
Side-Channel Resistance and

Pairing-Based Cryptography for

the Internet of Things

by

Thomas Unterluggauer

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Stefan Mangard (TU Graz, Austria)
Prof. Tim Güneysu (Ruhr-University Bochum, Germany)

December 2017

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

Internet-of-Things (IoT) devices increasingly process sensitive data in a dis-
tributed computing environment and hence require appropriate security mech-
anisms. One major challenge in developing such mechanisms is that attackers
often have direct physical access to IoT devices. This physical access allows them
to perform very powerful attacks, such as accessing and tampering with data
in external memory. In addition, physical access to running IoT devices allows
to infer information about the data these devices process from observing their
physical properties, e.g., the power consumption, by using side-channel attacks.

In the first part of this thesis, we focus on the side-channel security of
IoT devices and present a method to model bounded side-channel leakage in
permutation-based cryptographic schemes. This method allows to assess these
schemes’ security when their implementation leaks a certain amount of bits about
their secret state via side channels. To concretely quantify an implementation’s
leakage, we also derive a bound on the side-channel leakage from communication
theory. We further design two permutation-based key derivation functions to
securely perform frequent re-keying, which prevents key recovery via Differential
Power Analysis (DPA). However, we also raise awareness of possible side effects
from side-channel countermeasures by showing that frequent re-keying can induce
a DPA vulnerability that enables recovery of constant plaintext parts.

The second part of this thesis concerns the side-channel security of schemes
protecting external memory from physical access. We show that state-of-the-art
memory encryption and authentication schemes are vulnerable to DPA and
differential fault analysis attacks and we practically apply DPA to extract the
secret key used for encrypting the ext4 file system from a modern system on chip.
As a countermeasure, we present the first memory encryption and authentication
scheme that is secure against DPA. The scheme combines ideas from fresh re-
keying and authentication trees to offer both DPA security and performance
comparable to contemporary memory authentication techniques.

The last part of this thesis relates to privacy concerns in the IoT. While
there are cryptographic schemes that can guarantee user privacy, most of these
schemes involve cryptographic primitives that are costly compute, which makes
their deployment to low-resource devices difficult. We hence present three
lightweight hard- and software implementations of bilinear pairings with side-
channel protection to make privacy-preserving protocols ready for the IoT. In
addition, we investigate the side-channel security of pairing-based cryptography
and use correlation power analysis to recover the secret key of an identity-based
encryption scheme from an unprotected implementation of bilinear pairings.

iii

Acknowledgements

The successful accomplishment of a PhD thesis depends on the support of many
different people, whom in the following I would like to give thanks. First, I would
like to thank Stefan Mangard for supervising my thesis, his guidance, and giving
me the opportunity to conduct this research, and I would like to thank Tim
Güneysu for valuable feedback, assessing my thesis, and coming to Graz for my
PhD defense.

Besides, I would like to acknowledge all the people, who I had the chance
to work with over the years. In particular, I want to thank Erich Wenger for
reinforcing my decision to start a PhD program and his helpful guidance in the
early days as a PhD student, and Mario Werner for many helpful discussions,
regularly providing a different view, and plenty of joint works. As well, I am
grateful for cryptographic advice by and successful collaborations with Christoph
Dobraunig, Maria Eichlseder, and Florian Mendel, and for constructive conversa-
tions and worthwhile cooperations with Hannes Groß, Thomas Korak, Robert
Schilling, Raphael Spreitzer, Christian Hanser, Daniel Slamanig, Karl-Christian
Posch, Manuel Jelinek, and David Schaffenrath. However, I also feel blessed that
I came to know many of my colleagues better over the years, and greatly enjoyed
our casual discussions and joint morning coffee in addition to professional work.

Finally, I would like to express my deep appreciation to both friends and
family for their encouragement, especially my parents Renate and Franz for
giving me the chance to follow my interests over the years and always having an
open ear for me, and my girlfriend Raphaela, who had a lot of patience with me,
never lost her belief in my abilities, and always found the right words to cheer
me up.

Kind regards,
Thomas

iv

Table of Contents

Abstract iii

Acknowledgements iv

List of Tables ix

List of Figures x

Acronyms xii

1 Introduction 2
1.1 Contribution and Outline . 4

1.1.1 Bounded Side-Channel Leakage 5
1.1.2 Side-Channel Security for Memory Encryption 5
1.1.3 Bilinear Pairings for Embedded Devices 6

2 Side-Channel Attacks 7
2.1 Attacks and Definitions . 7

2.1.1 Simple Power Analysis . 8
2.1.2 Differential Power Analysis 9
2.1.3 Profiled Attacks . 9

2.2 DPA Countermeasures . 10
2.2.1 Masking . 10
2.2.2 Frequent Re-Keying . 11

2.3 Leakage-Resilient Cryptography 11
2.3.1 Leakage-Resilient Encryption 11
2.3.2 Leakage-Resilient MAC 12

2.4 Secure Re-keying Functions . 13
2.5 Conclusion . 14

I Bounded Side-Channel Leakage 15

3 Re-Keying and Leakage Model from Cryptographic Sponges 17
3.1 Leakage in Permutation-based Designs 18

3.1.1 Sponge Leakage Model . 18
3.2 Secure Re-Keying Functions . 20

v

vi Table of Contents

3.2.1 Re-Keying with Inherent DPA Security 20
3.2.2 More Efficient Re-keying 21

3.3 Implementation . 22
3.3.1 Instantiation Keccak[400] 22
3.3.2 Security with State Leakage 23
3.3.3 Results and Comparison 24

3.4 Conclusion . 24

4 Leakage Bounds for Gaussian Side Channels 26
4.1 Background . 27
4.2 Modeling Side-Channel Leakage as a Communication Channel . . 28

4.2.1 Attack Model . 28
4.2.2 Mutual Information . 28
4.2.3 Linear Channel Model . 29
4.2.4 Leakage Bound for Gaussian Side Channels 30
4.2.5 Description of Common Leakage Models 32

4.3 Complexity of State Recovery . 33
4.3.1 Attack Model . 34
4.3.2 Averaging Attacker . 34
4.3.3 Expected Minimum Attack Complexity 35
4.3.4 Divide-and-Conquer Attacks 36

4.4 Experimental Verification and Security Analysis 36
4.4.1 Evaluation Hardware: Fulmine 37
4.4.2 Soundness of Model and Bounds 38
4.4.3 Estimating Security Bounds for ISAP 40

4.5 Conclusion . 42

5 Side-Channel Attacks on Leakage-Resilient Encryption 44
5.1 Side-Channel Plaintext-Recovery Attack 45

5.1.1 Stream Cipher Mode . 45
5.1.2 Block Cipher Mode . 46

5.2 Implications and Applicability . 47
5.2.1 Communication . 47
5.2.2 Memory Encryption . 48
5.2.3 Remarks and Countermeasures 48

5.3 Practical Evaluation . 49
5.3.1 Stream Cipher Mode . 49
5.3.2 Block Cipher Mode . 49

5.4 Conclusion . 51

II Side-Channel Security for Memory Encryption 53

6 Side-Channel Attacks on Memory Encryption 55
6.1 Memory Encryption . 56

6.1.1 Definition . 56

Table of Contents vii

6.1.2 Memory Encryption in Practice 57

6.1.3 State-of-the-Art Implementations 58

6.2 Physical Attacks on Memory Encryption 59

6.2.1 Differential Power Analysis 60

6.2.2 Differential Fault Analysis 62

6.3 EM Attack on Ext4 Encryption 64

6.3.1 Analysis of Ext4 Disk Encryption 65

6.3.2 General Attack Flow . 65

6.3.3 Experimental Setup and Results 66

6.4 Conclusion . 67

7 Side-Channel Secure Memory Encryption and Authentication 69

7.1 Memory Encryption and Authentication 71

7.1.1 Threat Model and Requirements 71

7.1.2 Memory Encryption . 72

7.1.3 Memory Authentication 72

7.2 Re-Keying for Memory Encryption 74

7.2.1 The Re-Keying Operation 74

7.2.2 Re-Keying and Plaintext Confidentiality 75

7.3 DPA-Secure Memory Encryption and Authentication 75

7.3.1 Construction . 76

7.3.2 Authenticity . 79

7.3.3 Side-Channel Discussion 80

7.4 Higher-Order DPA Security . 82

7.4.1 Concept . 82

7.4.2 Masking Details . 82

7.4.3 Side-Channel Discussion 83

7.4.4 Implementation Aspects 84

7.5 Instantiation . 84

7.5.1 Meas-v1 . 85

7.5.2 Meas-v2 . 87

7.6 Implementation . 88

7.6.1 Platform . 88

7.6.2 Memory Layout . 89

7.6.3 Address Translation . 89

7.6.4 MEAS Pipeline . 89

7.7 Evaluation . 91

7.7.1 Security Properties . 92

7.7.2 Parallelizability . 92

7.7.3 Memory Overhead . 93

7.7.4 Memory Overhead with Masking 94

7.7.5 Randomness . 95

7.7.6 Implementation Results 96

7.8 Conclusion . 99

viii Table of Contents

III Bilinear Pairings for Embedded Devices 101

8 Efficient Pairings and ECC for Embedded Devices 103
8.1 Background on Pairings . 104
8.2 High-Level Arithmetic . 105

8.2.1 Implementation Details 106
8.2.2 Optimized Final Exponentiation 107
8.2.3 Optimized Prime-Field Inversion 108

8.3 Hardware Architectures . 108
8.3.1 The Used Microprocessor 109
8.3.2 The Software Framework 110
8.3.3 Assembly-Optimized Software Implementation (a) 110
8.3.4 Multiply-Accumulate Hardware Extensions (b) 111
8.3.5 The Drop-in Module (d) 111

8.4 Implementation Results . 113
8.5 Comparison with Related Work 116
8.6 Re-usability of our Drop-in Architecture 117

8.6.1 Using the Drop-in Module for Pairing-based Protocols . . 118
8.6.2 Using the Drop-in Module for Elliptic Curve Cryptography

(ECC) . 118
8.7 Conclusion . 119

9 Side-Channel Attacks on Bilinear Pairings 120
9.1 Related Work . 121
9.2 Identity-based Encryption . 122

9.2.1 Vulnerability . 123
9.3 General Attack . 125
9.4 Practical Setup and Results . 127
9.5 Countermeasures . 131
9.6 Conclusion . 132

10 Conclusions 133

Bibliography 137

About the Author 156

List of Tables

3.1 Security level (in bits) for the two re-keying functions. 22
3.2 Parameters for IsapRk1 and IsapRk2 with 128-bit security using

the Keccak[400] permutation (|K| = |K0| = 128, sp = 400). . . . 23
3.3 Implementation results for secure re-keying functions (130 nm). . 24

7.1 Comparison of Meas with other constructions for scalable authen-
tic and/or confidential memory which offer block wise random
access. 92

8.1 Propagation of data within the pipelined drop-in module 112
8.2 Performance of various operations on architectures (a), (b), and

(d). 113
8.3 Implementation characteristics for 130 nm and 90 nm process tech-

nologies. 115
8.4 Related software implementations of Ate pairings over BN curves. 115
8.5 Related hardware platforms (130 nm). 116
8.6 Performance of pairing-based protocols on the drop-in platform. . 118

ix

List of Figures

2.1 General principle of side-channel attacks. 8

2.2 Leakage-resilient stream cipher. 12

2.3 Leakage-resilient block cipher encryption. 13

2.4 Leakage-resilient Message Authentication Code (MAC). 14

3.1 Leakage of information in sponge-based constructions. 19

3.2 Re-keying inherently secure against DPA attacks: IsapRk1. . . 20

3.3 Sponge construction for re-keying: IsapRk2. 21

4.1 Expected side-channel capacity given the number of averaged
leakage traces for different numbers of Points of Interest (POIs)
and SNRm = 0.01. 36

4.2 Expected minimum attack complexity over the number of inde-
pendent leakages for different state sizes and SNR1 = 0.1. . . . 37

4.3 Fulmine SoC and hwcrypt architecture. 38

4.4 Side-channel capacity, mutual information and success rate for the
Keccak[400] permutation given the number of averaged traces and
different numbers of POIs and number of classes. The remaining
state was held constant. 39

4.5 Mutual information of Keccak[400] on Fulmine and side-channel
capacity of different channel models (256 classes, 10 POIs). . . . 41

4.6 Minimum attack complexity as the number of measurements
needed to average to recover (parts) of the Isap state from
Fulmine. As a security margin we set γ = 100. 42

5.1 Unknown Plaintext Template Attack (UPTA)-like plaintext re-
covery attack on one plaintext byte in the first AES round. Two
template sets, one on the whitening key K0, and one on the
S-box output S(P0 ⊕K0), have to be trained. 47

5.2 Single plaintext byte result of a 1st-order DPA on the leakage-
resilient stream cipher in Figure 2.2. The correct plaintext byte
is highlighted in bold. 50

5.3 POI detection for the S-box and the key template. The main
key leakage is located at sample 470. The S-box output leaks the
most at sample 1782. 51

x

List of Figures xi

5.4 Plaintext probabilities of an UPTA-like attack on one plaintext
byte. The correct plaintext value is highlighted in bold black. . 52

6.1 Generic model of memory encryption. 57
6.2 Tweakable ciphers for disk encryption. 58
6.3 Disk encryption via CBC and ESSIV. 59
6.4 Counter mode memory encryption. 60
6.5 AES round function (left) and its alternative representation (right). 63
6.6 Distribution of t-test results on the chip surface. 66
6.7 Single-byte correlation results for ext4 key derivation. 67

7.1 Meas’ tree construction for nb = 8 data blocks and with an arity
of a = 2. 77

7.2 Schematic overview of ENC in Meas-v1. 84
7.3 Schematic overview of AE in Meas-v1. 85
7.4 Zynq platform with Meas pipeline. 88
7.5 Memory layout for 4-ary Meas. 89
7.6 Data node requests for 4-ary Meas. 90
7.7 Meas encryption and authentication pipeline. 91
7.8 Memory overhead comparison for 4-ary trees depending on pro-

tection order and block size with a security level of 128 bits
(a = 4, snonce = stag = skey = 128, shash = 256). 94

7.9 Memory overhead of Meas depending on arity and protection
order (1024-bit blocks, 128-bit security). 96

7.10 Read performance determined with tinymembench (NEON read

prefetched (64 bytes step)). 97
7.11 Write performance determined with tinymembench (NEON fill). 98
7.12 Memory latency determined with LMBENCH (lat mem rd 8M). 99
7.13 Field Programmable Gate Array (FPGA) utilization on XC7Z020

for 8-ary trees. 100

8.1 Arithmetic required for pairings over Barreto-Naehrig curves. . 106
8.2 Architectural options for fast and flexible pairing designs. 109
8.3 High-level representation of architecture (d) (without program

memory). Note that the sizes of the blocks are not proportional
to their respective hardware footprints. 111

8.4 5×5-word zig-zag product scanning multi-precision multiplication
method. 112

8.5 Group operations at 48 MHz. 114
8.6 Characteristics of related hardware. 117

9.1 Correlation of multiplication result for 16-bit hypotheses. 127
9.2 Correlation of word multiplication results. 128
9.3 Correlation of accumulation register. 131

Glossary

AREA Added Rendundancy Explicit Authenticity.
ASIC Application Specific Integrated Circuit.
ASIP Application-Specific Instruction-set Processor.
AXI Advanced Extensible Interfaces.

BN Barreto-Naehrig.
BRAM Block RAM.

CBC Cipher Block Chaining.
CICO Constrained-Input Constrained-Output.
COTS Common Off-The-Shelf.
CPA Correlation Power Analysis.
CPU Central Processing Unit.

DEK Data Encryption Key.
DFA Differential Fault Analysis.
DKEK Derived Key Encryption Key.
DLP Discrete Logarithm Problem.
DMA Direct Memory Access.
DPA Differential Power Analysis.

ECB Electronic Code Book.
ECC Elliptic Curve Cryptography.
ECDSA Elliptic Curve Digital Signature Algorithm.
EM Electromagnetic Emanation.
ESSIV Encrypted Salt-Sector IV.

FIPS Finely Integrated Product Scanning.
FPGA Field Programmable Gate Array.

GGM Goldreich-Goldwasser-Micali.

HD Hamming Distance.
HDD Hard Disk Drive.
HW Hamming Weight.

xii

Glossary xiii

IEEE Institute of Electrical and Electronics Engineers.
IoT Internet-of-Things.
IV Initial Vector.

KDF Key Derivation Function.
KEK Key Encryption Key.
KEM Key Encapsulation Mechanism.

LR-PRF Leakage-Resilient Pseudo Random Function.
LSB Least Significant Bit.
LUKS Linux Unified Key Setup.
LUT Look-Up Table.

MAC Message Authentication Code.
MCU Microcontroller Unit.
MI Mutual Information.
MIMO Multi-Input Multi-Output.

NFC Near-Field Communication.
NIST National Institute of Standards and Technology.
NVM Non-Volatile Memory.

PAT Parallelizable Authentication Trees.
PCB Printed Circuit Board.
PL Programmable Logic.
POI Point of Interest.
PRNG Pseudo-Random Number Generator.
PS Processing System.

RAM Random Access Memory.
RFID Radio-Frequency Identification.
RISC Reduced Instruction Set Computer.
ROM Read-Only Memory.
RPC Randomized Projective Coordinates.

SIMO Single-Input Multi-Output.
SNR Signal-to-Noise Ratio.
SoC System on Chip.
SPA Simple Power Analysis.
SPS Separate Product Scanning.

TCDM Tightly-Coupled Data Memory.
TEC Tamper Evident Counter.
TEE Trusted Execution Environment.
TMTO Time-Memory Trade-Off.

Glossary 1

TPM Trusted Platform Module.

UPTA Unknown Plaintext Template Attack.

XEX Xor-Encrypt-Xor.
XTS XEX-based Tweaked codebook mode with ci-

phertext Stealing.

1
Introduction

The ever-growing networking of electronic devices has made the Internet-of-
Things (IoT) reach the masses. The IoT connects a heterogeneous field of
components, ranging from industrial parts, such as sensor nodes, actuators,
production machines, robots, and their automation logic, to consumer products,
such as contactless smart cards, control systems, smart phones, and computers
in, e.g., a smart home environment. This trend towards ubiquitous networking
of devices gives rise to many new applications, but also demands for security
services to protect sensitive data, privacy, intellectual property, communication,
and, due to the nature of the IoT, real-world things.

From a security point of view, the pervasive nature of embedded IoT devices
is particularly challenging as it causes many of these devices to operate in hostile
environments. This means that the running device is in possession of an entity
that may use certain services of the device, but that also has a strong interest
in learning confidential information (or tampering with information) that is
processed inside the device and that the entity should not have access to. For
example, a corporate customer buying a production machine is interested in
intellectual property inside the machine’s control device, i.e., control parameters
and source code, which its vendor wishes to be protected from unauthorized
access and proliferation. Similarly, malicious modification of data, such as billing
information in a pay-per-use business model, is conceivable.

In scenarios like these, malicious device owners, or attackers, can perform a
wide range of attacks in order to learn or modify information as desired. For
example, they may access and tamper with external memory such as Random
Access Memory (RAM) and flash devices, probe and force buses on a Printed
Circuit Board (PCB), exchange peripherals, inject code, and look for exploits
on any external interface. One prominent example in this setting are cold boot

2

3

attacks [Hal+09], where RAM is operated at low temperatures to learn the
information stored therein after the device has been shut off. Performing such
an attack in the right moment can leak sensitive data, key material or tokens.
This particular risk of physical attackers is omnipresent in IoT applications and
demands for appropriate mechanisms to secure these platforms.

In this respect, a common approach to achieve secure IoT platforms is
cryptography. In particular, cryptography prevents many of the aforementioned
physical attacks on IoT devices, e.g., by providing memory encryption [Fru05;
Rog04; IEE08b] and memory authentication [Mer80; HJ05; Elb+07]. However,
physical access inherently bears the risk of side-channel attacks as well. In such
side-channel attacks, side-channel information such as the power consumption or
the Electromagnetic Emanation (EM) of an IoT device is recorded and then used
to learn about the data processed inside the device [KJJ99; Mor+11a; Eis+08],
e.g., the secret key used for encryption. These side-channel attacks are realistic
in many IoT applications, because an attacker who is able to probe buses on
a PCB or to conduct cold boot attacks is typically also capable of performing
power or EM measurements using an oscilloscope. In this regard, a particularly
strong variant of side-channel attacks is Differential Power Analysis (DPA). DPA
efficiently accumulates side-channel information about secret data from multiple
executions using the same secret, but different inputs. For instance, DPA is often
capable of recovering the secret key from unprotected software implementations
of cryptographic algorithms using less than 100 en-/decryptions with the same
key [MOP07]. In addition, DPA has recently been shown to be a serious threat to
more complex, state-of-the-art desktop systems as well [SRH16]. This powerful
class of attacks must hence be considered during both the implementation of
cryptography and the design of secure IoT platforms.

From another perspective, the increasing number of devices in IoT networks
is a massive concern for privacy too. Namely, the distributed processing of user-
related, sensitive data strongly increases the risk of leaking critical information
and tracking users. This kind of threat can however be prevented by using
techniques from cryptography as well. In particular, to protect the privacy of
users in applications running on IoT networks, there is the ongoing process of
designing novel cryptographic protocols in the field of modern cryptography.
Prominent examples of such privacy-preserving protocols are group signature
schemes [CH91; BBS04] and attribute-based credentials [CL02]. However, modern
cryptography also aims to overcome shortcomings of current cryptographic
schemes in IoT scenarios. For example, identity-based encryption [Sha84; BB04]
and one-round multi-party key agreement [Jou04] aid IoT applications by reducing
communication. Consequently, there is a clear need to make such protocols and
schemes available to the IoT.

Many of these new protocols are most efficiently constructed from asymmetric
cryptographic primitives such as elliptic curves and bilinear pairings. However,
the evaluation of such primitives is yet complex and often involves large compu-
tational effort. While this is not a problem on modern smart phones or desktop
computers, there are also many embedded devices in the IoT lacking compu-

4 Chapter 1. Introduction

tational power and resources, often solely consisting of a single microchip and
an antenna. Such devices have many, often contradictory constraints, making
it difficult to provide embedded IoT devices with modern cryptography. For
example, performance must be practical to suit applications with user interaction,
but on the contrary, embedded implementations must also limit their demand
for memory and additional hardware components as these directly affect chip
area, implementation cost, and power consumption. The latter parameters are
particularly relevant for mass production and contactless IoT devices. Apart
from that, side-channel resistance must be considered for implementations of
modern cryptography as well. As a result, optimized implementations tailored
to the need of embedded IoT devices are required to facilitate the widespread
deployment of modern cryptography.

Summarizing, two current challenges in the IoT are efficient implementations
of modern cryptographic primitives as well as IoT platforms that can guarantee
security in hostile environments where physical attackers have direct access to
the IoT device. While progress with respect to the first challenge can serve
as the foundation for new privacy-preserving technologies in a wide field of
applications, advances in terms of secure IoT platforms are indispensable to
reliably provide applications dealing with sensitive information in an ubiquitous
computing environment. In terms of both challenges, side-channel attacks are
a highly relevant threat that needs to be considered and practically evaluated
with respect to any new protection mechanism. The challenge hereby is to
prevent such attacks by adding appropriate side-channel countermeasures to
implementations or developing cryptography and platform security measures that
prohibit side-channel attacks by design.

1.1 Contribution and Outline

In the course of this thesis, we make progress towards both, the construction
of secure IoT platforms and the secure and efficient implementation of modern
cryptographic primitives for improving IoT privacy, and hereby put a strong
emphasis on side-channel attacks and corresponding countermeasures. In more
detail, our contributions fall into three main categories: (1) to prevent side-channel
attacks on IoT devices, we advance in the topic of bounding side-channel leakage,
(2) in the context of memory encryption and authentication, we investigate side-
channel attacks and design suitable countermeasures, and (3) to make privacy-
preserving protocols available to the IoT, we provide efficient bilinear pairings
and analyze their side-channel security. According to these main categories, the
detailed contributions and outline are as follows.

Chapter 2 provides background information on side-channel attacks and state-
of-the-art countermeasures, such as masking, frequent re-keying, and leakage-
resilient encryption.

1.1. Contribution and Outline 5

1.1.1 Bounded Side-Channel Leakage

Chapter 3 introduces a novel method to model side-channel leakage in permu-
tation-based cryptographic designs such as sponges. This model allows to scale
implementations for different leakage bounds faced in practice. We further use
this model to design two permutation-based key derivation functions that allow
secure re-keying of cryptographic primitives to prevent DPA. This work has been
published in [Dob+17].

Chapter 4 presents an approach to determine a bound for the side-channel
leakage from cryptographic implementations under a single data input. More
concretely, we use results on the channel capacity of Multi-Input Multi-Output
(MIMO) channels from information theory to give bounds for Gaussian side
channels and further investigate the effect of signal averaging. While this gives a
tool to estimate the complexity of side-channel attacks, the bounds determined
using this new approach are also well suited to scale implementations according to
the leakage modeling techniques from Chapter 3. This work has been published
in [Unt+17].

Chapter 5 analyzes the security of re-keying based side-channel countermea-
sures and leakage-resilient encryption. While these countermeasures prevent the
leakage of sensitive keys, our analysis reveals that they induce another DPA
vulnerability which allows for plaintext recovery. In particular, plaintext recovery
is possible whenever re-keying causes constant data to be encrypted multiple
times using different keys. This examplary attack shall raise awareness of possible
side effects of side-channel countermeasures depending on the actual use case.
The work has been published in [UWM17c].

1.1.2 Side-Channel Security for Memory Encryption

Chapter 6 investigates current memory encryption schemes in terms of side-
channel and physical fault attacks. The results show that both DPA and Dif-
ferential Fault Analysis (DFA) break all memory and disk encryption schemes
used in practice and that these attacks are practical on state-of-the-art devices
by attacking ext4 disk encryption on a Zynq-7010 System on Chip (SoC). The
attacks have been published in [UM16] and received the best paper award at
COSADE 2016.

Chapter 7 combines ideas from frequent re-keying and authentication trees to
introduce the first memory encryption and authentication scheme that is secure
against DPA attacks. The scheme is applicable to both Non-Volatile Memory
(NVM) and RAM and can further be used with cryptographic accelerators
provided in Common Off-The-Shelf (COTS) systems. Our scheme’s evaluation on
a Zynq-7020 SoC shows that its memory and performance overhead is comparable
to state-of-the-art memory authentication techniques without DPA protection.

6 Chapter 1. Introduction

This work was in part published in [UWM17b] and the extended results in this
chapter are currently in submission to [UWM17a].

1.1.3 Bilinear Pairings for Embedded Devices

Chapter 8 presents three side-channel protected hard- and software implemen-
tations of bilinear pairings that can be used to realize privacy-preserving protocols.
Most prominently, the placement of a drop-in hardware accelerator between the
ARM Cortex-M0+ CPU and the data memory yields a lightweight design with
practical runtime that is suitable for resource-constrained applications. This
hardware design has been published in [UW14a].

Chapter 9 studies the side-channel security of bilinear pairing algorithms. In
particular, we present a Correlation Power Analysis (CPA) attack that extracts
the secret key from an implementation of identity-based encryption and raise
awareness of randomization techniques as suitable countermeasures in this context.
The results of this chapter have been published in [UW14b].

Chapter 10 finally concludes this thesis.

2
Side-Channel Attacks

Many embedded devices nowadays contain and process sensitive data and hence
demand for appropriate security architectures. However, attackers often get
direct physical access to these embedded devices when they are running in the
field. This physical access allows attackers to perform a wide range of attacks,
such as to observe and to analyze a device’s physical behavior as well as to
tamper with a device.

In this thesis, we strongly focus on attackers, who have physical access to a
running Internet-of-Things (IoT) device and who analyze the device’s physical
properties to learn about the data it processes in passive side-channel attacks. To
provide the required background information, this chapter gives a non-exhaustive
introduction to passive side-channel attacks and their countermeasures. In
particular, it introduces frequent re-keying and leakage-resilient encryption which
are referred to throughout this thesis. Parts of this chapter have been taken from
the publications [UWM17b; Dob+17; UWM17c].

This chapter is organized as follows. Section 2.1 gives a general introduction
to side-channel attacks and its variants, and Section 2.2 presents possible coun-
termeasures. Section 2.3 introduces leakage-resilient encryption and Section 2.4
gives an overview on secure re-keying functions.

2.1 Attacks and Definitions

An implementation in general performs certain operations on its inputs to create
its output. For example, a cryptographic device transforms its input plaintext
using a secret key K to give the output ciphertext. The respective in- and output
interfaces embody the intended behavior of the implementation and form its main

7

8 Chapter 2. Side-Channel Attacks

Implementation
Input Output

ℓSide-Channel
Leakage

Side-Channel
Analysis

Secret K

Secret K

Figure 2.1: General principle of side-channel attacks.

channel of communication. However, in practice and as shown in Figure 2.1, the
execution of an implementation also leaks information on the internally processed
data via its physical properties, such as power, timing, and Electromagnetic
Emanation (EM). For example, a cryptographic implementation leaks information
about the secret key K when performing en-/decryption. As this information
leakage does not occur on its designated interfaces, we denote it as side-channel
leakage. Attackers can exploit this side-channel leakage in so-called passive
side-channel attacks in order to learn secret information such as the key K of a
cryptographic implementation. However, while the topic of side-channel attacks
emerged in the field of cryptography, note that the side-channel leakage of any
sensitive data processed by an implementation is a concern.

Independent of the concrete source of side-channel leakage, there are two
basic types of side-channel attacks [KJJ99]: Simple Power Analysis (SPA) and
Differential Power Analysis (DPA). Originally, Simple Power Analysis (SPA)
and Differential Power Analysis (DPA) have been introduced for the power
side-channel, but their basic principle is applicable to all kinds of side channels
such as power, EM, and timing. Therefore, we will use the terms SPA and DPA
throughout this thesis, but note that our elaborations apply to all kinds of side
channels unless stated otherwise.

2.1.1 Simple Power Analysis

In SPA attacks, the adversary tries to learn the secret value processed inside a
device from observing side channels during a single processing of the secret value
to be revealed, e.g., the adversary tries to learn the encryption key from a power
trace observed during a single encryption. However, the adversary is allowed
to observe the same encryption multiple times to reduce measurement noise.
Clearly, an implementation that cannot keep a key secret for a single encryption
is worthless. Therefore, security against SPA attacks is a typical precondition for
an implementation.

2.1. Attacks and Definitions 9

2.1.2 Differential Power Analysis

Quite naturally, the amount of information learned about a secret value from a
side channel increases with the number of different inputs processed under the
respective secret. This is exploited in DPA attacks, which use the observation of
several different processings of a secret value in a device to learn its value, e.g.,
the adversary tries to learn the secret key from power traces observed during the
en-/decryption of multiple (public) input values. However, note that depending
on the statistical techniques being used, there are several variants of DPA, such
as Correlation Power Analysis (CPA) [BCO04].

Procedure. One typical procedure to perform a DPA attack is to measure the
power of nt different en-/decryptions for known plain- or ciphertexts, to compute
certain intermediate values within the en-/decryption based on the nt different
plain-/ciphertexts and the possible keys, and to map the intermediate values to
power consumptions according to a hypothetical leakage model. Common leakage
models assume the power consumption of a device to relate to the Hamming
Weight (HW) of, or the Hamming Distance (HD) between contents of a device-
internal register. Applying a statistical distinguisher, e.g., correlation, to the
power traces of the nt en-/decryptions and the respective hypothetical power
consumptions for the different, possible keys reduces the key space or determines
the key uniquely.

Attack Order. While the described attack procedure forms a first-order DPA
attack, there is also DPA of higher order. Higher-order DPA attacks [KJJ99;
Mes00; Gie+10] exploit joint statistical properties of multiple aspects of the
side-channel signal. For a DPA attack of order d, this typically means to jointly
analyze the leakage of d different internal values of the executed algorithms,
which is often measured in d different Points of Interest (POIs) in the side-
channel leakage trace. The attack complexity of DPA grows exponentially with
its order [Cha+99].

2.1.3 Profiled Attacks

Independently of whether SPA or DPA is performed, side-channel attacks can
make use of profiling. Profiling of a side-channel means to construct tem-
plates [CRR02] that classify the side-channel information of a target device with
respect to a certain value processed inside the device. For example, the power con-
sumption in m POIs of a power trace that is observed when the device processes
a certain value is typically characterized by using a multivariate Gaussian distri-
bution. In the actual attack, the templates are matched with the side-channel
trace to gain some information on the value processed inside the device. The
information learned from template matching can then be exploited in either SPA
or DPA manner, as for example shown in [OM07]. Note however that conducting
profiled attacks requires much more effort than performing non-profiled attacks.

10 Chapter 2. Side-Channel Attacks

Further note that in many applications it is impossible to perform the required
profiling step at all.

Unknown Plaintext Template Attacks. One special form of profiled at-
tacks which we refer to in this thesis are Unknown Plaintext Template Attacks
(UPTAs) [HTM09]. An UPTA recovers the secret key of a block cipher without
having access to both the plain- and the ciphertext. Hereby, two sets of templates
are used to recover the required information instead. Combining the leakage
from multiple block cipher invocations in a DPA-like manner then permits to
recover the secret key.

In more detail, the original UPTA attacks the constant key K of a block cipher
E by observing the encryption of several unknown plaintexts with the help of
power templates. Hereby, the power templates are used to learn information on the
unknown plaintexts P0, P1, ... and intermediate values V0, V1, ... in the respective
encryption processes E(K;P0), E(K;P1), Exploiting the relation between
the information learned on P0, P1, ... and V0, V1, ..., the key K is recovered. As
the attack combines side-channel information from both the unknown plaintexts
P0, P1, ... and the intermediate values V0, V1, ..., the order of this attack is two.

2.2 DPA Countermeasures

The effectiveness of DPA attacks has caused a lot of effort to be put into
the development of countermeasures. Two basic approaches have evolved to
counteract DPA, namely, (1) to protect the cryptographic implementation by
using mechanisms like masking, and (2) the frequent re-keying of unprotected
cryptographic primitives.

2.2.1 Masking

Masking [Cha+99; GP99; PR13], also called secret sharing, is a technique that
can hinder DPA attacks up to certain orders. The idea behind masking is to
prevent DPA by making the side-channel leakage independent from the processed
data. In a masked cryptographic implementation, every secret value V is split
into d+ 1 shares V0, ..., Vd in order to protect against d-th order DPA attacks.
Hereby, d shares are chosen uniformly at random and the (d + 1)-th share is
chosen such that the combination of all d+ 1 shares gives the actual secret value
V . As a result, an adversary is required to combine the side-channel leakage of
all d+ 1 shares to be able to exploit the side channel, i.e., to perform a (d+ 1)-th
order DPA.

While the masking operation itself is usually cheap, e.g., XOR, cryptographic
primitives typically contain several operations that become more complex in the
masked representation. This eventually results in significant implementation
overheads. For example, the 1st-order DPA secure threshold implementations of
AES in [Bil+14; Mor+11b] add an area-time overhead of a factor of four.

2.3. Leakage-Resilient Cryptography 11

2.2.2 Frequent Re-Keying

The probability for key recovery via DPA to be successful rises with the number
of side-channel observations for different inputs. Therefore, one approach to
counteract DPA is frequent re-keying [Koc03; Med+10]. Frequent re-keying tries
to limit the number of different processed inputs per key, i.e., the data complexity.

In more detail, the countermeasure constrains a cryptographic scheme to use
a certain key K only for q different public inputs (q-limiting [Sta+10]). When
the limit of q different inputs is reached, another key K ′ is chosen. Thus, for a
certain key K, an adversary can only obtain side-channel leakage for q different
inputs, which limits the feasibility of DPA to recover K.

As a result, designing cryptographic schemes and protocols with small data
complexity q is one measure to prohibit DPA against unprotected cryptographic
implementations. In more detail, it is widely accepted that very small data
complexities, i.e., q = 1 and q = 2, have sufficiently small side-channel leakage
and do not allow for successful key recovery from DPA attacks [Bel+14; Pie09;
Sta+10; TS15]. However, when re-keying is applied, the implementation must
still be resistant to SPA attacks.

2.3 Leakage-Resilient Cryptography

Frequent re-keying can be applied to any cryptographic scheme, e.g., an en-
cryption scheme ENC or an authenticated encryption scheme AE, by choosing
a new key whenever a new message has to be encrypted and authenticated,
respectively. However, in such a re-keying approach, side-channel resistance is
also affected by the concrete instance of the cryptographic scheme. In practice,
the cryptographic scheme must be able to process arbitrarily long messages using
a standard primitive, e.g., AES with 128-bit block size. This situation facilitates
DPA in certain modes, such as Cipher Block Chaining (CBC). Therefore, the
cryptographic scheme must be designed with special care.

In this respect, leakage-resilient cryptography comprises modes that are
designed to process arbitrarily long messages without DPA vulnerability and to
resist a certain amount of side-channel leakage. The latter typically means that
if every invocation of the underlying primitive leaks, e.g., λ bits of information,
leakage-resilient schemes guarantee that their overall leakage on the key stays
within predefined bounds.

2.3.1 Leakage-Resilient Encryption

Two prominent examples of leakage-resilient encryption are depicted in Figure 2.2
and Figure 2.3. Both figures show two basic components: (1) a secure re-keying
function g, and (2) a streaming mode performing leakage-resilient encryption.
The re-keying function g : (K,N) 7→ K0 securely derives a fresh initial session
key K0 from a pre-shared (symmetric) master secret K and a fresh nonce N and
must be implemented such as to resist both SPA and DPA attacks. We discuss
possible constructions for g in Section 2.4.

12 Chapter 2. Side-Channel Attacks

K0 E

ÂA

C0

K1

E
P0

Y0

…

ÂB

E

ÂA

C1

E
P1

Y1

g

N

ÂB

K
K2

Figure 2.2: Leakage-resilient stream cipher.

In terms of leakage-resilient encryption, both schemes continuously perform
key updates to securely process an arbitrary number of message blocks. In
particular, when a certain plaintext block Pi has been processed with key Ki,
the next block’s key Ki+1 is obtained from encrypting a constant value χA using
an encryption primitive E, e.g., a block cipher, with the current block’s key Ki.
This key update mechanism ensures the use of a different key for the encryption
of each plaintext block Pi and bounds the data complexity to q = 2 per Ki.
However, this iterative key update mechanism also results in random accesses to
individual blocks to become quite expensive.

To perform the encryption of the single plaintext blocks Pi, current leakage-
resilient encryption modes employ two basic variants. The majority of modes uses
a stream cipher approach [Pie09; PSV15; Sta+10] similar to Figure 2.2. These
modes use the current block’s key Ki and a constant χB to compute a value
Yi = E(Ki;χB) that is used to pad the plaintext Pi as Ci = Pi ⊕ Yi. On the
other hand, there are also proposals for a block-cipher based encryption [TS15]
such as in Figure 2.3, which directly use the current block’s key Ki to encrypt Pi
as Ci = E(Ki;Pi). Both variants clearly limit each key’s data complexity during
encryption by q = 2 to make DPA on the keys Ki infeasible. Yet, both variants
must be implemented such that they resist SPA-like attacks. Therefore, such
schemes must have bounded leakage of the key material, i.e., it must be hard to
usefully combine the leakages of the single Ki in order to learn the key stream.
Streaming modes such as in Figure 2.2 thus often come with a proof for bounded
leakage of the key material given bounded leakage of the primitive E. Contrary
to that, schemes such as in Figure 2.3 currently lack this feature.

2.3.2 Leakage-Resilient MAC

In terms of authentication, Pereira et al. [PSV15] presented a leakage-resilient
Message Authentication Code (MAC), which is depicted in Figure 2.4. As leakage-
resilient encryption, this leakage-resilient MAC makes use of a secure re-keying
function g to derive a unique session key K0 from a pre-shared master key K

2.4. Secure Re-keying Functions 13

E

ÂA

C0

E
P0

…E

ÂA

g

N

K

C0

E
P0

K0 K1 K2

Figure 2.3: Leakage-resilient block cipher encryption.

and a nonce N . This session key K0 is then used to encrypt the hash h of the
message M to form the tag T . The use of a fresh nonce N for each authentication
ensures that without collisions no two messages M are authenticated using the
same session key K0.

2.4 Secure Re-keying Functions

The leakage-resilient schemes presented before make use of a re-keying function
g : (K,N) 7→ K0 to derive a fresh session key K0 for initialization. This re-keying
function g is 2|N |-limiting, where |N | denotes the length of the nonce N , and
gives a DPA setting that naturally results from combining a fixed key K with
a random nonce N . As this DPA setting cannot trivially be prevented, the
implementation of g does not only require bounded SPA leakage, but also needs
dedicated countermeasures to protect against DPA attacks or a carefully chosen
design to limit the feasibility of DPA on its internal components. We denote a
re-keying function g fulfilling these requirements a secure re-keying function.

Today, several proposals to implement a secure re-keying function exist. The
first approach is to build g in such a way that it is easy to secure by classical
countermeasures like masking. This is the basic idea of fresh re-keying [Med+10;
Med+11], which uses a polynomial multiplication of K and N over a finite field
to implement g. While such multiplications can be masked easily, [Med+11;
BFG14; Dob+14; Bel+15; GJ16; PM16] point out that the algebraic structure of
a multiplication opens the door to combined attacks on g and the encryption.
As a result, Dziembowski et al. [Dzi+16] recently proposed two new schemes
for cryptographically strong re-keying that are suitable for masking and based
on the learning parity with leakage and the learning with rounding problem,
respectively.

A second approach presented in [Sta+10] is based on the classical Goldreich-
Goldwasser-Micali (GGM) construction [GGM86]. The GGM construction can
be used to mix a secret K with a public N in a tree-like approach, where on each

14 Chapter 2. Side-Channel Attacks

E

M

Tg

N

K

h

K0

H

Figure 2.4: Leakage-resilient MAC.

tree level, exactly one bit of the public N is absorbed. Starting with S0 = K,
the state Si+1 is computed by encrypting one of two predefined plaintexts P0, P1

using the state Si as the key, depending on the i-th bit of N . The output of
the last level, S|N |, is then, after postprocessing, used as the session key K0.
This construction is 2-limiting, because the attacker only obtains the leakage for
two inputs P0 and P1 to collect information about each Si, and is thus typically
considered secure against DPA attacks. A variant of this GGM construction was
presented in [FPS12] and could be proven secure in the presence of side-channel
leakage.

A third approach presented in [MSJ12; Bel+14] also originates from the
classical GGM construction. It follows the idea of [Sta+10] by extending the
number of observable measurements per key and deriving a Leakage-Resilient
Pseudo Random Function (LR-PRF) from common block cipher designs to achieve
secure re-keying. The core assumption of this approach is that the attacker is
not able to distinguish the leakage of different hardware components on a chip.

2.5 Conclusion

IoT devices often operate in the presence of attackers with direct physical access
to these devices, which allows these attackers to recover internally processed
data by using side-channel attacks. In this chapter, we hence discussed the
principles of side-channel attacks and their variants SPA and DPA. As the latter is
particularly effective, we further explained two prominent DPA countermeasures,
namely, secret sharing (or masking) and frequent re-keying. While masking
tries to make the side-channel information independent from the processed data,
frequent re-keying bounds the data complexity for a certain secret to make
side-channel attacks that exploit multiple, different processings of the respective
secret infeasible. We finally discussed the application of frequent re-keying
in leakage-resilient cryptography to prove bounded side-channel leakage and
re-keying functions to securely initialize leakage-resilient schemes.

Part I

Bounded Side-Channel
Leakage

15

16

Side-channel attacks are an inherent threat to Internet-of-Things (IoT) devices
and demand for appropriate countermeasures. Leakage-resilient cryptographic
schemes are hence designed to resist a limited amount of side-channel leakage
from the used cryptographic primitive and guarantee that their overall leakage
on the key stays bounded. In this respect, it is of ongoing interest to find viable
leakage models to argue on the side-channel security of cryptographic schemes
given a certain amount of side-channel leakage from the implementation as well as
to determine leakage bounds from physical properties of a device. In this part, we
advance in terms of these questions and make the following main contributions:

• We introduce a model for side-channel leakage in permutation-based de-
signs, which allows to argue on these schemes’ leakage resilience by using
the security properties of cryptographic sponges. Using our model, we
present two novel, permutation-based re-keying functions secure against
side-channel attacks to securely initialize leakage-resilient modes.

• We present an approach to determine the amount of side-channel leakage on
a secret value in bits that can be learned via Gaussian side channels under
a single data input and when attackers use signal averaging to remove noise.
This method to quantify leakage can be used together with our leakage
model in Chapter 3 to determine the security level of a permutation-based
cryptographic scheme in the presence of side-channel leakage.

• To raise awareness of side effects from side-channel countermeasures, we
show that in certain scenarios side-channel leakage obtained from leakage-
resilient encryption results in a loss of plaintext confidentiality even though
the leakage on the key is bounded.

3
Re-Keying and Leakage Model from

Cryptographic Sponges

Leakage-resilient schemes are designed to resist a certain amount of side-channel
leakage from their implementation. However, for a device that is expected to give
a certain amount of side-channel leakage, it is unclear how to generically design
and adapt cryptographic schemes to attain a specific security level. As well, it
is an ongoing topic of research how to securely initialize such leakage-resilient
schemes. While there are re-keying functions designed to give sufficiently low
side-channel leakage and to perform secure initialization from a pre-shared secret
and a nonce (cf. Chapter 2), many of the current re-keying functions suffer
from algebraic weaknesses, lack efficiency, or rely on strong leakage assumptions.
Together with Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and
Florian Mendel, we hence investigated new methods to realize secure re-keying
and to model side-channel leakage when designing cryptographic modes, and we
presented our results in [Dob+17]. In this chapter, we use the respective results
from [Dob+17], but note that [Dob+17] additionally presents a leakage-resilient
authenticated encryption scheme. However, regarding the results from [Dob+17]
we use in this chapter, I contributed the idea, the hardware implementations,
and most of the text, while Christoph Dobraunig, Maria Eichlseder, and Florian
Mendel contributed the specific Keccak[400] instances. The detailed scientific
contributions of this chapter are as follows.

Contribution. We first present a model for side-channel leakage in permutation-
based designs, such as cryptographic sponges [Ber+11b], and show that these
designs are particularly suitable in the face of side-channel leakage. In partic-

17

18 Chapter 3. Re-Keying and Leakage Model from Cryptographic Sponges

ular, we model the side-channel leakage as a part of the public output of the
permutation. This allows to adjust the maximum tolerable leakage by varying
the permutation parameters and to scale implementations for different leakage
bounds. We emphasize that our leakage model gives a very powerful design tool
since sponges are highly versatile and allow the design of many different crypto-
graphic primitives, such as (authenticated) encryption, Message Authentication
Codes (MACs), and hash functions.

Second, using this flexible tool as a basis, we propose two novel re-keying
functions that are based on permutations and designed to completely prevent Dif-
ferential Power Analysis (DPA) attacks. We instantiate both re-keying functions
using Keccak[400] and present their hardware implementations. Our results indi-
cate that the two re-keying functions guarantee 128-bit security in the presence
of up to 135 bits leakage per permutation call and yet offer lower runtime and
better efficiency than state-of-the-art re-keying functions.

Outline. Section 3.1 introduces the sponge leakage model and we design two
novel re-keying functions in Section 3.2. Section 3.3 presents concrete Keccak[400]-
based instances and the respective hardware implementations and Section 3.4
concludes this chapter.

3.1 Leakage in Permutation-based Designs

As implementations are expected to leak a limited and defined amount of informa-
tion via side channels, it is a challenging task for cryptographers to design schemes
that provide a certain security level. On the other hand, permutation-based
designs, such as the sponge construction [Ber+11b], have turned out to be highly
flexible as they can be used to build a wide range of different cryptographic
primitives, e.g, (authenticated) encryption [Dob+16; Ber+12], MACs [Ber+12]
and hash functions [Ber+11c].

In this section, we make use of this flexibility to provide a model of side-channel
leakage in keyed permutation-based designs. This model gives cryptographers a
tool to consider side-channel leakage already in the design phase and to adapt the
security parameters according to the expected amount of side-channel leakage of
an implementation.

3.1.1 Sponge Leakage Model

The sponge parameters provide a convenient tool to argue on the side-channel
security of keyed sponge constructions given bounded side-channel leakage of the
single permutation. For illustration, we model the leakage from a permutation
p by allowing an adversary to learn a certain amount of the state between
subsequent permutation calls as depicted in Figure 3.1. Hereby, we use ` to
denote the amount of information (in bits) that an attacker can learn about
the state from the collected side-channel information. We do not care how and
where the leakage is created within p, but let the adversary account the learned

3.1. Leakage in Permutation-based Designs 19

c

r

p p

r

ℓi ℓi+1

(a) Leaking permutations

c'

r

p p

r

ℓi +ℓi+1

(b) Sponge model

Figure 3.1: Leakage of information in sponge-based constructions.

information to either the input or the output state of p. Therefore, given two
consecutive permutations p with leakages `i and `i+1, respectively, the maximum
an adversary might learn about the state is `i + `i+1. This means that if each
leakage `i, `i+1 is bounded by λ bits and the adversary can optimally combine
these two leakages, the adversary will learn at most 2λ bits of the state between
the respective two permutation calls.

The basic idea now is to use the sponge parameters to express a construction’s
capability to cope with the leakage generated by the permutation. In particular,
the sponge parameters are adjusted according to the amount of information
an adversary learned about the secret state. This means that if the adversary
learns 2λ bits of the internal, secret state, the leaked bits can be considered as an
increase of the rate, i.e., r′ = r+2λ, which results in a smaller capacity c′ = c−2λ
and thus reduced security. However, a reduced security level corresponding to a
capacity of c− 2λ bits is still guaranteed by the cryptographic properties of the
permutation and the associated Constrained-Input Constrained-Output (CICO)
problem [Ber+11b]. Sponge-based constructions can thus be considered to have
bounded security loss for bounded leakage of the permutation.

Bounded Side-Channel Leakage. Clearly, the challenge in practice is to
build an implementation that bounds the leakage of p. While frequent re-
keying, which implicitly occurs in many permutation-based designs, thwarts DPA,
determining a concrete Simple Power Analysis (SPA) leakage bound is difficult.
Especially if a large class of different devices have to use the same cryptographic
algorithm it might be infeasible to make any realistic assumptions about the
leakage of p. Nevertheless, the advantage of the sponge-based construction is that
besides standard SPA countermeasures, like hiding and masking, the capacity
is an additional and very natural security parameter that helps to increase the
ability of a design to withstand side-channel attacks in practice. For example,
the leakage assumption in Figure 3.1 allows to scale a sponge-based scheme to
maintain its desired security level in the presence of λ-bit leakages `i, `i+1 by
increasing the capacity by 2λ bits (and either decreasing the rate r accordingly,
or increasing the size of the permutation p).

20 Chapter 3. Re-Keying and Leakage Model from Cryptographic Sponges

p

K

0

Sr,0

Sl,0

p

Sr,1

Sl,1

p

1

Sr,1

Sl,1

Sr,0

1

Sl,0

N0 ? ...

p

p

Sr,|N|-1
N|N|-1?

|n||n|

|n| K0

K0Sl,|N|-1

Figure 3.2: Re-keying inherently secure against DPA attacks: IsapRk1.

3.2 Secure Re-Keying Functions

As shown in Chapter 2, there are several secure re-keying functions g : (K,N) 7→
K0 to initialize leakage-resilient schemes with a session key K0 from a pre-shared
master secret K and a nonce N . However, many of them have severe drawbacks,
such as being vulnerable to combined attacks or relying on strong leakage
assumptions. On the other hand, permutation-based designs are particularly
suitable to cope with side-channel leakage. In this section, we hence present
two novel re-keying functions, IsapRk1 and IsapRk2, based on cryptographic
permutations and secure against passive side-channel attacks. IsapRk1 and
IsapRk2 are 1- and 2-limiting, respectively, to prevent DPA and both allow to
control their resilience to SPA as shown in Section 3.1.

3.2.1 Re-Keying with Inherent DPA Security

In our first design, we use a variation of the classical Goldreich-Goldwasser-Micali
(GGM) construction [GGM86]. The respective re-keying function IsapRk1 is
shown in Figure 3.2 and works as follows. The state is first initialized with the
padded master key K, followed by an application of the permutation p. In each
iteration, one bit of the nonce N is processed by either choosing the left or right
half of the permutation output, padding it to the permutation size, and again
applying the permutation p. Hereby, the padding incorporates information on
which half was chosen and on the index of the nonce bit being processed. After
all nonce bits have been processed, the session key K0 is generated from the last
permutation output.

The approach to re-keying used in IsapRk1 inherently protects against
DPA attacks, since the same secret (i.e., right or left part of the permutation
output) is never combined with more than one public input. In this respect,
IsapRk1 has a lower data complexity bound than present GGM-based re-keying
functions [FPS12; Sta+10] which are 2-limiting when instantiated using common
block ciphers [Pie09]. In terms of SPA leakage, even though IsapRk1 is not a
sponge construction, our modeling from Section 3.1 can be applied with only

3.2. Secure Re-Keying Functions 21

K

N0

0
p

c

1
N|N|-1

p p

1
K0

Figure 3.3: Sponge construction for re-keying: IsapRk2.

little adaptations: we append the 2λ bits learned about the intermediate state
to the known part of the state that without leakage only consists of padding bits.
As a result, the secret part, which—depending on the i-th nonce bit Ni—either
is Sr,i or Sl,i, is reduced by 2λ bits. Thus, the size of the permutation p used in
IsapRk1 has to be chosen accordingly to obtain a sufficiently large secret part
to maintain the desired security level in the presence of λ-bit leakage of p.

3.2.2 More Efficient Re-keying

A more efficient re-keying function than IsapRk1 can be obtained from sponges
directly, potentially reducing the required state and permutation size. However,
the presented re-keying function uses a stronger security assumption than Is-
apRk1, namely, that DPA is impossible on a 2-limiting primitive, i.e., given the
leakages from two different public inputs.

The basic idea is to make DPA infeasible by reducing the input data complexity
accordingly. For this purpose, a secret state is constantly updated with small
portions of public data by repeating two phases, (1) modifying the secret state
according to the public data, and (2) updating the state such that predictions on
the future state based on the absorbed public data become infeasible.

Sponges are an ideal choice to implement this basic idea as the rate directly
influences the input data complexity for each permutation. Choosing the smallest
possible rate (r = 1) results in the design IsapRk2 shown in Figure 3.3. IsapRk2
first initializes the sponge state by applying the initial permutation p to the
padded master key K. Then, IsapRk2 repeatedly injects single nonce bits into
the state, each separated by a permutation call. After full absorption of the
nonce and a final permutation call, the session key K0 is output. This working
principle is similar to sponge instances of a prefix MAC. While for general
MAC computations the absorption rate can be as big as the state size [Ber+12],
IsapRk2 uses a small absorption rate in order to limit the data complexity
exploitable in a DPA.

In terms of DPA security, IsapRk2 uses a different assumption than IsapRk1.
For each secret state in IsapRk2, a permutation p will produce the leakages
for two different public inputs. Thus, IsapRk2 is not inherently secure to
DPA attacks, but 2-limiting. This results in IsapRk2 being a secure re-keying
function under the assumption that the combined leakage resulting from the
processing of two different public inputs is bounded such that DPA on the secret

22 Chapter 3. Re-Keying and Leakage Model from Cryptographic Sponges

state is infeasible. In this case, our leakage considerations from Section 3.1 can
be straightforwardly applied to include appropriate security margins for the
side-channel leakage from the processing of two different inputs. However, note
that this construction for a secure re-keying function is again related to the
classical GGM construction [GGM86] and can be seen as their sponge equivalent,
similar to [TS14]. IsapRk2 is similar to it in the sense that the exploitable data
complexity is equal for IsapRk2 and the block-cipher based instantiations of
both [FPS12] and the 2PRG primitive used in [Sta+10].

3.3 Implementation

The two re-keying functions were designed to be secure against passive side-
channel attacks. For practical use, we will now specify instance parameters
for both IsapRk1 and IsapRk2 based on the permutation Keccak[400]. We
implemented both re-keying functions in hardware to show that IsapRk1 and
IsapRk2 are both smaller and more efficient than state-of-the-art re-keying
functions while at the same time allowing a side-channel leakage of up to 36 bits
and 135 bits per permutation call, respectively.

3.3.1 Instantiation Keccak[400]

Besides side-channel attacks, the concrete choice of the parameters for instances
of IsapRk1 and IsapRk2 depends on the desired security against cryptographic
attacks. In this respect, we state the security level as the intended number of
bits of security. The cryptographic security level of the two re-keying functions
IsapRk1 and IsapRk2 is summarized for a sp-bit permutation p, a capacity c,
a master key K of length |K|, and a session key K0 of length |K0|, in Table 3.1.

Based on Table 3.1, we use the permutation Keccak[400] to target a 128-bit
security level. In particular, Keccak[400] uses a permutation size of sp = 400 and
is hence suitable to meet the security requirements of the two re-keying functions
IsapRk1 and IsapRk2. In terms of the number of permutation rounds, we base
our choice on Keccak[400], which uses 20 [Ber+11c] rounds, and on the CAESAR
candidate Keyak [Ber+14b], which uses 12 rounds for both the 800 and 1600-bit
Keccak permutation. For IsapRk2, injecting the secret key before the first
permutation call significantly restricts possible attack vectors. We hence followed
the proposal of the similar construction Keyak [Ber+14b] and use 12 rounds for
IsapRk2. On the other hand, IsapRk1 is permutation-based, but not a sponge.

Table 3.1: Security level (in bits) for the two re-keying functions.

Function Security (bits) References

IsapRk1 min(|K|, sp/2, |K0|)
IsapRk2 min(|K|, sp/2, c, |K0|) [And+15]

3.3. Implementation 23

As a result, we cannot rely on third-party analysis for IsapRk1 as before and
aim for a very strong permutation like for the hash function Keccak [Ber+11c].
We hence decided to use a very conservative number of 20 rounds for IsapRk1.
Table 3.2 summarizes the recommended capacity and the number of permutation
rounds for both IsapRk1 and IsapRk2.

While we chose the number of permutation rounds conservatively, note that
IsapRk2 can easily be optimized by using a smaller number of rounds similar
to the CAESAR candidate Ketje [Ber+14a]. In particular, while the initial
and last permutations in IsapRk2 should have a large number of rounds to
ensure cryptographic security via good diffusion of the in- and output keys, the
permutation calls between the injection of the nonce bits only serve the purpose
of breaking the link between side-channel leakages. As a result, a reduced number
of rounds for the inner permutations can securely yield higher performance if the
side-channel leakages remain hard to combine.

Table 3.2: Parameters for IsapRk1 and IsapRk2 with 128-bit security using the
Keccak[400] permutation (|K| = |K0| = 128, sp = 400).

Function Capacity c
max. State

Rounds
Leakage

IsapRk1 – 72 20 [Ber+11c]
IsapRk2 399 271 12 [Ber+14b]

3.3.2 Security with State Leakage

Based on the approach in Section 3.1 and the security properties in Table 3.1,
Table 3.2 gives the maximum tolerated state leakage for IsapRk1 and IsapRk2
and 128-bit security. For IsapRk1, up to 2λ = 72 bits of the internal state
can be leaked for sp/2 − 2λ ≥ 128 bits to hold true. This is equivalent to the
permutation leaking up to λ = 36 bits per invocation. For IsapRk2 and an 1-bit
rate, 2λ = 271 bits of the internal state can be leaked for c− 2λ not to fall below
128 bits, i.e., roughly λ = 135 bits per invocation of p. However, IsapRk2 is a
2-limiting design and therefore allowing such larger amounts of leakage will be
necessary in practice.

For both IsapRk1 and IsapRk2, we recommend implementers to store on a
device the 400-bit expanded key, which is initially used after the first invocation
of p, instead of the 128-bit master key. Directly using the 400-bit expanded
key avoids leakage of master-key bits in the initial permutation and increases
the overall security due to the larger secret state that is used within the re-
keying functions. Besides, note that load-time leakage of the master key can be
considered as state leakage before the initial permutation.

24 Chapter 3. Re-Keying and Leakage Model from Cryptographic Sponges

3.3.3 Results and Comparison

We implemented the re-keying functions IsapRk1 and IsapRk2 according to
the instance parameters in Section 3.3.1. Both designs compute one round of
the Keccak[400] permutation per cycle and were synthesized in an UMC 130 nm
technology. For comparison, we also implemented and synthesized the GGM-
based re-keying function [Sta+10] based on an AES capable of one round per cycle.
The respective results shown in Table 3.3 are supplemented with synthesis results
stated in the literature for re-keying with polynomial multiplication [Med+10].

Table 3.3: Implementation results for secure re-keying functions (130 nm).

Function
Area Frequency Runtimea

[kGE] [MHz] [cycles] [µs]

IsapRk1 8.5 172 2 709 15.8
IsapRk2 7.7 212 1 677 7.9

AES-GGM [Sta+10] 11.2 101 1 536 15.2

PolyMult [Med+10] 10.2 – 1 160 –

aRuntime is given for 128-bit nonces.

The results in Table 3.3 suggest that both IsapRk1 and IsapRk2 give a
smaller re-keying function than using an AES-based GGM tree. While IsapRk2 is
twice as fast as AES-GGM, IsapRk1 is similarly fast. Note however that IsapRk1
provides inherent security to DPA attacks while AES-GGM and IsapRk2 are
2-limiting. Moreover, both IsapRk1 and IsapRk2 provide a large security
margin to cope with SPA leakage.

Compared to the polynomial multiplication with 3rd order masking in
[Med+10], the re-keying functions IsapRk1 and IsapRk2 have a smaller area
footprint and do not allow for Time-Memory Trade-Off (TMTO) attacks [Men+12;
Bog+14; Dob+14]. Besides, the Isap re-keying functions do not require dedicated
DPA countermeasures, but were designed in view of preventing DPA scenarios at
all. Re-keying functions based on Leakage-Resilient Pseudo Random Functions
(LR-PRFs) [Bel+14] are omitted in Table 3.3 as their security can hardly be
compared to the ones of IsapRk1 and IsapRk2 as it is mainly based on the
assumption that locality information is physically not observable. However, the
7.3 GE implementation of LR-PRFs performs re-keying in 0.5µs at 338 MHz and
is thus faster than both Isap re-keying functions. Yet, concerning applications
requiring bulk en-/decryption of, e.g., Field Programmable Gate Array (FPGA)
bit files, re-keying will typically not be the bottleneck.

3.4 Conclusion

In this chapter, we proposed a leakage model for permutation-based designs, like
sponges, that allows to design cryptographic schemes that reach a certain security

3.4. Conclusion 25

level in presence of a specific amount of side-channel leakage per permutation
call. In particular, we modeled side-channel leakage in cryptographic sponges
as part of the public rate of the state, which reduces the capacity and thus
security accordingly. In order to reach a certain security level in the presence of
leakage, designers thus can choose between a smaller rate or a larger permutation
to compensate for this security reduction. We further presented two novel re-
keying functions based on permutations that can be used to securely initialize
leakage-resilient schemes in the presence of side-channel leakage. In particular,
the two re-keying functions IsapRk1 and IsapRk2 are designed to prevent DPA
by limiting the number of different inputs to the permutation by one and two,
respectively. Finally, we implemented the two re-keying functions in hardware
to show that both require less area and are more efficient than state-of-the-art
re-keying functions while resisting up to 135 bits of side-channel leakage per
permutation call.

4
Leakage Bounds for

Gaussian Side Channels

Both in our leakage model from Chapter 3 and in leakage-resilient schemes, the
side-channel information from the underlying primitive is assumed to be bounded
by λbits. It is however an ongoing topic of research to specify concrete leakage
bounds λ based on the implementation and its physical properties. To address
this question, together with Thomas Korak, Stefan Mangard and Robert Schilling,
we developed a new method to specify the leakage from a side channel in bits, we
verified the method through practical measurements on the chip Fulmine, which
was developed by Robert Schilling in collaboration with Luca Benini, Frank
Gürkaynak and Michael Muehlberghuber at ETH Zurich, and we published both
the method and results in [Unt+17]. In this publication, I was the main author
contributing ideas, experiments and most parts of the text, while Thomas Korak
and Robert Schilling performed all measurements. In this chapter, we use text
and results from [Unt+17] and make the following detailed contributions.

Contribution. We present a new approach to give reliable upper bounds for
the leakage from side channels of cryptographic implementations under a single
data input. For this purpose, we map results from communication theory to the
side-channel domain. In particular, we show that the channel capacity of n-to-m
communication channels is the natural upper bound for the Mutual Information
(MI) in multivariate side-channel leakages with Gaussian noise. Without any
further leakage assumptions, we show that this bound depends on a device- and
measurement-specific Signal-to-Noise Ratio (SNR) that is uniquely determined
by the device’s statistical leakage behavior in the m Points of Interest (POIs) in

26

4.1. Background 27

the leakage trace. In a second step, we investigate the effect of signal averaging
on this device- and measurement-specific SNR and show that averaging N leakage
traces increases the SNR by a factor Nm. Our results provide both attackers
and implementers with a tool for computing the expected minimum attack
complexity, i.e., the number of leakage traces required to learn a certain amount
of the processed state from side-channel information. We then show that our
model and results fit the reality by evaluating the MI in multivariate Gaussian
templates. For this purpose, we used power measurements from a real System on
Chip (SoC) that features a Keccak[400] engine that computes three rounds per
cycle. Last, we use our model to demonstrate the security of the scheme Isap
implemented on this SoC in terms of power analysis attacks.

Outline. This chapter is organized as follows. We briefly describe open ques-
tions and current approaches to determine leakage bounds in Section 4.1. Sec-
tion 4.2 gives bounds for the information leakage via multivariate side channels
with Gaussian noise. We analyze the case of signal averaging and provide a tool
to compute the expected minimum attack complexity for side-channel attackers
in Section 4.3. The soundness of our leakage model is shown in Section 4.4 based
on power measurements of an Application Specific Integrated Circuit (ASIC),
and we finally conclude in Section 4.5.

4.1 Background

For assessing the leakage behavior of cryptographic implementations, one possible
starting point are practical security evaluations. For example, Medwed et al.
[Med+16] evaluated a set of practical Differential Power Analysis (DPA) attacks
on simulated leakages from parallel implementations with unknown in- and
outputs. Their resulting success probabilities indicate that even for identity
leakage of the secret state, its exploitation is practically hard once enough
processes happen in parallel. While their specific results also suggest security and
bounded leakage for limited data complexities as they occur in leakage-resilient
schemes, it is hard to derive a concrete leakage bound λ in bits.

As an alternative approach, Standaert et al. [SMY09] suggested using the
Mutual Information (MI) from information theory as a general tool to concretely
state the amount of information learned from side-channel leakage in bits. This MI
can be exactly computed once the actual leakage distribution of an implementation
is known. However, this leakage distribution is typically hard to determine in
practice. On the other hand, Duc et al. [DFS15] mention an upper bound for the
MI for univariate leakages that solely depends on the device- and measurement-
specific SNR. It, however, so far is an open question how this bound scales for
multivariate leakages that are exploited in practice. The method presented in
this chapter is the first to assess the information in multivariate leakages from a
(multivariate) device- and measurement-specific SNR.

In the view of physical constraints such as the SNR, the MI is typically
bounded for a single measurement of the side-channel leakage and hence suits

28 Chapter 4. Leakage Bounds for Gaussian Side Channels

leakage-resilient schemes. While most of these schemes indeed confine the attacker
to a single measurement by requiring a fresh initial state on every invocation,
there are also schemes allowing attackers to observe the same execution using
the same data multiple times, e.g., as for multiple decryptions in Isap [Dob+17].
However, multiple measurements of the same decryption process allow an attacker
to perform signal averaging to increase the SNR. This can allow unbounded
side-channel attackers to distinguish tiny variances in the signal to learn the
complete secret state. However, in practice, side-channel attackers are bounded
by physical and computational resources. This gives the interesting question
of the actual attack complexity when the side-channel attacker is capable of
observing the same execution multiple times and performing signal averaging. In
this respect, the approach presented in this chapter also gives a tool to estimate
the attack complexity when an attacker is capable of signal averaging to remove
noise.

4.2 Modeling Side-Channel Leakage as a
Communication Channel

In this section, we consider the case of leakage-resilient cryptography where
an attacker can use the side-channel information in a single leakage trace to
learn the secret state of a device. In particular, we adapt the results from
communication theory to fit side-channel leakages and use the channel capacity
of n-to-m wireless channels to give a leakage upper bound for multivariate side
channels with Gaussian noise independent of the underlying leakage function.

4.2.1 Attack Model

We consider an attacker trying to recover the secret state x from a single leakage
trace lx generated by an implementation I with input complexity q = 1. This
implies that the attacker is unable to perform multi-input attacks such as DPA.
Moreover, attackers are allowed to observe the operation using the secret state
x only a single time, i.e., they are not allowed to average traces to improve
their SNR. However, we will discuss the scenario of trace averaging later in
Section 4.3. Besides, we consider a profiled attack setting, i.e., the attacker has
the opportunity to build templates before performing the actual attack.

4.2.2 Mutual Information

A common metric to assess the amount of information about a secret x contained
in the leakage lx is the Mutual Information (MI) [SMY09; DFS15]. We therefore
introduce the random variables X and Lx to denote the distributions of x and
lx, respectively. The mutual information is then defined as

MI(X;Lx) = H[X]−H[X|Lx]. (4.1)

4.2. Modeling Side-Channel Leakage as a Communication Channel 29

Hereby, H[X] and H[X|Lx] denote the entropy of the random variable X and
the conditional entropy of X given the leakage Lx, respectively. Note however
that the (conditional) entropy (and thus the MI) is an average metric depending
on the actual distribution of values xi ∈ X and lx ∈ Lx. This means that the
actual information learned from a side-channel leakage depends on the actually
processed value and might thus for some events even be higher than the MI. Yet,
the MI is a good metric to give bounds on the expected leakage behavior.

4.2.3 Linear Channel Model

For giving bounds on the MI of side channels, we consider an implementation that
transmits the single bits of a secret state to the attacker via a side channel. Hereby,
the physical leakage behavior and measurement effects define the mapping of the
single bits to the output samples of the side channel. We model this multivariate
side channel as an n-to-m linear communication channel with Gaussian noise,
i.e., it transfers linear combinations of the bits of the secret state. While this
linear channel model allows to adapt results from communication theory, the
resulting bounds are yet independent from the concrete leakage behavior and
Gaussian noise is the sole assumption. Namely, our final bounds will only
depend on the side-channel signal observed by the attacker. Further note that
non-linear mappings can easily be added to this model similar as for regression
techniques [SLP05].

In our linear channel model, the attacker observes an m× 1 leakage trace lx
from the processing of the secret state x in the implementation I. Let x denote
the n× 1 vector consisting of the n bits of the secret state x. We then model the
leakage trace lx as the multiplication of the secret state vector x with an m× n
side-channel matrix H plus an m× 1 noise vector ν:

lx = Hx + ν. (4.2)

The i-th row of H specifies how the n bits of the secret state x map to the
i-th point of the measured leakage lx. The maximum MI that an attacker can
learn from the side-channel leakage according to Equation 4.2 depends on the
maximum number of states that are distinguishable at the receiver of this channel.
This upper bound on the MI is typically called the channel capacity. In particular,
Telatar [Tel99] states the channel capacity C as the maximum average mutual
information between in- and output over the choice of the input distribution, i.e.,

C = max
p(X)

MI(X,Lx). (4.3)

We observe that the side-channel leakage given by Equation 4.2 bears some
familiarity with the notion of Multi-Input Multi-Output (MIMO) channels as
used in wireless communication. For a constant, known channel H, Goldsmith
et al. [Gol+03] state the channel capacity for signals in the domain of complex
numbers as follows:

30 Chapter 4. Leakage Bounds for Gaussian Side Channels

C = max
Σx:tr(Σx)=P

log2 |Im + HΣxHH | (4.4)

Hereby, Im and Σx denote the m × m identity matrix and n × n signal
covariance matrix, respectively. P is the total power constraint of the transmitter,
HH the complex conjugate of H, | · | the determinant, and tr(·) the trace of
a matrix. For Equation 4.2 to hold true, the noise vector ν must consist of
independent samples of Gaussian white noise with variance σ2

ν = 1, i.e., the
m×m noise covariance matrix Σν is the identity matrix Im.

We can use the channel capacity of MIMO channels as an upper bound for
the MI in side-channel leakages according to Equation 4.2. However, there are
different constraints for side channels than in wireless communication, requiring
some modifications of Equation 4.4. For example, an attacker cannot influence the
signal covariance Σx such as to optimize the capacity C. Moreover, the capacity
of communication channels as in Equation 4.4 is given for the transmission
of symbols in the domain of complex numbers, which is twice the capacity of
channels transferring symbols in the domain of real numbers. On the other hand,
side-channel attacks typically exploit real-valued information like the power
consumption. As a result, the capacity in Equation 4.4 effectively halves for the
side-channel case. In practice, we also observe that the samples in the noise
vector ν are not necessarily independent and have different variances. According
to [Gol+03], dependent samples in the noise ν can be modeled via a modified

channel matrix H̃ = Σ
−1/2
ν H given the noise covariance matrix Σν . By adapting

Equation 4.4 according to these considerations, we extract the special case of
linear side channels as in Equation 4.2 and state their leakage upper bound:

C = max
p(X)

MI(X,Lx) =
1

2
log2 |Im + Σ−1

ν HΣxHH |. (4.5)

4.2.4 Leakage Bound for Gaussian Side Channels

The side-channel matrix H is typically unknown but fixed. An interesting question
thus is how to determine the channel capacity if H is unknown. A common
approach to characterize a side channel are multivariate Gaussian templates.
Hereby, for each secret state x, the respective side-channel leakage lx is described
as a multivariate Gaussian distribution. This characterization gives a set of
templates (µi,Σν,i) with mean µi and noise covariance Σν,i for all states xi. The
means µi give an estimation of the n×n covariance matrix Σy of the side-channel
signal y = Hx. This covariance matrix Σy equals HΣxHH from Equation 4.5.
Similarly, assuming that the noise is independent from the signal and thus has
constant covariance (as in [Riv08]), the single noise covariances Σν,i give an

4.2. Modeling Side-Channel Leakage as a Communication Channel 31

estimation of Σν .1 Putting this together, we adapt Equation 4.5 to derive our
main result. Namely, we use the signal and noise covariance matrices Σy,Σν

to state the capacity of a side channel characterized via multivariate Gaussian
templates, or more generally, of multivariate leakages with Gaussian noise.

Main Result (Leakage Bound of a Gaussian Side Channel). The mutual infor-
mation of a multivariate side channel with signal covariance Σy and Gaussian
noise Σν is bounded by

C =
1

2
log2 |Im + Σ−1

ν Σy|. (4.6)

Interestingly, the term Σ−1
ν Σy is an SNR taking noise and signal covariances

between the POIs into account. The capacity of the side channel is thus deter-
mined by the actual power of signal and noise, and correlations in the samples of
ν and y. Such correlations typically mark redundancies that effectively reduce
the side-channel capacity. Moreover, note that the side-channel capacity given
here depends on the side-channel signal y only. This means that our result
applies to any leakage function/model having the properties given by Σy.

For univariate leakages or when the same leakage is observed in multiple
POIs within the leakage trace, the leakage bound in Equation 4.6 can further be
simplified.

Univariate Leakage.

An attacker exploiting univariate leakage is confined to the leakage in a single
point of the execution of an implementation I. This means that the side channel
degenerates to

lx = hx + ν, (4.7)

where lx and ν are scalars and the 1× n channel vector h specifies the leakage
of the single bits of the state x. Let us now assume that the channel vector
h maps the n bits in x to y according to the identity of the respective state
variable x. Intuitively, the MI between the secret state x and its leakage lx is here
bounded by the number of different states that an attacker can distinguish in the
single leakage point lx. This number depends both on the distance between the
different states along the measured signal range and the noise. When adapting
Equation 4.6 for univariate leakage, we can observe exactly this dependence:

C =
1

2
log2

(
1 +

σ2
y

σ2
ν

)
=

1

2
log2 (1 + SNR) , (4.8)

1The constant covariance assumption is invalid in case the covariance carries information
as, e.g., in masked implementations. However, leakage-resilient cryptography aims to bound
the leakage without the use of countermeasures like masking, and thus noise will typically be
independent from the signal.

32 Chapter 4. Leakage Bounds for Gaussian Side Channels

where σ2
y is the variance of the signal y = hx and σ2

ν is the variance of the noise
ν. As also noted in [DFS15; Miz+13], this upper bound for the MI in univariate
leakages solely depends on the SNR and is better known as the Shannon-Hartley
theorem [CT12].

Identical Leakage in Multiple Points.

In many cases, an attacker will try to exploit the leakage in multiple points of the
execution to increase their success rate. If these points are chosen to be in close
vicinity within the leakage trace, these POIs will often carry highly redundant
information. An example where this case occurs are attackers sampling the side
channel at a very high rate and using several consecutive sampling points in
their attack. In such situation, one can assume the leakage to be the same for all
points of the leakage trace. This case is equivalent to Single-Input Multi-Output
(SIMO) channels in wireless communication. The side-channel matrix is then
expressed as the vector multiplication H = hgain · hl, where hl states the 1× n
side-channel vector mapping the n bits of x to a scalar value and hgain is the
m× 1 gain vector over the m POIs used by the attacker. The capacity formula in
Equation 4.5 degenerates for such leakage behavior, but can simply be expressed
using the vector hgain only [Gol05]:

C =
1

2
log2

(
1 + σ2

zh
H
gainΣ−1

ν hgain
)
, (4.9)

where σ2
z is the variance of the signal z = hlx such that lx = hgainz + ν.

4.2.5 Description of Common Leakage Models

Our leakage model in Equation 4.2 allows to easily describe linear side-channel
leakages. We now give several examples on how to map existing power models
to Equation 4.2. Note that we give these examples without consideration of the
effective signal range in the leakage lx.

Identity Leakage. In identity leakage, the n-bit secret state x leaks lin-
ear to the value x it represents. If x leaks the identity in the i-th sam-
ple of lx, the i-th row in the side-channel matrix H takes the form h =(
20 21 22 . . . 2n−2 2n−1

)
.

Hamming Weight Leakage. In Hamming Weight (HW) leakage, the secret
state x leaks the number of bits set to one. HW leakage in the i-th sample
of lx results in the i-th row of H to take the form h =

(
1 1 1 . . . 1 1

)
.

Hamming Distance (HD) leakage is modeled in the same way by setting the
secret x to be the XOR of the leaking state before and after it toggles.

4.3. Complexity of State Recovery 33

Time-Serialized Leakage. In time-serialized implementations, an attacker
collecting the side-channel leakage at different points in time will be able to
learn different information in the different POIs. One prominent example are
byte-oriented cryptographic implementations, where in each clock cycle a different
byte of the n-bit state x is processed and leaks. For simplicity, let us assume an
8-bit state and HW leakage of a 2-bit chunk processed in the respective clock
cycle. This will give a side-channel matrix of the form

H =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 .

Localized Leakage. Localized Electromagnetic Emanation (EM) attacks are a
powerful way to extract information from parts of the secret state. Such localized
EM leakage can in principal be modeled the same way as time-varying leakage.
For example, consider the leakages lx,1 and lx,2 observed in two different EM
positions. Moreover, assume that lx,1, lx,2 consist each of two samples leaking the
identity of the first or second half of a 4-bit state, respectively. Concatenating the
two leakages lTx = (lTx,1l

T
x,2) means concatenating the respective channel matrices

H1,H2 to a combined side-channel matrix of the form

H =


20 21 0 0
20 21 0 0
0 0 20 21

0 0 20 21

 .

This model underlines the intuition that gathering additional leakage from
observing a parallel implementation in different locations and measuring a serial
implementation at different times is equivalent. In particular, it shows that
side-channel leakage becomes optimal if the leakages in the side-channel signal
y = Hx are independent. In the best case, the signal covariance matrix becomes
a diagonal matrix, i.e, Σy = diag(σ2

y1 , σ
2
y2 , ..., σ

2
ym). In the same way, noise effects

are canceled out the best if the noise samples in ν are independent, i.e., Σν is a
diagonal matrix as well.

4.3 Complexity of State Recovery

The side-channel capacity is an upper bound on the MI to be learned via a side
channel. This bound essentially depends on the implementation’s SNR. While
in most leakage-resilient schemes an attacker is restricted to a single leakage
trace for a specific state, there are schemes, e.g., Isap [Dob+17], that allow
attackers to observe the execution of an implementation processing the same
data multiple times. This gives attackers the option to perform signal averaging,
which improves the side-channel SNR and thus side-channel capacity.

34 Chapter 4. Leakage Bounds for Gaussian Side Channels

In this section, we therefore consider an attacker capable of averaging multiple
leakage traces. We show how averaging improves the side-channel capacity in
multivariate attacks and provide attackers and implementers with a tool to
compute the expected minimum complexity to learn the secret state of a device.

4.3.1 Attack Model

As in Section 4.2, we assume an attacker trying to recover a secret state x from
side-channel leakages lx generated by an implementation I with input complexity
q = 1 and thus preclude multi-input attacks. However, the attacker is capable of
observing the same execution of I multiple times. This attack setting is observed
when a ciphertext, e.g., a firmware image, must be decrypted multiple times
using a leakage-resilient scheme like Isap.

4.3.2 Averaging Attacker

An attacker that observes the same processing of the secret state x multiple
times is capable of averaging the side-channel leakage lx to yield a better SNR
and thus higher side-channel capacity. In general, averaging N observations gives
the averaged noise covariance matrix

Σν =
1

N
Σν , (4.10)

where Σν is the noise covariance matrix valid for a single leakage trace. This
means that the noise (co-)variances reduce linearly with the number of averaged
traces. Note here that for the univariate case Equation 4.10 simplifies to the well-

known relation σ2
ν =

σ2
ν

N
. Given the noise covariance matrix after averaging Σν , we

can now investigate the effect of averaging on the side-channel capacity. Inserting
Equation 4.10 into the generic side-channel capacity given in Equation 4.6 yields

C =
1

2
log2

∣∣Im + N · Σ−1
ν Σy

∣∣ . (4.11)

Note that the SNR term N · Σ−1
ν Σy is an m×m matrix and its determinant

behaves proportionally to Nm. This means that the side-channel capacity in-
creases stronger with the number of averaged traces the more POIs are used in an
attack. This is because each POI can potentially transfer completely independent
data as, e.g., for time-serialized and localized EM leakages.

Identical Leakage in Multiple Points. For identical leakage in all POIs,
the side-channel capacity behaves differently. Inserting Equation 4.10 into the
SIMO channel capacity given in Equation 4.9 yields

C =
1

2
log2

(
1 + N · σ2

z · hHgainΣ−1
ν hgain

)
. (4.12)

It shows that the number of traces N used for averaging has a linear influence
on the SNR and is independent of the number of POIs m.

4.3. Complexity of State Recovery 35

4.3.3 Expected Minimum Attack Complexity

In the worst case, physical attackers have unbounded complexity. This means that
they can measure and average an unlimited number of leakage traces N →∞,
leading to zero noise and virtually unlimited channel capacity and MI. This
can be thought of state differences causing vanishingly small differences in the
side-channel signal being distinguishable if the noise is eliminated completely. It
thus seems reasonable to set the side-channel capacity in relation with the actual
attack complexity, i.e., the number of leakage traces N, to learn a certain amount
of bits. This is also the common approach when assessing the security of masked
implementations.

It is yet difficult to determine such attack complexity since it is strongly in-
fluenced by the implementation’s leakage behavior, which is commonly unknown.
For example, it is unknown to what extent information and noise in the single
points of a leakage trace correlate, and as shown in Section 4.2, these effects
strongly influence the side-channel capacity. However, the device-specific multi-
variate SNR = Σy · Σ−1

ν takes exactly these effects into account and can thus be
used to generically express the expected minimum complexity for a side-channel
attacker without any concrete leakage assumptions. In particular, we can rewrite
the multivariate channel capacity for averaging attackers in Equation 4.11 as
follows:

C =
1

2
log2 N

m

∣∣∣∣ 1

N
Im + Σ−1

ν Σy

∣∣∣∣ . (4.13)

For a large number of averaged traces N, Equation 4.13 can be further
approximated to give the side-channel capacity in dependence of a scalar device
SNR.

C ≈ 1

2
log2

(
1 + Nm

∣∣Σ−1
ν Σy

∣∣) =
1

2
log2(1 + Nm · SNRm) (4.14)

An implementation will in practice give some side-channel SNRm = |Σy ·
Σ−1

ν | that is observed in m POIs in the leakage traces. This SNR takes into
account all kinds of correlations in both noise and side-channel leakage. For
an implementation that is expected to give a certain SNRm, designers and
implementers can thus compute the expected minimum attack complexity in
terms of traces to measure and average.

Figure 4.1 gives an overview on the expected side-channel capacity for m =
1, 5, 10 POIs given the number of averaged traces. It shows that the side-channel
capacity rises quickly with the number of averaged traces for multivariate leakages.
In particular, it shows that if SNRm is not sufficiently low, a state of virtually
any size can theoretically be recovered with practical complexity. However, this
effect is also limited by the available POIs with sufficiently low signal correlations.

36 Chapter 4. Leakage Bounds for Gaussian Side Channels

100 101 102 103

0

10

20

30

40

50

Averaged Traces

S
id
e-
C
h
a
n
n
el

C
ap

a
ci
ty

[b
it
s]

1 POI
5 POI

10 POI

Figure 4.1: Expected side-channel capacity given the number of averaged leakage
traces for different numbers of POIs and SNRm = 0.01.

4.3.4 Divide-and-Conquer Attacks

Divide-and-conquer attacks such as localized EM attacks and attacks on time-
serialized implementations allow an attacker to learn specific parts of the secret
state. In particular, in terms of our model, such divide-and-conquer setting gives
multiple, parallel side-channels with independent leakages observed in the POIs
of a leakage trace. This increases the total side-channel capacity proportional
to the number of independent leakages t, i.e., Ctotal ∼ t · C, when C is assumed
equal for all independent leakages.

Figure 4.2 gives an overview on the expected minimum attack complexity
for different numbers t of univariate, independent leakages and sizes of the
secret state x. In this example, we computed the expected minimum attack
complexity by multiplying the number of independent leakages t with the number
of leakage traces to average for each of the t independent leakages. Moreover,
the single-trace SNR is set to 0.1 for each of the t independent leakages. Clearly,
the minimum attack complexity drops rapidly with the number of independent
leakages observed by an attacker. We notice however that splitting an 128-bit
state into 16 chunks as, e.g., for the byte-oriented AES S-box, still gives an
expected minimum attack complexity of 107.

4.4 Experimental Verification and
Security Analysis

The previous sections introduced theoretical leakage upper bounds for multi-
variate side channels with Gaussian noise. In this section, we show that these
bounds match the real leakage behavior by evaluating the MI on a hardware

4.4. Experimental Verification and Security Analysis 37

2 4 6 8 10 12 14 16 18 20
101

1014

1027

1040

1053

1066

Number of Independent Leakages

A
tt
ac
k
C
o
m
p
le
x
it
y

128-bit state
64-bit state
25-bit state

Figure 4.2: Expected minimum attack complexity over the number of independent
leakages for different state sizes and SNR1 = 0.1.

implementation of the Keccak[400]-based scheme Isap [Dob+17] on the real
system on chip Fulmine. Our experiments further show the security of this
implementation of Isap in terms of power analysis attacks.

4.4.1 Evaluation Hardware: Fulmine

At FSE 2017, the sponge-based authenticated encryption scheme Isap [Dob+17]
was presented next to our sponge leakage model and re-keying functions from
Chapter 3. Isap inherently prevents DPA during both en-/decryption by limiting
the number of inputs processed under a single key by one, and uses our sponge
leakage model from Chapter 3 to express its capability to cope with side-channel
leakage from a single data input. However, in the view of Isap allowing for the
multiple decryption of the same ciphertext and tag, it is an open question how
much information an attacker can learn when averaging multiple leakage traces.

To verify the soundness of our leakage bounds and to evaluate the side-
channel resistance of Isap, we developed and fabricated the multi-core SoC
Fulmine, a prototype ASIC in the UMC 65 nm LL 1P8M technology. Fulmine,
as shown in Figure 4.3, is based on the PULP platform [Ros+15] including
four general purpose processing elements (enhanced OpenRISC cores with DSP
extensions [Lam+03; Gau+17]) and two dedicated hardware accelerators: the
Hardware Cryptography Engine (hwcrypt) and the Hardware Convolution
Engine (hwce). All processing elements share the same 64 kB level-1 Tightly-
Coupled Data Memory (TCDM) to support a fast and efficient communication
and to avoid single point-to-point channels.

hwcrypt is a flexible, software-programmable hardware accelerator support-
ing various cryptographic primitive functions such as the Keccak[400] permuta-
tion [Ber+09]. Moreover, the accelerator supports high-level encryption schemes

38 Chapter 4. Leakage Bounds for Gaussian Side Channels

to
PERIPH

ERAL
IN

TERC
O

N
N

EC
T

C
O

M
M

AN
D

Q

U
EU

E

Sponge Engine

Round Constant
Generator

IV_MAC
IV_RK

IV_ENC

Variable
Rate

Engine

CntPad

StateLeft

StateRight

PaddedNonce

Outp
128

Keccak
Round

Keccak
Round

Keccak
Round

400

144

…

Inp
128

to
TIG

H
TLY C

O
U

PLED
D

ATA M
EM

O
RY

IN
TERC

O
N

N
EC

T

DUAL
CLOCK

FIFO

HWCRYPTHWCE

TCDM STATIC MUX

TIGHTLY COUPLED DATA MEMORY INTERCONNECT

SRAM
bank 0

OR10N
core 0

PE
RI

PH
ER

AL
 IN

TE
RC

O
N

N
EC

T

OR10N
core 1

OR10N
core 2

OR10N
core 3

SRAM
bank 1

SRAM
bank 2

SRAM
bank 3

SRAM
bank 4

SRAM
bank 5

SRAM
bank 6

SRAM
bank 7

DEMUX DEMUX DEMUX DEMUX

DMA

EVENT
UNIT

SHARED INSTRUCTION CACHE

CLUSTER AXI BUS
DUAL

CLOCK
FIFO

FULMINE
CLUSTER

SOC AXI BUS

L2 SRAM
(192 kB)uDMA

SPI
master UART I2C I2S

SOC APB BUS

GPIO
SOC
CTRL

FLL
CTRL

SPI
slave

PAD MUX

CLUSTER
FLL

SOC FLL

TCDM
(64 kB)

master
slave

C
O

N
TRO

LLER

to
TC

D
M

IN

TERC
O

N
N

EC
T

M
EM

O
RY

M
U

XIN
G

Keccak- f [400]

KState

Figure 4.3: Fulmine SoC and hwcrypt architecture.

such as Isap. The accelerator is designed to achieve maximum throughput. To
achieve that goal, the Keccak[400] permutation utilizes three fully parallel round
instances to maximize the throughput but to also match the length of the critical
path of other parts of the accelerator. When using Isap, hwcrypt supports
a flexible configuration of the rate (from 1 bit to 128 bits in powers of two)
and the number of permutation rounds in multiples of three including 20 to
flexibly trade-off between throughput and security. hwcrypt is configured and
monitored via a set of status registers. A flexible event and interrupt system
indicates other processing elements when an operation has finished.

4.4.2 Soundness of Model and Bounds

To verify the soundness of our model and the bounds in Section 4.2, we analyzed
the leakage behavior of the Keccak[400] permutation on Fulmine. For this pur-
pose, we constructed multivariate Gaussian templates for the power consumption
of Fulmine for 5- and 8-bit parts of the 400-bit state of Keccak[400]. More
concretely, we target the intermediate state KState of Keccak[400], depicted in
Figure 4.3, such that Fulmine computes three rounds of the permutation before
and after the target state to preclude load-time leakages. The remaining state not
covered by our templates, i.e., 395 and 392 bits respectively, was held constant.
For each class, we used 1400 power measurements in the training phase. The
POIs were chosen as the points of highest variance fulfilling a certain minimum
distance within the leakage trace and include both register and combinatorial
activity. Based on these templates, we computed the side-channel capacity and
evaluated both the MI and the 1st-order success rate of classification. The
evaluations were done as a function of the number of leakage traces used for
signal averaging.

4.4. Experimental Verification and Security Analysis 39

100 101 102 103
0

2

4

6

8

10

Averaged Traces

S
id
e-
C
h
an

n
el

C
ap

a
ci
ty

[b
it
s]

Bound 1 POI
Bound 5 POI
Bound 10 POI

MI 1 POI
MI 5 POI

MI 10 POI

(a) 32 classes.

100 101 102 103
0

2

4

6

8

10

Averaged Traces

S
id
e-
C
h
an

n
el

C
ap

a
ci
ty

[b
it
s]

Bound 1 POI
Bound 5 POI
Bound 10 POI

MI 1 POI
MI 5 POI

MI 10 POI

(b) 256 classes.

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

Averaged Traces

1s
t
-o
rd
er

su
cc
es
s
ra
te

1 POI
5 POI
10 POI

(c) 32 classes.

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

Averaged Traces

1s
t
-o
rd
er

su
cc
es
s
ra
te

1 POI
5 POI
10 POI

(d) 256 classes.

Figure 4.4: Side-channel capacity, mutual information and success rate for the
Keccak[400] permutation given the number of averaged traces and differ-
ent numbers of POIs and number of classes. The remaining state was
held constant.

40 Chapter 4. Leakage Bounds for Gaussian Side Channels

Our evaluation results in Figure 4.4 suggest that the channel model used to
compute the side-channel capacity of multivariate leakages is sound. In particular,
for both 5-bit and 8-bit templates the MI between leakage and secret state stays
within the bounds given by the side-channel capacity. While there is a gap
between the MI and the channel capacity, the MI follows the shape of the side-
channel bound well. Moreover, the first-order classification rate rises accordingly.
However, Figure 4.4a also shows that for higher numbers of averaged traces the
MI goes into saturation, and thus the gap between capacity and the learned
information gets bigger. In particular, it shows that once the MI converges to
the maximum number of bits that could be recovered using the trained template
set, i.e., 5 or 8 bits respectively, the increase in learned information for additional
numbers of averaged traces gets successively smaller. This indicates that the
side-channel information is not distributed to perfectly use the channel.

We further investigated how different channel models suit the actual leakage
behavior. In particular, it seems interesting how the side-channel capacity behaves
depending on the underlying channel model and relative to the measured mutual
information. We therefore compared the MIMO channel model used in the
previous evaluation with the SIMO channel model, which assumes identical
leakages in the POIs of a leakage trace, e.g., within a clock cycle. For the
SIMO channel model, we analyzed two cases: one taking noise correlations into
account, and one assuming independent noise. The channel capacities of the
different channel models were computed based on the 8-bit templates constructed
in the previous evaluation. In particular, for the SIMO model we used the
signal variance in each POI, but neglected signal covariances. The results of
our evaluations are shown in Figure 4.5. These suggest that the leakages in
the different POIs are not identical and thus the MIMO channel model suits
the leakage behavior clearly better than the SIMO channel model. Moreover,
from the plots using the SIMO model one can observe that there is some noise
correlation that lowers the channel capacity.

4.4.3 Estimating Security Bounds for ISAP

In most situations, designers and implementers want to assess the security of a
complete cryptographic implementation. This can be done by determining the
SNR of the implementation as the SNR gives a bound on the implementation’s
side-channel leakage. For many implementations, however, it is impossible to
determine the SNR exactly. For example, it is impossible to construct templates
for the 400-bit Isap state on Fulmine that would allow to compute the SNR
and the leakage bound exactly. On the other hand, the previous sections showed
that it is feasible to compute an SNR from a small number of templates that
only match a part of a large state. Using this SNR, we can hence try to estimate
the side-channel security of implementations such as Isap on Fulmine. Since
the templates used for computing this SNR, compared to templates considering
the full state, may reflect the activity of smaller hardware regions, we however
recommend adding a suitable security margin.

4.4. Experimental Verification and Security Analysis 41

100 101 102 103

0

2

4

6

8

10

Averaged Traces

S
id
e-
C
h
an

n
el

C
ap

ac
it
y
[b
it
s]

SIMO Bound (uncorr. noise)

SIMO Bound (corr. noise)
MIMO Bound

Mutual Information

Figure 4.5: Mutual information of Keccak[400] on Fulmine and side-channel capacity
of different channel models (256 classes, 10 POIs).

In the following, we estimate the security of Isap on our chip Fulmine using
our previous experiments on the Keccak[400] permutation. According to our
experimental results from Figure 4.4, the channel capacity and the SNR are
practically the same for the 5- and the 8-bit templates. We hence assume the
measured noise not to massively change if the same measurement setup was used
to construct 400-bit templates. Similarly, we do not expect the range of the
side-channel signal to rise by orders of magnitude using the same setup, especially
since the diffusion of three rounds of Keccak[400] on Fulmine already cause
large parts of the logic to become active within the profiled clock cycle.

For our security estimate of Isap on Fulmine, we hence scale the SNR
with a factor γ = 100 to have a generous security margin. Note hereby that
the side-channel leakage from a single power measurement of Fulmine is very
low and the channel capacity hardly rises for a channel SNR that is 100 times
higher. Using the SNRm of the m-variate leakage from the 8-bit templates, we
approximate the minimum number of traces needed to learn the state of size s:

N =

(
22s − 1

γ · SNRm

)1/m

. (4.15)

[Dob+17] states concrete leakage bounds for the authenticated encryption
scheme Isap and our re-keying function IsapRk2 from Chapter 3 to still provide
128-bit security. We thus evaluated Equation 4.15 on Fulmine for three different
state sizes: the full state of Keccak[400], the leakage bound for our IsapRk2
re-keying function (271 bits), and the leakage bound for the Isap encryption
itself (128 bits). The results in Figure 4.6 indicate that the minimum attack
complexity in terms of measurement traces is impracticable for less than 20 POIs

42 Chapter 4. Leakage Bounds for Gaussian Side Channels

102 105 108 1011 1014 1017 1020 1023 1026 1029 1032 1035

5

10

20

30

100

Minimum Attack Complexity

N
u
m
b
er

o
f
P
O
Is

400 bits
271 bits
128 bits

Figure 4.6: Minimum attack complexity as the number of measurements needed to
average to recover (parts) of the Isap state from Fulmine. As a security
margin we set γ = 100.

and all mentioned state sizes. However, for higher numbers of POIs the minimum
attack complexities tend towards practically feasible. Namely, when using 100
POIs, 10 000 measurements can be enough to learn 128 bits of the state, and
500 000 measurements are the minimum to recover the full state.

However, using that many POIs often hampers template building or leads to
overfitting effects reducing the classification rate. Besides, side-channel leakage
is not distributed such as to perfectly use the channel. This becomes visible in
the gap between channel capacity and MI in Figure 4.4. While this might allow
an attacker to recover a few states more easily, in consideration of all possible
states the attack complexity yet stays above the bounds in Figure 4.6. Namely,
for non-ideal distributions of the leakage, an attacker will, in general, require
even more measurements to learn the specified amount of information.

From a practical perspective, conducting such powerful attack would require
an attacker to successfully build templates on the respective state. In many cases,
this is however not possible, e.g., when the attacker does not have control over
the state on a suitable device. Even further, the complexity to build, measure,
and evaluate such large set of templates is clearly impractical. In this respect,
the implementation of Isap on Fulmine can for the used measurement setup
be considered secure against power analysis attacks also above the bounds in
Figure 4.6.

4.5 Conclusion

In this chapter, we presented a novel approach to determine leakage upper bounds
for side channels of cryptographic implementations under a single data input.
Without any further leakage assumptions we showed that the channel capacity

4.5. Conclusion 43

of transmission channels with multiple in- and outputs gives the natural upper
bound for information leakage in multivariate side channels with Gaussian noise.

We then considered the case where attackers are capable of performing
multiple measurements of the same execution in order to improve their SNR. We
showed that the gain in the SNR of multivariate leakages resulting from signal
averaging is exponential in the number of POIs. This observation gives a tool
for attackers to learn about the feasibility of an attack and for implementors
to assess the minimum attack complexity of state recovery in leakage-resilient
schemes allowing for multiple decryptions like Isap. We verified the soundness
of our model and our bounds using the ASIC Fulmine implementing Isap and
the Keccak[400] permutation. Finally, we gave lower bounds on the complexity
for recovering the Isap state using power analysis. The results provide evidence
that recovery of the Isap state on Fulmine is practically infeasible with power
analysis and the used measurement setup.

5
Side-Channel Attacks on

Leakage-Resilient Encryption

Cryptographic schemes based on frequent re-keying such as leakage-resilient
encryption inherently prevent Differential Power Analysis (DPA) on the secret
key by limiting the amount of data being processed under one key. Yet, these
schemes do not make any statements with respect to other confidential data.
In particular, the actual goal of an encryption scheme is to ensure plaintext
confidentiality. The fact that leakage-resilient encryption guarantees bounded
leakage of the key material does not imply bounded leakage of the plaintexts. For
this reason, together with Mario Werner and Stefan Mangard, we investigated
in [UWM17c] the effect of re-keying and leakage-resilient encryption on the
plaintext’s side-channel security. The idea to this publication originated from
discussions between Christoph Dobraunig, Stefan Mangard, Florian Mendel,
Mario Werner, and me. In the publication, I was the main author contributing
attacks, experiments with re-keyed stream ciphers, and most of the text, while
Mario Werner contributed the text and the experiments in terms of re-keyed
block ciphers. In this chapter, we use text and results from [UWM17c] and make
the following detailed contributions.

Contribution. We show that frequent re-keying as it occurs within leakage-
resilient encryption is vulnerable to plaintext recovery using side-channel attacks.
More concretely, we show that encrypting a constant plaintext multiple times
with different keys facilitates DPA to recover the constant plaintext. In this
respect, leakage-resilient stream ciphers such as in [Pie09; PSV15; Sta+10] leak a
constant plaintext through a plain, first-order DPA and, moreover, a second-order,

44

5.1. Side-Channel Plaintext-Recovery Attack 45

template-based DPA can be utilized to learn a constant plaintext that is the input
of a block cipher that is protected by re-keying such as in [Med+11; Med+10;
TS15]. We verified both attacks on a Field Programmable Gate Array (FPGA)
and a microcontroller to emphasize their practicality.

However, we stress that our attacks are not limited to side-channel counter-
measures such as leakage-resilient encryption, but are also relevant for any other
scenario where the same data is encrypted using different keys. In particular, we
show that the presented attacks are applicable to several scenarios in practice.
For example, the encryption of Random Access Memory (RAM) such as in Intel
SGX [Gue16] is often initialized using a random key, resulting in the same data
being encrypted using a different key on every startup. Another prominent
example are messages that are sent to multiple users that each use a different
key.

We emphasize that our plaintext recovery attacks are a realistic and serious
threat. In particular, whenever long-term keys are encrypted, for example, when
they are loaded into an encrypted memory, plaintext recovery implies the leakage
of sensitive key material. As a consequence, cryptographic implementations with
dedicated DPA countermeasures should be considered for all these settings that
encrypt the same data multiple times using different keys.

Outline. This chapter is organized as follows. Section 5.1 presents side-channel
plaintext-recovery attacks and Section 5.2 discusses their applications. Section 5.3
elaborates on the attacks’ practical verification and Section 5.4 concludes this
chapter.

5.1 Side-Channel Plaintext-Recovery Attack

Chapter 2 illustrated how re-keying based encryption schemes effectively prevent
DPA attacks on the secret key. However, as it has not been considered so far,
this section analyzes frequent re-keying in terms of plaintext confidentiality and
shows that frequent re-keying is vulnerable to plaintext recovery using DPA.
In particular, encrypting constant data with different keys allows to attack
leakage-resilient stream ciphers using a first-order DPA and re-keyed block cipher
encryption using a second-order template attack.

5.1.1 Stream Cipher Mode

For illustration of the first-order DPA to recover constant plaintexts when they
are encrypted using a leakage-resilient stream cipher such as in Figure 2.2, we
consider the encryption of a single, constant plaintext block Pi. The choice
of a fresh nonce N upon every encryption results in different key streams and
thus in the plaintext Pi being encrypted using different pads Yi, Y

′
i , Y

′′
i . As a

result, an attacker will, for the same plaintext Pi, observe different ciphertexts
Ci, C

′
i, C
′′
i and the respective power consumptions of the implementation. This

observation facilitates DPA on the constant plaintext. Namely, the varying pad

46 Chapter 5. Side-Channel Attacks on Leakage-Resilient Encryption

Yi allows to distinguish correct from wrong guesses of the plaintext Pi. In the
DPA, the attacker can therefore model the power consumption of the stream
cipher implementation as HW (Yi) = HW (Ci ⊕ Pi) for all observed ciphertexts
Ci, C

′
i, C
′′
i and for all guesses of Pi, where HW denotes the Hamming Weight.

Applying an appropriate statistical distinguisher, e.g., correlation, to the power
model and the observed power consumption then reveals the correct plaintext Pi.

Note that this DPA targets the linear XOR operation. We also stress that
this kind of DPA is not limited to leakage-resilient stream ciphers as in Figure 2.2,
but applicable to stream ciphers in general. Namely, for cryptographic security,
the pad of a stream cipher (and thus its initial value) must not repeat over
different plaintexts. Therefore, producing different key streams, i.e., re-keying, is
mandatory for any stream cipher implementation. The discussed attack scenario
will thus appear every time a plaintext is encrypted with a stream cipher more
than once.

5.1.2 Block Cipher Mode

The leakage-resilient block cipher encryption mode in Figure 2.3 is not subject
to the previously discussed first-order DPA attack. This is due to the fact that
a full block cipher, i.e., the bottom ciphers in Figure 2.3, separates the known
ciphertext from the constant plaintext, and therefore, without knowledge of the
random key, we cannot verify any plaintext hypothesis. However, a second-order
template attack targeting the first round of the data-encryption block cipher can
be mounted on the construction instead.

The idea of the attack against the block cipher used for data encryption is sim-
ilar to the idea behind Unknown Plaintext Template Attacks (UPTAs) [HTM09].
As explained in Chapter 2, UPTAs recover the secret key of a block cipher
without having access to both the plain- and the ciphertext by using templates
to extract the required information from the side-channel leakage of multiple
block cipher invocations and combining it in a DPA-like manner. Re-keying
effectively prevents key recovery via these UPTAs since the key for the block
cipher is constantly changed. However, an UPTA-like plaintext-recovery attack
can still be mounted on the block cipher given that the plaintext is constant. In
this case, the role of the key and the plaintext are simply swapped.

In more detail, an UPTA-like plaintext recovery attack on the initial round
of a block cipher consists of two phases. In phase one, two sets of templates are
trained using labeled training traces. The first template set provides combined
information about both the key and the plaintext. It is therefore typically
trained on the intermediate value after the first nonlinear function. The second
template set provides information about the secret key. None of the two template
sets is expected to determine the respective values unambiguously. However,
the combination of the information provided by both template sets should be
significant.

Attacking, for example, the first round of the AES block cipher with such
an UPTA-like plaintext recovery attack results in the setup shown in Figure 5.1.
The first template set has to be trained on the S-box output S(P0 ⊕K0) and

5.2. Implications and Applicability 47

P0 …

K0

S
Figure 5.1: UPTA-like plaintext recovery attack on one plaintext byte in the first

AES round. Two template sets, one on the whitening key K0, and one
on the S-box output S(P0 ⊕K0), have to be trained.

provides information about the plaintext and the whitening key. The second
template set is trained on the whitening key K0 itself and is supposed to learn
information about the actual key value.

In phase two, the templates are matched with all target traces. For every
trace, matching the templates from the first set provides attackers with a matrix
of probabilities for all possible key and plaintext hypotheses. However, these
matrices can not be combined across different target traces. Therefore, the
templates from the second set are used to weight the key hypotheses within
the aforementioned matrices. As a result, the attacker is able to reduce the
matrices with plaintext/key probabilities to vectors of plaintext probabilities.
These vectors can then be easily combined across all target traces.

5.2 Implications and Applicability

The principle of the presented attacks on leakage-resilient encryption seems quite
natural when taking into consideration that more information about certain
data is leaked the more often it is processed in different ways. Namely, the
vulnerability exploited in these schemes arises from mixing a varying component,
the key, with a fixed component, the plaintext, in the process of re-keying. While
such attacks that exploit multiple encryptions of fixed data using different keys
seem implausible at first glance, there are indeed several practical use cases where
such settings occur. Quite noteworthy, these settings are not limited to re-keying
as a DPA countermeasure.

5.2.1 Communication

One example in practice are communication protocols. In SSL, for example, the
communicating parties in each session agree on a new session key. As a result,
sending the same data via multiple SSL sessions leads to the encryption of this
data using different session keys and therefore enables side-channel plaintext-
recovery attacks. One practical situation where this happens is an (embedded)
web sever that receives multiple download requests for a certain file that is thus
leaked using the presented attacks. Yet, for the cipher modes nowadays employed
in such communication protocols it seems easier to use DPA to directly recover the

48 Chapter 5. Side-Channel Attacks on Leakage-Resilient Encryption

key. However, using re-keying or leakage-resilient schemes as a countermeasure
still allows to recover constant plaintexts.

Note that key wrapping does not solve the problem of plaintext recovery
attacks in multi-party communication settings. Even though key wrapping guar-
antees that the plaintext itself is encrypted only once, the used data encryption
key still needs to be encrypted for all communicating parties with their respective
long-term keys. Therefore, side-channel plaintext-recovery attacks on the key
wrapping procedure, where the data encryption key is the plaintext input, are
still possible.

5.2.2 Memory Encryption

Re-keying nowadays also occurs in the setting of memory encryption. For example,
in implementations of transparent RAM encryption, like recently introduced by
Intel with SGX [Gue16], it is common to choose a random RAM encryption key
on every system reboot. Therefore, every time (confidential) data is loaded into
the memory after startup, it is re-encrypted using a different key. This facilitates
the attacks presented in this chapter to learn the plaintext data. This can be
particularly critical if there are long-term keys being loaded into the RAM.

Similar to the communication example, the application of re-keying and
leakage-resilient encryption does not close this vulnerability. Namely, memory
is typically encrypted using a block-wise granularity. Therefore, updating small
amounts of data, e.g., a single byte, will cause a read-modify-write operation
on the respective block to take place. In order for re-keying to work properly,
the whole block must then be re-encrypted using a freshly chosen key, triggering
the re-encryption of the unchanged data in the block. As a result, the presented
attacks will not just work across several system boots, but also within a single
session of the system.

We stress that a similar effect also occurs for RAM encryption using the
counter mode such as in [Gue16]. Hereby, the nonce input to the block cipher
is composed of the block address and the respective block’s counter. Therefore,
whenever some data block is copied or written back to the memory, either
the address or the respective block’s counter changes, leading to a different
pad, and thus re-encryption of the same data, again allowing for side-channel
plaintext-recovery attacks.

5.2.3 Remarks and Countermeasures

Re-keying successfully prevents key recovery through DPA attacks without the
need for DPA countermeasures in cryptographic implementations. Even more,
leakage-resilient encryption nicely allows to give proofs of security in the presence
of side-channel adversaries. However, the presented attacks also make clear that
the re-keying approach may facilitate new attack scenarios that have been left
unconsidered so far. This work gives an example of such a scenario that designers
and implementers need to be aware of.

5.3. Practical Evaluation 49

The best countermeasure to the presented attack would be to avoid the
re-encryption of constant data at all. However, multiple encryption of the same
data using different keys frequently appears in practice. Therefore, contradicting
the original intention of re-keying, adding countermeasures to the cryptographic
implementation is one possible solution for these use cases. While these coun-
termeasures cannot prevent the attack scenario completely, mechanisms like
masking [PR13] can at least increase the attack order to render the attack
complexity [Cha+99] for plaintext recovery too high.

5.3 Practical Evaluation

In this section, we practically verify the attacks described in Section 5.1 and
present our results on both, an FPGA and a microcontroller.

5.3.1 Stream Cipher Mode

We implemented the stream cipher depicted in Figure 2.2 on the Sakura-G [Sat14]
side-channel evaluation board featuring a Xilinx Spartan 6 LX75 FPGA. The
implementation uses a single AES-128 core as the encryption primitive E that
computes one AES round per cycle and that is shared between the key update
procedure and the pad computation. Therefore, the implementation natively
processes plaintext blocks Pi of 128-bit size. Once the pad is computed and
the input data block is ready, the pad is applied fully in parallel to the input.
The implementation communicates with the host PC via the USB interface that
emulates a virtual COM device. To ease the attack setup, the implementation
also provides a dedicated signal to trigger the power measurements.

The implementation was operated at 24 MHz. For the power measurements, we
sampled the signal at measurement point J3 using a LeCroy WP725Zi oscilloscope
at 250 MS. The measurement point J3 gives an amplified signal of the voltage
drop over a shunt resistor on the VCC line. We then performed the attack as
described in Section 5.1.1 by using plaintext byte hypotheses and correlation as
the statistical distinguisher. The attack could successfully identify all plaintext
bytes in less than 10 000 traces. For example, Figure 5.2 shows the results for a
single plaintext byte that could be recovered using 3 000 traces already. However,
to improve the results both measurement setup and trace processing are possible
starting points.

5.3.2 Block Cipher Mode

The practical evaluation of the UPTA-like plaintext-recovery attack on the
block cipher mode was performed using a ChipWhisperer-Lite [New16] side-
channel evaluation board, sampling at 29.5 MHz. As the target board, an Atmel
XMEGA128D4-U microcontroller, clocked at 7.4 MHz, was used. As in the
original UPTA paper, the Hamming Weight (HW) leakage model is well suited

50 Chapter 5. Side-Channel Attacks on Leakage-Resilient Encryption

10,000 20,000 30,000 40,000
0

0.05

0.1

0.15

Number of Traces

C
or

re
la

tio
n

Figure 5.2: Single plaintext byte result of a 1st-order DPA on the leakage-resilient
stream cipher in Figure 2.2. The correct plaintext byte is highlighted in
bold.

for this processor. On the software side, a byte-oriented C implementation of
AES-128 from the AVR-Crypto-Lib [AVR16] was chosen.

The actual attack was performed following a divide-and-conquer approach,
where every plaintext byte is attacked in isolation. However, only a single
template trace set as well as a single target trace set was used to attack all bytes.

In the first phase of the attack, byte-wise template sets to classify the HWs
of both the key and the S-box output were trained using 30 000 power traces
recorded during random encryptions with known plaintext and key. For each
template set, the POIs were chosen by selecting the samples of a trace with the
highest variance between the means of all HW classes of the respective template
set. The variance for the key and the S-box template set is visualized for a single
state byte in Figure 5.3. The POIs that contribute the most information to the
desired templates can be clearly seen in the 3 000-sample long traces. In total,
50 POIs were selected for each template.

In the second phase, every byte’s key and S-box template was matched with
every target trace. This results in probabilities for the modeled HWs at the
template positions. For each trace, the probabilities of a single byte’s S-box
template were then used to compute the probabilities for all potential plaintext
and key values for the respective byte. Afterwards, the key dependency was
removed by weighting the probabilities based on the result of the key template
matching. As a result, probabilities for the different plaintext values remain
which can be combined for all traces.

5.4. Conclusion 51

0 500 1 000 1 500 2 000 2 500 3 000
0

1

2

3
·10−4

Sample

V
ar

ia
nc

e

S-box
Key

Figure 5.3: Point of Interest (POI) detection for the S-box and the key template. The
main key leakage is located at sample 470. The S-box output leaks the
most at sample 1782.

An exemplary development of these plaintext value probabilities is visualized
for one byte of the plaintext in Figure 5.4. In this figure, roughly 2 000 target
traces are sufficient to uniquely determine the correct plaintext value. Across all
plaintext bytes, most of the plaintext values could be determined with less than
5 000 traces.

Note that the presented attack is only supposed to prove that UPTA-like
plaintext-recovery attacks are indeed possible and practical. The required number
of traces should hence not be taken as reference for the expected attack complex-
ity. Optimizing the attack would easily be possible using a more sophisticated
measurement setup or by exploiting the leakage from additional samples within
the traces.

5.4 Conclusion

In this chapter, we investigated the side-channel security of frequent re-keying
and leakage-resilient encryption. While such schemes have several advantages
such as inherently preventing DPA on secret key material and giving provable
leakage bounds without the need for a protected cryptographic implementation,
we showed that schemes based on frequent re-keying do not sufficiently protect
confidential plaintexts from DPA. In particular, whenever confidential data,
e.g., a long-term key, is (re-)encrypted multiple times using different keys, the
cryptographic device generates additional leakage on this data that an attacker
can exploit. As a result, constant plaintexts encrypted using leakage-resilient

52 Chapter 5. Side-Channel Attacks on Leakage-Resilient Encryption

0 1 000 2 000 3 000 4 000 5 000
0

0.2

0.4

0.6

0.8

1

Number of Traces

Pr
ob

ab
ili

ty

Figure 5.4: Plaintext probabilities of an UPTA-like attack on one plaintext byte. The
correct plaintext value is highlighted in bold black.

stream ciphers are recovered using a standard, first-order DPA, and a template-
based, second-order DPA can reveal plaintexts that are encrypted multiple times
with a block cipher using different keys.

The consideration of plaintext confidentiality in the presence of side-channel
adversaries thus reveals a weakness of current re-keying based schemes that
designers and implementers need to be aware of. This issue is emphasized by
several sensible applications where care has to be taken as these inherently
perform re-encryption of constant plaintexts, e.g., multi-party communication
and RAM encryption. As a consequence, cryptographic implementations with
DPA countermeasures, such as masking [PR13], should be considered to avoid
the leakage of plaintexts in these uses cases inherently encrypting data using
multiple keys.

Part II

Side-Channel Security for
Memory Encryption

53

54

Apart from side-channel attacks as discussed in the previous chapters, physical
access to Internet-of-Things (IoT) devices allows attackers to read confidential
data from or tamper with data in external memory as well. While there are
memory encryption and authentication techniques to prevent these kind of attacks,
side-channel attacks, on the other hand, have not been considered in this context
before. In this part, we extend the focus of memory encryption and authentication
to side-channel attacks and make the following main contributions:

• We show that all current memory encryption and authentication schemes
are vulnerable to Differential Power Analysis (DPA) and Differential Fault
Analysis (DFA) attacks and practically show the feasibility of DPA on
state-of-the-art systems by revealing the key from ext4 disk encryption on
a Zynq-7010 System on Chip (SoC).

• We present the first memory encryption and authentication scheme that is
secure against side-channel attacks and suitable for all kinds of memory.
We implement and evaluate our scheme to show that it is as efficient as
state-of-the-art memory authentication techniques without side-channel
protection.

6
Side-Channel Attacks on

Memory Encryption

Memory and disk encryption is a common measure to protect sensitive information
in memory from adversaries with physical access and is being implemented in
an increasing number of real-world applications, such as dm-crypt [DMC15],
iOS [App15], Mac OS X [App12], Android [Goo15], Windows [Fer06], and
ext4 [MM; Lin15]. However, physical access also comes with the risk of physical
attacks such as side-channel and active fault attacks. Together with Stefan
Mangard, we therefore analyzed the security of current memory encryption
schemes and their implementation within dm-crypt, Android 5.0, Mac OS X, and
ext4 in terms of these physical attacks. The respective publication in [UM16] was
awarded the best paper at COSADE 2016. The idea to this publication originated
from Stefan Mangard and me, whereas I was the main author contributing
attacks, experiments, and text. In this chapter, we use text and results from this
publication [UM16] and make the following scientific contributions.

Contribution. As our first contribution, a detailed analysis shows that Dif-
ferential Power Analysis (DPA) and Differential Fault Analysis (DFA) breaks
all contemporary memory and disk encryption schemes used in practice. Most
prominently, it presents tricks to be applied to DPA and DFA in order to obtain
the keys from the tweakable ciphers Xor-Encrypt-Xor (XEX) and XEX-based
Tweaked codebook mode with ciphertext Stealing (XTS). Supporting the analysis
results, our second contribution exploits the Electromagnetic Emanation (EM)
side channel of a Zynq-7010 System on Chip (SoC) in a practical attack on the
recently introduced ext4 disk encryption mechanism that completely discloses

55

56 Chapter 6. Side-Channel Attacks on Memory Encryption

the confidential disk content. We thus conclude that securing memory against
physical adversaries requires protected implementations, e.g., [Mor+11b; Bil+14;
ISW03], to be used with contemporary memory encryption schemes, which how-
ever increases the cost of memory encryption by at least a factor of four, or new
schemes that are designed to be resilient to physical attacks.

Outline. This chapter is organized as follows. Section 6.1 introduces memory
encryption and gives an overview on common state-of-the-art implementations.
The memory encryption schemes are analyzed with respect to both DPA and
DFA in Section 6.2. The practical feasibility of such attacks is evaluated in
Section 6.3, and Section 6.4 concludes the chapter.

6.1 Memory Encryption

Memory encryption deals with the encryption of data contained in memory such
as Random Access Memory (RAM), memory cards and hard disks. However, in
practice different variants and notations are being used for memory encryption.
This section therefore defines memory encryption and gives an overview on
common memory encryption schemes and implementations.

6.1.1 Definition

The encryption of memory is usually performed using dedicated memory encryp-
tion schemes as these schemes have to fulfill several requirements: (1) ensure
random access to all memory blocks, (2) provide sufficiently fast bulk encryption,
and (3) the only information an adversary can derive from the encrypted memory
is whether a memory block has changed or not.

Definition 1. A memory encryption scheme is an encryption scheme
ENC : K ×A× {0, 1}sb → {0, 1}sb , which

1. uses a key K from key space K, and
2. splits the memory of size smemory into nb = d smemorysb

e sb-bit memory
blocks,

3. identifies each of the memory blocks by their address in address space A,
and

4. provides address-dependent en-/decryption for each of these memory blocks.

Definition 1 considers the encryption of a flat memory space and requires the
encryption process to incorporate address information. The address information
allows memory encryption schemes to fulfill requirement (3) as for this reason each
memory block is encrypted differently. Otherwise, it would be easily recognizable
if certain data is contained in different memory locations and valid (but encrypted)
data could simply be copied to different addresses (splicing attack [Elb+09]).
The requirements (1) and (2) are typically satisfied by splitting the memory space
into blocks using two different granularities: the memory is divided into larger
sectors (or pages) and each sector (or page) is divided into encryption blocks.

6.1. Memory Encryption 57

Enc

P

C

KDF addr

Key Material

Public Data

DEK

Figure 6.1: Generic model of memory encryption.

The encryption mode then ensures fast bulk encryption within each sector and
random access on sector level.

6.1.2 Memory Encryption in Practice

In practice, memory encryption is often named disk encryption referring to the
type of memory used. There are two variants of disk encryption: (1) block
device or full disk encryption, and (2) file-level disk encryption. While full disk
encryption performs encryption directly on the raw memory space of a whole disk,
block device, or partition, i.e., beneath a file system, file-level disk encryption
performs encryption on file level on top of or within a file system. Both variants
use the same sort of memory encryption schemes, but apply them to different
portions of the memory. Throughout this chapter, the term memory encryption
thus denotes any of these variants.

Another aspect of practical implementations of memory encryption is that they
usually employ a Key Derivation Function (KDF) to derive the Data Encryption
Key (DEK) to be used within the memory encryption scheme from, e.g., a user
password and public nonces. The combination of such a KDF and a memory
encryption scheme leads to the generic model of memory encryption in Figure 6.1.
The following will use this model to first describe typical schemes for both the
KDF and the encryption part, and will then show how these are used in several
practical implementations.

Key Derivation Functions

To derive a key from a user password or a PIN, password hashing functions such
as PBKDF2 [Kal00] or scrypt [Per09] are typically used. This password-derived
key is then mostly used as a Key Encryption Key (KEK) to decrypt the actual
master key MK of the memory using an ordinary block cipher. Depending on
the concrete setup, such master key MK is directly used as the DEK for the
memory encryption scheme or is used to further derive or decrypt keys, e.g.,
DEKs for the encryption of single files in file-level disk encryption.

Encryption Schemes

Common implementations exclusively deal with the encryption of external storage,
e.g., hard disks. These implementations, e.g., in dm-crypt, mainly utilize the

58 Chapter 6. Side-Channel Attacks on Memory Encryption

E

P

C

E K

K

SN

αaddr
¿

¿

(a) XEX mode.

E

P

C

E K1

K2

SN

αaddr
¿

¿

U

(b) XTS mode.

Figure 6.2: Tweakable ciphers for disk encryption.

modes XEX [Rog04], XTS [IEE08b], and Cipher Block Chaining (CBC) with
Encrypted Salt-Sector IV (ESSIV) [Fru05]. The tweakable block ciphers XEX
and XTS are shown in Figure 6.2. Both encryption modes apply a tweak τ to the
block cipher E that results from a binary-field multiplication of the encrypted
sector number with the memory block address. While XEX uses only one key,
XTS uses two different keys for the two instances of the block cipher. The CBC
mode with ESSIV is depicted in Figure 6.3. ESSIV ensures a secret Initial Vector
(IV) and thus prevents watermarking attacks [Saa04]. It computes the IV by
encrypting the sector number with the hashed key (i.e., salt).

Differently, research on the design and construction of secure systems further
considered the encryption of the main memory. Primarily variants of the counter
mode encryption were proposed such as in Figure 6.4 [Suh+03b; Rog+07]. The
pad is the encryption of a block-specific seed that comprises an IV, the memory
block address, and a timestamp (or counter). It is mostly favored due to the
little latency it introduces on the path to the memory.

6.1.3 State-of-the-Art Implementations

The following presents common implementations within dm-crypt, Android, Mac
OS X, and ext4, and shows that the memory encryption schemes presented before
have high prevalence throughout all of these implementations.

dm-crypt. dm-crypt [DMC15] is a disk encryption utility that provides trans-
parent encryption of arbitrary block devices within Linux ≥ 2.6, i.e., block device
encryption. dm-crypt can be configured to use one of several available encryption
modes, i.a., CBC-ESSIV and XTS (default), using different block ciphers, e.g.,
AES-128 [DR02]. The utility requires the user to supply the block device DEK
when mounting the block device. For more convenient usage, however, Linux
Unified Key Setup (LUKS) [Fru11] can be used. LUKS adds a meta-data header
to the block device that stores the encrypted DEK. The respective KEK is derived
from a user password using PBKDF2.

6.2. Physical Attacks on Memory Encryption 59

E

P1

C1

E
K

K

SN
E K E K

P2
11

P3
1

C2 C3

IVH

Figure 6.3: Disk encryption via CBC and ESSIV.

Mac OS X. Mac OS X from version 10.7 (Lion) onwards provides block device
encryption using the tool FileVault 2 [App12; CGM12]. Mac OS X encrypts
block devices using XTS and AES-128 with separate DEKs that are chosen
randomly upon setup of each encrypted block device. For key storage, Mac
OS X uses a three-tier hierarchy of DEKs, KEKs and Derived Key Encryption
Keys (DKEKs). The DEK is encrypted using a randomly chosen KEK that
is encrypted using at least one DKEK. DKEKs can, e.g., be derived from a
password or be the public key of a corporate certificate. Both the DEK and the
KEK are stored encrypted in a meta-data block on the block device.

Android. Android is equipped with full disk encryption for devices such as
flash memory. In Android 5.0, encryption of block devices is based on dm-crypt

that is configured to use AES-128 and CBC-ESSIV [Goo15]. Its DEK is sized
128 bits by default and stored encrypted on the block device. The respective
KEK is derived from a user password and a hardware-bound key using scrypt
and a signing procedure within a Trusted Execution Environment (TEE).

Ext4. Since Linux 4.1, the ext4 file system offers file-level disk encryption [MM;
Lin15]. It allows to set up encryption for a specific folder that is assigned a
master key derived from a user passphrase and a salt using PBKDF2. While
ext4 encrypts file content and names, meta data and file system structure is
available in plaintext. Each file uses an individual DEK that is derived from
the master key MK by encrypting MK with AES-128 in Electronic Code Book
(ECB) mode and using a file nonce Nf as the key, i.e., DEKf = E(Nf ;MK).
The respective nonce Nf is stored in the file’s meta-data section. The file DEK
is used to encrypt the file contents using XTS and AES-128.

6.2 Physical Attacks on Memory Encryption

Physical access as the motivation for memory encryption and the prevalence
of the memory encryption schemes from Section 6.1 necessitate their analysis
with respect to physical attacks such as side-channel and fault attacks. The
following analysis of memory encryption schemes w.r.t. physical attacks shows
that both DPA [KJJ99] and DFA [BS97] attacks are easily capable of breaking

60 Chapter 6. Side-Channel Attacks on Memory Encryption

E-1

(IV, addr, timestamp)

K

P C
pad

Figure 6.4: Counter mode memory encryption.

all the schemes presented, i.e., they reveal the DEK that allows to decrypt all
memory content. Most remarkably, it demonstrates how to obtain the AES-128
keys in the tweakable block ciphers XEX and XTS with practical complexity.

6.2.1 Differential Power Analysis

As introduced in Chapter 2, DPA and its variants, e.g., Correlation Power Analysis
(CPA) [BCO04], are attack techniques that allow the recovery of an encryption
key based on side-channel leakage collected during multiple en-/decryptions using
this key. In the following, we detail how DPA techniques can be applied to the
memory encryption schemes described in Section 6.1.

XEX Mode

The tweak τ makes sure that the block cipher behaves differently for each memory
address. In spite of this, DPA-style attacks are applicable with little modifications.
Therefore, the adversary focuses on one particular memory block, i.e., fixed sector
and fixed memory address. For this memory block, the adversary observes
ciphertexts and power traces of several encryption processes. The captured power
traces are then used twice to attack different rounds of the block cipher shaded
gray in Figure 6.2a, as the following illustrates for AES-128:

1. From an attacker’s point of view, the last round key rk10 is blinded with
the tweak τ . However, for a fixed sector and memory address, the tweak τ
is constant. A DPA that targets the input of the last round’s S-box will
thus reveal the last round key XOR-ed with the tweak, i.e., rk10 ⊕ τ .

2. Knowledge of rk10 ⊕ τ is sufficient to target the input of the second-last
round’s S-box in a second DPA. It reveals the second-last round key rk9,
which can be used to compute the key K.

Two consecutive DPAs on the same set of traces allow to gain knowledge of
the key K. The DPAs disclose the information contained in all memory blocks
across all sectors, even though only one particular block in one specific sector is
actually attacked.

Note that besides standard DPA, also Unknown Plaintext Template Attacks
(UPTAs) [HTM09] are applicable to directly obtain rk10. However, such attacks

6.2. Physical Attacks on Memory Encryption 61

require a preceding profiling step to create suitable templates. On the other hand,
if the adversary additionally has knowledge of the accessed sector, e.g., from the
observation of memory addresses on the bus, the attack generally becomes easier.
In this case, the encryption of the sector number within the tweak computation
can be attacked to immediately learn K from power traces of memory accesses
to different sectors. However, depending on the practical circumstances, either
of those attacks is more suitable, e.g., the adversary may want to avoid raising
suspicion by not probing the memory bus.

XTS Mode

Contrary to XEX, a successful DPA on XTS in Figure 6.2b requires the knowledge
of the accessed sector number. This knowledge allows to first obtain K2 from the
tweak computation by monitoring accesses to different sectors. Once K2 is known,
the tweak τ used for encrypting any memory block can be computed, which enables
a straight-forward attack on the key K1 by monitoring the power consumption
during arbitrary memory accesses. Alternatively, the attack technique from XEX
can be used to learn K1 and the sector tweaks τ without knowing the concrete
sector number. Further, note that another approach to perform a DPA on XTS
is to target the modular multiplication during tweak computation as presented
in [LFD17].

Counter Mode

Known-plaintext scenarios allow for DPA attacks that recover the key K in
counter mode encryption. They facilitate the computation of the encryption
pads from the known plain- and ciphertexts and thus DPA on the last round of
the cipher. Typically, plaintexts would be assumed to be unknown since memory
encryption is applied. However, known-plaintext scenarios will certainly occur in
memory encryption. One such case would be publicly known (or observable) data
that is sent to a device, e.g., via external interfaces, and that is consecutively
encrypted and stored in main memory, e.g., within an input buffer.

If there are insufficiently many known plaintexts, a known input seed also
allows for a DPA—one that does not even require any ciphertext. Often, the
counters and addresses within the seed will be publicly accessible (or observable).
If the IV is public as well, the seed will be fully known and a DPA in the first
round of the cipher be possible. The IV will mostly be stored publicly on the
disk for disk encryption, but might be chosen randomly at startup and remain
inaccessible for encryption of the main memory. Still, the approach in [Jaf07],
where a DPA is performed on the counter mode of AES without knowledge of
the counter value, might be applicable.

CBC Mode with ESSIV

Independently of the IV derivation, DPA attacks on the CBC mode are trivially
possible through the observation of ciphertexts and power traces of the respective

62 Chapter 6. Side-Channel Attacks on Memory Encryption

encryption processes. The recovered key K then allows to compute each sector’s
IV (ESSIV) and hence to obtain any plaintext.

6.2.2 Differential Fault Analysis

Differential Fault Analysis (DFA) [BS97] describes techniques that use algebraic
properties of ciphers to find out about the key from one correct and one or
several faulty cipher invocations with the same input. Various techniques to
inject faults into a device exist, e.g., power and clock glitches, laser shots, and
electromagnetic pulses. However, the following investigation does not consider
how the faults are injected, but elaborates on how faults are exploited in order to
obtain the key. It details DFA attack scenarios on the schemes from Section 6.1,
and most noteworthy, how to break the tweakable block ciphers XEX and XTS
with practical complexity 235 if AES-128 is used.

XEX Mode

The attack procedure of DFA to learn the key K is tightly linked with the
employed cipher. Exemplarily, we show how to use DFA to extract the key from
AES-128 in XEX mode. The DFA targets the block cipher that is shaded gray
in Figure 6.2a and consists of two basic steps:

1. An arbitrary byte fault in round 8 is used to extract the XOR of round key
10 and the tweak (rk10 ⊕ τ).

2. A byte fault in round 7 and a modified representation of the AES round
function lead to round key 9 and thus the key K.

Learning rk10 ⊕ τ . From an attacker’s point of view, the last round key rk10

is blinded with the tweak τ . This requires the tweak τ to be constant for DFA,
i.e., the attack operates on a fixed sector and a fixed memory block. By forcing
re-encryption of the same plaintext in the desired block, the adversary gets the
chance to inject an arbitrary byte fault during round 8 of the encryption process
of the tweakable cipher. Application of a suitable DFA technique, e.g., [PQ03;
SMC09], to the pair of right and faulty ciphertext results in the value rk10 ⊕ τ .

Learning round key 9. The DFA to learn rk9 benefits from an alternative
representation of the AES round function. As shown in Figure 6.5, it is obtained
from swapping MixColumns and AddRoundKey. The linearity of MixColumns
allows this transformation if the round key is modified accordingly, i.e.,

MixColumns(G)⊕ rk9 = MixColumns(G⊕MixColumns−1(rk9))

= MixColumns(G⊕ rk9,mc).

In the following, the alternative representation of the round function is used
for round 9. The attack starts by injecting a random byte fault during round 7.
As the MixColumns operation propagates the fault to the other state bytes, all

6.2. Physical Attacks on Memory Encryption 63

SubBytes

ShiftRows

MixColumns

rk9

Round 9

Round 8

Round 10

SubBytes

ShiftRows

MixColumns

MixColumns-1 rk9

S9 S9

S8S8

rk9,mc
G G

L

Figure 6.5: AES round function (left) and its alternative representation (right).

bytes are affected by the end of round 8. The observed pair of right and faulty
ciphertext C,C ′ and the value rk10 ⊕ τ are used to compute backward to obtain
the respective values L,L′ in round 9.

Interpreting L,L′ as a pair of right and faulty ciphertext, the remaining cipher
looks like a round-reduced version of the AES with one inner round missing. The
last round consists of AddRoundKey, ShiftRows, and SubBytes and uses the
round key rk9,mc. The benefit of this approach is that now any DFA technique
that targets the last round key of the AES, e.g., [PQ03; SMC09], is suitable to
obtain rk9,mc from the pair L,L′ and the fault differences at the end of round 8.
Round key 9 is then easily computed as rk9 = MixColumns(rk9,mc).

If the technique in [SMC09] is used to learn rk9,mc, the attack has the
complexity 234 and thus is clearly possible on nowadays’ computers. According
to [SMC09], the required faults can be injected by temporal overclocking only.
Note that similar approaches work if ciphers different to AES are utilized.

XTS Mode

Although XTS using AES-128 relies on two 128-bit keys, DFA breaks this mode
with total complexity 235. First, the DFA technique that was just applied to
XEX trivially recovers the key K1 with complexity 234. Second, the following
small trick uses faults in the tweak computation to also learn K2 with complexity
234. It determines the faulty tweak τ ′ from the observed faulty ciphertext C ′

and the correct tweak τ .

The procedure to recover K2 requires the values of K1, P , and rk1,10⊕τ to be
known, where rk1,10 denotes round key 10 derived from K1. These preconditions
usually apply if the previous DFA on XEX was utilized to learn K1. As a result,
the tweak τ and the intermediate value U (cf. Figure 6.2b) can be computed:

64 Chapter 6. Side-Channel Attacks on Memory Encryption

U = α−addr · τ . A random fault that is injected in one byte of the state in round
9 of the AES affects four bytes of U . Although the respective faulty U ′ is not
directly observable, it can be brute-forced with complexity 232. This is done by
trying all values for the faulty bytes of U ′, computing the respective tweaks τ ′,
encrypting the original plaintext P using τ ′ and K1, and matching the result
against the faulty ciphertext C ′. Once U ′ is known, four bytes of rk2,10 (round
key 10 derived from K2) are revealed using the technique in [PQ03]. Hereby, the
possible key space for rk2,10 is reduced by the possible differences that can be
observed at the output of MixColumns in round 9 that result from a single byte
fault during round 9. Similarly, three more faults in different bytes of the state
of round 9 recover the remaining 12 bytes of rk2,10 and thus K2.

Counter Mode

DFA on a block cipher operated in counter mode (cf. Figure 6.4) requires access
to the output of the cipher, i.e., the pad. Since encryption pads must not repeat,
consecutive encryptions of plaintexts will not use the same pad and encryption
seed. As a result, DFA is limited to the decryption process. If the same ciphertext
is loaded from the same memory address several times and the adversary can
inject faults during the pad computations and observe the respective plaintexts,
the correct and faulty pads can be computed and the master key K be learned
via a suitable DFA technique. The required plaintexts may be observed from
communication of the device via external interfaces.

CBC Mode with ESSIV.

Independently of the initial vector derivation, DFA is trivially possible by restrict-
ing analysis to one specific memory block within the CBC chain of one particular
sector. Therefore, re-encryption of the same plaintext has to be triggered for the
desired memory block, e.g., through placing the same message in an input buffer
by repeatedly sending the same message to the device. Faults injected during
re-encryption are directly observable in the resulting ciphertext. This facilitates
the application of a suitable DFA technique in order to learn the master key K.
Note that for this to work, all memory blocks in the sector prior to the target
block must not change during re-encryption.

6.3 EM Attack on Ext4 Encryption

As our analysis points out, contemporary memory encryption schemes are clearly
vulnerable to physical attacks. However, it remains to show that such attacks are
indeed feasible on contemporary systems. This section therefore demonstrates a
practical attack on the disk encryption scheme incorporated into the ext4 file
system. The EM attack conducted on a Zynq Z-7010 SoC reveals the used master
key and thus all content by exploiting the leakage of the first round of an AES
execution.

6.3. EM Attack on Ext4 Encryption 65

6.3.1 Analysis of Ext4 Disk Encryption

Disk encryption within the ext4 file system works on file level and allows to
encrypt arbitrary directories using a specified master key MK. For each file in
such directory, the master key MK is used to derive an individual data encryption
key DEKf to encrypt the respective file’s content and name. Key derivation is
done by encrypting MK with AES-128 in ECB mode using a public file nonce
Nf as the key. It starts whenever DEKf is needed and not already present in
main memory. The size of both MK and DEKf is 512 bits and chosen such as to
be able to encrypt files with AES-256 in XTS mode in future versions. However,
currently only AES-128 in XTS mode is supported and thus the last 256 bits
of DEKf and MK are not used. The file nonce Nf is stored in an extended
attribute of the file’s inode.

Clearly, given the master key MK and a public file nonce Nf , the respective
file key DEKf can be derived. However, the key derivation chosen in ext4 also
allows to compute the master key MK given any DEKf and the respective
nonce Nf . Therefore, an attacker who wants to learn MK using power analysis
can choose between two equivalent targets, namely (1) data encryption of file
content, and (2) the derivation of the file key DEKf . In terms of target (1), the
strategy from Section 6.2 can be straight-forwardly applied, but one may need
files that are sufficiently large to be able to learn K2 within XTS. With respect
to target (2), one needs to monitor accesses to many different files as such trigger
key derivations. To practically verify the feasibility of attacks on disk encryption,
we opted for target (2).

6.3.2 General Attack Flow

The attack we performed assumes an encrypted folder on an SD card using the
ext4 file system. It further assumes the attacker is able to trigger the creation of
new files within the encrypted folder via external interfaces, e.g., by uploading
data via a running web server or writing log files.

To perform the attack, the attacker first dumps the (encrypted) content of
the SD card. They may not be able to read the actual content from such file
system dump, but can learn about the directory structure as meta data is not
encrypted. Second, the attacker triggers the creation of sufficiently many files on
the SD card, observes the EM side channel, and stores the respective EM traces.
Third, the attacker again dumps the content of the SD card. By comparing
its content with the initial dump from before the measurements, the attacker
can learn which files have been created. The meta data of the newly created
files allows to both learn the used nonces Nf and their creation date, which in
turn allows to map the newly created files on the SD card to the EM traces. In
the next step, the attacker creates the power model for the key derivation, i.e.,
DEKf = E(Nf ;MK). Finally, the power model is matched with the EM traces
to reveal the master key.

To investigate the encrypted directory in the file system, debugging and
forensic tools are highly suitable. We used the tool debugfs to find new files in

66 Chapter 6. Side-Channel Attacks on Memory Encryption

Figure 6.6: Distribution of t-test results on the chip surface.

the file system and to learn their creation date and the respective nonces. Note
that the access times are also available within the file system, which allows for
the described attack also when monitoring arbitrary file accesses.

6.3.3 Experimental Setup and Results

The feasibility of the attack on ext4 encryption in Section 6.3.2 was verified
using the Digilent ZYBO board. The board hosts a Xilinx Zynq Z-7010 SoC,
512 MB of DDR3 RAM, and several IO interfaces, i.a., an SD card slot. The
Zynq Z-7010 SoC combines an Artix-7 Field Programmable Gate Array (FPGA)
and a state-of-the-art hard macro comprising a 650-MHz dual-core ARM Cortex-
A9 processor, IO modules, and memory controllers. The measurement devices
required to capture the EM traces involved a LeCroy WavePro 725Zi oscilloscope,
a Langer RF B 3-2 magnetic field probe, and a Langer PA 303 pre-amplifier.

The general leakage behavior of the Zynq Z-7010 was examined by running
the AES T-table implementation included in the Linux 4.3 kernel in a bare-metal
application. Therefore, the EM probe was placed in different locations using
a stepper table to evaluate a fixed vs. random t-test. This revealed the spots
of high leakage as shown in Figure 6.6 and allowed for successful DPA on the
bare-metal AES.

The setup for the complete disk encryption scenario was established by
configuring the Zynq SoC to use a 350-MHz memory clock and a 625-MHz
Central Processing Unit (CPU) clock and deploying Linux 4.3 to the ZYBO
board. An ext4 file system was created on an SD card and one directory encrypted
such that it is only readable by the system running on the ZYBO board. The
attack procedure from Section 6.3.2 was executed by repeatedly creating new
files via the UART interface. The oscilloscope was triggered to capture an EM
trace at 5 GS by setting a GPIO pin just before creating a new file. The SD card
content was then analyzed on a PC using debugfs, the EM traces aligned, and a

6.4. Conclusion 67

0 0.5 1 1.5 2
x 104

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Sample Index

C
o
rr
e
la
ti
o
n

(a) Time domain (correct key).

2000 4000 6000 8000 10000 12000 14000
0

0.05

0.1

Number of Traces

C
o
rr
e
la
ti
o
n

(b) Key hypotheses.

Figure 6.7: Single-byte correlation results for ext4 key derivation.

DPA performed on the S-box output of the first AES round using the Hamming
Weight (HW) power model.

The results of the DPA on a single byte of the master key are given in
Figure 6.7. Using 15 000 EM traces, Figure 6.7a clearly presents the correlation
of the power model of the correct key guess in the time domain. Moreover,
in Figure 6.7b the correct key byte (black) is clearly distinguished from the
remaining key hypotheses with 5 000 measurements.

In this feasibility study, the Linux kernel was reconfigured to omit symmet-
ric multiprocessing, dynamic frequency scaling, and caches. Moreover, AES
executions were highlighted in the captured EM traces through another hardware-
triggered signal to help finding AES executions. This however does not affect
the applicability of the attack. For example, [Lon+15] showed the practicality
of attacking a free-running OpenSSL implementation of AES with active caches
and frequency scaling on the TI Sitara platform that uses an ARM Cortex-A8.
However, further improvement of both setup and trace processing would definitely
be interesting future work.

6.4 Conclusion

Summarizing, this chapter unveiled that contemporary mechanisms that aim
to ensure the confidentiality of memory content in the presence of adversaries
with physical access are clearly vulnerable to physical attacks. In particular,
it showed that all common implementations of memory and disk encryption
schemes can easily be broken using DPA and DFA. The attacks are powerful
enough to even break the tweakable cipher XTS that is most commonly used.
Further, the feasibility of such attacks on state-of-the-art computing systems was
verified by exploiting the EM side channel on the Zynq Z-7010 SoC. The attack
revealed the master key of the disk encryption scheme incorporated into the ext4
file system and thus all encrypted content.

68 Chapter 6. Side-Channel Attacks on Memory Encryption

Our results suggest that if memory encryption is supposed to use current
schemes in the future, cipher implementations with appropriate countermeasures
must be used. However, the secure cipher implementations proposed so far were
mainly designed for the use in embedded devices and might thus not yield the
desired throughput for memory encryption. For example, the 1st-order threshold
implementations in [Bil+14; Mor+11b] require 246 and 266 clock cycles for one
AES execution, respectively. Additionally, these implementations add an area
overhead of a factor of four that must hence also be expected for secure memory
encryption based on such protected implementations. It thus remains future work
to implement memory encryption that fulfills both the requirement for sufficient
throughput and security against side-channel adversaries. Alternatively, a viable
approach for the future is to develop new memory encryption schemes that resist
the presented attacks by design.

7
Side-Channel Secure Memory

Encryption and Authentication

Chapter 6 showed that many of nowadays’ memory encryption schemes are
vulnerable to Differential Power Analysis (DPA) when attackers can observe
a device performing memory encryption during operation. This threat is even
emphasized by the practical attacks in [UM16; Lon+15; SRH16; Bal+15] that
document the feasibility of DPA on state-of-the-art System on Chips (SoCs).
While techniques like masking [Cha+99; GP99] can protect the respective crypto-
graphic primitives against DPA, the overhead of DPA-protected implementations
is high. To overcome this limitation, together with Mario Werner and Stefan
Mangard, we researched on new schemes for memory encryption that can prevent
DPA by design and published the resulting DPA-secure memory encryption and
authentication scheme in [UWM17b]. A follow-up work including its practical im-
plementation and a more detailed comparison with the state of the art is currently
in submission [UWM17a]. In these works, I was the main author contributing
the idea, most of the text, and parts of the implementation, Stefan Mangard
added to the idea for higher-order security, and Mario Werner contributed parts
of the text and parts of the implementation. In this chapter, we use text and
results from [UWM17b] and [UWM17a] and make the following contributions.

Contribution. We solve the problem of protecting data in memory against
physical attackers in possession of a running device and, in particular, we prevent
DPA attacks on memory encryption and authentication without additional over-
head over conventional schemes. We approach the topic by reviewing the security
of fresh re-keying [Koc03; Med+10] for memory encryption as a DPA countermea-

69

70 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

sure. While re-keying completely thwarts DPA on the cryptographic key, it shows
that the read-modify-write access patterns inevitably occuring memory allow for
side-channel plaintext-recovery attacks as presented in Chapter 5. In particular,
re-keying block ciphers in read-modify-write operations causes constant plaintext
parts to be encrypted using different keys, which can be exploited in profiled,
higher-order DPA attacks to learn the constant plaintexts. As a result, re-keying
merely provides first-order DPA security for the memory content itself.

Second, we build on our analysis and present Meas—the first Memory
Encryption and Authentication Scheme secure against DPA attacks. The scheme
is suitable for all kinds of memory including Random Access Memory (RAM) and
Non-Volatile Memory (NVM). By making use of synergies between fresh re-keying
and authentication trees [Mer80; HJ05; Elb+07], Meas simultaneously offers
security against first-order DPA and random access to all memory blocks. In
more detail, Meas uses separate keys for each memory block that are stored in a
tree structure and changed on every write access in order to strictly limit the use
of each key to the encryption of two different plaintexts at most. For higher-order
DPA security, Meas performs data masking by splitting the plaintext values
into shares and storing the encrypted shares in memory. This allows to flexibly
extend DPA protection to higher orders in trade for additional memory. For all
DPA protection levels, Meas does not require DPA-protected implementations of
the cryptographic primitives, making Meas suitable for Common Off-The-Shelf
(COTS) systems equipped with unprotected cryptographic accelerators. However,
Meas is also an ideal choice for constructing a DPA-secure system from scratch
as engineers do not have to cope with complex DPA protection mechanisms
within the cipher implementation.

Third, we give two lightweight Meas instances suitable for RAM that encrypt
and authenticate the tree nodes with strictly bounded data complexity per key.
Meas-v1 uses the PRINCE cipher and derives a fresh key for each encryption
block using the sponge Ascon. Meas-v2 provides faster tree traversal by using
the same key for the encryption of several, but a sufficiently small number of,
e.g., 4 or 8, blocks using the tweakable cipher QARMA.

Finally, we implement both Meas instances on the Xilinx Zynq-7020 SoC
Field Programmable Gate Array (FPGA) to practically evaluate the performance
of RAM encryption and authentication with Meas. We show that Meas provides
protection against the very powerful DPA attacks, and still features the same
performance and memory overhead as state-of-the-art memory authentication
schemes, which completely lack side-channel protection. In particular, we show
that a 4-ary, first-order DPA secure instance of Meas-v2 is a highly suitable
choice for encrypting and authenticating RAM in practice.

Outline. This chapter is organized as follows. In Section 7.1, we first state
our threat model and requirements, and we then discuss the state of the art on
memory encryption and authentication. We analyze the re-keying countermeasure
in terms of memory encryption in Section 7.2 and use the results to present
our first-order DPA secure Meas in Section 7.3. Section 7.4 then presents

7.1. Memory Encryption and Authentication 71

data masking to achieve higher-order DPA security in Meas. We give two
lightweight instances of Meas suitable for RAM in Section 7.5 and detail their
implementation in Section 7.6. An evaluation of Meas is done in Section 7.7
and we finally conclude in Section 7.8.

7.1 Memory Encryption and Authentication

Memory encryption and authentication is more and more commonly adopted
in consumer products, e.g., in Intel SGX [Gue16], AMD [KPW16], and ARM
systems [HT13]. However, as Chapter 6 showed, memory encryption and authen-
tication schemes currently lack the consideration of side-channel attacks. In this
section, we hence define two threat models for memory encryption and authenti-
cation: the non-leaking chip model restates the state of the art [Suh+03a; Gue16;
Elb+09; Suh+03b; Owu+13; Rog+07], and the extended leaking chip model
further takes side-channel leakage into account. Moreover, we summarize present
techniques for memory encryption and authentication and its requirements.

7.1.1 Threat Model and Requirements

The non-leaking chip model in previous works assumes a single, secure microchip
performing all relevant computations, e.g., a Central Processing Unit (CPU). An
attacker cannot perform any kind of active or passive attacks against this chip.
All other device components outside this chip, e.g., buses, RAM modules and
Hard Disk Drives (HDDs), are under full control of the adversary. Therefore, a
physical attacker can, e.g., probe and tamper with buses, exchange peripherals,
or turn the whole device on and off. For off-chip memory, this means that an
attacker with physical access is capable of freely reading and modifying the
memory content.

While reading can give an attacker access to confidential data stored inside
the memory, modification breaks memory authenticity in several ways [Elb+09]:
In spoofing attacks, an attacker simply replaces an existing memory block with
arbitrary data, in splicing attacks, the data at address A is replaced with the
data at address B, and in replay attacks, the data at a given address is replaced
with an older version of the data at the same address.

Our leaking chip model extends the non-leaking chip model by considering
passive side-channel attacks. It assumes that the microchip performing all relevant
computations leaks information on the processed data via side channels, e.g.,
power and Electromagnetic Emanation (EM). Physical attackers can observe this
leakage and perform side-channel attacks.

Hence, cryptographic schemes protecting the confidentiality and authenticity
of off-chip memory in the leaking chip model have to fulfill three main require-
ments.

1. The only information an adversary can learn from memory is whether a
memory block (i.e., ciphertext) has changed or not.

72 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

2. Prevention of spoofing, splicing, and replay attacks.

3. Protection against side-channel attacks.

In addition, fast random access to all memory blocks, high throughput (fast
bulk encryption), and low memory overhead are desired.

7.1.2 Memory Encryption

Memory encryption schemes usually split the memory address space into blocks
of predefined size, e.g., sector size, page size, or cache line size. Each of these
blocks is then encrypted independently using a suitable encryption scheme. The
partitioning of the address space into memory blocks aims to provide fast random
access on block level and fast bulk encryption within the instantiated encryption
scheme. Hereby, the chosen block size strongly affects possible trade-offs w.r.t.
meta-data overhead, access granularity, and speed.

As shown in Chapter 6, several memory encryption schemes have been
proposed in the non-leaking chip model, e.g., the tweakable encryption modes
Xor-Encrypt-Xor (XEX) [Rog04] and XEX-based Tweaked codebook mode with
ciphertext Stealing (XTS) [IEE08b], Cipher Block Chaining (CBC) with En-
crypted Salt-Sector IV (ESSIV) [Fru05], and counter mode encryption [Suh+03b;
Rog+07].

7.1.3 Memory Authentication

Like for memory encryption, memory authentication schemes split the memory
address space into blocks and aim for separate authentication of each of these
blocks. Several memory authentication schemes have been proposed in the
non-leaking chip model.

For example, a keyed Message Authentication Code (MAC) using the block
address information can protect against spoofing and splicing attacks. However,
it still allows for replay attacks. In order to protect against replay attacks,
authenticity information must be stored in a trusted environment, e.g., in secure
on-chip memory, that an attacker cannot modify. Authentication trees minimize
this demand for secure on-chip storage, namely, only the tree’s root is stored in
secure memory, while the remaining tree nodes can be stored in public memory.
Such trees therefore protect against spoofing, splicing, and replay attacks. Au-
thentication trees over nb memory blocks with arity a have logarithmic height
l = loga(nb).

In the following we describe three prominent examples of authentication trees,
namely, Merkle trees [Mer80], Parallelizable Authentication Treess (PATs) [HJ05],
and Tamper Evident Counter (TEC) [Elb+07] trees. Note however that there
are also hybrid variants like Bonsai Merkle trees [Rog+07], which use elements
from both Merkle trees and PATs. The description assumes binary trees, the
operator || denotes concatenation.

7.1. Memory Encryption and Authentication 73

Merkle Trees

Merkle trees [Mer80] use a hash function H to hash each of the nb memory blocks
Pi:

hl,i = H(Pi) 0 ≤ i ≤ nb − 1.

These hashes hl,i are recursively hashed together in a tree structure and the root
hash h0,0 is put on the secure chip:

hj,i = H(hj+1,2i||hj+1,2i+1) 0 ≤ i ≤ nb
2l−j

− 1,

0 ≤ j ≤ l − 1.

Parallelizable Authentication Trees

PATs [HJ05] use a nonce-based MAC and a key K to authenticate each of the
nb data blocks Pi using a tag Tl,i:

Tl,i = MAC(K;Nl,i;Pi) 0 ≤ i ≤ nb − 1.

The nonces Nl,i are recursively authenticated in a tree structure using again
nonce-based MACs. While the key K and the root nonce N0,0 must be stored
on the secure chip, all other nonces and the tags are stored publicly in off-chip
memory:

Tj,i = MAC(K;Nj,i;Nj+1,2i||Nj+1,2i+1) 0 ≤ i ≤ nb
2l−j

− 1,

0 ≤ j ≤ l − 1.

Tamper Evident Counter Trees

While Merkle trees and PATs provide memory authenticity, TEC trees [Elb+07]
additionally provide memory confidentiality. Therefore, TEC trees use Added
Rendundancy Explicit Authenticity (AREA) [Fru05] codes. Hereby, each plain
memory block Pi is padded with a nonce Nl,i and then encrypted with key K
using a common block cipher:

Cl,i = E(K;Pi||Nl,i) 0 ≤ i ≤ nb − 1.

For verification, a ciphertext Cl,i is decrypted to P ′i ||N ′l,i and N ′l,i compared with
the original nonce Nl,i. Hereby, the authenticity is ensured by the diffusion of the
block cipher as it makes it hard for the adversary to modify the encrypted nonce
Nl,i. The nonce Nl,i is formed from the memory block address and a counter
ctrl,i [Elb+07]. The nonce counters are recursively authenticated using AREA
codes in a tree structure. The key K and the root counter ctr0,0 are stored on
the secure chip:

Cj,i = E(K; ctrj+1,2i||ctrj+1,2i+1||Nj,i) 0 ≤ i ≤ nb
2l−j

− 1,

0 ≤ j ≤ l − 1.

74 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

7.2 Re-Keying for Memory Encryption

Present memory encryption and authentication schemes are designed to protect
off-chip memory against adversaries with physical access assuming a microchip
that is secure against all active and passive attacks. However, in Internet-of-
Things (IoT) scenarios, the assumption that the microchip is secure against all
passive attacks is often too strong since, in practice, a microchip running an
algorithm leaks information on the processed data via various side channels. This
side-channel leakage allows attackers to perform passive side-channel attacks on
memory encryption, such as presented in Chapter 6. In this respect, Chapter 2
pointed out that DPA is particularly powerful and can be prevented by frequent
re-keying without adding costly DPA countermeasures to the implementation
itself. Simultaneously, there are more and more practical systems being deployed
with unprotected cryptographic accelerators by vendors not being aware of side-
channel attacks. As a result, re-keying based schemes are an interesting option
for protecting memory encryption and authentication against DPA.

In this section, we hence investigate the security of re-keying in the context of
memory encryption and authentication. It shows that contrary to other use cases,
the re-keying operation itself can be realized without DPA countermeasures
when protecting memory. However, the application of re-keying to memory
encryption does not prevent the side-channel plaintext-recovery attacks presented
in Chapter 5.

7.2.1 The Re-Keying Operation

Up until now, the principle of re-keying was applied only to communicating
parties aiming for confidential transmission. Hereby, constructions following
Figure 2.2 and Figure 2.3 prevent DPA, but require the initialization with a fresh
session key K0 and thus secure key synchronization between the communicating
parties. For this reason, both constructions use a secure re-keying function
g : (K,N) 7→ K0 to derive a fresh session key K0 from a pre-shared master secret
K and a public, random nonce N [Med+10; GGM86; Sta+10]. However, this
approach shifts the DPA problem to the re-keying function g, which thus needs
DPA protection through mechanisms like masking.

The encryption and authentication of data stored in memory gives different
conditions for the instantiation of re-keying based schemes. In particular, en-
crypting data in memory means that en- and decryption is performed by the same
party, i.e., a single device encrypts data, writes it to the memory, and later reads
and decrypts the data. Therefore, key synchronization becomes unnecessary and
the cryptographic scheme can be re-keyed using random numbers without the
need for any cryptographic primitive or function being implemented with DPA
countermeasures, i.e., without the need for a secure re-keying function g.

7.3. DPA-Secure Memory Encryption and Authentication 75

7.2.2 Re-Keying and Plaintext Confidentiality

As Chapter 5 showed, frequent re-keying effectively prevents DPA on the key,
but in certain applications yet results in a loss of plaintext confidentiality. Unfor-
tunately, this is the case for the application of re-keying to memory encryption
as well. The main observation that leads to this conclusion are read-modify-write
operations that inevitably occur in any encrypted memory. These take place
whenever the write granularity is smaller than the encryption granularity. In
combination with re-keying, these read-modify-write operations cause constant
plaintext parts to be encrypted several times using different keys. It is this
mixing of constant plaintext parts with varying keys that allows to perform the
side-channel plaintext-recovery attacks from Chapter 5 to learn the confidential,
constant plaintexts. For re-keyed stream ciphers such as in Figure 2.2, this means
to perform a plain, first-order DPA. For re-keyed block encryption such as in
Figure 2.3, this means to perform a profiled, second-order DPA.

Both variants of side-channel plaintext-recovery attacks do not target the
actual keys, but the confidential memory content. While these attacks cannot
be prevented in the memory scenario, note that the effort and complexity of
profiled, second-order DPA attacks is very high in practice. Hence, re-keyed block
encryption provides a suitable basis to construct a memory encryption scheme
with first-order DPA security. We further pursue this approach in Section 7.3.
To obtain higher-order security, we extend our design in Section 7.4 and propose
masking of the stored plaintext values. This effectively increases the number of
values to be recovered via templates in side-channel plaintext-recovery attacks on
block encryption without the need for masking being implemented in the cipher.

7.3 DPA-Secure Memory Encryption and
Authentication

Section 7.2 indicates that frequent re-keying of a block cipher based mode
is a suitable approach to construct a memory encryption and authentication
scheme with first-order DPA security from unprotected cryptographic primitives.
However, one major requirement in Section 7.1 is to provide fast random access in
memory, but random access is not a feature of present re-keying based encryption
schemes.

A common way to provide fast random access to large memory is to split the
memory into blocks that can be directly accessed. However, encrypting each of
these memory blocks by the means of fresh re-keying would render the number
of keys to be kept available in secure on-chip storage too high. This problem
is quite similar to memory authentication with replay protection, which also
requires block-wise authenticity information to be stored in a trusted manner. To
tackle this issue, state-of-the-art authenticity techniques (cf. Section 7.1) employ
tree constructions to gain scalability and to minimize the required amount of
expensive on-chip storage.

76 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

In this section, we therefore use the synergies between frequent re-keying and
memory authentication to present Meas—a Memory Encryption and Authentica-
tion Scheme with first-order DPA security built upon unprotected cryptographic
primitives and suitable for all kinds of large memory, e.g., RAM and NVM.
Similar to existing memory authentication techniques, Meas uses a tree structure
to minimize the amount of secure on-chip storage. However, instead of hashes or
nonces, keys are encapsulated within the tree. In more detail, the leaf nodes of
the tree, which store the actual data, are encrypted and authenticated using an
authenticated encryption scheme that is provided with fresh keys on every write
access. Similarly, the inner nodes of the tree, which store the encryption keys for
their respective child nodes, are encrypted with an encryption scheme that uses a
fresh key on every write. Meas is shown secure in the leaking chip model, and in
particular, its DPA security is substantiated by limiting the number of different
processed inputs per key to q = 2 such as in [Bel+14; Pie09; Sta+10; TS15].

In the following, we first present the construction of Meas, followed by a
security analysis considering authenticity and side-channel attacks.

7.3.1 Construction

The construction of Meas is designed to be secure according to the leaking
chip model. Therefore, Meas requires a Simple Power Analysis (SPA)-secure
block encryption scheme ENC and an SPA-secure authenticated encryption
scheme AE. Both ENC and AE have to fulfill the common security properties for
(authenticated) encryption schemes and must be based on block encryption such
as in [TS15]. Section 7.5 will detail concrete instances for both ENC and AE.
Besides, Meas requires a secure random number generator for generating keys.

An example of the tree construction proposed for Meas is depicted in Fig-
ure 7.1. For the sake of simplicity, this example as well as the following description
assumes the use of a binary tree, i.e., arity a = 2. However, instantiating the tree
with higher arity is easily possible.

The structure of Meas is as follows. The data in memory is split into
nb plaintext blocks Pi. Each of these Pi is encrypted and authenticated to a
ciphertext-tag pair (Ci, Ti) using the authenticated encryption scheme AE with
data encryption key DEKi:

(Ci, Ti) = AE(DEKi;Pi) 0 ≤ i ≤ nb − 1.

The encryption scheme ENC then encrypts the data encryption keys DEKi to
the ciphertexts Cl−1,i using key encryption keys KEKl−1,i. The operator ||
denotes concatenation.

Cl−1,i = ENC(KEKl−1,i;DEK2i||DEK2i+1) 0 ≤ i ≤ nb
2
− 1.

7.3. DPA-Secure Memory Encryption and Authentication 77

C
1

T
1

D
E
K

0
D
E
K

1

K
E
K

2,
0
K
E
K

2,
1

K
E
K

0,
0

C
0

T
0

C
3

T
3

D
E
K

2
D
E
K

3

C
2

T
2

C
5

T
5

D
E
K

4
D
E
K

5

C
4

T
4

C
7

T
7

D
E
K

6
D
E
K

7

C
6

T
6

K
E
K

2,
2
K
E
K

2,
3

K
E
K

1,
0
K
E
K

1,
1

C
2,
0

C
2,
1

C
2,
2

C
2,
3

C
1,
0

C
1,
1

C
0,
0

F
ig
u
re

7
.1
:
M
e
a
s’

tr
ee

co
n
st

ru
ct

io
n

fo
r
n
b

=
8

d
a
ta

b
lo

ck
s

a
n
d

w
it

h
a
n

a
ri

ty
o
f
a

=
2
.

78 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

Recursively applying ENC in a similar way to the key encryption keys finally
leads to the desired tree.

Cj,i = ENC(KEKj,i;KEKj+1,2i||KEKj+1,2i+1) 0 ≤ i ≤ nb
2l−j

− 1

0 ≤ j ≤ l − 2

While all ciphertexts and tags are stored in public, untrusted memory, the
root key KEK0,0 is stored on the leaking chip.

Read Operation

When reading data (Ci, Ti) from memory, all the keys on the path from the root
key KEK0,0 down to the respective data encryption key DEKi are decrypted
one after another. The data encryption key DEKi is then used to decrypt and
authenticate the respective memory block (Ci, Ti).

For example in Figure 7.1, to obtain the plaintext block P2 stored in (C2, T2),
the root key KEK0,0 is used to decrypt KEK1,0. Then, KEK1,0 is used to
decrypt KEK2,1, which permits to decrypt DEK2. Finally, DEK2 is used with
(C2, T2) to authenticate and decrypt the respective plaintext P2.

Note that the decryption of the encapsulated keys can only be performed
sequentially. However, this is not considered a problem since computation is
typically much faster than storage (e.g., RAM or HDD). On the other hand,
caching of the intermediate nodes (key encryption keys) is supported by Meas
in order to achieve good performance, e.g., small average access latency.

Write Operation

Writing data to the memory is where the actual re-keying is performed. Namely,
the process of updating Pi with P ′i involves the replacement of all keys along
the path from the root key KEK0,0 down to the respective data encryption
key DEKi with randomly generated ones. On the other hand, the keys for the
adjacent subtrees are only re-encrypted under the new node keys. This re-keying
can be performed in a single pass from the root to the leaf node of the tree.

For example in Figure 7.1, when block P5, which is stored in (C5, T5), gets re-
placed, also the keys KEK0,0, KEK1,1, KEK2,2 and DEK5 have to be changed.
Therefore, the node C0,0 is decrypted to extract KEK1,0 and KEK1,1. The new
node C ′0,0 can then be determined by encrypting KEK1,0 and a new KEK ′1,1
with the new key encryption key KEK ′0,0. The nodes C1,1 and C2,2 are updated
in the same way. The new data block (C ′5, T

′
5) is then the result of authenticated

encryption of P ′5 under the new data encryption key DEK ′5.
Note that it is not necessary to check authenticity when a full block is written

to the memory. Only read-modify-write operations on a data block require an
authenticity check. This authenticity check is automatically performed when the
data is read prior to modification and thus does not inhere any additional costs.
Also note that read-modify-write operations require only one single tree traversal,
because the data encryption key required for the read operation automatically
becomes available in the last steps of the write (and re-keying) procedure.

7.3. DPA-Secure Memory Encryption and Authentication 79

7.3.2 Authenticity

The design of Meas protects data authenticity with respect to spoofing, splicing,
and replay attacks using both the authentic root key and the AE scheme. In
particular, spoofing and splicing attacks on the leaf nodes are directly detected
by the AE scheme since different keys are used for each block. Moreover, the AE
scheme indirectly also protects the inner tree nodes for properly chosen schemes
AE and ENC. In such case, any tampering with the ciphertext of an intermediate
node will lead to a random but wrong key to be decrypted. This tampering
will thus propagate down to the leaf node to give an erroneous, random data
encryption key and finally an authentication error.

Replay protection for all nodes is the result of the authentic root key, which
gets updated on every write to any leaf node, i.e., choosing a new, random root
key on every write access ensures that the secure root reflects the current state
of the tree in public memory. Vice versa, the authenticity tags in the leaf nodes
output by the AE scheme reflect the authenticity of the path from the root to
the respective data block. Therefore, if the authenticity check of a leaf node fails,
any node on the path from the root to the leaf may be corrupted.

Handling corruption

As soon as a corrupted leaf node has been detected, the authenticity of the
tree must be restored before any further actions are taken. Otherwise, an
adversary may be able to perform DPA attacks on encryption keys by introducing
authenticity failures on purpose.

Restoring authenticity of the tree is simple and requires no additional support.
It is sufficient to replace all corrupted data (leaf) nodes with random values
since regular writes restore authenticity from the root to the respective leaf node.
Restoring authenticity in this manner also causes re-keying on all nodes on the
path from the root to the leaf to take place. This re-keying procedure effectively
thwarts any DPA that otherwise could be performed by malicious modification
of stored ciphertexts.

For example in Figure 7.1, if the authenticity check of the node (C4, T4)
fails, any of the nodes C0,0, C1,1, C2,2 and (C4, T4) can be erroneous. Therefore,
the plaintext P4 is replaced with a random plaintext P ′4 in order to restore
the authenticity. Hereby, new keys KEK ′0,0,KEK

′
1,1,KEK

′
2,2 and DEK ′4 are

chosen and the stored values C ′0,0, C
′
1,1, C

′
2,2 and (C ′4, T

′
4) are updated accord-

ingly. This procedure restores the authenticity of the path from KEK0,0 to
DEK4, but leaves any adjacent subtree intact. Moreover, the choice of fresh
keys KEK ′0,0,KEK

′
1,1,KEK

′
2,2 and DEK ′4 prevents first-order DPA through

adversaries repeatedly modifying C ′0,0, C
′
1,1, C

′
2,2 or (C ′4, T

′
4).

Recovering from corruption

Depending on the actual application, there are different approaches to deal
with the corruption. A straightforward approach, which is suitable for RAM
encryption, is to simply reset the tree and start from scratch. The memory

80 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

encryption engine of SGX [Gue16], for example, follows this approach and
requires a system restart to recover. However, applying this idea to block-level
disk encryption is impractical since a reset of the tree is equivalent to destroying
the data of the whole block device.

Another, more graceful approach is to recover from the corruption when
possible. In the case of RAM encryption, it is, for example, possible that the
operating system kills (and restarts) only those processes which actually accessed
a corrupt data block. In the setting of disk encryption, it can be enough to report
which files or directories were destroyed to enable appropriate error handling.

Given a single authentication failure, it is not possible to determine which node
is corrupt. However, since corruptions in higher tree nodes lead to authenticity
failures in more data blocks, it is possible to identify the subtree which is affected
by the data corruption using multiple adjacent reads. This can even be done
quite efficiently in a binary search like approach (i.e., O(logm) reads), assuming
that only a single node has been corrupted.

For example in Figure 7.1, when the authenticity check of data block 2, i.e.,
(C2, T2), fails, then data block 3 is checked next. If block 3 is authentic, then
only block 2 (child of DEK2) is corrupt. Otherwise, either block 0 or block 1 is
checked next. If this next block is authentic, then only blocks 2 and 3 (children
of KEK2,1) have been corrupted. In case of another error, a final check in the
right subtree (children of KEK1,1) is needed to determine if only the left subtree
(children of KEK1,0) or the whole tree is corrupt. Note however that locating
the corruption requires each authenticity failure to be followed by a re-keying
step as described in Section 7.3.2 in order to resist DPA. For example, if data
block 2 is read and detected to be corrupt, the path from the root key to data
block 2 must be re-keyed. If during the location phase data block 3 is detected to
be unauthentic as well, also the path from the root key to data block 3 must be
re-keyed. The same procedure applies to all other checks in the location phase.

7.3.3 Side-Channel Discussion

We discuss the side-channel security using three types of attackers with increasing
capabilities. The first type solely uses passive attacks and tries to exploit the
side-channel leakage during operation. The second type additionally induces
authenticity errors by tampering with the memory and strives for exploiting
error handling behavior. The third type further tries to gain an advantage by
restarting, i.e., power cycling, the whole system at arbitrary points in time.

Passive Attacks. The protection of Meas against DPA lies within the re-
keying approach. Therefore, every randomly generated key is used for the
encryption and decryption of exactly one tree node with one specific plaintext.
As soon as the plaintext of a node changes in any way, also a new key for the
encryption of the respective node is generated.

For a certain key, a physical attacker who only passively observes Meas can
thus at most acquire side-channel traces of one encryption and arbitrarily many

7.3. DPA-Secure Memory Encryption and Authentication 81

decryptions of one single plaintext. Even though the trace number is possibly
high, the best an attacker can do is to combine all the traces to a single rather
noise free trace of this one key-plaintext pair. To perform a DPA, on the other
hand, traces for multiple different plaintexts are required. In the presence of
a passive physical attacker, Meas is therefore secure against first-order DPA
attacks given that both ENC and AE are SPA secure.

Passive Attacks and Memory Tampering. An active physical attacker who
tampers with the memory content can gain additional information by corrupting
the ciphertext of certain nodes. Namely, such tampering gives side-channel
information from the decryption of different data for one single key. However,
even with such tampering it is only possible to acquire one additional side-channel
trace for a specific key. This is due to the fact that every tampering is detected
as soon as the leaf node is authenticated. Handling the authentication error
involves restoring authenticity and thus re-keying which makes the gathering
of further traces impossible. As a result, the number of acquirable traces (i.e.,
under the same key, but with different ciphertexts) is clearly bounded by two.
Given the assumptions in related work on leakage-resilient cryptography [Pie09;
Sta+10; TS15], bounding the input data complexity per key by two makes Meas
secure against first-order DPA for malicious memory corruption.

Passive Attacks, Memory Tampering and Restarts. The side-channel
security of Meas relies on the assumption that tree operations are performed
atomically. This means that, e.g., once a read operation is started, all steps
involved in Meas, i.a., the MAC verification and the re-keying on authenticity
failure, must be performed and completed. This assumption holds true for a
running device since physical fault attacks on the leaking chip are outside the
threat model. However, restarting the device during operation can break this
assumption. In this case, attackers can use a combination of power cycling and
memory tampering to collect arbitrarily many side-channel traces and perform a
first-order DPA against a non-volatile key. However, this attack can be prevented
when the concrete use case is known.

For the encryption and authentication of RAM, there is simply no reason to
maintain persistent keys between system restarts. Similar to SGX, the device
generates a new random key on startup which effectively thwarts the attack.
For NVM, however, a persistent root key is unavoidable. Yet, there are easy
and secure solutions for NVM too. For example, one could store one additional
bit on the leaking chip to record whether a presumably atomic operation is
currently active. This allows to detect aborted operations in Meas on startup
and thus to take further actions, e.g., counting and storing the number of aborted
operations on the leaking chip and appropriate error handling when a certain
threshold is reached. Such countermeasures can also be integrated with the
transaction/journaling functionality of a file system.

82 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

Summarizing, Meas itself does not contain any mechanism to deal with
malicious power cycling. However, for both RAM and NVM simple and cheap
solutions are available.

7.4 Higher-Order DPA Security

The tree construction presented in the previous section provides memory confi-
dentiality and authenticity in the presence of a first-order side-channel adversary.
However, profiled, second-order attacks as outlined in Chapter 5 still reveal the
content of the tree nodes protected by the means of re-keying. Since the loss of
confidentiality of a node close to the root would also reveal large chunks of the
protected memory, i.e., all child nodes, protection against higher-order DPA is
desirable.

In this section, we propose masking of the plaintext values to extend the
protection of Meas to higher-order DPA. The extension works with cryptographic
primitives implemented without DPA countermeasures and allows to dynamically
adjust the protection order depending on the actual threat.

7.4.1 Concept

The basic idea to provide higher order DPA security is to add a masking scheme
(cf. Section 2.2.1) to Meas. However, unlike the masking of specific cryptographic
implementations, the proposed data masking scheme operates with unprotected
primitives. Therefore, the plaintext data in each tree node of Meas is first
masked, and then the masked plaintext and the masks are encrypted separately
and both stored in memory. On decryption, both the masked plaintexts and the
masks are decrypted and the masks applied to obtain the original plaintext value.

The masking scheme requires new masks to be chosen whenever the key of a
tree node is changed. This is the case on every write access to a specific node.
As a result, the data being encrypted is randomized. This prevents that constant
data is encrypted under different keys. Moreover, it requires adversaries trying to
learn a constant plaintext using profiled side-channel plaintext-recovery attacks
such as described in Section 5.1.2 to additionally extract information on every
single mask from the side-channel. Therefore, the order of the attack increases
accordingly.

7.4.2 Masking Details

The following masking approach can be applied accordingly to both the interme-
diate nodes, which use an encryption scheme ENC, and the leaf nodes, which
use an authenticated encryption scheme AE. However, for simplicity we only
consider the encryption of an arbitrary tree node using an encryption scheme
ENC.

When encrypting a tree node in Meas, the node’s plaintext P is split into
u+1 blocks P0, ..., Pu according to the size of the underlying encryption primitive,

7.4. Higher-Order DPA Security 83

i.e., 128 bits in case of AES. In order to protect this node against d-th order DPA,
d− 1 random and secret masks M0, ...,Md−2 have to be generated. These masks
are then applied to each plaintext block Pi to give random values Ri:

Ri = Pi ⊕M0 ⊕ ...⊕Md−2 0 ≤ i ≤ u.

In the actual encryption, both the masks M0, ...,Md−2 and the random values
R0, ..., Ru are processed and the respective ciphertext C is stored in memory:

c = ENC(DEK;M0||...||Md−2||R0||...||Ru).

Whenever the node has to be read, the ciphertext is decrypted to give
M0||...||Md−2||R0||...||Ru. To obtain the plaintext blocks Pi, the masking is
reverted by again XOR-ing all masks M0, ...,Md−2 to each block Ri.

7.4.3 Side-Channel Discussion

The re-keying of the (authenticated) encryption scheme guarantees that adver-
saries are not capable of building suitable DPA power models from the observation
of ciphertexts and thus prevents DPA against the key completely.

To prevent the loss of plaintext confidentiality from the profiled, second-order
attacks outlined in Chapter 5, the proposed masking scheme randomizes the
plaintext input using d−1 random, secret masks. As a result, the scheme requires
adversaries to combine side-channel information from (d + 1) different values
to recover the plaintext, i.e., to perform a (d+ 1)-th order DPA. In particular,
such DPA requires to learn side-channel information on the varying key, an
intermediate value in the cipher, and the d − 1 masks. On the other hand,
the masking scheme requires to additionally encrypt d − 1 masks in each tree
node. However, for a properly chosen encryption scheme ENC, these encryption
operations cannot be exploited in a DPA, because both the masks and the keys
are random and always changed simultaneously on every write access to the
respective tree node.

Note, however, that in order for the masking to protect Meas also in the
presence of hardware glitches, the sum of plaintext and the masks must be stored
in a register prior to the encryption operation. This is automatically the case if
the masking is implemented in software. Hereby, the result is stored in a register
and may then, e.g., be further processed in a cryptographic hardware accelerator.

Besides, we also emphasize that profiled DPA attacks such as in Chapter 5—
which are counteracted by the proposed masking scheme—are quite hard to
conduct on state-of-the-art systems. For example, while the profiled side-channel
plaintext-recovery attack in Chapter 5 was performed against a software imple-
mentation on an 8-bit microcontroller, a profiled DPA will take significantly
more effort on hardware implementations embedded in a complex system-on-chip.
Moreover, the attack complexity also rises rapidly with the attack order. As a
result, small protection orders will already be sufficient for Meas in practice.
However, a detailed analysis of the side-channel leakage of a device implementing
Meas is indispensable for a proper choice of the protection order.

84 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

p r1 p r2
0

E
P
0

C
0

p r2

E
C
1

P
1

p r2

E
C
u-1

P
u-1

...

K0

K1 K2 Ku

Figure 7.2: Schematic overview of ENC in Meas-v1.

7.4.4 Implementation Aspects

The definite choice of the implemented protection order allows for various trade-
offs influenced by several parameters: the cost for storing the masks, the concrete
leakage behavior of the device, and the risk. Hereby, the leakage behavior and
the cost for storing the masks are closely coupled.

A DPA is more likely to be successful on a device the more side-channel
leakage the device gives. Therefore, a higher protection order is needed the more
the device leaks, which leads to higher storage costs for masks. Alternatively, the
leakage of the device might be reduced by hiding countermeasures [MOP07] in
the implementation, such as shuffling. However, such countermeasures can only
be built into newly designed devices. Nevertheless, besides the actual strength of
a potential attacker, the actual leakage behavior of the device forms the basis for
the choice of the protection order and thus memory cost.

Besides, the choice of the protection order is also strongly influenced by the
concrete risk of an attack. In more detail, a trade-off between the protection
order and the risk is possible. Namely, the higher the risk of an attack to a
specific block, the better should be the protection of the respective block, i.e., the
higher should be the protection order. Concretely in Meas, the tree nodes stored
in levels closer to the root are a more interesting target for an attacker since
revealing the keys stored in these nodes would allow to decrypt large parts of
the memory. Therefore, tree nodes closer to the root are at higher risk and thus
need a higher protection order. However, the number of nodes in one tree level
decreases the closer the respective level is to the root. As a result, increasing the
protection order for tree nodes at higher risk has only little memory overhead in
Meas and thus is an inexpensive improvement of security against higher-order
DPA.

7.5 Instantiation

The design of Meas requires an SPA-secure block encryption scheme ENC and
an SPA-secure authenticated encryption scheme AE. Using existing proposals of
leakage-resilient block encryption [TS15] and a leakage-resilient MAC [PSV15],
both ENC and AE can be easily obtained from unprotected cryptographic imple-

7.5. Instantiation 85

p r1 p r2
0

E
P
0

C
0

p r2

E
C
1

P
1

p r2

E
C
u-1

P
u-1

...

C

0

p r2

C
u-2

p r1

C
u-1

T
s
tag

K0

K1 K2 Ku

Figure 7.3: Schematic overview of AE in Meas-v1.

mentations of standard primitives like AES and SHA-2 and the generic composi-
tion encrypt-then-MAC [BN08]. However, for the encryption and authentication
of RAM, more lightweight constructions for ENC and AE are desirable.

In this section, we present two lightweight Meas instances for the purpose of
RAM encryption and authentication. The first, Meas-v1, uses the lightweight
block cipher PRINCE for encryption, and the sponge Ascon for key stream
generation and authentication. As a result, Meas-v1 uses a fresh key for the
encryption of each plaintext block to prevent DPA on the key. The second,
Meas-v2, improves on Meas-v1 in terms of efficiency in trade for a slightly
increased number of, e.g., 4 or 8, different inputs processed under the same key.
In particular, it omits key derivation in intermediate tree nodes to instead directly
access the encrypted keys required for the next tree level using the tweakable
block cipher QARMA. The security of Meas-v2 thus relies on the infeasibility of
DPA for 4- or 8-limited data complexity per key.

7.5.1 Meas-v1

Our instance Meas-v1 is intended for RAM encryption and authentication and
constructs ENC and AE by combining two different primitives: a lightweight
block cipher E for encryption, and an r-round permutation pr for sponge-based
key derivation and authentication. While ENC uses the sponge merely for key
stream generation, the sponge duplex construction [Ber+11a] is used in AE to
also absorb the computed ciphertext and to compute the tag. Algorithm 1 gives
the description of the respective algorithms. Their schematic is illustrated in
Figure 7.2 and Figure 7.3, respectively. Since Meas applies (authenticated)
encryption to message blocks of fixed, well-defined length, we describe ENC and
AE without a padding rule and assume the messages to be a multiple of the sBC -
bit block size of E. Note that for optimization, AE absorbs the ciphertexts Ci
with some delay. This allows to compute the permutation pr2 and the encryption
E in parallel.

We use PRINCE [Bor+12] as the block cipher E and the Ascon permuta-
tion [Dob+16] with r1 = 8 and r2 = 6 rounds for the sponge. PRINCE uses a
key of skey = 128 bits to process blocks of sBC = 64 bits and the Ascon state S
is sized sp = 320 bits. These parameters allow to implement both ENC and AE

86 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

Algorithm 1: Specification of Meas-v1.

Encryption: ENC(K0;P)

Input: key K0 ∈ {0, 1}skey , plaintext P ∈ {0, 1}∗
Output: ciphertext C ∈ {0, 1}∗

P0, . . . , Pu−1 ← sBC-bit blocks of P
S ← K0||0sp−skey

S ← pr1(S)
for i = 0, . . . , u− 1 do

K ← S[0 . . . skey − 1]
Ci ← E(K;Pi)
S ← pr2(S)

end for
return C0|| . . . ||Cu−1

Authenticated Encryption: AE(K0;P)

Input: key K0 ∈ {0, 1}skey , plaintext P ∈ {0, 1}∗
Output: ciphertext C ∈ {0, 1}∗, tag T ∈ {0, 1}stag

P0, . . . , Pu−1 ← sBC-bit blocks of P
S ← K0||0sp−skey

S ← pr1(S)
for i = 0, . . . , u− 1 do

K ← S[0 . . . skey − 1]
Ci ← E(K;Pi)
if i 6= 0 then

S ← (S[0 . . . sBC − 1]⊕ Ci−1)||S[sBC . . . sp − 1]
end if
S ← pr2(S)

end for
S ← pr1((S[0 . . . sBC − 1]⊕ Cu−1)||S[sBC . . . sp − 1])
C ← C0|| . . . ||Cu−1

T ← S[0 . . . stag − 1]
return (C, T)

7.5. Instantiation 87

Algorithm 2: Specification of ENC in Meas-v2.

Encryption: ENC(K0;P)

Input: key K0 ∈ {0, 1}skey , plaintext P ∈ {0, 1}∗
Output: ciphertext C ∈ {0, 1}∗

P0, . . . , Pu−1 ← sBC-bit blocks of P
for i = 0, . . . , u− 1 do

Ci ← E(K0; addr(Pi);Pi)
end for
return C0|| . . . ||Cu−1

with adequate throughput and low latency in hardware. The size of the tag stag
can be chosen according to the desired security level, e.g., stag = 64 or 128 bits.

Both ENC and AE guarantee the use of each key for the encryption of a single
plaintext Pi and for any tree node size. Note however that an implementation
must only decrypt those plaintext parts within intermediate tree nodes (i.e.,
keys) that are actually needed for accessing the requested data block in the leaf.
Namely, these keys become authenticated when accessing the leaf node which
allows to detect malicious modifications of these keys in memory. On the other
hand, decrypting keys that are not used any further allows attackers to modify
the respective keys’ ciphertext and thus to induce a DPA setting without being
detected [Dob+17].

7.5.2 Meas-v2

One performance bottleneck of Meas-v1 is the sequential key derivation within a
tree node. On the other hand, direct access to a certain key within an intermediate
tree node can significantly increase performance. By relaxing the constraints for
DPA security, direct access to certain keys within a specific tree node becomes
feasible.

For this purpose, we construct ENC using a tweakable block cipher. This
allows to efficiently en-/decrypt parts of a tree node similar to Electronic Code
Book (ECB), but provides better security in terms of ciphertext distinguishability.
Given a tweakable block cipher E(K; τ ;P) that encrypts a sBC-bit plaintext P
with the key K and tweak τ , a tree node comprising u plaintext blocks P0, ..., Pu−1

is thus encrypted by simply computing E(K; addr(Pi);Pi) for i = 0, ..., u − 1,
where the tweak τ is set to be the address of the respective Pi in memory. This
is summarized in Algorithm 2.

On the other hand, we keep the design of AE in Meas-v2 the same as in Meas-
v1. However, to avoid the implementation of another cipher for the use in AE, we
recommend using the same tweakable cipher E(K; τ ;P) in AE as well and setting
the tweak τ in AE to either the block address or a constant. As the tweakable

88 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

PL

PS

Processor
with Caches

MEAS Pipeline

Memory
Controller

D
D

R
M

em
ory

Figure 7.4: Zynq platform with Meas pipeline.

block cipher E(K; τ ;P), we use the lightweight design QARMA-64 [Ava17] with
the parameter r = 6.

In terms of DPA, the mentioned approach increases the number of different
inputs processed using a single key according to the number of plaintext blocks
u in a tree node. However, for many practical implementations DPA will remain
infeasible also for, e.g., 4 or 8, different encryptions using the same key. This
assumption facilitates the efficient and secure implementation of Meas-v2 for,
e.g., binary and 4-ary trees.

7.6 Implementation

The two lightweight instances Meas-v1 and Meas-v2 are designed for RAM
encryption and authentication. In order to show their practical applicability to
this use case, an implementation allowing the evaluation of performance and im-
plementation cost is desirable. In this section, we thus present an implementation
of both Meas instances on the Xilinx Zynq platform.

7.6.1 Platform

For the implementation, we chose a ZedBoard featuring the Xilinx Zynq XC7Z020
SoC and 512 MB DDR3 RAM. This SoC consists of two parts: (1) a Processing
System (PS) comprising a dual-core ARM Cortex-A9 processor as well as several
peripherals, and (2) a Xilinx Artix-7 Programmable Logic (PL). The PS is
connected to the PL via 32-bit Advanced Extensible Interfaces (AXI). The PL
has access to the RAM via 64-bit AXI.

For memory encryption and authentication, we designed an encryption pipeline
capable of Meas that is placed in the PL. As shown in Figure 7.4, the software
running on the ARM core is configured such that the processor accesses the
main memory via the PL, where all accesses are transparently encrypted and
authenticated using Meas.

7.6. Implementation 89

Data Tag Key

Tree NodesData Nodes

KeyKeyKey

Figure 7.5: Memory layout for 4-ary Meas.

7.6.2 Memory Layout

The implementation of Meas requires to place all the tree nodes as well as their
meta data somewhere in the RAM. For this purpose, and as shown in Figure 7.5,
the physical memory is partitioned into two parts. In the first part, all data
(leaf) nodes of Meas are placed. These also contain their respective authenticity
tags. The consecutive, second part contains all intermediate tree nodes storing
the keys.

7.6.3 Address Translation

In order to provide the functionality of Meas transparently to the CPU, a
translation of the CPU’s memory requests to the encrypted physical memory
is required. Without consideration of tree node fetches, Figure 7.6 illustrates
this CPU address translation. The CPU memory request is split according to
the block size of the data (leaf) nodes. The Meas implementation then issues
independent requests to each of these data leaf nodes. Hereby, the size of the
authentication tags is taken into account, which causes both an address shift and
additional tags to be fetched.

However, the tree construction requires to also load several keys to decrypt
a certain data (leaf) node. These key load operations are handled the same
way as the requests to the data leaf nodes themselves. In particular, the Meas
implementation issues, translates, and processes the respective key load requests
to intermediate tree nodes transparently without further CPU interaction and
follows an address translation similar to data leaf nodes.

7.6.4 MEAS Pipeline

The pipeline architecture of our Meas implementation is visualized in Figure 7.7.
Its design results from the typical data flow in encrypted memory accesses. In
particular, all requests run through a series of modules performing different actions.
Hereby, the single modules interact by using a simple handshake mechanism.
The width w of the respective data stream can be set to either 64 or 128 bits.

Our implementation communicates with CPU and memory via five different
AXI4 interfaces: (1) the CPU address port, (2) the CPU read port, (3) the CPU
write port, (4) the memory read port, and (5) the memory write port. Read
requests use the modules shaded in light grey. Write requests are implemented

90 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

CPU Memory Request

Mem. Start

Block 1 Block 2

Mem. End

C
P

U
 M

em
o
ry

 L
a
y
o
u
t

P
h
y
si
ca

l
M

em
o
ry

Physical block 1

Split Request

Block 3

Encrypted Block 3 TagEncrypted Block 2 TagEncrypted Block 1 TagEncrypted Block 0 Tag

Data Mem. End
Tree Start

Mem. Start

Physical block 2 Physical block 3

Block 0

Physical block 0

Figure 7.6: Data node requests for 4-ary Meas.

as read-modify-write operations and additionally use the modules depicted in
dark grey. Dashed lines mark modules needed to process or optimize key related
requests to intermediate tree nodes.

Data Flow

The implementation in Figure 7.7 processes a typical memory request as fol-
lows. First, the CPU issues a request on the CPU Address Port. The Request

Modifier then splits and aligns the request according to the block size of the data
(leaf) nodes. It further issues the respective key load requests within intermediate
tree nodes. The Memory Reader fetches the required (encrypted) data from the
main memory via the Memory Read Port. The Key Injector then inserts the
key to be used for decryption into the data stream fetched from the memory.
This key might either be a root key stored in the Secure Root, or be the result
of a previous key load request that is obtained by the Key Processing module.
The Decryption module performs the actual decryption procedure according to
our instances in Section 7.5.

For key load requests, the requested key is extracted from the decrypted data
using the Key Processing module. For read requests, the decrypted data is
filtered according to the original CPU request by the Data Filter and returned
to the CPU via the CPU Read Port by the Read Responder. To correctly handle
CPU read requests with wrapping burst functionality, the Wrap Burst Cache

performs a re-ordering of the decrypted data if necessary. For write requests,
the Data Modifier modifies the decrypted data according to the data received
from the CPU via the CPU Write Port. This is where the actual read-modify-
write procedure takes place. The modified data is encrypted again using the
Encryption module and written to the main memory via the Memory Write

Port by the Memory Writer.

To improve the performance of the Meas pipeline, the Secure Root can
implement an arbitrary number of roots to support multiple parallel trees in
memory. Multiple roots effectively reduce both the tree height and the memory
overhead in case more secure memory is available on the secure chip. To further

7.7. Evaluation 91

Request
Modifier

Cache
Fetcher

Secure
Root

Memory
Reader

Key
Injector

Decryption Data Filter
Wrap Burst

Cache
Read

Responder

Data
Modifier Encryption

Memory
Writer

Key
Cache

Key
Processing

Cache
Writer

CPU
Addr. Port

Memory
Write Port

CPU
Write Port

Memory
Read Port

CPU
Read Port

PRNG

Figure 7.7: Meas encryption and authentication pipeline.

improve the performance of read requests, the Meas pipeline incorporates a
Key Cache for faster key retrieval within the tree. For this purpose, the Cache

Fetcher queries the cache for the key requested in a key load request. On a hit,
the key load request is dropped and the key forwarded. Otherwise, the key load
request is forwarded without modification. The Key Cache is filled using the
Cache Writer, which receives the keys to be stored in the cache from the Key

Processing module.

Re-Keying

Write requests in Meas require the re-keying of all nodes on the path from
the root to the respective data leaf node. This re-keying operation takes place
in the Secure Root for the root keys themselves, and in the Key Processing

module for non-root keys stored within the tree. In particular, besides filtering
out the decryption keys from the decrypted data in key load requests, the Key

Processing updates the respective keys during write requests. The new key
is generated by the Pseudo-Random Number Generator (PRNG). This PRNG

uses a Keccak[400] instance that is initialized with a random secret and that
securely squeezes a secret, pseudo random stream. The freshly generated keys
are provided to the Data Modifier to update the keys in the respective write
requests and for encryption.

7.7 Evaluation

Meas is a novel approach to provide authentic and confidential memory with DPA
protection. While there already exist several concepts for memory encryption and
authentication (cf. Section 7.1), all of them lack the consideration of side-channel
attacks.

In this section, we compare Meas with these state-of-the-art techniques
regarding security properties, parallelizability, randomness, and memory overhead.
Our methodology to assess the memory overheads is independent of any concrete
implementation, precisely states the asymptotic memory requirements of all

92 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

schemes, and is realistic for any real-world instance. In addition, we evaluate the
practical performance of our Meas implementation from Section 7.6 compared
to TEC trees when encrypting RAM. It shows that Meas efficiently provides
first-order DPA-secure memory encryption and authentication at roughly the
same memory overhead and performance as existing authentication techniques,
which, on the other hand, completely lack the consideration of DPA at all.
In particular, the 4-ary instance of Meas-v2 is a highly suitable choice for
DPA-secure encryption and authentication of RAM.

7.7.1 Security Properties

Comparing the contestants in Table 7.1 regarding security properties shows that
only Meas and TEC trees provide both confidentiality and authenticity in the
form of spoofing, splicing and replay protection. DPA security, on the other
hand, is only featured by Meas and Merkle trees. However, Merkle trees do not
provide confidentiality and their DPA security can be considered a side effect.
Namely, the hash functions used in Merkle trees simply do not use any secret
material, i.e., keys or plaintexts, which is the common target in DPA attacks.

7.7.2 Parallelizability

A more performance oriented feature, on which previous tree constructions
typically improved on, is the ability to compute the cryptographic operations
involved in read and write operations in parallel. Having this property is nice
in theory, but is in practice not the deciding factor to gain performance. To
make use of a scheme’s parallelism, multiple parallel implementations of the
cryptographic primitives as well as multi-port memory, to read and write various
nodes in parallel, are required. Since these resources are typically not available,
a common, alternative approach to improve performance is the excessive use of
caches.

Table 7.1: Comparison of Meas with other constructions for scalable authentic and/or
confidential memory which offer block wise random access.

Auth. Conf.
DPA Parallela

Memory Overhead
Security Read Write

Meas X X X a
a−1 ·

skey
sb

+
stag
sb

PAT X X X a
a−1 ·

stag+snonce
sb

TEC Tree X X X X a
a−1 ·

stag+snonce
sb

Merkle Tree X X X a
a−1 ·

shash
sb

aRequires multiple cryptographic implementations and multi-port memory in practice.

7.7. Evaluation 93

In Meas, due to the key encapsulation approach used to achieve its DPA
security, parallelizing the computations within the encryption scheme is not
possible. However, this is not necessarily a problem preventing the adoption
of Meas in practice since on-chip computation is very fast compared to off-
chip memory accesses. Additionally, like for all authentication trees, caches for
intermediate nodes are a very effective and important measure to reduce the
average latency. In summary, the performance of any authentication tree (and
Meas) is mainly determined by the tree height, which depends on both the tree
arity and the number of blocks in the authenticated memory, and the cache size.
As a result, given a concrete implementation of the cryptographic primitive, the
actual runtime performance of all authentication trees is expected to be quite
similar, which is also emphasized by the implementation results following in
Section 7.7.6.

7.7.3 Memory Overhead

Table 7.1 further contains the memory overhead formulas that have been derived
for each scheme. These formulas take into account the tree arity a, and the sizes
for data blocks sb, nonces snonce, hashes shash, tags stag, and keys skey. The
overhead formulas neglect the influence of the actual number of data blocks nb
given that it vanishes with rising node counts. The overheads therefore have to be
considered as an upper bound which gets tight with nb →∞. This approach gives
exact and comparable results that are independent of the actual implementation
and that are realistic for any memory with more than 128 data blocks.

The different parameters involved may make the overhead comparison seem
difficult at first glance. However, it gets quite simple when actual instantiations
are considered. Instantiating the trees for a fixed security level with snonce =
stag = skey and shash = 2 · stag, for example, shows that Merkle trees, PATs, and
TEC trees have identical overhead. The overhead of Meas, on the other hand,
is even lower, especially with small arity. This is due to the fact that in Meas
only leaf nodes are directly authenticated. On the other hand, PATs and TEC
trees directly protect the authenticity of every tree node.

The memory overhead of Meas, PATs, Merkle trees, and TEC trees is also
visualized in Figure 7.8 for different block sizes. For practical instantiations, the
block size will be chosen according to the system architecture, namely, page size,
sector size, or cache line size. Both the sectors of modern disks as well as memory
pages in state-of-the-art systems are sized 4 096 bytes (=32 768 bits). Such large
block size is out of scope of Figure 7.8 as it has negligible memory overhead in
any case. Besides, the memory overhead for a block size of 4 096 bits (sector size
in older hard disks) is also very low, e.g., 7.3% for 4-ary Meas. However, the
memory overhead of Meas for block sizes fitting nowadays cache architectures is
also practical given the security features it provides. While today’s typical cache
line size is 512 bits, modern CPUs often come with features such as Adjacent
Cache Line Prefetch [Int16], which effectively double the cache line fetches from
memory to 1024 bits. In a 4-ary Meas, for example, such block size results in
decent 29.2% memory overhead.

94 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

1024 2048 4096 8192 16384
0

20

40

60

80

100

120

140

512

Block Size [bit]

O
ve

rh
ea

d
[%

]

Meas (1st-order DPA security)

Merkle Tree / PAT / TEC Tree

Meas (2nd-order DPA security)

Meas (3rd-order DPA security)

Figure 7.8: Memory overhead comparison for 4-ary trees depending on protection
order and block size with a security level of 128 bits (a = 4, snonce =
stag = skey = 128, shash = 256).

Note that these relatively small overheads—quite similar to existing authenti-
cation techniques—in combination with additional and exclusive DPA protection
are the main advantage of Meas. Using existing memory encryption and au-
thentication schemes with DPA-protected implementations, on the other hand,
would result in overheads of at least a factor of four [Bil+14; Mor+11b; PSV15;
BGS15] and thus be far more expensive, eventually rendering memory encryption
and authentication in many applications impractical.

7.7.4 Memory Overhead with Masking

The memory overhead of Meas with higher-order DPA protection additionally
depends on the protection order d and the size of the masks smask. This size
smask typically equals the block size of the cryptographic primitive sstate. For a
tree with nb data leaves and ninter intermediate tree nodes, the memory overhead
Ointer attributed to the intermediate tree nodes is

Ointer =
1

nb · sb
· ninter · (a · skey + (d− 1) · smask)

=
1

nb · sb
· 1− nb

1− a
· (a · skey + (d− 1) · smask), (7.1)

since ninter = (1− al)/(1− a) and nb = al when the tree of height l is full. The
memory overhead Oleaf attributed to the data leaf nodes is as follows:

Oleaf =
stag + (d− 1) · smask

sb
(7.2)

7.7. Evaluation 95

From Equation 7.1 and Equation 7.2, we can derive the limit of the memory
overhead as the number of memory blocks approaches infinity:

lim
nb→∞

Ointer +Oleaf =
a

a− 1
· skey + (d− 1) · smask

sb
+
stag
sb

.

In addition to the memory overhead without masking, Figure 7.8 shows the
memory overhead with masking for a 4-ary tree and 128-bit security, i.e., the
keys, the tags, and the masks are sized 128 bits. It shows that masking adds
multiplicatively to the memory overhead for all block sizes. However, for larger
block sizes, the memory overhead of Meas becomes negligible regardless of the
protection order. Note that the protection order stated for Meas in Figure 7.8
applies to all nodes in Meas. If however, and as explained in Section 7.4.4,
different protection orders are used for nodes at different risk, the depicted
plots mark the border cases for the actual memory overhead. For example, if
low-level tree nodes do not use masking (i.e., having first-order DPA security)
and first-order masking is applied to all other nodes (i.e., having second-order
DPA security), the actual memory overhead is lower- and upper-bounded by the
plot with first- and second-order protection, respectively.

An evaluation of the memory overhead of Meas over different protection
orders and arity is depicted for 1024-bit blocks and 128-bit security in Figure 7.9.
Hereby, it turns out that the memory overhead is strongly influenced by the
tree’s arity leading to two main observations. First, a higher arity clearly lowers
the memory overhead, but for an arity higher than eight, the reduction resulting
from another increase of the arity becomes quite small. Second, the memory
overhead rises linearly with the protection order, but the increase is stronger
the lower the tree’s arity is. This is due to the masks for randomization of the
plaintext being chosen and stored for each tree node. As a result, higher arity
leads to more plaintext blocks sharing such masks in one tree node and thus
lower memory overhead due to the masking.

7.7.5 Randomness

Meas consumes a considerable amount of randomness. In particular, fresh
random keys and masks must be chosen for all nodes on the path from the root to
the leaf whenever a write operation is performed. For Meas with protection order
d, this sums up to (skey+(d−1) ·smask) ·(l+1) random bits needed on each write
operation, where l is the tree height. Implementations of Merkle trees, PATs and
TEC trees without consideration of side channels however do not require any
random value if all nonces are chosen as counters. Yet, cipher implementations
that protect PATs and TEC trees against side-channel attacks rely on significant
amounts of randomness too. Namely, implementations with protection order d
split their state into (d+ 1) shares. This demands for at least d · sstate random
bits per cipher invocation that get necessary for all accessed nodes on both reads
and writes. Contrary to that, Meas does not require randomness during read
accesses.

96 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

1 2 3 4 5
0

20

40

60

80

100

120

140

Protection Order

O
ve

rh
ea

d
[%

]

binary Meas
4-ary Meas
8-ary Meas

16-ary Meas

Figure 7.9: Memory overhead of Meas depending on arity and protection order
(1024-bit blocks, 128-bit security).

7.7.6 Implementation Results

We extensively evaluated the performance of our Meas implementation from
Section 7.6. In particular, we ran both Meas-v1 and Meas-v2 on the Digilent
ZedBoard using different tree arities. As a state-of-the-art reference, we further
implemented and ran a variant of TEC trees with different arities based on the
same architecture as given in Figure 7.7. These TEC trees use Ascon [Dob+16]
for authenticated encryption.

The evaluations for TEC trees were done with 64-bit counters (nonces) and
64-bit tags, which is a common instance for TEC trees in RAM [Gue16]. For our
evaluations of Meas, we used a side-channel protection order d = 1 and 128-bit
keys. Besides, we operated Meas with 128-bit tags as 64-bit tags only gave
negligibly better results. Another relevant evaluation parameter is the data block
size sb. A suitable choice for sb typically is the processor’s cache line size. While
the cache of the ARM Cortex-A9 processor on the ZedBoard’s Xilinx XC7Z020
SoC features 256-bit cache lines, we configured the cache to always fetch 512-bits
from memory by enabling the double line fill feature [ARM]. For this reason,
both Meas and the TEC tree use a data block size of sb = 512 bits. To speed up
our designs, we made use of 1024 root keys (or root nonces for TEC trees) and a
cache with 1024 slots to store keys (or nonces, respectively).

All our implementations use the 32-bit GP0 AXI interface to the CPU and
the 64-bit HP0 AXI interface to the memory. As a result, a natural choice for
the width w of the internal data stream that connects the various modules in
Figure 7.7 is 64 bits. For the TEC tree implementation, we hence set w = 64 bits.
On the other hand, Meas operates heavily on 128-bit keys, which could make
a 128-bit internal data stream more efficient. For this reason, we evaluated the

7.7. Evaluation 97

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

20

40

60

80

4
3

2
6

3
3

3
2

4
2

4
9

3
1 3
5

4
2

4
9

4
6

2
7 2
9

4
6

5
2

R
ea
d
B
an

d
w
id
th

[M
B
/s
]

Binary Tree 4-ary Tree 8-ary Tree

Figure 7.10: Read performance determined with tinymembench (NEON read

prefetched (64 bytes step)).

performance impact of the internal data stream width by running both Meas-v1
and Meas-v2 with both w = 64 and w = 128 bit internal stream width.

In our evaluations, we booted Linux (Xilinx Linux kernel 4.4, tag 2016.2) [Xil16]
in encrypted and authenticated memory, and measured the memory performance
using a set of benchmarks. In particular, we executed tinymembench 0.3 [Sia13]
and LMBENCH 3.0-a9 [SM07] for determining the memory bandwidth and la-
tency, respectively. We performed these benchmarks for 256 MB of encrypted and
authenticated memory provided to the ARM CPU and an FPGA clock frequency
of 50 MHz. Note that at 50 Mhz, the 32-bit GP0 interface bounds the achievable
memory bandwidth with 200 MB/s.

Memory Bandwidth

Figure 7.10 and Figure 7.11 show the read and the write memory bandwidth for
all our designs and different tree arities. As mentioned before, we compare both
Meas-v1 and Meas-v2 with 64- and 128-bit internal data stream width to our
TEC tree implementation. As expected, it shows that Meas-v2 performs clearly
better than Meas-v1 in terms of read bandwidth, yielding up to 52 MB/s. Meas-
v2 only fetches and decrypts the actually required keys from within intermediate
tree nodes and thus allows for faster read access. On the other hand, the write
performance is generally lower and only a little better for Meas-v2 than for
Meas-v1, because the re-keying step requires to read, modify, and re-encrypt
full intermediate nodes in Meas-v2 as well. However, the slightly better write
performance of up to 11 MB/s is caused by ENC lacking initialization and key
derivation in Meas-v2. In terms of the internal data stream width, it shows
that despite the 64-bit memory interface, the 128-bit internal data stream gives
better results for both Meas-v1 and Meas-v2. This is mainly due to the instant

98 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

5

10

15

20

1
0

6

7

8

9

1
4

7

8

1
0 1
1

1
4

6 6

9 9

W
ri
te

B
an

d
w
id
th

[M
B
/s
]

Binary Tree 4-ary Tree 8-ary Tree

Figure 7.11: Write performance determined with tinymembench (NEON fill).

availability of the 128-bit keys from caches in the read case, and the faster
processing of decrypted keys in the write case.

In terms of tree arity, 4-ary trees give the best write bandwidth for both Meas
and the TEC tree. As a closer investigation shows, an arity of four results in the
least amount of data being processed when accessing a data block. Regarding read
bandwidth, 4-ary trees give the best performance for TEC trees and Meas-v1.
However, for Meas-v2 higher arity leads to higher read performance, as Meas-v2
reduces the amount of data to be read from memory during read accesses by
providing direct access to the keys within intermediate tree nodes.

Latency

Figure 7.12 shows the latency of all our Meas designs and the TEC tree for
different arities. As the main bottleneck of both memory bandwidth and latency
is the processing of all the tree nodes, our latency results behave quite similar
to the measured read bandwidth in Figure 7.10. In particular, Meas-v2 offers
clearly better latency than Meas-v1 across all arities, namely down to 1315 ns
(roughly 65 FPGA clock cycles), while the TEC tree behaves quite similar to
Meas-v2. For the TEC tree and Meas-v1, an arity of four yields the lowest
latency. However, for Meas-v2 read accesses become faster the higher the arity
is. As before, an internal data stream sized 128 bits yields lower latency than
64-bit streams.

Resource Utilization

Figure 7.13 shows the utilization of flip flops, Look-Up Tables (LUTs), and
36 KB Block RAMs (BRAMs) on the XC7Z020 SoC FPGA for Meas and the
TEC tree. In total, this XC7Z020 provides 106 400 flip flops, 53 200 LUTs, and
140 instances of 36 KB BRAMs. As the tree arity hardly influences hardware
utilization, we focus on the results for 8-ary trees. These results show that all

7.8. Conclusion 99

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

1,000

2,000

3,000

1
,8
3
0

2
,9
1
3

2
,4
0
6

2
,3
0
9

1
,8
2
8

1
,4
2
6

2
,4
2
3

2
,1
7
5

1
,7
3
0

1
,3
9
6

1
,5
4
4

2
,6
6
9

2
,5
0
3

1
,5
8
1

1
,3
1
5

L
at
en
cy

[n
s]

Binary Tree 4-ary Tree 8-ary Tree

Figure 7.12: Memory latency determined with LMBENCH (lat mem rd 8M).

designs are dominated by logic, with an utilization of up to 35 % of LUTs, while
the demand for flip flops and BRAMs stays below 10 %. Compared to the TEC
tree, Meas consumes 60-80% more logic, because it implements a (tweakable)
block cipher and a PRNG in addition to the Ascon permutation.

Comparison

Our evaluations indicate quite similar performance of TEC trees and Meas-v2.
However, while Meas has higher implementation cost, the implemented TEC
tree does not offer DPA protection. Moreover, note that our instance of Meas
uses 128-bit keys and tags, but the TEC tree implementation operates with
smaller 64-bit nonces and tags.

Summarizing our evaluation results and especially taking into account write
performance and side-channel constraints, we conclude that Meas-v2 with arity
four is a DPA-secure, highly practical, and hence suitable choice to encrypt RAM.
However, as 4-ary Meas-v2 encrypts four 128-bit keys per intermediate tree
node with a 64-bit cipher, 4-ary Meas-v2 relies on the assumption of DPA being
infeasible given eight different encryptions per key. If DPA on such 8-limiting
construction is considered feasible, binary Meas-v2 and 4-ary Meas-v1 are viable
alternatives with solid performance results and only four and a single encryption
per key, respectively.

7.8 Conclusion

Authentic and encrypted memory is a requirement for storing and processing data
in hostile environments where attackers have physical access. The consideration
of the imminent threat of side-channel attacks against the involved cryptographic
primitives is thus the natural next step.

100 Chapter 7. Side-Channel Secure Memory Encryption and Authentication

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

10

20

30

40

4

8 8 8 9

1
9

3
0

3
0

3
3 3
5

3

6 6 6 6

U
ti
li
za
ti
on

[%
]

Flip Flops LUTs BRAMs

Figure 7.13: FPGA utilization on XC7Z020 for 8-ary trees.

In this chapter, we therefore presented Meas, the first Memory Encryption
and Authentication Scheme which is secure against DPA attacks. The scheme
does not require any DPA-protected primitive, allowing its use in COTS systems.
Moreover, Meas provides fast random access on the configured block level and
can be adopted for all kinds of use cases including RAM and disk encryption.

The scheme combines the concept of fresh re-keying with authentication
trees by storing the involved keys in an encrypted tree structure. While this
prevents first-order DPA, masking of the plaintext values flexibly extends the
protection of Meas to higher-order DPA if required. Compared to existing
schemes, Meas exclusively offers DPA protection by design at roughly the same
memory overhead and performance. This is a clear benefit over state-of-the-art
memory authentication and encryption techniques, which would face impractical
implementation and runtime overheads for DPA-protected implementations if
adapted accordingly.

Part III

Bilinear Pairings for
Embedded Devices

101

102

While the previous parts focused on the security of Internet-of-Things (IoT)
platforms when attackers have direct physical access, the increasing number of
devices in IoT networks also is a severe risk to privacy. In this respect, modern
cryptography offers several novel protocols that are useful for IoT scenarios,
such as privacy-preserving group signatures [CH91; BBS04], attribute-based
credentials [CL02], and identity-based encryption [Sha84; BB04]. These protocols
are most commonly built from bilinear pairings, but computing bilinear pairings
is complex and many IoT devices have tight resource constraints. As a result, the
wide deployment of such protocols in the IoT is difficult. In addition, the tight
binding of an identity to the encryption operation in identity-based encryption
hampers revocation and the anonymity aspects of privacy-preserving protocols
make misuse detection difficult. As a result, leaking sensitive key material via
side-channel attacks is particularly critical in such schemes. In this part, we focus
on these issues by the following main contributions.

• We make pairing-based cryptographic protocols available to constrained
IoT devices. Based on the ARM Cortex-M0+, we present three hard-
/software co-designs for pairing-based cryptography. These side-channel
protected implementations are both lightweight and efficient enough to
provide pairing-based protocols also in embedded applications with user
interaction.

• We analyze the side-channel security of pairing-based protocols for unpro-
tected implementations by presenting a Correlation Power Analysis (CPA)
attack that extracts the secret key from identity-based encryption and
promote several randomization techniques as suitable countermeasures.

8
Efficient Pairings and ECC

for Embedded Devices

Pairing-based cryptography offers a wide range of protocols interesting for future
Internet-of-Things (IoT) applications. However, one obstacle for the widespread
deployment of pairing-based protocols are their high hardware and software
requirements. As a result, there have been optimized pairing implementations
for desktop computers [Ara+11; Beu+10], for smart phones [Gre+12; SR13],
and as dedicated hardware modules [FVV09; Kam+09]. Yet, cost-sensitive
IoT applications often do not have the budget for such powerful hardware
components. Lightweight implementations on Reduced Instruction Set Computer
(RISC) processors [Szc+08; GOL12; DSD07], on the other hand, offer impractical
runtimes that range between between 1.9 and 17.9 seconds for a single pairing.
Moreover, it is unclear to which degree timing-analysis, power-analysis, or fault-
analysis attacks have been considered in all those implementations.

For this reason, together with Erich Wenger, we have implemented constant-
runtime, side-channel protected optimal-Ate pairings using Barreto-Naehrig (BN)
curves [BN05] on an ARM Cortex-M0+ [ARM14a; Atm13] and explored the
design space for lightweight hardware extensions to make pairing-based protocols
suit resource-constrained applications. We started this research during my master
thesis [Unt13], continued our work during my PhD studies, and published our
final results in [UW14a]. In this publication, I was the main author contributing
most of the text and the implementation, whereas Erich Wenger added parts
of the implementation and parts of the text. In this chapter, we use text and
results from [UW14a] and make the following contributions.

103

104 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Contribution. We present three reusable pairing platforms that offer runtimes
of down to 162 ms and require 10.1 kGE of dedicated hardware at most – sig-
nificantly less than similarly fast hardware implementations by related work.
Our rigorous hardware/software co-design approach equipped one platform with
a multiply-accumulate instruction-set extension and another platform with a
drop-in accelerator1 [Wen13]. By building a flexible, specially crafted drop-in
module with several novel design ideas, we were able to improve the runtime of
pairing and group operations up to ten times. This concept platform consisting
of Central Processing Unit (CPU), Random Access Memory (RAM), Read-Only
Memory (ROM), and drop-in module consumes merely 49 kGE of hardware in
total with 10.1 kGE of those being spent for the drop-in accelerator. To show
the practicality of this platform, we evaluated the performance of several high-
level pairing protocols [BB04; BB08; Hwa+11] – each operating in significantly
less than one second. To demonstrate its versatility, we further evaluated El-
liptic Curve Cryptography (ECC) for secp160r1, secp256r1 [Cer00; Nat09],
and Curve25519 [Ber06], requiring 11.9-36.8 ms for a side-channel protected
point multiplication. These results make the drop-in based platform highly
suitable for embedded computing, smart cards, wireless sensor nodes, Near-Field
Communication (NFC), and the IoT.

Outline. This chapter is structured as follows: Section 8.1 gives an overview
on pairings and Section 8.2 covers the implementation aspects of the high-level
pairing arithmetic. In Section 8.3, the architectural options to build suitable
pairing platforms are presented. The respective platforms are evaluated in
Section 8.4 and compared with related work in Section 8.5. The (re-)usability of
our drop-in platform is content of Section 8.6. A conclusion is finally done in
Section 8.7.

8.1 Background on Pairings

The wide range of cryptographic protocols in pairing-based cryptography is based
on three cyclic order-nG groups G1, G2, GT and a bilinear pairing operation. A
bilinear pairing e : G1 ×G2 → GT accepts an element of the two additive groups
G1 and G2, respectively, maps these to the multiplicative group GT , and hereby
fulfills several properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab ∀P ∈ G, Q ∈ G, a, b ∈ Z .

2. Non-degeneracy: ∀P ∈ G1 \ {O} ∃ Q ∈ G2 : e(P,Q) 6= 1 .

3. Computability: e(P,Q) can be computed efficiently.

The groups G1, G2 are typically groups over elliptic curves and GT is the subgroup
of a large extension field. However, only certain elliptic curves allow the definition

1Wenger [Wen13] applied the concept to binary-field based elliptic-curve cryptography
while we apply the concept to prime-field based elliptic-curve cryptography.

8.2. High-Level Arithmetic 105

of G1, G2, GT with an admissible bilinear pairing, e.g., [BN05; MNT01]. In this
chapter, we focus on the pairing-friendly elliptic curves by Barreto and Naehrig
[BN05] of the form E : y2 = x3 + b with b 6= 0 (BN curves). Ate pairings a(Q,P)
based on these curves can be described as follows:

a : G2 ×G1 → GT : E(Fp12)×E(Fp)→ F∗p12 . (8.1)

Note that for G1, G2 and GT to have the same prime order nG, G2 and GT
need to be subgroups of E(Fp12) and F∗p12 , respectively. The BN curves use
a parameter u such that a desired security level is achieved. This allows the
computation of the prime p and the prime group order nG in dependence of u:

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

nG(u) = 36u4 + 36u3 + 18u2 + 6u+ 1 .

As another benefit, BN curves possess an efficiently computable group homomor-
phism that exploits the curve’s sextic twist E′. Utilization of this homomorphism
allows to compress elements in G2, which leads to a more efficient definition of
the Ate pairing, namely

a : G2 ×G1 → GT : E′(Fp2)×E(Fp)→ F∗p12 . (8.2)

The pairing a itself consists of the evaluation of a rational function fΛ,Q and a
final exponentiation that maps all cosets to the same unique representative:

a = fΛ,Q(P)(p12−1)/nG .

Owing to the Frobenius homomorphism, the final exponentiation by (p12−1)/nG
can be split into an easy part (p6 − 1)(p2 + 1) and a hard part (p4 − p2 + 1)/nG.
The function fΛ,Q can in general not be evaluated directly. However, Miller
[Mil04] described an important property of rational functions, namely

fi+j,P = fi,P fj,P
`[i]P,[j]P

ν[i+j]P
.

The property allows the computation of fΛ,Q in polynomial time by merely
evaluating vertical (ν) and straight (`) lines in elliptic curve points using a
double-and-add approach. Values of Λ with low Hamming weight result in a
particularly fast computation of fΛ,Q, the pairing becomes optimal. In this work,
we used the efficient optimal-Ate pairing by Vercauteren [Ver10].

8.2 High-Level Arithmetic

The computation of bilinear pairings over BN curves requires several layers
of arithmetic. As illustrated in Figure 8.1, all arithmetic is based on a multi-
precision integer arithmetic layer. On top of that, prime-field arithmetic and
a tower of extension fields are built upon. The elliptic curve groups used as
G1 and G2 utilize the prime field and its quadratic extension field, respectively.
The largest extension field Fp12 is used by GT . The pairing computation itself is
based on the groups G1, G2, GT , and their underlying field arithmetic.

106 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Integer. Arith.Integer. Arith. FpFp Fp²Fp² Fp⁴Fp⁴ Fp¹²Fp¹²

E(Fp)E(Fp) E'(Fp²)E'(Fp²)

G1G1 G2G2 GTGT

Pairing e: G1 G2 → GTPairing e: G1 G2 → GT£

Hash, PRNG,
Symmetric
Algorithm, ...

Hash, PRNG,
Symmetric
Algorithm, ...

Figure 8.1: Arithmetic required for pairings over Barreto-Naehrig curves.

8.2.1 Implementation Details

The following gives an overview on the implementation details of our software
implementation of bilinear pairings according to Figure 8.1.

Methodology

Our state-of-the-art implementations are based on the techniques used by Beuchat
et al. [Beu+10] and Devegili et al. [Dev+06]. The pairing implementation uses
the fast formulas by Costello et al. [CLN10], the inversion trick by Aranha et al.
[Ara+11], a lazy reduction technique in Fp2 [Beu+10; SR13], and a slightly modi-
fied variant of the final exponentiation by Fuentes-Castañeda et al. [FKR11] that
requires less memory. We will detail this optimization in Section 8.2.2. Similarly,
the prime-field inversion using Fermat’s little theorem is optimized according to
Section 8.2.3. Apart from that, we use dedicated squaring formulas [GS10] for
operations in GT and during the hard part of the final exponentiation as these
take place in the cyclotomic subgroup of F∗p12 . The point multiplications in both
elliptic curve groups use Montgomery ladders that are based on fast formulas
[HJS11] in homogeneous projective co-Z coordinates.

Parameters

As this work aims to offer a certain degree of flexibility, we decided to support two
elliptic curves, namely, BN158 [GOL12] (u = 40 00800023h) and BN254 [Nog+08]
(u = −40800000 00000001h) of the form y2 = x3 + 2, which were crafted for
the 80- and 128-bit security level1, respectively. These lead to particularly fast
execution times as the respective constants Λ of fΛ,Q have low Hamming weights.

1Note that recent results on solving the Discrete Logarithm Problem (DLP) in GT [MSS16;
KB16; BD17] suggest a reduced security level of roughly 100 bits for BN254. Unfortunately,
such analysis is currently missing for BN158. However, while the embedding degree of BN
curves and a prime of 158 bits so far implied DLP security of more than 80 bits in GT , we
suspect that the new DLP solving techniques result in less than 80 bits of security for BN158
and hence refrain from using BN158 any further.

8.2. High-Level Arithmetic 107

The extension field Fp2 is represented as Fp[i]/(i2 − β) with β = −1. The
extension field Fp12 is built as Fp2 [z]/(z6 − ζ), with ζ = (1 + i) for BN254 and
ζ = 1

1+i for BN158.

Implementation Attacks

An important aspect in the implementation of pairings and group arithmetic for
embedded applications is the consideration of side-channel attacks. While scalar
factors or exponents are typically the secret operands for operations in G1,G2

and GT , an elliptic curve point may have to be protected in the case of pairing
operations.

As a countermeasure to timing attacks, all implemented algorithms have
constant, data-independent runtime. Therefore, e.g., some fast but vulnerable
point multiplication algorithms are not used. Both the point multiplications
in G1, G2 and the exponentiations in GT hence use Montgomery ladders. The
implementation’s countermeasures against first-order Differential Power Analysis
(DPA) attacks comprise Randomized Projective Coordinates (RPC) [Cor99] in
both the pairing computation and the point multiplications in G1 and G2. To
detect fault attacks on data, point multiplications in G1 and G2 include several
point verifications. DPA and fault attacks on exponentiations in GT as well as
fault attacks on pairings were also taken into consideration, but can better be
handled on the protocol layer using randomization.

8.2.2 Optimized Final Exponentiation

The hard part of the final exponentiation by Fuentes-Castañeda et al. [FKR11]
yields fast execution by reducing the number of multiplications and exponentia-
tions in Fp12 . As a drawback, it requires four large temporary variables in Fp12 .
In order to attain a low-memory implementation, we decreased the number of
temporary variables by adapting their formulas without noticeably degrading
performance. Therefore, we initially set t0 = fp and compute the chain

fu → f2u → f4u → f6u → f6u2

→ f12u2

→ f12u3

.

Following, a and b are set to a = f6u · f6u2 · f12u3

and b = a · (f2u · f)−1. The
computation of the result, namely

f = f6u2

· f · fp ,

f = [f · a][b]p[a]p
2

[b]p
3

,

requires one more multiplication and one more Frobenius action than originally.
However, the respective implementation in Algorithm 3 requires three temporary
variables instead of four when the exponentiation and the multiplication on
Line 16 are done simultaneously using a dedicated function. Since variables in
Fp12 are large and RAM is more expensive than ROM, this approach aids to keep
chip area low.

108 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Algorithm 3 Memory-optimized hard part of the final exponentiation for pair-
ings over BN curves.

Input: f ∈ Fp12
Output: fφ12(p)/nG ∈ Fp12

1: t0 ← fp

2: b← fu if
3: if u < 0 then b← b . Conjugate
4: b← b2

5: a← b2

6: a← a · b
7: b← b · f
8: b← b
9: f ← f · t0

10: t0 ← au if
11: if u < 0 then t0 ← t0

12: f ← f · t0
13: a← a · t0
14: t0 ← t20 if
15: if u < 0 then t0 ← t0
16: a← a · tu0 . Interleaved
17: b← b · a
18: t0 ← bp

19: t0 ← t0 · a
20: t0 ← tp0
21: t0 ← t0 · b
22: t0 ← tp0
23: t0 ← t0 · f
24: f ← t0 · a
25: return f

8.2.3 Optimized Prime-Field Inversion

The parameterized prime p(u) facilitates an optimized exponentiation-based
prime-field inversion for positive u that have low Hamming weight. In such cases,
the inverse a−1 ∈ Fp can be expressed as

a−1 mod p = ap−2 mod p = a36u4+36u3+24u2+6u−1 mod p

= a6u(4u+6u2(1+u)) · a6u−1 mod p .

Precomputation of the constant 6u− 1 and the chain of computations

a6u−1 → a6u → a12u2

→ a24u2

→ a36u2

→ a36u3

→ a36u4

enables the computation of the inverse as

a−1 mod p = a6u−1 · a24u2

· a36u3

· a36u4

mod p .

Consequently, prime field inversion is done using three fast exponentiations by u,
one exponentiation by 6u− 1, five multiplications, and two squarings. Since the
exponents are fixed and publicly known, Montgomery ladders are not required
and runtime remarkably benefits from the low Hamming weight of u.

8.3 Hardware Architectures

To meet the high requirements of pairing-based cryptography in embedded devices,
our goal was to equip a stand-alone microprocessor, designated for embedded
applications, with a dedicated hardware unit such that (i) pairing computations

8.3. Hardware Architectures 109

(d)

(b)

(c)

(a)

CPU

Program
Memory

Dedicated
Hardware
Module

Data
Memory

CPU

Program
Memory

Data
Memory

CPU

Program
Memory

Data
Memory

CPU

Program
Memory

Data
Memory

MAC

Drop-in
Module

Figure 8.2: Architectural options for fast and flexible pairing designs.

are usable within interactive (e.g., authentication) protocols, (ii) a pre-existing
microprocessor platform is modified only minimally, (iii) the overall hardware
requirements, i.e., the costs, are kept small and considerably below 100 kGE
needed in related work [FVV09; Kam+09], and (iv) embedded applications such
as wireless sensor nodes and NFC should be practically feasible.

Figure 8.2 summarizes potential architectures that can be used to attain
such goals. The straightforward solution (a), a sole off-the-shelf microprocessor,
requires minimal hardware-development time, however potentially delivers insuf-
ficient performance. The runtimes desirable for interactive protocols can only
be achieved by either adding powerful, dedicated instructions (b), or by adding
dedicated co-processors. Contrary to a dedicated hardware module (c), a drop-in
module (d) is memoryless and requires neither a Direct Memory Access (DMA)
controller nor a multi-master bus. Wenger [Wen13] showed the advantages of the
drop-in concept in comparison to a dedicated hardware module for binary-field
ECC. However, the applicability of this technique for prime-field based pairings
is still an open question.

Following up the potential architectures, we consecutively evaluate the practi-
cability of a plain microprocessor design (a), a multiply-accumulate instruction-set
extension (b), and a dedicated drop-in module (d).

8.3.1 The Used Microprocessor

The accomplishment of the initially set goals highly depends on the used micro-
processor. As the runtime figures by Szczechowiak et al. [Szc+09] and Gouvêa
et al. [GOL12] discourage the use of an 8-bit or 16-bit microprocessor, a 32-
bit microprocessor is preferred as a basis. Moreover, the bottleneck between
computation unit and RAM is less of an issue if 32-bit interfaces are used. We
hence decided to utilize a self-built processor functionally equivalent to the ARM

110 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Cortex-M0+ [ARM14a], because the Cortex-M0+ was especially designed for
embedded applications and currently is one of the smallest 32-bit processors in
production. The Cortex-M0+ has 16 32-bit general-purpose registers of which 8
are efficiently usable. It comes with a mixed 16/32-bit Thumb/Thumb-2 instruc-
tion set and optionally either a 32-cycle or single-cycle 32-bit multiplier. In its
minimum configuration, ARM specifies its Cortex-M0+ to require only 12 kGE
in a 90 nm process technology.

8.3.2 The Software Framework

The biggest advantage of an off-the-shelf microprocessor are the vast (open-source)
toolchains. Thus a high-level framework capable of pairing-based cryptography
using BN curves was created in C. It provides extension field arithmetic, elliptic
curve operations, and bilinear pairings. The framework focuses on both good
performance and low memory consumption. To achieve the latter, several op-
timizations were incorporated into the framework. First, virtually all of the
memory is allocated on the stack. As stack variables are discarded at the end of
each function, stack allocation facilitates the reduction of required memory by
separating code into different functions. Second, allocated memory is re-utilized
where possible. Third, memory-optimized algorithms are used, e.g., for the final
exponentiation as in Section 8.2.2. Last, compiler optimizations are used to de-
crease the program size. Therefore, the compiler options -ffunction-sections,
-fdata-sections and the linker options -gc-sections, --specs=nano.specs
are passed to the bare-metal ARM GNU toolchain (version 4.7.4).

The high-level pairing framework is common to all three evaluated platforms.
The main difference between these platforms is the implemented finite-field arith-
metic. While (a) and (b) control the whole finite field arithmetic in software, (d)
relies on finite-state machines to perform additions, subtractions and multiplica-
tions in Fp and Fp2 . Nevertheless, all implementation options ensure constant
runtime and consider side-channel attacks.

8.3.3 Assembly-Optimized Software Implementation (a)

The plain microprocessor platform (a) is based on a Cortex-M0+ with a single-
cycle multiplier. Its hand-crafted assembly routines for optimized prime-field
arithmetic always perform a reduction step to ensure constant runtime. This is
accomplished by storing the reduction result either to the target or a dummy
memory location via masking of the operand addresses. The crucial prime-field
multiplication utilizes an unrolled Separate Product Scanning (SPS) method
of the Montgomery multiplication [Mon85] that is derived from [KAJ96]. The
SPS variant is chosen because of the particular Fp2-multiplication technique
[Beu+10; SR13] we use, which performs the required three multiplications and two
reductions separately. Product scanning can further be efficiently implemented
on the processor if three registers are used as an accumulator, as presented in
[WUW13]. The reduction step for the curve BN254 is further optimized as several
multiply-accumulate operations can be skipped due to the sparse prime [GOL12].

8.3. Hardware Architectures 111

Drop-In DatapathCortex-M0+

Controlpath

Datapath
NVIC

Decoder

Instruction
Pipeline

Registers

ALU

Memory
Access

Unit

R
A

M

 OpAReg OpBReg

ACC

 WRITE

32x16-bit
Multiply-

Accumulate

ADD/
SUB

Controlpath

 160-bit Fp

Fp2

 256-bit Fp

Figure 8.3: High-level representation of architecture (d) (without program memory).
Note that the sizes of the blocks are not proportional to their respective
hardware footprints.

8.3.4 Multiply-Accumulate Hardware Extensions (b)

The performance of the prime-field multiplication significantly suffers from the
32×32→ 32 bit multiplier of the Cortex-M0+, which results in 80% of a pairing’s
runtime being spent in Fp multiplications. To improve this, the processor core is
equipped in (b) with a multiply-accumulate extension similar to [WUW13]. It
adds the result of a full 32×32→ 64 bit multiplication to three accumulation reg-
isters in a single cycle. In order to avoid a modification of the compiler toolchain,
the TST instruction, which is not required for prime-field multiplication, is reinter-
preted as a multiply-accumulate instruction if a certain bit in the control register
is set. The control register is manipulated accordingly at the beginning and
the end of a prime-field multiplication. Besides accelerated multiply-accumulate
operations, the prime-field multiplication requires less registers for temporary
variables, which we exploit by caching some of the operand words in the product
scanning routine.

8.3.5 The Drop-in Module (d)

As a consequence of the high-level runtime and area goals, it is highly important
to maximize the utilization of the invested chip hardware. To achieve this, a
lightweight hardware drop-in accelerator is placed between processor and data
memory. The respective design, which is shown in Figure 8.3, uses a Cortex-M0+,
but any other processor is equally suitable.

The drop-in module provides unrolled state machines and an appropriate
arithmetic unit for 160-bit and 256-bit Fp multiplication, Fp addition and Fp
subtraction. It further encompasses state machines to control Fp2 addition,
Fp2 subtraction, Fp2 multiplication and Fp2 squaring. Several memory-mapped
registers are used to control the drop-in module. A lightweight arbiter is built in
which always gives preference to the CPU when the CPU wants to access the
data memory. In such case, the drop-in module is prepared to stall its operation.

112 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Table 8.1: Propagation of data within
the pipelined drop-in module

Bus OpBReg OpAReg Mult. Accum.
LD OpB+0

LD OpA+0 WR

LD OpB+0 SH WR

LD OpA+1 WRSH MUL1

LD OpB+1 SH WR MUL2 SHIFT

LD OpA+0 WRSH MUL1

LD OpB+2 SH WR MUL2

ST RES+0 WRSH MUL1

LD OpB+1 SH MUL2 SHIFT

LD OpA+1 WRSH MUL1

LD OpB+0 SH WR MUL2

A[0]B[0]A[4]B[4]

A[0]B[4]

C[0]C[4]C[8]

A[4]B[0]

Figure 8.4: 5 × 5-word zig-zag prod-
uct scanning multi-precision
multiplication method.

The core element of our drop-in module is a multiply-accumulate unit that is
used to perform a Finely Integrated Product Scanning (FIPS) [KAJ96] Mont-
gomery multiplication. For nw =d ld(p)

w e w-bit words, this algorithm approximately
performs 2n2

w + nw w-bit integer multiplications that require roughly 4n2
w load

operations. However, instead of using a dual-port memory, we perfectly utilize
bus and multiplier by using a two-cycle multiply-accumulate unit that is based
on a w × w/2-bit multiplier. This saves 3 kGE for w = 32 in an 130 nm process
compared to a traditional w × w-bit multiplier.

A finite-field operation is started by writing three memory pointer registers
(OpA, OpB, and RES) and a control register. As those registers are mapped at
consecutive addresses, the store-multiple instruction (STM) of the Cortex-M0+
can be used to efficiently start an operation. A started finite-field multiplication
is performed using the following hardware components: a w × w/2 = 32× 16-bit
multiplier, a dld(2nw)e + 2w = 68-bit ACCumulator, a w = 32-bit register for
operand A (OpAReg), a 3w/2 = 48-bit register for operand B (OpBReg), and a
w = 32-bit WRITE register. In OpBReg, the top 32 bits are always written by the
bus and the lowest 16 bits are used as an operand of the multiplier. Therefore, a
sequence of shift/rotate operations is necessary to actually multiply the loaded
operands.

Table 8.1 visualizes the dataflow within the drop-in module. For a single
multiply-accumulate operation five clock cycles are necessary. As the drop-in
module heavily relies on pipelining, practically only two cycles are needed. The
following steps are performed: (i) OpB+i is applied to the bus. (ii) OpB+i is
WRitten to OpBReg and OpA+j is applied to the bus. (iii) OpAReg is WRitten and
OpBReg is SHifted by 16 bits. (iv) The first multiplication cycle (MUL1) multiplies
the lower 16 bits of OpB+i with OpA+j and OpBReg is shifted again. (v) During the
second multiplication cycle (MUL2) the accumulator is optionally SHIFTed. When

8.4. Implementation Results 113

shifted, the lowest 32-bit of the accumulator are stored in the WRITE register.
This data is later written to the address RES+i+j, when the bus is not utilized.

As the fully utilized bus needs some free cycles to write the result, we use a
zig-zag product scanning technique (cf. Figure 8.4) [WW11]. In this technique,
consecutive columns are traversed in different order, which allows caching of a
single operand from one column to the next. This frees the bus for 2nw cycles,
which are exactly the 2nw cycles required to store the computed results.

Although the implemented FIPS multiplication is quite complex, the software
running on the CPU is completely independent of the methodology used to
perform finite-field arithmetic within the drop-in module. However, there are two
implementation guidelines the software has to deal with. First, constant variables
have to be temporarily copied to the data memory when being used. Second,
there are two techniques to wait for the drop-in module to finish. A function
delegating an operation to the drop-in module can either start an operation and
wait for it to finish, or wait for a previously started operation to finish and only
then start a new operation. The latter case is more performant because the
CPU and the drop-in module potentially work in parallel, i.e., the control flow
operations involved in the invocation of the routines that call the drop-in module
are done while the drop-in module is computing. However, temporary variables
on the stack are freed once a function finishes, which requires adding additional
wait statements within the extension-field arithmetic to prevent the drop-in
from accessing reallocated memory locations. Nevertheless, the utilization of
the drop-in is increased from 77.6% to 85.1% when the function first waits for
previous operations to finish. Similarly, the utilization of the RAM is raised from
75.7% to 80.1% (cf. 34.6% in (b), 17.0% in (a)).

8.4 Implementation Results

To verify the achievement of the area and performance goals initially set, the
three microprocessor-based platforms (a), (b) and (d) were evaluated with respect
to hard- and software. Regarding the overall hardware platforms, runtime, area,
power, and energy consumption are distinctive. Regarding the software part, the

Table 8.2: Performance of various operations on architectures (a), (b), and (d).

Design
Fp G1 G2 GT G1 ×G2 RAM ROM

Add Mul Inv Mul Mul Exp Pairing
[Cycles] [Cycles] [kCycles] [kCycles] [kCycles] [kCycles] [kCycles] [Byte] [Byte]

BN158

Cortex-M0+ 112 1 800 331 4 828 11 775 22 871 17 389 1 856 13 980
MAC 112 361 72 1 129 4 042 10 736 7 828 1 796 11 232
Drop-in 56 161 29 493 1 577 4 322 3 182 1 876 10 364

BN254
Cortex-M0+ 166 3 782 1 122 16 071 38 277 72 459 47 643 2 828 18 116
MAC 166 934 285 4 323 11 449 27 460 17 960 2 836 12 572
Drop-in 75 335 97 1 566 4 858 12 076 7 763 2 880 10 764

114 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Cortex-M0+ MAC Drop-in
0

200

400

600

10
1

24 10

24
5

83

33

47
6

22
4

9
0

36
2

16
3

66

[ms] BN158

G1 Mul.
G2 Mul.
GT Exp.
Pairing

Cortex-M0+ MAC Drop-in
0

500

1 000

1 500

2 000

33
5

9
0

3
3

7
97

2
39

10
1

1
5
1
0

5
72

25
2

9
93

3
74

16
4

[ms] BN254

G1 Mul.
G2 Mul.
GT Exp.
Pairing

Figure 8.5: Group operations at 48 MHz.

evaluation focuses on the runtimes of the underlying finite-field arithmetic and
the most expensive operations used within protocols: the point multiplications
in G1 and G2, the exponentiation in GT , and the pairing operation.

The results in Table 8.2 show that the multiply-accumulate extension speeds
up the prime-field multiplications by factors of 4.0-5.01, but leaves the prime-field
additions unaffected. The same speed-ups are observed for prime-field inversions
and point multiplications in G1. However, the impact of the multiply-accumulate
extension on the performance of both pairings and operations in G2, GT is lower
and lies between a factor of 2.1 and 3.3. Considering the performance of the
drop-in module, an even greater speed-up is observed compared to the plain
software implementation. In this case, prime-field multiplications, inversions and
point multiplications in G1 are up to 11.3 times faster, which eventually results
in an up to 6.1 times faster computation of pairings. On average, operations
using BN158 are 3.0 times faster than operations using BN254.

Throughout all implementations, the demand for data memory is kept rela-
tively low, with a maximum of 1 876 bytes and 2 880 bytes for BN158 and BN254,
respectively. Similarly, the program sizes are kept small, e.g., 18 KB for BN254.
Given a typical clock frequency of 48 Mhz, the performance results of the point
multiplications in G1, G2, the exponentiation in GT , and the pairing operation
are illustrated in Figure 8.5. The respective runtimes support our choice of a
32-bit architecture: for BN254, the drop-in based platform does pairing compu-
tations in highly practical 164 ms. The pure embedded software implementation
performs the same computation in 993 ms.

While Table 8.2 focuses on the software part, the most important hardware
characteristics are visualized in Table 8.3. The runtime is given for a single
pairing computation. Both area and power measurements were determined for
an 130 nm low-leakage UMC technology. The area results in a 90 nm UMC

1The implementation for BN158 with multiply-accumulate extension utilizes the FIPS
method and discards lazy reduction in Fp2 [Beu+10; SR13] as it yields better performance.

8.5. Comparison with Related Work 115

Table 8.3: Implementation characteristics for 130 nm and 90 nm process technologies.

Platform
Area

RAM ROM CPU Dedicated Total Power Runtime Energy
[kGE] [kGE] [kGE] [kGE] [kGE] [mW] [ms] [mJ]

BN158
Cortex-M0+ 11.4 15.6 18.4 - 45.4 5.92 362 2.14
MAC 11.1 13.8 27.1 - 52.0 7.38 163 1.20
Drop-in 11.4 13.8 17.0a 10.8 52.9 10.25 66 0.68
Drop-in 90nm 10.5 12.0 12.6a 10.1 45.2 - 66 -

BN254
Cortex-M0+ 16.0 19.3 18.4 - 53.7 5.80 993 5.76
MAC 16.0 15.6 27.1 - 58.8 7.33 374 2.74
Drop-in 16.2 13.8 17.0a 10.8 57.7 9.96 162 1.61
Drop-in 90nm 14.3 12.0 12.6a 10.1 49.0 - 162 -

aBit-serial multiplier.

technology are explicitly marked. The designs were synthesized and their power
and runtime evaluated for a clock frequency of 48 MHz. Both data and program
memory were realized using RAM and ROM macros of appropriate sizes. The
program memory encompasses all routines required to implement pairing-based
protocols, i.e., pairings, operations in G1, G2, and GT . These platforms are hence
ready-to-use for future applications based on pairings over BN curves.

According to Table 8.3, BN254 pairing computations with reasonable per-
formance are available at the cost of 57.7 kGE in an 130 nm process technology.
Switching to the more advanced 90 nm process technology shrinks the design to
49.0 kGE, constituting one of the smallest available hardware designs for pairings
with practical relevance. In terms of power consumption, the plain micropro-
cessor design is, as expected, the most economical. The multiply-accumulate
extension and the drop-in module increase power consumption by 25% and
70%, respectively. Due to their increased performance, these platforms are more
energy-efficient though. Their respective demand for energy is 2.1 and 3.5 times
lower.

Table 8.4: Related software implementations of Ate pairings over BN curves.

Platform
RAM ROM Runtime Frequ. Runtime
[Byte] [Byte] [kCycles] [MHz] [ms]

Ours Cortex-M0+ 2 828 18 116 47 643 48 993
Gouvêa [GOL12] MSP430 6 500 36 000 79 440 8 9 930
Devegili [DSD07] Philips HiPerSmart™ <16 000 - 90 462 36 2 513
Gouvêa [GOL12] MSP430X/MPY32 6 500 34 400 47 736 25 1 909

116 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Table 8.5: Related hardware platforms (130 nm).

Area
Time

Ded. Total
[kGE] [kGE] [kCycles]

Ours (Drop-in) 11a 58 7 763
Fan [FVV09] 183 183 593
Kammler [Kam+09] 71b 164 5 340
Kammler [Kam+09] 67b 145 6 490
Kammler [Kam+09] 53b 130 10 816

aDrop-in module.
bCore excl. 26 kGE of original RISC

8.5 Comparison with Related Work

As a consequence of our hardware/software co-design approach, comparison
with related work focuses on two aspects. On the one hand, the pure software
implementation on the Cortex-M0+ is brought into relation to other software
implementations on low-resource hardware. On the other hand, the resulting
hardware design is compared with other dedicated pairing hardware implementa-
tions.

The comparison of our software implementation with related implementations
of Ate pairings over BN curves with primes of roughly 256-bit size is summa-
rized in Table 8.4. Gouvêa et al. [GOL12] provide highly optimized software
implementations for the 16-bit microcontroller MSP430 and a variant of its
successor MSP430X, which is equipped with a 32-bit multiplier (MPY32). The
implementation by Devegili et al. [DSD07] is evaluated on a 32-bit Philips HiPerS-
mart™ smart card, which has a SmartMIPS architecture and clearly is a direct
competitor of Cortex-M0+-based smart cards. However, it is unclear to which
extent side-channel resistance is considered by either of them.

As both the MSP430 and the Cortex-M0+ use a 16-bit instruction-set, it is
important to highlight the exceptionally low program and data memory foot-
print of our implementations. It is however hard to compare the quality of an
implementation when different frameworks and different microprocessors are
involved.

Other pairing implementations for 32-bit ARM processors are limited to the
Cortex-A series, such as in [Gre+12]. However, their pairing’s runtime of 9.9 ms
on a 1.2 GHz Cortex-A9 is as well hardly comparable with our pairing’s runtime
on the Cortex-M0+ since the multi-core Cortex-A processors provide massively
higher clock frequencies along with a more powerful instruction set.

Regarding related hardware platforms, Table 8.5 covers hardware implementa-
tions of pairings with primes sized roughly 256 bits. Fan et al. [FVV09] proposed
a dedicated pairing cryptoprocessor with parallelized, full-precision Fp arithmetic.
Its centerpiece is a hardware implementation of a hybrid modular multiplication
algorithm that performs both polynomial and coefficient reduction. Their area

8.6. Re-usability of our Drop-in Architecture 117

0 10 20 30 40 50
0

50

100

150

200
·103

Cortex-M0+

MAC

Drop-In

Kammler 1

Kammler 2

Kammler 3

Fan

Runtime [MCycles]

A
re

a
[G

E
]

Faster

Efficient

Smaller

Figure 8.6: Characteristics of related hardware.

figures, however, exclude the required RAM. Kammler et al. [Kam+09] extended
a 5-stage 32-bit RISC core with instructions for Fp arithmetic. Their Application-
Specific Instruction-set Processor (ASIP) uses a Montgomery multiplier structure
that can be synthesized in different configurations and sizes. Unfortunately, their
area figures do not contain the program memory.

In comparison to [FVV09] and [Kam+09], our drop-in-based platform is
2.2-3.1 times smaller with regard to total area consumption. In both [Kam+09]
and our case the CPU and the data memory can be reused for other applications.
In terms of dedicated hardware, our drop-in-based platform is 16.6 times smaller
than the work of Fan et al. In exchange, their design is faster and provides the
best area-runtime product according to Figure 8.6. However, it depends on the
application how much hardware area is actually acceptable to be spent on a
dedicated pairing accelerator.

8.6 Re-usability of our Drop-in Architecture

To emphasize the practicability of our low-area platforms for deploying cryptog-
raphy to embedded environments, several protocols that are relevant in such
context have been assessed in terms of the performance to expect.

118 Chapter 8. Efficient Pairings and ECC for Embedded Devices

Table 8.6: Performance of pairing-based protocols on the drop-in platform.

G1 G2 GT G1×G2 BN158 BN254
Mul Mul Exp Pairing [ms] [ms]
Leakage Resilient KEM [KP10]

Encaps. 0 1 1 0 123 353
Decaps. 2 0 0 2 153 389
Identity-Based Encryption KEM [BB04; IEE08a]
Encaps. 3 0 1 0 121 349
Decaps. 0 0 0 1.5a 99 243

Short Signatures [BB08]
Sign 1 0 0 0 10 33
Verify 0 2 0 1 132 364

Short Group Signatures [Hwa+11]
Sign 9 2 0 1.5a 258 739
Verify 9 2 0 3 357 981
Link 0 0 0 3 199 485

aRatios and products of pairings are counted as 1.5 pairing computations.

8.6.1 Using the Drop-in Module for
Pairing-based Protocols

The short signature scheme by Boneh and Boyen [BB08] is interesting for con-
strained signature devices as it aids to reduce communication. As a representative
of group signatures, which help to provide anonymous authentication, the scheme
by Hwang et al. [Hwa+11] was chosen. To be able to establish a random session
key without the necessity of verifying public keys, the identity-based encryp-
tion scheme by Boneh and Boyen [BB04] in its Key Encapsulation Mechanism
(KEM) variant was evaluated as it combines good performance with small pa-
rameters. Additionally, the leakage-resilient bilinear ElGamal KEM by Kiltz and
Pietrzak [KP10] is taken into consideration because it is proven to have bounded
side-channel leakage.

The number of computationally expensive operations and the expected overall
runtime of each of the aforementioned protocols are presented in Table 8.6. The
runtimes are given for the drop-in module based platform. As the figures suggest,
all of the protocols may be performed on the device with user interaction as
response times lie noticeably below one second.

8.6.2 Using the Drop-in Module for ECC

In order to emphasize the re-usability of our drop-in module based design,
we also evaluated the performance of the standardized curves [Cer00; Nat09]
secp160r1 and secp256r1 and the performance of Curve25519 by Bernstein
[Ber06], which many people consider as a replacement for the standardized
National Institute of Standards and Technology (NIST) curves. Again, we

8.7. Conclusion 119

follow the point multiplication methodology from [WUW13], which relies on
Montgomery ladders, randomized projective coordinates and multiple point
validation checks. All implementations have similar hardware footprints and
require 4.1 kGE (500 bytes) for RAM, 6.2 kGE (3 200 bytes) for ROM, 10.1 kGE
for the drop-in module, 12.6 kGE for the Cortex-M0+, and 33 kGE in total (in
a 90 nm UMC technology). Point multiplications for secp160r1, secp256r1,
and Curve25519 need 570 kcycles, 1 765 kcycles, and 1110 kcycles, respectively.
Note that we do not take advantage of the special form of the underlying primes.
However, with runtimes of 11.9-36.8 ms (at 48 MHz) the drop-in concept is clearly
an enabler of elliptic-curve based interactive protocols.

8.7 Conclusion

According to our evaluations of three microprocessor-based hardware designs, the
utilization of a compact 32-bit microprocessor results in notably small pairing
implementations. Requiring merely 45.2-49.0 kGE of chip area, we provided one
of the smallest available hardware designs capable of bilinear pairings. The most
prominent platform was obtained from the construction of a dedicated drop-in
hardware module for prime-field arithmetic. Its low area requirements and highly
practical runtime facilitate pairing-based cryptography in interactive embedded
applications.

9
Side-Channel Attacks on

Bilinear Pairings

Identity-based encryption constitutes a promising alternative to traditional cryp-
tography that works without symmetric keys or public key infrastructures. Due to
the latest developments in efficient pairing implementations such as in Chapter 8,
pairing-based identity-based encryption is expected to play an important role
in providing secure Internet-of-Things (IoT) applications in the future as well.
However, IoT devices are inherently exposed to side-channel attacks. For this
reason, together with Erich Wenger, we started to investigate the side-channel
security of bilinear pairings during my master thesis [Unt13]. We further worked
on this topic during my PhD studies and published our final results in [UW14b].
In this publication, I was the main author contributing the attack and most of
the text. In this chapter, we use text and results from [UW14b] and make the
following contributions.

Contribution. We present a practical Correlation Power Analysis (CPA) at-
tack that leaks a user’s private key in the identity-based encryption scheme by
Boneh and Boyen [BB04]. In particular, our attack reveals the secret input
point of the practical optimal-Ate pairing defined over Barreto-Naehrig (BN)
curves from a software implementation on a 32-bit ARM Cortex-M0(+) processor.
For this purpose, this work exploits the leakage of a finite field multiplication
[Hut+09] within the pairing computation. Besides the CPA attack, we provide
future work with evidence on how power analysis attacks perform relatively to
each other on a Field Programmable Gate Array (FPGA), an Application Specific
Integrated Circuit (ASIC), and using power simulations. Moreover, we emphasize

120

9.1. Related Work 121

that the projective point randomization technique [Cor99] is a countermeasure
that is applied to Ate pairings on BN curves almost without effort.

Outline. This chapter is structured as follows. In Section 9.1, we investigate
related work and further highlight how our work complements it. Besides the
background of identity-based encryption, a high-level view of the attack setting
is given in Section 9.2. A general description of the attack is part of Section 9.3
and Section 9.4 discusses the practical results of the attack. Following possible
countermeasures in Section 9.5, a conclusion is drawn in Section 9.6.

9.1 Related Work

The first to investigate side-channel attacks in the context of pairing computations
were Page and Vercauteren [PV04]. They focused on pairings over ternary fields,
pointed out the possibility of timing and Simple Power Analysis (SPA) attacks of
improperly implemented finite field multiplications, and proposed a Differential
Power Analysis (DPA) attack that sequentially extracts one bit after another
using the technique by Messerges [Mes02]. Similarly, Kim et al. [Kim+06] showed
each a timing, a CPA and a DPA attack that potentially extract a secret value
involved in the computation of the Eta pairing over hyperelliptic curves using
binary fields. This work in contrast focuses on a CPA attack on optimal-Ate
pairings using large prime fields, whose arithmetic differs enormously to that in
binary or ternary fields used in, e.g., [PV04].

Whelan and Scott [WS06] investigated the side-channel vulnerability of the
Tate, the Ate, and the Eta pairing more generally. They concluded that the
computation of a bilinear pairing e(P,Q) of the two elliptic curve points P and
Q is inherently more secure if its first parameter P is the secret as it seemed
impossible to build the hypothesis for a DPA attack. However, for the Tate pairing
not using elliptic curve twists, Blömer et al. [BGL13] concluded theoretically
that schemes using bilinear pairings with its first argument P being secret are
not less vulnerable to side-channel attacks than otherwise. We complement their
work by presenting results of a practical attack on the secret first argument of
an Ate pairing computation over BN curves that uses elliptic curve twists.

An attack similar to the one presented in this chapter was done by Ghosh and
Chowdhury [GC11]. In their attack, the secret parameter Q of the Tate pairing
e(P,Q) over BN curves was revealed. In more detail, a finite field addition during
the evaluation of the line function in the Miller loop was targeted. The operation
involves the secret input Q as well as the x-coordinate of an intermediate elliptic
curve point that derives from the public input point P . Starting from the Least
Significant Bit (LSB), they recover the secret x-coordinate successively by per-
forming a difference-of-means test for each bit. They gather the necessary power
measurements from their own FPGA-based pairing cryptoprocessor. Contrary
to attacking a finite field addition within the pairing computation, we exploit
the leakage of a finite field multiplication. Thereby we utilize the technique of

122 Chapter 9. Side-Channel Attacks on Bilinear Pairings

Hutter et al. [Hut+09], who efficiently attack a multi-precision integer multi-
plication within Elliptic Curve Digital Signature Algorithm (ECDSA)-enabled
Radio-Frequency Identification (RFID) devices.

Private keys in identity-based encryption were shown to be vulnerable to side-
channel attacks in [EFD09]. In a DPA attack, they demonstrated the feasibility
of extracting the secret input of a prime-field based pairing computation from a
hardware circuit which has an 8-bit datapath and which merely performs the
operations leaking the secret information. In contrast, we extract the private
key from a full and practical implementation of identity-based encryption on a
32-bit architecture, which is significantly harder to be performed successfully
due to the exponentially larger number of possible values for each word of the
secret. Besides, our results are based on three different measurement setups,
while [EFD09] use power simulations only.

Several countermeasures to inhibit attacks on pairing computations were
shown in the past. Page and Vercauteren [PV04] proposed two variants of point
blinding mechanisms to counteract DPA attacks. In addition to that, Whelan
and Scott [WS06] proposed multiplying the Miller variable in each iteration
with a different random value. Unluckily, all of the mentioned countermeasures
offer rather bad performance. Point blinding requires the computation of a
second pairing at least, while the multiplication of the Miller variable involves an
additional finite field multiplication in each iteration of the Miller loop. However,
Kim et al. [Kim+06] adopted the fast and effective randomization countermeasure
by Coron [Cor99] to the Eta pairing. They provided modified formulas to deal
with the randomized projective coordinates of one of the two input points. In
this chapter, we intend to raise awareness of the randomization countermeasure
in the context of optimal-Ate pairings over BN curves. In this case, it is not even
necessary to modify the formulas to deal with the randomized coordinates.

9.2 Identity-based Encryption

In 1984, Shamir [Sha84] proposed the concept of identity-based encryption for
secure communication in company networks and mailing systems without the
necessity of public key infrastructures. The concept uses identity strings instead
of public keys for encryption, e.g., someone’s e-mail address in a mailing system,
which inherently allows sending encrypted e-mails. In order to achieve that,
a trusted third party is responsible for providing public parameters and for
generating the users’ private keys.

One fast identity-based encryption scheme that is already in practical use is
the BB1 scheme that was presented by Boneh and Boyen [BB04]. Besides, they
proposed a very practical BB1-based Key Encapsulation Mechanism (KEM) for
the future Institute of Electrical and Electronics Engineers (IEEE) standard on
identity-based encryption. The KEM variant of the scheme specifies the four
algorithms Setup, Derive, Encapsulate and Decapsulate. The Setup algorithm
is run at the trusted third party and creates a master secret and the public
parameters. Also the Derive algorithm is run at the trusted third party in

9.2. Identity-based Encryption 123

Algorithm 4 Ate pairing over BN curves.

Input: P ∈ E(Fp), Q ∈ E′(Fp2)
Output: a(Q,P)

1: T ← Q, f ← 1
2: for i = bld(s)c − 2 downto 0 do
3: f ← f2 · `T,T (P) . subject to our attack
4: T ← [2]T
5: if si = 1 then
6: f ← f2 · `T,Q(P)
7: T ← T +Q
8: end if
9: end for

10: f ← f (p12−1)/nG return f

order to generate each user’s private key. The two algorithms Encapsulate and
Decapsulate are run by the respective users, who may use embedded devices.
The Encapsulate algorithm provides both a session key and a ciphertext that is
decryptable by the intended recipient only. The recipient recovers the session key
from the received ciphertext by invoking the Decapsulate algorithm with their
private key as a parameter.

The scheme uses three cyclic order-nG groups G1, G2 and GT that allow
the definition of a bilinear pairing e: G1 ×G2 → GT . The produced ciphertext
C = (C0, C1) consists of two elements in G1 and the respective private keys Did =
(D0,id, D1,id) are comprised of two elements in G2. The scheme’s Decapsulate
algorithm recovers the session key K from a ciphertext C with the aid of the
user’s private key Did, the properties of the bilinear pairing e, and a hash function
H:

K = H(e(C0, D0,id)/e(C1, D1,id)).

In this algorithm, the session key is obtained from bilinear pairing computations
involving both a public and a secret operand. The secret operand to the bilinear
pairing—the user’s private key in this particular case—is the target of adversaries.

Note that we focus our analysis on the BB1 scheme, but the subsequent attack
is applicable to all schemes that involve pairing computations with a secret and
a public operand.

9.2.1 Vulnerability

For the identity-based encryption scheme, this work uses optimal-Ate pair-
ings [Ver10] based on the pairing-friendly elliptic curves by Barreto and Naehrig
[BN05]. However, our attack applies to Ate pairings in general, which are com-
puted according to Algorithm 4. Since our attack aims to recover the pairing’s
secret input, a more detailed investigation of the algorithm is necessary.

124 Chapter 9. Side-Channel Attacks on Bilinear Pairings

Algorithm 5 Initial sequence of Ate pairing computations.

Input: P ∈ E(Fp), Q ∈ E′(Fp2)
1: (XT,YT,ZT)← (xQ, yQ, 1)
2: L1,0 ← X2

T

3: L1,0 ← 3 · L1,0

4: L1,0 ← L1,0 · xP

5: ...

The algorithm to compute the Ate pairing a(Q,P) basically consists of the
Miller loop in Lines 1-9 and the final exponentiation step in Line 10. The
evaluation of the tangent line `T,T (P) in Line 3 and the point doubling in Line 4
of Algorithm 4 can be interleaved using the fast formulas by Costello et al.
[CLN10]. The respective sequence of operations at the beginning of the first
iteration of the Miller loop is shown in Algorithm 5.

This sequence of operations is vulnerable to a side-channel attack and may
be exploited to extract either of the pairing’s two parameters P and Q. In the
Decapsulate routine of the aforementioned BB1 identity-based encryption scheme,
the pairings a(D0,id, C0) and a(D1,id,−C1) are computed. In both cases, the
input parameter Q of the pairing a(Q,P) is the secret to be extracted.

In the following, we assume the input point Q of a(Q,P) to be secret and P
to be public. In Line 4 of Algorithm 5, the x-coordinate of the publicly known
input xP ∈ Fp is multiplied with the unknown intermediate value L1,0 ∈ Fp2 .
This finite field multiplication consists of two separate prime field multiplications
of xP with the two Fp elements of L1,0. A prime field multiplication is often
partitioned into a multiplication and a reduction step. The multiplication steps
within those two prime field multiplications allow the extraction of the two Fp
elements of the unknown intermediate L1,0 using a CPA attack. The original
secret input Q is then easily computed from L1,0 using Tonelli-Shanks square root
computation in Fp2 and the elliptic curve equation. Accordingly, the two pairing
computations a(D0,id, C0) and a(D1,id,−C1) in the identity-based encryption
scheme allow the recovery of the two parts of the user’s private key D0,id and
D1,id.

To counteract the attack, an idea may be to design protocols such that P is
secret and Q is public. However, in this setup the same prime field multiplication
L1,0 · xP can be attacked to reveal the secret P since we are able to compute
L1,0 for any public input.

Other implementation formulas than the ones by Costello et al. [CLN10] may
also be vulnerable to such type of attack. In particular, the same type of attack
can be performed on the revised formulas for point doubling and tangent line
evaluation by Aranha et al. [Ara+11]. With a slightly modified hypothesis, the
same attack is feasible on the formulas using Jacobian coordinates by Hankerson
et al. [HMS08], Beuchat et al. [Beu+10], and Aranha et al. [Ara+11]. Moreover,
other protocols and schemes using pairing computations are exposed as well if
these involve one both constant and secret parameter.

9.3. General Attack 125

9.3 General Attack

As indicated before, the attack to extract the secret parameter used in the optimal-
Ate pairing aopt(Q,P) is performed on a prime-field multiplication. A prime-field
multiplication on an embedded processor usually consists of a multi-precision
integer multiplication of the two input operands A and B that is succeeded by a
modular reduction. In order to attack the multi-precision integer multiplication,
we followed the ideas presented by Hutter et al. [Hut+09].

The public operand A and the both constant and secret operand B of the
multi-precision integer multiplication consist of nw words of w bits, where w
denotes the architecture’s word size. In this respect, a multi-precision integer
multiplication can be written as the sums of word multiplication products, i.e.,

C = A ·B =

nw−1∑
i=0

nw−1∑
j=0

A[i]B[j]2(i+j)w,

where A[i] denotes the i-th word of A. Its implementation may use, for example,
operand scanning or product scanning [KAJ96]. We focus on product scanning,
but the attack can easily be adapted for other implementation variants as well.
As secret multi-precision integers span a large space of possible values, the attack
is split into two basic steps:

Step 1: The word multiplications A[i] · B[j] are attacked to reduce the
number of candidates for each of the nw words of B. The k most
probable candidates for each word are chosen to be used in the second
step.

Step 2: The accumulated intermediate sums of products resulting from
the respective word multiplications are attacked using solely the re-
maining k candidates for each word of B.

We now describe these two steps for attacking a multi-precision integer
multiplication within prime-field multiplications in more detail. Note however
that this attack is not limited to prime-field multiplications that separate the
multiplication and the reduction step, but may also be applied to, e.g., Finely
Integrated Product Scanning (FIPS) implementations, by taking the public
modulus into consideration.

Step 1: Attacking Word Products

Generally, each word B[j]∀ j = 0, ..., nw − 1 can be any value between 0 and
2w − 1. In this respect, Step 1 tries to extract the most probable k candidates
of the 2w possible values for each word of B. This is done by attacking the
products of each word of the secret B with the i-th word of the public input
A[i]. All of the nw words of the public input A are equally suitable for this.
Depending on the details known about the implementation, a Hamming Weight
(HW) or a Hamming Distance (HD) model may be used to construct a matrix

126 Chapter 9. Side-Channel Attacks on Bilinear Pairings

that reflects the hypothetical power consumption of the respective multiplications.
For the HW model and nt executions of the algorithm, the hypothesis matrix is
as follows:


HW(A0[i] · 0) ... HW(A0[i] · (2w − 1))

...
. . .

...

HW(Ant−1[i] · 0) ... HW(Ant−1[i] · (2w − 1))



Hypothesis

E
x
ecu

tio
n

Hereby, Al[i] denotes the i-th word of the input A used in the l-th execution
of the algorithm. Correlation of this hypothesis matrix with the power traces
measured during the respective nt executions of the algorithm results in a
correlation matrix that shows how each hypothesis correlates with every sample
in the power traces. The correlation matrix thus allows to identify the regions in
the power traces where each of the multiplications A[i] ·B[j]∀ j = 0, ..., nw − 1
take place. Figure 9.2d, for example, shows eight regions of high correlation that
correspond to the respective multiplications A[i] ·B[j]. Evaluating each of these
regions over all hypotheses allows the extraction of the most likely candidates for
each multiplication and hence for each word B[j] of the secret.

As pointed out by Hutter et al. [Hut+09], shifted variants of the correct
hypothesis also lead to high correlation since multiplication is a linear operation.
In the best case, each word can be identified uniquely, but in the worst case w
equally likely hypotheses remain. An evaluation of all possible values for the
secret input of a word multiplication is depicted in Figure 9.1. In the HW model,
three equally likely candidates remain. Their respective values are bit-shifted
versions of the correct secret. In this case, Step 2 is necessary to uniquely
determine the attacked word from the remaining k candidates. In the HD model,
the correct value of the secret word becomes clearly visible, but other hypotheses
also yield high correlations. In this instance, Step 2 helps to gain certainty about
the correctness of the most likely candidate found.

Step 2: Attacking Sums of Products

Based on the k most probable candidates that were determined for each word
B[j] in Step 1, Step 2 aims to uniquely determine the full secret value B. In this
iterative process, one word after another is revealed by consecutively attacking
the single words of the final result C. Initially, the first two words of the secret
value B are determined. For this purpose all combinations of the candidates
found for the first two words of B and all different inputs of A are used to create
a suitable hypothesis matrix that models the second word of the result, C[1],

9.4. Practical Setup and Results 127

Hypothesis

C
o
rr
e
la
ti
o
n

×104
1 2 3 4 5 6

0

0 .05

0 .1

0 .15

0 .2

0 .25

0 .3

0 .35

0 .4

0 .45

0 .5

(a) Hamming weight model.

Hypothesis

C
o
rr
e
la
ti
o
n

×104
1 2 3 4 5 6

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

(b) Hamming distance model.

Figure 9.1: Correlation of multiplication result for 16-bit hypotheses.

which is computed as follows:

C[1] = A[0]B[1] +A[1]B[0] + (A[0]B[0]� w).

The power hypotheses for C[1] are then correlated with the recorded power traces.
The resulting correlation matrix uniquely determines the first two words of the
secret B. These revealed parts of the secret, namely B[0] and B[1], are then used
together with the candidates for B[2] to create a new hypothesis for the third
word of the result, C[2]. In general, the hypothesis for C[l] to uniquely determine
B[l] is built as

C[l] =

(
i+j=l∑
i≥0,j≥0

A[i]B[j] +

(
l−1∑
m=0

(
i+j=m∑
i≥0,j≥0

A[i]B[j]

)
� (l −m)w

))
mod 2w.

In this manner, the candidates found in the first step are used to successively
determine the complete secret value B.

9.4 Practical Setup and Results

The attack presented in the previous section was conducted in practice. An
embedded software implementation of the BB1-KEM identity-based encryption
scheme that is based on our pairing framework from Chapter 8 and suitable for
both the ARM Cortex-M0 [ARM14b] and the Cortex-M0+ [ARM14a] was chosen
as a target. However, note that for illustration of the attack this implementation
had all randomization countermeasures disabled. Both the ARM Cortex-M0
and the ARM Cortex-M0+ work on 32-bit operands, but merely support a

128 Chapter 9. Side-Channel Attacks on Bilinear Pairings

Trace count

C
o
rr
e
la
ti
o
n

0 100 200 300 400 500
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

99% quantile

correct hypothesis

envelope function

(a) Toggle counts.

Trace count

C
o
rr
e
la
ti
o
n

0 500 1000 1500 2000
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

99% quantile

correct hypothesis

envelope function

(b) FPGA.

Trace count

C
o
rr
e
la
ti
o
n

0 500 1000 1500 2000
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

99% quantile

correct hypothesis

envelope function

(c) ASIC.

Time

C
o
r
r
e
la
t
io
n

×10
4

0 0.5 1 1 .5 2
−0.6

−0.4

−0.2

0

0 .2

0 .4

0 .6

0 .8

1

(d) Correlation over time.

Figure 9.2: Correlation of word multiplication results.

32 × 32 → 32 bit multiplication that discards half of the product. Therefore,
each of the n2

w word multiplications in the multiplication step of the Separate
Product Scanning (SPS) multiplication method is split into four 16× 16→ 32 bit
multiplications that are aligned and accumulated appropriately. A suitable
multiplication routine that simultaneously does the accumulation necessary for
product scanning was presented by Wenger et al. [WUW13] and is shown in
Algorithm 6.

The attack described in Section 9.3 is rather hard to perform on a 32-bit
platform as each of the words of the secret operand can attain any value between
0 and 232 − 1. This leads to extremely large hypothesis matrices and requires
high computational effort. Therefore, the attack was modified to better suit
the targeted platform. Since each 32-bit multiplication is split into four 16-bit
multiplications, Step 1 of the practical attack targets the 16-bit half-words of the
secret operand. The respective hypothesis matrix is built from the multiplication
results of the least significant half-word of the public input with all possible
values for the attacked half-word (216 possibilities). This matrix targets the

9.4. Practical Setup and Results 129

Algorithm 6 Multiply-Accumulate routine for Cortex-M0 and Cortex-M0+
processors.

Input: r1, r2 are 32-bit operands
Input: r8, r9 are pointers to the operands
Output: {r5, r4, r3} is the accumulator

1: mov r1, r8

2: ldr r1, [r1, #offset1]

3: mov r2, r9

4: ldr r2, [r2, #offset2]

5: uxth r6, r1

6: uxth r7, r2

7: lsr r1, r1, #16

8: lsr r2, r2, #16

9: mov r0, r6

10: mul r0, r0, r7 . low × low
11: mul r6, r6, r2 . low × high
12: mul r2, r2, r1 . high × high
13: mul r1, r1, r7 . high × low
14: mov r7, #0

15: add r5, r5, r0 . low × low
16: adc r4, r4, r2 . high × high
17: adc r3, r3, r7

18: lsl r0, r6, #16

19: lsr r2, r6, #16

20: add r5, r5, r0 . low × high
21: adc r4, r4, r2

22: adc r3, r3, r7

23: lsl r0, r1, #16

24: lsr r2, r1, #16

25: add r5, r5, r0 . high × low
26: adc r4, r4, r2

27: adc r3, r3, r7

130 Chapter 9. Side-Channel Attacks on Bilinear Pairings

multiplications in Line 10 and 11 of Algorithm 6. The first of these multiplications
reveals the lower half, and the latter the upper half of each word of the secret
operand. As one of the operands is overwritten by the multiplication result, a
HD model is used to reflect the hypothetical power consumption of the changing
registers.

Step 2 of the attack was adapted accordingly. The candidates for the 16-
bit half-words of the unknown operand are used to compute the hypothetical
outcome for each word of the final result. The respective words are contained by
the accumulator registers at various times. A simple HW model was preferred
to describe the actual power consumption as the changes of the accumulator
registers are rather complex to model.

Three different setups were used to collect the power traces necessary to prac-
tically perform the attack. In the first setup, a self-built processor functionally
equivalent to the ARM Cortex-M0+ and its respective software implementation
were deployed to the Xilinx Virtex-II Pro xc2vp30 FPGA [Xil14] on a Sasebo G
board [RIS14]. In the second setup, the same hardware platform was synthesized
for a UMC 130 nm process and power simulations were run to obtain the count
of bit toggles in each clock cycle. In the third setup, the same software imple-
mentation was deployed to an ARM Cortex-M0 Microcontroller Unit (MCU)
by NXP (LPC1114FN28 [NXP14]). For all three setups, the same set of input
data was used, which allows comparison of the quality of side-channel leakage.
Mixing results of the Cortex-M0 and the Cortex-M0+ seems acceptable as the
two processors differ only slightly. In particular, the Cortex-M0+ comes with
two pipeline stages while the Cortex-M0 is in possession of three, which mainly
affects branching and only marginally influences the attack.

For the power measurements on the FPGA and the ARM Cortex-M0, a
MATLAB Side-Channel Analysis toolbox was utilized to communicate with the
cryptographic device using its serial interface. It was further used to retrieve
the power traces from the oscilloscope. The FPGA and the Cortex-M0 were
operated at a clock frequency of 25 MHz and 10 MHz, respectively. To attain
good measurements, both clock frequencies were chosen such that the sampling
rate of the oscilloscope is an integer multiple of the device clock frequency. A
trigger signal was used to align the power traces, which were measured on an 1 Ω
resistor on the line from the device to VCC using a differential probe.

The effort to successfully perform the presented attack was evaluated for the
three different setups. For Step 1, which targets the multiplication of half-words,
Figure 9.2a-9.2c show the number of traces required to distinguish the correct
hypothesis and its shifted variants from the others. Apart from the correct
hypothesis’ correlation, these figures show the envelope function and the 99%
quantile of all hypotheses, i.e., the range of correlations of all hypotheses but
the highest 1%. The envelope function represents the highest correlation of any
hypothesis but the correct one in each of the experiments with different trace
counts.

When using the noiseless toggle counts instead of power measurements, the
attack is already possible with data from less than 100 different traces. The rather

9.5. Countermeasures 131

Trace count

C
o
rr
e
la
ti
o
n

0 5 0 100 150 200
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

99% quantile

correct hypothesis

envelope function

(a) k=5.

Trace count

C
o
rr
e
la
ti
o
n

0 5 0 100 150 200
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

99% quantile

correct hypothesis

envelope function

(b) k=10.

Figure 9.3: Correlation of accumulation register.

old Virtex-II FPGA has quite high leakage, which results in successful attacks
with merely 800 traces. When attacking the ARM Cortex-M0 by NXP that is
built with modern process technologies, the attack succeeds with approximately
1 500 traces. Contrary to the other two experiments, the correct hypothesis’
correlation is much lower. Therefore, it takes significantly more traces for the
correct hypothesis to elevate from the hypotheses in the 99% quantile.

The results for Step 2 are similar. Figure 9.3 shows the correlation of the
second result word A[0]B[1] + A[1]B[0] + (A[0]B[0] � w) depending on the
number of traces when using toggle counts. The experiment was done with
different numbers of candidates k learned for each half-word of the secret B in
Step 1. These were determined as the top k correlating hypotheses when using
100 power traces. Since half-word candidates are found in Step 1, there remain k4

candidates to build the hypothesis matrix for the second partial sum. Using the
k = 5 most likely candidates for each half-word resulted in a sooner success than
when using the k = 10 most likely candidates. For higher numbers of candidates,
tested with k = 15 and k = 20, no difference could be observed compared to
k = 10. From the results in Figure 9.2a and Figure 9.3b, we conclude that the
complete attack succeeds with the same number of traces as required in Step 1.

9.5 Countermeasures

The presented CPA attack successfully extracts the secret input point of a bilinear
pairing. To mitigate such kind of attacks, several general countermeasures have
been presented before, e.g., point blinding [PV04] and randomization of the
Miller variable [WS06]. Point blinding techniques leave the pairing algorithm
untouched and solve the problem on a higher level, i.e., instead of computing
e(P,Q) directly, one could either compute e(P,Q) = e(aP, bP)1/ab with a and b
being random values or e(P,Q) = e(P,Q+R)/e(P,R) with R being a random
point. However, in the first case two additional point multiplications in G1 and G2

132 Chapter 9. Side-Channel Attacks on Bilinear Pairings

and an exponentiation in GT are required, and in the second case the computation
of a second pairing is necessary. Since either of those two approaches degrades
performance massively, both can hardly be applied to embedded scenarios. Less
expensive and hence better suited for embedded devices is the randomization
of the Miller variable as in [WS06]. This countermeasure requires that in
each iteration of the Miller loop all intermediate variables contributing to f (cf.
Algorithm 4) are multiplied with a random value. Due to the final exponentiation,
this does not affect the final result of the pairing algorithm. Still, this kind of
countermeasure is not very efficient.

Therefore, we recommend counteracting side-channel attacks on pairings in
embedded devices by following the idea of Randomized Projective Coordinates
(RPC) [Cor99] and randomizing the intermediate point T in the computation
of aopt(Q,P) in Algorithm 4. In particular, instead of initializing T trivially
with (XT , YT , ZT) = (xQ, yQ, 1), one chooses a random value ρ and assigns
(XT , YT , ZT) = (ρxQ, ρyQ, ρ) to the homogeneous projective point T . Inde-
pendently of which of the two input points Q and P is secret, this approach
prevents attackers from building a suitable hypothesis in the presented attack.
Apart from this single initialization step, the countermeasure does not incur any
overhead. Moreover, the randomization can easily be adapted to other sets of
implementation formulas and different variants of projective coordinates.

9.6 Conclusion

This chapter featured a CPA attack on bilinear pairings that poses a significant
threat to pairing-based protocols. In this respect, we pointed out how the pairing
computation can leak a user’s private key in the popular identity-based encryption
scheme BB1 by Boneh and Boyen [BB04]. We thereby illustrated that many
implementation formulas of the widely used Ate pairings a(Q,P) over BN curves
are vulnerable to power analysis attacks, independently of which of the two
input parameters is secret. We practically verified the feasibility of our attack
using three different setups and finally emphasized that Coron’s projective point
randomization techniques are equally important for pairing implementations as
they are for elliptic curve cryptography. Therefore, we recommend using RPC in
all future pairing implementations threatened by side-channel attacks.

10
Conclusions

Internet-of-Things (IoT) devices are inherently exposed to physical attackers
and for this reason suffer from a wide variety of powerful attacks, ranging from
physical probing of the Printed Circuit Board (PCB), over manipulation of the
memory, to side-channel attacks. In this thesis, we have put significant effort in
securing IoT devices against side-channel attacks.

In particular, the first part of this thesis was devoted to cryptography offering
side-channel security when the leakage of its implementation is assumed to be
bounded. Chapter 3 used the cryptographic properties of sponges to provide a
tool for modeling bounded side-channel leakage in permutation-based designs.
This thesis hereby gave a new approach to include side-channel security into the
design phase of cryptographic schemes and to assess the practical security of
cryptographic implementations in the presence of limited amounts of side-channel
leakage. However, note that implementations must yet be designed to keep the
side-channel leakage small in order to obtain decent security levels. As well, it is
a particular challenge to practically determine the amount of side-channel leakage
an implementation gives about a value.

In this regard, Chapter 4 illustrated that evaluating the capacity of a side
channel is a suitable approach to determine the leakage about a value from a
single processing in bits. The presented technique works independent of the
concrete leakage function and Gaussian noise is the sole assumption. In addition,
this leakage quantification suits many leakage-resilient schemes as these use a
secret only once. However, the amount of leakage also depends on factors like the
measurement equipment and, as shown in this thesis, rises quickly for multivariate
side channels when noise is removed through signal averaging. The attacker’s
capabilities must hence be clearly specified to get reliable leakage estimations.

133

134 Chapter 10. Conclusions

On the other hand, even when the leakage about a key is bounded by both
the cryptographic scheme and its implementation, there can also be side effects
depending on the concrete use case. In particular, Chapter 5 showed that
frequent re-keying used in leakage-resilient modes protects the key, but allows for
Differential Power Analysis (DPA) attacks that unveil plaintext parts that stay
the same when the key is changed. This is, e.g., relevant for memory encryption,
which inherently produces read-modify-write operations. Consequently, this
insight is a strong reminder to take care of possible side effects when applying
side-channel countermeasures in practical applications.

In the second part, this thesis focused on memory encryption and authen-
tication. State-of-the-art techniques are designed to protect the memory from
attackers with physical access, but so far completely neglect the threat of side-
channel analysis. While the disregard of side-channel attacks is not a security
concern for applications like the encryption of USB flash drives, where the attacker
usually owns a shut off device, side-channel attacks are a severe threat in case of
attackers with access to running IoT devices operating on encrypted memory. In
this respect, we showed in Chapter 6 that DPA breaks all memory encryption
schemes used in practice. While this could be expected from a theoretical point
of view, our practical attack on ext4 disk encryption clearly demonstrated their
applicability to state-of-the-art System on Chips (SoCs), making them a highly
relevant threat to a broad range of IoT devices. Apart from that, this thesis
also revealed the vulnerability of memory encryption to active Differential Fault
Analysis (DFA) techniques.

As a consequence of our attacks in Chapter 6, Chapter 7 presented Meas—the
first memory encryption and authentication scheme that is secure against DPA
and that protects memory in IoT devices from attackers with runtime physical
access. The scheme combines ideas from fresh re-keying and authentication trees
to yield both DPA protection and a minimal root of trust. The efficiency of
our scheme illustrates how to achieve practical side-channel protection when
the use case is known and side-channel attacks are considered already in the
design phase. In this respect, our prototype implementation of Meas offers
DPA protection for memory encryption and authentication without additional
costs over conventional schemes. This allows to deploy Meas to Random Access
Memory (RAM) without significant efforts, and to Non-Volatile Memory (NVM)
by integrating a non-volatile, secure storage, such as in a Trusted Platform
Module (TPM), to maintain the root of trust. Yet, we think that the cost
of memory encryption and authentication must be taken into account when
designing future IoT architectures such as by mechanisms to reduce memory
pressure.

In the third and last part of this thesis, we shifted our focus to privacy
concerns in the IoT, which can be overcome through techniques from pairing-
based cryptography. We showed in Chapter 8 that pairing-based protocols, such
as privacy-preserving group signatures, are ready for their widespread deployment
in the IoT by using a hard- and software co-design approach to give a both efficient
and lightweight implementation of bilinear pairings. However, recent advances in

135

solving the Discrete Logarithm Problem (DLP) [MSS16; KB16; BD17] suggest
reduced security for pairings and hence demand for transferring our design
methodology to larger elliptic curves offering better security. As a result, the
practicality of bilinear pairings in embedded devices requires further investigation.
Yet, note that the elliptic curve BN254 we used in this thesis is still assumed to
offer 100-bit security, which is sufficient for many applications. We are hence
confident that our advances towards efficient pairing-based cryptography will
help, e.g., privacy-enhancing technologies, to find their way into our everyday
lives.

Finally, by recovering the secret key from an unprotected implementation
of identity-based encryption in a practical DPA attack, Chapter 9 showed that
side-channel attacks need to be concerned for pairing-based cryptography as
well. While our recommendation is to prevent side-channel attacks directly
within the pairing algorithm by randomizing projective elliptic curve point
coordinates, we emphasized that there is a range of point and exponent blinding
techniques available to prevent side-channel analysis when using unprotected
implementations as well. Unfortunately, these techniques come at the cost
of massive overheads that are unsuitable for lightweight applications. Thus,
protecting implementations using randomized projective coordinates currently is
the best approach to prevent side-channel analysis. However, we also think that
adapting pairing-based protocols to perform re-keying or to give provable leakage
resilience, such as in [KP10], is a promising approach for further exploration.

Outlook. The results in this thesis indicate that further research on side-
channel attacks and countermeasures will be necessary in the future. In particular,
our approach in Chapter 4 to quantify leakage under a single data input leaves
several open questions. For example, it is yet unclear if there is a reasonable
leakage bound when combining different side channels, e.g., Electromagnetic
Emanation (EM), power, and timing. Moreover, additional research is required
on how to apply the procedure of leakage quantification to generic processor
architectures and to implementations with large state sizes that make profiling
impossible. Further, methods and choices in the profiling step need to be
evaluated regarding their impact on the estimated leakage since profiling defines
what is considered to be the side-channel signal. In addition, our re-keying
function IsapRk2, our instance Meas-v2, and many other (leakage-resilient)
constructions allow each key to be used with a small number of different inputs,
e.g., q = 2. Hence, there needs to be research on finding suitable leakage bounds
in these settings as well.

However, there clearly is no useful leakage bound for a secret that is used
together with many different inputs, such as for a constant plaintext in the
case of re-keying. As a result, there needs to be research on whether protected
implementations are the sole option to cope with this threat, or if other techniques
may help as well. For instance, it would be interesting to investigate the effect of
oblivious RAM techniques on the side-channel security of Meas as it may hide
the repeated en-/decryption of the same plaintext by permanently changing the

136 Chapter 10. Conclusions

memory layout. Apart from that, side-channel analysis in this thesis strongly
focused on DPA techniques, but recent research showed other techniques, such as
cache attacks, to be similarly dangerous. As IoT devices become more and more
evolved, these kind of techniques and side channels should in future analyses,
designs, and implementations also be explicitly taken into consideration.

In terms of memory encryption and authentication, there is also more re-
search to be done. For example, the approach to side-channel resistant memory
encryption and authentication used in Meas raises the question of whether an
efficient, side-channel resistant memory encryption scheme can also be designed
without involving the overhead of authentication trees. Another example is the
development of techniques to securely improve the performance and hide the
latency of encrypted memory. In addition, other aspects, such as address-bus
leakage and fault attacks, need to be concerned when securing memory as well.
A future challenge hence is the integration of different countermeasures to form
a single scheme to secure memory. At least in terms of fault attacks, there is
evidence that re-keying does not only counteract DPA, but can also prevent
DFA [Med+10].

Summarizing, the analyses, designs, tools, and implementations provided
in this thesis are an important step towards inherent side-channel security and
contribute to secure platforms and the practicality of (pairing-based) privacy-
preserving schemes in the IoT. From these advances, we conclude that the vision
of a secure IoT is not wishful thinking, but the ongoing progress in research will
lead to better security architectures and make secure IoT devices both realistic
and practical.

Bibliography

[And+15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van
Assche. “Security of Keyed Sponge Constructions Using a Modular
Proof Approach.” In: Fast Software Encryption – FSE 2015. Ed. by
Gregor Leander. Vol. 9054. LNCS. Springer, 2015, pp. 364–384.
isbn: 978-3-662-48115-8.

[App12] Apple Inc. Apple Technical White Paper: Best Practices for Deploy-
ing FileVault 2. http://training.apple.com/pdf/WP_FileVault2.

pdf. 2012.

[App15] Apple Inc. iOS Security. https://www.apple.com/business/docs/

iOS_Security_Guide.pdf. 2015.

[Ara+11] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H.
Gebotys, and Julio López. “Faster Explicit Formulas for Computing
Pairings over Ordinary Curves.” In: Advances in Cryptology – EU-
ROCRYPT 2011. Ed. by Kenneth G. Paterson. Vol. 6632. LNCS.
Springer, 2011, pp. 48–68. isbn: 978-3-642-20464-7.

[ARM] ARM Ltd. Core Link™ Level 2 Cache Controller L2C-310 Technical
Reference Manual. ID080112.

[ARM14a] ARM Ltd. Cortex-M0+ Processor. June 2014. url: http://www.arm.
com/products/processors/cortex-m/cortex-m0plus.php.

[ARM14b] ARM Ltd. Cortex-M0 Processor. June 2014. url: http://www.arm.
com/products/processors/cortex-m/cortex-m0.php.

[Atm13] Atmel Corporation. Atmel SAM D20 ARM-based Microcontroller
Datasheet. Dec. 2013. url: http://www.atmel.com/Images/Atmel-

42129-SAM-D20_Summary.pdf.

[Ava17] Roberto Avanzi. “The QARMA Block Cipher Family. Almost MDS
Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-
Mansour Constructions With Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes.” In: IACR Trans. Sym-
metric Cryptol. 2017 (2017), pp. 4–44.

[AVR16] AVR-Crypto-Lib. AVR-Crypto-Lib. 2016. url: https : / / trac .

cryptolib.org/avr-crypto-lib.

137

http://training.apple.com/pdf/WP_FileVault2.pdf
http://training.apple.com/pdf/WP_FileVault2.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://www.atmel.com/Images/Atmel-42129-SAM-D20_Summary.pdf
http://www.atmel.com/Images/Atmel-42129-SAM-D20_Summary.pdf
https://trac.cryptolib.org/avr-crypto-lib
https://trac.cryptolib.org/avr-crypto-lib

138 Bibliography

[Bal+15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Ver-
bauwhede. “DPA, Bitslicing and Masking at 1 GHz.” In: Crypto-
graphic Hardware and Embedded Systems – CHES 2015. Ed. by
Tim Güneysu and Helena Handschuh. Vol. 9293. LNCS. Springer,
2015, pp. 599–619. isbn: 978-3-662-48323-7.

[BB04] Dan Boneh and Xavier Boyen. “Secure Identity Based Encryption
Without Random Oracles.” In: Advances in Cryptology – CRYPTO
2004. Ed. by Matthew K. Franklin. Vol. 3152. LNCS. Springer, 2004,
pp. 443–459. isbn: 3-540-22668-0.

[BB08] Dan Boneh and Xavier Boyen. “Short Signatures Without Ran-
dom Oracles and the SDH Assumption in Bilinear Groups.” In: J.
Cryptology 21 (2008), pp. 149–177.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group
Signatures.” In: Advances in Cryptology – CRYPTO 2004. Ed. by
Matthew K. Franklin. Vol. 3152. LNCS. Springer, 2004, pp. 41–55.
isbn: 3-540-22668-0.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation
Power Analysis with a Leakage Model.” In: Cryptographic Hardware
and Embedded Systems – CHES 2004. Ed. by Marc Joye and Jean-
Jacques Quisquater. Vol. 3156. LNCS. Springer, 2004, pp. 16–29.
isbn: 3-540-22666-4.

[BD17] Razvan Barbulescu and Sylvain Duquesne. “Updating key size
estimations for pairings.” In: IACR Cryptology ePrint Archive 2017
(2017), p. 334. url: http://eprint.iacr.org/2017/334.

[Bel+14] Sonia Beläıd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard,
Marcel Medwed, Jörn-Marc Schmidt, François-Xavier Standaert,
and Stefan Tillich. “Towards fresh re-keying with leakage-resilient
PRFs: cipher design principles and analysis.” In: J. Cryptographic
Engineering 4 (2014), pp. 157–171.

[Bel+15] Sonia Beläıd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benôıt
Gérard, Jean-Gabriel Kammerer, and Emmanuel Prouff. “Improved
Side-Channel Analysis of Finite-Field Multiplication.” In: Cryp-
tographic Hardware and Embedded Systems – CHES 2015. Ed. by
Tim Güneysu and Helena Handschuh. Vol. 9293. LNCS. Springer,
2015, pp. 395–415. isbn: 978-3-662-48323-7.

[Ber+09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Keccak sponge function family main document.” In: Sub-
mission to NIST (Round 2) 3 (2009), p. 30.

[Ber+11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Duplexing the Sponge: Single-Pass Authenticated Encryp-
tion and Other Applications.” In: Selected Areas in Cryptography –
SAC 2011. Ed. by Ali Miri and Serge Vaudenay. Vol. 7118. LNCS.
Springer, 2011, pp. 320–337. isbn: 978-3-642-28495-3.

http://eprint.iacr.org/2017/334

Bibliography 139

[Ber+11b] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. Cryptographic sponge functions (Version 0.1). http://

sponge.noekeon.org/. 2011.

[Ber+11c] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. The Keccak SHA-3 submission. http://keccak.noekeon.

org/. 2011.

[Ber+12] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. “Permutation-based encryption, authentication and authen-
ticated encryption.” In: Workshop Records of DIAC 2012. 2012,
pp. 159–170.

[Ber+14a] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche,
and Ronny Van Keer. CAESAR submission: Ketje. http://ketje.
noekeon.org/. 2014.

[Ber+14b] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche,
and Ronny Van Keer. CAESAR submission: Keyak. http://keyak.
noekeon.org/. 2014.

[Ber06] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed
Records.” In: Public Key Cryptography – PKC 2006. Ed. by Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958.
LNCS. Springer, 2006, pp. 207–228. isbn: 3-540-33851-9.

[Beu+10] Jean-Luc Beuchat, Jorge Enrique González-Dı́az, Shigeo Mitsunari,
Eiji Okamoto, Francisco Rodŕıguez-Henŕıquez, and Tadanori Teruya.
“High-Speed Software Implementation of the Optimal Ate Pairing
over Barreto-Naehrig Curves.” In: Pairing-Based Cryptography –
Pairing 2010. Ed. by Marc Joye, Atsuko Miyaji, and Akira Otsuka.
Vol. 6487. LNCS. Springer, 2010, pp. 21–39. isbn: 978-3-642-17454-
4.

[BFG14] Sonia Beläıd, Pierre-Alain Fouque, and Benôıt Gérard. “Side-
Channel Analysis of Multiplications in GF(2128) - Application
to AES-GCM.” In: Advances in Cryptology – ASIACRYPT 2014.
Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8874. LNCS. Springer,
2014, pp. 306–325. isbn: 978-3-662-45607-1.

[BGL13] Johannes Blömer, Peter Günther, and Gennadij Liske. “Improved
Side Channel Attacks on Pairing Based Cryptography.” In: Con-
structive Side-Channel Analysis and Secure Design – COSADE
2013. Ed. by Emmanuel Prouff. Vol. 7864. LNCS. Springer, 2013,
pp. 154–168. isbn: 978-3-642-40025-4.

[BGS15] Sonia Beläıd, Vincent Grosso, and François-Xavier Standaert.
“Masking and leakage-resilient primitives: One, the other(s) or
both?” In: Cryptography and Communications 7 (2015), pp. 163–
184.

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://ketje.noekeon.org/
http://ketje.noekeon.org/
http://keyak.noekeon.org/
http://keyak.noekeon.org/

140 Bibliography

[Bil+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. “A More Efficient AES Threshold Implemen-
tation.” In: Progress in Cryptology – AFRICACRYPT 2014. Ed.
by David Pointcheval and Damien Vergnaud. Vol. 8469. LNCS.
Springer, 2014, pp. 267–284. isbn: 978-3-319-06733-9.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly
Elliptic Curves of Prime Order.” In: Selected Areas in Cryptography

– SAC 2005. Ed. by Bart Preneel and Stafford E. Tavares. Vol. 3897.
LNCS. Springer, 2005, pp. 319–331. isbn: 3-540-33108-5.

[BN08] Mihir Bellare and Chanathip Namprempre. “Authenticated En-
cryption: Relations among Notions and Analysis of the Generic
Composition Paradigm.” In: J. Cryptology 21 (2008), pp. 469–491.

[Bog+14] Andrey Bogdanov, Christoph Dobraunig, Maria Eichlseder, Mar-
tin M. Lauridsen, Florian Mendel, Martin Schläffer, and Elmar
Tischhauser. “Key Recovery Attacks on Recent Authenticated Ci-
phers.” In: Progress in Cryptology – LATINCRYPT 2014. Ed. by
Diego F. Aranha and Alfred Menezes. Vol. 8895. LNCS. Springer,
2014, pp. 274–287. isbn: 978-3-319-16294-2.

[Bor+12] Julia Borghoff et al. “PRINCE - A Low-latency Block Cipher
for Pervasive Computing Applications (Full version).” In: IACR
Cryptology ePrint Archive 2012 (2012), p. 529. url: http://eprint.
iacr.org/2012/529.

[BS97] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret
Key Cryptosystems.” In: Advances in Cryptology – CRYPTO 1997.
Ed. by Burton S. Kaliski Jr. Vol. 1294. LNCS. Springer, 1997,
pp. 513–525. isbn: 3-540-63384-7.

[Cer00] Certicom Research. Standards for Efficient Cryptography, SEC 2:
Recommended Elliptic Curve Domain Parameters, Version 1.0. Sept.
2000. url: http://www.secg.org/.

[CGM12] Omar Choudary, Felix Gröbert, and Joachim Metz. “Infiltrate
the Vault: Security Analysis and Decryption of Lion Full Disk
Encryption.” In: IACR Cryptology ePrint Archive 2012 (2012),
p. 374. url: http://eprint.iacr.org/2012/374.

[CH91] David Chaum and Eugène van Heyst. “Group Signatures.” In:
Advances in Cryptology – EUROCRYPT 91. Ed. by Donald W.
Davies. Vol. 547. LNCS. Springer, 1991, pp. 257–265. isbn: 3-540-
54620-0.

[Cha+99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj
Rohatgi. “Towards Sound Approaches to Counteract Power-Analysis
Attacks.” In: Advances in Cryptology – CRYPTO 1999. Ed. by
Michael J. Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 398–412.
isbn: 3-540-66347-9.

http://eprint.iacr.org/2012/529
http://eprint.iacr.org/2012/529
http://www.secg.org/
http://eprint.iacr.org/2012/374

Bibliography 141

[CL02] Jan Camenisch and Anna Lysyanskaya. “A Signature Scheme with
Efficient Protocols.” In: Security and Cryptography for Networks –
SCN 2002. Ed. by Stelvio Cimato, Clemente Galdi, and Giuseppe
Persiano. Vol. 2576. LNCS. Springer, 2002, pp. 268–289. isbn: 3-
540-00420-3.

[CLN10] Craig Costello, Tanja Lange, and Michael Naehrig. “Faster Pairing
Computations on Curves with High-Degree Twists.” In: Public Key
Cryptography – PKC 2010. Ed. by Phong Q. Nguyen and David
Pointcheval. Vol. 6056. LNCS. Springer, 2010, pp. 224–242. isbn:
978-3-642-13012-0.

[Cor99] Jean-Sébastien Coron. “Resistance against Differential Power Anal-
ysis for Elliptic Curve Cryptosystems.” In: Cryptographic Hardware
and Embedded Systems – CHES 1999. Ed. by Çetin Kaya Koç and
Christof Paar. Vol. 1717. LNCS. Springer, 1999, pp. 292–302. isbn:
3-540-66646-X.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template
Attacks.” In: Cryptographic Hardware and Embedded Systems –
CHES 2002. Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and
Christof Paar. Vol. 2523. LNCS. Springer, 2002, pp. 13–28. isbn:
3-540-00409-2.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information
theory. John Wiley & Sons, 2012.

[Dev+06] Augusto Jun Devegili, Colm O’hEigeartaigh, Michael Scott, and
Ricardo Dahab. “Multiplication and Squaring on Pairing-Friendly
Fields.” In: IACR Cryptology ePrint Archive 2006 (2006), p. 471.
url: http://eprint.iacr.org/2006/471.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert.
“Making Masking Security Proofs Concrete - Or How to Evaluate
the Security of Any Leaking Device.” In: Advances in Cryptology –
EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9056. LNCS. Springer, 2015, pp. 401–429. isbn: 978-3-662-
46799-2.

[DMC15] DM-Crypt. Dm-crypt: Linux Kernel Device-Mapper Crypto Target.
http://www.saout.de/misc/dm-crypt/. 2015.

[Dob+14] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Flo-
rian Mendel. “On the Security of Fresh Re-keying to Counteract
Side-Channel and Fault Attacks.” In: Smart Card Research and
Advanced Applications – CARDIS 2014. Ed. by Marc Joye and
Amir Moradi. Vol. 8968. LNCS. Springer, 2014, pp. 233–244. isbn:
978-3-319-16762-6.

[Dob+16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon v1.2.” In: (2016).

http://eprint.iacr.org/2006/471
http://www.saout.de/misc/dm-crypt/

142 Bibliography

[Dob+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, and Thomas Unterluggauer. “ISAP - Towards Side-Channel
Secure Authenticated Encryption.” In: IACR Trans. Symmetric
Cryptol. 2017 (2017), pp. 80–105.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES
- The Advanced Encryption Standard. Information Security and
Cryptography. Springer, 2002.

[DSD07] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. “Imple-
menting Cryptographic Pairings over Barreto-Naehrig Curves.” In:
Pairing-Based Cryptography – Pairing 2007. Ed. by Tsuyoshi Takagi,
Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto. Vol. 4575.
LNCS. Springer, 2007, pp. 197–207. isbn: 978-3-540-73488-8.

[Dzi+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony
Journault, Daniel Masny, and François-Xavier Standaert. “Towards
Sound Fresh Re-keying with Hard (Physical) Learning Problems.”
In: Advances in Cryptology – CRYPTO 2016. Ed. by Matthew
Robshaw and Jonathan Katz. Vol. 9815. LNCS. Springer, 2016,
pp. 272–301. isbn: 978-3-662-53007-8.

[EFD09] N. El Mrabet, M.-L. Flottes, and G. Di Natale. “A practical Dif-
ferential Power Analysis attack against the Miller algorithm.” In:
Research in Microelectronics and Electronics, 2009. PRIME 2009.
Ph.D. July 2009, pp. 308–311.

[Eis+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar,
Mahmoud Salmasizadeh, and Mohammad T. Manzuri Shalmani.
“On the Power of Power Analysis in the Real World: A Complete
Break of the KeeLoqCode Hopping Scheme.” In: Advances in Cryp-
tology – CRYPTO 2008. Ed. by David A. Wagner. Vol. 5157. LNCS.
Springer, 2008, pp. 203–220. isbn: 978-3-540-85173-8.

[Elb+07] Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres,
Gilles Sassatelli, and Pierre Guillemin. “TEC-Tree: A Low-Cost,
Parallelizable Tree for Efficient Defense Against Memory Replay At-
tacks.” In: Cryptographic Hardware and Embedded Systems – CHES
2007. Ed. by Pascal Paillier and Ingrid Verbauwhede. Vol. 4727.
LNCS. Springer, 2007, pp. 289–302. isbn: 978-3-540-74734-5.

[Elb+09] Reouven Elbaz, David Champagne, Catherine H. Gebotys, Ruby
B. Lee, Nachiketh R. Potlapally, and Lionel Torres. “Hardware
Mechanisms for Memory Authentication: A Survey of Existing
Techniques and Engines.” In: Trans. Computational Science. LNCS
4 (2009). Ed. by Marina L. Gavrilova, Chih Jeng Kenneth Tan, and
Edward D. Moreno, pp. 1–22.

[Fer06] Niels Ferguson. AES-CBC + Elephant Diffuser A Disk Encryption
Algorithm for Windows Vista. Aug. 2006.

Bibliography 143

[FKR11] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-
Henŕıquez. “Faster Hashing to G2.” In: Selected Areas in Cryptog-
raphy – SAC 2011. Ed. by Ali Miri and Serge Vaudenay. Vol. 7118.
LNCS. Springer, 2011, pp. 412–430. isbn: 978-3-642-28495-3.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. “Practi-
cal Leakage-Resilient Symmetric Cryptography.” In: Cryptographic
Hardware and Embedded Systems – CHES 2012. Ed. by Emmanuel
Prouff and Patrick Schaumont. Vol. 7428. LNCS. Springer, 2012,
pp. 213–232. isbn: 978-3-642-33026-1.

[Fru05] Clemens Fruhwirth. New Methods in Hard Disk Encryption. Tech.
rep. 2005.

[Fru11] Clemens Fruhwirth. LUKS On-Disk Format Specification. https:
//gitlab.com/cryptsetup/cryptsetup/wikis/LUKS- standard/on-

disk-format.pdf. 2011.

[FVV09] Junfeng Fan, Frederik Vercauteren, and Ingrid Verbauwhede.
“Faster -Arithmetic for Cryptographic Pairings on Barreto-Naehrig
Curves.” In: Cryptographic Hardware and Embedded Systems –
CHES 2009. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747.
LNCS. Springer, 2009, pp. 240–253. isbn: 978-3-642-04137-2.

[Gau+17] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini. “Near-Threshold
RISC-V Core With DSP Extensions for Scalable IoT Endpoint
Devices.” In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems PP.99 (2017), pp. 1–14.

[GC11] Santosh Ghosh and Dipanwita Roy Chowdhury. “Security of Prime
Field Pairing Cryptoprocessor against Differential Power Attack.”
In: Security Aspects in Information Technology – InfoSecHiComNet
2011. Ed. by Marc Joye, Debdeep Mukhopadhyay, and Michael
Tunstall. Vol. 7011. LNCS. Springer, 2011, pp. 16–29. isbn: 978-3-
642-24585-5.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to
construct random functions.” In: J. ACM 33 (1986), pp. 792–807.

[Gie+10] Benedikt Gierlichs, Lejla Batina, Bart Preneel, and Ingrid Ver-
bauwhede. “Revisiting Higher-Order DPA Attacks:” in: Topics in
Cryptology – CT-RSA 2010. Ed. by Josef Pieprzyk. Vol. 5985. LNCS.
Springer, 2010, pp. 221–234. isbn: 978-3-642-11924-8.

[GJ16] Qian Guo and Thomas Johansson. “A New Birthday-Type Algo-
rithm for Attacking the Fresh Re-Keying Countermeasure.” In:
IACR Cryptology ePrint Archive 2016 (2016), p. 225. url: http:
//eprint.iacr.org/2016/225.

[Gol+03] Andrea Goldsmith, Syed Ali Jafar, Nihar Jindal, and Sriram Vish-
wanath. “Capacity limits of MIMO channels.” In: IEEE Journal on
Selected Areas in Communications 21 (2003), pp. 684–702.

https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
http://eprint.iacr.org/2016/225
http://eprint.iacr.org/2016/225

144 Bibliography

[Gol05] Andrea Goldsmith. Wireless communications. Cambridge university
press, 2005.

[GOL12] Conrado Porto Lopes Gouvêa, Leonardo B. Oliveira, and Julio
López. “Efficient software implementation of public-key cryptogra-
phy on sensor networks using the MSP430X microcontroller.” In: J.
Cryptographic Engineering 2 (2012), pp. 19–29.

[Goo15] Google Inc. Android Full Disk Encryption. https://source.android.
com/security/encryption/. 2015.

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power
Analysis (The ”Duplication” Method).” In: Cryptographic Hardware
and Embedded Systems – CHES 1999. Ed. by Çetin Kaya Koç and
Christof Paar. Vol. 1717. LNCS. Springer, 1999, pp. 158–172. isbn:
3-540-66646-X.

[Gre+12] Gurleen Grewal, Reza Azarderakhsh, Patrick Longa, Shi Hu, and
David Jao. “Efficient Implementation of Bilinear Pairings on ARM
Processors.” In: Selected Areas in Cryptography – SAC 2012. Ed. by
Lars R. Knudsen and Huapeng Wu. Vol. 7707. LNCS. Springer,
2012, pp. 149–165. isbn: 978-3-642-35998-9.

[Gro+16] Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unter-
luggauer, and Mario Werner. “Concealing Secrets in Embedded
Processors Designs.” In: Smart Card Research and Advanced Appli-
cations – CARDIS 2016. Ed. by Kerstin Lemke-Rust and Michael
Tunstall. Vol. 10146. LNCS. Springer, 2016, pp. 89–104. isbn: 978-
3-319-54668-1.

[GS10] Robert Granger and Michael Scott. “Faster Squaring in the Cy-
clotomic Subgroup of Sixth Degree Extensions.” In: Public Key
Cryptography – PKC 2010. Ed. by Phong Q. Nguyen and David
Pointcheval. Vol. 6056. LNCS. Springer, 2010, pp. 209–223. isbn:
978-3-642-13012-0.

[Gue16] Shay Gueron. “A Memory Encryption Engine Suitable for General
Purpose Processors.” In: IACR Cryptology ePrint Archive 2016
(2016), p. 204. url: http://eprint.iacr.org/2016/204.

[Hal+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten. “Lest we remember: cold-
boot attacks on encryption keys.” In: Commun. ACM 52 (2009),
pp. 91–98.

[HJ05] William Eric Hall and Charanjit S. Jutla. “Parallelizable Authen-
tication Trees.” In: Selected Areas in Cryptography – SAC 2005.
Ed. by Bart Preneel and Stafford E. Tavares. Vol. 3897. LNCS.
Springer, 2005, pp. 95–109. isbn: 3-540-33108-5.

https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
http://eprint.iacr.org/2016/204

Bibliography 145

[HJS11] Michael Hutter, Marc Joye, and Yannick Sierra. “Memory-
Constrained Implementations of Elliptic Curve Cryptography in
Co-Z Coordinate Representation.” In: Progress in Cryptology –
AFRICACRYPT 2011. Ed. by Abderrahmane Nitaj and David
Pointcheval. Vol. 6737. LNCS. Springer, 2011, pp. 170–187. isbn:
978-3-642-21968-9.

[HMS08] Darrel Hankerson, Alfred Menezes, and Michael Scott. “Software
Implementation of Pairings.” In: IOS Press Cryptology and Infor-
mation Security Series on Identity-Based Cryptography. M. Joye
and G. Neven, 2008. Chap. 12, pp. 188–206.

[HT13] Michael Henson and Stephen Taylor. “Beyond Full Disk Encryp-
tion: Protection on Security-Enhanced Commodity Processors.” In:
Applied Cryptography and Network Security – ACNS 2013. Ed. by
Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and
Reihaneh Safavi-Naini. Vol. 7954. LNCS. Springer, 2013, pp. 307–
321. isbn: 978-3-642-38979-5.

[HTM09] Neil Hanley, Michael Tunstall, and William P. Marnane. “Unknown
Plaintext Template Attacks.” In: Information Security Applications

– WISA 2009. Ed. by Heung Youl Youm and Moti Yung. Vol. 5932.
LNCS. Springer, 2009, pp. 148–162. isbn: 978-3-642-10837-2.

[Hut+09] Michael Hutter, Marcel Medwed, Daniel M. Hein, and Johannes
Wolkerstorfer. “Attacking ECDSA-Enabled RFID Devices.” In:
Applied Cryptography and Network Security – ACNS 2009. Ed.
by Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud. Vol. 5536. LNCS. 2009, pp. 519–534. isbn: 978-
3-642-01956-2.

[Hwa+11] Jung Yeon Hwang, Sokjoon Lee, Byung-Ho Chung, Hyun Sook Cho,
and DaeHun Nyang. “Short Group Signatures with Controllable
Linkability.” In: LIGHTSEC 2011. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 44–52. isbn: 978-0-7695-4340-6.

[IEE08a] IEEE. P1363.3TM/D1 Draft Standard for Identity-based Public-key
Cryptography Using Pairings. 2008.

[IEE08b] IEEE. Standard for Cryptographic Protection of Data on Block-
Oriented Storage Devices. IEEE Std 1619-2007. Apr. 2008.

[Int16] Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer Manuals. 325462-058. 2016.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. “Private Circuits:
Securing Hardware against Probing Attacks.” In: Advances in Cryp-
tology – CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS.
Springer, 2003, pp. 463–481. isbn: 3-540-40674-3.

146 Bibliography

[Jaf07] Joshua Jaffe. “A First-Order DPA Attack Against AES in Counter
Mode with Unknown Initial Counter.” In: Cryptographic Hardware
and Embedded Systems – CHES 2007. Ed. by Pascal Paillier and
Ingrid Verbauwhede. Vol. 4727. LNCS. Springer, 2007, pp. 1–13.
isbn: 978-3-540-74734-5.

[Jou04] Antoine Joux. “A One Round Protocol for Tripartite Diffie-
Hellman.” In: J. Cryptology 17 (2004), pp. 263–276.

[KAJ96] Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski Jr. “Analyzing
and comparing Montgomery multiplication algorithms.” In: IEEE
Micro 16 (1996), pp. 26–33.

[Kal00] Burt Kaliski. “PKCS# 5: Password-based Cryptography Specifica-
tion Version 2.0.” In: (2000).

[Kam+09] David Kammler, Diandian Zhang, Peter Schwabe, Hanno
Scharwächter, Markus Langenberg, Dominik Auras, Gerd As-
cheid, and Rudolf Mathar. “Designing an ASIP for Cryptographic
Pairings over Barreto-Naehrig Curves.” In: Cryptographic Hardware
and Embedded Systems – CHES 2009. Ed. by Christophe Clavier
and Kris Gaj. Vol. 5747. LNCS. Springer, 2009, pp. 254–271. isbn:
978-3-642-04137-2.

[KB16] Taechan Kim and Razvan Barbulescu. “Extended Tower Number
Field Sieve: A New Complexity for the Medium Prime Case.” In:
Advances in Cryptology – CRYPTO 2016. Ed. by Matthew Robshaw
and Jonathan Katz. Vol. 9814. LNCS. Springer, 2016, pp. 543–571.
isbn: 978-3-662-53017-7.

[Kim+06] Tae Hyun Kim, Tsuyoshi Takagi, Dong-Guk Han, Ho Won Kim,
and Jongin Lim. “Side Channel Attacks and Countermeasures on
Pairing Based Cryptosystems over Binary Fields.” In: Cryptology
and Network Security – CANS 2006. Ed. by David Pointcheval, Yi
Mu, and Kefei Chen. Vol. 4301. LNCS. Springer, 2006, pp. 168–181.
isbn: 3-540-49462-6.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential
Power Analysis.” In: Advances in Cryptology – CRYPTO 1999. Ed.
by Michael J. Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 388–397.
isbn: 3-540-66347-9.

[Koc03] P.C. Kocher. Leak-resistant cryptographic indexed key update. US
Patent 6,539,092. Mar. 2003. url: https : / / www . google . com /

patents/US6539092.

[KP10] Eike Kiltz and Krzysztof Pietrzak. “Leakage Resilient ElGamal
Encryption.” In: Advances in Cryptology – ASIACRYPT 2010. Ed.
by Masayuki Abe. Vol. 6477. LNCS. Springer, 2010, pp. 595–612.
isbn: 978-3-642-17372-1.

https://www.google.com/patents/US6539092
https://www.google.com/patents/US6539092

Bibliography 147

[KPW16] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory
Encryption. http : / / developer . amd . com / resources / articles -

whitepapers/. 2016.

[Lam+03] Damjan Lampret et al. “Openrisc 1000 architecture manual.” In:
Description of assembler mnemonics and other for OR1200 (2003).

[LFD17] Chao Luo, Yunsi Fei, and A. Adam Ding. “Side-channel power
analysis of XTS-AES.” In: Design, Automation & Test in Europe —
DATE 2017. Ed. by David Atienza and Giorgio Di Natale. IEEE,
2017, pp. 1330–1335. isbn: 978-3-9815370-8-6.

[Lin15] Linux Kernel Organization Inc. Linux Kernel 4.3 Source Tree. https:
//git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/

log/?id=refs/tags/v4.3. 2015.

[Lon+15] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. “SoC
It to EM: ElectroMagnetic Side-Channel Attacks on a Complex
System-on-Chip.” In: Cryptographic Hardware and Embedded Sys-
tems – CHES 2015. Ed. by Tim Güneysu and Helena Handschuh.
Vol. 9293. LNCS. Springer, 2015, pp. 620–640. isbn: 978-3-662-
48323-7.

[Med+10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl,
and Francesco Regazzoni. “Fresh Re-keying: Security against Side-
Channel and Fault Attacks for Low-Cost Devices.” In: Progress in
Cryptology – AFRICACRYPT 2010. Ed. by Daniel J. Bernstein and
Tanja Lange. Vol. 6055. LNCS. Springer, 2010, pp. 279–296. isbn:
978-3-642-12677-2.

[Med+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu
Renauld, and François-Xavier Standaert. “Fresh Re-keying II: Se-
curing Multiple Parties against Side-Channel and Fault Attacks.”
In: Smart Card Research and Advanced Applications – CARDIS
2011. Ed. by Emmanuel Prouff. Vol. 7079. LNCS. Springer, 2011,
pp. 115–132. isbn: 978-3-642-27256-1.

[Med+16] Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov, and
Martin Feldhofer. “Unknown-Input Attacks in the Parallel Setting:
Improving the Security of the CHES 2012 Leakage-Resilient PRF.”
In: Advances in Cryptology – ASIACRYPT 2016. Ed. by Jung Hee
Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 602–623.
isbn: 978-3-662-53886-9.

[Men+12] Florian Mendel, Bart Mennink, Vincent Rijmen, and Elmar Tis-
chhauser. “A Simple Key-Recovery Attack on McOE-X.” In: Cryp-
tology and Network Security – CANS 2012. Ed. by Josef Pieprzyk,
Ahmad-Reza Sadeghi, and Mark Manulis. Vol. 7712. Springer, 2012,
pp. 23–31. isbn: 978-3-642-35403-8.

http://developer.amd.com/resources/articles-whitepapers/
http://developer.amd.com/resources/articles-whitepapers/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tags/v4.3
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tags/v4.3
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tags/v4.3

148 Bibliography

[Mer80] Ralph C. Merkle. “Protocols for Public Key Cryptosystems.” In:
IEEE Symposium on Security and Privacy – S&P 1980. IEEE
Computer Society, 1980, pp. 122–134. isbn: 0-8186-0335-6.

[Mes00] Thomas S. Messerges. “Using Second-Order Power Analysis to
Attack DPA Resistant Software.” In: Cryptographic Hardware and
Embedded Systems – CHES 2000. Ed. by Çetin Kaya Koç and
Christof Paar. Vol. 1965. LNCS. Springer, 2000, pp. 238–251. isbn:
3-540-41455-X.

[Mes02] Thomas S. Messerges. “Power Analysis Attacks and Countermea-
sures for Cryptographic Algorithms.” PhD thesis. University of
Illinois, 2002.

[Mil04] Victor S. Miller. “The Weil Pairing, and Its Efficient Calculation.”
In: J. Cryptology 17 (2004), pp. 235–261.

[Miz+13] Hiroaki Mizuno, Keisuke Iwai, Hidema Tanaka, and Takakazu
Kurokawa. “Information Theoretical Analysis of Side-Channel At-
tack.” In: Information Systems Security – ICISS 2013. Ed. by
Aditya Bagchi and Indrakshi Ray. Vol. 8303. LNCS. Springer, 2013,
pp. 255–269. isbn: 978-3-642-45203-1.

[MM] Ted Ts’o Michael Halcrow Uday Savagaonkar and Ildar Muslukhov.
Ext4 Encryption Design Document. https://docs.google.com/

document/d/1ft26lUQyuSpiu6VleP70_npaWdRfXFoNnB8JYnykNTg.

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New
Explicit Conditions of Elliptic Curve Traces for FR-Reduction. 2001.

[Mon85] Peter L. Montgomery. “Modular Multiplication without Trial Divi-
sion.” In: Mathematics of Computation 44 (1985), pp. 519–521.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks - revealing the secrets of smart cards. Springer,
2007.

[Mor+11a] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar.
“On the vulnerability of FPGA bitstream encryption against power
analysis attacks: extracting keys from xilinx Virtex-II FPGAs.”
In: Conference on Computer and Communications Security – CCS
2011. Ed. by Yan Chen, George Danezis, and Vitaly Shmatikov.
ACM, 2011, pp. 111–124. isbn: 978-1-4503-0948-6.

[Mor+11b] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huax-
iong Wang. “Pushing the Limits: A Very Compact and a Thresh-
old Implementation of AES.” In: Advances in Cryptology – EU-
ROCRYPT 2011. Ed. by Kenneth G. Paterson. Vol. 6632. LNCS.
Springer, 2011, pp. 69–88. isbn: 978-3-642-20464-7.

https://docs.google.com/document/d/1ft26lUQyuSpiu6VleP70_npaWdRfXFoNnB8JYnykNTg
https://docs.google.com/document/d/1ft26lUQyuSpiu6VleP70_npaWdRfXFoNnB8JYnykNTg

Bibliography 149

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux.
“Towards Super-Exponential Side-Channel Security with Efficient
Leakage-Resilient PRFs.” In: Cryptographic Hardware and Embed-
ded Systems – CHES 2012. Ed. by Emmanuel Prouff and Patrick
Schaumont. Vol. 7428. LNCS. Springer, 2012, pp. 193–212. isbn:
978-3-642-33026-1.

[MSS16] Alfred Menezes, Palash Sarkar, and Shashank Singh. “Challenges
with Assessing the Impact of NFS Advances on the Security of
Pairing-Based Cryptography.” In: Paradigms in Cryptology. Mali-
cious and Exploratory Cryptology — Mycrypt 2016. Ed. by Raphael
C.-W. Phan and Moti Yung. Vol. 10311. LNCS. Springer, 2016,
pp. 83–108. isbn: 978-3-319-61272-0.

[Nat09] National Institute of Standards and Technology (NIST). FIPS-186-
3: Digital Signature Standard (DSS). 2009. url: http://csrc.nist.
gov/publications/fips/fips186-3/fips_186-3.pdf.

[New16] NewAE Technology Inc. ChipWhisperer. 2016. url: https://newae.
com/tools/chipwhisperer/.

[Nog+08] Yasuyuki Nogami, Masataka Akane, Yumi Sakemi, Hidehiro Katou,
and Yoshitaka Morikawa. “Integer Variable chi-Based Ate Pairing.”
In: Pairing-Based Cryptography – Pairing 2008. Ed. by Steven D.
Galbraith and Kenneth G. Paterson. Vol. 5209. LNCS. Springer,
2008, pp. 178–191. isbn: 978-3-540-85503-3.

[NXP14] NXP Semiconductors. LPC1114FN28 MCU Product Information.
June 2014. url: http://www.nxp.com/products/microcontrollers/
cortex_m0_m0/lpc1100/LPC1114FN28.html.

[OM07] Elisabeth Oswald and Stefan Mangard. “Template Attacks on Mask-
ing - Resistance Is Futile.” In: Topics in Cryptology – CT-RSA 2007.
Ed. by Masayuki Abe. Vol. 4377. LNCS. Springer, 2007, pp. 243–256.
isbn: 3-540-69327-0.

[Owu+13] Emmanuel Owusu, Jorge Guajardo, Jonathan M. McCune, James
Newsome, Adrian Perrig, and Amit Vasudevan. “OASIS: on achiev-
ing a sanctuary for integrity and secrecy on untrusted platforms.”
In: Conference on Computer and Communications Security – CCS
2013. Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung.
ACM, 2013, pp. 13–24. isbn: 978-1-4503-2477-9.

[Per09] Colin Percival. “Stronger Key Derivation via Sequential Memory-
Hard Functions.” In: Self-published (2009), pp. 1–16.

[Pie09] Krzysztof Pietrzak. “A Leakage-Resilient Mode of Operation.” In:
Advances in Cryptology – EUROCRYPT 2009. Ed. by Antoine
Joux. Vol. 5479. LNCS. Springer, 2009, pp. 462–482. isbn: 978-3-
642-01000-2.

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://newae.com/tools/chipwhisperer/
https://newae.com/tools/chipwhisperer/
http://www.nxp.com/products/microcontrollers/cortex_m0_m0/lpc1100/LPC1114FN28.html
http://www.nxp.com/products/microcontrollers/cortex_m0_m0/lpc1100/LPC1114FN28.html

150 Bibliography

[PM16] Peter Pessl and Stefan Mangard. “Enhancing Side-Channel Analysis
of Binary-Field Multiplication with Bit Reliability.” In: Topics in
Cryptology – CT-RSA 2016. Ed. by Kazue Sako. Vol. 9610. LNCS.
Springer, 2016, pp. 255–270. isbn: 978-3-319-29484-1.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault
Attack Technique against SPN Structures, with Application to the
AES and KHAZAD.” In: Cryptographic Hardware and Embedded
Systems – CHES 2003. Ed. by Colin D. Walter, Çetin Kaya Koç,
and Christof Paar. Vol. 2779. LNCS. Springer, 2003, pp. 77–88.
isbn: 3-540-40833-9.

[PR13] Emmanuel Prouff and Matthieu Rivain. “Masking against Side-
Channel Attacks: A Formal Security Proof.” In: Advances in Cryp-
tology – EUROCRYPT 2013. Ed. by Thomas Johansson and Phong
Q. Nguyen. Vol. 7881. LNCS. Springer, 2013, pp. 142–159. isbn:
978-3-642-38347-2.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek.
“Leakage-Resilient Authentication and Encryption from Symmetric
Cryptographic Primitives.” In: Conference on Computer and Com-
munications Security – CCS 2015. Ed. by Indrajit Ray, Ninghui Li,
and Christopher Kruegel. ACM, 2015, pp. 96–108. isbn: 978-1-4503-
3832-5.

[PV04] Dan Page and Frederik Vercauteren. “Fault and Side-Channel At-
tacks on Pairing Based Cryptography.” In: IACR Cryptology ePrint
Archive 2004 (2004), p. 283. url: http://eprint.iacr.org/2004/
283.

[RIS14] RISEC, AIST. Side-Channel Attack Standard Evaluation Board.
June 2014. url: http://www.risec.aist.go.jp/project/sasebo/.

[Riv08] Matthieu Rivain. “On the Exact Success Rate of Side Channel
Analysis in the Gaussian Model.” In: Selected Areas in Cryptography
– SAC 2008. Ed. by Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica. Vol. 5381. LNCS. Springer, 2008, pp. 165–183. isbn:
978-3-642-04158-7.

[Rog+07] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Soli-
hin. “Using Address Independent Seed Encryption and Bonsai
Merkle Trees to Make Secure Processors OS- and Performance-
Friendly.” In: International Symposium on Microarchitecture – MI-
CRO 2007. IEEE Computer Society, 2007, pp. 183–196. isbn: 0-
7695-3047-8.

[Rog04] Phillip Rogaway. “Efficient Instantiations of Tweakable Blockciphers
and Refinements to Modes OCB and PMAC.” In: Advances in
Cryptology – ASIACRYPT 2004. Ed. by Pil Joong Lee. Vol. 3329.
LNCS. Springer, 2004, pp. 16–31. isbn: 3-540-23975-8.

http://eprint.iacr.org/2004/283
http://eprint.iacr.org/2004/283
http://www.risec.aist.go.jp/project/sasebo/

Bibliography 151

[Ros+15] Davide Rossi et al. “PULP: A parallel ultra low power platform
for next generation IoT applications.” In: Hot Chips 27 Symposium
(HCS), 2015 IEEE. IEEE. 2015, pp. 1–39.

[Saa04] Markku-Juhani Olavi Saarinen. “Encrypted Watermarks and Linux
Laptop Security.” In: Information Security Applications – WISA
2004. Ed. by Chae Hoon Lim and Moti Yung. Vol. 3325. LNCS.
Springer, 2004, pp. 27–38. isbn: 3-540-24015-2.

[Sat14] Satoh Lab./UEC. Sakura G. 2014. url: http://satoh.cs.uec.ac.
jp/SAKURA/hardware/SAKURA-G.html.

[Sch+14] Robert Schilling, Manuel Jelinek, Markus Ortoff, and Thomas Un-
terluggauer. “A low-area ASIC implementation of AEGIS128—A
fast authenticated encryption algorithm.” In: Austrian Workshop
on Microelectronics — Austrochip. Oct. 2014, pp. 1–5.

[Sch+18] Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank
Gürkaynak, Michael Muehlberghuber, and Luca Benini. “High Speed
ASIC Implementations of Leakage-Resilient Cryptography.” In:
DATE 2018. (in press). 2018.

[Sha84] Adi Shamir. “Identity-Based Cryptosystems and Signature
Schemes.” In: Advances in Cryptology – CRYPTO 1984. Ed. by
G. R. Blakley and David Chaum. Vol. 196. LNCS. Springer, 1984,
pp. 47–53. isbn: 3-540-15658-5.

[Sia13] Siarhei Siamashka. tinymembench. (accessed 2017-03). 2013. url:
https://github.com/ssvb/tinymembench.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. “A Stochastic
Model for Differential Side Channel Cryptanalysis.” In: Crypto-
graphic Hardware and Embedded Systems – CHES 2005. Ed. by
Josyula R. Rao and Berk Sunar. Vol. 3659. LNCS. Springer, 2005,
pp. 30–46. isbn: 3-540-28474-5.

[SM07] Carl Staelin and Larry McVoy. LMbench - Tools for Perfor-
mance Analysis. (accessed 2017-03). 2007. url: http://lmbench.

sourceforge.net.

[SMC09] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowd-
hury. “A Diagonal Fault Attack on the Advanced Encryption Stan-
dard.” In: IACR Cryptology ePrint Archive 2009 (2009), p. 581.
url: http://eprint.iacr.org/2009/581.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. “A Unified
Framework for the Analysis of Side-Channel Key Recovery Attacks.”
In: Advances in Cryptology – EUROCRYPT 2009. Ed. by Antoine
Joux. Vol. 5479. LNCS. Springer, 2009, pp. 443–461. isbn: 978-3-
642-01000-2.

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
https://github.com/ssvb/tinymembench
http://lmbench.sourceforge.net
http://lmbench.sourceforge.net
http://eprint.iacr.org/2009/581

152 Bibliography

[SR13] Ana Helena Sánchez and Francisco Rodŕıguez-Henŕıquez. “NEON
Implementation of an Attribute-Based Encryption Scheme.” In:
Applied Cryptography and Network Security – ACNS 2013. Ed. by
Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and
Reihaneh Safavi-Naini. Vol. 7954. LNCS. Springer, 2013, pp. 322–
338. isbn: 978-3-642-38979-5.

[SRH16] Sami Saab, Pankaj Rohatgi, and Craig Hampel. “Side-Channel
Protections for Cryptographic Instruction Set Extensions.” In: IACR
Cryptology ePrint Archive 2016 (2016), p. 700. url: http://eprint.
iacr.org/2016/700.

[SSU14] Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer.
“Adding Controllable Linkability to Pairing-Based Group Signatures
for Free.” In: Information Security – ISC 2014. Ed. by Sherman
S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui, and Siu-Ming
Yiu. Vol. 8783. LNCS. Springer, 2014, pp. 388–400. isbn: 978-3-319-
13256-3.

[SSU16] Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer.
“Linking-Based Revocation for Group Signatures: A Pragmatic Ap-
proach for Efficient Revocation Checks.” In: Paradigms in Cryptol-
ogy. Malicious and Exploratory Cryptology — Mycrypt 2016. Ed. by
Raphael C.-W. Phan and Moti Yung. Vol. 10311. LNCS. Springer,
2016, pp. 364–388. isbn: 978-3-319-61272-0.

[Sta+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques
Quisquater, Moti Yung, and Elisabeth Oswald. “Leakage Resilient
Cryptography in Practice.” In: Towards Hardware-Intrinsic Security
- Foundations and Practice. Information Security and Cryptography.
Springer, 2010, pp. 99–134.

[Suh+03a] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk,
and Srinivas Devadas. “AEGIS: architecture for tamper-evident
and tamper-resistant processing.” In: International Conference on
Supercomputing – ICS 2003. Ed. by Utpal Banerjee, Kyle Gallivan,
and Antonio González. ACM, 2003, pp. 160–171. isbn: 1-58113-733-
8.

[Suh+03b] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk,
and Srinivas Devadas. “Efficient Memory Integrity Verification and
Encryption for Secure Processors.” In: International Symposium on
Microarchitecture – MICRO 2003. ACM/IEEE Computer Society,
2003, pp. 339–350. isbn: 0-7695-2043-X.

[Szc+08] Piotr Szczechowiak, Leonardo B. Oliveira, Michael Scott, Martin
Collier, and Ricardo Dahab. “NanoECC: Testing the Limits of
Elliptic Curve Cryptography in Sensor Networks.” In: European
Conference on Wireless Sensor Networks – EWSN 2008. Ed. by
Roberto Verdone. Vol. 4913. LNCS. Springer, 2008, pp. 305–320.
isbn: 978-3-540-77689-5.

http://eprint.iacr.org/2016/700
http://eprint.iacr.org/2016/700

Bibliography 153

[Szc+09] Piotr Szczechowiak, Anton Kargl, Michael Scott, and Martin Col-
lier. “On the application of pairing based cryptography to wireless
sensor networks.” In: Security and Privacy in Wireless and Mobile
Networks – WISEC 2009. Ed. by David A. Basin, Srdjan Capkun,
and Wenke Lee. ACM, 2009, pp. 1–12. isbn: 978-1-60558-460-7.

[Tel99] Emre Telatar. “Capacity of Multi-antenna Gaussian Channels.” In:
European Transactions on Telecommunications 10 (1999), pp. 585–
595.

[TS14] Mostafa M. I. Taha and Patrick Schaumont. “Side-channel coun-
termeasure for SHA-3 at almost-zero area overhead.” In: Hardware
Oriented Security and Trust – HOST 2014. IEEE Computer Society,
2014, pp. 93–96. isbn: 978-1-4799-4114-8.

[TS15] Mostafa M. I. Taha and Patrick Schaumont. “Key Updating for
Leakage Resiliency With Application to AES Modes of Operation.”
In: IEEE Trans. Information Forensics and Security 10 (2015),
pp. 519–528.

[UM16] Thomas Unterluggauer and Stefan Mangard. “Exploiting the Phys-
ical Disparity: Side-Channel Attacks on Memory Encryption.” In:
Constructive Side-Channel Analysis and Secure Design – COSADE
2016. Ed. by François-Xavier Standaert and Elisabeth Oswald.
Vol. 9689. LNCS. Springer, 2016, pp. 3–18. isbn: 978-3-319-43282-3.

[Unt+17] Thomas Unterluggauer, Thomas Korak, Stefan Mangard, Robert
Schilling, Luca Benini, Frank K. Gürkaynak, and Michael
Muehlberghuber. “Leakage Bounds for Gaussian Side Chan-
nels.” In: CARDIS 2017. (in press). 2017.

[Unt13] Thomas Unterluggauer. “Hardware-Software-Codesign of Side-
Channel Evaluated Identity-based Encryption.” MA thesis. Graz
University of Technology, 2013.

[UW14a] Thomas Unterluggauer and Erich Wenger. “Efficient Pairings and
ECC for Embedded Systems.” In: Cryptographic Hardware and
Embedded Systems – CHES 2014. Ed. by Lejla Batina and Matthew
Robshaw. Vol. 8731. LNCS. Springer, 2014, pp. 298–315. isbn:
978-3-662-44708-6.

[UW14b] Thomas Unterluggauer and Erich Wenger. “Practical Attack on
Bilinear Pairings to Disclose the Secrets of Embedded Devices.” In:
Availability, Reliability and Security – ARES 2014. IEEE Computer
Society, 2014, pp. 69–77.

[UWM17a] Thomas Unterluggauer, Mario Werner, and Stefan Mangard.
“MEAS: Memory Encryption and Authentication Secure Against
Side-Channel Attacks Using Unprotected Primitives.” In: J.
Cryptographic Engineering (2017). (in submission).

154 Bibliography

[UWM17b] Thomas Unterluggauer, Mario Werner, and Stefan Mangard. “Secur-
ing Memory Encryption and Authentication Against Side-Channel
Attacks Using Unprotected Primitives.” In: Asia Conference on
Computer and Communications Security – AsiaCCS 2017. Ed. by
Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi.
ACM, 2017, pp. 690–702. isbn: 978-1-4503-4944-4.

[UWM17c] Thomas Unterluggauer, Mario Werner, and Stefan Mangard. “Side-
channel plaintext-recovery attacks on leakage-resilient encryption.”
In: Design, Automation & Test in Europe — DATE 2017. Ed. by
David Atienza and Giorgio Di Natale. IEEE, 2017, pp. 1318–1323.
isbn: 978-3-9815370-8-6.

[Ver10] Frederik Vercauteren. “Optimal pairings.” In: IEEE Trans. Infor-
mation Theory 56 (2010), pp. 455–461.

[Wen13] Erich Wenger. “Hardware Architectures for MSP430-Based Wireless
Sensor Nodes Performing Elliptic Curve Cryptography.” In: Applied
Cryptography and Network Security – ACNS 2013. Ed. by Michael
J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Rei-
haneh Safavi-Naini. Vol. 7954. LNCS. Springer, 2013, pp. 290–306.
isbn: 978-3-642-38979-5.

[Wer+17b] Mario Werner, Thomas Unterluggauer, Robert Schilling, David
Schaffenrath, and Stefan Mangard. “Transparent memory encryp-
tion and authentication.” In: Field Programmable Logic and Ap-
plications – FPL 2017. Ed. by Marco D. Santambrogio, Diana
Göhringer, Dirk Stroobandt, Nele Mentens, and Jari Nurmi. IEEE,
2017, pp. 1–6. isbn: 978-9-0903-0428-1.

[Wer+18] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and
Stefan Mangard. “Sponge-Based Control-Flow Protection for IoT
Devices.” In: IEEE EuroS&P 2018. (in press). 2018.

[WS06] Claire Whelan and Michael Scott. “Side Channel Analysis of Prac-
tical Pairing Implementations: Which Path Is More Secure?” In:
Progress in Cryptology – VIETCRYPT 2006. Ed. by Phong Q.
Nguyen. Vol. 4341. LNCS. Springer, 2006, pp. 99–114. isbn: 3-540-
68799-8.

[WUW13] Erich Wenger, Thomas Unterluggauer, and Mario Werner. “8/16/32
Shades of Elliptic Curve Cryptography on Embedded Processors.”
In: Progress in Cryptology – INDOCRYPT 2013. Ed. by Goutam
Paul and Serge Vaudenay. Vol. 8250. LNCS. Springer, 2013, pp. 244–
261. isbn: 978-3-319-03514-7.

[WW11] Erich Wenger and Mario Werner. “Evaluating 16-Bit Processors
for Elliptic Curve Cryptography.” In: Smart Card Research and
Advanced Applications – CARDIS 2011. Ed. by Emmanuel Prouff.
Vol. 7079. LNCS. Springer, 2011, pp. 166–181. isbn: 978-3-642-
27256-1.

Bibliography 155

[Xil14] Xilinx, Inc. Xilinx Virtex-II Pro Data Sheet. June 2014. url: http:
//www.xilinx.com/support/documentation/data_sheets/ds083.pdf.

[Xil16] Xilinx, Inc. Linux Kernel xilinx-v2016.2. (accessed 2017-03). 2016.
url: https://github.com/Xilinx/linux-xlnx.git.

http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
https://github.com/Xilinx/linux-xlnx.git

About the Author

Author information as of December 2017.

Personal Information

Name: Thomas Unterluggauer

Date of birth: April 5th, 1988

Place of birth: Villach, Austria

Education

• 03/2014 – present: Doctoral studies, Graz University of Technology,
Austria.

• 11/2011 – 11/2013: Master studies in Information and Computer Engi-
neering (Telematik), Graz University of Technology, Austria.

• 10/2008 – 11/2011: Bachelor studies in Information and Computer
Engineering (Telematik), Graz University of Technology, Austria.

Professional and Academic Experience

• 11/2013 – present: Research assistant, Institute for Applied Information
Processing and Communications (IAIK), Graz University of Technology,
Austria.

• 10/2009 – 10/2013: Software developer and tester, IVM Technical Con-
sultants, Graz, Austria.

• 04/2008 – 06/2008: Software developer, Gomogi, Klagenfurt, Austria.

• Summer 2006 and 2007: Internship as software developer for geo-
information, Carinthia University of Applied Sciences, Villach, Austria.

156

About the Author 157

Author’s Publications

Author’s publications as of December 2017 mapped to the corresponding chapters.

Chapter 3

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. “ISAP - Towards Side-Channel Secure Authenticated
Encryption.” In: IACR Trans. Symmetric Cryptol. 2017 (2017), pp. 80–105

Chapter 4

Thomas Unterluggauer, Thomas Korak, Stefan Mangard, Robert Schilling, Luca
Benini, Frank K. Gürkaynak, and Michael Muehlberghuber. “Leakage Bounds
for Gaussian Side Channels.” In: CARDIS 2017. (in press). 2017

Chapter 5

Thomas Unterluggauer, Mario Werner, and Stefan Mangard. “Side-channel
plaintext-recovery attacks on leakage-resilient encryption.” In: Design, Automa-
tion & Test in Europe — DATE 2017. Ed. by David Atienza and Giorgio Di
Natale. IEEE, 2017, pp. 1318–1323. isbn: 978-3-9815370-8-6

Chapter 6

Thomas Unterluggauer and Stefan Mangard. “Exploiting the Physical Disparity:
Side-Channel Attacks on Memory Encryption.” In: Constructive Side-Channel
Analysis and Secure Design – COSADE 2016. Ed. by François-Xavier Standaert
and Elisabeth Oswald. Vol. 9689. LNCS. Springer, 2016, pp. 3–18. isbn:
978-3-319-43282-3

Chapter 7

Thomas Unterluggauer, Mario Werner, and Stefan Mangard. “Securing Memory
Encryption and Authentication Against Side-Channel Attacks Using Unprotected
Primitives.” In: Asia Conference on Computer and Communications Security –
AsiaCCS 2017. Ed. by Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,
and Xun Yi. ACM, 2017, pp. 690–702. isbn: 978-1-4503-4944-4

Thomas Unterluggauer, Mario Werner, and Stefan Mangard. “MEAS: Memory
Encryption and Authentication Secure Against Side-Channel Attacks Using
Unprotected Primitives.” In: J. Cryptographic Engineering (2017). (in
submission)

158 About the Author

Chapter 8

Thomas Unterluggauer and Erich Wenger. “Efficient Pairings and ECC for
Embedded Systems.” In: Cryptographic Hardware and Embedded Systems –
CHES 2014. Ed. by Lejla Batina and Matthew Robshaw. Vol. 8731. LNCS.
Springer, 2014, pp. 298–315. isbn: 978-3-662-44708-6

Chapter 9

Thomas Unterluggauer and Erich Wenger. “Practical Attack on Bilinear Pairings
to Disclose the Secrets of Embedded Devices.” In: Availability, Reliability and
Security – ARES 2014. IEEE Computer Society, 2014, pp. 69–77

Further Contributions

Conference Publications

Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Mangard.
“Sponge-Based Control-Flow Protection for IoT Devices.” In: IEEE EuroS&P
2018. (in press). 2018

Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank Gürkay-
nak, Michael Muehlberghuber, and Luca Benini. “High Speed ASIC Imple-
mentations of Leakage-Resilient Cryptography.” In: DATE 2018. (in press). 2018

Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaffenrath,
and Stefan Mangard. “Transparent memory encryption and authentication.”
In: Field Programmable Logic and Applications – FPL 2017. Ed. by Marco D.
Santambrogio, Diana Göhringer, Dirk Stroobandt, Nele Mentens, and Jari Nurmi.
IEEE, 2017, pp. 1–6. isbn: 978-9-0903-0428-1

Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unterluggauer,
and Mario Werner. “Concealing Secrets in Embedded Processors Designs.”
In: Smart Card Research and Advanced Applications – CARDIS 2016. Ed. by
Kerstin Lemke-Rust and Michael Tunstall. Vol. 10146. LNCS. Springer, 2016,
pp. 89–104. isbn: 978-3-319-54668-1

Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. “Linking-Based
Revocation for Group Signatures: A Pragmatic Approach for Efficient Revocation
Checks.” In: Paradigms in Cryptology. Malicious and Exploratory Cryptology —
Mycrypt 2016. Ed. by Raphael C.-W. Phan and Moti Yung. Vol. 10311. LNCS.
Springer, 2016, pp. 364–388. isbn: 978-3-319-61272-0

About the Author 159

Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. “Adding
Controllable Linkability to Pairing-Based Group Signatures for Free.” In:
Information Security – ISC 2014. Ed. by Sherman S. M. Chow, Jan Camenisch,
Lucas Chi Kwong Hui, and Siu-Ming Yiu. Vol. 8783. LNCS. Springer, 2014,
pp. 388–400. isbn: 978-3-319-13256-3

Robert Schilling, Manuel Jelinek, Markus Ortoff, and Thomas Unterlug-
gauer. “A low-area ASIC implementation of AEGIS128—A fast authenticated
encryption algorithm.” In: Austrian Workshop on Microelectronics — Austrochip.
Oct. 2014, pp. 1–5

Erich Wenger, Thomas Unterluggauer, and Mario Werner. “8/16/32 Shades
of Elliptic Curve Cryptography on Embedded Processors.” In: Progress in
Cryptology – INDOCRYPT 2013. Ed. by Goutam Paul and Serge Vaudenay.
Vol. 8250. LNCS. Springer, 2013, pp. 244–261. isbn: 978-3-319-03514-7

Open-Source Repositories

Mario Werner, Thomas Unterluggauer, Hannes Groß, Thomas Kastner, Chris-
tian Maierhofer, David Schaffenrath, Robert Schilling, and Erich Wenger.
GitHub Repository: Transparent Memory Encryption and Authentication.
https://github.com/IAIK/memsec. 2017

Thomas Unterluggauer, Erich Wenger, Raphael Spreitzer, Mario Werner,
and René Hölbling. GitHub Repository: Pairings in C. https://github.com/

IAIK/pairings_in_c. 2015

Erich Wenger, Thomas Unterluggauer, and Mario Werner. GitHub Repository:
Flexible Elliptic Curve Cryptography library in C. https://github.com/IAIK/

flecc_in_c. 2014

https://github.com/IAIK/memsec
https://github.com/IAIK/pairings_in_c
https://github.com/IAIK/pairings_in_c
https://github.com/IAIK/flecc_in_c
https://github.com/IAIK/flecc_in_c

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Contribution and Outline
	Bounded Side-Channel Leakage
	Side-Channel Security for Memory Encryption
	Bilinear Pairings for Embedded Devices

	Side-Channel Attacks
	Attacks and Definitions
	Simple Power Analysis
	Differential Power Analysis
	Profiled Attacks

	DPA Countermeasures
	Masking
	Frequent Re-Keying

	Leakage-Resilient Cryptography
	Leakage-Resilient Encryption
	Leakage-Resilient MAC

	Secure Re-keying Functions
	Conclusion

	I Bounded Side-Channel Leakage
	Re-Keying and Leakage Model from Cryptographic Sponges
	Leakage in Permutation-based Designs
	Sponge Leakage Model

	Secure Re-Keying Functions
	Re-Keying with Inherent DPA Security
	More Efficient Re-keying

	Implementation
	Instantiation Keccak[400]
	Security with State Leakage
	Results and Comparison

	Conclusion

	Leakage Bounds for Gaussian Side Channels
	Background
	Modeling Side-Channel Leakage as a Communication Channel
	Attack Model
	Mutual Information
	Linear Channel Model
	Leakage Bound for Gaussian Side Channels
	Description of Common Leakage Models

	Complexity of State Recovery
	Attack Model
	Averaging Attacker
	Expected Minimum Attack Complexity
	Divide-and-Conquer Attacks

	Experimental Verification and Security Analysis
	Evaluation Hardware: Fulmine
	Soundness of Model and Bounds
	Estimating Security Bounds for ISAP

	Conclusion

	Side-Channel Attacks on Leakage-Resilient Encryption
	Side-Channel Plaintext-Recovery Attack
	Stream Cipher Mode
	Block Cipher Mode

	Implications and Applicability
	Communication
	Memory Encryption
	Remarks and Countermeasures

	Practical Evaluation
	Stream Cipher Mode
	Block Cipher Mode

	Conclusion

	II Side-Channel Security for Memory Encryption
	Side-Channel Attacks on Memory Encryption
	Memory Encryption
	Definition
	Memory Encryption in Practice
	State-of-the-Art Implementations

	Physical Attacks on Memory Encryption
	Differential Power Analysis
	Differential Fault Analysis

	EM Attack on Ext4 Encryption
	Analysis of Ext4 Disk Encryption
	General Attack Flow
	Experimental Setup and Results

	Conclusion

	Side-Channel Secure Memory Encryption and Authentication
	Memory Encryption and Authentication
	Threat Model and Requirements
	Memory Encryption
	Memory Authentication

	Re-Keying for Memory Encryption
	The Re-Keying Operation
	Re-Keying and Plaintext Confidentiality

	DPA-Secure Memory Encryption and Authentication
	Construction
	Authenticity
	Side-Channel Discussion

	Higher-Order DPA Security
	Concept
	Masking Details
	Side-Channel Discussion
	Implementation Aspects

	Instantiation
	Meas-v1
	Meas-v2

	Implementation
	Platform
	Memory Layout
	Address Translation
	MEAS Pipeline

	Evaluation
	Security Properties
	Parallelizability
	Memory Overhead
	Memory Overhead with Masking
	Randomness
	Implementation Results

	Conclusion

	III Bilinear Pairings for Embedded Devices
	Efficient Pairings and ECC for Embedded Devices
	Background on Pairings
	High-Level Arithmetic
	Implementation Details
	Optimized Final Exponentiation
	Optimized Prime-Field Inversion

	Hardware Architectures
	The Used Microprocessor
	The Software Framework
	Assembly-Optimized Software Implementation (a)
	Multiply-Accumulate Hardware Extensions (b)
	The Drop-in Module (d)

	Implementation Results
	Comparison with Related Work
	Re-usability of our Drop-in Architecture
	Using the Drop-in Module for Pairing-based Protocols
	Using the Drop-in Module for ecc

	Conclusion

	Side-Channel Attacks on Bilinear Pairings
	Related Work
	Identity-based Encryption
	Vulnerability

	General Attack
	Practical Setup and Results
	Countermeasures
	Conclusion

	Conclusions
	Bibliography
	About the Author

