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Abstract

Cryptography helps us to provide data security in digital communications while
using a potentially insecure channel. One of the main principles made possible by
cryptography is authentication, and in digital communications today this principle is
implemented by applying digital signature protocols. These signature schemes play a
crucial role in our everyday life and are often used without being noticed, such as in
sensitive web applications like online banking. Hence, designing and implementing
secure and efficient digital signature schemes is critically important.

Most of these schemes used in practice today, such as RSA, rely on the hardness
of a mathematical problem, which can be solved efficiently by quantum computers.
The construction of such a quantum computer is not possible yet, nevertheless it is
important to search for new methods of providing data security in a post-quantum
world. These methods consist of post-quantum secure algorithms, which are believed
to withstand attacks by quantum computers.

This thesis discusses various post-quantum signature schemes and in particular
the proof system ZKB++ [CDG+17] and a signature scheme based on this proof
system. This signature scheme is built around the execution of a symmetric block
cipher encryption, hence various block ciphers will also be discussed, where special
emphasis is laid on their efficiency. Two of these block ciphers, MiMC [AGR+16]
and GMiMC [AGP+18], were implemented during the work for this thesis, and
various optimizations were used in order to reduce the total runtime of the signature
protocol.

These changes include small adjustments to the protocol itself and the implemen-
tation of a custom math library, both of which were specifically added to make the
protocol faster when using MiMC or GMiMC. The results of these optimizations are
shown in the last chapter of this thesis.

iv



Kurzfassung

Kryptografie erlaubt es uns Datensicherheit zu gewährleisten, selbst, wenn die Kom-
munikation über einen potenziell unsicheren Kanal stattfindet. Eines der wichtigsten
Prinzipien von Kryptografie ist die Authentifizierung, welche in der digitalen Kom-
munikation heute mithilfe diverser Signaturprotokolle implementiert wird. Diese
Signaturalgorithmen spielen eine äußerst wichtige Rolle in unserem alltäglichen
Leben und werden oft verwendet, ohne vom Benutzer bemerkt zu werden. Dies
betrifft beispielweise Webanwendungen wie Onlinebanking, die mit Informationen
vertrauenswürdig umgehen müssen.

Die meisten Signaturschemen, die heute in der Praxis verwendet werden, zum
Beispiel RSA, verlassen sich bei ihrer Sicherheit auf schwer zu lösende mathema-
tische Probleme, für die allerdings mit der Hilfe von Quantencomputern vergle-
ichsweise effizient Lösungen gefunden werden können. Die Konstruktion solcher
Geräte ist noch nicht möglich, aber dennoch ist es wichtig, bereits jetzt mit der Suche
nach Verfahren zu beginnen, welche auch gegen Attacken von Quantencomputern
ein gewisses Maß an Sicherheit gewährleisten. Diese Verfahren bestehen aus quan-
tensicheren Algorithmen, von denen angenommen wird, dass sie auch in solchen
Situationen sicher sind.

Diese Masterarbeit beschäftigt sich mit einigen quantensicheren Signaturschemen,
insbesondere mit einem Beweisverfahren namens ZKB++ [CDG+17] und einem
Signaturprotokoll basierend auf diesem Beweisschema. Dieses Signaturprotokoll
ergibt sich aus der Verschlüsselungsfunktion einer symmetrischen Blockchiffre, we-
shalb diverse Blockchiffren ebenfalls diskutiert werden und besonders auf deren
Effizienz und Eignung für ZKB++ eingegangen wird. Zwei dieser Blockchiffren,
MiMC [AGR+16] und GMiMC [AGP+18], wurden im Zuge dieser Masterarbeit im-
plementiert und mit diversen Methoden optimiert, um die Laufzeit des resultierenden
Signaturschemas zu reduzieren.

Diese Änderungen beinhalten minimale Anpassungen des Protokolls selbst und
die Implementierung einer eigenen Mathematik-Programmbibliothek. Sowohl diese
Änderungen als auch die Bibliothek wurden hinzugefügt, um die Laufzeit des Pro-
tokolls speziell bei der Verwendung von MiMC oder GMiMC zu verbessern. Die
Resultate dieser Optimierungen sind im letzten Kapitel der Arbeit zusammenge-
fasst.
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1 Introduction

Digital signatures play a crucial role in our everyday life. Whether it is browsing
the internet or sending emails, without digital signatures we would not have the
security most of us are requiring. The application areas of digital signatures are
thus very manifold. For example, many of the websites we regularly visit, especially
those containing sensitive data, use digital signatures together with TLS1 in order to
prove their identity to the user. This also includes online banking applications and
other use cases, where the protection of data is crucially important. Furthermore,
recent developments regarding the identification of citizens, one example being the
Austrian mobile phone signature2, are also only possible thanks to digital signatures.
These mechanisms are used in the area of e-government and allow citizens to file tax
returns or to view their electronic health records.

One of the more popular algorithms widely deployed in practice today is RSA. It is
well-known and thought to be comparatively secure, since it relies on the hardness
of the integer factorization problem, and there exists no publicly known polynomial-
time algorithm to solve this problem. Another class of algorithms widely used today
contains methods based on computations in elliptic curves. This includes the Elliptic
Curve Digital Signature Algorithm (ECDSA), yielding smaller signature sizes than
RSA for the same security level while at the same time being slower in the signature
verification step, and the Edwards-curve Digital Signature Algorithm (EdDSA).
Similar to RSA, both of them rely on the hardness of a specific problem, namely the
problem of finding discrete logarithms, and are thus thought to be secure.

However, this is only the case if we do not consider quantum computers. As has been
shown in 1997 by Shor [Sho97], RSA can in fact be broken relatively fast by making

1https://tools.ietf.org/rfc/rfc5246.txt
2https://www.digital.austria.gv.at/mobile-phone-signature
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1 Introduction

use of quantum computers3. Granted, quantum computers are not yet common and
it will probably still take some time until such attacks can be reasonably used in
practice. The transition to new cryptographic protocols, however, is not a trivial task
and takes many years due to the adaptation of existing solutions and due to extensive
analysis being necessary for new algorithms. Therefore, the NIST is already actively
searching for new alternatives to traditional signature schemes, encryption schemes,
and key encapsulation mechanisms [Nat17], in order to provide sufficient security
when that time has come.

This thesis will focus on a class of post-quantum secure digital signatures based on
symmetric encryption schemes. These schemes are already widely used today in the
form of symmetric block ciphers, which are thought to be much more resistant to
quantum computers than algorithms relying on the hardness of factoring integers
or finding discrete logarithms. Moreover, it is possible to design block ciphers such
that they have a low multiplicative complexity, i.e., a comparatively low number
of multiplications. Encryption schemes with this property are not only useful for
proof systems like ZKB++ but also in other areas such as multi-party computations
[ARS+15], SNARKs [AGR+16], and ring signature schemes [DRS18]. One such
block cipher, called GMiMC, is a crucial part of the new implementation of ZKB++,
the main focus of this thesis.

1.1 Contributions and Structure of the Thesis

Contributions of this thesis include many different areas. Firstly, the original imple-
mentation of ZKB++ was specifically designed to work together with LowMC, a
block cipher operating over the finite field F2. Thus, modular arithmetic over other
finite fields was not supported, which in turn limits the flexibility of the current
solution.

The new implementation supports modular arithmetic over a selection of predefined
prime fields and binary fields, and compatibility with new fields can easily be added.
In addition to this adjustment, the replacement of the inner circuit, a core component
of ZKB++, with a different one was made significantly simpler.

3Note that even RSA can be made secure in a post-quantum world, as has been shown in [BHL+17].
However, this comes at a cost of impractically large key sizes and high execution times, and is thus
only relevant in theory.
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1 Introduction

The second part of the practical work done during this thesis was about implementing
the two block ciphers MiMC and GMiMC. These encryption schemes have not been
used with ZKB++ before. Therefore, some small adjustments were made in order
to make the computation of the final proof faster when using MiMC or GMiMC.

After implementing these block ciphers, which are based on arithmetic operations in
prime fields or binary fields, these operations themselves were made faster by using
specialized reduction methods. The resulting implementation of the proof system
was then evaluated, and the total runtime with different parameters (e.g. different
field sizes) was measured.

In the first chapter of this thesis, we give a short overview of post-quantum cryptog-
raphy in general, and some of the methods in this field of cryptography, which are
related to ZKB++ and the resulting signature scheme, are briefly described.

The second chapter gives an overview of the concepts used within this thesis, which
includes the definition of zero-knowledge proofs, lightweight block ciphers, and
finite fields.

After that, the proof system ZKB++ itself is described in detail, and some explana-
tions regarding its security are also given. Then, some lightweight block ciphers used
with ZKB++, in particular MiMC and GMiMC, which were implemented during
this thesis, are explained.

Chapter 5 includes a selection of algorithms used for modular arithmetic in finite
fields, in particular the methods used for the current implementation. Details of the
implementation itself are described in the next chapter, where measurements and
execution times are also given.

Finally, the last chapter gives an overview of some methods, which can probably be
used to further optimize the computations and thus make the protocol faster.

1.2 Post-Quantum Cryptography and Related
Methods

Post-quantum cryptography, in general, refers to a class of algorithms, which are
believed to be secure against attacks from quantum computers. There are different

3



1 Introduction

methods in this field of cryptography, and four of these methods will be briefly
described here.

1.2.1 Hash-Based Signatures

A hash function is a function H : {0, 1}∗ 7→ {0, 1}n, where H(x) = y is easy
to compute, but getting x by knowing y should be computationally hard. With a
variable input length and a fixed output length, a hash function obviously cannot be
a permutation. However, given a random set of distinct inputs, a good hash function
should map approximately the same number of input values to each of their output
values. Furthermore, a cryptographically secure hash function must fulfill following
properties:

Collision Resistance. It should be hard to find any x and x′, where x 6= x′,
such that H(x) = H(x′).
Preimage Resistance. Given only y, it should be hard to find x such that
H(x) = y.
2nd Preimage Resistance. Given x and H(x) = y, it should be hard to find
x′ 6= x such that H(x′) = y.

Hash-based cryptography refers to a class of algorithms, whose security relies on the
security of hash functions. These are conjectured to be secure against attacks from
quantum computers. As an example, this section will shortly describe one hash-based
signature scheme and a classical way to improve it.

Lamport-Diffie One-Time Signature Scheme. The Lamport-Diffie one-time sig-
nature scheme (Lamport OTS) from 1979 [Lam79] uses a one-way function f :
{0, 1}n 7→ {0, 1}n and a cryptographic hash function H : {0, 1}∗ 7→ {0, 1}n. The
private key Kprivate is generated from 2n n-bit strings chosen at random:

Kprivate = (xn−1,0, xn−1,1, . . . , x1,0, x1,1, x0,0, x0,1),

where xi,j ∈ {0, 1}n and j ∈ {0, 1}. The public key (or verification key) Kpublic is
then

Kpublic = (yn−1,0, yn−1,1, . . . , y1,0, y1,1, y0,0, y0,1),

4



1 Introduction

where yi,j = f(xi,j) ∈ {0, 1}n and j ∈ {0, 1}. Now, given a bit string M of arbitrary
length, let h = H(M). Then the signature S of h is

S = (xn−1,hn−1 , . . . , x1,h1 , x0,h0),

where xi,j ∈ {0, 1}n and j ∈ {0, 1}. Verification is done by computing the hash
value and checking for equality, i.e., checking whether

(yn−1,hn−1 , . . . , y1,h1 , y0,h0) = (f(Sn−1), . . . , f(S1), f(S0)).

Note that the Lamport OTS needs 3n evaluations of f in total. Improvements to this
scheme include the Winternitz one-time signature scheme (WOTS) [DSS05], which
produces shorter signatures, and WOTS+ [Hül13], which can either reduce signature
sizes further by using hash functions with shorter outputs or increase the security by
maintaining the same signature size.

One-time signature schemes like the Lamport OTS must only be used to sign once,
otherwise they would be easy to break, which means that new verification keys need
to be sent for each signing process. This disadvantage can be mitigated to some
extent by combining an OTS with Merkle trees [Mer80], resulting in a classical
approach briefly explained now.

Merkle Signature Scheme (MSS). The idea of the Merkle signature scheme is to
use a method based on full binary trees. It works with any one-time scheme, such as
the Lamport OTS just described. The advantage of the MSS is that instead of relying
on a fixed number of multiple verification keys, only one single public key is used to
represent the validity of a signature. This public key is the root of the tree.

First, the user selects the parameter d ≥ 2 ∈ N. The resulting instantiation will then
be able to sign exactly 2d messages, which corresponds to the number of leaves
of a full binary tree of depth d. Each leaf represents H(mi), where H(·) is again a
cryptographic hash function equal to the one defined for the Lamport OTS, and mi

is a message to be signed.

Before signing a document, the user has to create 2d key pairs, here denoted as
((x0, y0), (x1, y1), . . . , (x2d−1, y2d−1)), where each xi is a private key and each yi is a
(public) verification key. The whole private key is then the set containing every xi.

5



1 Introduction

The tree itself contains 2d+1 − 1 − 2d internal nodes, and each of them stores the
hash value of the concatenation of the hash values of its child nodes. This means that
together with the hash values of each message to be signed, the key pair generation
needs 2d+1 − 1− 2d + 2d = 2d+1 − 1 evaluations of the hash function.

In order to sign a message, the signer first chooses an index i to indicate that message
mi is to be signed. Then they create the one-time signature si using the associated
xi. The Merkle signature Smi

for the message mi is then

Smi
= (i, si, yi, Ai),

where Ai denotes the unique authentication path for i, containing all intermediate
hash values stored in the internal nodes and needed by the verifier to compute all
hash values up to the root of the tree.

Verification is done by first checking the given signature si and then validating the
public key yi by computing all intermediate hash values and comparing the public
root hash value with the computed hash value.

An example for a Merkle tree is illustrated in Figure 1.1. Note that even though 2d

messages can be signed, this number is still very limited when compared to RSA,
ECDSA or EdDSA, where one key pair is enough to sign an arbitrary number of
messages. However, there have been various recent approaches to design viable
hash-based signature schemes, one of them being SPHINCS-256 [BHH+15] and its
improved version SPHINCS+ [BDE+17], using SHA-256, SHAKE256 [Div14] or
Haraka [KLM+16].

1.2.2 Lattices

A lattice is the set of all possible vectors generated from

L(B) =

{
n∑
i=1

xi · vi | xi ∈ Z

}
,

where B = (v1, v2, . . . , vn) is a set of column vectors and called the basis of the
lattice. That is, a lattice is a collection of an infinite number of points, and each point
can be generated by a certain combination of the vectors in B.

6
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h0 =
H(h1 || h2)

h1 =
H(h3 || h4)

h2 =
H(h5 || h6)

h3 =
H(m1)

h4 =
H(m2)

h5 =
H(m3)

h6 =
H(m4)

m1 m2 m3 m4

Figure 1.1: A Merkle tree with 4 leaves.

Lattices are not a new concept in mathematics. However, the usage for lattices
in cryptography was first discovered in 1996 [Ajt96], where a new cryptographic
hash function using lattices is also given. Two years later, NTRU was introduced
[HPS98], a public-key signature scheme based on lattices. In general, cryptographic
constructions based on lattices are believed to be secure based on the hardness of
certain problems within lattices, such as the closest vector problem, which is the
problem to find the closest point to a given vector in a known lattice [BBD08]. The
conjectured PQ security of lattice-based cryptography follows from the fact that
currently no quantum algorithm is known to solve lattice-based problems faster than
classical algorithms [BBD08].

A modern lattice-based digital signature scheme believed to be post-quantum secure
is TESLA [ABB+15], presented in 2015. Compared to the signature schemes Picnic-
FS and Picnic-UR described later, it offers significantly better sign and verification
times, and also smaller signatures sizes, but at the cost of much larger keys. A
provably secure variation of TESLA, called qTESLA, also makes use of lattices,
more precisely of the learning with errors (LWE) problem which is believed to be
hard to solve, and was submitted to the NIST post-quantum cryptography competition
in 2017.
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1.2.3 Code-Based Cryptography

Code-based cryptography refers to a class of algorithms whose functionality and
security rely on error correcting codes. Examples for error correcting codes include
the binary Goppa code which is used in the original proposal for the McEliece public-
key cryptosystem presented in 1978 [McE78]. This cryptosystem is still unbroken to
this day, although some parameters needed to be changed in order to adapt to new
security requirements.

Currently, no quantum algorithm is known in order to efficiently break the McEliece
scheme, and similar to symmetric-key cryptography, a sufficient countermeasure
in this scheme would be to increase the length of the codes. However, the main
disadvantage is that the McEliece cryptosystem uses comparatively large keys,
namely several hundred kilobytes in scenarios with realistic security levels. Various
modifications, such as a variant proposed by Niederreiter in 1986 [Nie86], are able to
reduce the key size, however at a cost of computation time in the general setting.

1.2.4 Block Ciphers and Symmetric-Key Cryptography

In contrast to stream ciphers, block ciphers operate on a fixed-length input of n
bits. They can be transformed into a stream cipher by different operation modes
in order to use them for encryption and decryption in practice. Block ciphers are
a comparatively old concept in cryptography and their origin goes back to the late
1940s [Sha49], when Claude Shannon first introduced the product cipher.

Most block ciphers are designed such that they use either a Feistel network, briefly
illustrated in Figure 1.2, or a substitution-permutation network. Both concepts try to
provide the two principal properties of encryption schemes: diffusion and confusion,
where the former means that flipping a single bit of the plaintext should also change
a large amount of ciphertext bits and vice versa, and the latter means hiding any
connections between the ciphertext and the key bits.

Another characteristic of modern block ciphers is that they consist of a round function,
which is then applied during multiple rounds within the encryption and the decryption.
This round function often makes use of different round keys, which are typically
derived from the master key. With an appropriate round function, increasing the
number of rounds also increases the security of most block ciphers, at least up to a
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f1

f2

L0 R0

L2 R2

Figure 1.2: A 2-round Feistel-1 network. Li and Ri denote the n/2 most significant bits and the n/2
least significant bits of the current block after round i, respectively.

certain degree. However, this has an impact on the encryption and decryption speed,
and therefore the number of rounds is kept as low as possible while still providing
the desired level of security.

Security. Very similar to n-bit hashes, which would resist preimage attacks with
strength 2n/2, symmetric-key cryptography is believed to be relatively secure in that
a block cipher with a κ-bit key offers κ

2
bits of security against attacks from quantum

computers. This follows from Grover’s search algorithm [Gro96], which is able to
find an inverse f−1 to a block cipher encryption function f such that f(x) = y and
f−1(y) = x in O(

√
2κ) = O(2κ/2) operations [YI00], where κ again denotes the

key size of the block cipher in bits. Although this is significantly faster than the
brute-force method requiringO(2κ) operations, the attack can be weakened relatively
easy by just doubling the key size.

The methods described in this thesis aim to provide a post-quantum security of 128
bits, which means that the focus lies on block ciphers with a key size of 256 bits.
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This chapter will now discuss the most important concepts used for this thesis and
the new implementation. Notation given in this chapter will be used throughout the
whole document. It will also give a short introduction to two different versions of
zero-knowledge (ZK) proofs and secure multi-party computation (MPC), both of
which are core components of ZKB++.

2.1 Digital Signatures

Encryption algorithms alone are not able to provide signatures, that is, an encrypted
message is not proven to have a particular origin. In order to provide such a proof,
which is called authentication, digital signatures have to be used. They are widely
found throughout the internet, for example together with digital certificates to ensure
a trustworthy way of communicating with websites. A digital signature involves a
public and a private key, where the latter one is used to sign a message and the first
one is used to verify it.

Formally, a digital signature consists of three distinct algorithms [Kat10]:

Generate. The key generationGenerate(n) = (sk, vk), where n is the security
parameter in bits, is a randomized algorithm responsible for generating a secret
(signing) key sk used to sign a message and a public (verification) key vk used
to verify a signature. This step is usually performed only once.
Sign. The algorithm Sign(m, sk) = σ creates a signature σ based on the
private key sk and on the message m to be signed.
Verify. A verification algorithm V erify(m,σ, vk) = r, where r ∈ {0, 1}, uses
the message m, the provided signature σ, and the public key vk, and decides
whether the signature is valid for the given message (r = 1).

10
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All of these algorithms are probabilistic polynomial-time (PPT) algorithms, meaning
that they run in polynomial time and have access to some random oracle providing
random bits. Nevertheless, the result given by the Verify(.) algorithm is determinis-
tic.

A digital signature has to fulfill certain properties in order to be regarded as secure:

Correctness. For all key pairs (sk, vk) output by Generate(n) and for all
possible messages m, we require that

V erify(m,Sign(m, sk), vk) = 1.

Unforgeability. It must be impossible for an adversary to forge a valid dig-
ital signature for a message in feasible time. There are different types of
adversaries in this context, and strong signature schemes provide security
even against attacks where the adversary does not have any control over the
message for which a valid signature is forged, but can request signatures for
arbitrary messages from the signature generation algorithm. These signature
schemes are called existentially unforgeable under chosen-message attacks
(EUF-CMA).

One of the most popular digital signature schemes used in practice today is RSA,
which is known to be vulnerable to attacks from quantum computers.

2.2 Interactive Zero-Knowledge Proofs

Similar to digital signatures, a zero-knowledge (ZK) proof enables an honest prover
to prove a statement to an honest verifier with very high probability, where an honest
party is a party that follows the protocol and does not try to gain more information
than appropriate. However, in contrast to digital signatures, the definition of a zero-
knowledge proof is that nothing should be known about both of them before the
protocol starts and, more importantly, no additional knowledge should be gained
throughout the protocol. Thus, the verifier, denoted by V , should only learn whether
a statement made by the proving party, denoted by P , is true or not.

Given a language L and a statement x, x ∈ L denotes a true statement x. ZK proofs
must then satisfy three properties:
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Soundness. A dishonest prover P can only convince a verifier V of a false state-
ment with small probability (more precisely, this probability has to be lower
than 1/2). That is, for all x /∈ L, an honest verifier rejects with probability
> 1/2.
Completeness. An honest verifier will be convinced of a true statement. That
is, for all x ∈ L, an honest verifier accepts.
Zero-Knowledge. Independent from the fact whether the involved parties are
cheating or not, the verifier will only learn if a statement is true or not and no
new information is gained during the protocol.

The first two properties imply that a ZK protocol has a non-zero chance to yield an
undesired result. This probability, however, can be made arbitrarily small by just
repeating the protocol for a certain number of times. This means that ZK protocols
are easily parallelizable, because distinct iterations of the protocol are independent
from each other.

Moreover, the underlying scheme in ZKB++ is a sigma protocol (Σ-protocol).
In such a protocol, the prover P and the verifier V have both access to a public
x ∈ L, but only P has access to a private witness w such that (x,w) ∈ R, where
R = {(x,w)} is a binary relation and L = {x | ∃w : (x,w) ∈ R}. Then the protocol
can be described by three consecutive steps:

1. Commitment. P sends a commitment c to V .
2. Challenge. V creates a random challenge e with s bits of information and

sends it to P .
3. Verification. P replies to the challenge with a message r and V decides whether

to accept based on x and (c, e, r).

Note that step 2 is an interaction needed between the prover and the verifier. The
version used in ZKB++ was made non-interactive using two possible transforms
described in the next section.

Similar to ZK proofs, Σ-protocols have to fulfill three properties:

Completeness. If P and V follow the protocol correctly and (x,w) ∈ R, then
V will accept.
n-Special Soundness. Given y and the accepted communications (c, e1, r1),
(c, e2, r2), . . ., (c, en, rn) with ei 6= ej for i 6= j, it is possible to efficiently
compute w′ such that (x,w′) ∈ R.
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Special Honest Verifier Zero-Knowledge. Given x and e, it is possible to
compute (c, e, r) with the same probability distribution as a “real” evaluation
of the protocol between P and V .

The soundness error of every Σ-protocol is 2−s, which corresponds to the probability
of guessing the correct challenge beforehand. Zero-knowledge can be gained from
Σ-protocols, and while proving that a combined ZK proof with independent and
parallel repetitions is still zero-knowledge is non-trivial [GK90], any combined
protocol of Σ-protocols is still a Σ-protocol [Dam10].

2.3 Non-Interactive Zero-Knowledge Proofs

The type of zero-knowledge proof just presented is an interactive zero-knowledge
proof, meaning that the random challenge is created by the verifier and sent to the
prover. In ZKB++, the underlying Σ-protocol was transformed into a non-interactive
zero-knowledge (NIZK) proof, where the challenge is generated by the prover and
thus one interaction step can be omitted. This was made possible by using two
approaches shortly described below.

Fiat-Shamir Transform. The Fiat-Shamir transform [FS86] is a method to trans-
form a given Σ-protocol into a non-interactive zero-knowledge proof by removing
the interaction step between the prover P and the verifier V during the Challenge
phase defined above. The idea is that the challenge is instead created by P using a
random oracle, which in practice is implemented by a hash function, and taking as
input the commitment c. Hence, the challenge is also generated after computing c.
Based on the commitment, the challenge can then also be created locally by V , who
then decides whether to accept or reject.

This method is proven to be secure against attacks from adversaries without a quan-
tum computer [FS86], and in a recent paper it has also been shown that it is secure
against attacks from quantum computers under additional conditions [Unr17].
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Unruh Transform. The Unruh transform [Unr15] is another method to transform
a Σ-protocol into a non-interactive zero-knowledge proof. However, it can be proven
to be secure in the post-quantum setting. At a high level, its idea is to not only use
a single challenge for each repetition of the Σ-protocol, but to instead compute the
response for a larger number of possible challenges. It then generates the final hash
value to be verified by using the initial statement, the outputs of all the repetitions,
and permutations of the responses.

Although the Unruh transform would result in a significantly larger proof size
compared to the Fiat-Shamir transform, some properties of ZKB++ could be used
in order to reduce the additional cost [CDG+17].

Note that in order to build a signature scheme from a zero-knowledge proof, the
message m to be signed has to be part of the computation. This is done by generating
the challenge with a hash function, and by using both the commitment and m as
inputs to this function.

2.4 Secure Multi-Party Computation

Secure multi-party computation, abbreviated as MPC, means a joint computation
of a common result by multiple parties, such that the final result is public (or only
known to the computing parties), but every participant’s input remains private to
themself. As further explained in Chapter 3, this definition is only true to some extent
for the MPC version used in ZKB++, but still manages to convey the general idea
of the concept.

MPC was firstly mentioned in 1982 as secure two-party computation [Yao82] and
later generalized to multi-party computation by Yao [Yao86]. The concept is thus
comparatively old and finds use in many fields, such as electronic voting.

The version of MPC used in ZKB++ is similar to the GMW protocol introduced
in 1987 [GMW87], because in this case MPC is also used to compute an arbitrary
function. In particular, ZKB++ uses MPC to compute a number of gates, which
together form a predefined circuit. This concept is known as “MPC in the Head” and
was presented in 2007 [IKO+07].
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2.5 Lightweight Block Ciphers

Block ciphers, more specifically lightweight block ciphers, will play a crucial part of
this thesis and the new implementation of ZKB++. This section briefly explains the
importance of lightweight block ciphers.

2.5.1 Design Rationale

Surprisingly and even though processing power became more and more powerful
in the past, the need for lightweight block ciphers only emerged recently. The main
reason is likely the increasing popularity of small devices (e.g. RFID tags or smart
cards) in need of secure encryption schemes, and these small devices are more
limited when it comes to properties like chip area, power consumption, and program
size. This is also a reason for which AES, a well-known block cipher still resistant
to many attacks, cannot easily be used on small devices due to its relatively large
footprint.

Examples of lightweight block ciphers include PRESENT [BKL+07], PRINCE
[BCG+12], LowMC [ARS+15], MiMC [AGR+16], and GMiMC [AGP+18].

2.5.2 Characteristics

The performance of lightweight block ciphers is measured using different character-
istics, such as:

Gate Equivalent (GE). This is a unit of measure which helps to estimate the
complexity of a resulting digital circuit of a specific cipher. Usually, one GE
refers to the unit area of one NAND gate.
Power Consumption. The consumed power of a block cipher is naturally given
in watts.
Throughput. More informally, this is the speed of the cipher, often measured
in Gbps.
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When designing a lightweight block cipher, a trade-off has to be made between these
characteristics and the security of the resulting encryption scheme. For example,
the NIST recommends a minimum key size of 112 bits even for lightweight block
ciphers [BR11], which is not reached by the 80-bit instance of the above-mentioned
PRESENT cipher.

2.6 Finite Fields

Finite fields are used by some of the encryption schemes discussed in Chapter 4. The
definitions and the notations given in this chapter will be used throughout the whole
document.

2.6.1 Definition

A field F in mathematics is a set on which the operations addition, subtraction,
multiplication, and division are defined. Common examples of fields include the set
of real numbers R and the set of complex numbers C.

A finite field Fq is a field with a finite number of elements, that is, |Fq| ∈ N. The
number of elements in the field, also called the order of the field, is q = pk, where p
is a prime number and k ∈ N. In the following chapters we will focus on two types
of finite fields:

Prime Fields. For an arbitrary prime number p, the finite field Fp denotes the
prime field defined by p, which is the set of residues mod p and thus has p
elements, namely 0, 1, . . . , p− 1.
Binary Fields. For an arbitrary integer n, the finite field F2n denotes the binary
field defined by an irreducible polynomial of degree n. The binary field F2n

contains 2n elements, namely all polynomials of degree at most n−1, including
the zero polynomial.

For the block ciphers MiMC and GMiMC, further described in Chapter 4, we require
that modular additive inverses and modular multiplicative inverses exist for every
element of the field. This condition is fulfilled in every finite field Fq. Note that
division in a finite field was not implemented during this thesis, as its implementation
is not necessary for the Picnic-FS and Picnic-UR signature schemes.
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2.6.2 Permutation Polynomials

The core component of some of the block ciphers described later is the function
f(x) = x3, so we require this function to be a permutation.

Theorem 1. For a finite field Fq, the monomial xc with c > 1 ∈ N is a permutation
polynomial of Fq if and only if gcd(c, q−1) = 1, where gcd(a, b) denotes the greatest
common divisor of a and b.

Proof. Let 〈a〉 be a finite cyclic group of order m. Then the order of 〈ac〉 is the
smallest positive integer n such that acn = 1. Now let g = gcd(c,m). Then acn = 1
if and only if m | cn or, equivalently, m

g
| n. The smallest natural number n fulfilling

this property is m
g

. Thus, the element ac generates a subgroup of order m
g

.

The multiplicative group of Fq is cyclic of order q− 1. Therefore, let m = q− 1 and
g = gcd(c,m) = 1. Then the function f ∈ Fq 7→ f c is a bijection, which completes
the proof.

Theorem 2. For a natural number n > 0, gcd(3, 2n − 1) = 1 if and only if n is odd.

Proof. Obviously, 2n (mod 3) 6= 0, since 3 is prime and 2 is the only prime factor
of 2n. If n is even, 2n = 4n/2 ≡ 1n/2 ≡ 1 (mod 3) =⇒ gcd(2n − 1, 3) = 3. If n
is odd, 2n = 2 · 4bn/2c ≡ 2 · 1bn/2c ≡ 2 (mod 3) =⇒ gcd(2n − 1, 3) = 1.

For c = 3, these two theorems conclude that in order for f(x) = x3 to be a
permutation, gcd(p− 1, 3)

!
= 1 for a prime field of order p and gcd(2n − 1, 3)

!
= 1

for a binary field of order 2n.
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This chapter will now describe ZKBoo and ZKB++, both of which are proof systems
based on a Σ-protocol and on the evaluation of a predefined function. Implementing
the resulting signature scheme and testing it with various configurations and circuits
was the main focus of this thesis, which is why the concept of this scheme and its
protocol will be described in detail.

3.1 Overview

The original version of the protocol, called ZKBoo, was first presented in 2016
[GMO16] as a protocol to prove the computation of an arbitrary boolean circuit
while maintaining the zero-knowledge property. For our use case and the signature
schemes Picnic-FS and Picnic-UR, this boolean circuit represents a one-way function
f(x) = y, where x and y stand for the private and public key, respectively. That is,
the signer wants to prove knowledge of x such that f(x) = y without disclosing
information about x. While the function f can be any function for which MPC gate
definitions exist, it is of course necessary to choose a circuit which is hard to invert in
order to maintain the security of the protocol (e.g. a hash function or a block cipher
encryption using a secret key).

In 2017, ZKB++, an improved version of ZKBoo, was introduced [CDG+17]. ZK-
Boo and ZKB++ are very similar, however, the latter includes many optimizations
to the original scheme. Most of them result in a significantly reduced proof size and
in a shorter computation time. For the new implementation, only the newer ZKB++
was implemented, therefore only ZKB++ will be described in this chapter.
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3.2 Description

The core of ZKB++ is “MPC in the Head”, a concept presented in 2007 [IKO+07].
In its original version, the prover computes a function g(y, s0, s1, . . . , sn−1) for all
n parties, where y is known to all parties, s0 ⊕ s1 ⊕ · · · ⊕ sn−1 = x is the private
input only known to the prover, and s0, s1, . . . , sn−1 are picked at random1. After this
computation, the prover commits to the views. The verifier now chooses two different
parties and asks the prover to open the committed views of the chosen parties. The
verifier checks the values in these views and accepts if they are consistent.

The security follows from the fact that a dishonest prover cannot cheat by manipu-
lating only one view, since the public value would also change. Thus, an adversary
needs to create at least two inconsistent views. This pair of inconsistent views is
detected by the verifier with probability

(
n
2

)−1. This probability can be increased by
repeating the protocol multiple times.

3.2.1 MPC in ZKB++

In ZKB++, the number of parties is fixed (n = 3) and the protocol itself does not
need the additional interaction step from the verifier to the prover, i.e., ZKB++
is a non-interactive ZK proof system. The shared computation of a function f is
illustrated in Figure 3.1. In this construction, fj(i) and xj(i) denote the function and
the share for party j at gate i, respectively. The functions for each gate are then
defined as follows:

Addition with a Constant (c = a+ k).

ci =

{
ai + k if i = 0,

ai otherwise.

Binary Addition (c = a+ b).

ci = ai + bi.

1More precisely, n− 1 shares are picked at random and the last one is chosen such that s0 ⊕ s1 ⊕
· · · ⊕ sn−1 = x.
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(0) f1

(0) f2
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(0) + x2
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(0) x1

(0) x2
(0)
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(1) x1
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...
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y0 y1 y2

y0 + y1 + y2 = y

Figure 3.1: Circuit computation in ZKB++.

Multiplication with a Constant (c = a · k).

ci = ai · k.

Binary Multiplication (c = a · b).

ci = (ai · bi) + (ai′ · bi) + (ai · bi′) +Ri(m)−Ri′(m).

In these definitions, a, b and c denote shared values, and the subscripts i and i′ = i+1
(mod 3) refer to the shares of parties i and i′, respectively. A public constant is
denoted by k and Ri(m) is a precomputed random number associated with party
i and multiplication gate m. These random numbers are necessary, otherwise the
multiplication result would not be uniformly distributed over all possible values
anymore.

In the implementation itself, each Ri(m) is the output of a pseudorandom number
generator (PRNG) seeded with the initial random tape ri of party i, because truly
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random Ri(m) values would require the final proof to include each distinct Ri(m).
Thus, defining these numbers as outputs of a PRNG makes it possible to only store
the relevant seed values in the proof.

Note that the addition with a constant is the only asymmetric gate, i.e., the function
is not the same for each party. Moreover, the binary multiplication gate is the only
gate needing the input of the “next” party, which heavily contributes to the final
proof size.

Furthermore, all computations take place in a predefined field, i.e., in F2 the additions
are bitwise XOR operations, and the multiplications are bitwise AND operations.

Circuit Decomposition. Before describing the protocol itself, a few functions need
to be defined. These are necessary to create the decomposition of an arbitrary circuit.
In this case, the circuit will be denoted by f(x) = y, where x is the private key and
y is the public key.

To initiate the protocol, the private value x needs to be shared first, creating three
shares x0, x1, and x2, where x0 + x1 + x2 = x. This is done during the Share
function defined as follows:

(V iew0
(0), V iew1

(0), V iew2
(0))← Share(x, r0, r1, r2),

where r0, r1, and r2 are random binary strings of a predefined length and V iewj(0)

denotes the first value of the view of party j.

The circuit gates are computed using the definitions described above. This computa-
tion is denoted by the Update function:

V iewj
(i+1) ← Update(V iewj

(i), V iewj′
(i), rj, rj′),

where j′ = j + 1 (mod 3). This means that the Update function takes the previous
gate values of parties j and j′, together with their random tapes, and computes the
next gate value.

Finally, the function Output extracts the last value of a view and assigns it to an
output share:

yj ← Output(V iewj).
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In the algorithms found in this section, the consecutive computation of all circuit
gates (that is, the computation of the entire circuit) is denoted by

Update(· · · (· · ·Update(xj(i), xj′ (i), rj(i), rj′ (i)) · · · ) · · · ),

where again j′ = j + 1 (mod 3), and xj(i) and xj′ (i) are intermediate shares. Note
that view values are only generated for multiplication gates.

3.2.2 Protocol

Proof Generation. The proof generation algorithm assumes two public entities:
the circuit f , and the value f(x) = y used as the public key. Furthermore, three
distinct hash functions H1, H2 and H3 are needed. These can be created from the
same core hash function, and in the current implementation SHA-256 is used for this
purpose.

The first step of the protocol is to create a random tape rj ∈ {0, 1}s for each party j,
where s is the length of the random tape in bits. In the implementation of ZKB++,
each rj is chosen by a pseudorandom number generator and is used as a seed to
initialize a dedicated PRNG for later usage. The random tapes are also needed to
create the initial shares for x, which is done during the Share function defined
above.

The circuit f is then evaluated using the initial shares for x and the gate definitions
described earlier. For each binary multiplication, the output value of each party j
is added to V iewj . That is, at the end of the protocol, V iewj is a collection of all
binary multiplication results for party j.

After the circuit computation, the output shares y0, y1 and y2, where again y0 +
y1 + y2 = y, are collected. For the commitment of each view, the hash function H3,
the random tape of the corresponding party, and all the view values are used. The
challenge is computed by the prover, which makes the proof non-interactive.

The main part of the proof is then a deterministically chosen view based on the
challenge, and the values needed for the verifier to start the verification process. The
detailed process of generating a proof with ZKB++ using the Fiat-Shamir transform
is given in Algorithm 3.1, where the circuit f , the public key f(x) = y, the hash
functions H1, H2 and H3, and an arbitrary pseudorandom number generator are
known to both the prover and the verifier.
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Algorithm 3.1: Proof generation with ZKB++ using the Fiat-Shamir trans-
form.

Input: Private key x, number of iterations t.
Output: The proof p.

1 foreach iteration i ∈ {0, 1, . . . , t− 1} do
2 Sample random tapes r0(i), r1(i), r2(i).
3 foreach party Pj , where j ∈ {0, 1, 2} and j′ = j + 1 (mod 3) do
4 (x0

(i), x1
(i), x2

(i))← Share(x, r0
(i), r1

(i), r2
(i)) =

(H1(r0
(i)), H1(r1

(i)), x−H1(r0
(i))−H1(r1

(i))).
5 V iewj

(i) ←
Update(· · · (· · ·Update(xj(i), xj′ (i), rj(i), rj′ (i)) · · · ) · · · ).

6 yj
(i) ← Output(V iewj

(i)).
7 Commit (Cj

(i), Dj
(i)) = (H3(rj

(i), V iewj
(i)), rj

(i) || V iewj(i)).
8 a(i) ← (y0

(i), y1
(i), y2

(i), C0
(i), C1

(i), C2
(i)).

9 Compute the challenge e = H2(a
(0), a(1), . . . , a(t−1)).

10 Interpret e deterministically such that e(i) ∈ {0, 1, 2}.
11 foreach iteration i ∈ {0, 1, . . . , t− 1}, where e′′(i) = e(i) + 2 (mod 3) do
12 b(i) ← (ye′′(i)

(i), Ce′′(i)
(i)).

13 z(i))←


(V iew1

(i), r0
(i), r1

(i)) if e(i) = 0,

(V iew2
(i), r1

(i), r2
(i), x2

(i)) if e(i) = 1,

(V iew0
(i), r2

(i), r0
(i), x2

(i)) if e(i) = 2.

14 p← (e, (b(0), z(0)), (b(1), z(1)), . . . , (b(t−1), z(t−1))).
15 return p.

Proof Verification. The verification process is similar to the proof generation.
Instead of using the share function, the verifier uses the provided values and starts
the computation of the circuit for two branches only. Whenever the evaluation of
a binary multiplication gate is needed, the verifier picks the second input to this
gate from the second branch. This can only be done for one of the branches, the
computation for the second branch continues after the multiplication gate by using
the respective value from the provided view.

At the end of the circuit computation, the verifier has calculated two output shares for
the public key y. The third share can be calculated by using these two shares and y.
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3 ZKBoo and ZKB++

The verifier can now compute the commitments for two views themself and use them
to recalculate the challenge. They accept if and only if the challenge provided by the
prover is the same as the newly calculated one. A detailed description of the proof
verification with ZKB++ using the Fiat-Shamir transform is given in Algorithm 3.2,
where again the circuit f , the public key f(x) = y, the hash functions H1, H2 and
H3, and an arbitrary pseudorandom number generator are known to both the prover
and the verifier.

Algorithm 3.2: Proof verification with ZKB++ using the Fiat-Shamir trans-
form.

Input: Public key f(x) = y, proof p.
Output: Verification result.

1 foreach iteration i ∈ {0, 1, . . . , t− 1}, where e′(i) = e(i) + 1 (mod 3) and
e′′(i) = e(i) + 2 (mod 3) do

2 (xe(i)
(i), xe′(i)

(i))←


(H1(r0

(i)), H1(r1
(i))) if e(i) = 0,

(H1(r1
(i)), x2

(i)) if e(i) = 1,

(x2
(i), H1(r0

(i))) if e(i) = 2.

3 V iewe(i)
(i) ←

Update(· · · (· · ·Update(xe(i) (i), xe′(i) (i), re(i) (i), re′(i) (i)) · · · ) · · · ).
4 ye(i)

(i) ← Output(V iewe(i)
(i)).

5 ye′(i)
(i) ← Output(V iewe′(i)

(i)).
6 ye′′(i)

(i) ← y − ye(i) (i) − ye′(i) (i).
7 foreach j ∈ {e(i), e′(i)} do
8 (Cj

(i), Dj
(i))← (H3(rj

(i), V iewj
(i)), rj

(i) || V iewj(i)).
9 a′(i) ← (y0

(i), y1
(i), y2

(i), C0
(i), C1

(i), C2
(i)), where ye′′(i)

(i) and Ce′′(i)
(i)

are part of z(i).
10 Compute the challenge e′ = H2(a

′(0), a′(1), . . . , a′(t−1)).
11 if e′ = e then
12 return “ACCEPT”.
13 else
14 return “REJECT”.

These explanations were for one iteration only. To reduce the soundness error,
multiple iterations of ZKB++ have to be performed, as shown in the respective
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3 ZKBoo and ZKB++

algorithms.

Proof Size. The expected proof size of ZKB++ using the Fiat-Shamir transform,
resulting in Picnic-FS, is

S1 = γ ·
(
c+ 2t+ log2(3) +

2

3
· s+ υ

)
bits, where γ is the number of repetitions, c is the size of the commitment (e.g.
c = 256 bits for SHA-256), t is the size of a random tape, s is the size of a share,
and υ is the view size (all in bits). The value log2(3) is due to the challenge, where
log2(3) bits are needed to specify an element e ∈ {0, 1, 2}. The size of the share
has to be multiplied by 2

3
, because only in two of three cases (namely, when the

challenge is 1 or 2) one of the input shares is actually needed.

For the sake of completeness, the proof size of ZKB++ using a modified version of
the Unruh transform, resulting in Picnic-UR, is

S2 = γ · (c+ 3t+ log2(3) + s+ 2υ)

bits, where the variables are the same as before.

3.3 Security

The ZKB++ proof system relies on a couple of properties, which aim to give Picnic
a security of 128 bits in the post-quantum setting. A more detailed security analysis
of the protocol can be found in [GMO16].

Zero-Knowledge Property. First note that the underlying Σ-protocol of ZKB++
has 3-special soundness. This can be seen from the fact that three communications
with the same commitments can be used to rewind the protocol beginning with the
output shares and computing the circuit in reversed direction. By doing so, three
input shares x′i, where i ∈ {0, 1, 2}, can be found such that x′0 + x′1 + x′2 = x′ and
f(x′) = y. Although all views are also included in only two distinct challenges, the
protocol does not have 2-special soundness, because with two challenges only, the
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3 ZKBoo and ZKB++

remaining branch cannot be verified. That is, the prover could simply calculate the
protocol for an x′′ with f(x′′) 6= y and then edit the view values accordingly for the
needed output shares.

The zero-knowledge property follows from the construction of the MPC scheme
within ZKB++. A verifier is only ever given two out of three shares, which means
that the corresponding intermediate state cannot be extracted and, more importantly,
it is uniformly distributed over all possible values. This property is called 2-privacy
and affects all MPC gates defined in Section 3.2.1, and thus also the initial input x.
Only the last state can be extracted, which is the public value y.

Number of Iterations. Given the definition of the circuit decomposition from
above, ZKB++ has a soundness error of 2/3. In order to achieve a soundness error
of at most 2−128, which corresponds to a security of 128 bits in the classical (non-
quantum) setting, at least 219 iterations are necessary, because (2/3)s < 2−128 for
s ≥ 219. In the post-quantum setting, this number has to be doubled due to the
impact of Grover’s search algorithm [Gro96], which leads to t = 2 · 219 = 438
iterations. The attack using the search algorithm and further detail can be found in
[CDG+17].

Fiat-Shamir Transform and Unruh Transform. The Σ-protocol in ZKB++ was
transformed into a non-interactive zero-knowledge (NIZK) proof by applying the
Fiat-Shamir transform [FS86] in the non-quantum setting, and by using the Unruh
transform [Unr15] to gain security in the post-quantum setting, as further explained
in 2.3.
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4 Choice of Circuit for ZKB++

As explained in Chapter 3, the number of multiplications (or the number of AND
gates) within a circuit plays an important role for the resulting proof size. Indeed,
this number multiplied by the size of the used field is by far the most dominant part
of the proof size.

However, the size of the proof is not the only problem. Due to the definition of
the MPC binary multiplication gate in ZKB++, one single binary multiplication
in the circuit actually results in 3 multiplications and 4 additions1 for each party,
which are 9 multiplications and 12 additions in the ZKB++ implementation. This is
significantly higher than the final number of additional operations induced by the
addition gates. Thus, even if additions and multiplications are similarly expensive on
their own, multiplication gates are still much more expensive in the ZKB++ setting.
Hence, reasonable choices for the resulting signature scheme include circuits with a
comparatively small amount of multiplication gates.

In the original ZKBoo [GMO16], the hash function SHA-256 was used as a proof
of concept for the circuit over which the public key was calculated. With its com-
paratively large amount of 25000 AND gates, SHA-256 is not the best choice for a
protocol like ZKBoo or ZKB++, and SHA-3 (38400 AND gates) would be even
worse in this context. AES-128 needs 5440 AND gates, while AES-192 and AES-256
use 6528 and 7616 AND gates, respectively. PRINCE needs 1920 AND gates for an
encryption and approximately 1400 AND gates are required for LowMC and 256
bits of security [CDG+17].

This chapter will describe some block ciphers which are more suited for ZKB++
due to a low multiplicative complexity. Note that MiMC is not exactly competitive,
but still mentioned, because it serves as the foundation of GMiMC.

1One of these additions is a subtraction, but the computational cost is the same for additions and
subtractions.
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4 Choice of Circuit for ZKB++

4.1 LowMC

LowMC was published in 2015 [ARS+15] and was actually the first circuit used
in ZKB++ as a comparison to the former SHA-256. It is a highly parameterizable
construction, i.e., it allows the user to change a selection of parameters. The number
of AND gates of LowMC is still smaller than 800 for a 128-bit security level, which
is significantly less than SHA-256 or AES-128.

Description. LowMC is a block cipher using a substitution-permutation network.
It allows the user to freely choose a selection of parameters, such as the block size
n and the key size κ, the number of S-boxes, and the allowed data complexity d
of attacks, where d = log2(npairs) and npairs refers to the number of (plaintext,
ciphertext) pairs needed for an attack. The S-boxes of LowMC have a size of 3
bits and the number of S-boxes can be reduced in order to reduce the number of
multiplications. LowMC also uses a partial S-box layer, which is not common for
block ciphers with substitution-permutation networks.

One round of LowMC is shown in Figure 4.1. The output of each S-box S(·) is
defined as

S(a, b, c) = (a+ (b · c), a+ b+ (a · c), a+ b+ c+ (a · b)),

where a, b and c are bits, and additions and multiplications are executed in F2. The m
S-boxes are used for the first 3m bits of the n-bit state, while the remaining n− 3m
bits (for n > 3m) are passed to the affine layer unchanged.

Key addition and constant addition take place after the affine layer in F2 (XOR),
where the round keys and the n-bit round constants are chosen during the instan-
tiation of the cipher and then fixed. More precisely, each round key is generated
by multiplying the initial key with a randomly chosen n× κ binary matrix of rank
min(n, κ).

The affine layer itself consists of a multiplication in F2 of the current state with an
n×n binary matrix, which is different for each round and chosen randomly out of all
invertible n×n matrices. All of these matrices are randomly chosen and fixed during
the instantiation of LowMC, thus generation takes place in constant time. Decryption
is the same as encryption, but with a reversed order of steps and by inverting the
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4 Choice of Circuit for ZKB++

matrices used in the affine layer. The pseudorandom bits needed for the matrices are
generated by the Grain LFSR.

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕⊕ ki

S S . . . S . . .

Affine layer

Figure 4.1: One round of LowMC.

Security. LowMC uses keys with a size κ of e.g. κ = 80, κ = 128, or κ = 256 bits,
where the last choice aims to provide a post-quantum security of 128 bits. With the
affine layer already providing a rather large amount of diffusion, LowMC is designed
to use a low amount of rounds, comparable to AES. Due to the flexibility of LowMC,
the number of rounds depends on n, κ, m, and d. Table 4.1 gives a short overview of
possible parameters and resulting round numbers for LowMC [ARS+15], and it also
shows some of the configurations used for ZKB++, where the data complexity d
was set to 1.

Block size n Key size κ # S-boxes m Data complexity d # rounds r
256 256 1 1 316
256 256 10 1 38
256 256 42 1 14
128 80 21 64 13
1024 80 21 64 28
256 128 42 128 13
1024 128 42 128 19
256 256 42 128 15
1024 256 42 128 21

Table 4.1: Some parameter sets of LowMC together with their respective round number.
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4 Choice of Circuit for ZKB++

As mentioned above, the advantage of LowMC in the ZKB++ proof setting is that
the number of multiplications strongly contributing to the proof size can be reduced
by using fewer S-boxes. However, by using the identity mapping for part of the state
bits, a new attack vector is introduced. This has been shown in [DEM15], where the
number of effective rounds of an 11-round LowMC instantiation could be reduced to
9.

4.2 MiMC

Compared to LowMC described in the previous section, MiMC [AGR+16] is a very
different approach. The main distinction is probably that it does not use a substitution-
permutation network. Instead, it uses a straightforward chain of functions for the
rounds or, alternatively, a balanced Feistel network. This chapter will explain MiMC
in detail and, most importantly, discuss its main disadvantages in the ZKB++
setting.

Description. MiMC is a block cipher whose core component is the function f(x) =
x3. The computation of this function takes place in Fq, where q = p or q = 2n for a
prime number p and a natural number n. That is, computations take place either in a
prime field or a binary field. Two possible variants of MiMC are shortly described
here, namely MiMC-n/n (or MiMC-p/p for prime fields) and MiMC-2n/n (or
MiMC-2p/p for prime fields). For simplicity and because the functions are the same
for prime fields, only MiMC-n/n and MiMC-2n/n will be discussed.

For the block cipher to be a permutation, f has to be a permutation. The necessary
criteria to fulfill this requirement are discussed in Section 2.6.2. Along with the
permuting function f , MiMC also uses key additions and round constants, similar to
LowMC. In detail, the encryption function of MiMC-n/n is

Ek(x) = (Fr−1 ◦ Fr−1 ◦ · · · ◦ F0)(x)⊕ k,

where x is the plaintext, r is the number of rounds, Fi is the round function in round
i, and k is the key. Each Fi is defined as

Fi(x) = (x⊕ k ⊕ ci)3,
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4 Choice of Circuit for ZKB++

where ci is the round constant in round i and c0 = 0. The round constants are chosen
as random elements of Fq at the instantiation of MiMC and then fixed. Note that
there are no round keys, instead the same key is used in each round and once at the
end. The encryption path for r rounds of the non-Feistel version of MiMC is shown
in Figure 4.2.

X3 X3 X3. . .x y

k k ⊕ c1 k ⊕ cr−1 k

Figure 4.2: The MiMC encryption function with r rounds.

For the formulas shown above, the block size is the same as the key size, and it also
defines the size of the field in which the computations take place. Thus, the most
expensive component of the encryption is the exponentiation in each round, and this
is also one of the reasons for which MiMC is not a competitive choice for ZKB++.
Nevertheless, the speed of this operation could be significantly increased as shown
in Chapter 5, and it even turned out that in some cases using larger field sizes is
beneficial for the runtime, although resulting in a larger proof size for ZKB++.

MiMC can also use a Feistel network. The round function of MiMC-2n/n is then

Fi(xiL || xiR) = xiR ⊕ (xiL ⊕ k ⊕ ci)3 || xiL ,
where xiL and xiR are the most significant and least significant n bits of x in round i,
respectively, the block size is 2n, and the key size is n.

Decryption was not needed for ZKB++ and thus not implemented. However, for the
sake of completeness, it should be mentioned that decryption in MiMC is significantly
more expensive than encryption. The reason is that for decryption the inverse of
f(x) = x3 (mod m), for m being a prime number or an irreducible polynomial, has
to be used. For the prime case, the inverse would be f1(x) = xs1 (mod m), where
s1 · 3 ≡ 1 (mod m − 1) (this follows from Fermat’s little theorem), and for the
binary case it would be f2(x) = xs2 (mod m), where s2 = 2n+1−1

3
(a proof for this

statement is given in [AGR+16]). Both s1 and s2 tend to be much higher than 3.

Various methods like exponentiation by repeated squaring can speed up decryption.
However, when used as a block cipher, it is nevertheless advisable to use MiMC with
operation modes that do not require decryption at all (e.g. CTR mode [DE79]).
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Security. The number of rounds for MiMC-n/n to be deemed secure is

r1 = log3(2
n) =

log2(2
n)

log2(3)
=

n

log2(3)

for computations in binary fields and

r2 = log3(p) =
log2(p)

log2(3)

for computations in prime fields. The round number for MiMC-2n/n is similar with
the numerator of the fraction being doubled in each case.

As the core component of MiMC is the function f(x) = x3, main focus during
the security analysis of MiMC was laid on algebraic attacks such as a new “GCD”
attack further described in [AGR+16]. More specifically, the number of rounds for
MiMC-n/n was derived from a possible interpolation attack2, which was found to
be the most impactful one against this construction.

4.3 GMiMC

This section will now describe the GMiMC block cipher, which was one of the main
focuses of this thesis. This is also the second block cipher being used with the new
implementation and thus served as an alternative to MiMC described in the previous
section. As the name suggests, MiMC and GMiMC, which stands for Generalized
MiMC, are closely related.

Most of the methods described in Chapter 5 were specifically needed for GMiMC
and also optimized for its various field sizes and instantiations. Hence, this block
cipher will now be described in a little more detail.

2During an interpolation attack [JK97], the adversary tries to find a polynomial which corresponds to
the encryption function without knowledge of the key. The coefficients of this polynomial can be
determined by Lagrange interpolation, where known (plaintext, ciphertext) pairs are used as data
points. This method can also be extended to mount a key-recovery attack.
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4.3.1 Description

Similar to the original version of MiMC, GMiMC also uses the function f(x) = x3

as the main component of its construction. However, where MiMC used a function
chain or, alternatively, a balanced Feistel network, GMiMC uses a different approach,
namely unbalanced Feistel networks. These are Feistel networks where the two (or
more) branches of the network are not of the same size. In the case of GMiMC, for
most field sizes more than two branches are used.

In this section, two modes of GMiMC will be described, namely GMiMCcrf and
GMiMCerf . These have proved to be the most competitive choices for the ZKB++
proof setting, where the latter was ultimately chosen as the best choice. Justifications
for this statement will be given after describing both modes.

For the following discussions, let Xi denote the value of a Feistel branch, where
X0 denotes the value of the leftmost branch and Xt−1 denotes the value of the
rightmost branch, with the number of branches being denoted by t. For example,
the intermediate value of a 4-branch Feistel network is thus denoted by (X0 || X1 ||
X2 || X3), where X0 contains the n

4
most significant bits of the whole n-bit value.

As before, n is the block size and κ is the key size.

GMiMCcrf . GMiMCcrf uses an unbalanced Feistel network with a contracting
round function, which can be described as

(X0, X1, . . . , Xt−1)← (X1, X2, . . . , Xt−1, X0 + F (X1, X2, . . . , Xt−1)),

where F (·) is the round function in round j defined as

F (X1, X2, . . . , Xt−1) =

((
t−1∑
i=1

Xi

)
+ kj + cj

)3

for cj and kj denoting the round constant and round key in round j, respectively.
Note that in contrast to MiMC, distinct round keys are used here. They have to be of
the same size as the field in which the computations take place and are derived from
the κ-bit master key k. In detail, if the key size is the same as the field size, the same
key is used for each round. If the key size is larger than the field size (which is the
case for most instantiations), then kj = k′j (mod l), where k = (k′0 || k′1 || . . . || k′l−1)
and κ = l · n.
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One round of GMiMCcrf is shown in Figure 4.3.

F . . .

Figure 4.3: One round of GMiMCcrf in an unbalanced Feistel network.

GMiMCerf . GMiMCerf also uses an unbalanced Feistel network, but in contrast to
GMiMCcrf , it has an expanding round function. It can be described as

(X0, X1, . . . , Xt−1)← (X1 + F (X0), X2 + F (X0), . . . , Xt−1 + F (X0), X0),

where F (·) is again the round function in round j defined as

F (Xi) = (Xi + kj + cj)
3

and both kj and cj are the same as in GMiMCcrf .

One round of GMiMCerf is shown in Figure 4.4.

F . . .

Figure 4.4: One round of GMiMCerf in an unbalanced Feistel network.

The number of additions and multiplications in each round is the same for GMiMCcrf

and GMiMCerf . However, GMiMCerf still manages to be more competitive, because
the round number is lower while maintaining the same level of security.
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GMiMCcrf and GMiMCerf are not the only constructions of GMiMC. Other possible
constructions include GMiMCnyb using a Feistel network construction proposed in
[Nyb96], and GMiMCmrf using a Multi-Rotating structure introduced in [AGP+18].
Both of them work only for an even number of branches and were not added to the
new implementation of ZKB++, because they would result in larger proof sizes
compared to the other two constructions. The main reason is that the round function,
which includes the exponentiation, is called t

2
times in each round, whereas it is only

called once in each round in GMiMCcrf and GMiMCerf .

4.3.2 Security

For ZKB++, the GMiMC family of block ciphers is aiming for a security of n = 256
bits, which are believed to correspond to 128 bits of security in a post-quantum
world.

The number of rounds for GMiMCcrf is

rcrf =
⌈
1.262 · n

t

⌉
+ 6t− 4

and the number of rounds for GMiMCerf is

rerf =
⌈
1.262 · n

t

⌉
+ 4t− 3,

where n is the block size and t is the number of branches. Thus, n
t

is the size of a
single branch value and also the size of the field in which the computations take
place. Both of these round numbers correspond to the number of rounds necessary to
provide security against an interpolation attack, which, similar to MiMC, proved to
be the most powerful attack against these constructions of GMiMC.

However, these round numbers are for the general use case, where no restrictions
on data complexity are given. In the ZKB++ setting, a possible adversary has only
access to a very limited number of (plaintext, ciphertext) pairs, which is why the
round numbers from above can be reduced. The new round number for GMiMCerf

is then
rerf =

⌈
1.262 · n

t
− 4 · log3

(n
t

)⌉
+ 4t+ 3,

where again n is the block size and t denotes the number of branches. In this low-data
scenario, GMiMCerf turned out to be the most efficient GMiMC configuration for
ZKB++.
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Field Sizes and the Consequences for ZKB++. GMiMC supports many different
configurations, mainly by choosing different field sizes. ZKB++ aims for a post-
quantum security of 128 bits, hence the encryption scheme used should have a key
size of at least 256 bits. For a block size of 256 bits, every chosen field size results in
a corresponding number of branches. For example, t = 4 branches are chosen for a
64-bit field.

In the Picnic-FS and Picnic-UR signature schemes, the goal is to achieve a small
signature while also providing a short computation time. If we only want to optimize
the former, then rerf · n′ has to be minimized (the number of multiplications is
2 and thus the same in each round). It turns out that in this case, the field size
n′ = n

t
= 258

86
= 3 is the best choice (rerf = 347). However, this also results in a

relatively slow computation.

The lowest number of rounds, on the other hand, is achieved by choosing a field
size of n′ = 32 bits (rerf = 63). This is also beneficial for the final implementation,
where the block size is exactly 256 bits and operations with 32-bit values can be
implemented efficiently. Indeed, when using prime fields, a field size of n′ = 32 bits
turned out to yield the fastest computation in our setting.

The relation between field sizes and the resulting computational cost for various
operations is shown in Section 6.4.

To further emphasize the difference between MiMC and GMiMC with regard to
the number of multiplication gates in configurations providing at least 256 bits of
non-quantum security, Table 4.2 shows the multiplicative complexities of various
instantiations and the resulting computational cost in bits.
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Scheme (n, t, r) m = 2 · r c = n ·m
MiMC (256, 1, 162) 324 82944 bits

(272, 1, 172) 344 93568 bits
GMiMCerf (Fp) (3, 86, 347) 694 2082 bits

(4, 64, 260) 520 2080 bits
(16, 16, 78) 156 2496 bits
(32, 8, 63) 126 4032 bits
(64, 4, 85) 170 10880 bits

(136, 2, 165) 330 44880 bits
GMiMCerf (F2n) (3, 86, 347) 694 2082 bits

(33, 8, 64) 128 4224 bits
(65, 4, 86) 172 11180 bits

GMiMCcrf (Fp) (3, 86, 516) 1032 3096 bits
(4, 64, 386) 772 3088 bits
(16, 16, 113) 226 3616 bits
(32, 8, 85) 170 5440 bits
(64, 4, 101) 202 12928 bits
(136, 2, 180) 360 48960 bits

GMiMCcrf (F2n) (3, 86, 516) 1032 3096 bits
(33, 8, 86) 172 5676 bits
(65, 4, 103) 206 13390 bits

Table 4.2: Number of multiplication gates m and final computational cost c for various instantiations
of MiMC and GMiMC, where n denotes the field size, t denotes the number of branches,
and r denotes the number of rounds.
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5 Modular Arithmetic in MiMC
and GMiMC

This chapter will now discuss modular arithmetic in general and various algorithms
in this area. The implementation of some of these methods and their optimization
was the second part of this thesis’ practical work.

The necessity of these algorithms comes from the fact that both MiMC and GMiMC
heavily rely on modular arithmetic. While additions and subtractions in a finite
field are relatively cheap in terms of computation time, multiplications are much
more expensive. The reason is that the second part of a modular multiplication is
the reduction, which for most field sizes (especially smaller ones) is even more
expensive than the multiplication itself.

Additionally, a shared multiplication operation used by ZKB++ in the MPC setting
needs 9 multiplications (3 for each party), hence 18 multiplications for f(x) = x3 in
each round, which makes fast modular multiplications even more important.

This chapter will first focus on classical approaches of modular arithmetic, and then
discuss faster methods for special moduli. In all algorithms and explanations used in
this chapter, W denotes the word size in bits and N denotes the number of words.
For example, if W = 64, then in a 136-bit finite field N = 3 words have to be used
to represent a value x in this field. In general, N = dn/W e, where n denotes the
field size in bits. Moreover, x[0] denotes the least significant word of a value x, and
x[N − 1] denotes the most significant word of the same value.
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5.1 Additions and Subtractions

Both additions and subtractions are faster than multiplications. The main reason is
that an addition of two n-bit values has a result which is at most one bit larger. A
similar argument holds for subtractions.

5.1.1 Prime Fields

In prime fields, the result r of an addition of two values a and b, with a, b ∈ Fp, where
p is the prime modulus, needs at most one subtraction in order to get a new value
r′ ∈ Fp. This is obvious, because a < p, b < p =⇒ r′ = r − p = a+ b− p < p.

For subtractions, at most one addition is necessary in order to compute a new
value r′ ∈ Fp. This addition is needed if the second operand is larger than the
first one, in which case the result is a negative number r with |r| < p, where
r = a− b, a < p, b < p, and b > a.

Classical addition and subtraction are shown in Algorithm 5.1 and Algorithm 5.2,
respectively. Note that these algorithms are linear-time algorithms and need O(N)
operations.

Algorithm 5.1: Word-wise addition.
Input: Integers a and b using N words.
Output: (β || c), where β is the carry bit and c = (a+ b) (mod 2WN).

1 (β || c[0])← a[0] + b[0].
2 for i← 1 to N − 1 do
3 (β || c[i])← a[i] + b[i] + β.
4 return (β || c).

Both of these algorithms can easily be transformed into their modular versions, given
in Algorithm 5.3 and Algorithm 5.4.
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Algorithm 5.2: Word-wise subtraction.
Input: Integers a and b using N words.
Output: (β || c), where β is the borrow bit and c = (a− b) (mod 2WN).

1 (β || c[0])← a[0]− b[0].
2 for i← 1 to N − 1 do
3 (β || c[i])← a[i]− b[i]− β.
4 return (β || c).

Algorithm 5.3: Modular word-wise addition in Fp.
Input: Prime number p and integers a, b such that a, b ∈ Fp.
Output: c = (a+ b) (mod p).

1 (β || c)← Add(a, b).
2 if β = 1 or c ≥ p then
3 c← c− p.
4 return c.

5.1.2 Binary Fields

In a binary field F2n , modular addition is the same as modular subtraction, which can
both be done by a bitwise XOR (⊕) operation between two operands. The reason is
that in an n-bit binary field, the irreducible polynomial has order n and thus occupies
n+ 1 bits, which means that every n-bit value is already reduced. Furthermore, by
using XOR operations, every sum of two n-bit values is again an n-bit value, which
is not always the case in prime fields. This means that also every result of an addition
in F2n is already reduced, and thus if clauses are not needed. Therefore, modular
additions and subtractions in binary fields tend to be faster than their counterparts in
prime fields.

Both modular addition and modular subtraction can be implemented by using Algo-
rithm 5.5. This is also a linear-time algorithm and uses O(N) operations.
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Algorithm 5.4: Modular word-wise subtraction in Fp.
Input: Prime number p and integers a, b such that a, b ∈ Fp.
Output: c = (a− b) (mod p).

1 (β || c)← Sub(a, b).
2 if β = 1 then
3 c← c+ p.
4 return c.

Algorithm 5.5: Modular word-wise addition/subtraction in F2n .
Input: Polynomials a, b such that a, b ∈ F2n and n < W ·N .
Output: c = (a⊕ b).

1 for i← 0 to N − 1 do
2 c[i]← a[i]⊕ b[i].
3 return c.

5.2 Modular Multiplications in Prime Fields

While modular additions and modular subtractions can be implemented with a rather
straightforward approach, this is not at all the case for modular multiplications. The
main reason is that the result of an addition or subtraction has at most n + 1 bits,
where n is the number of bits of the larger of the two operands, and that, following
the explanations from above, at most one additional operation is necessary.

However, a multiplication result r = a · b, where a, b ∈ Fp, has at most 2 · dlog2(p)e
bits, which is why reductions for multiplications are in general not as fast.

5.2.1 Basic Multiplication

Before reducing a multiplication result, the multiplication itself has to be performed.
The new implementation uses a word-wise version, which needs O(N2) operations
(quadratic time). There are various other multiplication techniques, such as the
Karatsuba algorithm [KO62], which will be discussed in Chapter 7.

Given two integers a, b ∈ Fp, Algorithm 5.6 computes the result r = a · b.
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Algorithm 5.6: Word-wise multiplication.
Input: Integers a and b using N words.
Output: c = (a · b).

1 for i← 0 to N − 1 do
2 c[i]← 0.
3 for i← 0 to N − 1 do
4 u← 0.
5 for j ← 0 to N − 1 do
6 (u || v)← c[i+ j] + (a[i] · b[j]) + u.
7 c[i+ j]← v.
8 c[N + i]← u.
9 return c.

This algorithm is an operand-scanning approach, where (u || v) denotes a (2W )-bit
double word, which has to be supported by the underlying programming language
and architecture. In general, it is wise to choose W such that a (2W )-bit integer is
the maximum that can be handled.

The main multiplication of the current word is performed in line 6, which is also
called the inner product operation [BBD08]. Both c[i+ j] and u are at most 2W − 1,
which is the maximum value that can be represented with W bits. The word-wise
multiplication result a[i] · b[j] is at most (2W − 1)2. Hence,

c[i+ j] + (a[i] · b[j]) + u ≤ 2 · (2W − 1) + (2W − 1)2

= 2W+1 − 2 + 22W − 2W+1 + 1 = 22W − 1

is a value that can be stored in (u || v).

5.2.2 Classical Reduction and the Native Modulo Operator

After a multiplication, a (2n)-bit result r needs to be reduced to an n-bit field
element. By applying the same method as for additions and subtractions discussed in
Section 5.1.1, it is possible to reduce such a result by just subtracting the modulus p
from r until an integer r′ < p is reached. However, with r and p being a (2n)-bit and
n-bit quantity, respectively, roughly 2n subtractions would be necessary. While this
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Bits
Operation

ADD SUB MUL DIV MOD XOR AND CLMUL

8 bits 3 ns 3 ns 4 ns 44 ns 42 ns 3 ns 3 ns 2 ns
16 bits 3 ns 2 ns 4 ns 43 ns 42 ns 3 ns 2 ns 2 ns
32 bits 2 ns 3 ns 5 ns 42 ns 41 ns 3 ns 3 ns 2 ns
64 bits 2 ns 3 ns 4 ns 42 ns 118 ns 3 ns 3 ns 2 ns

Table 5.1: Execution times of various CPU instructions in nanoseconds (ns).

method is indeed fast for very small field sizes (e.g. 3 bits), it is obviously too slow
in general.

The most straightforward approach in most programming languages is to use the
native modulo operator. For example, in C and C++ this is the % operator and
it works up to a certain field size (up to 64 bits on the tested machine). However,
this method is not well-suited for larger field sizes, and is sometimes slower than
different methods even in small fields.

Actual benchmark results of various operators, including the modulo operator, are
given in Table 5.1. For comparison, the bitwise operators XOR and AND were
also tested, together with the CLMUL instruction discussed in Section 5.3. This
benchmark was run on an Intel i7-6700 CPU @ 3.40 GHz with GCC and compiler
optimizations set to O2. All operations were tested in blocks of 5, these blocks were
executed 106 times, and the numbers indicate the average execution time for each
block.

As one would assume, additions and subtractions are equally fast. Multiplications are
slightly slower, but the difference is not noticeable in most applications. However,
we can see that divisions and modulo operations, which use the division instruction
internally, are significantly slower. The reason is that both of these operations are
heavily microcoded, whereas additions and multiplications map to a single CPU
instruction. This difference is also illustrated in [Fog17], where the number of
microcode operations is given for older CPU generations. The instruction table also
shows a significantly higher average number of clock cycles for DIV instructions
on the Intel Skylake architecture, which is the architecture of the CPU used for the
benchmark. The execution time for the last MOD value is higher than that for the
division, because for each field size n, a (2n)-bit number is reduced modulo an n-bit
number, which means that for 64 bits the number to be reduced exceeds the word
size.
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5.2.3 Barrett Reduction

The following algorithms will now reduce a number x (mod m) without needing
the expensive division operation from the previous section. The first one of these
algorithms is the Barrett reduction presented in 1986 [Bar86] and illustrated in
Algorithm 5.7. This method works for any positive integer numbers x and m. It
needs the precomputation of µ =

⌊
B2k/m

⌋
, where B is typically a quantity close

to the word size of the CPU (e.g. B = 2l for some l) for multi-precision integers.
Computing µ requires the division instruction in most cases, which makes it an
expensive operation. Therefore, this value is often hard-coded and can then be used
for every modular multiplication where the modulus is the same.

Algorithm 5.7: Barrett reduction.

Input: Integers m,B ≥ 3, k = blogB(m)c+ 1, 0 ≤ x < B2k, µ =
⌊
B2k

m

⌋
.

Output: r = x (mod m).
1 q ←

⌊
x/Bk−1⌋.

2 q ← q · µ.
3 q ←

⌊
q/Bk+1

⌋
.

4 r ← (x (mod Bk+1))− ((q ·m) (mod Bk+1)).
5 if r < 0 then
6 r ← r +Bk+1.
7 while r ≥ m do
8 r ← r −m.
9 return r.

Note that there are also two divisions in this algorithm, namely in lines 1 and 3.
However, the divisors of these divisions are powers of 2, because Bk = (2l)k = 2lk,
where k and l are positive integers. Hence, these operations can be implemented
efficiently with shift instructions. A similar argument holds for the modulo operations
in line 4, which can be replaced by bitwise AND instructions. That is,

x/Bk−1 = x� (log2(B) · (k − 1)), q/Bk+1 = q � (log2(B) · (k + 1))

and

x (mod Bk+1) = x & (Bk+1 − 1), (q ·m) (mod Bk+1) = (q ·m) & (Bk+1 − 1),
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where� and & denote a bitwise right shift and a bitwise AND operation, respec-
tively.

The while loop at the end is responsible for correcting subtractions, if the final value
is still greater than or equal tom. However, in most cases no subtractions are required
and only very rarely more than one subtraction is needed [Bar86]. A correctness
proof of the algorithm is given in [HMV03].

5.2.4 Montgomery Conversion and Reduction

The Montgomery reduction algorithm is due to Montgomery and was introduced in
1985 [Mon85]. Its main idea is to perform the modular multiplication in a different
domain, the Montgomery domain, where certain modular operations are cheaper.
The resulting product is then transformed back into the original domain to obtain the
final result.

Let m be the modulus as before and x an arbitrary field element. Furthermore, let
R = 2k, where k = blog2(m)c+ 1 (hence, k is the number of bits of m and R is the
smallest power of 2 greater than m). Then the Montgomery representation of x is

x′ = x ·R (mod m)

and the conversion back to the original x is

x = x′ ·R−1 (mod m),

where R−1 (mod m) is the modular multiplicative inverse of R (mod m) such that
R ·R−1 ≡ 1 (mod m). This means that an algorithm is needed in order to efficiently
divide a number x′ by R. The main idea here is to use the fact that R is a power
of 2. If the k least significant bits of x′ are all zeros, then a division by R can be
performed in an efficient way by simply shifting x′ to the right for k bits. However,
in general this is not the case and the idea is then to add a certain value t to x′, which
makes the k least significant bits of x′ become zero. The quantity t is chosen in such
a way that

t = c ·m,
x′ + t = x′ (mod m),

x′ + t = 0 (mod R),
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where c ≥ 1 ∈ N. Note that

x′ + c ·m ≡ 0 (mod R) =⇒ c ≡ −x′ ·m−1 (mod R).

In order to calculate this, m−inv = −m−1 (mod R) has to be precomputed first,
such that c = x′ ·m−inv (mod R). This value is the same for every reduction modulo
m.

The entire procedure is summarized in Algorithm 5.8.

Algorithm 5.8: Montgomery reduction.
Input: Integers x′, R,m,m−inv.
Output: x = x′ ·R−1 (mod m).

1 c← x′ ·m−inv (mod R).
2 x← x′ + (c ·m).
3 x← x/R.
4 if x ≥ m then
5 x← x−m.
6 return x.

Note that the modulo operation in line 1 can be implemented with an AND operation
and the division in line 3 is a right shift operation, since R is a power of 2. Now, to
compute x ·y (mod m), one multiplication and two reductions are needed, as shown
in Algorithm 5.9. In this algorithm, line 4 yields the Montgomery representation of
x · y (mod m), and another conversion is then used to obtain the final result in line
5. This works because

x′ = x ·R (mod m),

y′ = y ·R (mod m),

and therefore

x′ · y′ ≡ (x ·R) · (y ·R) ≡ z ·R2 ≡ z′ ·R (mod m).

The computational cost for the Montgomery multiplication is comparatively high
for one single multiplication, mainly because the input values need to be converted
to the Montgomery domain first, and converted back to their original form after the
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Algorithm 5.9: Montgomery multiplication.
Input: Integers x, y ∈ {0, 1, . . . ,m− 1}, R,m.
Output: z = x · y (mod m).

1 x′ ← x ·R (mod m).
2 y′ ← y ·R (mod m).
3 t← x′ · y′.
4 z′ ←MontgomeryReduction(t).
5 z ←MontgomeryReduction(z′).
6 return z.

procedure. These transformations are expensive. However, if an exponentiation with
a sufficiently large exponent is needed (such as for RSA), a bitwise Montgomery
exponentiation only needs to transform these values once for all subsequent multi-
plications. In this setting, the Montgomery method tends to be faster than Barrett’s
reduction, as further explained in [HMV03]. The exponentiation, however, was not
implemented for ZKB++, hence it will not be described here.

A short comparison of the Montgomery multiplication and the normal multiplication
together with the Barrett reduction in prime fields of sizes 16 bits and 32 bits is
given in Table 5.2. The number of runs, the hardware, and the parameters are the
same as for the previous benchmark. Normal multiplications with subsequent Barrett
reductions prove to be faster in this setting, mainly due to the computationally expen-
sive conversions into the Montgomery domain, which require modular operations
themselves. Each of these methods is almost equally fast for both 16-bit and 32-bit
fields, because all operations are word size operations.

Note that in order to reduce the computational cost of Montgomery multiplications
in ZKB++, it is also possible to perform the expensive Montgomery conversions
only at the beginning and at the end of the protocol. This optimization was not
implemented during the practical part of this thesis, but is further described in
Section 7.2.

47



5 Modular Arithmetic in MiMC and GMiMC

Field size
Method

Normal MUL + Barrett reduction Montgomery MUL

16 bits 17 ns 41 ns
32 bits 17 ns 38 ns

Table 5.2: Comparison of Barrett reduction and Montgomery reduction.

5.2.5 Crandall Prime Number Reduction

The previous two reduction methods, explained in Section 5.2.3 and Section 5.2.4,
work for arbitrary prime numbers and do not exploit any properties of a specific
prime. The following two reduction methods, on the other hand, make use of prime
numbers of special form. In further consequence, these methods make reductions
modulo special prime numbers significantly faster.

The first one of these two algorithms is the reduction in a prime field Fp, where
p = 2n − c and c is a small integer number that can be stored in one word. Prime
numbers with this property are called Crandall prime numbers or Pseudo-Mersenne
prime numbers.

Let p = 2n− c be a Crandall prime number and let r = a · b, where a, b ∈ Fp, be the
result of a non-modular multiplication. Then r < p2 and

r = (r′ · 2n) + t ≡ (r′ · c) + t (mod p),

because 2n ≡ c (mod p). Applying this congruence recursively on r′ yields Algo-
rithm 5.10.

This algorithm was presented in 1992 [Cra92] and a correctness proof is given
in [MOV96]. Note that all modulo operations and divisions can be replaced by
bitwise AND operations and right shift operations, respectively, as explained in
Section 5.2.3. Aside from the conditioned while loops, the most expensive operation
is the multiplication in line 4, especially in larger fields.

5.2.6 Solinas Prime Number Reduction

This section will now describe a reduction algorithm presented in 1999 [Sol99],
which is based on Solinas prime numbers (also called Generalized Mersenne primes).
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Algorithm 5.10: Crandall prime number reduction.
Input: Integers x, n and c such that p = 2n − c is prime and c < 2W .
Output: r = x (mod p).

1 q ← x/2n.
2 r ← x (mod 2n).
3 while q > 0 do
4 t← c · q.
5 r ← r + (t (mod 2n)).
6 q ← t/2n.
7 while r ≥ p do
8 r ← r − p.
9 return x.

Similar to the reduction using Crandall numbers, this algorithm makes use of special
properties of a prime number. However, compared to the Crandall reduction, it needs
a substantial amount of precomputation, which will now be explained in detail.

A Solinas prime number (or Generalized Mersenne prime number) is a prime number
of the form

p = tn −

(
n−1∑
i=0

ci · ti
)

= tn − cn−1 · tn−1 − · · · − c0,

where ci ∈ {−1, 0, 1} for the use cases presented in this thesis. The idea of the fast
reduction method is based on the fact that the degree of p can be kept very low for
certain prime numbers in a specific base representation. For example, consider the
64-bit prime number p64 = 264 − 28 − 1. Then, by converting p64 from base 2 to
base 28, we have

p64 = 264 − 28 − 1 = (28)(64/8) − (28)(8/8) − (28)(0/8) = t8 − t− 1.

Consider now a prime number pt = td−cd−1 ·td−1−· · ·−c0 of degree d converted to
base t. The first step of the reduction algorithm is to generate the modular reduction
matrix X of pt, which is done by computing all residues of ti (mod pt), where
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d ≤ i < 2d. That is,

X =

 X0,0 · · · X0,d−1
... . . . ...

Xd−1,0 · · · Xd−1,d−1

 ,

where the matrix entries are defined as follows:

X0,j = cj for 0 ≤ j < d,

Xi,j =

{
Xi−1,d−1 · c0 if j = 0,

Xi−1,j−1 + (Xi−1,d−1 · cj) otherwise.

The matrix now contains the residues mentioned above, that is,

td+i ≡
d−1∑
j=0

Xi,j · tj (mod pt),

where 0 ≤ i < d, or, equivalently, td

...
t2d−1

 ≡ X

 1
...

td−1

 (mod pt).

Now, let r = (r2d−1 || r2d−2 || · · · || r0) < pt
2 be an integer which has to be reduced.

Note that r < pt
2 if r is the result of a multiplication of two integers smaller than pt.

Then

2d−1∑
i=0

ri · ti =
(
r0 r1 · · · rd−1

) 1
...

td−1

+
(
rd rd+1 · · · r2d−1

) td

...
t2d−1


≡
((
r0 r1 · · · rd−1

)
+
(
rd rd+1 · · · r2d−1

)
·X
) 1

...
td−1

 (mod pt).

Let

r′ =
(
r′0 r′1 · · · r′d−1

)
=
(
r0 r1 · · · rd−1

)
+
(
rd rd+1 · · · r2d−1

)
·X.
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Then
2d−1∑
i=0

ri · ti ≡
d−1∑
i=0

r′i · ti (mod pt).

Thus, r′ ≡ r (mod pt), and converting r′ back to base 2 gives the final result.

Most of the values, including the matrix, can be precomputed. However, in order to
find r′, a matrix multiplication with base-t values of r and the reduction matrix X
is necessary. This can be implemented in a more efficient way, which will now be
explained.

The matrix multiplication can be accelerated by making use of two properties. Firstly,
the number of entries of X is limited and, more importantly, relatively small, since
we aim for Solinas primes with a small degree d. This means that multiplications
can be replaced by a sequence of modular additions and subtractions. Secondly, the
matrix product is a row vector and can be written as a sum of row vectors representing
d-digit integer numbers. This method is illustrated in Algorithm 5.11 for modular
additions, and works analogously for the subtractions. Using this method and adding
S+ and S− to (rd−1 || rd−2 || · · · || r0) yields the final result r′ = r (mod pt).

Algorithm 5.11: Modular additions for Solinas prime reduction.
Input: Integer r = (r2d−1 || r2d−2 || · · · || r0) < pt

2, X .
Output: Sum S+ of modular additions.

1 S+ ← 0.
2 temp = (tempd−1 || tempd−2 || · · · || temp0)← 0.
3 while ∃Xi,j such that Xi,j > 0 do
4 for each column j of X do
5 if ∃Xi,j such that Xi,j > 0 then
6 i← min{k : Xk,j > 0}.
7 tempj ← rd+i.
8 Xi,j ← Xi,j − 1.
9 else

10 tempj ← 0.
11 S+ ← S+ + temp (mod pt).
12 return S+.

However, this calculation still includes two loops and needs a comparatively large
amount of operations. This can be improved by exploiting the fact that the positions
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of positive and negative entries of X are known beforehand and also fixed during
the precomputation. Moreover, note that the number of modular additions (and
subtractions) depends on the number of evaluations of the while loop in line 3. This
loop is executed exactly w+ times, where w+ is the largest column sum of positive
entries inX . For the subtractions, the decrement is replaced by an increment and thus
the loop is executed w− times, where −w− is the smallest column sum of negative
entries in X . For the following descriptions, w+ denotes the modular addition weight
and w− denotes the modular subtraction weight.

By considering these properties, the matrix X can be separated into a positive matrix
X+ and a negative matrix X−, containing all strictly positive entries and strictly
negative entries of X , respectively. Thus,

X+
i,j =

{
Xi,j if Xi,j > 0,

0 otherwise.

and

X−i,j =

{
Xi,j if Xi,j < 0,

0 otherwise.

Using the matrix X+ and the weight w+, the indices for the modular additions can
be precomputed by applying Algorithm 5.12. Again, the algorithm to compute the
indices for the modular subtractions is very similar and just replaces the decrement
in line 8 by an increment. The assignment in line 10 has no effect other than to
distinguish this entry from legit indices. If the index “−1” is found during the
reduction, the corresponding quantity of the number is 0, because no strictly positive
entry was found in X+.

Having computed the modular addition and subtraction matrices M+ and M−, the
implementation of the final reduction algorithm is straightforward and given in
Algorithm 5.13. By choosing the prime numbers carefully, all loops can be avoided,
which will be explained in the next chapter. Moreover, this algorithm is the only one
presented here which works exclusively with modular additions and subtractions.

Example for p64. Here, a short example for the 64-bit prime number p64 = 264 −
28− 1 will be given. Using the transformation to base t yields pt = t8− t− 1, where
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Algorithm 5.12: Modular addition matrix for Solinas prime reduction.
Input: X+, w+.
Output: Matrix M+ containing indices for modular additions.

1 for k ← 0 to w+ − 1 do
2 for j ← 0 to d− 1 do
3 i← 0.
4 while i < d and X+

i,j = 0 do
5 i← i+ 1.
6 if i < d then
7 M+k,j ← d+ i.
8 X+

i,j ← X+
i,j − 1.

9 else
10 M+k,j ← −1.
11 return M+.

t = 28. Calculating the residues of t15, t14, . . . , t8 (mod pt) results in the d × d
matrix X , where d = 8. Then, following holds for i = 0, 1, . . . , 7:

t8+i ≡
7∑
j=0

(Xi,j · tj) (mod pt).

Now, let r = (r15 || r14 || · · · || r0) be the result of a multiplication of two 64-bit
integers, where each ri is a 8-bit quantity. Then

r =
15∑
i=0

(ri · ti) ≡
7∑
i=0

(r′i · ti) (mod pt),

where (
r′0 r′1 · · · r′7

)
=
(
r0 r1 · · · r7

)
+
(
r8 r9 · · · r15

)
·X.

In order to avoid the matrix multiplications, the modular addition matrix M+ and
the modular subtraction matrix M− are precomputed using the algorithms described
above.
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Algorithm 5.13: Solinas reduction algorithm.
Input: Integer r = (r2d−1 || r2d−2 || · · · || r0) < pt

2, weights w+ and w−,
matrices M+ and M−.

Output: r′ = (r′d−1 || r′d−2 || · · · || r′0) = r (mod pt).
1 temp = (tempd−1 || tempd−2 || · · · || temp0)← 0.
2 r′ ← (rd−1 || rd−2 || · · · || r0).
3 for i← 0 to w+ − 1 do
4 for j ← 0 to d− 1 do
5 if M+i,j = −1 then
6 tempj ← 0.
7 else
8 tempj ← rM+i,j

.
9 r′ ← r′ + temp (mod pt).

10 for i← 0 to w− − 1 do
11 for j ← 0 to d− 1 do
12 if M−i,j = −1 then
13 tempj ← 0.
14 else
15 tempj ← rM−i,j

.
16 r′ ← r′ − temp (mod pt).
17 return r′.

Solinas primes for fast reductions are used in many different areas of cryptography.
For example, the NIST recommends to use prime numbers which fulfill the prop-
erties described above to implement modular arithmetic for elliptic curves [KR13].
Moreover, an elliptic curve presented in 2015 [Ham15] makes use of a Solinas prime.
The main difference between this prime and the primes suggested by the NIST is
that the prime number p = 2448 − 2224 − 1 used in this publication is of the special
form 2n − 2n/2 − 1, and the largest exponent, 448, is divided without remainder by
28, 32, and 56. This supports fast computations with a comparatively low amount
of indexing operations on 32-bit machines and on 64-bit machines. Moreover, the
modulus of a very recent proposal for a post-quantum secure key encapsulation
mechanism by the same author [Ham17] is also a Solinas prime number of the form
2n − 2n/2 − 1.
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Choosing prime numbers of this special form is, unfortunately, not possible for most
of the field sizes used in the new implementation of MiMC and GMiMC.

5.2.7 Modular Addition and Modular Subtraction Matrices
for Chosen Solinas Primes

Table 5.3 gives an overview of all the prime numbers used for MiMC and GMiMC
in the new implementation of ZKB++. Every prime number p listed here fulfills the
requirement gcd(p− 1, 3)

!
= 1.

Field size p t pt w+ w−
3 bits 23 − 2− 1 2 t3 − t− 1 3 0
4 bits 24 − 22 − 1 22 t2 − t− 1 3 0
16 bits 216 − 24 − 1 24 t4 − t− 1 3 0
32 bits 232 − 24 − 1 24 t8 − t− 1 3 0
32 bits 232 − 224 − 1 28 t4 − t3 − 1 5 0
64 bits 264 − 28 − 1 28 t8 − t− 1 3 0
136 bits 2136 − 28 − 1 28 t17 − t− 1 3 0
256 bits 2256 − 2184 + 232 + 1 28 t32 − t23 + t4 + 1 4 8
272 bits 2272 − 240 − 1 28 t34 − t5 − 1 3 0

Table 5.3: Prime numbers used for the implementation of MiMC and GMiMC.

The corresponding modular addition and modular subtraction matrices M+ and M−
are given below. In these matrices, the entry “−1” indicates that the value to be
added or subtracted has only zero bits at this position.

Matrices for p3 = 23 − 2− 1.

M+ =

 3 3 4
5 4 5
−1 5 −1


and

M− = N/A.
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Matrices for p4 = 24 − 22 − 1.

M+ =

 2 2
3 3
−1 3


and

M− = N/A.

Matrices for p16 = 216 − 24 − 1.

M+ =

 4 4 5 6
7 5 6 7
−1 7 −1 −1


and

M− = N/A.

Matrices for p32 = 232 − 24 − 1.

M+ =

 8 8 9 10 11 12 13 14
15 9 10 11 12 13 14 15
−1 15 −1 −1 −1 −1 −1 −1


and

M− = N/A.

Matrices for p′32 = 232 − 224 − 1.

M+ =


4 5 6 4
5 6 7 5
6 7 −1 6
7 −1 −1 7
−1 −1 −1 7


and

M− = N/A.

56



5 Modular Arithmetic in MiMC and GMiMC

Matrices for p64 = 264 − 28 − 1.

M+ =

 8 8 9 10 11 12 13 14
15 9 10 11 12 13 14 15
−1 15 −1 −1 −1 −1 −1 −1


and

M− = N/A.

Matrices for p136 = 2136 − 28 − 1.

M+ =
(
M+

(1) M+
(2)
)
,

where

M+
(1) =

17 17 18 19 20 21 22 23 24
33 18 19 20 21 22 23 24 25
−1 33 −1 −1 −1 −1 −1 −1 −1

 ,

M+
(2) =

25 26 27 28 29 30 31 32
26 27 28 29 30 31 32 33
−1 −1 −1 −1 −1 −1 −1 −1

 ,

and

M− = N/A.

Matrices for p256 = 2256 − 2184 + 232 + 1.

M+ =
(
M+

(1) M+
(2) M+

(3)
)
,

where

M+
(1) =


60 61 62 63 60 61 62 63
−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1

 ,
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M+
(2) =

−1 · · · −1
... . . . ...
−1 · · · −1


4×15

,

M+
(3) =


32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58
59 60 61 62 63 −1 −1 −1 −1

 ,

and

M− =
(
M−

(1) M−
(2) M−

(3)
)
,

where

M−
(1) =



32 33 34 35 32 33 34 35 36 37 38
41 42 43 44 36 37 38 39 40 41 42
50 51 52 53 41 42 43 44 45 46 47
59 60 61 62 45 46 47 48 49 50 51
−1 −1 −1 −1 50 51 52 53 54 55 56
−1 −1 −1 −1 54 55 56 57 58 59 60
−1 −1 −1 −1 59 60 61 62 63 −1 −1
−1 −1 −1 −1 63 −1 −1 −1 −1 −1 −1


,

M−
(2) =



39 40 41 42 43 44 45 46 47 48 49
43 44 45 46 47 48 49 50 51 52 53
48 49 50 51 52 53 54 55 56 57 58
52 53 54 55 56 57 58 59 60 61 62
57 58 59 60 61 62 63 −1 −1 −1 −1
61 62 63 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1


,
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M−
(3) =



50 51 52 53 54 55 56 57 58 59
54 55 56 57 58 59 60 61 62 63
59 60 61 62 63 −1 −1 −1 −1 −1
63 60 61 62 63 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1


.

Matrices for p272 = 2272 − 240 − 1.

M+ =
(
M+

(1) M+
(2) M+

(3)
)
,

where

M+
(1) =

34 35 36 37 38 34 35 36 37 38 39 40
63 64 65 66 67 39 40 41 42 43 44 45
−1 −1 −1 −1 −1 63 64 65 66 67 −1 −1

 ,

M+
(2) =

41 42 43 44 45 46 47 48 49 50 51
46 47 48 49 50 51 52 53 54 55 56
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

 ,

M+
(3) =

52 53 54 55 56 57 58 59 60 61 62
57 58 59 60 61 62 63 64 65 66 67
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

 ,

and

M− = N/A.

Intuitively, maximizing the new base t should yield the best performance, because
it means that fewer shift and indexing operations have to be performed in order to
change the base-t value of a number at a certain position. Yet, this is not always true.
For example, p′32 uses 8-bit quantities, whereas p32 uses 4-bit quantities. However,
the former also needs 5 modular additions, while the latter needs only 3. This makes
computations in Fp32 noticeably faster than computations in Fp′32 .
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A similar argument holds for field sizes, where operations in smaller fields are, in
general, faster. Nonetheless, modular multiplications in Fp256 are slower then those
in Fp272 . The reason is that, even though non-modular multiplications are faster for
256-bit values, Fp256 needs more modular additions and modular subtractions during
the reduction steps. So, when the number of additions and subtractions in a circuit is
not significantly higher than the number of multiplications (and if storage is not an
issue), it is better to choose Fp272 over Fp256 .

Another convenient property of most of these Solinas primes is that when represent-
ing them as a Crandall prime number 2n − c, then c is very close to a power of 2.
This means that the multiplications used in the Crandall reduction algorithm can
actually be implemented by using a shift operation together with one addition. The
impact of this optimization is, however, dependent on the underlying architecture
and on the compiler. On the tested machine (Intel i7-6700 CPU @ 3.40 GHz, GCC
compiler) there was no noticeable difference.

To conclude, prime numbers were chosen by trying to maximize t and, at the same
time, keep the number of modular additions, modular subtractions, and indexing
operations as low as possible.

5.3 Modular Multiplications in Binary Fields

Binary field multiplications make use of carry-less multiplications, hence they have to
be implemented differently. This section will describe multiplications and reductions
used for binary fields in GMiMC.

5.3.1 Basic Multiplication

In every reduction method described here, the multiplication result r of two polyno-
mials a, b ∈ F2n is first computed separately, making r a number of at most 2n− 1
bits.
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Polynomial Multiplication Using the CLMUL Instruction. The CLMUL (carry-
less multiplication) instruction is a CPU instruction for performing multiplications of
two polynomials of degree at most 63 and is supported by most modern architectures.
It is slightly faster than the standard multiplication instruction, and the fastest method
of multiplying two polynomials on the tested machine. However, for binary fields
with more than 64 bits, the instruction has to be applied within a word-wise method.
The only binary field with more than 64 bits used in this implementation of GMiMC
is F265 (note that F264 cannot be used, due to reasons described in Section 2.6.2). The
non-modular multiplication with operands in this field is shown in Algorithm 5.14,
where (r1||r0) is a 128-bit quantity. Most of the necessary operations for larger field
sizes up to 128 bits can be omitted in the 65-bit case, because both a[1] and b[1] only
store one bit for W = 64 and N = 2, and thus any polynomial multiplication of two
numbers using these values is the same as a normal multiplication with either 0 or 1.
This means that the CLMUL instruction, which would have to be called 4 times in
the general 2-word case, is only called once here.

Algorithm 5.14: Polynomial multiplication of two 65-bit values using the
CLMUL instruction, where W = 64 and N = 2.

Input: Binary polynomials a, b ∈ F265 .
Output: c = a · b.

1 (r1 || r0)← CLMUL(a[0], b[0]).
2 c[0]← r0.
3 c[1]← r1.
4 t← a[0] · b[1].
5 c[1]← c[1]⊕ t.
6 t← a[1] · b[0].
7 c[1]← c[1]⊕ t.
8 t← a[1] · b[1].
9 c[2]← t.

10 return c.

Polynomial Multiplication Using Windows of Width w. For architectures not
supporting the CLMUL instruction, a different method was implemented as an
alternative. This method multiplies the two polynomials in windows of width w,
where increasingw yields a faster computation at the cost of a larger storage overhead.
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The detailed approach is shown in Algorithm 5.15. The computation of T in the first
loop can be accelerated by adding b to previously computed results of Tt instead of
using a new multiplication for each value. A window width of w = 4 was chosen for
the binary fields in GMiMC.

Algorithm 5.15: Polynomial multiplication using windows of width w.
Input: Binary polynomials a and b using N words, window width w.
Output: c = (cN ′−1 || cN ′−2 || · · · || c0) = a · b.

1 foreach polynomial t of degree at most (w − 1) do
2 Tt ← b · t.
3 for i← ((W/w)− 1) to 0 do
4 for j ← 0 to N − 1 do
5 t← a[j]wi, where a[j]wi is the w-bit quantity starting at bit wi of a[j].

6 (cN ′−1 || cN ′−2 || · · · || cj)← (cN ′−1 || cN ′−2 || · · · || cj)⊕ Tt.
7 if i > 0 then
8 c← c · 2w.
9 return c.

5.3.2 Classical Reduction

After computing the (2n− 1)-bit product r of two n-bit polynomials in F2n , the next
step is to reduce r in order to obtain r′ = r (mod fn), where fn is the irreducible
polynomial of degree n (stored in n+ 1 bits) used for reduction. A classical method
for arbitrary irreducible polynomials is given in Algorithm 5.16 [HMV03], where
fn = 2n + m is the irreducible polynomial, and the set T , where Tk = 2k · m
for 0 ≤ k ≤ (W − 1), is precomputed. This is a bitwise reduction and is thus
rather expensive, especially when compared to the prime field reduction algorithms
discussed in Section 5.2.

5.3.3 Faster Word-Wise Reduction

If the irreducible polynomial can be freely chosen, the reduction algorithm can
be implemented using a significantly faster approach. In particular, trinomials and
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Algorithm 5.16: Bitwise reduction for arbitrary irreducible polynomials.
Input: Binary polynomial r of degree at most 2n− 2 and set of precomputed

values T , where Tk = 2k ·m for 0 ≤ k ≤ (W − 1).
Output: r′ = (r′N−1 || r′N−2 || · · · || r′0) = r (mod fn).

1 for i← (2n− 2) to n do
2 if ri = 1 then
3 j ← b(i− n)/W c.
4 k ← (i− n)− (W · j).
5 (r′N−1 || r′N−2 || · · · || r′j)← (r′N−1 || r′N−2 || · · · || r′j)⊕ Tk.
6 return r′.

pentanomials with middle terms close to each other allow for a comparatively fast
method [AM05].

For example, let f65 = 265 + 24 + 23 + 2 + 1 be the irreducible polynomial used for
computations in a 65-bit binary field. Given a (2n − 1)-bit product r of two n-bit
polynomials, following equations hold:

265 ≡ 24 + 23 + 2 + 1 (mod f65),

266 ≡ 25 + 24 + 22 + 2 (mod f65),

...
2128 ≡ 267 + 266 + 264 + 263 (mod f65).

These congruences allow to reduce all coefficients of 2128, 2127, . . . , 265 by adding
them consecutively to bits 4, 3, 1, and 0 of r. This method is illustrated in Figure 5.1,
where the 63 most significant bits of r[1] are reduced by adding them to r at the
corresponding degrees. The illustrated step is the second step of the algorithm, and
the first step is adding the least significant bit of r[2] to the correct positions of r.
Hence, reduction is performed one word at a time, starting from the most significant
word. The final result r′ can then be obtained by simply taking the 65 least significant
bits of r after adding the last word.

Irreducible Polynomials Chosen for GMiMC. Due to the reasons mentioned in
Section 2.6.2, suitable irreducible polynomials are easier to find than suitable Solinas
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r[2] = (r191 || . . . || r128) r[1] = (r127 || . . . || r64) r[0] = (r63 || . . . || r0)

rr = (r127 || . . . || r65)

rr = (r127 || . . . || r65)

rr = (r127 || . . . || r65)

rr = (r127 || . . . || r65)

4 bits←

3 bits←

1 bit←

Figure 5.1: Reduction of a single word in F265 .

prime numbers. Indeed, every irreducible trinomial and pentanomial can be used
for the reduction algorithm explained above. Table 5.4 gives a short overview of the
polynomials used in this implementation, and also shows the number of XOR and
shift operations needed for the reduction, where all operations are done word-wise.

Field size Irreducible polynomial # XORs # shifts
3 bits f(z) = z3 + z + 1 2 1
33 bits f(z) = z33 + z6 + z3 + z + 1 6 5
65 bits f(z) = z65 + z4 + z3 + z + 1 11 11

Table 5.4: Irreducible polynomials used for the implementation of binary field arithmetic in GMiMC.
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This chapter will now give an overview of the new implementation of ZKB++,
MiMC, and GMiMC.

6.1 Implementation Details

During the new implementation, focus was laid on multiple advantageous properties.
Some of them are shortly described here.

Minimizing Loop Iterations and Indexing Operations. Some of the algorithms
described in the previous chapter, in particular the algorithms used for classical
multi-precision multiplication and for the Solinas reduction, make use of various for
loops. These slow down the computation of the corresponding operation significantly
due to additional instructions necessary for the loop tests and the loop variable.
Therefore, loops were unrolled where possible.

Moreover, all indexing operations for the Solinas reduction algorithm are hard-coded,
as the reduction matrices are known beforehand. The number of these operations
was reduced by using built-in C++ functions such as memset(·) and memcpy(·),
and by making use of special properties of the prime numbers chosen for reduction.
This means that Algorithm 5.13 is actually implemented differently for every prime
number.

Easily Interchangeable Circuits. The previous implementations of Picnic-FS and
Picnic-UR are closely related to LowMC. In the new implementation, the initial
main focus was laid on clearly separating the signature protocol from any circuits
being used within the protocol. Hence, the proof system itself is stored in one file,
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whereas the circuit and all functionalities regarding the circuit are stored in an entirely
different file. This not only makes it easier to change independent sections of the
program, but more importantly it allows to replace the used circuit with a different
one by simply changing one single function. This has also been made possible by
merging both the prover and the verifier circuit into one single circuit, which calls
the appropriate functions (for the prover or for the verifier) depending on the current
state of the protocol. Moreover, all parts of the protocol which are not directly related
to the internal block cipher, e.g. preparing the shares for each Feistel branch, are
not part of the circuit itself, which makes the circuit function only contain the block
cipher encryption and nothing else.

Lightweight Implementation. The first version of the new implementation used
NTL (Number Theory Library) [Sho17] for all modular computations within MiMC
and GMiMC. Unfortunately, NTL does not support some of the reduction algorithms
described in Chapter 5, in particular not the methods used for special prime moduli
and irreducible polynomials of special form. Understandably, the library itself is also
relatively large and heavily contributes to the final size of the executable file.

For these reasons, a custom math library for calculations with big integer numbers
was written, and the main focus was laid on the performance of the reduction
algorithms. This divides the new implementation into three main parts: the protocol
itself, the circuit implementation, and the custom math library. All of them are clearly
separated into different files and classes.

Apart from built-in C++ functions, the only external library used is OpenSSL
[Ope18], which is needed for SHA-256, AES-128, and the generation of random
bytes. This results in a comparatively small executable file and makes it easier to
install ZKB++ on different environments.

Faster Squaring in ZKB++. When using ZKB++ with MiMC or GMiMC, all
multiplications are due to the permuting function f(x) = x3, which means that
half of the multiplications in the protocol are actually squarings. By using the gate
definitions from Section 3.2.1, ai = bi, where i refers to the share of party i and
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a = (a0 + a1 + a2) = (b0 + b1 + b2) = b. Hence,

ci = (ai · bi) + (ai′ · bi) + (ai · bi′) +Ri(m)−Ri′(m)

= (ai · bi) + t+ t+Ri(m)−Ri′(m),

where i′ and Ri(·) are defined as in Section 3.2.1, and t = (ai′ · bi) = (ai · bi′). This
method reduces the number of multiplications for the squaring from 9 to 6, and thus
reduces the total number of multiplications necessary for two multiplication gates
calculating f(x) = x3 from 18 to 15.

6.2 NTL vs. Custom Library

Using NTL, there were two main disadvantages. Firstly, NTL does not natively
support fast reductions modulo special prime moduli or irreducible polynomials
of special form. Secondly, the library uses its own data types to represent integer
numbers. This is not necessarily a disadvantage, but in the ZKB++ implementation
primitive data types like character pointers were needed for the final proof repre-
sentation. Therefore, conversions between the NTL data types and ordinary buffers
were required, which resulted in a significantly slower computation. Moreover, the
compiled executable file is rather large when using NTL, which may be an additional
drawback in restricted environments.

Due to these reasons, a custom library for handling modular computations had to be
written. Most methods described in Chapter 5 were implemented, in particular the
Solinas reductions for prime fields and the faster word-wise reductions for binary
fields. All algorithms in the new version operate on primitive data types, hence no
conversions are necessary.

Table 6.1 shows a comparison of modular additions and modular multiplications
using NTL and the custom library in prime fields of various sizes. The given times
represent the average execution time of 106 runs, and are purely for the specified
operation, thus conversion times are not included.

Modular multiplications in the custom library are especially slow in the 256-bit
prime field. The reason is the prime number chosen for this field. As shown in Sec-
tion 5.2.7, this number does not have the same advantageous properties of the other
prime numbers given in this section, in particular it results in comparatively many
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Field size
Operation

ModAdd (NTL) ModAdd (Custom) ModMul (NTL) ModMul (Custom)

16 bits 48 ns 8 ns 266 ns 14 ns
32 bits 47 ns 9 ns 267 ns 13 ns
64 bits 48 ns 9 ns 268 ns 19 ns
136 bits 50 ns 20 ns 403 ns 201 ns
256 bits 79 ns 33 ns 414 ns 1495 ns
272 bits 80 ns 49 ns 570 ns 319 ns

Table 6.1: Runtime comparison of modular additions and modular multiplications for various prime
fields, using NTL and the custom library.

modular additions and modular subtractions. Therefore, modular multiplications in
the specified 272-bit prime field are faster, even if the field itself is larger and field
elements need more words.

Note that in small fields, the custom library is much faster. However, the difference for
modular multiplications gets smaller with increasing field sizes. While the reductions
keep being faster than the reductions in NTL, the multiplications themselves are
slower in the custom library. The reason is that multiplications in the custom library
use O(n2) operations, whereas NTL uses the Karatsuba algorithm for comparatively
small values, which only needs O(nlog2(3)) operations (in both cases, n denotes the
number of digits).

The Karatsuba algorithm is shortly described in Section 7.1. However, it was not
implemented during the work for this thesis, because using smaller finite fields in
GMiMC proved to result in faster computations and smaller signatures.

Both the runtime of various instantiations of GMiMC and the corresponding proof
sizes are given in Table 6.3.

6.3 Prime Fields vs. Binary Fields

In contrast to GMiMC over prime fields, the implementation shows that for the tested
field sizes, using binary fields leads to slightly shorter execution times. Although
most of the operations are the same for both fields, the main differences lie in the
modular multiplication and in the random number generation.
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Modular Operations. For field sizes of up to 64 bits, the non-modular result of a
multiplication in a prime field can be calculated by using the native multiplication
instruction. In binary fields, the CLMUL instruction has to be used instead, which
is slightly faster than the native multiplication operator, as shown in Table 5.1. The
difference is also noticeable when comparing the execution time in a 64-bit prime
field with the execution time in a 65-bit binary field (a 64-bit binary field would not
result in a permutation for f(x) = x3), even though a word-wise multiplication has
to be performed for the 65-bit field, whereas the multiplication instruction is still
usable for 64 bits.

The reduction itself is also slightly faster in binary fields. This is due to the fact that
the reduction algorithm works with XOR and shift operations exclusively, and all
operations are word size operations, whereas for prime fields the reduction algorithm
may require to use lower quantities (e.g. 8-bit quantities) for the additions and also
uses if clauses. This is, however, heavily dependent on the ordering of the indices
used for the Solinas reduction algorithm.

Finally, additions and subtractions are faster in binary fields, where they can be
executed by simple XOR operations and no reductions are needed. Together with the
increased performance of multiplications, this makes computations in binary fields
more efficient.

Random Number Generation. During the computation of multiplication gates in
ZKB++, random field elements have to be used to maintain the zero-knowledge
property. In binary fields, every n-bit polynomial is an element of F2n , thus every
random n-bit quantity is guaranteed to be an element of F2n , which makes the
generation of additional random numbers unnecessary.

This is not the case for prime fields, where a random n-bit quantity might not be an
element of the respective n-bit prime field Fp. This event occurs with probability
2n−p
2n

= 1 − p
2n
≤ 1

2s
, where s denotes the number of leading ones in the binary

representation of the corresponding prime number p.

Let S be a stream of uniformly distributed bits. We want to make S as short as
possible, while at the same time containing enough bits to create all random numbers
as elements of the field. Let a sampling s(n) denote the process of selecting n
bits from S and let the random variable X represent the number of samplings
necessary in order to find a random number x ∈ Fp. Then the expected number

69



6 Implementation

of samplings required for one single random number is E(X), and the expected
number of samplings required for all random numbers of one party in one iteration
is m · E(X), where m denotes the number of multiplications in a single encryption
using MiMC or GMiMC. Furthermore,

E(X) =
∞∑
k=1

k ·
(

1− p

2n

)k−1
·
( p

2n

)
=
∞∑
k=1

k ·
(2n − p

2n

)k−1
·
( p

2n

)
=
∞∑
k=1

k ·
( 2n

2n − p

)
·
(2n − p

2n

)k
·
( p

2n

)
=
∞∑
k=1

k ·
(2n − p

2n

)k
·
( 2np

22n − 2np

)
=
∞∑
k=1

k ·
(2n − p

2n

)k
·
( p

2n − p

)
,

which is a geometric series with

n∑
k=1

a0 · qk · k = a0 ·
n · qn+2 − (n+ 1) · qn+1 + q

(q − 1)2
,

where a0 =
(

p
2n−p

)
and q =

(
2n−p
2n

)
< 1. Thus,

lim
n→∞

(n · qn+2) = 0,

lim
n→∞

((n+ 1) · qn+1) = 0,

and
∞∑
k=1

a0 · qk · k = a0 ·
q

(q − 1)2
.

This corresponds to the expected number of trials e needed for a success event of
a Bernoulli distributed random variable Y, where P[Y = 1] = p

2n
and e = 1

p/2n
=

2n

p
.
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For most of the Solinas prime numbers given in Section 5.2.7 and for suitable
Crandall prime numbers, this probability is relatively low, and thus most random
numbers do not need to be replaced by new ones. However, in small fields, this
probability is significantly larger and given the amount of random numbers needed,
many of them have to be replaced, which means that the pseudorandom number
generator is used more often.

Another approach would be to select more bits than needed for each random number
and to reduce the resulting number afterwards. For example, s = 32 bits could be
selected additionally to the bits needed for the field. However, this approach results
in a comparatively large amount of random bits needed.

The expected number of bits needed for both approaches in each prime field used for
MiMC and GMiMC is given in Table 6.2. In either case, though, the check whether
a random number is an element of a given prime field always has to be performed.

n p P[s(n) ∈ Fp] = p
2n

E(X) m d438 · 3 ·m · n · E(X)e 438 · 3 ·m · (n+ 32)
3 23 − 2− 1 0.6250 1.6 694 4377197 bits ≈ 534 KB 31917060 bits ≈ 3896 KB
4 24 − 22 − 1 0.6875 ≈ 1.4545 520 3975448 bits ≈ 485 KB 24598080 bits ≈ 3002 KB

16 216 − 24 − 1 ≈ 0.9961 ≈ 1.004 156 3280595 bits ≈ 400 KB 9839232 bits ≈ 1201 KB
32 232 − 24 − 1 ≈ 1 ≈ 1 126 5298049 bits ≈ 646 KB 10596096 bits ≈ 1293 KB
64 264 − 28 − 1 ≈ 1 ≈ 1 170 14296321 bits ≈ 1745 KB 21444480 bits ≈ 2617 KB
136 2136 − 28 − 1 ≈ 1 ≈ 1 330 58972321 bits ≈ 7198 KB 72848160 bits ≈ 8892 KB
256 2256 − 2184 + 232 + 1 ≈ 1 ≈ 1 324 108988417 bits ≈ 13304 KB 122611968 bits ≈ 14967 KB
272 2272 − 240 − 1 ≈ 1 ≈ 1 344 122948353 bits ≈ 15008 KB 137412864 bits ≈ 16774 KB

Table 6.2: Comparison of random sampling methods.

6.4 Detailed Timings

All benchmarks listed in this section, just as the benchmarks in Chapter 5, were
obtained using an Intel i7-6700 CPU @ 3.40 GHz. The implementation was compiled
with GCC 4.8.2, and the optimization option O2 was used. Moreover, the tested
machine has 64 GB of memory. For time measurements, various methods from the
std::chrono namespace were used, in particular high resolution clock::now().

The new implementation of ZKB++ was tested using MiMC and GMiMC, and by
trying different field sizes for both of them. All field sizes (and number of branches in
the case of GMiMC) were chosen such that the resulting block size is at least 256 bits,
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and preferably as close to it as possible. Solinas prime numbers given in Section 5.2.7
and irreducible polynomials given in Section 5.3.3 were used for prime fields and
binary fields, respectively. For small prime fields, where non-modular multiplication
results are less than 264, both the Barrett reduction and the native modulo operator
came very close to the Solinas reduction algorithm, and in some cases there was
not even a noticeable difference. However, when non-modular multiplication results
cannot be stored in a single 64-bit word anymore, the Solinas reduction algorithm
becomes much faster than all other tested methods.

The execution times of the implemented instantiations of MiMC and GMiMC are
given in Table 6.3. Each configuration was run 50 times, and the average execution
time was chosen. The number of iterations in ZKB++ was set to 438. This table
lists the times for distinct phases of the protocol:

GenSign. This is the amount of time it takes to generate memory buffers for
the view values, random tapes, and key shares. The generation of random tapes
and random key shares takes also place in this step.
Sign. This is the total execution time for the signing process, including the
time given for GenSign, the multi-party computation of the circuit, and the
generation of the final proof.
GenVerify. This is very similar to GenSign, but smaller buffers have to be
created here. For example, memory for only one view is needed. Moreover,
the generation of random tapes and random key shares is not necessary during
the verification process.
Verify. Similar to Sign, this includes both the time given for GenVerify and the
subsequent circuit computation, together with the evaluation of the final result.
Note that execution times are shorter here, because the computation does not
have to be performed for all three views.
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Scheme (n, t, r) GenSign Sign GenVerify Verify υ |σ|
MiMC (256, 1, 162) 1.29 ms 441.03 ms 0.32 ms 168.87 ms 83456 bits ≈ 4512 KB

(272, 1, 172) 1.43 ms 185.14 ms 0.38 ms 89.52 ms 94112 bits ≈ 5084 KB
GMiMCerf (Fp) (3, 86, 347) 0.99 ms 157.73 ms 0.26 ms 107.07 ms 2082 bits ≈ 161 KB

(4, 64, 260) 0.89 ms 94.54 ms 0.23 ms 62.77 ms 2080 bits ≈ 161 KB
(16, 16, 78) 0.62 ms 17.84 ms 0.13 ms 10.81 ms 2496 bits ≈ 183 KB
(32, 8, 63) 0.59 ms 12.97 ms 0.13 ms 7.65 ms 4032 bits ≈ 265 KB
(64, 4, 85) 0.63 ms 22.06 ms 0.14 ms 11.94 ms 10880 bits ≈ 631 KB

(136, 2, 165) 0.98 ms 115.17 ms 0.29 ms 55.64 ms 44880 bits ≈ 2452 KB
GMiMCerf (F2n) (3, 86, 347) 1.00 ms 127.79 ms 0.25 ms 92.26 ms 2082 bits ≈ 161 KB

(33, 8, 64) 0.60 ms 12.19 ms 0.13 ms 7.51 ms 4224 bits ≈ 277 KB
(65, 4, 86) 0.76 ms 21.93 ms 0.19 ms 13.35 ms 11180 bits ≈ 648 KB

GMiMCcrf (Fp) (3, 86, 516) 1.14 ms 232.31 ms 0.30 ms 167.83 ms 3096 bits ≈ 216 KB
(4, 64, 386) 1.03 ms 141.99 ms 0.26 ms 102.23 ms 3088 bits ≈ 215 KB
(16, 16, 113) 0.68 ms 25.04 ms 0.16 ms 15.68 ms 3616 bits ≈ 243 KB
(32, 8, 85) 0.63 ms 17.04 ms 0.14 ms 10.11 ms 5440 bits ≈ 341 KB
(64, 4, 101) 0.66 ms 26.73 ms 0.14 ms 14.59 ms 12928 bits ≈ 741 KB
(136, 2, 180) 1.02 ms 125.25 ms 0.30 ms 60.47 ms 48960 bits ≈ 2670 KB

GMiMCcrf (F2n) (3, 86, 516) 1.16 ms 191.72 ms 0.29 ms 144.51 ms 3096 bits ≈ 216 KB
(33, 8, 86) 0.63 ms 15.77 ms 0.14 ms 9.81 ms 5676 bits ≈ 354 KB
(65, 4, 103) 0.82 ms 26.26 ms 0.20 ms 16.23 ms 13390 bits ≈ 766 KB

Table 6.3: Execution times and proof sizes of MiMC and GMiMCerf in the ZKB++ proof system
using the Fiat-Shamir transform, where υ denotes the view size and |σ| denotes the proof
size. As a comparison, the numbers for the same configurations using GMiMCcrf are also
included.

To better understand the effects of different field sizes on the final computation
time, the following diagrams show the total amount of instructions spent in various
functions for different field sizes.

Random Number Generation Cost for Various Field Sizes. As further discussed
in Section 6.3, random number generation is faster in binary fields, especially in
smaller fields. This is shown in Figure 6.1, and the difference is most noticeable in
the 3-bit field. The reason is that in a 3-bit prime field, many randomly generated
3-bit values are greater than or equal to the respective prime number and thus need
to be replaced by new random values. In larger prime fields, most generated values
are already in the field. However, the random number generation is still slower than
in binary fields due to the if clauses used to check whether a random value is an
element of a field.
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Figure 6.1: Total cost of random number generation for various field sizes.

Addition Cost for Various Field Sizes. As discussed in Chapter 5, additions are
XOR operations in binary fields and thus cheaper than in prime fields, because no if
clauses are needed. This is reflected in Figure 6.2, where additions in binary fields
are clearly faster than additions in prime fields of similar size. It can also be seen that
these operations are costly in small fields in general, because many operations are
needed in these fields. The reason is that only a low number of bits can be processed
during each CPU instruction, and thus more CPU instructions are needed to process
the same amount of bits. This is directly related to the number of branches and
rounds of the GMiMC Feistel network, both of which increase with smaller field
sizes. However, additions are also costly in rather large fields, mainly because they
cannot be replaced by single CPU instructions.
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Figure 6.2: Total cost of additions for various field sizes.

Multiplication Cost for Various Field Sizes. Note that in each round, the round
function f(x) = x3 is executed exactly once, regardless of the field size. Thus,
the total cost for multiplications is mainly dependent on the number of rounds
used within the cipher. This means that, in contrast to the cost for additions, the
cost for multiplications does not change too much for fields up to a certain size.
However, the cost starts to become substantial with larger fields, where the non-
modular multiplication cannot be replaced by a single CPU instruction anymore.
This behavior is reflected in Figure 6.3.

Finally, Figure 6.4 shows the different configurations of MiMC and GMiMCerf , and
the resulting timings and proof sizes when using them in the context of Picnic-FS.
Small proof sizes can be achieved by using smaller fields, where a field size of 3
bits is the optimum if the smallest proof size is desired. However, this also means
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Figure 6.3: Total cost of multiplications for various field sizes.

that only a small number of bits can be processed during each computation, which
increases the runtime of the procedure.

Using larger fields, it can be seen that the respective view sizes (and with them
also the proof sizes) begin to increase rather quickly. This means that the buffers
for the views need to be larger, thus requiring a noticeably longer generation time.
Furthermore, for both very small and very large fields, the high number of block
cipher rounds results in a higher computational cost, partly due to the larger amount
of random values needed for the multiplications.

Comparing MiMC with GMiMC makes clear that GMiMC is the better choice for
both a much faster computation and a significantly smaller proof size. It can also be
seen that, unsurprisingly, GMiMCerf is a better choice than GMiMCcrf , which is
slightly slower due to requiring more block cipher rounds.
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Figure 6.4: Execution times and proof sizes for configurations from Table 6.3. Numbers for
GMiMCcrf are not included in this plot.

Good trade-offs according to these measurements seem to be GMiMCerf using a 16-
bit prime field and GMiMCerf using a 33-bit binary field, where both the execution
time and the final proof size can be kept relatively low.

Using similarly sized binary fields tends to be faster than using prime fields of order
< 264, as can be seen in the benchmark. The main reasons are that in binary fields
no if clauses have to be used for modular additions and multiplications, and the
cost for generating random values is also slightly smaller, as further explained in
Section 6.4.
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7 Future Work

This chapter discusses some topics, which may allow to increase the performance of
the current implementation in specific scenarios.

7.1 Karatsuba Multiplication for Large Fields

The current implementation uses the same word-wise multiplication algorithm for
every field size. This algorithm needs O(N2) operations, where N denotes the
number of words needed for a field element. As seen in Section 6.2, using a different
non-modular multiplication method, such as the Karatsuba algorithm published in
1962 [KO62], is advantageous for larger fields.

The Karatsuba algorithm is a divide and conquer approach which reduces the number
of operations to O(N log2(3)). Let a = (a1 · 2l) + a0 and b = (b1 · 2l) + b0 be two
2l-bit integer numbers. Then

a · b = (a12
l + a0) · (b12l + b0)

= a1 · b1 · 22l + ((a0 + a1) · (b0 + b1)− (a1 · b1)− (a0 · b0)) · 2l + (a0 · b0).

This method results in 3 multiplications of l-bit integers, 2 additions, and 2 subtrac-
tions. In larger fields, the cost of the additions and subtractions is outweighed by the
cost of the multiplications. The Karatsuba algorithm is applied until the operands can
be stored in CPU words, followed by native methods to finalize the multiplication.
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7.2 Montgomery Multiplication without
Conversions

As further explained in Section 5.2.4 and shown in Table 5.2, the Montgomery
method is not suitable in the classic setting, that is, when for every multiplication
both operands need to be transformed into the Montgomery domain and then back to
the previous domain after multiplying both numbers. With this method, the cost for
the large amount of conversions is too high.

However, it may be possible to perform all computations in the Montgomery domain
without using any conversions. For example, the private key x and the key of the
underlying block cipher encryption in ZKB++ can be understood as values already in
the Montgomery domain. This is possible, because both a value a and its Montgomery
representation a′ can be represented by the same number of bits. Of course, this
means that the resulting public key f(x) = y is also a value in the Montgomery
domain.

The same method can be applied to the random values sampled during the ZKB++
protocol, where the conversion to the Montgomery domain can be omitted and each
value can be used directly instead.

7.3 Computation of Multiple Field Values

The current implementation computes the field values for each addition and multipli-
cation consecutively. This is also part of the reason for which ZKB++ in smaller
fields is generally slower, because less bits can be processed in each step.

There may be a possibility of computing multiple field values at once in smaller fields.
In particular, this method could be applied to binary fields, where additions and
subtractions are XOR operations and do not need carry or borrow values. Especially
in the beginning of a circuit based on a Feistel network, where the last share for each
branch value needs to be calculated, this can be done all at once with a single XOR
operation instead of handling each branch separately.
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7.4 Lazy Reductions for Small Fields

Note that reductions are applied after every operation, regardless of the number
of bits of the result. For example, in a t-branch Feistel network using GMiMCcrf ,
t − 2 consecutive additions are needed for the branch sum in the round function.
If t = 16 and n = 256, where n denotes the block size, the field size is 16 bits.
This means that t− 2 = 14 additions are applied, which add at most 14 bits to the
16-bit value of the initial branch when not using any reductions. Note that the Solinas
reduction algorithm works for every positive value smaller than p2, where p is the
16-bit prime number for this field. By adding 14 bits, the result is a 30-bit number,
and the reduction algorithm can obviously be applied.

By using this method, the 14 if clauses and at most 14 subtractions for the calcu-
lation of the branch sum in GMiMCcrf can be avoided, and they are replaced by a
single Solinas reduction. This optimization is only advantageous when using prime
fields, because in binary fields the additions are simple XOR operations and already
comparatively cheap.

The situation is different in GMiMCerf , where there is not a comparatively large
amount of consecutive additions in a single Feistel branch. The round function needs
two additions, but two distinct if clauses and their subtractions are probably faster
than a single Solinas reduction. However, it may be possible to let the number of
bits increase during multiple rounds. For example, in GMiMCerf with 16 branches,
the last branch X15 becomes the branch X14 in the next round after one addition,
and then the branch X13 after another addition. Hence, the values for most of the
branches only need to be reduced after ≈ 16 rounds, which again helps to avoid a
large number of if clauses.
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8 Conclusion

With fully functional quantum computers, most of the cryptographic signature pro-
tocols used in practice today would be severely broken. Although building such
devices might still take some time, the search for post-quantum secure solutions has
already begun.

One example of such a solution, ZKB++ and the resulting signature scheme, has
been explained in detail in this thesis. Focus was laid on the protocol definition, on
the security of the protocol, and on the choice of the circuit over which the protocol
is executed. The latter resulted in an analysis comparing various block ciphers, most
notably the GMiMC family of block ciphers. Unfortunately, the proof sizes could
not be made smaller and LowMC is still the recommended choice for the protocol.
However, various faster reduction methods, such as the Solinas prime reduction, and
other performance improvements were implemented in order to optimize GMiMC
itself significantly. These improvements are shown in the second main part of the
thesis, and detailed comparisons describing the performance differences between
various methods are given.

In the final part, new methods to improve the current implementation are suggested.
Of all these methods, the Lazy Reduction approach would probably result in the most
noticeable performance improvement and thus represents an attractive addition for
future versions of the block cipher implementation.

In conclusion, we can say that finding new post-quantum secure cryptographic
protocols and optimizing them is of major interest, mainly because they need to be
ready and sufficiently studied when quantum computers finally become available.
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