-
sification tasks, such as those performed by Krizhevsky et al. [14] and
Sermanet et al. [29], and they are still the dominant choice in that field. In
recent years they have also gained dominance in the field of ASC.

The algorithm used for this project does not have to be the algorithm which
performs best, since our goal is to create a high quality dataset, not a
high quality classification system. Our first candidate was the open-source
baseline algorithm of the 2017 DCASE challenge. It gave decent results with
our dataset; however, it is based on a multilayer perceptron architecture. The
baseline algorithm of the DCASE challenge 2018 [18] uses CNNs and it is a
state-of-the-art ASC algorithm. There are other algorithms that might yield
better classification results but for our purposes this algorithm is sufficient.
Since it does not have a name it shall be referred to as the algorithm. The
facts that the algorithm is state-of-the-art and that it is also open-source were
the reasons to choose it as our classification algorithm.

The algorithm operates by performing the following steps: feature extraction,
feature normalization, learning, testing and evaluating. Learning uses the
training set to adjust the parameters of the network, testing uses the trained
network to give a label to each item in the evaluation set and evaluating
compares those labels to the provided true labels and compiles a summary.
The upcoming two subsections describe the feature extraction process as
well as the architecture that is used for learning and testing.

Features

The first step the algorithm carries out is the feature extraction. Log mel-band
energies are extracted for each 10 second audio-signal. This is done by
performing a fast Fourier transformation, then bringing the values on a
mel-scale (as defined by Stevens et. al in [31]) and then applying the log
function (base e) on the values themselves.
The analysis frame is 40ms wide and has a hop size of 50% (walk-forward
sliding window). Each frame is represented by 40 bands, so the input shape
for the CNN is 40 x 500 (40 bands and 10s

0.04s
1

50% = 500).
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Figure 3.4.: The log mel-band energies of a demonstration sample.

Those features can be visualized by plotting them. Figure 3.4 contains the
features of a demonstration sample. It contains only one chirp in sine wave-
form which starts at a frequency of 440Hz and an amplitude of 80% and
over the 10 seconds it is logarithmically interpolated to end at 22kHz and
an amplitude of 10%.
In figure the increase seems to contain steps because of the discretization.
There are only 40 values in the y-axis compared to 500 on the x-axis and the
figure was scaled (each pixel has a 1

12.5 ratio).
In the plot, the amplitude is represented by color: the brighter the color
the louder the given frequency (due to the log function the intensity is on
a logarithmic scale). The x-axis represents the time (on a linear scale, 500

corresponds to 10s) and the y-axis the frequency (on a mel-scale, which is
itself logarithmic). The highest frequency that can be encoded is half the
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sampling rate. With a sampling rate of 44.1kHz that would be 22.05kHz,
which is also the maximum value on the y-axis (index 40 on scale). The axis
are labeled with the index, as provided to the network. In subsequent plots
the labels are removed to increase the figures scalability.

Architecture

An illustration of the architecture of the algorithm is shown in figure 3.5.

There is a two layer CNN, each with a 2D convolutional layer (with batch
normalization and ReLu activation) and a 2D max pooling layer. The con-
volutional layers have a kernel size of 7 and 32 or 64 filters respectively.
The max pooling layers have a dropout rate of 30% and a pool size of (5,5)
or (4,100) respectively. What follows is a layer to flatten and then a dense
layer (again with ReLu activation and a dropout rate of 30%). The output
layer is a softmax layer. For the training, a batch size of 16 is used for 200

epochs. The Adam optimizer with a learning rate of 0.001 is applied to
change the parameters of the model in the leaning process. The parameters
of the model which performed best on the validation set during the 200

epochs are then used.

It is not our intention to improve upon the algorithm, since the focus of this
work is on creating a dataset not an algorithm. The given algorithm is just
used as a tool for performing classification.
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Implementation

Several changes had to be made on the software in order for it to fit our
purposes. The source code used as a starting point is licensed under MIT
license and is available online3.

The first change that had to be made was necessary to allow for our dataset
to be used as an input. The baseline algorithm does not intend custom
datasets, since the dataset for the challenge is provided by the organizers.
So a bit of code had to be changed to allow the correct integration of our
samples and classes.

Furthermore, the algorithm had to be adapted slightly in order for it to allow
different sample lengths. The default sample length is 10 seconds, but for
our sample length analysis we require arbitrary sample lengths. Fortunately,
due to the design of the software those changes could be made by changing
the parameters in the configuration file.

The last minor change that had to be made was to allow GPU usage. The
frameworks used by the algorithm already support GPUs, however they
need to be set up correctly. The GPU cluster of the Know Center has eight
Tesla P100 GPUs. In order to not block all of them, only one GPU should be
selected by its ID. This is done by adding a few lines of code in the main
file.

3.2.5. Sample Length

Usually, the raw recordings have a duration of several minutes. In our case
the shortest ones will be approximately one minute in length (for instance
recordings of walking in a plane) and the longest ones can have a duration
of several hours (for instance longer train or car rides).

It would not be advisable to use the original recordings for the classification
process directly. There are two reasons for this: First of all, the classification
system is designed to compare files with equal length. Secondly, there would
not be enough training data if every file is only used once.

3 https://github.com/DCASE-REPO/dcase2018_baseline
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Thus, the recordings have to be split into sub-clips, so called samples. The
length of the samples can be chosen. Ideally, the samples are just long
enough to contain the relevant information required to perform the classi-
fication. If the chosen sample length is too short, the classification accuracy
will decrease because the samples don’t include enough information. How-
ever, a higher sample length increases the training time and might require
more training data, since there will be less samples in total. Moreover, in a
real time classification task the sample length also represents the minimum
time required for labeling. This is because a recording with at least the
sample length has to be made before a first estimation can be made. A quick
response is essential for a good user experience, which is why the sample
length should not be set for too long.

The ideal sample length depends on the classification problem as well as the
classification algorithm used. To figure out which is an appropriate value,
a test has to be conducted. If there is no reference value available, then it
might pay off to start with a broad test on a logarithmic scale. For instance,
by picking sample rates as a multiple of two. This first result will show
which area has to be examined closer to figure out a suitable sample rate.

In [10] Guvensan et al. analyzed different sample lenghts (they refer to it as
window sizes since they do not work with audio signals) for their mobile
transport mode detection system. They found that their system performs
best with a window size of 60 seconds. However, this cannot be generalized
since they use accelerometer, magnetometer and gyroscope as data input,
and they also have different classes. When plotting the recall of each class
over different window sizes it can be observed that the classes tram and
ferry benefit the most from a larger window size. We also use this strategy
to gain more insight on how the performance of each class depends on the
sample length. The results can be found in section 4.2.

3.2.6. Ambiguous Classes

Sometimes a sample does not belong to strictly one class. There might be
two or more classes that it can be categorized in. In our case, this applies
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mainly to combinations of the walking class and another class. For instance
walking in a plane, or walking in a train etc.

There are different ways to handle those special cases. One possibility
would be to put them into one of the two classes and train it accordingly.
In other words, they are not treated differently than any other sample. For
our walking while in a vehicle that would mean to either give priority to
walking (and count all samples that are labeled differently as misclassified)
or to the other transport mode (and count samples labeled as walking as
misclassifications). As a first approach, the latter is what we are doing.

Another possibility is to create a separate class for each special case. This
would be advised if you want to be able to distinguish the special case
from the regular transport mode. In our case, this would be to deliberately
distinguish between walking in a plane and walking in a train. However, in
order to accomplish this, enough recordings of the special case need to be
available for the algorithm to be able to train the network correctly.

The third way of handling ambiguous classes is by considering both classes
as correct. This means whenever the sample is labeled in either of the two
(or more) classes that it could belong to, it is counted as correctly classified.
So, for example whenever a walking in a plane sample is classified as walking
or plane it is a true positive. This strategy allows you to put the special case
samples in either of the classes for the training process. It also allows you to
work with a dataset where the special case sometimes is in one class and
at other times in the other class. As long as it is always in one of the two
where it should belong (and there are not too many special cases relative to
total samples) it should still work.

A last strategy would be not to allow ambiguous classes. If the use-case
does not required those special cases to be matched correctly, then it might
make sense not to include samples of that kind in the training process, as
those samples can cause confusion and result in more misclassification.

Our Approach

We will start out with samples being associated with only one class. Then
we try to increase the accuracy by also counting samples labeled as the other

35



3. Methods

appropriate class as true positives. We will analyze in which of the classes
the training samples need to be, in order to cause the least false negatives.
If a significant amount of ambiguous samples are still classified incorrectly,
then the removal of all ambiguous samples will be considered.

3.2.7. The Unknown Class

It can happen that an input sample does not represent any of the transport-
ation modes. This can be either be because there is so much noise overlay
that the sounds from the target TM cannot be heard, or it can simply be a
recording that was made outside of any transportation mode.

For those cases, it might make sense to add an unknown class. This is
an additional class that is added alongside the transportation modes and
it represents everything that is not one of those TMs. So, for instance, a
different transportation mode like ferry (that is not in our 9 classes), the
noise of a street, people talking, even random noise, and silence would all
belong to this class.

Of course, it depends on the use case. If you ensure that only samples of
transportation modes are entered in the classification process, or if you
define that anything else causes undefined behaviour, then you might not
need to add the unknown class.
However, even then it might make sense to add a trash class (which is
essentially the same as the unknown class). This is because of how CNNs (and
deep neural networks in general) operate. They always have to give a label
so there is usually a class that is represented as if it is none of the others then
it is this one. In other words whenever nothing else fits, this label is applied
(hence one might call it a trash class). When the network is presented with
something unseen, they usually put it in this class. The reverse conclusion
to this is that the class is not well represented in the network. So adding an
extra class might sometimes even increase the accuracy because the former
trash class is properly trained to recognize its features.

Another reason to add the unknown class is for quality assurance. It can be
used to filter samples which do not properly represent their associated class.
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In fact, the unknown class is essential for our cleaning process as described
in 3.3.3 and it is also helpful for trimming (see 3.3.2).

In order to add the unknown class, data has to be gathered that represents
it. Basically, every audio file that is not one of the 9 selected transportation
modes can be used. For this project we use recordings that were made in
the dataset creation phase (however there are not as many for this class
than there are for the other 9), as well as samples from other datasets. It is
advisable to select soundscapes that might be encountered in the recording
processes of the main classes such as: a busy street, a metro station etc., but
also some that vaguely resemble the sound of a transportation mode such
as: for a washing machine or a lawn-mower.

The results of adding an unknown class can be found in the 4 Results
chapter.

3.3. Data Processing

Even when taking care in the recording process, mistakes are made. Some-
times the wrong label might have been picked or a recording was not
stopped even when the mode of transportation changed. To counteract this,
a simple preprocessing is applied before the classification model training.

3.3.1. Relabeling

It can happen that a recording was not labeled correctly in the recording
process (ie. the metadata contains an incorrect class). This is mostly due to
human error by forgetting to change the class in the recording application.
Those mislabeled recordings need to be relabeled correctly to increase the
quality of the dataset.

Given a working classification system, automatic label changing can easily be
implemented. Assuming that there are not too many mislabeled recordings
(which is a justifiable assumption since we expect no more than one percent
of labels to be incorrect), the algorithm (as described in section 3.2.4) will
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still give a decent model, even when those recordings are in the training set.
The model can then be used to classify all samples (including the ones in
the training set) and relabeling can be performed based on the results.

There are several ways to decide whether a recording is mislabeled or not.
One possible strategy is to analyze all samples from a given recording and
check whether the class that was predicted by the most samples corresponds
to the given label. If it does not (ie. another class is predicted more often
that the class the recording is supposed to have), then the recording should
be relabeled accordingly.
Another possibility is to define a threshold λ, above which the percentage
of correctly predicted samples (that is, stored label and prediction are
identical) of a recording must be. If the percentage is below the threshold,
the recording is flagged for relabeling.
We chose the latter strategy with λ = 50%. This assures that if the threshold
is reached, it is also certain that the majority of samples are predicted to
be that class (because there can not be another class with > 50%), so the
criterion of the first strategy is also fulfilled. Furthermore, it allows us
to filter recordings with low confidence because, even though a majority
might be reached, if less than half the samples are predicted correctly there
might be something wrong with the recording. It could also be a sign that
a complex class should be split into sub-classes, or that the overall class
accuracy is too low.

Each recording that is marked for relabeling is checked by a human. This is
feasible since not a lot of recordings should require renaming. By having
a human listen to the recording they determine whether the recording
actually has a wrong label or whether there was a mistake in the relabeling
algorithm.

To demonstrate the robustness of this relabeling approach some recordings
are deliberately given the wrong label. The training is done including
the samples from the mislabeled recordings in the wrong classes. The
percentage of wrong labels is increased until the approach fails. Results of
this experiments can be found in section 4.8.1.
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3.3.2. Trimming

One of the simplest ways to remove samples that do not represent their class
is by trimming. Trimming is the process of removing parts at the beginning
and/or the end of the recording. Some recordings require trimming because
the recording was started too early or stopped too late. This might be due
to several reasons, for example the bike had to be unlocked after starting
the recording, or the train did not leave the station for another minute, or
the person simply forgot to turn off the recording when leaving the mode
of transportation etc.

Trimming is performed by analyzing the samples at the beginning and at the
end of a recording. The same principles as for relabeling apply: as long as
there are relatively few samples that need to be trimmed, the algorithm can
be trained using all samples. A minimum number of samples n is defined.
The samples at the beginning are then analyzed and all samples are thrown
out until n consecutive samples have the correct class prediction. The same
is done for the samples at the end, but starting with the last sample and
going backwards.

The most likely other class predicted at the start and end of a recording is
walking. This is because usually people walk into and out of another mode
of transportation.
Having a separate not a transportation mode class would help in this scenario.
Otherwise there is likely to be one class (bike in our case) that cannot be
trimmed this way, because even samples that do not represent the class are
predicted to be of this class.

The optimal value for n depends on a lot of factors, such as the sample
length, the lengths of recordings, the total size of the dataset, the classes
used, the quality of the recordings etc. The ideal n can even differ between
classes. There is a trade-off between not removing too many good samples
versus making sure that all the bad (those which do not represent the class)
samples are removed. So, in that sense there is no best value for n, just one
that is appropriate.
Therefore, our strategy is to test different values for n and select one that
provides good results. This can be assessed by including recordings where
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the desired trimming points are known and comparing them against the
number of removed samples.

This simple trimming strategy does not always work. In some cases, when
there are too many false positives, or too few true positives, the algorithm
would trim nothing or trim the entire recording, respectively. To counteract
that, the trimming strategy can be extended based on another assumption:
There is more to be trimmed at the back of a recording, than an the front.
This should be true for our dataset since the recording is usually started
when one enters the mode of transportation, but often times it is forgotten
to be turned off (it might have equally often been forgotten to turn on, but
this results in a lack of samples, not a surplus).
The improved trimming procedure analyses the amount of samples that are
to be trimmed in the front and compares them to the number of samples
to be trimmed at the back. If there are significantly more at the back (for
instance 2 minutes worth of samples, this threshold can be defined as well),
only then the recording should actually be trimmed. This also allows for an
automatic adjustment of n: it can be increased if none of the samples would
be trimmed and it can be reduced if all of the samples would be trimmed.

3.3.3. Cleaning

Cleaning the dataset is the process of removing samples that do not rep-
resent the given class. This could be because there is additional noise (eg.
music, people talking or other external events) that predominates the sound
of the transportation mode, or because the transportation mode is not active
in the given sample (eg. waiting at a pedestrian crossing or intersection,
tram/train is in station etc.). It serves the same purpose as trimming, that
is, increasing the datasets’ quality. The main difference is that it takes into
account all samples of a recording and not just beginning and end. A good
cleaning strategy would make trimming obsolete.

Removing misclassified samples is not a constructive approach. It works
for trimming because it is not important if a few samples that should have
been kept are thrown out. However, it is inappropriate for cleaning, since it
would remove way too many samples that do represent the class (but the
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algorithm was not able to classify them correctly). This would just simplify
the classification task but not increase the quality of the dataset (in fact the
quality would actually decrease).

Using an additional trash class can help the cleaning process. In the training
process, this class should be provided with samples of likely scenarios that
the other recordings might contain but are not part of the transportation
modes (such as silence, white noise, music, sounds of a busy road, a con-
struction site, people talking etc.). It should be considered that this class
should not dominate any other class. It should be ensured that the number
of samples for this class is less than the minimum number of samples of any
other class. When analyzing all samples (from the 9 original TMD classes)
those which are predicted to be the trash class are likely to not properly
represent their original class and therefore can be removed.
This strategy works for two reasons: Firstly, if the algorithm predicted a
sample to be in this class (,even though it was in the training set of a dif-
ferent class,) then the dominating aspect of the sample might be one of the
scenarios that was put into the trash class. Secondly, a sample that does not
fit in any class (including the trash class) is likely to be classified as trash
because this class has the most diverse input.

There are different degrees to which the cleaning process can be performed.
The minimum should be to remove everything that is outside of the class
definition (for instance, for the walking class, samples where the person is
stationary should be removed). The other extreme is to remove everything
that is not exclusively the given class (for example when a car ride contains
music). Any degree in between (in other words: how dominant the actual
class features need to be in the sample) can be chosen. The question which
is the best strategy, does not have a trivial answer. It depends on the specific
circumstances and needs to be assessed individually. If the given class is
already lacking diversity, then cleaning out too much is contra-productive.
On the other hand, if the use case defines a clear pattern that is required, but
the recordings are cluttered with other input then filtering more samples is
the strategy to go with.

A superior, but extensive way, for filtering samples is done on a class by
class basis. Each possible interference is handled separately. For instance, in
the tram class you might want to filter samples in which the tram is halted

41



3. Methods

at the station. To do so, you require two sets of samples: one for tram in the
station and one for tram in regular transit. Those can be acquired manually
from the raw recordings of the dataset. Since there are only two classes,
not a lot of training data is required (although the more the better). The
algorithm can then be trained on those two classes to separate all remaining
tram samples into in station and in transit. Then the in station samples can be
removed, since they do not represent the tram class.
The same strategy can be applied to other classes (such as metro and train)
or to filter waiting times at the bike and walking classes.
This method can be improved further by taking sample proximity into
account. Usually there are patterns between the separated classes. In the tram
example, it is highly unlikely that in one sample the tram is moving, in the
next it is stationary, and in the following it is moving again. The prediction
of samples that fall out of line can be changed to fit the neighboring samples
similar to the healing algorithm introduced in [10]. One simple way to
implement this is by defining a minimum sample group size m (should
depend on the sample length) and ignore (relabel) patches of samples that
are smaller than m.
More sophisticated methods for the detection of collective outliers (such as
[5], or others, suggested by [30]) can be performed. However, that is outside
the scope of this project.

When evaluating the cleaning process it is important to have a consistent
evaluation set. If the evaluation set is also cleaned, then the resulting ac-
curacy scores do not represent the original problem anymore. Keeping the
evaluation set the same also allows to identify whether too many samples
of the training set have been removed (and the lack in diversity results in a
decrease in accuracy).
However, the evaluation set might also contain samples that do not rep-
resent the class and should be cleaned. It has to be made sure that the
samples removed from the evaluation set are actually outside the TMD class
description. Therefore, those samples should be checked by a human.
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3.4. Scope

The purpose of this work is to answer questions about dataset design and
creation. As such, it is not meant to improve upon the algorithms used
for classification. Several aspects, such as the positioning of the device
when recording, as well as different sampling rates, are not analyzed. We
are trying to provide a comprehensive guide on how to create a dataset
effectively, but we are aware that there are limitations given by the volume
of work for this thesis.
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This chapter discusses the findings of this project. This includes the data
that was gathered and information which can be derived from that data.
Some sections also contain a discussion that interprets the information.

First, the created dataset is described and its properties are listed. Then,
an experiment is conducted to find an appropriate sample length to split
the recordings into (section 4.2). To be able to make statements about the
quantity and diversity of the samples, tests are run on smaller subsets of
the data in section 4.4. How many classes should be contained in a dataset
is discussed in section 4.5, and better ways to deal with misclassification are
presented in section 4.6. Ambiguous classes are dealt with in section 4.7,
followed by sample processing strategies (section 4.8). Finally, our dataset is
compared to existing datasets in section 4.9.

4.1. The Dataset

This section describes the dataset which was created for this project. It
consists of audio recordings of different transportation modes with a total
length of 245 hours (82.3GB). The recordings were made between February
and October 2018 by different people in multiple cities across Europe.

4.1.1. The Classes

The dataset contains recordings from the following 9 modes of transport-
ation: Bike, Bus, Car, Coach, Metro, Plane, Train, Tram and Walking. It is
worth noting that the number and total length of recordings is not uniformly
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distributed. The exact distribution as well as average recording length can
be obtained form table 4.1.

Class number of
files

average
recording time

[min]

longest
recording

[min]

total
recording time

bike 258 17 45 74h 48’

train 142 20 118 48h 19’

car 102 21 129 37h 20’

walking 145 10 55 26h 21’

metro 93 11 42 18h 30’

plane 55 17 52 16h 17’

bus 53 10 28 9h 12’

coach 15 29 58 7h 27’

tram 54 08 28 7h 23’

Total 917 16 129 245h 40’

Table 4.1.: Average, maximal and overall recording lengths per transport mode.

If not specified otherwise, the location of the recording device can be
anywhere inside the mode of transportation. The following locations were
tagged as meta-data: lying open, in hand (can be in use), inside a backpack,
a jacket, or a front/side/rear pocket of trousers.

We aimed at creating a broad dataset that features versatile recordings.
Therefore, recordings had to be made in different environments. One ex-
ample for this variety are different weather conditions. Especially for bike
and car journeys the sound changes significantly if it suddenly starts to rain.
This is why the dataset contains recordings in different weather conditions
from dry to heavy rain, and in some cases, even snowfall. The given weather
is noted in the meta data (if no weather tag exists then it was sunny or
cloudy and dry).
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Bike

The bike class represents rides using a bicycle. In other words: the activity
of cycling. Per our definition of the class, the whole of the journey is to
be considered cycling even when waiting at a traffic light. This is due to
practical reasons, as it would have been too much effort to stop and restart
the recording at every short stop.

The location of the recording device is always a pocket in the cyclists pants.
This decision was made to allow for the best pick-up of the typical leg
movement that occurs when riding a bike. So the resulting sound-scape will
depend heavily on the trousers worn, and which of the pockets was used.
Therefore, the type of trousers and a pocket label (front-pocket, back-pocket
or lower-side-pocket) are part of the meta data. There are a few recordings
in the dataset that were made with the phone in a different location, such
as the backpack, which can be used for testing.

The recordings were made on different bikes, in different locations, with
different weather, at different times and by different people. The dataset
includes rides on cycling paths, on busy city streets, in the countryside,
and even up a mountain, and a bit of down-hill. Some recordings were
made at night, when there is little to no traffic, and others were done in the
middle of the day. Some of the bikes that were used to create the dataset are
pictured in figure 4.1. The bikes that were used the most are the mountain
bike (4.1a) and the city bike (4.1b). The majority of the data was generated
in, and around, the city of Graz, but there are also recordings from riding
rental-bikes in Brussels and Dublin (4.1f).

Bus

This class represents the transportation mode of city buses. This includes
electric and hybrid buses (as shown in figure 4.2a), but most recordings
were made in buses with a combustion engine. The class definition does not
require the bus to be moving in order for it to be a valid recording. Thus, a
recording can include waiting at a bus-station or at a traffic light.
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(a) mountain bike (b) city bike

(c) fixed-gear bike (d) ladies bike

(e) single speed (f) rental bikes

Figure 4.1.: Some of the bikes that were used to record on.
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Recordings in this class differ for several reasons. One reason is of course
the bus itself because different models produce different sounds. Then of
course, it depends on the location inside the bus, especially in double-decker
buses such as those found in Dublin, and pictured in figure 4.2b, where the
upper deck sounds significantly different from the lower deck.
Another aspect that should not be neglected are other passengers. An empty
bus sounds different to a bus full of people who might, in some cases,
completely overpower the engine sounds. That is why the dataset contains
recordings with different amounts of passengers.

(a) Luxembourg electric hybrid bus (b) Dublin double-decker

Figure 4.2.: Two examples of exotic buses.

Car

Nowadays, one of the most common modes of transportations is the car.
The car class contains any type of automobile that is used for personal
transportation. This also includes taxis (even though our dataset does not
contain recordings made in taxis). Racing cars are outside the scope of this
class.

There are many different types of cars. The two main factors that contribute
to an individual sound-scape of the car are: the engine, and the tires. Our
dataset contains recordings of more than ten different models. Some of
them had petrol engines (Opel Zafira, Renault Clio, Volvo XC60), some had
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diesel engines (VW Passat, Skoda Octavia and another Opel Zafira), two
were electric cars (Tesla Model S and Tesla Model X) and one was a hybrid
(Toyota C-HR).

The one factor that influences the sound inside the car the most is its velocity.
The higher the speed, the louder the noise generated by tires on the road
(and the engine if driven in highest gear). This is why cars on motorways
sound very different from cars in city traffic.
As with other classes, in this dataset the whole of the journey is considered
driving the car (even when it is not in motion) which includes standing at
traffic lights or pedestrian crossings etc.
Manufacturers try to design cars so there is as little noise in the cabin as
possible. This is why it is very hard to classify cars in city traffic (especially
electric cars).

Some of the recordings of this class contain music (and have a music tag in
the meta data). In fact, if a recording has music then it most likely belongs
to the car class since most people listen to the radio while driving. However,
it is not a signal that should be used for classification, because some coaches
have music playing, or there might be music in the background of a person
walking. Thus, samples which mainly contain music should be filtered
out.

Coach

A coach is a comfortably equipped bus used for longer journeys. They
usually travel between cities on country roads, or motorways. Judging by
the vehicle, the bus class is relatively close, however, the resulting sounds
inside a coach are very distinct from a bus.

The dataset contains coach journeys recorded in different countries in
Europe. Those countries are: Austria, France, Germany, Ireland, Italy and
even Luxembourg. Although, it should be mentioned that the country in
which the coach is traveling does not influence the sound it produces (at
least not to a notable extend). What does make a difference is the model of
the bus that is used and different countries have different transportation
providers, which have different coaches.
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Metro

Several bigger cities in Europe operate metro systems. They consist of
underground trains which, in some cases, submerge further outside the city
center. Most carriages are on two rails but there are exceptions, such as the
rubber-tired metro in Toulouse and some metro lines in Paris.
The distance between stops and the associated travel speeds are higher than
for trams and lower than those of trains.

Our dataset contains recordings of metro lines in Hamburg, Paris, Toulouse
and Vienna. Often times the sound-scape also varies by metro lines within
one city. For instance, the U1 in Vienna sounds significantly different than
the U6, because other vehicles are used. This is why the meta data will
usually also specify the underground line name.

There are edge cases where it is not entirely obvious whether they should
be specified as metro or not. One such example would be the Stadtbahn
in Stuttgard (as pictured in figure 4.4). In parts of the city, it behaves a lot
like a tram in that its rails are on the streets and the stops are fairly close
together. However, in the very center of the city it behaves more like a metro,
having its own underground tracks. The dataset contains one recording of
the Stadtbahn U6 for testing purposes.

Plane

This class represents airborne transport using commercial passenger air-
liners. The dataset contains recordings from intra-continental flights inside
Europe in economy class. The airplanes used on those flights were short-
to medium-range airliners (Boeing 737-800 or Airbus A319/A320/A321 in
various versions).
Light aircrafts are not part of this class. If they should be added, it is
recommended to put them in a separate class.

Different stages of each flight are recorded. The main part is the cruise,
but take-off, and landing, as well as rolling on the taxiway are available as
separate files.
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(a) cruise front of cabin (b) cruise mid-cabin (c) cruise rear of cabin

(d) engine start (e) taxiway (f) turn engine up

Figure 4.3.: A set of typical features of the plane class during different stages of the flight
and at different positions inside the cabin.

Since the location inside the cabin comes with a significant noise difference,
the recordings were made from different positions. The meta data either
contains the row number (usually 1-37), or a tag such as front of cabin or
rear of cabin. A selection of extracted features is shown in figure 4.3 to
demonstrate the difference in sound between the individual positions and
stages through the flight.

Train

Any train that is operated on two rails and does not belong to any other
class (such as metro or tram) is part of the train class. This includes inner-city
trains, regional trains, express trains, and fast trains. The class also does
not limit the type of traction system. Most trains (especially fast trains) are
powered electrically, but others (on routes with no overhead cables) rely on
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fuel. Technically, locomotives driven by a steam engine also fit in this class,
however, the dataset does not contain such recordings.

It is possible to split this class into slow trains and fast trains. The meta
data contains the type of train (such as ICE, Railjet, EC, S-bahn) to allow for
this. The reason why it is not done by default is that none of the facilitators
commute with slow trains on a regular basis. So it was not easily possible
to create a large enough sample set to support a separate class.

All recordings were made in trains of central Europe. The following coun-
tries are contained in the dataset: Austria (ÖBB), Belgium (SNCB), France
(SNCF, Thalys), Germany (DB), the Netherlands (NS), and Switzerland
(SBB).

Tram

Most medium to large cities in Europe operate tramways. They are electric-
ally powered by overhead cables and run on rails in city roads. The dataset
contains recordings from tram lines in several cities in Europe (Amsterdam,
Brussels, Dresden, Graz, Lyon, Paris and Vienna).

As is the case with buses, other passengers can be a significant noise factor.
It seems to be the social norm that in buses and trams people speak (often
loudly) with each other, take phone calls or even play music on their phones.
This is not the case (at least not as much) in public transport with a longer
journey time, such as coaches and trains where people are usually quiet as
to not disturb others.

There are several tram lines that are somewhat unusual. One example can
be found in some trams in Paris. Most tram lines have two rails (as trains
do) but these have tires and have only one central rail.
Usually, trams operate on street level. However, line 3 and 4 in the city of
Brussels are underground and have underground stations that resemble
those of a metro line (as pictured in figure 4.5).
Another example can be found in Lyon. The airport of Lyon is connected
to the city with an express tramway. As the name suggests this tram line
has fewer stops and travels at higher speeds than regular trams making it
sound more like a train than a tram.
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The high diversity of the tram class, combined with its relatively low share
of total time in the dataset, make it hard to classify. Plus, there is another
problem concerning the class definition: the vehicle does not need to be in
motion. This is fine for buses because there will still be an engine running,
but trams do not make any sound if they are halted. To achieve a higher
classification accuracy, the recordings would have to be revised.

Figure 4.4.: Stuttgard Stadtbahn Figure 4.5.: Brussels underground tram

Walking

The walking class represents when a person is traveling on foot. Same as
for the bike class the phone location has to be in a pocket of the trousers of
that person. The walking speed can vary, from strolling, to fast marching.
However, jogging and running is out of the scope of this class. Climbing
and descending stairs also counts as walking.

Recordings for the walking class have been made by different people, in
different speeds, in different places with different terrain and different
environments. Some were walks in cities, others in the woods or the country
side. A few recordings were even made when walking on festival grounds
with loud background music.

54



4.1. The Dataset

There are some shorter recordings in our dataset that feature walking inside
another mode of transportation, such as planes, trains, metros, trams, and
coaches. Those are special cases and it has been decided that they should
belong to the primary mode of transportation they occur in (not walking),
since it can happen that one has to walk inside another vehicle. In other
words, it is more likely that you are walking in a plane (or respective other
transportation mode) than it is that you are in a plane (or respective) when
intending to go for a walk. In our dataset each of those classes contain a
separate folder walking with the recordings of this kind.

4.1.2. The Cities

City bike bus car coach metro plane train tram walk Total

Graz 4087 302 914 209 0 0 332 107 424 6377

Vienna 0 9 60 0 771 231 448 62 185 1769

Klagenfurt 165 28 716 113 0 0 70 0 18 1111

Brussels 235 77 0 28 43 0 158 22 87 652

Paris 0 5 76 0 120 112 0 52 219 586

Hamburg 0 17 0 0 67 0 272 0 97 455

Amsterdam 0 0 0 0 0 179 18 38 105 341

Lyon 0 0 0 96 0 127 0 28 30 281

Edinburgh 0 50 0 0 0 198 0 0 16 266

Toulouse 0 0 100 0 62 21 0 0 57 240

Table 4.2.: Recording times of each mode of transportation for ten cities sorted by total
recording time. All entries in minutes.

The recordings for our dataset were made in different cities across Europe.
Table 4.2 lists the top 10 of the cities where most recordings were created.
It also breaks down how much of each transport mode was recorded in
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each city. The top 3 are Austrian cities, because most of the facilitators are
Austrians and live in one of those cities. The other cities had to be traveled
to.

A recording belongs to a city if the journey started in the given city. The
classes coach and plane only have the city as a place of departure. Some car
and train rides stay within city bounds, but for most of the recordings the
vehicle also leaves the city. All other classes usually fully stay within the
city.

It can be observed that all of those cities feature recordings of different
modes of transportation. Graz has most of the classes covered except plane
and metro, because there is no metro system in Graz. Therefore, there are a
lot of metro recordings coming from Vienna. There is no active tram line in
Klagenfurt, otherwise it would have also been covered.
The cities not on the list include Dijon, Dresden, Dublin, Firence, Montpellier,
Munich, Rottadam, Stuttgart, and Venice. Those, however, only feature one
to three transportation modes each.

4.1.3. Evaluation Set Split

The dataset was split by hand into training and evaluation set. Table 4.3
shows the distribution of training and evaluation files. The aim was to
have roughly 10% of the overall data in the evaluation set. However, since
some classes (such as bike) have very long and repetitive recordings, only a
proportionally small amount is required in the evaluation set. Other classes
are already short on recordings in the training set (such as bus) so we did
not take away too many.

Since the split is done on the basis of the recordings, we are bound to
recording lengths. However, this also complicates the selection procedure.
To ensure that there is a high diversity in the evaluation set, it tends to
contain the shorter recordings. Furthermore, we tried to keep the same
proportions of characteristics (city, vehicle, phone position etc.) to ensure
that the evaluation result is not predominated by any one trait. This is
more important than reaching the 10% target. For example, if recordings
were made in three different cities and we added recordings with equal
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Class training evaluation evaluation
ratio [%] Total

bike 71h 04’ 3h 43’ 5.0 74h 48’

bus 8h 33’ 0h 39’ 7.1 9h 12’

car 35h 07’ 2h 13’ 5.9 37h 20’

coach 6h 59’ 0h 27’ 6.3 7h 27’

metro 17h 22’ 1h 07’ 6.1 18h 30’

plane 14h 52’ 1h 24’ 8.7 16h 17’

train 44h 47’ 3h 32’ 7.3 48h 19’

tram 6h 29’ 0h 53’ 12.1 7h 23’

walking 23h 10’ 3h 11’ 12.1 26h 21’

Total 228h 27’ 17h 13’ 7.0 245h 40’

Table 4.3.: The split of the dataset into training set and evaluation set. The recording times
and the resulting percentage are listed for each class as well as for the overall
dataset.

length from each city but they amount to only 5% and there are only long
recordings left, then we do not add any more to the evaluation set, even
though we could add another long recording, but then the ratio of cities in
the evaluation set would be biased.

Finding an ideal split is not a trivial task. It is always a matter of balan-
cing the training and evaluation set. The presented approach results in an
appropriate split for our proposes.

4.1.4. Log Mel-band Energies

The features of one representational sample of each class are displayed in
figure 4.6 for a side-by-side comparison. It can be observed that car and train
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(a) bike (b) bus (c) car

(d) coach (e) metro (f) plane

(g) train (h) tram (i) walking

Figure 4.6.: A set of typical examples for features of the 9 classes for direct comparison.

are the most quiet of the classes. Samples in plane have a uniform spectrum,
because the sound is always the same during the 10 seconds. Inside a bus or
a metro there are more changes in the noise, which can also be observed in
the features. Walking and bike have periodical signals. For these examples,
walking has the longer period, suggesting that two steps take more time
than one rotation of the pedals on the bike. Since we know one sample is 10
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seconds long the step speed can be derived (this person made 18 steps in 10

seconds, and the cyclist did 12 full rotations).

(a) walking in a plane (b) walking in a train

Figure 4.7.: The features of examples for walking inside another mode of transportation.
The left image shows walking in a plane and the right one walking in a train.

The features of the special cases of walking inside a plane or a train are
displayed in figure 4.7. As one would expect, they are a combination of
what has been shown above. There are the periodical walking steps but
also a higher background noise level. The steps are not as clearly visible
anymore, but it can still be deducted that the person in the plane walked 16

steps in 10 seconds and the person in the plane did approximately 19.

More plots of log-mel band energies of interesting cases can be found in the
appendix.

4.2. Sample Length

To figure out which sample length is appropriate for our given TMD dataset
and the algorithm, several sample lengths have been tested. For this experi-
ment the dataset was slightly reduced to contain only 69 hours, that is 28%
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of the total recordings (the exact procedure is described in section 3.2.3).
This was done to ensure an equal distribution of samples between classes,
and to remove ambiguous cases (like walking in a plane). To ensure that
the evaluation results are comparable, the evaluation samples are always
extracted from the same recordings. Those recordings were handpicked to
ensure that the evaluation set consists of a variety of different scenes.

Figure 4.8.: The F1-scores of evaluation runs after training with different sample lengths.
The corresponding training set size in hours is plotted in red.

In a first rough analysis the samples lengths are selected from a logarithmic
scale. Specifically, starting with a base of one second, multiples of two are
analyzed in either direction. The resulting F1-scores, which can be seen in
figure 4.8, show that the algorithm performs better the longer the sample
lengths are. At one point (128 seconds) the F1-score decreases, but that is
simply due to the reduced size of the dataset. With the given limitations (see
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section 3.2.3) fewer samples are extracted with larger sample lengths. The
combined length of all samples used in each training can also be obtained
from figure 4.8. At larger sample lengths some classes will not have enough
samples to be properly represented, which is why the F1-score drops.

Figure 4.9.: The individual F1-scores of different sample lengths with a majority vote on 32

second batches. Each line represents the F1-scores of one class and a weighted
average F1-score is shown by the bar plot.

To conclude that the longer the samples the better the result (even given
long enough recordings), would be a misinterpretation. One also needs to
consider that in the time it takes to perform the classification with a longer
sample, several short samples can be classified. In order to account for this,
a majority vote for samples within 32 seconds is applied (so for 1s samples
a best of 32 samples is performed, for 2s a best of 16 and so on). Figure 4.9
shows the results.
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It can be observed that starting at two seconds and up to a minute the
weighted F1-score (shown by the light-blue bars in the background) does
not change very much. There is one outlier at 8s, but this might just be due
to the validation set selection, or other random factors during the training.
Figure 4.9 also contains plots of the F1-scores of the individual classes. It
can be noted that transport modes such as plane, coach, and car which have
a distinct background noise, are correctly classified at very low sample
lengths and their F1-scores tends to decrease at longer samples, due to the
influence of the other classes before it recovers again.
Other classes, such as bike and walking, which produce periodic sounds with
a period of 1-2 seconds, tend to increase in accuracy at least up until the
point where the period can be detected inside a sample (around 2 seconds).
That the bike class then still increases (whereas walking decreases) is probably
due to the fact that less of the other classes are misclassified as bike (see
confusion matrix in chapter 4.3).
The classes bus, metro and tram gain the most with an increased sample
length. Those are also the classes with the most discrepancies in the record-
ings, due to their stopping in stations. However, bus and tram are also the
classes with the fewest samples so that might be another reason for the
comparatively low F1-scores.

Additional trainings were performed to have a closer look at possible sample
lengths. This time a linear scale was chosen with an interval of two seconds
up to a maximum of 20 seconds. The resulting F1-scores can be obtained
from figure 4.10. It can be observed that there is a slight increase for all the
classes with longer samples. The plane class performs worse at first but then
recovers (as also seen on the logarithmic scale). The biggest imprecision is
due to the coach class which oscillates quite a bit. The overall best result is
produced with a sample length of 16 seconds. It has been ensured that this
is not just a random outlier by performing the training several times (and
observing similar results).To see whether this is because of the validation set
(which stays if the samples do not change), or because of other parameters
in the training (maybe it works well with the given sequence length or
pooling size which both had to be adjusted to the sample length) would
require more experiments to be run. However, the gain is not significant
enough to justify further analysis.
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Figure 4.10.: The individual F1-scores of different sample lengths on a linear scale.

Decision

We had to decide which sample length to proceed with. All the following
experiments are run with that sample length. The overall best score was
provided with a sample length of one minute (64 seconds to be precise).
However, having such a long sample length is impractical for our usecase,
since we do not want a user to have to wait a minute before the application
displays the first result. The little gain in accuracy is not worth the loss in
usability.
When it comes to smaller sample lengths the best performance was at 16

seconds. This is also the sample length we would have selected if we were
using only our dataset. Other researchers have used sample lengths of 10

seconds in their experiments (such as Mesaros et al. [18] for the DCASE
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challenges). So, if we wanted to include their samples in our experiments
we could have a maximal sample length of 10 seconds. Since there is no
dramatic difference in F1-scores we decided to apply their sample length
and go with 10 seconds.

4.3. Starting Point

Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bike 98.9 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.7

bus 24.5 23.1 3.9 0.0 24.0 0.4 20.1 0.4 3.5

car 8.6 0.3 83.1 0.5 0.6 1.5 5.2 0.1 0.1

coach 19.8 6.6 12.0 42.5 0.6 0.0 18.6 0.0 0.0

metro 34.3 0.2 0.7 0.0 51.7 1.5 9.7 1.2 0.5

plane 19.5 1.7 2.5 0.0 4.7 67.6 3.9 0.0 0.0

train 18.2 0.4 1.9 0.2 0.8 1.2 72.2 1.5 3.6

tram 47.3 3.2 8.6 0.3 5.4 5.1 12.5 15.7 1.9

walk 19.7 0.0 0.3 0.0 1.9 0.0 0.4 0.1 77.7

Table 4.4.: The confusion matrix of the classes of our dataset when all the samples are used.
All values in percent. The same confusion matrix with absolute values can be
fond in the appendix.

Now that we had decided upon a sample length, all samples could be
extracted. This is done following the procedure described in section 3.2.3.
The restrictions do not apply anymore, so for each file as many samples
as would fit into the recording are extracted. Henceforth, those 10 second
samples are the samples we are talking about if we mention our samples, the
samples or simply samples (unless specified otherwise).
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A normal training is performed using all our (training) samples on the
algorithm. When testing all samples from the evaluation set, the resulting
F1-score is 72%. This is the baseline we will be comparing against, when
we reduce the sample set, change classes, or perform preprocessing in the
following sections.

A confusion matrix can be found in table 4.4. Each given percentage indicates
the amount of samples of a class that were predicted as the charted class.
In other words: which classes it was confused as (thus confusion matrix).
Furthermore it is color coded: the diagonal elements (which represent
the correct predictions) change their shade of green to be more saturated
the closer the value is to 100%, and all other entries (which represent
mispredictions) become more red if the value increases.

The most obvious discovery to be made from this confusion matrix is that
most mislabeled samples are predicted to be of the bike class. The bike class
itself has a very high amount of true positives (almost 99%), but all the
false positives reduce the F1-score of the class significantly. It has become
a so-called trash class, because it is what the classifier picks if it does not
know where to put it. We will deal with this issue in section 4.6.

Runtime

On a Tesla P100 (which is a GPU designed for data centers) with 16GB
of memory and 9.3 teraFLOPS single-precision performance, the training
process with the full dataset takes 3 hours and 40 minutes. That is a bit
more than one minute per epoch.
Creating the features also takes several hours but that only needs to be done
once.

4.4. Dataset Size

This section attempts to find the appropriate size for the dataset. Different
sizes are tested, both in terms of the lengths and the number of recordings.
Since we only have one given dataset, we can only create smaller subsets
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from it. In the following experiments the training set is reduced but the
evaluation set is kept the same to assure comparable results.

4.4.1. Number of Samples

The first experiment which was conducted reduced the dataset by samples.
This means that random samples were selected to be removed from the
dataset. The impact this has on the performance of the algorithm is shown
in figure 4.11. It is worth noting that the the x-axis has a logarithmic scale:
from right to left the dataset is halved in each step.

Figure 4.11.: The F1-scores of the individual classes when the samples of the dataset are
reduced.
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It can be observed that up to 75% of the samples can be removed without
causing a noteworthy drop in performance. The F1-scores of the individual
classes change slightly (in particular car and plane are worse off), but the
overall score stays level.
The dataset can be further reduced down to around 5% until the perform-
ance really starts to drop. This is best seen by the trend of the coach class
(red line in figure 4.11), which increases significantly between a dataset size
of 1.56% and 6.25%.
Even when 99.6% of the samples have been removed the F1-score is still at
45%. Three of the classes, namely bus, coach and tram, cannot be predicted
correctly anymore but the others (especially bike, plane and train) can still be
told apart to a large extend.

This means that for applications with strict memory requirements a reduced
subset of our dataset would suffice. Also, if we were to publish the dataset
it would be a possible to use only a quarter of the samples to reduce the
required storage space (and the connected transmission times) from over
80GB down to around 20GB.

The reason as to why so many samples can be removed without losing
performance is that our recordings are quite repetitive in nature. So a 10

minute recording will have a lot of very similar samples. To see if this lack
of diversity exists for the full length of a recording, (such that the recording
could be trimmed) or just within parts of the recordings, requires further
analysis.
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4.4.2. Length of Recordings

It was established that a lot of samples (around three quarters) can be
removed from the dataset without notably reducing the diversity and the
thereby associated classification accuracy. The next step is to figure out
whether those samples can be removed in a certain pattern, namely, at the
end of each recording. If this change provides similar results (compared
to when samples are removed at random), then this would mean that the
recordings in the dataset are unnecessarily long.

Figure 4.12.: The F1-scores of the individual classes when the recording lengths of the
dataset are reduced.

The datasets for this experiment were created by removing a certain percent-
age of samples at the end of each recording of the full dataset. The resulting
scores are displayed in figure 4.12. This plot is comparatively smoother than
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the previous one because the recording length was shortened incrementally
(ie. the same samples have been removed).

Similar to the previous experiment, the F1-scores are not significantly af-
fected when up to 75% of the recording length is removed. Beyond this point
the scores drop more drastically than if samples are reduced at random.
Some classes (eg. tram) decline earlier than others (eg. car or plane).

The average length of recordings in the dataset is 16 minutes (see table 4.1),
and 17 minutes for the training set only. This means that even with aver-
age recording lengths of 17

4 = 4.25 minutes the results would not differ
significantly.

Some classes (such as walking and metro) seem to suggest that recordings
that are too long hinder performance. However, it is more likely that some
recordings of those classes just require trimming at the end of the file (see
section 4.8.2).

4.4.3. Number of Recordings

This experiment tries to answer the question of how many recordings
are required to achieve a certain performance. Therefore, the number of
recordings in the dataset was reduced. The selection of recordings happened
at random and with the full dataset at each step. So there is no incremental
removal to avoid falsifying the results, if essential recordings are removed
early on.

The F1-scores of each simulation (as well as those of the individual classes)
can be obtained from figure 4.13. The x-axis in this plot has a linear scale
(as supposed to the logarithmic scale in the two previous figures).

It is worth noting that in this experiment the classes bus, coach and tram
were exempt from the removal. This is because they do not contain many
recordings. If they were included then their accuracy would drop too quickly,
which in turn would negatively affect the F1-scores of the other classes.
This is why in figure 4.13, the graphs for those classes do not seem to
be majorly affected. The tram score even decreases with a bigger dataset
(possibly because the ratio of the already too few tram recordings decreases).
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The metro class, which would have been the next on the list to expect, does
show a significant decline when only one sixteenth (6.23%) of the recordings
are used. So do the other classes that have been reduced, except bike, because
it is our trash class.

Figure 4.13.: The F1-scores of the individual classes when the recordings of the dataset are
reduced.

With 75% of recordings removed, the prediction capabilities are already
notably restricted. However, with only 25% of the recordings removed, the
precision actually increased, which suggests that there are recordings in
the dataset which are either incorrectly labeled, or otherwise negatively
influence the training procedure.

Given the graph at hand it is hard to tell if more data would further improve
the results. The fluctuation between tests is too high to predict a trend.
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However, it is unlikely that more recordings (of similar quality) will worsen
the classification results.

Conclusion

Based on the data provided we would not suggest removing recordings
from the dataset. In some cases, it might be appropriate to thin out the
dataset by removing random samples throughout recordings. It has been
shown that the recording length can be reduced to around five minutes.
What is more important than the length, is the diversity between recordings.
This should be considered for future data creation.

4.5. Number of Classes

The decision of how many and which classes to choose can influence the
classification capabilities significantly. This section examines three different
approaches that change the number of classes used. At first, existing classes
are merely removed, then classes are merged to reduce the number of
classes, and finally classes are split to increase the number of classes.
The goal of this analysis is to illustrate the ratio between the number of
classes and the classification scores, as well as provide an overview on how
different classes influence each other.

4.5.1. Excluding Classes

The simplest way of changing the number of classes is by simply leaving
out some existing classes. This experiment reduces the number of classes
from all nine to two. If a class is not removed then all of its samples are
being used.

Only a subset of possible combinations has been tested. Since for each
number of classes c there would be 9!

c!(9−c)! possibilities. A selection has been
made to cover a range of different strategies: combining only small/big
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classes (in terms of number of samples), combining classes that are similar
(eg. bus and coach) or very different (eg. bike and plane). The strategy for 4-7
classes was to have two different sets and always add one class to each set.
With 8 classes all combinations (removing each class once) were tested.

Table 4.5 documents the resulting F1-scores of each of the tests. When
analyzing the total scores (in the right-most column), it can be said that in
general the score worsens, the more classes are tested.

The table helps identify which classes have clear decision boundaries and
which ones might be overlapping. For example bike and plane can be clearly
distinguished which results in high F1-scores. Even bike and tram are fairly
different. When testing the two classes bike and walking, however, more
confusions are recorded. The same is true for the combinations metro and
train, and bus and coach. Bus and tram yield the worst results of the tested
2-class combinations.
By analyzing 3-classes in one test in can be shown that car, plane, and walking
are far apart on the vector space (and can therefore be easily distinguished),
whereas the three inner-city public transport modes (bus, metro, and tram)
are more easily confused by the classifier.

The middle part of table 4.5 shows two sets of classes (for 4-7 classes always
upper row and lower row) and how the F1-scores develop when additional
classes are added. The sets start out with 4 classes each and are increased
to the total of 9 classes (last row). It is shown that in most cases the score
decreases with each added class. However, if a class is added that has a lot
of samples and does not influence other classes significantly (such as car or
walking), then the F1-scores could also increase with more classes. This does
not mean that the accuracy of the individual classes is improved but in total
proportionally more samples are predicted correctly.

Another noteworthy observation can be made when analyzing the relation-
ship between tram and train. The two columns can be found next to each
other in table 4.5. They show that the the score for tram is significantly higher
if the train class is not present. A similar behaviour (but not as extreme) can
be observed for the coach class. Those findings coincide with the data from
the confusion matrix (table 4.4) which shows that coach and tram are often
labeled as train.
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bike bus car coach metro plane train tram walk Total

2
cl

as
se

s

99.7 99.4 99.6
98.3 92.1 97.1
94.6 93.0 93.9

82.7 95.2 92.3
87.8 79.2 84.2
63.9 73.7 69.5

3
cl

. 97.1 97.9 98.8 98.0
94.1 90.1 90.4 91.8

63.4 78.2 66.9 70.9

4
cl

. 97.0 71.1 92.4 76.5 91.4
58.2 92.8 80.9 96.8 89.6

5
cl

. 95.7 79.9 75.8 91.6 62.5 87.4
37.5 88.0 72.0 83.4 93.2 83.3

6
cl

. 94.7 47.2 73.7 66.0 85.5 55.2 80.3
33.4 86.9 65.3 83.6 30.3 91.3 77.9

7
cl

. 90.9 47.1 87.7 68.4 66.8 88.4 53.5 80.7
22.1 86.2 52.1 61.8 80.1 23.2 90.1 74.0

8
cl

as
se

s

19.9 82.1 51.0 51.4 82.9 79.8 21.5 90.9 73.5
72.3 78.1 50.0 62.7 73.8 74.6 20.5 77.6 70.8
77.5 44.9 52.2 63.1 86.9 81.4 32.1 84.0 75.1
69.6 28.7 85.1 53.6 84.4 76.7 6.6 82.7 71.3
78.6 41.0 86.2 49.4 82.8 77.6 24.9 87.1 76.3
74.5 35.9 85.2 60.8 56.4 79.2 20.1 85.2 73.0
84.2 55.3 88.8 68.0 64.2 91.0 50.9 89.2 81.4
74.7 33.3 87.1 55.4 61.0 82.4 80.2 79.4 76.3
75.3 31.0 81.9 65.6 61.7 82.0 78.7 19.3 71.3

9
cl

.

70.9 43.7 87.3 66.4 54.9 82.5 79.0 14.1 78.4 72.3

Table 4.5.: This table lists the individual and total F1-scores (in percent) of evaluations with
a reduced number of classes used. Each row represents one evaluation. If a cell
is empty that means that the corresponding class was removed. 73
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The large influence of the train class is also indicated by the block of 8-classes,
where the best result is achieved when the train class is removed.

4.5.2. Merging Classes

Merging classes can be a helpful strategy to improve the classification results.
It comes with the disadvantage that the results are not as detailed (because
there will be fewer classes), but it has the potential to increase accuracy and
depending on the use-case that might be of higher importance.
However, the advantages only take effect when the merging is done right.
This section discusses merging strategies by the means of performing tests
on our dataset.

Not all merging improves the performance. This can be demonstrated by
merging two classes which were proven to be fairly independent, such as car
and plane. A confusion matrix can be found in table 4.6. The total F1-score
of the evaluation after the algorithm was trained with the merged classes
is 74.7%. This is only a minor improvement to the 72.4% that would be
achieved if all classes are kept in the training and the merge happened on
the evaluation results.

That merging two classes can also have negative effects is shown by merging
bus and plane. Table 4.7 compares the two confusion matrices, once with
the merge before, and once after the training. It can be observed that, even
though the number of true positives is higher if the classes are merged
before training, the number of false positives also increases. In total the
F1-score decreases from 72.4% (training with all classes) to 71.9% (training
with bus and plane merged).
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Prediction

A
ct

ua
l

bike bus car & plane coach metro train tram walk

bike 99.3 0.0 0.2 0.0 0.1 0.0 0.0 0.5

bus 24.9 27.9 2.6 0.0 23.1 16.6 1.3 3.5

car &

plane
6.4 0.3 87.5 0.1 0.8 4.5 0.3 0.1

coach 11.4 19.2 18.6 47.3 0.0 3.6 0.0 0.0

metro 31.3 0.5 1.2 0.0 50.7 13.9 2.2 0.0

train 14.7 0.6 5.8 0.0 1.1 74.5 0.8 2.5

tram 42.5 1.3 12.1 0.3 7.0 22.0 13.4 1.3

walk 19.8 0.0 0.3 0.0 3.4 0.4 0.0 76.3

Table 4.6.: The confusion matrix when the classes car and plane are merged.
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Prediction when trained with merged classes
A

ct
ua

l

bike bus & plane car coach metro train tram walk

bike 99.2 0.5 0.0 0.0 0.2 0.1 0.0 0.2

bus &

plane
15.2 69.7 1.9 0.1 6.9 5.1 0.8 0.3

car 12.1 2.5 77.9 0.4 0.0 6.3 0.8 0.0

coach 20.4 13.2 6.6 53.9 1.2 4.8 0.0 0.0

metro 30.6 9.2 1.0 0.0 44.3 14.4 0.5 0.0

train 15.7 2.9 3.0 0.4 0.1 75.8 0.4 1.7

tram 43.5 8.0 7.3 0.3 5.8 27.2 6.7 1.3

walk 28.8 0.0 0.1 0.0 1.1 0.4 0.0 69.7

Prediction when trained with all classes

A
ct

ua
l

bike bus & plane car coach metro train tram walk

bike 98.9 0.2 0.0 0.0 0.2 0.2 0.0 0.7

bus &

plane
20.8 57.2 2.9 0.0 9.8 8.2 0.1 0.9

car 8.6 1.8 83.1 0.5 0.6 5.2 0.1 0.1

coach 19.8 6.6 12.0 42.5 0.6 18.6 0.0 0.0

metro 34.3 1.7 0.7 0.0 51.7 9.7 1.2 0.5

train 18.2 1.6 1.9 0.2 0.8 72.2 1.5 3.6

tram 47.3 8.3 8.6 0.3 5.4 12.5 15.7 1.9

walk 19.7 0.0 0.3 0.0 1.9 0.4 0.1 77.7

Table 4.7.: The confusion matrices when the classes bus and plane are merged. The upper
table shows results after a training with the merged classes whereas the lower
table shows the result of a training with all classes but the entries in the matrix
of bus and plane have been combined.
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The correct way to merge classes is by combining classes which are inher-
ently similar. An example would be all classes that operate on rails (in our
dataset those are metro, tram and train). Doing so yields a weighted F1-score
of 81.8% (as compared to 74.9% when merged after training with all classes).
When, additionally, the two bus classes (bus and coach) are merged the
F1-score increases to 83.2% (75.1% without retraining). This step is only a
small gain, but it does not cause additional misclassification. As shown in
the confusion matrix (table 4.8), most of the false positives (especially those
from the merged busses class) belong to the rails class (those in bike can be
ignored for reasons that will be discussed in section 4.6).

Prediction

A
ct

ua
l

bike busses car plane rails walk

bike 98.6 0.0 0.0 0.1 0.3 1.0

busses 9.3 41.7 6.1 0.0 39.6 3.3

car 6.6 1.3 82.9 0.3 9.0 0.0

plane 10.1 0.0 1.4 71.5 16.5 0.5

rails 8.7 0.9 0.9 0.6 86.1 2.9

walk 15.1 0.1 0.1 0.0 1.4 83.3

Table 4.8.: The confusion matrix when the classes bus and plane are merged. The upper
table shows results after a training with the merged classes whereas the lower
table shows the result of a training with all classes, but the entries in the matrix
of bus and plane have been combined.

4.5.3. Splitting Classes

To increase the number of classes in our dataset (without using external
data), the existing classes have to be split into subclasses. The precondition
for splitting is that there is enough meta data available to associate each
recording of a class to either one of those subclasses.
Splitting a class into two subclasses can have three outcomes (in different
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manifestations thereof). The best case is that the two classes can be cleanly
separated by the classifier. This is when it makes sense to split a class, so it
is what we are aiming for. The second case is when there is one dominant
class that the second class is confused with, but which itself is not mistaken
for the second class. The third possibility is that both classes influence each
other with false positives on both sides. This is usually a sign that the classes
cannot be separated and the split should not be applied.
This section demonstrates all three cases by means of splitting some of the 9

classes in our dataset into subclasses.

Prediction

A
ct

ua
l

bike bus car coach ecar metro plane train ...

bike 99.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2 ...

bus 22.3 22.3 0.4 0.0 0.9 23.6 0.0 21.4 ...

car 9.0 0.7 80.7 0.5 0.0 0.4 1.8 6.8 ...

coach 29.3 26.3 2.4 37.1 0.6 0.6 0.6 3.0 ...

ecar 39.3 4.9 26.2 0.0 26.2 0.0 1.6 1.6 ...

metro 39.8 1.2 0.0 0.0 0.0 44.3 0.5 12.7 ...

plane 24.1 0.6 2.8 0.2 0.0 1.1 67.2 3.8 ...

train 15.7 0.9 1.7 0.2 0.3 0.4 0.7 76.3 ...

tram 53.0 2.9 1.6 0.0 1.0 3.5 7.7 21.1 ...

walk 21.0 0.0 0.0 0.0 0.0 1.0 0.1 0.4 ...

Table 4.9.: The confusion matrix when samples from electric cars are split from the car
class into a separate ecar class. The columns tram and walk have been omitted
because neither of the car subclasses were confused with them.

A dominant subclass frequently emerges when the subclasses are difficult
to distinguish and the other subclass has significantly fewer samples. An
example in our dataset would be splitting the car class into electric cars
(ecar) and regular (non-electric) cars (car). The confusion matrix (table 4.9)
shows that ecar (which has fewer samples) is confused with car but not vice
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versa. The accuracy of electric cars being correctly identified as cars is only
around 50% and then there is another 50%/50% chance that a sample is put
in the wrong subclass. Therefore, it is not advisable to keep the subclasses
separate.
The same is true when suburban trains are split from the train class. The
prediction accuracy of the subclasses are even worse in that case (details
can be found in the appendix).

Prediction

A
ct

ua
l

bike ... easyjet metro plane train tram walk

bike 98.6 ... 0.0 0.2 0.2 0.0 0.0 0.9

bus 18.8 ... 0.0 23.1 0.0 17.9 0.0 5.2

car 10.7 ... 0.0 0.0 1.6 9.6 0.0 0.0

coach 26.3 ... 0.0 0.0 1.8 4.8 0.6 0.0

easyjet 15.4 ... 52.8 0.0 30.9 0.0 0.0 0.8

metro 27.4 ... 0.2 58.0 2.0 10.9 0.7 0.2

plane 25.0 ... 21.7 3.7 44.9 3.1 0.2 0.2

train 15.8 ... 0.3 0.5 0.3 75.2 0.6 4.7

tram 48.2 ... 0.3 10.5 1.0 16.0 12.8 2.2

walk 17.1 ... 0.0 1.1 0.0 0.4 0.0 81.5

Table 4.10.: The confusion matrix when samples from easyjet flights are split from the plane
class into a separate class. The columns bus, car and coach have been omitted
because neither of the plane subclasses were confused with them.

When two equally sized subclasses are hard to distinguish, then in most
cases both of their accuracy scores suffer from it. This is the case, when in
our dataset the plane class is split into plane rides with the operator EasyJet
and all others. In the confusion matrix (table 4.10) it results in a square,
where one diagonal are the correct predictions and the corners of the other
diagonal are the confusions with the respective other subclass. Even though
both subclasses are confused with each other, the majority of samples is still
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predicted correctly (53% for easyjet and 45% for others (plane)).
Whether or not to keep a class split in such a case depends on the desired use-
cases. If the application should be able to distinguish between subclasses,
then it makes sense to keep them. Additional labeling strategies, such
as those for ambiguous classes (see section 4.7), for example if easyjet is
classified as plane it is also correct, can be applied. If the application does
not gain anything from the split (which is the case for this example), then
the split should be reversed.

Prediction

A
ct

ua
l

bike

(other)

bike in

black pants

bike in

blue jeans

bike in

shorts
other walk

bike (other) 69.7 26.8 0.7 1.4 0.7 0.7

bike in

black pants
19.9 73.5 0.0 3.1 2.1 1.4

bike in

blue jeans
5.4 2.0 92.5 0.0 0.0 0.0

bike in

shorts
9.8 0.8 0.0 88.6 0.3 0.5

other 18.1 0.5 0.0 0.4 79.5 1.5

walk 16.5 1.2 0.0 2.2 1.4 78.7

Table 4.11.: The confusion matrix when samples from the bike class are split into separate
classes depending on the trousers that were worn when creating the recording.
Note that the classes bus, car, coach, metro, plane, train and tram have been
combined to other for better readability (they were trained separately though).

The best case is demonstrated by splitting the bike class based on which
trousers were worn during the recording process. The four subclasses were
defined by wearing jeans (trousers made of denim, phone in the right front
pocket), wearing shorts (different knee-long trousers with the phone in a
lower side-pocket), wearing black pants (similar to jeans, just not as tight,
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Figure 4.14.: The F1-scores of evaluations with different numbers of classes. The individual
data points are color-coded by the strategy used to change the amount of
classes. Additionally, the purple line shows a quadratic fit through the data.

phone also in the right front pocket), and everything else (recordings from
other people and/or other trousers). For jeans and shorts approximately
9 out of 10 samples are predicted correctly. This is evidence of the high
diversity that exists within the bike class. The subclass for black pants only
has a success rate of 3 in 4. The exact percentages are listed in table 4.11.
There exists more confusion between this class and the bike (other) class
than at the other subclasses. The reason for this might be that black pants
were worn most often and sometimes it might not have been logged in the
meta-data (with the result that some recordings that should be in black pants
are still in bike (other)).
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Conclusion

The more classes are being used the lower the classification score will be.
This is illustrated by figure 4.14 which contains a scatter of F1-scores from
all the evaluations made in this section. It also contains a fit through the
data points, which highlights the decline when more classes are used. The
plot is by no means to be taken as a ground truth, but merely as guidance
on what to expect when choosing the number of classes.

With more classes, more complex problems can be handled. Thus, there is
a trade-off between accuracy and manageable complexity. The number of
classes should be chosen in a way, that allows for the required complexity,
while still maximizing accuracy. In other words: one should choose as many
classes as required for their use cases, but not more.

4.6. Handling Low Confidence

With the given setup of the 9 classes and the algorithm there is one class
which contains most of the samples with low confidence in the classification.
In our case this is the bike class. This section provides a solution on how to
circumvent that and produce a more meaningful result.

4.6.1. The Not-A-Transport-Mode Class

The first strategy (as described in section 3.2.7) was to create an additional
class with a diverse set of samples that should take over the role of the trash
class (ie. the class where the algorithm puts samples if they do not match
anywhere).

To train this class, we added all classes, which were not a transport mode,
of the LITIS Rouen dataset, and the DCASE 2017 and 2018 challenge datasets.
The resulting class, which was labeled other, contained around 15 thousand
samples. That is slightly more than half of the samples in the training set
of the bike class (those amount to 28 thousand). This indicates the superior
size of our dataset (more on that in section 4.9.1).
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A training was performed with the other class in the training set. Contrary to
our expectations, the results (as shown in the confusion matrix in table 4.12)
show that almost none of the samples were predicted to belong to that
class.

Prediction

A
ct

ua
l

bike bus car coach metro other plane train tram walk

bike 98.7 0.0 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.8

bus 29.3 27.1 0.9 0.0 23.1 1.3 0.0 15.3 0.4 2.6

car 11.1 0.4 77.7 0.9 0.0 0.0 0.3 9.6 0.0 0.0

coach 34.7 7.2 12.6 38.3 0.0 0.0 2.4 4.8 0.0 0.0

metro 36.6 1.0 0.5 0.0 46.8 0.0 1.7 12.9 0.5 0.0

other 71.5 0.8 3.8 1.3 0.4 7.9 1.3 6.3 1.3 5.4

plane 21.9 0.0 1.6 0.0 1.3 0.0 69.3 5.7 0.0 0.3

train 15.6 0.4 1.2 0.1 0.5 0.1 0.5 77.4 0.1 4.1

tram 52.4 1.0 11.2 0.0 2.2 0.0 0.6 25.6 5.8 1.3

walk 16.0 0.0 0.0 0.0 2.7 0.1 0.0 0.3 0.0 80.9

Table 4.12.: The confusion matrix with an additional class added. The training set of the
class consists of all non-TM classes of the 3 external datasets and the evaluation
set contains our own recordings form a street, a ferry, a washing machine and
moving around chairs.

To rule out the possibility that the samples in the other class are just to
different to those from our dataset, another test was performed with the
classes station and street instead of other. Station contained all samples from
external classes that were recorded in a metro station, and street contained
samples from any sort of city street (quiet and noisy, pedestrian and traffic).
Those samples are more likely to be contained in our classes. However, the
evaluation result still did not indicate a change in trash class.
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4.6.2. Binarization Strategies

The reason why adding a trash class did not work is connected to how the
algorithm performs the classification, specifically how it assigns the label.
The final layer of the network provides confidence scores for each of the 9

classes. Those scores then have to be translated to a binary output: For each
class either 1 (this sample belongs to the class) or 0 (this sample does not
belong to the class).
One strategy to do so is by putting a 1 to the class with the highest confidence
(it is referred to as frame max). This is what we expected to happen.

That the algorithm uses a different approach per default becomes obvious
when having a look at the confusion matrix of a training where the bike class
was removed (additional confusion matrices can be found in the appendix).
In those cases the bus class is suddenly the new trash class. It is unlikely that
a class which had almost no false positives before, suddenly has a lot. This
indicates that there might be a different cause than the removal of a class.

Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bike 96.5 0.0 0.1 0.0 0.2 0.3 1.6 0.0 1.4

bus 8.7 30.1 6.6 0.4 23.6 0.4 28.4 0.9 0.9

car 3.5 1.0 75.1 3.0 0.3 2.1 14.3 0.6 0.0

coach 0.6 20.4 13.8 39.5 1.2 1.2 23.4 0.0 0.0

metro 4.5 2.0 0.2 0.0 50.7 4.2 35.3 1.5 1.5

plane 2.2 2.2 6.8 0.3 1.9 68.7 17.8 0.2 0.0

train 4.0 0.1 3.0 0.3 0.5 0.9 87.0 0.9 3.3

tram 6.1 3.8 11.2 0.0 2.9 7.3 52.4 13.1 3.2

walk 13.3 0.0 0.4 0.0 1.2 0.1 1.0 0.0 84.1

Table 4.13.: The confusion matrix for the 9 classes of the dataset when the frame max

strategy is applied at classification.
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In fact, the binarization strategy that is used (called global threshold)
defines a confidence threshold above which the value is 1 and otherwise it
is 0. The default threshold is 50% to assure that there is at most one class
that is assigned (because the sum of the confidence values is 100%). The
issue is that when none of the classes reach this threshold, then all of the
values stay 0 and the subsequent code that applies the label returns the first
one (because the index which is initialized with 0 is never changed). So, the
reason why the bike class had so many false positives is that it was the first
in the list.

One possible course of action is to use frame max instead of the default
strategy. When doing so, the bike class still has false positives but significantly
fewer (see confusion matrix in table 4.13). It can also be observed that the
percentage of correctly predicted samples increases slightly (because some
of those with a low confidence still had the highest confidence in the true
class). The real trash class is train, which has numerous mis-predictions
from all classes except bike and walking.
However, global threshold can be used to our advantage as described in
the next section.

4.6.3. The Unknown Class

The alternative course of action is to keep the default strategy but add
another class. That class should represent all samples with a low confidence
and it should be called the any class. We could have called it the unknown
class, but since any starts with an A it is the first element in the list of classes
and we do not have to change the algorithm. The any class does not have to
have any training or evaluation data, it just needs to be added to the list of
classes. All samples with a low confidence will automatically be assigned
to the any class in the classification process. The resulting confusion matrix
can be found in table 4.14.

This setup is superior to adding a trash class in that it does not require
additional data. It affects all classes equally and, most importantly, it works.
Furthermore, it brings major advantages for the sample processing steps
which are described in section 4.8.
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Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike 1.0 98.0 0.0 0.0 0.0 0.2 0.2 0.3 0.0 0.4

bus 15.3 5.2 30.6 1.3 0.0 23.6 0.0 20.5 0.0 3.5

car 6.6 2.9 1.0 84.1 0.5 0.3 1.1 3.5 0.0 0.0

coach 12.6 0.0 32.9 9.0 37.7 1.2 0.0 6.6 0.0 0.0

metro 16.9 3.7 0.0 0.2 0.0 58.0 3.7 15.9 1.2 0.2

plane 11.0 0.9 0.5 2.0 0.6 5.5 74.2 4.6 0.0 0.6

train 8.9 5.9 0.7 2.8 0.1 0.4 0.7 76.1 0.2 4.2

tram 40.6 8.3 1.9 5.1 0.3 13.7 0.6 18.2 9.9 1.3

walk 4.0 13.8 0.0 0.0 0.0 1.1 0.1 0.3 0.0 80.8

Table 4.14.: The confusion matrix with an additional class added that contains all predictions with a
confidence below 50%.

4.7. Ambiguous Classes

The dataset contains samples where more than one class would be a correct
prediction. Those are from the walking inside another mode of transportation
recordings (see section 4.1.1). As described in section 3.2.6 there are several
approaches on how to handle those special cases. The strategy that has
been used thus far was to keep them in one class and refrain from giving
them special treatment. This section discusses how they can be handled
differently, and what is the best strategy to proceed with.

By default, the ambiguous samples are not in the walking class but in the
class of the other transport mode. To estimate the impact of those samples,
the evaluation set is temporarily reduced to contain only ambiguous samples
from the plane and train class. A confusion matrix can be found in table 4.15

(on top). It shows that most walking in a plane samples are classified as
plane and a few are confused with bike. Interestingly, none of them were
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predicted to contain walking. The walking in a train samples are distributed
more evenly between those three classes, with less than a quarter of samples
being incorrect (when both train and walking are counted as correct).

An additional training has been performed where the ambiguous samples
were put in the walking class of the training set. The resulting confusion
matrix can also be found in table 4.15 (below). It illustrates that more of
the evaluation samples are classified as walking, but there is also a notable
increase in the confusion with the bike class. Therefore it has been concluded
that the training samples should not be moved to the walking class.

Prediction when trained in plane/train

A
ct

ua
l bike bus car coach metro plane train tram walk

plane 7.6 0.8 0.0 0.0 0.0 90.8 0.8 0.0 0.0

train 23.6 0.0 0.0 0.0 0.0 0.9 43.6 0.0 31.8

Prediction when trained in walking

A
ct

ua
l bike bus car coach metro plane train tram walk

plane 26.0 0.0 0.0 0.0 0.8 64.9 0.0 0.0 8.4

train 31.8 3.6 0.9 0.0 0.9 3.6 17.3 0.0 41.8

Table 4.15.: The confusion matrices of the ambiguous samples in the train and plane
class. The upper table shows the results when ambiguous samples of the
training set belonged to plane/train and the lower table shows results for when
those samples belonged to the walking class. Both evaluations used frame
maximization as binarization.

There is one more possibility in handling those samples, which would be
to remove them. Since all the samples in those special cases are known,
they can easily be eliminated from the dataset. However, it does require
the evaluation set to be changed, which would in turn simplify the task at
hand and counteract the comparability of results. Besides, the evaluation
accuracy of the ambiguous samples is high enough that only little could
be gained by eliminating those special cases. When trained and evaluated
with the samples removed the accuracy increased by 1% (to 76%) and the
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total F1-score by 2% (to 78.7%). The corresponding confusion matrix can be
found in the appendix (table B.4).

4.8. Sample Filtering

This section deals with improving the dataset. This is done in three steps.
At first the samples of recordings in the wrong class are relabeled, then an
appropriate number of samples at the beginning and end of each recording
are removed, and finally individual samples within a recording are removed
if they do not comply with the class definition.

4.8.1. Relabeling

The simplest way to find incorrectly labeled recordings is by checking their
label against the meta-data. Since the label is derived from the meta-data
this should match, otherwise something went wrong on the way. By doing
so, we actually found 4 recordings with the wrong label. All of them were
put in a wrong folder because they had label names in the notes. One
recording was walking in a metro station, which contains metro. Another
file noted the weather condition slightrain, which contains train; and two
more recordings were made on the Intercitybus, which contains bus but is
actually a coach. So, in conclusion the recordings should be sorted by the
right field in the meta data and not by searching for class names. The four
files have been assigned the right label and we continued with the relabeling
process as described in section 3.3.1.

To figure out which recording has an incorrect label in the meta-data, a
training including the any class was performed. Afterwards the trained
network was evaluated using the training set. The resulting evaluation
scores are not meaningful and can be ignored (they are notably higher
compared to when the evaluation set is used). However, the evaluation
provides a list of predictions for each of the samples. This list is the basis of
the relabeling process.
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The samples are grouped by recording, and the ratio of incorrect predictions
is analyzed. With a threshold of 50% (incorrectly classified samples in the
recording), 91 recordings are listed as candidates for relabeling. Those are
too many false positives, so the threshold is increased. At 90% mismatches,
24 recordings are listed, most of them are of the tram class (this was to be
expected because the class has the lowest accuracy).

Additionally to the number of mismatches, the suggested class can be
analyzed. The suggested class of a recording is the class, that most samples
are predicted as. If this class is the any class that just means that the recording
has a low confidence, but if it is any other class, it might have been labeled
incorrectly. So, when only counting the recordings that are suggested to
be another transport class, then at 50% there are 48 recordings, and at 90%
there are 14 recordings, that are candidates for relabeling.
Among those 14 recordings are mainly false positives, such as the walking in
a train recordings and more of the tram class. Those recordings also contain
some interesting exceptional recordings, such as cycling with the phone in
the backpack and walking with the phone in hand. Those were created for
testing purposes and should not have been in the training set.
Two more recordings were found which need attention. Both of them contain
a phone call during the recording. After the call the recording goes silent.
There seems to be a bug in the application when the microphone is used by
another app. These recordings can be added to the list of recordings that
require trimming.
When going through the list that was created with a threshold of 50%, we
were able to find one true positive. It was a recording of the LyonExpress
tram that had the incorrect label of plane (apparently we forgot to change
the label in the application).

When running the algorithm using the relabeled training set, it changes the
results as shown in table 4.16. The coach class is less often confused with bus,
resulting in higher accuracy for both classes. The tram class also improved.
In this case it is to be interpreted as a good sign when more samples were
classified as any, because that means that less samples were predicted to be
other classes. This is the case for the metro class, even though the accuracy
dropped slightly there are less confusions with the plane and train class.
Interestingly, the plane class performed slightly worse. The misplaced tram
recording might have given the class more diversity (so overall more samples
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were predicted as plane) which was now corrected.
Overall the weighted F1-score improved from 76.8% to 77.9%. Using the
frame max evaluation strategy the score can be further increased to 78.3%
(confusion matrix in table B.6 in the appendix).

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike 0.0 0.1 0.0 0.1 0.0 -0.1 -0.1 -0.1 0.1 0.0

bus -2.2 -3.5 7.4 0.0 0.9 0.4 0.0 -2.2 0.9 -1.7

car -1.8 -2.0 -1.0 1.3 1.5 -0.3 -1.0 3.3 0.0 0.0

coach 0.6 0.6 -19.8 6.0 12.0 -1.2 0.0 1.8 0.0 0.0

metro 9.7 -0.5 0.7 0.5 0.0 -1.5 -3.5 -4.7 -0.5 -0.2

plane 3.6 0.2 0.9 3.5 2.7 -4.7 -7.9 1.1 0.3 0.3

train 2.0 -3.2 0.5 -0.4 0.1 0.4 0.2 -0.8 2.3 -1.0

tram 9.3 -7.3 2.9 -1.0 -0.3 -8.3 1.9 -8.6 11.2 0.3

walk -1.1 2.3 0.1 0.0 0.0 0.2 -0.1 0.1 0.0 -1.5

Table 4.16.: The changes in the confusion matrix after the relabeling process. This matrix contains the
differences of the entries of the confusion matrix after relabeling (table B.5 which can be
found in the appendix) and those of the confusion matrix of an evaluation with all samples
(table 4.14).

It is hard to tell if we only found one true positive with this strategy
because there are not more samples that require relabeling in the dataset, or
because the relabeling strategy is not good. To gain more insight another
experiment was conducted. One random recording was selected from each
class and incorrectly labeled as another (the alphabetically next) class. This
way each of the 9 classes has one recording that requires relabeling. The
algorithm was trained and evaluated using this set of samples. Then the
relabeling process was applied. With 50% mismatches in a recording, a
total of 95 recordings were listed, containing 6 of the 9 recordings that
were relabeled. When increasing the required mismatches to 90%, then 3
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of the 9 recordings were found among 35 in total. To find all 9 recordings
the required mismatches would have to be reduced to 10%, which would
also return 300 false positives (and is therefore impractical). Figure 4.15

shows the relationship between false positives and recordings found, which
actually require relabeling, plotted over the different input values for the
relabeling algorithm. The classes that were easiest to find were bike (in bus),
bus (in car) and plane (in train) and the ones hardest to find were walking (in
bike) and train in (tram).

Figure 4.15.: The comparison of the number of recordings that are found (true positives)
to the number of recordings that need to additionally be analyzed (false
positives). The x-axis shows the required percentage of incorrectly labeled
samples in a recording for it be flagged for relabeling.

Furthermore it is worth noting that the F1-score drops form 78.3% to 77.5%,
when the network, trained with 9 incorrectly labeled recordings, is evaluated

91



4. Evaluation

with the evaluation set. A confusion matrix can be found in the appendix
(table B.7).

4.8.2. Trimming

Some recordings contain parts at the beginning and/or the end, that do not
belong to the mode of transportation, that the recording represents. The
process of trimming attempts to filter the corresponding samples of those
parts of the recordings.

The trimming process is similar to the relabeling, in that is using a trained
network (including the any class) to evaluate the training samples. Those
predictions of the individual samples can then be grouped by recording and
brought in the right order (sorted by sample ID). Afterwards, the beginning
and end of each recording can be analyzed as described in section 3.3.2.

The basic approach does not work for each class. The accuracy of the tram
class is too low, so the entire recordings would be trimmed. The counter-
example is the bike class, where the accuracy is so high, that none of the
samples would be trimmed (even samples that would required removal
are classified as bike). The only class where we found that the trimming
worked was the train class (with n = 6), but only when the part to be
trimmed contained walking. With the other classes we only found false
positives, which might also be contributed to the lack of testing data, since
no recordings that require trimming were intentionally created.

Since most recordings that require trimming only require trimming at the
back, the second strategy can be applied. A difference of 2 minutes (12

samples) has been defined to be the threshold. The trimming is only per-
formed if at least 2 minutes more would be trimmed from the back than at
the front.
Using this addition (with n = 6), there were still a lot of false positives, but
it also found several recordings that actually required trimming. Most of
them in the walking class. This is a class that is prone to require trimming,
because we are more likely to forget turning off the recording when we stop
walking (as this just happens), than when we exit a train or bus (because
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this is a conscious action).

To further reduce the number of false positives, the number of samples to
be trimmed at the front was required to be below a certain threshold that
we defined to be 6 (1 minute). This is to ensure that the prediction accuracy
of the recording has a certain reliability. Among the recordings flagged for
trimming there were still quite a few false positives. For most of them there
was an apparent change in sound somewhere in the recording, such as
a car that left the motorway, or a plane that landed, and the second part
happened to be harder to predict correctly.

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike 0.5 -0.8 0.0 -0.1 0.0 0.0 0.2 0.1 -0.1 0.2

bus 1.3 0.9 -5.7 0.4 0.0 -0.4 0.0 5.7 -0.9 -1.3

car 2.0 1.5 0.1 -11.0 -0.3 0.3 1.5 5.8 0.0 0.0

coach 7.2 0.6 3.6 -6.0 -1.8 0.0 0.6 -4.2 0.0 0.0

metro -8.7 0.0 1.5 0.2 0.0 -1.5 5.0 4.2 -0.7 0.0

plane 2.8 -0.2 0.3 -3.6 -3.3 -0.3 9.1 -3.9 0.0 -0.9

train -1.2 0.4 -0.5 -1.3 0.1 -0.1 0.5 5.5 -2.2 -1.2

tram -2.6 2.2 0.6 1.3 0.0 2.9 0.3 6.7 -10.5 -1.0

walk 6.1 8.6 -0.1 0.1 0.0 -0.4 0.4 0.3 0.0 -14.9

Table 4.17.: The changes in the confusion matrix after the trimming process. This matrix
contains the differences of the entries of the confusion matrix after trimming
(table B.8) and those of the confusion matrix of an evaluation after relabeling
(table B.5).

To be able to also trim the bike class, the value of n had to be increased
to 30. This means that 30 consecutive samples have to be classified as bike
before the trimming stops (those 30 samples are then not included in the
trim, of course). With this value, and the aforementioned extensions, all of
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the recordings that we knew required trimming were correctly flagged to be
trimmed. Even the point where the recording should be cut was predicted
with an acceptable level of accuracy (17 samples for 2 minutes (should be
12), 53 for 10 minutes (should be 60) etc.).

Even though there were still a lot of false positives, it was decided to perform
the trimming anyway because, as we saw in section 4.4.1, a lot of samples
can be removed without losing classification accuracy. In total 5866 samples
were removed in the trimming process (that is 6.8% of all samples). Most of
them (4083) from the bike class.

The resulting changes are displayed in table 4.17. The bike class is largely
unaffected. Probably because it still holds a lot of samples. The classes
profiting the most from this trim are train and plane, simply because they
are predicted more often. This behavior was observed before. The train class
becomes, what we referred to as, a trash class. The biggest loss is registered
for walking. Over-all the F1-score decreased to 74.7% (-3.2%).

When performing a manual trim of all the files that were known to require
trimming (90 minutes of bike, 27 minutes of walking, 10 minutes of metro
and 6 minutes of train) no significant changes in the evaluation result were
observed. The amount of samples removed is not enough to account for an
observable difference in accuracy.
An additional evaluation has been made using the frame max strategy
(without the any class) and the confusion matrix is presented in table 4.18.
The overall F1-score of this evaluation is 77.2%.
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Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bike 97.4 0.1 0.2 0.0 0.2 0.2 0.4 0.1 1.5

bus 3.9 33.6 0.9 1.3 24.5 0.0 20.5 9.6 5.7

car 2.8 0.9 83.4 2.3 0.8 0.8 8.7 0.4 0.0

coach 1.8 22.8 18.6 33.5 0.6 3.6 19.2 0.0 0.0

metro 6.7 2.5 1.7 0.0 61.4 3.5 17.4 5.2 1.5

plane 0.5 2.8 12.8 0.5 6.1 68.5 3.5 0.5 4.9

train 3.6 0.7 1.5 0.0 1.6 0.6 80.3 6.0 5.7

tram 5.4 3.5 11.2 0.0 15.0 1.0 14.7 45.0 4.2

walk 14.2 0.0 0.2 0.0 1.1 0.0 0.5 0.4 83.7

Table 4.18.: The confusion matrix of an evaluation after manual trimming.
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4.8.3. Cleaning

Cleaning in this context is the process of removing samples from the dataset,
which do not properly represent their true class. This section attempts to
apply the strategies presented in section 3.3.3 to our dataset.

As a first step the tram class was to be trimmed. A separate dataset was
created from recordings of the tram class where we knew whether the
vehicle was in the station or not. The algorithm was trained with only two
classes: in motion and in station. Unfortunately this did not work because
there were not enough samples. We only had recordings from three tram
rides that were split accordingly and each halt in the station only yields
1-3 samples. So, the algorithm could not make the difference and 100% of
samples were classified as in motion.

A second attempt was trying to clean the bike class. The idea was to filter
samples, in which the cyclist is not actually cycling. The most likely stop
is at a traffic light where the background noise are cars passing by. Since
we did not have our own recordings of streets we used the busystreet class
from the LITIS Rouen dataset and the street trafic class from the DCASE 2018
development dataset. We made sure to put equal amounts of samples from
the bike class and the newly created streets class into the training set. The
idea was that even though samples from our training set are used (which
might include samples that contain only street noise and therefore should
be cleaned) the other class will still have more street noise. However, when
evaluating all our bike samples still 100% of them were classified as bike,
possibly because of confounding variables (such as the microphones used
or the fact that for one class the sound is dampened by trousers). So no
cleaning could be performed.

The third attempt was using external data only to clean the bus class. The
idea was to filter samples where a lot of people are speaking (which occurs
regularly in buses). A class had to be found, which contains people talking.
The market class from the Rouen dataset fit this description quite well. So a
training was performed using only the market and bus samples from that
external dataset. It was made sure that the binarization method was set to
frame max but still all of our bus samples in the training set were classified
as bus.
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Interestingly when evaluating the bus samples from the evaluation set only
90% of samples were classified as bus. The remaining samples (which were
classified as market) were all from the same recording: a bus ride in Vienna.
This is the only bus ride of that particular city in the whole dataset. So even
though the cleaning did not work, it raises another question of whether this
recording should be in the evaluation set (or even the dataset) at all.

Prediction

A
ct

ua
l

bus car metro plane train tram

bus 46.8 1.5 18.6 0.0 27.4 5.6

car 32.0 9.8 2.8 0.2 36.1 19.2

metro 8.3 1.9 10.2 0.1 67.9 11.7

plane 17.5 31.4 10.5 0.0 29.1 11.5

train 28.2 4.4 1.4 0.0 43.1 23.0

tram 13.9 1.8 3.7 0.0 45.8 34.8

Table 4.19.: The confusion matrix when trained using external datasets and evaluated using
our training set. All values are in percent. The absolute values for this matrix
can be found in table B.10 in the appendix.

In a last, highly experimental, attempt to clean our dataset, the algorithm was
trained using all transportation modes from the external datasets. In this
case the idea was that if a sample really represents the class then it should
still be correctly classified in this network. That this is not the case becomes
evident when having a look at the confusion matrix of when our training
samples are evaluated on the model trained with external data (table 4.19).
All of the classes have an accuracy below 50%, which is too low even when
accounting for samples that should be cleared out. The reason that so few
samples are classified as plane is that only the Rouen dataset contains a plane
class which only hods 69 samples (see also section 4.9.1).
When the cleaning of the five classes (bus, car, metro, train and tram (plane was
excluded)) is performed, 29 thousand samples are removed (only 11 thou-
sand remain in those 5 classes, for an exact distribution refer to table B.10).
To evaluate, the algorithm has been trained with the cleaned training set and
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evaluated using our evaluation set. The results (see table 4.20) show that all
the classes, which have been cleaned, decreased in prediction accuracy. The
accuracy increases for two classes may partly be contributed to the fact, that
overall more samples are classified as the given class (which is the case for
walking), and partly to pure chance (which is probably the case for coach,
since it has shown to have a higher variance in previous experiments, see
for instance figure 4.10).

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike -0.3 -1.6 0.0 0.0 0.0 -0.1 -0.3 -0.2 0.0 2.5

bus -1.7 3.5 -3.5 -1.7 0.4 -3.1 0.9 -5.7 0.0 10.9

car 8.3 3.0 2.9 -22.0 2.5 -0.3 9.1 -5.2 1.3 0.3

coach -10.2 1.2 -8.4 -6.6 15.6 0.0 3.6 4.8 0.0 0.0

metro 3.0 6.5 2.2 -1.0 0.0 -37.1 1.2 16.2 2.2 6.7

plane -6.1 0.2 -1.7 -0.9 0.2 -0.5 4.6 2.5 1.1 0.8

train 1.0 1.3 3.6 0.6 3.4 -0.4 0.1 -16.0 2.7 3.8

tram -19.5 5.4 -1.3 -4.8 1.9 -8.3 4.2 17.9 1.0 3.5

walk -8.3 -15.9 0.1 -0.1 0.0 -0.8 -0.4 -0.3 0.0 25.6

Table 4.20.: The changes in the confusion matrix after the cleaning process. This matrix contains the
differences of the entries of the confusion matrix after cleaning (table B.9) and those of the
confusion matrix of an evaluation after relabeling (table B.5).

To conclude the topic, it can be noted, that the discussed cleaning mech-
anisms do not work for this particular dataset. Implementing more soph-
isticated cleaning strategies requires human effort and the question has
to be raised whether this is worth it or not. We were not able to show
that removing individual samples results in better performance. Further
tests with a dedicated test set would have to be issued. The only perform-
ance gains that were achieved, were caused by removing entire recordings
that were either incorrectly labeled or contained non-representative data
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(such as silence). Therefore we suggest that the priority should be to create
high-quality recordings, rather than trying to improve on existing ones.

4.9. Comparison

This section compares our dataset to other datasets that contain transport
modes, in particular the LITIS Rouen dataset and the DCASE 2017 and
DCASE 2018 development sets. Since the former contains samples with a
length of 30 seconds, each of those samples was split into three 10 second
samples. The other two datasets already contained samples with a length of
10 seconds.

4.9.1. Dataset Size

A comparison of the number of classes and samples between the four
datasets can be found in table 4.21. It also contains information on how
many of the classes can be used for transport mode detection. A detailed
description of each dataset, as well as information on which of its classes
can be used for TMD, was provided in section 2.4.

Dataset
number of

classes
[TMD / total]

average samples
per class

number of
samples

[TMD / total]

Rouen [24] 7 / 19 495 / 478 3471 / 9078

DCASE 2017 [19] 4 / 15 312 1248 / 4680

DCASE 2018 [20] 3 / 10 864 2592 / 8640

Our dataset 9 / 9 10188 91691 / 91691

Table 4.21.: Comparison of different external datasets with our dataset. The number of
classes as well as the number of samples are compared, the first value applies
for TMD classes only and the second value takes all classes into account. All
samples are 10 seconds in length.
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Our dataset contains a significantly higher number of samples compared to
the external datasets. We have created four times as many samples as are
contained in all of the three other datasets combined. In terms of data for
TMD the external datasets amount to only roughly 8% of our number of
samples.

What this table does not show is the difference in size of the individual
classes. The DCASE datasets have equally many samples in each class,
whereas the samples from the Rouen dataset and our dataset are unevenly
split (see table 4.1 for the distribution of classes in our dataset).

4.9.2. Transferability

The level to which our classes generalize can be analyzed by using the
external datasets. If a class truly represents a transport mode then the
algorithm should be able to classify samples no matter where they originate.
Table 4.22 shows a confusion matrix of the evaluation with all external TMD
samples in the evaluation set. The classes bike, coach and walking are not
represented because they do not have corresponding classes in the external
sets.
The resulting accuracies are lower than we had hoped. That the tram class
does not perform well was to be expected. The other classes do hit the mark
of random chance (which for 9 classes is at 11%), but some of them only
barely.

There is a non-neglectable amount of confusions with the bike and walking
classes. To avoid these, the algorithm can be trained with only the required
6 classes. The evaluation result is shown in table 4.23. The classes metro and
plane increased the number of true positives, tram, car and bus still perform
badly and train even lost evaluation accuracy.

So in conclusion our dataset does not generalize enough to support classi-
fication of external data. However, this is also true the other way around
(see table 4.19). The samples in the individual datasets are just too far apart
in the feature space.
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Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bus 3.7 39.2 14.4 0.0 11.6 0.8 22.1 0.1 7.9

car 10.6 3.8 16.2 0.1 20.1 22.9 18.3 2.0 6.0

metro 19.6 19.4 6.1 0.0 20.4 0.9 21.1 1.2 11.3

plane 56.5 0.0 0.0 0.0 5.8 34.8 0.0 0.0 2.9

train 4.7 13.3 3.2 0.0 9.6 9.1 52.1 3.3 4.7

tram 0.3 43.1 15.3 0.0 20.2 0.0 2.7 0.0 18.4

Table 4.22.: The confusion matrix of an evaluation with TMD data from external datasets.
All values in percent (same table with absolute values available in the appendix).

Prediction

A
ct

ua
l

bus car metro plane train tram

bus 26.0 18.0 25.5 13.6 16.6 0.4

car 1.7 16.9 11.0 57.3 12.7 0.5

metro 13.9 6.5 42.8 22.8 12.1 1.9

plane 0.0 0.0 8.7 91.3 0.0 0.0

train 6.2 6.3 21.6 29.4 33.8 2.7

tram 12.6 21.6 52.1 0.9 12.8 0.1

Table 4.23.: The confusion matrix of an evaluation with TMD data from external datasets
when only the relevant classes have been trained. All values in percent.
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4.10. Limitations

The results presented in this chapter depend to a large extend on the dataset
we created. We gave our best to assure quantity, diversity and quality.
However, we only touched on a small subset on what is acoustic TMD. The
same experiments might yield different results when a different dataset is
used. Generalization should be made with discretion.

Even with the same dataset, the results can vary between trainings. This
is due to the selection of the validation set and the randomization process
that is part of the algorithm (the order in which samples are selected for the
patches is not always the same). Especially the coach, bus and tram classes
(the classes with the fewest samples) have shown a variance in accuracy
of up to 20%. We did our best not to have a bias when selecting between
different evaluation runs.
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This chapter summarizes the lessons learnt from this project into a useful
guide for people who also want to create a dataset for acoustic transport
mode detection (or a similar field).

5.1. Know what you want

The objective as to why a dataset is created should be evident. Simply
creating a dataset for the sake of creating a dataset is not constructive. There
should be an obvious goal, or task that you want to achieve. With this goal
in mind, different decisions, such as the number and types of classes, can
be made. The classification accuracy depends on the number of classes (as
shown in 4.5), as well as how well they fit your class definitions. In some
cases, it might even be enough to use existing datasets and the extensive
process of creating a new dataset can be avoided.

5.2. Have sound Class Definitions

Once you have decided which classes will be in the dataset, a class definition
should be written down for each of the classes. This definition should
state what exactly is contained within a class, and what is not, to avoid
ambiguities (such as is the Lyon ExpressTram a tram?).

The procedure is connected to section 5.1, in that you need to know the
desired outcome, to appropriately confine classes. It is absurd to believe
that a few examples in the dataset will generalize to all possible situations
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(as we have seen in 4.9.2). This applies to different modes of transportations,
different cities, different recording device positions etc. So, a sound class
definition must also cover those aspects.

A decision that served us well was to specify the location of the recording
device to be inside trousers for cycling and walking. If we were to start
over, we would add for all classes that the vehicle or person must be in
motion. This would increase the effort of recording, but reduce the confusion
between classes (see also section 5.8).

5.3. Be Consistent

Consistency is important in many aspects of dataset creation. Here it refers
to the recording process. It is important to have similar (ideally identical)
recording devices to avoid that the classification can be based on the device
used (as discussed in section 3.1.2). This also applies to the settings of the
device, such as the encoding and the sampling rate.

Any inconsistencies can become confounding variables. If it is not possible
to avoid them, they should at least be tracked as meta-data.

5.4. The User is King

When it comes to creating the dataset you often rely on other people. In our
case, we needed help in recording different transport modes in different
locations. It is essential to make the task for other people as simple as
possible. To do so, we created an application such that the people who
help us (the users of the app) do not have to deal with matters that can be
automated (such as logging timestamps and locations). The less a user has
to do, the fewer mistakes can be made, and therefore the higher the quality
of the dataset will be.

Listening to the user’s feedback and improving the tools available to them
is also highly suggested. We added several features to our application (such
as the timer and the overwrite functionality, details in section 3.1.5) to better
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serve the user’s needs. Especially, being able to change the meta-data once
the recording is stopped, saved a lot of time that would have otherwise been
required for manual editing.

5.5. Meta Data is Gold

Meta-data can be used to split classes, help interpreting the evaluation
results, or even allow for the dataset to be used in completely unrelated
experiments. Therefore, it makes sense to collect a lot of it. As discussed in
the previous section, the more that can be logged automatically the better.
Still, it is also recommended to manually add tags.

Without our efforts of including meta-data, some of the splits would not
have been possible. Splitting the bike class based on the trousers worn is
one example. We did not create the meta-data because we planned to do
the split, but we could do the split because the meta-data existed. Refer to
section 4.5.3 for more details on splitting classes.

We would even go as far as to argue that there is no such thing as too
much meta-data (however, there can be not enough storage space). All
the meta-data that is not required for a certain experiment can be ignored
anyway.

5.6. Balance the Classes

As we have seen in section 4.3 and again in section 4.9.2, classes which had
considerably fewer samples than the other classes performed significantly
worse. Even though the bad performance of bus and tram cannot be entirely
contributed to their underrepresentation, this skew did certainly have a
negative effect.

This is not to say that all classes need to have an equal amount of samples,
but it should be of the same order of magnitude. In this case we can refer to
our dataset for a negative example: The bike class contains 10 times as many
samples as the tram class (see table 4.1).
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5.7. Mind your Resources

The scope of the project should be adequate to the resources available. This
includes budget, access to hardware, time constraints and other limiting
factors.
We would have continued gathering data, but at some point a recording
stop had to be made in order to progress with the project.

As for computing hardware, it is worth knowing how much your system can
handle. For us a standard computer (with 12GB memory and 2.3GHz quad
core CPU) could only handle a fourth of our dataset before the algorithm ran
out of memory and started swapping (which made it impractical to use).
Fortunately we were granted access to a server with 8 dedicated GPUs.

So, you should not assume that your hardware can handle everything that
is presented to it. If there is no possibility to upgrade, or get access to better
hardware, then this also limits the maximal size of your dataset.

5.8. Invest Early

The early stages of the dataset creation have the highest return on effort
invested. So, if you want to efficiently create an effective dataset you should
not neglect the planning (as discussed in the first two section of this guide),
and the subsequent recording process should be handled with care. It is a
lot harder to remove recordings of low quality once they are in the dataset,
than it is to avoid recording them.

This is also a well known principle in software engineering. The more time
is spent in software design, the fewer revisions have to be implemented; and
the more energy is spent to produce high quality code, the less maintenance
has to be done. Since the costs for fixing an error increase with each step of
the process (cheapest in design, highly expensive once deployed), it makes
sense to invest early.

The strategies we used for removing samples that do not represent the
class, did not perform well (see sections 4.8.2 and 4.8.3). More sophisticated
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strategies would have to be used in order to get the desired effect. The
alternative, however, is to not have to use those methods at all because care
was taken throughout the recording process.

Especially trimming can easily be performed when a recording is stopped.
If you realize that you recorded for too long then the recording should
be trimmed immediately and not postponed or forgotten about with the
argument that the trimming algorithm will deal with it anyway. The more
the algorithm has to trim, the worse it performs, and a manual trim by a
human will in all likelihood be more exact.
This is also related to 5.4: if the user has the ability to easily trim a recording
then he is more likely to trim the recording than if that would result in
additional perceived effort for him.

The cleaning process becomes redundant if a recording is paused once the
quality standards are not met anymore. This can happen for example if
the vehicle stops, the radio is turned on, one has to wait at a traffic light, a
group of noisy school children enter etc.

5.9. Make your Backup

It is generally a good idea to create backups. Whether it be from your
code or the data you created, from everything that is stored digitally there
should exist at least a second copy (ideally on a different storage device).
Data storage is cheap enough that this should be afforded, even for a huge
dataset. After all it would be vastly more expensive to recreate the dataset
once it is lost (that is true for any size).

A part of a good backup strategy is to keep the raw data. Whenever a manip-
ulation is performed on the dataset (to create a new dataset), the original
data should still be kept. In other words, your dataset should be immutable.
This applies for instance when splitting the dataset into samples (see sec-
tion 3.2.3). The raw data should not be deleted once the samples are extrac-
ted. Not only for the case that the samples are lost (accidentally deleted,
storage device failure etc.), but also in case you want to change the sample
length at a later point.
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5.10. Take care when handling Files

File manipulations should always be executed with caution. Whether that is
importing (moving) files from a recording device, copying files onto a server,
deleting files that are not required anymore, or simply renaming a file; it
requires attention to be done right.

If not done right, removing files is the most likely to cause unexpected data
loss; (rm is a powerful command, you don’t want to hit enter until you typed
the full path). However, also moving or copying data can cause unintentional
overwrites, especially when scripts are being used to repeatedly perform
those actions.

When data is being imported or exported (or copied in general) it should
be checked that all the data was transfered correctly. The best method is
comparing checksums, but the comparison of the total number of files and
their size can already indicate if everything was copied. When copying the
raw recordings into the GPU server some files were lost during transmission.
We only found out about this after the first experiments had already been
run (and they had to be re-run).

Not only missing files can cause undesired outcomes, but also incorrectly
renamed or moved ones. This was discussed in section 4.8.1, where we
found out that some of the files had the wrong label because we did not
handle the files with enough care.
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5.11. Keep it Realistic

5.11. Keep it Realistic

The algorithm will only be able to classify what it is trained on. Therefore,
it does not make sense to put recordings in the evaluation set when there
are no corresponding recordings in the training set. The classification might
be able to handle some degree of generalization, but you should not expect
too much. This has been mentioned before in 5.2, but it should also be kept
in mind when performing the training/evaluation set split.

When analyzing the evaluation set with the relabel algorithm, we have
found that there are recordings, such as an airport bus ride on Venice
airport, where there is only one of a kind in the dataset. Those recordings
should either be removed from the dataset, or put into the training set.
Having them in the evaluation set will falsify the results, because 100% of
the samples of those recordings are misclassified.

So it should be made sure that the recordings are truly iid (independently
identically distributed).

5.12. Know your Algorithm

The mode of operation of the algorithm used should be known well. In
particular, it is important to understand what it requires as an input and
what the output represents. Even if the algorithm is just used as a tool for
classification, without the intention to improve on it, it should not be treated
as a black box. The more you know about the function, the better you can
prepare your data and interpret the results.

This might be the most impactful mistake we have made during this project,
even though it seems so obvious. We did analyze all the steps of the algorithm
(as described in section 3.2.4), from the feature generation up until the soft-
max classification layer. However, what we forgot to look into was how
the output of the network is used to derive one class prediction (discussed
at length in section 4.6.2). If we would have known about that earlier, the
first half of the classification results of this project would look different (in
particular the bike class would have a higher score).
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5.13. More is More

Our attempts in trying to clean out the dataset (section 4.8.3) did not come
with the desired increase in accuracy. The opposite was the case, whenever
we removed significant amounts of samples, the performance decreased as
well. This suggests that creating more data might be more effective than
trying to increase the quality of the existing data.

CNNs are proven to work well will a lot of data. So this is particularly
true if you use a similar algorithm to the one we used. If your resources
allow it, go for creating more data instead of post-processing them. This
suggested increase in quantity goes hand in hand with the suggested quality
mentioned in section 5.8.

5.14. Analyze the Evaluation Data

Once you have created the dataset and implemented all necessary steps
to perform the classification, it is time to analyze the classification results.
Projects where the classification is just one part in a pipeline might tend to
just work with what the classifier presents. However, having a closer look
at mis-predictions can give you valuable insight on how to improve the
classification accuracy. Visualizations, such as confusion matrices (which
have been used extensively thought this project), can simplify this task.

We have evaluated the trained networks, not only with the evaluation
set, but also with the training set. Doing so helped us figure out which
recordings where hard to classify, or often confused with another class.
Further decisions on whether to remove individual recordings, or to change
the class definitions can be based on such findings.
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5.15. Be Smart

5.15. Be Smart

Some of the recommendations in this guide might seem trivial and not
important for you. However, you should take the time to reflect if that is
actually the case. After all, this list of tips is based on the mistakes we made
because we did not consider those things.

That being said, it might indeed be the case that some of those guidelines
do not apply for your project, in which case they can be disregarded. There
might even be situations where the opposite of what has been said is true.
So, not everything presented here should be interpreted as the ultimate
truth. You do not have to rely exclusively on this thesis, but you can also
refer to additional sources on the topic (refer to chapter 2 for a start and
continue from there) and/or use critical thinking to figure out what works
best for your situation.

Furthermore, this is not a comprehensive guide on everything that needs
to be considered. It is just meant to be a solid starting point. As with each
knowledge project, you will not succeed unless you put your own thoughts
and ideas into it.
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6. Conclusions

This thesis discussed best practices when it comes to the design and cre-
ation of a dataset for transport mode detection. At first a background in
acoustic scene classification, dataset creation, and general transport mode
detection was given. Then the strategies and tools were presented. An An-
droid application has been developed, which aided the recording process.
Recordings have been made in different cities across Europe to create a
dataset with 9 classes, namely: bike, bus, car, coach, metro, plane, train,
tram, and walking, at a total size of 245 hours.

Experiments were performed on the dataset to gain insight into different as-
pects of classification. It was found that the sample length which achieves the
best classification result is somewhere between 16 and 64 seconds. However,
to stay compatible with other datasets and to ensure a low response time
for a prospective application, a sample length of 10 seconds was selected.

By analyzing different sizes of datasets it was found that up to three quarters
of individual samples can be removed from the full dataset without causing
notable changes, but when removing full recordings the performance drops
more rapidly. This suggests that (for our dataset) diversity is more important
than quantity.

Strategies on how to find the an appropriate size, as well as the best number
of classes were presented. The latter depends on the task at hand. One
should select as many classes, as are required to be distinguishable and
none more. The more classes that are in use, the lower the classification
scores will be.

Additionally, we demonstrated how to handle ambiguous classes. The
solution that worked best for the given dataset was to keep special cases in
their main class, such as walking in a plane in the plane class and walking in a
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6. Conclusions

train in the train class. When samples of those recordings are classified as
walking, they are also counted as true positives.

Different strategies on how to assign a label based on the confidence scores
for all classes have been discussed and explored. Selecting the class with the
highest confidence should be used whenever the highest accuracy is desired,
for instance: for the final evaluation. However, a different strategy, which
implements a global threshold, in combination with an additional label,
that is given if the threshold is not met, has proven to be very beneficial for
sample filtering.

Sample filtering techniques, such as relabeling and trimming recordings,
were described and applied. Relabeling required some human input, but
the process turned out to be reliable and effective. Trimming only worsened
results if done automatically, and only caused insignificant changes when
done manually. Cleaning could not be performed in a way to improve
results to the extend that the effort would be justifiable.
Using all these schemes to modify the training set, while leaving the evalu-
ation set the same, the total performance was improved from an F1-score of
72% to a score of 78%.

The findings throughout the project were compiled into a guideline. It can
be referred to when expertise on creating a dataset on acoustic transport
mode detection is required.

114



7. Future Work

Several interesting aspects of acoustic transport mode detection are still
open to be analyzed. One such aspect would be classifying a large number
of classes. Whether it is better to group them, perform a rough classification
and then a separate sub-classification, or if all classes should be trained in
only one network. It could be explored what the advantages and disadvant-
ages of either of those strategies are.

We have analyzed aspects such as sample length and number of recordings
but there are so many more variables that could be analyzed. Examples
would be to analyze if different microphones produce different results, or
how the sampling rate effects the classification accuracy.

Furthermore, more sophisticated methods for increasing the quality of
an existing acoustic dataset could be explored. We have only touched on
simple sample filtering techniques which do not produce the desired effect.
Other approaches, such as various clustering techniques, might yield better
results.

Throughout the project we only worked with one classification algorithm. It
would be interesting to know if the dataset gains or looses accuracy when
other algorithms are used. The experiments that were conducted might also
produce different results when another algorithm is used.

The evaluation set was selected by a human and kept the same for all
experiments. Since the evaluation set has a high impact on the classification
scores, it would make sense to evaluate the choice of evaluation set. This
could be done for instance be automatically creating an evaluation set (for
instance randomly selecting a percentage of recordings) and comparing
evaluation results.
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7. Future Work

If we were to continue working on this project then we would gather more
data for the classes which are under-represented. Those were the classes of
bus, coach and tram. This is required to figure out if the bad performance
of those classes is caused by the lack of data or if it is inherently given by
the class definition (ie. those classes are just harder to classify). Hopefully,
more data in these classes would increase their classification accuracies and
result in an overall better performance.

Smartwatches are another interesting topic that could be relevant for acoustic
TMD. There seems to be a trend towards wearing watches with computing
capabilities. Those watches could be used in the recording process of the
dataset generation. This could bring advantages since they are usually better
exposed to the environment. It would also fundamentally change the sounds
for cycling and walking.
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Appendix A.

Additional Figures

Figure A.1.: The individual F1-scores of different sample lengths on a linear scale with best
of 128 second averages. This means for 1s a best of 128 was applied, for 2s best
of 64, and so on up until best of 6 for 20s.
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Appendix A. Additional Figures
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Appendix B.

Confusion Matrices

Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walking

bike 1315 0 0 0 2 2 2 0 9

bus 56 53 9 0 55 1 46 1 8

car 68 2 657 4 5 12 41 1 1

coach 33 11 20 71 1 0 31 0 0

metro 138 1 3 0 208 6 39 5 2

plane 124 11 16 0 30 429 25 0 0

train 250 6 26 3 11 16 991 20 50

tram 148 10 27 1 17 16 39 49 6

walking 222 0 3 0 21 0 5 1 877

Table B.1.: The confusion matrix of the classes of our dataset when all the samples are
used. This is the same as table 4.4 but with absolute values to get an idea of the
sample distribution.

B.1. Merging
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Appendix B. Confusion Matrices

Prediction
A

ct
ua

l

bike bus car coach plane rails walk

bike 98.4 0.0 0.0 0.0 0.2 0.8 0.6

bus 11.8 21.8 2.6 0.0 0.4 62.0 1.3

car 4.0 0.1 79.9 0.8 2.1 13.0 0.0

coach 12.0 15.6 9.0 48.5 0.0 15.0 0.0

plane 7.6 0.2 1.3 0.0 77.0 13.9 0.2

rails 6.5 0.6 1.5 0.1 1.6 86.7 3.0

walk 20.1 0.0 0.0 0.0 0.0 1.6 78.3

Prediction

A
ct

ua
l

bike bus car coach plane rails walk

bike 98.9 0.0 0.0 0.0 0.2 0.3 0.7

bus 24.5 23.1 3.9 0.0 0.4 44.5 3.5

car 8.6 0.3 83.1 0.5 1.5 5.9 0.1

coach 19.8 6.6 12.0 42.5 0.0 19.2 0.0

plane 19.5 1.7 2.5 0.0 67.6 8.7 0.0

rails 25.7 0.8 2.7 0.2 1.8 66.0 2.8

walk 19.7 0.0 0.3 0.0 0.0 2.4 77.7

Table B.2.: The confusion matrices when the classes metro, tram and train are merged. The
upper matrix shows when the merge happened before the training, and the
lower one only combined the classes in the confusion matrix of a regular 9-class
training.
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B.2. Splitting

B.2. Splitting

Prediction

A
ct

ua
l

bike bus car coach metro plane sbahn train tram walk

bike 98.9 0.0 0.0 0.0 0.2 0.3 0.0 0.1 0.0 0.5

bus 26.6 27.1 1.3 0.0 23.1 0.0 0.0 18.3 0.4 3.1

car 12.5 0.5 80.5 0.3 0.3 2.4 0.0 3.5 0.0 0.0

coach 38.9 12.6 10.2 31.7 0.0 0.0 0.0 6.6 0.0 0.0

metro 29.4 0.5 0.0 0.0 59.5 1.7 0.2 8.5 0.2 0.0

plane 14.6 0.5 1.1 0.2 1.3 81.9 0.0 0.0 0.0 0.5

sbahn 44.1 0.0 2.3 0.0 1.9 7.5 10.3 32.9 0.5 0.5

train 24.0 0.5 3.3 0.0 0.0 0.9 0.1 67.7 0.5 3.1

tram 57.5 1.9 5.1 0.3 10.2 5.4 1.6 6.7 9.3 1.9

walk 27.4 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.0 71.5

Table B.3.: The confusion matrix when samples from city trains are split from the train
class into a separate sbahn class.
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Appendix B. Confusion Matrices

B.3. Ambiguous Classes

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

any nan nan nan nan nan nan nan nan nan nan

bike 0.9 97.8 0.0 0.0 0.0 0.0 0.4 0.1 0.0 0.8

bus 17.9 1.7 35.8 0.4 0.0 23.6 0.0 18.8 0.9 0.9

car 6.4 2.4 2.0 81.7 1.0 0.1 0.9 5.4 0.0 0.0

coach 18.0 0.6 29.9 7.2 38.3 0.0 0.0 6.0 0.0 0.0

metro 20.9 4.0 3.0 0.5 0.0 60.0 2.5 8.7 0.2 0.2

plane 9.1 0.0 0.2 2.8 0.0 0.2 85.3 2.2 0.2 0.0

train 14.3 1.9 1.3 1.3 0.1 1.0 1.8 76.3 1.6 0.4

tram 39.6 2.9 2.2 4.5 0.0 9.9 5.1 14.4 19.8 1.6

walk 4.9 16.3 0.1 0.0 0.0 1.7 0.0 0.2 0.0 76.9

Table B.4.: The confusion matrix when trained without the ambiguous walking samples.
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B.4. Relabeling

B.4. Relabeling

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike 1.0 98.0 0.0 0.1 0.0 0.1 0.2 0.2 0.1 0.4

bus 13.1 1.7 38.0 1.3 0.9 24.0 0.0 18.3 0.9 1.7

car 4.8 0.9 0.0 85.3 2.0 0.0 0.1 6.8 0.0 0.0

coach 13.2 0.6 13.2 15.0 49.7 0.0 0.0 8.4 0.0 0.0

metro 26.6 3.2 0.7 0.7 0.0 56.5 0.2 11.2 0.7 0.0

plane 14.6 1.1 1.4 5.5 3.3 0.8 66.3 5.7 0.3 0.9

train 10.9 2.7 1.2 2.4 0.2 0.7 0.9 75.3 2.5 3.2

tram 49.8 1.0 4.8 4.2 0.0 5.4 2.6 9.6 21.1 1.6

walk 2.9 16.1 0.1 0.0 0.0 1.2 0.0 0.4 0.0 79.3

Table B.5.: The confusion matrix of an evaluation after the relabeling process.
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Appendix B. Confusion Matrices

Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bike 98.3 0.0 0.1 0.0 0.4 0.2 0.2 0.2 0.6

bus 2.6 40.6 1.3 1.3 24.5 0.0 23.6 3.9 2.2

car 1.3 0.5 87.0 2.5 0.1 0.3 8.3 0.0 0.0

coach 0.6 17.4 16.2 52.7 0.6 0.6 12.0 0.0 0.0

metro 5.5 2.0 1.2 0.0 69.7 0.2 18.4 2.0 1.0

plane 1.6 3.3 7.6 5.5 1.3 69.9 8.0 1.3 1.6

train 4.1 1.6 2.9 0.3 1.6 1.1 80.1 3.5 4.8

tram 4.2 6.7 8.9 0.0 14.4 3.8 24.0 35.5 2.6

walk 17.0 0.2 0.0 0.0 1.4 0.0 0.4 0.2 80.8

Table B.6.: The confusion matrix after the relabeling process when frame max was used in
evaluation. All values in percent.
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B.4. Relabeling

Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bike 98.5 0.0 0.0 0.0 0.2 0.4 0.4 0.0 0.6

bus 5.2 34.1 1.7 0.4 24.0 1.3 31.0 1.3 0.9

car 6.1 0.9 80.8 1.5 0.0 2.1 8.2 0.4 0.0

coach 1.8 28.7 13.2 50.3 0.0 0.6 5.4 0.0 0.0

metro 6.7 2.5 1.0 0.5 66.9 2.5 18.2 1.0 0.7

plane 4.3 8.3 1.3 0.6 1.4 78.0 4.3 0.6 1.3

train 6.8 0.4 1.7 0.3 1.0 1.8 81.9 1.3 4.7

tram 5.4 4.8 7.7 3.2 12.5 8.6 31.0 24.0 2.9

walk 17.2 0.1 0.1 0.0 0.7 0.0 0.4 0.0 81.5

Table B.7.: The confusion matrix when trained with 9 incorrectly labeled recordings. The
evaluation was performed using frame max on the evaluation set.
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Appendix B. Confusion Matrices

B.5. Trimming

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike 1.5 97.2 0.0 0.0 0.0 0.1 0.4 0.3 0.0 0.5

bus 14.4 2.6 32.3 1.7 0.9 23.6 0.0 24.0 0.0 0.4

car 6.8 2.4 0.1 74.3 1.8 0.3 1.6 12.6 0.0 0.0

coach 20.4 1.2 16.8 9.0 47.9 0.0 0.6 4.2 0.0 0.0

metro 17.9 3.2 2.2 1.0 0.0 55.0 5.2 15.4 0.0 0.0

plane 17.5 0.9 1.7 1.9 0.0 0.5 75.4 1.7 0.3 0.0

train 9.6 3.1 0.7 1.1 0.4 0.7 1.4 80.8 0.4 2.0

tram 47.3 3.2 5.4 5.4 0.0 8.3 2.9 16.3 10.5 0.6

walk 9.0 24.7 0.0 0.1 0.0 0.8 0.4 0.6 0.0 64.4

Table B.8.: The confusion matrix of an evaluation after the trimming process.
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B.6. Cleaning

B.6. Cleaning

Prediction

A
ct

ua
l

any bike bus car coach metro plane train tram walk

bike 1.2 95.6 0.0 0.0 0.0 0.0 0.1 0.1 0.0 3.0

bus 12.7 6.1 28.8 0.0 1.3 20.5 0.9 18.3 0.0 11.4

car 15.2 5.4 3.0 52.3 4.3 0.0 10.7 7.5 1.3 0.3

coach 10.2 2.4 8.4 2.4 63.5 0.0 4.2 9.0 0.0 0.0

metro 20.9 9.7 4.5 0.0 0.0 17.9 6.5 31.6 2.2 6.7

plane 11.3 1.1 0.0 0.9 0.2 0.0 80.0 4.3 1.4 0.8

train 10.6 4.4 4.2 1.7 3.7 0.2 1.5 64.9 3.1 5.8

tram 27.8 8.6 4.2 0.6 1.9 0.0 7.0 34.2 11.5 4.2

walk 0.7 8.9 0.1 0.0 0.0 0.0 0.0 0.4 0.0 90.0

Table B.9.: The confusion matrix of an evaluation after the cleaning process.

B.7. Using External Datasets
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Appendix B. Confusion Matrices

Prediction

A
ct

ua
l

bus car metro plane train tram

bus 1433 47 570 0 838 171

car 4038 1236 349 20 4547 2416

metro 518 116 632 4 4217 727

plane 933 1673 562 0 1554 612

train 4525 713 219 0 6919 3689

tram 328 43 86 0 1077 819

Table B.10.: The confusion matrix when trained using external datasets and evaluated
using our training set in absolute values. The same confusion matrix using
percentages can be found in table 4.19

Prediction

A
ct

ua
l

bike bus car coach metro plane train tram walk

bike 0 0 0 0 0 0 0 0 0

bus 65 687 253 0 204 14 388 2 139

car 110 40 169 1 209 238 191 21 62

coach 0 0 0 0 0 0 0 0 0

metro 397 393 123 0 414 18 428 25 230

plane 39 0 0 0 4 24 0 0 2

train 59 165 40 0 119 113 649 41 59

tram 3 507 180 0 238 0 32 0 216

walk 0 0 0 0 0 0 0 0 0

Table B.11.: The confusion matrix of an evaluation with TMD data from external datasets
in absolute values. The percentage values are shown in table 4.22
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