
Johannes Edelsbrunner, Dipl.Ing.

Domain Specific Methods for Procedural
Modeling of Historical Architecture

Doctoral Thesis

to achieve the university degree of

Doctor of Philosophy

PhD degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Priv.-Doz. Dipl.-Inform. Dr.-Ing. Sven Havemann

Co-Supervisor

Assoc.-Prof. Priv.-Doz. Ph.D. M.Eng. Alexei Sourin

Institute of Computer Graphics and Knowledge Visualisation
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolf-Dietrich Fellner

Graz, February 2018

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated all
material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
doctoral thesis.

Date Signature

ii

Abstract

This thesis is concerned with the question of how to efficiently model and
represent historic buildings in the computer. Since detailed 3D modeling can
often require considerable amounts of effort, automation is a natural goal to
strive for. This automation can be provided by procedural modeling. Common
procedural modeling techniques excel at the generation of a vast amount of
simple buildings for entire virtual cities. While simple box-shaped buildings
can be easily described, for more complex buildings such as complex historic
buildings procedural techniques can be used only sparely.

Virtually generated buildings and cities are increasingly demanded by virtual
worlds, movies, and video games. Modeling them in detail requires a huge
amount of resources and historic buildings are one part that is not well cov-
ered today. Historic buildings have different parts that need different modeling
techniques.

This thesis investigates some of those parts and tries to find new answers on
how to model them procedurally. The introduced modeling techniques comprise
a technique to model complex roof landscapes of historic cities, a technique to
procedurally model the geometry of round building parts, and a technique to
capture the forms of ornamental decorations in historic buildings. Further it
compares domain specific methods from software design to procedural modeling
techniques and draws comparisons there. The basis for all the research forms a
common programming language that is designed for procedural modeling.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1

1.2. Why Procedural Modeling? . 4

1.3. Outline . 6

2. Procedural Modeling of Architecture 7
2.1. Introduction to Procedural Modeling 7

2.2. Survey of important existing Works for Architecture 8

2.2.1. Procedural Modeling of Cities 8

2.2.2. Instant Architecture . 11

2.2.3. Procedural Modeling of Buildings 12

2.2.4. Advanced Procedural Modeling of Architecture 14

2.2.5. Shape Grammars on Convex Polyhedra 16

2.2.6. Procedural Architecture using Deformation-Aware Split
Grammars . 18

2.2.7. Generalized Use of Non-Terminal Symbols for Procedural
Modeling . 20

2.2.8. Component-Based Modeling of Complete Buildings 21

2.2.9. Creating Procedural Window Building Blocks using the
Generative Fact Labeling Method 22

2.3. Restrictions and Room for further Research 24

3. Research Hypothesis 27
3.1. Deconstructing Architectural Models into Domain Problems 27

3.2. Unsolved Problem Domains . 28

3.2.1. Roofs . 29

3.2.2. Round Building Geometry 30

3.2.3. Ornamental Forms . 32

3.3. Guiding Hypotheses . 34

v

Contents

4. Domain Specific Languages 35
4.1. Domain Specific Languages in general 36

4.2. Comparison to General Purpose Languages 37

4.2.1. Advantages of DSLs over General Purpose Languages . . . 37

4.2.2. Disadvantages of DSLs compared to General Purpose Lan-
guages . 39

4.3. Major Categories of DSLs . 40

4.3.1. Internal DSLs . 40

4.3.2. External DSLs . 42

5. Case Study: Constructive Roofs from Solid Building Primitives 43
5.1. Introduction . 43

5.2. Related Work . 47

5.3. Solid Building Primitives . 50

5.3.1. Basic Components . 51

5.3.2. Parametrized Sides and Solids 51

5.3.3. Automatic Generation of Sides for Solids 54

5.3.4. Automatic Trimming of Solids 55

5.3.5. Roof Shapes . 56

5.4. Specification of the Building . 57

5.4.1. Structure of Specification . 57

5.4.2. Geometry Operators . 59

5.5. Implementation . 59

5.5.1. Double-covered Areas . 59

5.5.2. Organization of the Components 60

5.5.3. Trimming . 61

5.5.4. Geometry Extraction . 61

5.5.5. Processing . 61

5.6. Results and Applications . 64

5.7. Conclusion . 65

5.8. Future Work . 70

6. Case Study: Procedural Modeling of Architecture with Round Geometry 71
6.1. Introduction . 71

6.2. Related Work . 74

6.3. Round Geometry in Procedural Modeling and our Approach . . . 76

6.3.1. Existing Approaches . 76

6.3.2. Our Approach of Custom Coordinate Systems 78

vi

Contents

6.4. Common Procedural Modeling Systems and Our Proposed System 79

6.4.1. Existing Approaches . 79

6.4.2. Our Procedural Modeling of Round Geometry 80

6.5. Workflow . 85

6.6. Further Methods . 86

6.6.1. Automatic Generation of Coordinate Systems 86

6.6.2. Customizable and Reusable Modules 87

6.6.3. High-level Geometry Specifications 87

6.7. Implementation . 91

6.8. Limitations . 92

6.8.1. Solid and Mesh Limitations 92

6.8.2. Performance . 93

6.8.3. Modeling Edge Decorations 93

6.9. Results and Applications . 94

6.9.1. Castle Wall . 94

6.9.2. Neuschwanstein Castle Towers 95

6.9.3. Gangway . 95

6.10. Conclusion . 95

6.11. Future Work . 97

6.11.1. Profiles and Extrusions . 97

6.11.2. Parametric Surfaces . 97

6.11.3. Ornaments . 98

6.11.4. Mechanical parts . 98

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid
Curves 99
7.1. Introduction . 99

7.1.1. Piecewise Clothoid Curves as superior Alternative 101

7.1.2. Contribution . 101

7.1.3. Benefit . 102

7.2. Related Work . 102

7.3. Computing Piecewise Clothoid Curves 104

7.3.1. Discrete PCC Curves . 104

7.3.2. Iterative Algorithm . 104

7.3.3. Point Positioning . 105

7.3.4. Properties . 107

7.4. Constraints on Tangents and Curvature 109

7.4.1. Tangent Constraints . 109

7.4.2. Curvature Constraints . 109

vii

Contents

7.4.3. Restoring G2 Continuity for collinear Tangents 110

7.4.4. Direct Curvature Control . 112

7.5. Curvature Blending and Clothoid Splines 112

7.5.1. Eliminating Curvature Spikes 112

7.5.2. Clothoid Splines: Approaching the Limit 113

7.6. A physical Interpretation of Clothoids 113

7.6.1. Analytical Solution for Infinite Rod Lengths 115

7.7. Comparison with B-spline Curves 117

7.8. Results and Applications . 119

7.8.1. Interactive Shape Design with PCCs 119

7.8.2. Curve Design Rules for PCCs 119

7.8.3. Computing a PCC for a sampled Input Curve 121

7.9. Conclusion . 123

7.10. Future Work . 124

8. Evaluation of the Techniques 125
8.1. Modeling Capabilities . 125

8.2. Used Domain Specific Methods . 128

8.3. Coded Representation . 130

8.4. Insights . 130

8.4.1. Creating a Domain Specific Method for a Modeling Domain 130

8.4.2. A common Language . 134

9. Conclusion 139
9.1. Contribution . 139

9.2. Benefit . 140

9.3. Validation of Research Hypothesis 142

9.4. Publications . 143

10.Future Work 145
10.1. Procedural Modeling of Interiors of Buildings 145

10.2. Highly detailed Procedural Modeling 146

10.3. Extension of Procedural Modeling to Construction Parts 147

A. Code for Chapter 5 151

B. Code for Chapter 6 153

Bibliography 157

viii

1. Introduction

1.1. Motivation

In computer graphics the generation of 3D models of buildings is an ever present
topic. For virtual cities or virtual worlds in general, buildings are an essential
part. And usually, the bigger the virtual world, the more buildings have to be
generated. This means that more and more artists have to be employed to model
these huge worlds.

This is where Procedural Form Fodeling (or in short Procedural Modeling) comes into
play. Procedural Modeling enables the generation of 3D models via computer
programs. Past works in this field have already achieved to generate big cities
with an astonishing amount of buildings. The major advantage of Procedural
Modeling is that repeating forms/arrangements/patterns can be represented in a
computer program, and then be instantiated manifold in a scene. Many box-based
houses and skyscrapers are already reproducible with a lot of detail (see Figure
1.1). However, the methods have limitations when it comes to the generation of
more complex buildings.

One category that is hard to model are complex historical buildings (see Figure
1.2). There is a wide variety of historical architectural styles, and almost all of
them have rules that guide the arrangement of architectural elements. These
rules are often concerned with repetition and symmetry, which makes these
buildings ideal candidates for Procedural Modeling to reproduce. Their more
complex shapes, compared to standard box-based houses and skyscrapers, are
more difficult to cover with existing techniques.

This motivation leads to the fundamental research question in this thesis:

What can be novel techniques that allow complex historical architecture to be procedurally
modeled in the computer?

1

1. Introduction

Figure 1.1.: Architecture generated with existing split grammar approaches. Images taken from
[96, 65, 77].

2

1.1. Motivation

(a) St. Peter’s Basilica (b) Karlskirche

(c) Neuschwanstein Castle (d) Leaning tower
of Pisa

(e) Pantheon (f) Gate of Honour in
Versailles

(g) Palace of Versailles (h) Aerial view of Venice

Figure 1.2.: Complex historic architecture. Many parts of those buildings cannot be modeled with
existing procedural modeling techniques. Images taken from [70, 54, 95, 17, 91, 22, 89]
and c©2018 Google, Map data c©2018 Google.

3

1. Introduction

1.2. Why Procedural Modeling?

Since nowadays the geometry and color information of buildings can be scanned
with many different methods, the question arises why buildings and entire cities
are not simply scanned to be brought to life in the computer? In fact, this is
already done by mapping applications like google maps. A scan of a building
or a city usually results in a triangle mesh with corresponding textures. But this
triangle mesh does not have any semantics. This means it has no information
where a door, a window, or even a building is in the whole model.

Semantics in 3D Models

The study of semantics is in general concerned with the meaning of things. In
the context of 3D modeling this could be the meaning of different parts of a 3D
model. Without semantics a 3D model is only a form - a mesh, a collection of
primitives, or a set of equations describing form - but different parts of a model
cannot be identified, queried, or interacted with in a meaningful way. Elements
of a 3D building model such as doors, walls, and windows might be visually
recognizable by humans, but not by the computer when there is no semantic
information present. This limits the set of use-cases for models without semantic
information. For example, in a semantic 3D model doors can be replaced by other
doors, and windows can be replaced by other windows - or possibly walls.

The semantic model can also capture the construction information for a building.
In order to plan, organize, and construct a building this information is critical.
Based on this information plans and extrusion plans for a building can be
generated, semantic building models can be queried for parts such as number
and location of windows, or simulations and optimizations for factors like heat
distribution can be run.

In contrast to a scan of a building, a procedural model can now provide and
generate this semantic information through the execution of its program or rule
set.

4

1.2. Why Procedural Modeling?

Procedural Modeling as a Method to create 3D Models

Procedural Modeling in general describes a wide field of techniques that create
3D models from some form of program or rule set. The creation of a Procedural
Model is not without cost. Usually there is much more effort involved in creating
the procedural model compared to simply modeling the object with a standard
3D modeling program. The additional effort pays off when the model needs to
be modified later. Since procedural models are generated from a program or rule
set, those can be parameterized, and by providing different parameters, different
manifestations of the same model can be generated.

This brings a lot of flexibility to a model that is generated procedurally. Most
traditionally modeled models consist only of the geometry in form of a triangle
mesh and are often impossible to modify sufficiently when requirements change.
But besides flexibility this also allows to instantiate different versions of the same
model (with different parameters) multiple times. This enables the generation
of vast virtual worlds since buildings in one city (or world) usually share many
commonalities between them, while each building might still be unique and
therefore cannot be a simple copy of some pre-modeled triangle mesh.

Combining Procedural Modeling with other Methods

So far, the reader might get the impression that the choice of Procedural Mod-
eling versus any other modeling method is an exclusive one. However, this is
not the case. Procedural Modeling can be combined with many other methods.
For example, a triangle mesh can be created by a 3D scan of a building, and
special algorithms can be used to infer parameters for an existing procedural
model that describes general buildings. With these parameters the procedural
model generates a 3D model that resembles the scan up to a certain accuracy.
With the added benefit of being able to generate all the valuable semantic infor-
mation, and having a modifiable model that can be changed according to given
requirements.

5

1. Introduction

1.3. Outline

The aim of this thesis is now to investigate various existing procedural modeling
systems, their design, what can be modeled with them, and what is still missing
for procedural modeling of different domains of historical buildings.

Based on the missing capabilities then, new domain specific methods are devel-
oped that try to fill the gaps that previous techniques left.

Chapter 2 will give an overview of existing research for procedural modeling.
Various papers will be examined and methods with which they produce models
will be highlighted. Then shortcomings in the context of modeling historical
architecture will be illustrated.

Chapter 3 then identifies key areas that could be improved and develops a plan
to solve some of the shortcomings from the previous chapter.

Chapter 4 will be a short prerequisite, giving an introduction into domain specific
languages and their usage in software design. This will later serve to analyze the
different techniques.

Chapters 5, 6, and 7 then present case studies of novel work that has been done.
The case studies show how domain specific procedural approaches can be used
to model parts of historic buildings.

Chapter 8 will give an evaluation of the newly presented modeling methods and
show what parts of historic buildings can be procedurally modeled with them.
It will also analyze further properties of the methods and give insights into the
creation of procedural methods for modeling domains.

Chapter 9 will wrap up and show contribution, benefit, and validation of the
presented new methods.

The closing Chapter 10 will finish with an outlook on possible future work.

6

2. Procedural Modeling of
Architecture

2.1. Introduction to Procedural Modeling

Procedural modeling promises to ease the creation of 3D models by automating
the modeling process.

Many 3D models are traditionally made by artists using advanced graphical
3D software by manually modeling the geometry. This allows the artist a high
level of control to instantly see the result of the modeling operations that are
performed.

Procedural modeling on the other hand is often less straight-forward. It is a wide
field that uses a variety of techniques to describe and generate 3D models. For
example, scripting languages, or special visual procedural modeling and editing
tools. These techniques can require special knowledge, time and effort to learn
them, and are not always very easy to use or do not give immediate and easy to
interpret feedback. Also, the needed developing effort for specialized procedural
modeling tools can be substantial.

But procedural modeling brings one fundamental concept of computer science
into 3D modeling which is not yet covered by traditional modeling tools in its
full extent: automation.

The fine grained control for the creation of 3D models of graphical 3D modeling
software is unparalleled by procedural modeling systems. But what if variations
of a model have to be created dozens or thousands of times? Procedural modeling
allows the generation of countless buildings for whole cities for movies, games,
or urban planning. Even whole universes of generated planets including their
environments for video games (for example in the case of the recently released
video game ’No Man’s Sky’).

7

2. Procedural Modeling of Architecture

Whereas traditional modeling is mostly concerned with the final shape of an object
that the artist creates, procedural modeling might also be concerned with, or even
need, the information about the inner structure of the object, the dependencies
of its various parts, or the blueprint that describes the way the object is built.
This information allows the definition of parameters that can influence parts or
dimensions of the object, and with these parameters the procedural system is
able to generate variations of the object.

How the procedural modeling system is designed is heavily dependent on the
kind of objects that should be generated (the domain). Different systems have
different advantages and disadvantages and are suited better or worse for a
particular domain.

2.2. Survey of important existing Works for
Architecture

This section will give an overview of some of the exiting and most important
works in the field of procedural modeling of architecture.

2.2.1. Procedural Modeling of Cities

In their paper Procedural Modeling of Cities [69], Parish and Müller present a
system for modeling cities where extended urban areas may be generated from
minimal input data. The problems associated with city modeling in computer
graphics arise from the huge amount of geometry required, making it unfeasible
to consider modeling them manually. However, it is also true that urban environ-
ments generally develop according to systems of clearly observable rules, such
as those governing the placement of buildings and transport networks (roads,
highways and the like). This means that cities are ideally suited as subjects for
procedural modeling. Parish and Müller observe that placement of streets and
highways tend to arise out of the population density and local environmental
factors, as well as deliberate planning to a set pattern. Placement of buildings
occurs in accordance with considerations as to the aesthetics of the building,
the historical style of the area and the statutory requirements set by the city for
buildings in that particular area.

8

2.2. Survey of important existing Works for Architecture

Figure 2.1.: Paper: Procedural Modeling of Cities [69]

Their system is mostly based on L-Systems, an older technique already used
in [72, 60, 73]. First, they use different input image maps (like land and water
boundaries, population density). Then they generate a system of highways that
adapts to the requirements of to these maps. Streets are then generated via an
L-System in the regions bounded by the highways. The streets again partition
the space into blocks, where then the buildings are generated via a different
L-System.

The different stages in detail:

Input Data As input data they do not need aerial images of streets or build-
ings, but only use different image maps. They have maps for geographical data
such as elevation and geographical type (e.g. land, water, vegetation, etc.) and
sociostatistical data such as population density, zone type (e.g. residential area,
commercial area, etc.), street patterns (e.g. rectangular, radial, etc.), and maximum
building height. From this input data, an infinite amount of large-scale cities can
be produced.

Streets For the streets they distinguish two types: regular streets and highways.
Highways connect areas with high population density globally, and streets then
span the areas between highways locally. The highways are generated by an

9

2. Procedural Modeling of Architecture

L-System which scans a density input map for high density areas, and orients the
highways to these areas. After the highways are generated, an L-System generates
streets that cover the areas between highways according to local population
density, and ensure that everywhere exists access to highways. If a street leads
into a water area or a park, local modifications can be made. They use self-
sensitive L-Systems that allow the branches of the L-System to grow together,
which is essential for the street network. This changes the created topology of the
L-System from tree-like to net-like.

For the pattern of the streets they provide four different rules that can be chosen:

• Basic: The streets simply follow population density.
• New York: The streets follow a rectangular grid aligned to a specific direction.
• Paris: The streets follow radial tracks around a center.
• San Francisco: The streets follow the shallowest elevation, connect by shorter

streets that follow the steepest elevation.

Building lots The street network partitions an area into a multitude of blocks.
These blocks are then further subdivided into building lots, until their area is
smaller than a user-defined threshold. Only convex lots are generated, and lots
which are too small or do not touch a street are removed.

Building geometry In every lot, one building is created. The building geometry
is created via a different L-System that takes an arbitrary ground plan and
then performs these operations on it: transformation, extrusion, branching, and
termination. The system also uses pre-build geometry for objects such as roofs,
antennas, etc.

Building textures The facades of the buildings are created with semi-procedural
textures. Facades often exhibit one or multiple grid-like structures, where most
of the cells have the same objects in them (for example windows or doors). They
chose an approach where they have multiple facade layers which are combined
to one facade. One layer is comprised of two one-dimensional interval groups.
The intervals are used for the alignment of objects such as windows and doors.
They can also define specialized information for rows, columns, or cells in a layer
(for example, to make ground floor windows bigger).

10

2.2. Survey of important existing Works for Architecture

2.2.2. Instant Architecture

Figure 2.2.: Paper: Instant Architecture [96]

In contrast to Procedural Modeling of Cities (Section 2.2.1), which presents a system
for the generation of entire cities, Wonka et al. [96] focus fully on the modeling of
buildings in their paper Instant Architecture. They generate building facades via
a specialized grammar approach, which is a further development of the shape
grammars of Stiny [79]. They use a split grammar that generates the 3D geometry
of the facade, and a control grammar that sets attributes like material or color for
the geometry.

With the grammars an extensive database of rules is built. When a facade is
generated, an automatic process can choose suitable rules in each derivation step
of the grammar. This way there is no need for a specialized grammar for each
building. A variety of designs can be created out of the rules in the database.
Which rules are chosen can be random or influenced by user defined design
goals.

The basis for the geometry creation are simple geometric shapes that are then
divided into smaller shapes by the split grammar. Properties such as the material
of elements are transferred to the newly created shapes. How this is done is
determined by the control grammar. For the new shapes, only rules that ensure
either a plausible result, enough variation, or the achievement of user-defined
design goals, are chosen. Additionally, for special elements, also pre-modeled
assets are used.

The presented approach is based on two-dimensional placement of elements in
a grid-like fashion, and can model many facades that follow a mostly regular

11

2. Procedural Modeling of Architecture

layout. The approach is limited to modeling of facades though, and for modeling
of building shells other techniques have to be used.

2.2.3. Procedural Modeling of Buildings

Figure 2.3.: Paper: Procedural Modeling of Buildings [65]

An innovative split grammar called CGA shape presented in the paper Procedural
Modeling of Buildings [65] by Müller et al., allows users to surmount some of
the challenges associated with producing large quantities of high quality and
intricately detailed buildings through procedural modeling and the use of context
sensitive shape rules. Their work is based on Procedural Modeling of Cities (Section
2.2.1) and Instant Architecture (Section 2.2.2), and they point out some limitations of
these previous works. In their opinion, Procedural Modeling of Cities cannot create
enough detail and produces unwanted intersections of architectural elements,
and Instant Architecture has split rules that are suited for simple mass models,
but complex models require an excessive amount of them. They design their
split grammar such that buildings are not restricted to axis aligned shapes, roof
surfaces and rotated shapes can be created by the grammar, and they give a clear
definition of how shape rules are defined.

Their notion of a context sensitive split grammar primarily means two tech-
niques:

• Occlusion tests - The split grammar can detect when elements are occluded,
for example when a part of a building intersects with the window of another
part. Then the window can be modified or skipped completely.
• Snapping - The position and size of shapes can adjust to so-called snap lines.

This way, for example, windows of one part of a building can align with
windows of another part.

12

2.2. Survey of important existing Works for Architecture

A shape in the split grammar has a symbol, attributes, geometry, and a scope.
The scope defines special geometric information: the position of the shape, a
coordinate system in which the shape lives, and the size of the shape.

The form of the production rules is explicitly defined in the paper. The rules are
in human readable form and are intended to be written or reused by users that
not necessarily have to be programmers. A rule has the following form:

id: predecessor : cond→ successor : prob

with:

• id: unique identifier for rule
• predecessor: shape that is being replaced
• cond: necessary condition that has to be fulfilled
• successor: new shape (or multiple shapes)
• prob: probability for choosing this rule

There are different ways to specify the successor, but maybe the most important
ones are the split operators. These split the actual shape along one or multiple
axes:

• Subdiv: Subdivides a shape into multiple ones. The width of subdivisions
can be specified and is either absolute or relative.
• Repeat: Repeats a new shape of certain width as often as possible (according

to the given space) in the current shape.
• Component: Replaces a shape with its individual components (faces and

edges).

The split operators are mainly responsible for creating the geometry of the facades.
Additionally pre-modeled assets are used, for example for cornices.

The procedure for modeling a building in the split grammar is usually as follows:
First, the rough outer hull is created by a combination of simple shapes (for
example boxes, cylinders, etc.). These simple shapes already come with predefined
roof geometry. There can be different types of roofs such as hipped, gabled,
mansard, or cross-gabled roofs. Then the faces of the building are extracted to
form the basis for the facades and roof surfaces. There the split rules are applied.
Occlusion tests and snap lines then modify the geometry as necessary.

Different types of buildings such as single family homes, office buildings, and
skyscraper can be generated with the method. In the paper, different examples of

13

2. Procedural Modeling of Architecture

buildings and cities are shown. One is the reconstruction of the ancient Pompeii,
one is an urban city modeled by a professional modeler (but not programmer),
and one is a residential area inspired by Beverly Hills.

While Instant Architecture (from Section 2.2.2) is concerned with two-dimensional
placement of elements of building facades, this approach also deals with the
modeling of building shells by combination of simple shapes with roof geometry.
However, the design of the facade elements is again done in grid-like fashion,
and the roofs are static pre-modeled meshes, which limits the application of the
approach for complex forms.

2.2.4. Advanced Procedural Modeling of Architecture

Figure 2.4.: Paper: Advanced Procedural Modeling of Architecture [77]

Schwartz and Müller discuss the limitations of the split grammar language
CGA (described in 2.2.3) and present their extension to this language in the
paper Advanced Procedural Modeling of Architecture [77], which they call CGA++.
According to their argument, this development is necessary in order to be able
to approach context sensitive tasks, something which is currently impossible
using CGA or other existing systems. A lack of available information about other
shapes in proximity to the shape being refined is a drawback in these systems
and limits their expressiveness. In comparison, shapes and shape trees in CGA++
are assigned first-class citizenship, which enables such functions as:

• Direct access to shapes and shape trees
• The option to perform operations on groups of shapes

14

2.2. Survey of important existing Works for Architecture

• The ability to rewrite the structure and hierarchy of shape trees
• Capacity for automatic generation of new shape trees

Another innovative aspect is the event-driven system that allows coordination
across multiple shapes using a dynamic grouping and synchronization mecha-
nism.

Current systems such as CGA shape have several limitations in their expressive-
ness:

• Multiple shape refinement coordination: Any decision that is made in the shape
tree can only affect child shapes of the current shape. If the decisions should
be influenced by properties of the child shapes, these properties have to be
inferred manually beforehand.
• Operations on multiple shapes: Operations taking multiple shapes, like boolean

operations, are not available.
• Contextual information: No contextual information, for example for alignment

is available.
• Spawning derivations in derivation: There is no mechanism to create a separate

derivation tree in the current derivation. This can be helpful for example
for choosing between multiple alternatives of derivations.

The paper overcomes this limitations by two new main language features: Shapes
as first-class citizens and Events.

Shapes as first-class citizens This means that individual shapes can be uniquely
identified, passed around, stored as values, and used as parameters for operations.
The shape tree supports different operations for accessing, traversing, and query-
ing it. Additionally, temporary versions of the shape tree can be generated.

Events Events serve as a grouping and synchronization mechanism. They pro-
vide coordination across groups of shapes by enabling the exchange of infor-
mation, and enabling a consistent decision of how to proceed in the individual
shapes. They also make it possible to influence the derivation order, which can
ensure that certain shapes are available for shape queries.

In addition to this two new main features, CGA++ extends the grammar language
itself with various constructs from general programming languages, in order to

15

2. Procedural Modeling of Architecture

make it more versatile. Among other things, different programming constructs
such as booleans, numbers, strings, lists, tuples, and functions are available.

The authors give different scenarios of applications where CGA++ gives addi-
tional expressiveness over other methods:

• Urban planning: Division of areas into building lots and creation of buildings
on them.
• Buildings: Creation of buildings with interconnected structures.
• Facades: Alignment of elements (windows, doors) according to other ele-

ments.

2.2.5. Shape Grammars on Convex Polyhedra

Figure 2.5.: Paper: Shape Grammars on Convex Polyhedra [87]

As mentioned, many shape grammar systems use the notion of a scope which
defines the size of the current shape as an axis aligned box. Using a box as a
bounding volume for a shape is practical because it can be split along any of the
main-axes into smaller boxes. However, as Thaller et al. in Shape Grammars on
Convex Polyhedra [87] argue, this limits the expressiveness of the forms that can
be generated with the shape grammar. They generalize the bounding volume

16

2.2. Survey of important existing Works for Architecture

from a box to a convex polyhedron. There the split operations can be performed
in arbitrary directions and not only along the main-axis. The rules of the split
grammar can automatically adapt the split operations to the space that is given
by the convex polyhedra. The paper explains how the common split operations
are generalized for convex polyhedra and introduces new shape operations.

Because the system generalizes the boxes in the scopes to convex polyhedra it
can be seen as a new Non-Terminal class in the sense of the later Section 2.2.7.
The geometry itself is stored separately though, and can also be non-convex. The
split operations orient themselves to the convex polyhedra and split both, the
convex polyhedra and the geometry.

Since the convex polyhedra are volumetric shapes, they can be further refined by
splits and can adapt to the space given by their surrounding. This enables more
expressiveness than simple meshes that are used as non-terminal replacements,
such as in previous methods.

The most prominent split methods of this system are:

• Plane split: Divides a shape by one arbitrary plane
• Subdivision and repeat splits: Work as in previous methods, but can now

operate along arbitrary directions, or even curves.
• Frame split: Divides a shape into a smaller inner shape, and multiple outer

shapes along the border (useful for example for windows and their frames).

A concept that the paper discusses is that of procedural assets. Instead of placing
pre-modeled assets into the boxe-shaped scopes of classical Non-Terminal shapes,
the geometry itself can now be modeled via sculpting of the convex polyhedra
with split operations. Convex polyhedra can often approximate the wanted
geometry in sufficient detail. This allows further refinement of the resulting
geometry as needed. Classical architecture can be one area where this approach
can be used to model the detailed geometry. Further split operations for this
concept are:

• Radial split: Partitions a shape into ’cake slices’ (for example for round
windows).
• Polyline split: Splits a shape along a series of planes that are aligned on a

polyline.
• Arch: Divides a shape into two shapes for an arch. One for the brickwork,

and one for the hole inside (for example for arches in historical architecture).

17

2. Procedural Modeling of Architecture

The paper Shape Grammars on Convex Polyhedra [87] was written by the work
group for Procedural Modeling at the Institute of Computer Graphics and Knowledge
Visualisation (CGV) [46] at Graz University of Technology.

2.2.6. Procedural Architecture using Deformation-Aware Split
Grammars

Figure 2.6.: Paper: Procedural Architecture using Deformation-Aware Split Grammars [98]

One of the limitations of previous split grammar systems is the fact that the only
method of approximating the curved features of buildings was via static pre-
modeled assets, with rules applying solely to planar surfaces. In contrast, the new
system presented by Zmugg et al. in the papers Deformation-aware split grammars
for architectural models [97] and Procedural architecture using deformation-aware split
grammars [98] allows free form deformations to be defined in the grammars.
The deformations are not merely a post-processing step that deforms the whole
model, but can be defined at any level in the split grammar and thus the split
operators can adapt the splits to the deformed space. The authors show different
types of splits where the split planes are either deformed by the deformations, or
remain straight but still split the deformed geometry.

Traditionally, split grammars use planar surfaces for the splits. However, also
curved structures can be suited for a grammatical representation. For example, a
stonewall has a regular and repeating substructure (the bricks in the wall) and
can follow an arbitrary path. If the path is curved, this results in an overall curved
structure. The typical approach is to model it (for example with shape grammars)
and then deform the geometry afterwards. However, this has limitations since

18

2.2. Survey of important existing Works for Architecture

the grammar rules cannot adapt to the deformed space, and deformed and unde-
formed geometry cannot be mixed. Therefore, in this system, the deformations
can be defined in any rule of the grammar. This deforms the scope and the
geometry of the current shape and its sub-shapes. The Non-Terminals contain
geometry, a bounding shape, and a list of arbitrary free-form deformations. The
free-form deformations can be nested so they are stored in a list of multiple
nested deformations. The actual process of deforming the geometry is done after
the grammar is evaluated with the help of this list.

There are three different types of deformations described in the paper:

Deformed Splits on Deformed Geometry Here the splits are defined by planes
on the undeformed local coordinate space. It is implemented by performing
classical straight splits on the undeformed geometry and then deforming the
result afterwards (leading to deformed split surfaces). The resulting sub-shapes
of a split are also annotated with the same deformation.

The measurements for the splits should be constant, independently of the applied
deformation. Therefore, they are taken in the already deformed space, but are
transformed back into undeformed space in order to allow the straight splits
on undeformed geometry. The common split operations are deformation aware,
meaning that the subdivide split adapts the sizes of the sub-shapes automati-
cally to the deformation, and the repeat split adapts the number of sub-shapes
automatically to the deformation.

Straight Splits on Deformed Geometry Here the splits are performed with
actual straight planes on the already deformed shapes. An example would be
straight window panes in a wall that is deformed. Therefore the bake operations is
introduced, which instantly deforms and solidifies the geometry before it is split
(with straight planes). The bounding shapes of the scopes now become an issues.
A classically used box gives a very poor approximation of the deformed shape,
therefore the authors suggest to use at least convex polyhedra as described in
Section 2.2.5, which can also be split in any arbitrary direction.

Deformations of Adjacent Objects When two parts are deformed differently
and they are adjacent to each other, special handling of the seams where they
meet is often required. At the seams where the parts meet, they can now be

19

2. Procedural Modeling of Architecture

detached or intersect each other after the deformation. Therefore, either additional
geometry has to be created, or existing geometry has to be trimmed with boolean
operations.

The authors also describe a method for the creation of houses in cartoon style
where the walls are all deformed independently. The method works by automat-
ically creating walls from an input ground polygon and saving the adjacency
information for them. Then an automatic procedure corrects the geometry at the
seams of the walls.

The papers Deformation-aware split grammars for architectural models [97] and Proce-
dural architecture using deformation-aware split grammars [98] were written by the
work group for Procedural Modeling at the Institute of Computer Graphics and
Knowledge Visualisation (CGV) [46] at Graz University of Technology.

2.2.7. Generalized Use of Non-Terminal Symbols for Procedural
Modeling

Figure 2.7.: Paper: Generalized Use of Non-Terminal Symbols for Procedural Modeling [51]

Krecklau et al. present an adaption of the common split grammar languages
(for example as described in Sections 2.2.1 and 2.2.3) in Generalized Use of Non-

20

2.2. Survey of important existing Works for Architecture

Terminal Symbols for Procedural Modeling [51]. Their language G2 aims to extend
the expressiveness of previous approaches while providing a simple and easy
to read syntax. The resulting grammar allows for the inclusion of Non-Terminal
objects and symbols of various types. These may be assigned attributes and
operators that are specific to the domain, and may also act as parameters in the
definition of modeling rules. The ability to create templates for abstract structures
is convenient for the user who may wish to re-use them elsewhere in the grammar.
These extensions assist in the modeling of complex objects such as architecture
and plants, as is exemplified in their illustrations. The language itself is derived
from Python.

The new main features of the system are:

• Abstract Structure Templates: These are rules that take Non-Terminal symbols
as input parameters. This allows the reuse of rules in different contexts
(similar to higher-order functions in functional programming languages).
• Non-Terminal Classes: The Non-Terminals are not limited to boxes in this

system, but can be user specified. Each Non-Terminal class has its own
operators and attributes. The aim is to bring procedural modeling closer
to conventional modeling, since conventional methods can be emulated
with the Non-Terminal classes. An example of a free form deformation
as a Non-Terminal class is given in the paper, which allows modeling of
deformed objects.
• Flags: They are used to identify individual parts of the grammar derivation

tree, where then specific rules can be applied. Through this, no dependencies
between rules are introduced.

2.2.8. Component-Based Modeling of Complete Buildings

Leblanc et al. present a component based approach to the problem of procedurally
modeling architecture in Component-Based Modeling of Complete Buildings [53].
Architecture has many interdependent elements and the method described in
this paper attempts to create a system of representation through the use of
components, which are elements that have been defined in terms of space and
semantics. The system works with a tree of components that the user can query.
The components from the query results can then be modified via shape operators,
and new components can be generated. This results in an process that iteratively
refines the component tree.

21

2. Procedural Modeling of Architecture

Figure 2.8.: Paper: Component-Based Modeling of Complete Buildings [53]

The system is able to generate both the exterior and interior of an entire building.
This is a special property of the system, since previous systems were often good in
one method, especially the exterior, but few showed capabilities to combine both.
It is using methods like split grammars and constructive solid geometry in order
to generate the final model. These methods are applied via special operations
that work on a set of shapes. A query mechanism lets the user query all of the
shapes and get back a set of shapes to work on. Operations and queries for a
model are specified via a programming language which is intended for designers
with programming skills.

2.2.9. Creating Procedural Window Building Blocks using the
Generative Fact Labeling Method

Thaller et al. present the General Fact Labeling Method [85], a method that aims
to organize the process of shape analysis and shape synthesis. Beginning with
a finite number of 3D shapes (independent of whether real or virtual), they
attempt to identify a small group of simple and combinable functions that can be
combined to represent the given shapes.

A window can be seen as a combination of inter-related design elements. Win-

22

2.2. Survey of important existing Works for Architecture

Figure 2.9.: Paper: Creating Procedural Window Building Blocks using the Generative Fact Label-
ing Method [85]

dows can pose a complex problem for 3D modeling because there can be vertical
or horizontal coherence between windows next to each other.

For 3D reconstruction of urban environments there is often one of the following
problems present with windows: Either the window models have good quality,
but are not matching the original window (as in the case with pre-modeled assets
for windows), or the window models match the original windows, but their
quality is not very good (as in the case with simple textures for each window).

The General Fact Labeling Method aims to produce windows that are both, high
quality and closely matching the original. It consists of three phases:

1. analysis: structure elements into fact labels
2. synthesis: library of composable procedural assets (corresponding to ele-

ments)
3. verification: 3D reconstruction of windows and comparison with originals

The goal of the method is not only to recreate the original exemplars, but also to
create new exemplars in the design space.

23

2. Procedural Modeling of Architecture

Fact Labeling Process The fact labeling process is proceeding from coarse to
fine. First, rough structural units, like window layouts are labeled, then local
parts and refinements are labeled.

The classification scheme aims to group observations so that they are procedurally
composable. Different elements that could be used for classifications can be for
example: window count, window side elements (columns/pilasters), window
sill, area above window (cornice/pediment), frieze (frieze/architrave), window
layout (interaction between pillars/frieze/architrave), window shape (rectangular,
round, etc.), window frame, pediment, or cornice.

The paper General Fact Labeling Method [85] was written by the work group
for Procedural Modeling at the Institute of Computer Graphics and Knowledge
Visualisation (CGV) [46] at Graz University of Technology.

2.3. Restrictions and Room for further Research

The presented methods so far are sufficient to generate big amounts of buildings
with mostly box-based or prism-based geometry for a whole city (as shown in
1.1). But when it comes to more sophisticated forms they reach their limits. Some
methods (most notably those presented in Sections: 2.2.5, 2.2.6, and 2.2.7) extend
the possible classes of forms that can be generated, but they are still not able to
fully generate all kinds of architecture. Especially complex historic architecture
has many forms that cannot be adequately modeled by existing methods. Still, it
often has a lot of repetition and forms that adhere to strict rules, which should
make it a suitable target for procedural modeling.

The following is a list of examples of well known historic architecture (images
can be found in the introduction in Figure 1.2) where existing approaches have
specific problems:

• St. Peter’s Basilica: It is one of the best known examples of Renaissance
and Baroque architecture. It is a very complex structured building and
therefore difficult to model efficiently using split grammars. The domes of
the building, due to their spherical arrangement of geometrical structures,
cannot be modeled efficiently with common split grammars.
• Karlskirche: Similar to St. Peter’s Basilica and an example of the Baroque

and Rococo styles. Also with a large dome and many round elements.

24

2.3. Restrictions and Room for further Research

• Neuschwanstein Castle: The castle, built as Romanesque Revival building,
features many round towers that cannot be adequately reproduced by
existing techniques.
• Leaning tower of Pisa: The tower in the Romanesque style has many repeating

structural elements on its outside, and is therefore a suitable candidate for
procedural modeling. The circular arrangement of the elements makes this
very hard for common split grammars though.
• Pantheon: The huge dome of the ancient roman Pantheon is coffered in a

spherical arrangement in the inside. Additionally, the support structures and
walls beneath the dome are arranged circularly. Again, almost impossible
to model with common split grammars.
• Gate of Honour in Versailles: The entrance to the Palace of Versailles is formed

by a gate with ornamental forms. Ornamental forms are generally hard to
cover with modeling techniques today. The challenge are free-form shapes
and shapes following a curve, which are present in many ornamental
wrought irons.
• Palace of Versailles: The Palace (in the French Baroque style) itself consists

of multiple wings and parts that are connected. This results in a complex
roof structure which is hard to model with existing procedural modeling
techniques. It also has a lot of ornamental decoration which so far can only
be provided via pre-modeled assets to procedural modeling techniques.
• Venice roof landscape: Venice, as many other old historic cities, consists largely

of a collection of small and simple houses that are more or less arranged
irregularly. The roofs of these houses form a very complex roof landscape,
that is hard to reproduce accurately.

25

3. Research Hypothesis

The examples given in Section 2.3 show, that while many standard buildings
and skyscrapers of cities can be modeled by procedural modeling techniques,
buildings of historic cities common in Europe, but also all over the world, cannot
sufficiently be modeled.

The first hypothesis for modeling historic buildings can now be postulated:

• H1: Historic buildings cannot be reasonably modeled with existing procedural
shape modeling techniques.

In order to model historic buildings, different problem domains have to be
tackled. This leads to the idea of having different domain specific procedural
modeling methods for the different shortcomings that existing procedural tech-
niques have.

3.1. Deconstructing Architectural Models into
Domain Problems

Domain specific methods comprise a wide variety of techniques in software
development. A domain specific method should be tailored explicitly to model a
specific software domain, and it should only be as complex as needed to solve
problems in the domain. Experts of the domain, that need not be professional
programmers, should be able to use it, or at least be able to participate in the
software development process.

The design of procedural modeling techniques is on the one hand concerned with
the generation of the model geometry, but on the other hand with the structure
of the rules or commands that are used in the procedural description or program.
This has a strong link to the field of software design, which deals with the
structure of computer programs. Domain specific methods and languages are one

27

3. Research Hypothesis

strategy to organize a computer program and divide it into ideally independent
domain specific components in order to manage the existing complexity and
make it accessible to non-programmers. Therefore, bringing domain specific
approaches to procedural modeling can help in managing the sometimes vast
amount of rules or commands that have to be specified in order to create a
procedural model.

DSLs are often much easier to use than normal programming languages. In fact,
there is often no need for the user of the DSL to be able to program in a traditional
sense. This ease of use gives DSLs the great advantage that domain experts which
are not programmers can use them themselves.

At the institute for Computer Graphics and Knowledge Visualization we had an
interesting observation in one of our projects where the task was to reconstruct a
multitude of windows from the ”Gründerzeit”. There, domain experts who are
educated art historians preferred to use the DSL describing the windows instead
of a graphical user interface where they could compose the windows. With the
DSL they could copy DSL code from one window and modify it for the next one.
In contrast the graphical user interface required them to model each window
from scratch.

This observation motivated the next research hypothesis:

• H2: DSLs are well suited for the extension of procedural shape modeling techniques
to model historic buildings.

3.2. Unsolved Problem Domains

The following sections present an overview of particular problem domains in
procedural modeling of architecture that hinder the creation of procedural models
of buildings such as those shown in Section 2.3, and give sketches of ideas of
how these problems can be solved.

Through close inspection of a number of historical buildings we have identified
in three areas where improvements are particularly beneficial, as they occur in
almost every historical building considered (see Section 2.3). Furthermore, they
require three different sorts of extensions to the existing formalism, so they have
great exemplaric value. This can be formulated as an hypothesis as follows:

28

3.2. Unsolved Problem Domains

(a) Procedurally generated roof landscape. Im-
age taken from [65].

(b) Aerial image of Venice, Italy. Imagery c©2018

Google, Map data c©2018 Google.

Figure 3.1.: Procedurally generated roof landscape (a) compared to an aerial image of Venice (b).
A very fine grained and complex roof landscape presents itself in cities like Venice.
Existing Procedural Modeling techniques have a hard time producing correct details
for such roof geometries.

• H3: The three most effective extensions for historical buildings are:
• H3.1: Roof landscapes
• H3.2: Round building geometry
• H3.3: Free form curves

Extensive work on new ideas for these problems is then presented in the later
Case Studies in Chapters 5, 6, and 7.

3.2.1. Roofs

Roofs in existing procedural modeling systems are often created with the straight
skeleton algorithm. This algorithm takes the outline of the building and automat-
ically generates a plausible roof on top of it. While the result is often suitable for
simple buildings, the spectrum of different roofs that can be generated is limited
(see Figure 3.1a).

Some historic cities have a very complicated roof landscape that is divided into
small pieces, whose roofs of individual houses do not necessarily correspond
with those generated by the straight skeleton algorithm (see Figure 3.1b). Still,
these roofs should be synthesize-able from simple parts. Different parts of a floor
plan of a house usually have corresponding roof parts. These roof parts are often
simple and consist of planar faces. The problem is that a simple nesting of the

29

3. Research Hypothesis

Euclidean geometry

Many structures follow an eu-
clidean coordinate system where
walls follow construction lines
(orange) parallel to the euclidean
axes.

Circular geometry

Circular structures often have
walls that follow concentric circles or
lines that form a fan (orange).

Table 3.1.: Geometry that is laid out in rectangular fashion can be split using the common split
grammar methods (top row). Circular geometry is hard to model with split grammars
(bottom row). Therefore, if the coordinate system is changed, and the splits of elements
in the split grammar behave in a circular orientation, these structures can be reproduced
with split rules. Here, the examples in the top and bottom row can use the same split
rules, only the coordinate system is changed from Cartesian to circular coordinates.

parts does not always yield the desired result. This is because the roof parts can
influence each other.

In order to solve these problems it has to be investigated how different roof parts
of historic houses usually influence each other, and how these parts can be joined
such that the correct geometry is achieved. The goal is the development of a novel
framework for roof modeling which uses new high level union operators that
automatically solve the possible geometric problems that can arise.

3.2.2. Round Building Geometry

Many historical landmarks have parts with elements arranged in a circular or
spherical fashion. This might be towers (such as in Figure 1.2c), or domes (such
as in Figures 1.2a, 1.2b, and 1.2e), or other structures such as rose windows or
circular ornaments. There is usually a circular or spherical repetition of one or
more elements that follows some architectonic rules.

The process of repetition in architecture is something that split grammars have
already mastered, but they usually do it along a straight line. The method from

30

3.2. Unsolved Problem Domains

Figure 3.2.: Interior image of the St. Peters basilica (left). The elements at the arches are arranged
circular and those at the dome spherical. The arrangements of these elements have
their own reference coordinate systems. For the arches the two cylindrical coordinate
systems are depicted (right). The blue lines depict the main axis. For the generation
of the coffers, possible splits along the axis are depicted in red, and possible splits
circular around the axis are depicted in green. Image taken from [1].

Figure 3.3.: Another example of arches of a church (left). Two possible setups for coordinate
systems (right) are highlighted - there is the main one, and a smaller side one on the
left. Colors are choosen as in Figure 3.2. The dashed light blue line depicts the line
where both coordinate systems intersect. Having both coordinate systems available
allows for the exact generation of the line and geometry on it. Image taken from [2].

31

3. Research Hypothesis

Figure 3.4.: Wrought iron balcony of the Palais Sturany in Vienna. The ornamental forms of such
architectural elements are hard to model in the computer. Image taken from [3].

Section 2.2.6 is an exception since it produces deformed geometry, nevertheless
the repetition is performed in a straight line and afterwards a deformation is
applied.

There is certainly an opportunity to extend the common split grammar paradigm
to work in a circular and spherical way. The idea is to create a new split grammar
system, where the underlying coordinate system for different parts of a building is
changed to cylindrical or spherical, while the common and proven split operators
are adopted mostly unchanged (see Table 3.1 and Figures 3.2 and 3.3). That way,
elements are arranged naturally in the required form.

3.2.3. Ornamental Forms

Historic buildings of certain architectural styles often have elaborate ornamental
elements (see Figure 3.4). These ornamental forms are often hard to model in the
computer. In fact, many modern buildings are completely void of ornamental
forms. This might be an expression of modern architectural styles, but partially
this might also be the case because modern buildings are usually planned with
software which has only limited support for these kinds of ornamental forms.

32

3.2. Unsolved Problem Domains

Figure 3.5.: Commonly used bsplines as curve representation have unfavorable curvature proper-
ties for many ornamental forms (left). Spirals can reproduce these forms better (right).
Images taken from [4] and [5].

In general, ornamental forms consist of artistically arranged curves. The most
common curve representation these days are bspline curves (see Figure 3.5).
Bsplines have some problems for representing ornamental forms because their
curvature properties are not optimal. The curvature of the curve is generally not
as smooth as many ornamental forms. Spirals can model the circled forms of
ornaments better.

A spiral based curve representation should be developed that is suitable for
modeling of ornamental forms. For this, the usage and editability of curve control
points has to be investigated, and a suiting user interface for modifying the curve
is needed.

33

3. Research Hypothesis

3.3. Guiding Hypotheses

In the beginning of this thesis (Section 1.1) the question was posed:

What can be novel techniques that allow complex historical architecture to be procedurally
modeled in the computer?

The observations and considerations in this chapter can be summarized in the
following research hypotheses:

• H1: Historic buildings cannot be reasonably modeled with existing procedural
shape modeling techniques.
• H2: Domain Specific Languages (DSLs) are well suited for the extension of proce-

dural shape modeling techniques to model historic buildings.
• H3: The three most effective extensions for historical buildings are:
• H3.1: Roof landscapes
• H3.2: Round building geometry
• H3.3: Free form curves
• H4: The DSLs for the extensions can all be formulated using a common underlying

formalism.

The motivation for the last hypothesis H4 will be given in the following chapter,
which introduces DSLs as a very helpful concept for reaching the goals of this
thesis.

Later, the achievement of these hypotheses will be validated.

34

4. Domain Specific Languages

Domain Specific languages (DSLs) have been around for a long time. In Lisp it
was already very common to create embedded DSLs and solve parts of problems
with the created DSL. A DSL allows for expressing problems in a particular
domain in a concise and different way compared to traditional programing. This
allows for better communication with domain experts by using the DSL codebase
as communication tool with the domain experts, or might even allow the domain
experts to program the system themselves.

While generic solutions in software engineering can cover a wide range of prob-
lems, they might be suboptimal for specific problems. Specific solutions can be
tailored to specific problems and therefore yield better results.

There are three categories of specific solutions in software engineering as the
paper [90] shows. The subroutine library approach packages reusable domain-
knowledge as subroutines for a general purpose programming language. Object-
oriented frameworks are an extension. While in subroutine libraries, the application
invokes the libraries, in Object-oriented frameworks, the framework invokes
methods from the application code. A DSL finally, is most tailored to the domain.
It is usually small, declarative, expressive, and very focused. DSLs try to be
very expressive and find the appropriate notations and abstractions for a given
problem domain. They are therefore also called ’micro-languages’, or ’small
languages’. Because of their often declarative approach they can be a kind of
specification language and be related to end-user programming (for example
Excel macros).

The following is an introduction to Domain Specific languages and is mostly
based on the book Domain-specific languages [33] from Martin Fowler.

35

4. Domain Specific Languages

4.1. Domain Specific Languages in general

There are two main reasons for Domain specific languages:

• Developer productivity
• Communication with domain experts

A DSL should be designed to have a very narrow scope and capture precisely the
semantics of a domain, nothing more and nothing less. If it does, it gives a more
natural way to express solutions than a general purpose language.

General purpose languages and DSLs differ in the way they model abstractions:
In a general purpose language one has general abstractions like abstract data-
types, higher order functions and procedures, modules, classes, objects, monads,
and many more that one can use to model the problem. A DSL in contrast should
be the perfectly suited individual abstraction for the problem itself.

A DSL encodes the domain knowledge in a special human-readable form. It
is still a computer language, meaning it is intended to be read and processed
by computers, and must therefore fulfill certain requirements like being unam-
biguously defined. However, the domain knowledge is not coded in a general
programming language (being hard to understand for non-programmers), or
stored in an arcane file format.

Important for the design of a DSL is that there are sound abstractions. They
should be easy to understand, highly modular, and straightforward to evolve. It
is helpful to have an underlying semantic model that represents the abstractions.
The semantic model can be something like an object model that represents how
a system in the domain works. The DSL then represents code in a form that is
close to the semantic model and the processing of the DSL code populates the
semantic model (see Figure 4.1).

There exist different computational models that can be used for a semantic model.
These can be for example:

• State machines (Figure 4.2): They have different states and translations be-
tween these states (such as a Turing machine). This lets one think about the
process of the program differently than in common imperative programing
languages.

36

4.2. Comparison to General Purpose Languages

Figure 4.1.: Semantic Model (image taken from [33]).

• Production rule systems (Figure 4.3): They have textual rules with condi-
tions and actions, where if the condition of one rule is met, its action is
executed. These systems are especially useful for procedural modeling as
they are the basis of shape grammars.

• Decision tables (Figure 4.4): They are similar to a production rule system,
however their conditions and actions are arranged in a tabular form. This
creates a more restricted system, which is simpler and more clearly laid out,
and can therefore be better suited for domain experts.

• Dependency networks (Figure 4.5): They are models that describe depen-
dencies between entities and are used for example in build tools such as
make.

4.2. Comparison to General Purpose Languages

4.2.1. Advantages of DSLs over General Purpose Languages

Just like higher-level languages have some advantages over lower-level languages
because they operate on a different level of abstraction, DSLs have some advan-
tages over general purpose languages. DSLs are usually more concise and easier

37

4. Domain Specific Languages

Figure 4.2.: State Machine (image taken from [33]).

Figure 4.3.: Production Rule System (image taken from [33]).

Figure 4.4.: Decision Table (image taken from [33]).

Figure 4.5.: Dependency Network (image taken from [33]).

38

4.2. Comparison to General Purpose Languages

to read. This makes them most notably easier to reason about and the intent of
the program becomes more clear, which might be the most important property
because complexity is often the biggest problem in modern software systems.
Maintenance is also often a big component in modern software development and
becomes easier too.

DSLs are usually simple to write, since they have only the syntactic elements that
a domain requires. This might also allow domain experts themselves to write the
DSL code, which further bridges the gap between developers and users. DSLs
should usually be relatively restrictive and only allow necessary expressions. This
makes them less error prone (with the possibility of having an additional type
checking system), and less to learn (especially in external DSLs).

Finally, when the processing of DSL code uses advanced optimization techniques,
the performance of the DSL code can in some cases be better than that of normal
code.

4.2.2. Disadvantages of DSLs compared to General Purpose
Languages

While one main advantage of DSLs is that they make the intent of a program
easy to see, the behavior of the program is often harder to see. The behavior is
to some extent intentionally hidden, which reduces the complexity of the code
and makes it easier to read and reason about. The disadvantage is, that certain
behavior can be unexpected and hard to reconstruct.

For a DSL there is much more work and costs upfront. The DSL has to be designed
and the design then has to be implemented. When new users are using the DSL
they have to learn the syntax and how it works. For people that are not domain
experts, the DSL can be hard to understand in the beginning. However, at least
the underlying problem domain they would have to learn anyway, independent
of how it is encoded.

One critical thing is how a DSL is integrated into the software development
process. DSLs are not widely used in the industry and therefore there does not
exist that much design experience, there are less guidelines and design patterns,
and less literature exists. Often the software creation process has to be modified,
including design, implementation, debugging, and maintenance of the DSLs
and their connections with the rest of the system. Especially in external DSLs

39

4. Domain Specific Languages

Figure 4.6.: Internal DSL (image taken from [33]).

many convenient or even needed features, such as IDE support (e.g., syntax
highlighting, code checking, etc.) are often not available or only available as
generic DSL builder support.

Developing the design of a DSL can have some pitfalls. The scope of a DSL should
be as small as possible, otherwise using a general purpose language would be
better. However, often more and more features are added after time, which bloats
the DSL definition and makes it harder and harder to maintain. For example,
this could be argued as a disadvantage of the approach of CGA++ (described
in Section 2.2.4). When the DSL is already in use and familiar to the users, a
reluctance to change it can set in. This can result in trying to adapt the way a
problem is modeled to the DSL, instead of adapting the DSL to the way the
problem should be modeled in the first place.

Finally, DSLs can also have poorer performance than regular code. When the
DSL optimizations are not good enough, manually written regular code that is
tailored and specialized for the concrete problem can be much faster.

4.3. Major Categories of DSLs

There are generally two types of DSLs - external ones and internal ones. While
external DSLs have their own domain optimized syntax, they are generally labori-
ous to define and implement. Internal DSLs in contrary, are built into an existing
programming language and use and extend its syntax and functionality.

4.3.1. Internal DSLs

An internal DSL is a DSL that is embedded into a host language. The DSL code
that a user writes is a valid host language code, but written in a certain style that
emulates being a language of its own. It is so to say a stylized use of the host

40

4.3. Major Categories of DSLs

language. This is good for programmers because if they know the host language
already, they do not have to learn the syntax of the DSL, and they can also use
existing and familiar tools such as IDEs with all their functionality. If multiple
internal DSLs are embedded into the same host language they also benefit from
having one and the same familiar look and feel.

Internal DSLs are easier to implement than external ones, since they do not need
to be build from scratch. Parsing, code generation, or interpretation is all already
provided by the host language and its ecosystem.

A big advantage is that general programming language features from the host
language can be used, such as variables, conditionals, loops, functions, objects,
etc. Mixing host language code and DSL code comes naturally. This helps to
keep the scope of the DSL specification to the minimum that is needed for the
individual problem domain, and general features can simply be modeled with
the host language.

However, one has to be careful when designing the DSL not to be limited by
the capabilities of the host language. Because an internal DSL is written in host
language code it can also have a syntax that might not be ideal for the problem
domain or simply look strange.

Internal DSLs are similar to simple libraries which are used in the host language.
In fact, a simple library might be perfectly fine to use for modeling the problem
domain. The difference is that an internal DSL has a more sophisticated syntax
and interface which, for example, can make it look more like a human language
and thus more read- and writable.

For the implementation of an internal DSL much of the work is already done
by the existing parsers, compilers, interpreters, and tools of the host language.
In special cases, a preprocessor might be used to transform DSL code to host
language code. This can be done to add some syntactic sugar to the DSL and
avoid distracting symbols or syntax from the host language in the DSL code (for
example dots or braces that are not needed in the DSL code).

The build tools that are available for the host language allow for a rapid design of
the internal DSL. They also facilitate change which is needed for experimentation,
fault correction, and evolving the design, and reuse of artifacts such as syntax,
semantics, implementation code, software tools, or documentation.

41

4. Domain Specific Languages

Figure 4.7.: External DSL (image taken from [33]).

4.3.2. External DSLs

In contrast to internal DSLs, external DSLs have their own individual syntax
and need to be parsed and processed. So the up-front cost for developing them
is much higher. However, once they are created, they usually have a nice and
concise syntax for the problem domain, which is shaped to support the necessary
expressions (and not more) and is not bound to follow the syntax of any host
language. This is especially advantageous for domain experts, since they do not
have to bother with the syntax of a host language that is probably unknown
to them and has to be learned additionally. But also when the DSL is used by
programmers, the simple syntax brings great advantages for the communication
with domain experts.

For the implementation of an external DSL some existing tools for lexing and
parsing are available (for example lex and yacc). The result then either needs to
be interpreted, and an interpreter has to be written, or code for another language
might be generated that is then run.

42

5. Case Study: Constructive Roofs
from Solid Building Primitives

This chapter was published as the research paper Constructive roofs from solid
building primitives [25] in Transactions on Computational Science XXVI. It was written
at the Institute of Computer Graphics and Knowledge Visualisation (CGV) [46] at Graz
University of Technology in collaboration with the School of Computer Science and
Engineering (SCSE) [76] at Nanyang Technological University, Singapore. The paper
has been adapted here.

5.1. Introduction

With the growing popularity of virtual 3D worlds in games and movies, various
VR simulations and 3D street walk-throughs of todays cities or cultural heritage
scenes, attention of researchers shifts towards quick and flexible ways of modeling
or reconstructing large numbers of buildings.

While manually generated models typically yield the highest visual quality, the
effort to produce such results is immense. The research addressed at this problem
can be grouped into two approaches: automatic reconstruction from measurement
data, and automatic generation using procedural modeling.

While automatic reconstruction might produce a faithful appearance of the
original object, the result is often a (possibly dense) 3D mesh. This results in
serious limitations to the modifiability of such models, as manual effort is required
to change such models.

On the contrary, procedural modeling is an abstract representation of the building
process of a model. Changing the procedural description typically requires less
effort than manual 3D modeling, however the procedural system has to keep
the balance between automation (less manual effort, but also less detail control

43

5. Case Study: Constructive Roofs from Solid Building Primitives

Figure 5.1.: Modeling a building by parametrizable parts greatly reduces the necessary effort. A
simple union of parts might lead to undesirable results (top). Therefore, we introduce
automatic roof trimming for solid building primtives (middle). The resulting model
can be further refined using existing procedural approaches (bottom).

44

5.1. Introduction

(a) Simple union (b) Trimmed version

Figure 5.2.: A simple union of building parts with roof does not produce a desirable result (a).
The influence of parts can be non-local, in this example the bounding plane of the
roof geometry of the smaller building trims the roof geometry of the higher building
and induces a small triangular roof area (b).

over the result) and expressiveness of the system (which types of models can be
created).

Current procedural modeling methods use mass modeling to define the coarse
outline of a building by representing it via a number of parts. Rules further
refine the geometry of these parts. Basic interaction between parts is possible via
occlusion queries. Automatic roof synthesis can be done, but does not reflect all
possible roof configurations present in real buildings, and the user has few if any
possibilities to control the result of the roof generation process. In reality, this
process is governed by rules, but it is not deterministic.

Especially buildings in historic cities can often be modeled by simple parts, but
achieving the final roof geometry is not possible by simple nesting or boolean
union of the parts. The problem here is that the roof of one part can be influenced
by the roof of another part (see Fig. 5.1 and 5.2). Depending on the constellation
of the parts, different topological connections arise (see Fig. 5.3). These problems
can increase with growing irregularity of the building. Fig. 5.4 shows a view of
the city of Graz, Austria. Merging and influencing roof parts form a complex roof
landscape. Still, blending of roof faces follows some consistent rules which we
formalize in this chapter.

45

5. Case Study: Constructive Roofs from Solid Building Primitives

1

4

3

2

Figure 5.3.: Complex roof shapes. At (1,2,3,4) the geometry has different topologies, depending
on how roof-parts merge together. At (1) four roof-faces meet in one vertex, which is
a special constraint since in general four planes do not intersect in one point.

The goal of this chapter is to present a method that will allow representing a
great variety of coarse building structures with roofs using a concise declarative
approach. The structure is modeled by parts and their geometric influence to each
other. The resulting structure can be input for a rule-based system that refines
the geometry of the building parts. We show an example of both techniques
combined in Fig. 5.1 and 5.21.

We make the following Research contributions in this chapter:

1. We present an abstract building model specification that facilitates a concise
description of a building assembled of several parts.

2. We introduce a method for automatic geometric trimming of adjacent
building parts that influence each other.

46

5.2. Related Work

Figure 5.4.: Aerial image of the inner city of Graz, Austria. Different roof parts merge and form
a complex roof landscape. There are many implicit dependencies of parameters of
roof faces like slope, height of eave, etc. This roof landscape is not easily created with
existing modeling tools. Imagery c©2015 Google, Map data c©2015 Google.

5.2. Related Work

Shape grammars have been introduced by Stiny et al. [79] in order to generate
paintings using rule systems. In [96] the concept was extended to split grammars
in order to model 3-dimensional structures, especially building facades. The
concept was further refined by [65]. Several other works were built on this
principles, extending it to interconnected structures [50], extended systems of
rule application [51], or more general split rules [87]. These systems can use the
aforementioned mass modeling approach to generate rough geometry. While
most of these systems support basic roof generation, complex roof structures are
either fully automatic (using a straight skeleton approach), limiting the number
of possible roof structures, or the roof structures have to be modeled in detail for
each part, resulting in a complex description.

3D construction of building roofs is an often covered topic in literature. Most
papers are however concerned with reconstruction of roofs from image or scan
data [49, 43, 83, 92, 11]. A good overview is given in [36]. The aforementioned
methods usually use variants of plane fitting. The work of Milde et al. [64, 63]

47

5. Case Study: Constructive Roofs from Solid Building Primitives

(a) Axis

wall element
roof element

(b) Side (c) Solid (d) Structure

Figure 5.5.: The components of our abstract building model. An axis is given for orientation.
Relative to an axis, a side is defined. A side has wall and roof elements. Multiple sides
form a solid, which is the basic building block for a structure.

and Dorschlag et al. [23] use additional grammar and graph based approaches
to further aid the reconstruction process. The method presented by Fischer et al.
[32] uses an approach with connectors to align the extracted planes.

While they can produce good results, the output is often only a polygon mesh
without semantic information. This is not very suitable for scenarios where a
modifiable model is needed (e.g., urban planning), which is why recent methods
use primitive fitting (with simple convex houses and gabled, hipped, flat, etc.
roofs) where the primitives could be seen as semantic units [44, 45].

When models of non-existing objects have to be built (e.g., for movies, video
games, etc.) none of the mentioned methods is applicable. There are many papers
which deal with the 3D construction of buildings, however, the roof is most of
the time only a small part of the solution and often modeled in a primitive and
simple way. For example,

• [65, 30, 29, 56, 81, 82] use simple roof-primitives with often convex ground
shape plans and gabled, hipped, flat, etc. roofs, and combine them to
generate their roofs,
• [84] has a special specification for Asian roofs,
• [62] and [52] use the famous straight skeleton algorithm [9] to generate the

roof.

The methods with simple roof-primitives can yield good results for very regular
buildings, but when the roof gets more complex and irregular, these methods are
not able to fully reproduce the shape. Special specifications, like in the case for

48

5.2. Related Work

Asian roofs, are very suitable for the domain, but lack the possibility to describe
a broad spectrum of roofs.

The straight skeleton algorithm is very suitable for generating general roofs, as
its resulting skeleton corresponds to the edges of a roof on the building. Using it,
a roof on an arbitrary simple ground polygon can be created. The downside is
that the generated roof is only one of many possible roofs, and there is no way to
get another roof. Here, an extension to the straight skeleton, called the weighted
straight skeleton [13], brings greater flexibility. The work of Kelly et al. [48] uses
the weighted straight skeleton to model not only arbitrary roof-shapes, but also
the whole outer shell of a building. One drawback of this method is that straight
skeleton algorithms (even more in the weighted case) are hard to implement due
to algorithmic problems when numerical errors arise.

The problem of roof modeling also arises in geographic information systems.
Open street map [67] is a project that lets volunteers all over the world collaborate
in creating mapping data for streets, buildings, borders, etc. In order to model
roofs, they have built a large categorization table of roofs. Each category has
its own set of parameters. So a large class of buildings can be declaratively
modeled by specifying the category and the corresponding parameters. Also,
the straight skeleton method is contained in the categorization. Additionally, a
method proposed for open street map is roof-line modeling. Here, the modeler
traces roof lines on an areal image (from top-down view) of the building and
provides additional information, e.g. a type (ridge, edge, apex, ...), or height.

What is mostly missing is the accurate handling of merging roof faces of neigh-
boring houses. In historic cities, houses that are adjacent often share the same
roof plane. Depending on how the houses connect, the roof parts merge in dif-
ferent ways. While automatic reconstruction via plane fitting might reproduce
the situation correctly (depending how good the algorithm is), methods that
work with mass modeling primitives have difficulties, because for the merging
the primitives must be changed. The weighted straight skeleton is capable of
modeling these connections, but it might become unhandy when big roof regions
with multiple roof part connections are modeled, because the whole roof must be
modeled as one piece to ensure consistent geometry at interconnections.

49

5. Case Study: Constructive Roofs from Solid Building Primitives

height
(at-axis)

distance overhang

angle

y

x

height
(at-wall)

height
(at-eave)

Figure 5.6.: Cross section view of a side. A side in our abstract building model consists of wall
and roof elements. Here we show one possible parameterization (parameters in gray)
from which the wall (black) and roof (red) elements are derived.

5.3. Solid Building Primitives

In this section we give an overview of the building abstraction, and specify the
individual components of our system.

The core abstraction in our system is the assembling of a building by separately
defined parts, which are called solids. As most buildings are composed of planar
walls, each solid is composed of several planar side parts, which represent a
cross-sectional profile of the corresponding wall and roof part. Each side part
corresponds to a line segment of the ground polygon of a solid. The geometry of
a solid is obtained by intersection of half-spaces that correspond to the profile
line segments of each side part.

A simple union of solids defined in this way might lead to undesirable results
(see Fig. 5.2). However, we have observed that in many situations the correct
result can be obtained by trimming solids by corresponding half-spaces of side
parts of adjacent solids.

50

5.3. Solid Building Primitives

5.3.1. Basic Components

Our abstract building model is composed of several components. We will now
give a explanation of the basic components in a bottom-up manner (see Fig.
5.5):

Axis
is a directed line segment in the ground plane, defined by a start- and an
endpoint.

Side
corresponds to a planar building part consisting of a wall and a roof element.
These elements are specified as line segments of the cross-sectional profile
of the part, with respect to a reference axis that corresponds to the direction
of a line segment of the ground polygon. Various parameters define the
shape of the side (see Fig. 5.6).

Solid
is composed of multiple side components whose wall elements correspond
to a convex ground polygon. Each line segment of the cross-sectional profile
of a side corresponds to a half-space in 3D.

Structure
is the combination (grouping) of several solids. Structures can be nested,
e.g. for representing dormers.

5.3.2. Parametrized Sides and Solids

Our definition of the side component allows to model a rich variation of different
roof types and building parts. It is however relatively low-level, therefore we
introduce parametrizations for sides and solids, that allow us to reduce the
necessary effort to describe a building that is composed of similar parts. For
example, if a building is modeled from areal photographs, it is practical to define
sides relative to ridge lines of roofs. When using ground polygons from a GIS
(geographic information system) database, sides should be relative to the ground
polygon. Different parametrizations for sides can be seen in Fig. 5.7.

The parametrization includes an overhang, as roofs often extend over walls in
order to prevent rain falling on walls.

51

5. Case Study: Constructive Roofs from Solid Building Primitives

height
(at-axis)

distance overhang

angle

distanceoverhang

angle

y

x

height
(at-wall)

height
(at-eave)

(a) Side parameters defined relative to one
axis.

height
(at-axis)

overhang

angle

distance=0

overhang

angle

distance=0

xx

y y

height
(at-wall)

height
(at-eave)

(b) Side parameters defined relative to two
axes.

Axis

(c) Floor plan

Axes

(d) Floor plan

Figure 5.7.: A solid is composed of multiple side components which can be parametrized ar-
bitrarily. In (a,c) side components are specified with respect to the ridge (both side
components use the same reference-axis and coordinate-system). (b,d) side components
are specified with respect to the walls (side components use different reference-axes
and coordinate-systems).

52

5.3. Solid Building Primitives

Pend

Pstart

A

d
S

(a) Axis defined by start- and end-
point and its side.

d

A0=A
A1

A2

A3

A4

A5

A6

A7

S0

S1
S2

S3

S4

S5

S6

S7

(b) Generation of an octagonal foot-
print.

d
Sright

Send

Sstart

Sleft
d

Aright =A

Aleft

Astart

Aend

d

d

(c) Generation of a rectangular foot-
print. The parameters for each
side are copied.

Send

Sstart

d
SrightSleft

d

Aright =A

Aleft

Astart

Aend

(d) Generation of a rectangular foot-
print. The parameters for start
and end and for left and right
are copied differently.

Figure 5.8.: Automatic generation of sides for solids. Based on an axis A, given by two points
Pstart and Pend and its according side S (a) additional sides for a complete solid can
be generated. The axis are denoted Ai and the according sides Si. Each side has
parameters, the distance is here denoted with d. Different copy mechanisms allow for
shapes in rectangular (c,d) or circular arrangement (b). The original parameters of the
side are either copied for all parts (b,c) or modified while copying (d).

53

5. Case Study: Constructive Roofs from Solid Building Primitives

Figure 5.9.: We demonstrate the concept of trimming for solids by interactions of different building
parts (top row). The user specifies an influence direction for each connecting solid
(black arrow), the system automatically identifies the sides which will influence the
result geometrically (green lines on the ground polygon). Only sides corresponding
to green segments will be used for the trimming (bottom row).

5.3.3. Automatic Generation of Sides for Solids

As described, the user can specify axis in the system. This can be done i.e. by
tracing of aerial images. Subsequently a side is assigned to this axis. In order
to reduce the amount of work needed, all sides of a solid can automatically be
generated from this one given side. In the standard case of a rectangular solid this
would be four sides generated from one given side, but also n-gon constellations
are possible (see Fig. 5.8).

The parameters from the original side are automatically copied to the newly
generated sides. But this process can also be modified. For example, when the
ridge of a hipped house is traced, the copying of all parameters is useful since
the roof has the same properties on all sides (slope, eave height, etc.) (see Fig.
5.8c). However, for a gabled house the start and end sides are different (see Fig.
5.8c). Here we tell the generation process to change the parameters for the start
and end sides. The distance is set to 0, and the roof components of this sides are
removed.

54

5.3. Solid Building Primitives

Figure 5.10.: Two connected solids A and B can influence each other in four possible ways: No
trimming (top left), A trimming B (top right), B trimming A (bottom left), and both
solids trimming each other (bottom right). Note that different combinations would
be possible by changing the influence directions.

5.3.4. Automatic Trimming of Solids

When multiple solids are combined using a simple union, unwanted configu-
rations can occur like in Fig. 5.2a. Therefore, we introduce trimming between
solids: the geometry of one solid should be truncated by parts of the geometry of
another solid. In order to specify which parts get trimmed, a direction has to be
specified.

Recall that each side of a solid consists of wall and roof elements, which cor-
respond to half-spaces in 3D. Assume having two solids A and B. We specify
that A gets trimmed by B according to the direction d (see Fig. 5.9). Then, for
each side s of B there is a test whether the outward facing normal vector of the
wall component of s and d form a positive scalar-product. If yes (green segments
in Fig. 5.9), the wall sub-solid of A is intersected by the half-space formed by
the wall component of s and the roof sub-solid is intersected by the half-space
formed by the roof component of s.

A trimming connection is directed, as one solid gets trimmed by another. There-
fore, two solids yield four different possibilities of trimming variations between

55

5. Case Study: Constructive Roofs from Solid Building Primitives

Figure 5.11.: A building that consists of two solids is evaluated with different parametrizations of
the sides. In this example, only the slope of the roof of the right solid was gradually
incremented from the first to the last image and the model was re-evaluated. It can
be observed that the roof geometry adapts accordingly to the situation.

each other (see Fig. 5.10).

Using this method of trimming we can ensure that the influence between solids
adapts correctly to changes in the parametrization. As an example, Fig. 5.11 shows
the results of automatic trimming under varying roof angles for one solid.

5.3.5. Roof Shapes

Up to now, we assumed the roof element of a side to be a single planar element.
However, Mansard roofs have two or more slopes on their sides. We account
for this by introducing side parametrizations that generate more than one roof
element, which is called profile-polygon component in our specification. We show
examples of a few roofs with profile polygons in Fig. 5.12.

Automatic trimming is performed in the same manner, although the case in
which neighboring solids influence each other in a way that introduces additional
geometry (compare to the small triangular area that emerges in Fig 5.2a) might
not be well defined. This, however, is not of practical importance, as we did not
encounter such situations in real roof configurations, where these roofs usually
have the same ridge height.

56

5.4. Specification of the Building

Figure 5.12.: Some roof shapes consist of more than one planar element, e.g. mansard roofs. We
account for such types by a general profile-polygon type. The last two examples
show solids with non-rectangular ground polygons.

5.4. Specification of the Building

In order to model a building we have to parameterize and combine multiple
solids. We developed a specification with which this can be done in a structured
fashion for one building.

5.4.1. Structure of Specification

Fig. 5.14 shows the elements of a structuring language we have developed. A
building is represented as a structure, which consists of multiple solids. Each
solid has at least one side, and a side has a parametrization (as already covered
in Section 5.3.1).

To achieve the correct influence of solids as described in Section 5.3.4, a solid can
contain multiple trimmings. A trimming references to the influencing solid and
an axis that specifies the direction.

Additionally, a solid can also have dormers (see Fig. 5.13). A dormer is a structure,
which is put on the solid and where appropriate cutting of roof faces is done
on the solid. For repetition of the same dormer multiple times along an axis,
we provide the dormer-pattern construct, where a repetition pattern must be
provided. These patterns are formed in analogy to repetition or subdivision
patterns in shape grammars.

This specification can easily be extended for further building and roof elements
(e.g. chimneys, ..) or different side parametrization.

57

5. Case Study: Constructive Roofs from Solid Building Primitives

Figure 5.13.: Dormers on a solid. They are structures which are placed on a solid, either individu-
ally or according to a pattern.

Figure 5.14.: Our abstract building model: The coarse structure is specified by solids and their
influence to each other. Nodes of the graph show elements, arrows show their
relationships (in a classical has-a notation). The quantifiers show the number of
sub-elements (? ... zero or one, 1 ... one, * ... zero or multiple, + ... one or multiple).

58

5.5. Implementation

5.4.2. Geometry Operators

The geometry of roofs must often fulfill certain criteria. Important properties for
the roof can be for example:

• Faces are planar (all vertices of a face must be co-planar - this can be a
problem when a face has more than three vertices).
• Faces intersect in one common vertex (for more than three faces this can be

a problem).
• Ridges are horizontal (often means that the to the ridge adjacent building

sides must be exactly parallel).
• Faces merge over multiple building parts (this often means that the corre-

sponding walls must be co-linear).

These properties form parameter dependencies, and they are a problem for the
input format, since there must be a way to avoid over-specification of parameters
(and therefore violation of the dependencies). Because of that, we included
geometry operators in the language. They operate on the axis element and can
produce new axis elements that allow for fulfilling the requirements stated above.
The operators are for example translation, rotation, parallel-translation, and
line-intersection.

5.5. Implementation

5.5.1. Double-covered Areas

The geometry of a roof can be described as a 2-dimensional manifold where
every possible vertical ray intersects the roof exactly 0 or 1 times. This means that
the roof geometry can be generated as the surface of solid geometry. The idea
is to generate solid geometry (which easily allows boolean operations) and then
extract the roof faces from it. The exception are double-covered areas (see Fig.
5.15). Here the roof of one part of the house rises over the roof of another part
(see Fig. 5.15b), and a vertical ray can intersect the overall roof multiple times,
which complicates the algorithm.

At a double-covered area, the lower part of the roof must extend to the wall of
the other solid. But when the eaves of both solids are at the same height (see Fig.

59

5. Case Study: Constructive Roofs from Solid Building Primitives

(a) Eaves at same
height. No area of
the roof is a double
covered area.

(b) Eaves at different
height. A double
covered area is
formed.

(c) Same height -
wrong result if
the roof geometry
extends to the
adjacent wall.

(d) Different height -
wrong result if the
roof geometry does
not extends to the
adjacent wall.

Figure 5.15.: Eaves and double-covered areas. Eaves are a challenge for the geometry generation.
Eaves with the same height (a) need a different geometry generation than eaves with
different heights (b). We show two examples (c,d) where simple algorithms yield
wrong results.

5.15a), they are not allowed to extend to the other solids wall, otherwise incorrect
geometry on the bottom side of the roof would occur (see Fig. 5.15c). In fact, only
the roof part with the lower eave is allowed to extend to the other solids wall.

5.5.2. Organization of the Components

In order to extract the geometry we generate convex polyhedra for each side
and perform boolean operations on them. Fig. 5.16 shows the inner and outer
side geometry for various sides. They are both identical, except that the outer one
extends the amount of overhang farther outward from the wall. Through this,
we will later be able to generate the geometry for overhangs and double-covered
areas.

The geometry for a solid is generated by intersection of the geometry of all sides.
Taking either the inner or outer side geometry, this yields the inner and outer
sub-solids as shown in Fig. 5.17. The inner sub-solid is used for the extraction of
the geometry for the walls, and the outer sub-solid is used for the extraction of
the geometry of the roof. An exception are roofs with double-covered ares. Here
the roof of one solid is covered by the roof of another solid. So for each side of
a solid, depending on the situation, the inner or outer side geometry needs to

60

5.5. Implementation

be taken. Then an individual sub-solid is formed by the intersection of the side
geometries.

5.5.3. Trimming

As already described, a solid can be trimmed by another solid. Which sides of
the other solid are selected for the trimming is described in Section 5.3.4. For
the geometry extraction this means that the selected sides of the other solid are
simply added as sides to the trimmed solid. This way, the solid gets automatically
cut because its geometry is determined by the intersection of the geometry of its
sides.

5.5.4. Geometry Extraction

The geometry of the walls can be obtained by performing a boolean union of
the inner sub-solids (see Fig. 5.17) of all solids, after they are trimmed. Then the
sidewards facing face of the resulting volume form the walls of the structure.

The geometry of the roof could also be obtained by performing a boolean union
of the outer sub-solids of all solids. Taking all the upward facing faces of the
resulting volume would yield the roof geometry. But double-covered areas make
the geometry extraction for the roof more complicated. This method would lead
to geometry errors (as seen in Fig. 5.15d).

Therefore, for every solid the roof geometry is extracted separately. The algorithm
for extraction is shown in Algorithm 1 and the according description is presented
in Table A.1.

The result of the geometry extraction can be seen in Fig. 5.18. Note that the roof
has the correct geometry, also in the inside of the building (the roofs bottom
side).

5.5.5. Processing

We have built a system with multiple steps where the input data is transformed.
The input format is XML but we built our own short notation that is semantically
equivalent but better read- and writable than pure XML.

61

5. Case Study: Constructive Roofs from Solid Building Primitives

y

x

y

x

y

x

y

x

y

x

y

x

Figure 5.16.: Side geometry. For the geometry generation each side is represented via convex
polyhedra (shaded areas). Top: inner side-geometry. Bottom: outer side-geometry. First
column: Simple roof with one roof face per side. Second column: The roof is specified
via a convex profile-polygon. Third column: The roof is specified via a concave
profile-polygon.

62

5.5. Implementation

Figure 5.17.: Each solid consists of two sub-solids, a wall sub-solid (black outline) and a roof
sub-solid (red outline), which are utilized for the trimming process.

(a) Building (b) Wall geometry (c) Roof geometry (d) Bottom side of roof

Figure 5.18.: Extracted geometry of a building. Wall and roof geometry are extracted separately.
The bottom side of the roof shows that the solids are not simply sticked together,
and the geometry is extracted correctly.

The steps of our current implementation are as follows:

1. The input file in short notation created by the user is converted into XML.
2. The XML file undergoes an enrichment step where sides and parameters

are automatically added according to Section 5.3.3.
3. The new XML file is converted into GML (our own in-house programming

language for procedural modeling).
4. Our engine in GML creates the geometry according to the principles de-

scribed in Section 5.5.

63

5. Case Study: Constructive Roofs from Solid Building Primitives

5.6. Results and Applications

We evaluated our prototype implementation by modeling three scenes that
exhibit interesting roof structures from aerial images. Our workflow consists of
the following steps:

1. Trace important lines via a vector-drawing program.
2. Convert lines into axis.
3. Assign parametrized sides with respect to axis.
4. Assign sides to solids.
5. Specify trimmings between solids.

The result is an abstract building description in an XML file that reflects our
specification (see Fig. 5.14). As of now, the workflow includes some manual steps,
for example, the assignment of parametrized sides. We observed that while the
models have complex roof cases, the roof shapes follow simple geometric rules
when blended together. As it was expected, the decomposition into convex parts
turned out to be quite obvious. Evaluation times were measured on the CPU
implementation of our prototype system on a 2.6GHz quad core machine.

The first model is the royal palace of Milan (Fig. 5.19) where we also placed some
dormers on the roof. The model consists of 28 solids (excluding dormers), and its
evaluation took 6 seconds.

The second model is a part of the city of Graz, Austria (Fig. 5.20). It consist of
7 structures that have 34 solids in total, and its evaluation took 5 seconds. The
roofs have considerable irregularities, which became a challenge in the modeling
process.

The third model is the Magdalena palacio in Santander (Fig. 5.1 and 5.21), which
is assembled from 25 solids, and its evaluation took 8 seconds without the facade
detail and 20 seconds with the facade detail. The roof of this building exhibits
some interesting features, such as the cavities on the middle part of the building,
which are hard to model using fully automatic (e.g., straight skeleton based)
approaches.

When doing direct comparison, the third model exhibits a more constrained
structure: the ridges follow two principle axes which are perpendicular to each
other. So we realigned the traced lines from the aerial view with the operators
described in Section 5.4.2. A more irregular layout, like that in the first and second

64

5.7. Conclusion

model, can make the modeling harder; at regions where solids adjoin or intersect,
artifacts are more likely to arise.

For all models, we did not have any measurements, therefore we estimated
values for missing parameters, e.g., the side heights, by using photographs of
the buildings as guidelines. While in this case the result is not a fully accurate
model, it produces a good approximation and visually satisfying result (e.g.,
see Fig. 5.21). Due to the missing parameters, we had to try different parameter
sets several times to ensure that the roof has the right topology. Nevertheless,
our abstract definition allows for quick reparametrization if real measurements
become available.

The geometry can be exported to .obj or other file formats for further usage in
other programs. We did our renderings in Blender where materials and lighting
were defined.

5.7. Conclusion

Modeling the coarse structure of a building by the composition of parts proved
to be suitable for buildings of classical architectural style. However, in many
cases a building is not a simple union of such parts. In this chapter, we proposed
automatic trimming of adjacent parts, which facilitates a concise, abstract de-
composition of a building into parts and their geometric influence. A coarse 3D
model of a building can then be generated from such a description, which can
further be fed into a conventional pipeline (e.g. shape grammars) that generates
detailed geometry for building parts (e.g. windows and doors), see Fig. 5.21. Our
abstract building description facilitates easy re-parametrization of building parts,
as the 3D model just has to be re-evaluated after a parameter has been changed
(as seen in Fig. 5.11).

We see applications for our method in production pipelines of virtual worlds.
This includes the digitalization of cultural heritage, since it can reproduce the
complex geometry of roof landscapes in historic cities. It is also suitable for the
movie and video games industry, where sometimes man years of work have to be
spent on modeling the environment. Our approach, which integrates into existing
procedural methods, further enhances the expressiveness of those methods and
advances the automatic generation of geometry.

65

5. Case Study: Constructive Roofs from Solid Building Primitives

Figure 5.19.: Model of the royal palace of Milan. For this model, the modeling process was done in
four steps: 1) obtaining an aerial image of the building (top left); 2) manual tracing of
important lines in a vector-drawing program (top middle); 3) extraction of the vector
coordinates to the XML format; 4) manual augmentation of remaining parameters
in the XML format (like height, roof angle, etc.). The resulting model was created
by our prototype implementation, and then rendered (top right and bottom). Aerial
images: Imagery c©2015 Google, Map data c©2015 Google.

66

5.7. Conclusion

Figure 5.20.: Model of the inner city of Graz, Austria. The detail is the same as in Fig. 5.4. 5.19.
Top left: 3D view from Google maps. Top right: 3D view from Google earth. Bottom:
Our model. While the models from Google have high detail, they do not ensure
constraints like planarity of roof faces or perfectly straight ridges, eaves, or other
edges. Our model ensures this by construction. The modeling process was done with
aerial images as in Fig 5.19. Aerial images: Imagery c©2015 Google, Map data c©2015

Google.

67

5. Case Study: Constructive Roofs from Solid Building Primitives

Figure
5.

2
1.:M

odelof
the

M
agdalena

palacio
in

Santander,Spain
(as

in
Fig.

5.
1).

68

5.7. Conclusion

 a

b c

Figure 5.22.: Comparison of our model of the Magdalena palacio (as Fig. 5.21) with the model
in Google maps. The modeling process was done with aerial images (middle left,
middle middle) as in Fig. 5.19. The detail of the model is increased with existing
procedural approaches. Here we used a conventional shape grammar approach for
modeling the facades (top). The model has three cases where roof topology changes
because of a specified trimming (middle right - marked with red circles). (a) is the
top row case from Fig. 5.9, (b) is the middle row case from Fig. 5.9, and (c) is a
complex case where five solids with different trimming specifications are involved.
The bottom row shows the 3D model in Google maps. Again the constraints of
planarity of roof faces and straightness of edges are not satisfied. Two additional
regions with wrong geometry are circled in red. Aerial images: Map data c©2015

Google, basado en BCN IGN España.

69

5. Case Study: Constructive Roofs from Solid Building Primitives

5.8. Future Work

The main focus in future work is directed towards more automation in the
modeling process. One direction is the automatic generation of solid and side
descriptions by a rule based system (e.g. stochastic grammars). The other direction
is headed towards automatic reconstruction by automatic tracing of important
roof lines and the incorporation of additional measurement data for automatic
parametrization of building sides (e.g., height of solids). Another interesting
direction for future research poses the incorporation of more complex geometry
(curves) into the cross-sectional profiles of building sides.

70

6. Case Study: Procedural Modeling
of Architecture with Round
Geometry

This chapter was published as the research paper Procedural Modeling of Ar-
chitecture with Round Geometry [26] in Computers & Graphics. It was written at
the Institute of Computer Graphics and Knowledge Visualisation (CGV) [46] at Graz
University of Technology in collaboration with the School of Computer Science and
Engineering (SCSE) [76] at Nanyang Technological University, Singapore. The paper
has been adapted here.

6.1. Introduction

In recent years, manual creation of 3D models has become a bigger and bigger
workload for the video game and movie industries. Cultural heritage sites needs
more and more 3D models for their visualizations. Procedural modeling provides
techniques to automatically generate 3D models, or variants from parameterizable
models. Split grammars – a variant that is especially suited for buildings and
facades – use a rule system to express repetitions. They usually start with a
box surrounding the building and split it into smaller boxes that correspond to
various building parts according to the rules. This is highly suitable for facades,
because they follow a straight rectangular structure.

Many classical non-rectangular structures also have repetitions. For example,
the arrangement of windows, bricks, or pillars in walls, towers, or domes (see
Figures 6.1 and 6.2) could be expressed perfectly with the existing splitting
idioms, but a standard box-based shape grammar does not allow for these curved
shapes or curved arrangements. This places limits on current split grammar

71

6. Case Study: Procedural Modeling of Architecture with Round Geometry

Figure 6.1.: Model of a castle wall, showing procedural splits along straight and round parts.
A polyline, used as high-level input to arrange the wall segments and towers, is
shown as an inset image on the bottom right. Each node and each edge has additional
parameters attached that control the geometry of the final model.

72

6.1. Introduction

systems and gives the opportunity to introduce new mechanisms to extend their
expressiveness.

There are already existing methods that can model or approximate curved and
deformed shapes (as in [87, 98]). However, they have problems or fail when it
comes to modeling complex or fully curved shapes as in towers, domes, vaults,
etc.

We introduce the ability to integrate custom coordinate systems into shape
grammars that do not need to be Cartesian. Having, for example, cylindrical or
spherical coordinate systems allows us to model such geometry, while keeping
the existing splitting idioms and procedural operators that are commonly used
to specify procedural models.

The main contributions in this chapter are:

• A method to manually specify and to automatically generate coordinate
systems for parts of the procedural model. Common splitting operations
then orient themselves along those coordinate systems.
• The design of the procedural system in such a way as to access those

coordinate systems and allow for the further modification of geometry (e.g.,
via Boolean operators).
• The option to feed the system with high level user input (e.g., user-defined

line-segments, or graphs), which is used to automatically position geometry.
Additional parameters specify the elements and their connections.

Our method is useful for the procedural generation of models of historic or
historic-looking buildings, since they traditionally involve many repetitions and
a certain formalism with regards to how details are arranged. These properties
make them good candidates for procedural modeling, since it can capture the
formalism, and also make the models highly parameterizable, while keeping the
formalism intact.

In general, objects whose geometry follows that of conic sections and have
repeating parts or a certain formalism with regards to the arrangement of parts,
are suited to be modeled with our method.

The high-level user input system allows for rapid modeling of connected, repeat-
ing structures such as castle walls or gangways.

We will start by giving an overview of the related work, and how existing
approaches deal with round geometry. We then show the shortcomings of these

73

6. Case Study: Procedural Modeling of Architecture with Round Geometry

Figure 6.2.: Example of structures that are hard to model with current split grammar approaches.
Images are taken from [34] and [35].

methods and present our approach to deal with these problems. An overview of
the structure of our system is given, in particular a set of operators is described
which allows for effective procedural modeling in the system. To conclude, we will
discuss how a model is built, the state of our current prototype implementation,
and some limitations of our system.

6.2. Related Work

Shape grammars, a form of procedural modeling, were originally developed by
Stiny [78] for the formal definition of paintings. He used sub-shape matching,
which identifies shapes and replaces them with other shapes according to rules.
The rules are applied iteratively until suitable rules can no longer be found.

In the context of procedural modeling for architecture, Wonka [96] was the
first to extend shape grammars to split grammars. In these cases, a bounding
scope, usually a box (as in [65]), is generated to contain the final geometry. The
bounding scope is then split into smaller parts, according to rules. In this sense,
split grammars are a specialization of shape grammars, since the paradigm is to
replace a bounding shape with multiple sub-shapes whose disjoint union equals
the original bounding shape. The left-hand side of the rule specifies a label for

74

6.2. Related Work

replacement, and the right-hand side specifies a split operation with parameters
and labels for new sub-shapes.

Besides boxes, other bounding shapes can be used. For example, [87] uses convex
polyhedra, which allows for a much bigger variety of shapes than simple boxes.
In [51], free form deformations (FFDs) are used as a new non-terminal class, while
[97, 98] integrated FFDs into the grammar so that shapes in the intermediate
stages of the grammar execution can be deformed. These extensions offer greater
possibilities for expressing non-rectangular shapes, but reach certain limitations,
e.g., when fully round geometry such as in towers or domes should be modeled.

The popular split grammar approaches have reached impressive results when
it comes to generating mass models. Whole cities with their buildings can be
created through application of simple rules. While the focus there lies on the
generation of many models, the question of how detailed the models are is
neglected to some extent. This leaves room for research into new methods that
allow for greater detail, realism, and precision in the generated models. Our
approach targets a part of this domain by focusing on round forms, in particular
forms that resemble conic sections, which are often used in classical architecture.
So far, none of the existing methods have the ability to generate these buildings
in very high detail.

The creation of geometry for the connection of different components of a model
is a separate concern. In the domain of building roofs, [24] and [25] have shown
how procedural roof parts can be connected using high level user input and
automatic adaption methods for the created geometry. Our approach describes
how geometry is modeled to connect regions of different components using the
tools we provide.

There is also some interesting work in fields related to this research. [47] is con-
cerned with different kinds of deformations of objects, which also has relevance
with respect to round buildings. [19] and [37] are concerned with segmentation
of 3D models and putting segments together in new ways, in order to generate
new models or to complete partial models. This can also be useful in the domain
of architectural modeling.

We have shown our approach in [27] and extend it here with further explanations,
details, examples, and a method to generate models by aligning elements with
high level user input.

75

6. Case Study: Procedural Modeling of Architecture with Round Geometry

6.3. Round Geometry in Procedural Modeling and
our Approach

6.3.1. Existing Approaches

Round geometry is not very widely covered in the existing literature that is con-
cerned with the procedural modeling of buildings. Split grammars in particular
have straight building facades as their original and main application field. That
relates to the primitives used in split grammars. Here, we give a brief overview
of various methods for split grammars.

Standard box based split grammars (e.g., [96, 65])

The standard split grammar approach uses an axis aligned box primitive. This box
is split into smaller sub-boxes and the original box is replaced with the sub-boxes.
In this way, the new sub-shapes are also axis-aligned sub-shapes. The splitting
happens according to user-specified rules. This process is repeated until no more
rules can be applied to boxes. The generated boxes can be used as they are to
import geometry, or simply be left empty. That makes up the final geometry of
the procedural model.

Boxes are very well suited for the procedural modeling of facades, since facades
often naturally have a matrix-like structure where boxes are sufficient as primi-
tives. Simple buildings can easily be modeled by extruding a ground polygon and
using a box based split grammar for the facades. In that way, model parts can be
created that can have arbitrary detail but must follow a rectangular structure.

Due to the rectangular nature of boxes, round geometry is only covered by the
import of pre-modelled asset geometry. This can indeed be any round geometry,
but further splitting is then limited. The splitting process only operates along one
of the three main axes of the box. Therefore, further procedural refinement of
round geometry is very restricted.

Split grammars with convex polyhedra [87]

Here the box primitive is replaced with a convex polyhedron. This brings a
much wider expressiveness, since slanted or polygonal shapes can be represented.

76

6.3. Round Geometry in Procedural Modeling and our Approach

It generalizes the box primitive, because convex polyhedra include boxes and
the above mentioned splits. A set of convex polyhedra can also represent a
non-convex, irregular shape, and round shapes can be approximated by this
method.

With this method architectural elements such as arches, winding staircases,
or slanted stairs and handrails are possible. Still, the problem remains how
a round shape can be further refined. Since there is no reference system (or
coordinate system) for the round geometry, splits must be made along a curve,
and unnecessary and complicated manual calculations for the setup of the curve
have to be made. Additionally, splits are always performed by a plane, which
leaves a planar face at the split location, not allowing for round geometry at
splits.

Deformation-aware split grammars [97, 98]

These papers concentrate on deformed geometry in split grammars. First, the
split grammar for a part is executed on straight geometry in a standard way,
and then the result is deformed by a deformation function. This can be done
in any level of the shape grammar evaluation, and can therefore generate more
than either simple deformed terminal shapes (that cannot be refined further) or a
global post-processing of the whole structure.

Structures such as bent walls can be very well described with this method. The
splitting of a wall into elements such as windows, doors, or bricks can adapt
to the deformed space by automatically varying the number of elements. The
splits themselves can be round since they are first performed straight and then
deformed.

Although the method is designed to cover round shapes, the approach with FFDs
cannot produce exact CSG shapes such as cylindrical or spherical shapes, but
only approximations. When a whole cylinder (as in round towers) should be
approximated, there is a seam where the ends of the deformed straight parts
meet. For a whole sphere (as in domes), there is a seam and a singularity at
the top. This is not only a problem for the geometry creation, but splits also
cannot create shapes that extend over a seam, since it divides the geometry by
construction.

77

6. Case Study: Procedural Modeling of Architecture with Round Geometry

Figure 6.3.: A wall split into nine pieces in different coordinate systems (Cartesian, cylindrical,
and spherical). The known splitting idioms from other procedural methods stay the
same, only the coordinate systems change.

6.3.2. Our Approach of Custom Coordinate Systems

Our solution for solving these existing shortcomings, is to specify custom coor-
dinate systems in the split grammar by the user. Cartesian coordinate systems
produce standard results as in other papers. Cylindrical coordinate systems pro-
duce round geometry useful for structures such as towers or pillars. Spherical
coordinate systems can be used for domes. Besides that, other coordinate systems
are feasible, for example, for cone shaped geometry (i.e. in roofs).

Specifying the coordinate system allows for further splits in the geometry with
the familiar splitting idioms. Where a split of a wall in a common split grammar
produces rectangular parts, we can now also split cylindrical or spherical walls
into sub-parts (see Figure 6.3). Because we do not loose the reference system, the
refinement of round geometry has no limits. This is an advantage of our method
in contrast to the common pre-modeled asset import, or the system with convex
polyhedra.

In the edges where round parts with different coordinate systems meet (e.g., in
round cross vaults), the coordinate systems of both parts are reference-able. This
is needed, since the geometry in the edge is related to both coordinate systems.

78

6.4. Common Procedural Modeling Systems and Our Proposed System

6.4. Common Procedural Modeling Systems and Our
Proposed System

6.4.1. Existing Approaches

For the procedural generation of architecture there are a few common methods
which can be found in scientific literature:

Split grammars

Split grammars are a popular method to generate buildings, especially the facades
[65]. They use simple rules given by the user to define the partitioning of geometry.
Split rules divide the geometry into multiple parts along one axis. This works
very well for rectangular elements that are arranged in an array or matrix-like
fashion, such as in the case of facades. When the structure gets more complex,
additional operators have to be included into the rule system (see [77]).

The problem is that when the modeling becomes more complex, more opera-
tors need to be added to the split grammar. This leads to the extension of the
grammar with common programming operators, known from general purpose
programming languages. Thus, the split grammar becomes more and more like
a general purpose language. One can argue, that this is a case of ”re-inventing
the wheel”. Further rule specification by the user becomes more and more like
programming, as in a general purpose language.

Scripting

The scripting approach simply uses a general purpose programming language
and augments it with features and operators for procedural modeling. An ex-
ample is Leblanc’s paper [53]. The advantage is, that all features of the general
purpose language are available, and no reimplementation of them has to be
done.

The disadvantage is of course, that in simple cases (as for many facades) the
simple rule system is not available for the user. However, the code for modeling
a building often follows certain patterns, and these patterns may very well be

79

6. Case Study: Procedural Modeling of Architecture with Round Geometry

encoded in a rule system. This rules system could then be like those mentioned
in Section 6.4.1 and reproduce a part of the scripting language. A parser could
now transform the rules into the scripting language (such as in [51]).

For this approach, the choice of the language is important, since its features and
idioms influence how easy modeling becomes for the user. Generally, modern
scripting languages are a good fit for this task.

Others

Other approaches to modeling buildings also exist. [48] use a modified straight
skeleton algorithm to generate the outer building shell. He uses a variant where
he can adjust the 3D slant of each face in arbitrary stages, which allows him
to generate complex wall and roof geometry. This method can produce many
complex building forms, but has no system to describe repetitions built within.
Modeling a lot of detailed elements (such as bricks) is difficult, and in general,
straight skeleton algorithms are prone to numerical errors, which makes their
implementation difficult.

Finkenzeller [31] also uses polygonal floor plans to describe a building. In contrast
to [48], he does not use the straight skeleton, but only extrudes the walls straight
from a polygonal floor plan. However, he uses multiple floor plans per building
and can link them together, allowing for complex forms for buildings. There is
also no handling of repetition of detail.

6.4.2. Our Procedural Modeling of Round Geometry

The purpose of setting up coordinate systems for the splitting process is to
keep the existing splitting idioms unchanged, and to modify only the space in
which they are operating. This lets the user work with well known methods and
quickly create procedural models with round geometry. However, it gets more
complicated as the complexity of the geometry increases. Especially in the areas
where round and straight geometry meet, or more generally, where parts with
different coordinate systems meet. In such cases, more advanced operations have
to be carried out. This usually includes Boolean operations in order to trim the
geometry. To satisfy these complex needs, we chose to implement our system
with the very flexible scripting approach, augmented with features and operators
similar to that of split grammars.

80

6.4. Common Procedural Modeling Systems and Our Proposed System

Components in the System

In order to describe the structure of our scripting system, we give an overview of
its main components here:

• Coordinate System. The coordinate system is the main component where
geometry orients itself. We let the user set up a coordinate system by specify-
ing its type (Cartesian, cylindrical, spherical, or basically any 3-dimensional
coordinate system) and the needed parameters (origin, vectors for alignment
of axes, etc.). Each one of the three coordinates has a name (X, Y, Z, ρ, φ,
etc.). The splits that will be performed then usually split via a coordinate
surface for a coordinate. A coordinate surface is the surface formed by the
set of all points in the coordinate system, where one coordinate is fixed
and the other coordinates can vary arbitrarily. In the case of a Cartesian
coordinate system, the coordinate surfaces are all axis-orthogonal planes,
producing the standard splits known from box-based split grammars.

• Scope. The scope describes the ”abstract” form of the shape. It is the basis
for further split operations - the splits themselves create new sub-shapes
with modified scopes. Usually, the scope is a box, but can also be a convex
polyhedron as in [87]. In our system, it is usually a box in a specific coordi-
nate system - meaning for a Cartesian coordinate system, a normal box, but
for a cylindrical coordinate system, a bent box (bound by: inner and outer
radius, bottom and top plane, and two side planes with an opening angle -
also see Figure 6.3). Additionally we allow scopes to be bounded by less or
more than three dimensions, infinite scopes, or scopes that are bounded by
different coordinate systems, resembling (possibly bent) convex polyhedra.

• Shape. In accordance to [65] and [77], we define a shape as a procedural en-
tity, having a scope and various attributes. The final geometry of the shape
can be the geometry of its scope, a modification of the scope’s geometry,
imported pre-modelled assets (that orient their dimensions along the scope),
or simply empty geometry.

• Split Tree. The split tree results from the application of operators to the
shapes, because they produce new sub-shapes that are inserted into the split
tree as child-nodes. However, the split tree can also be created or altered
manually.

81

6. Case Study: Procedural Modeling of Architecture with Round Geometry

• Operator. Our system has various operators that can modify the different
components. Most important are the shape operators, which are similar to
the common operators in split grammars (first and foremost, the common
split operator). A shape operator generates new sub-shapes (child-nodes in
the split tree) with specific dimensions in the specified coordinate system.
Then, it copies all attributes from the current shape to the sub-shapes, and
calls the specified rule functions for each sub-shape. Other operators modify
the scope or coordinate system of a shape. For a more detailed description
of operators see Section 6.4.2.

• Rule Function. Rule functions are normal functions in the programming
language that are called by operators. The operator creates a new shape,
and the rule function then works locally on that shape. This means, for
example, that any attributes that are directly accessed come from this shape,
and any operators that are called in the rule function work on the scope of
this shape. Through this mechanism, the rule functions can be implemented
as ordinary functions in the general purpose language. Because of that, the
user can take advantage of all existing programming features, while still
using common splitting idioms known from split grammars.

• Alignment element. High-level alignment elements provide a way to align
procedural elements. This can be points, lines, polylines, graphs, etc. Addi-
tionally, parameters can be given for every part of the alignment element
(e.g. for every point or line of a graph), so that the aligning procedural
element can be adapted to specific needs.

Operators

We have a multitude of operators in our system that allow for the modification of
shapes, scopes, and coordinate systems. Here, we present a list of some of the
most important operators along with a short description.

• subdivide. Known from common split grammars. It divides a shape accord-
ing to its scope along one coordinate of its coordinate system into a fixed
number of sub-shapes. For each sub-shape, the dimension of its scope along
that coordinate is given by the user. Possible are absolute values, as well as
relative values (they specify, for example, that sub-shape a has double the

82

6.4. Common Procedural Modeling Systems and Our Proposed System

(a) Cartesian coordinate system (left), and
additional generated cylindrical coor-
dinate system (right).

(b) Cylindrical coordinate system (left),
and additional generated Cartesian
coordinate system (right).

Figure 6.4.: Operators are used to generate new coordinate systems and scopes. For (a) wrap-
cartesian-over-cylindrical, and for (b) fit-cartesian-into-cylindrical is used. Black ar-
rows symbolize coordinate systems, blue and red boxes symbolize scopes of new
shapes.

dimension along that coordinate as sub-shape b).

• repeat. Also known from common split grammars, and similar to subdivide.
The difference is, that a shape is split into a repeated set of sub-shapes,
which have a fixed dimension along one coordinate. The sub-shapes are
repeated such that all the space of the original shapes scope is used.

• call-rule. Simply generates a new sub-shape for a shape with the same
scope (and no splitting), and then calls the specified rule function. This is
useful when rule functions are reused, and called from multiple locations
in the code.

• bounds-expand. Expands the dimensions of the scope by given values for
the three coordinates.

• fit-cylindrical-into-cartesian. This operator takes a shape with a Cartesian
coordinate system and creates a new sub-shape with a cylindrical coordinate
system that is fitted in at the top position (see Figure 6.4a). This is useful

83

6. Case Study: Procedural Modeling of Architecture with Round Geometry

(a) Cross vault bottom view. (b) Cross vault side view. (c) Coordinate systems for the
cross vault. Two cylindrical
ones (red and blue), and a
cartesian one (green).

Figure 6.5.: Cross vault, showing repetitive geometry at a round surface. Two barrel vaults (that
are rounded differently) cross each other. The decoration on the edge where both
vaults intersect is modeled using the coordinate systems of both barrels. The two
vaults use cylindrical coordinate systems, and for the cutout and the decoration an
additional Cartesian coordinate system has to be set up (Figure 6.5c).

for building arches, since the top part of the arch can now be modeled with
shapes following the cylindrical coordinate system. For the lower part of
the arch, an additional sub-shape with the original Cartesian coordinate
system, but with a shorter scope is generated.

• fit-pointed-arch-into-cartesian. This operator is similar to fit-cylindrical-
into-cartesian, but generates two sub-shapes with cylindrical coordinate
systems, whose origins are displaced to the left and to the right. This lets a
user model pointed arches, such as those in Figures 6.9 and 6.7.

• wrap-cartesian-over-cylindrical. Here, for a shape with a cylindrical co-
ordinate system, a new sub-shape with a Cartesian coordinate system is
generated. The sub-shape’s scope is dimensioned in such a way, that the
original shape’s scope is circumscribed (see Figure 6.4b). This is useful
when rectangular elements have to be inserted into round objects, such as
windows in cylindrical towers.

84

6.5. Workflow

(a) The first vault is cre-
ated for one direc-
tion (lines 3, 20).

(b) The vault is split
along the axis (line
29).

(c) The bigger parts are
further split and
form the cassettes
(line 45).

(d) Geometry is cut out
in order to make
room for the second
vault (line 34)

(e) The second vault
is created and split
analog to the first
one (lines 11, 21).

(f) Similarly, geometry
is cut out of the sec-
ond vault.

(g) The two vaults are
joined (line 23 - im-
plicit).

(h) The decoration is
added (lines 22, 23).

Figure 6.6.: Steps in the generation of the model in Figure 6.5. One barrel vault is generated with
a specified coordinate system, details are added via split rules, and geometry is cut
out (top row). The same is done for the other barrel, both vaults are joined, and the
decoration on the edges is added (bottom row). The line numbers refer to lines in
Listing B.1 that are crucial for this step of the generation.

6.5. Workflow

The workflow of our system is similar to that of working with a standard split
grammar. We describe the workflow via the example of a cross vault (Figure
6.5) that we have modeled with the system. Listing B.1 shows a pseudo-code
for the cross vault, and Figure 6.6 shows various steps in the generation of the
model. Table B.1 lists all the attributes that are present for one shape in the
implementation of our system, and that are accessible in the code.

Before starting, we determine the main parts of the model. In this case, these are
the two barrel vaults that intersect with each other. For each of them a cylindrical
coordinate system is generated, and an additional Cartesian one is needed for
trimming and for the decoration along the edges.

The pseudocode in Listing B.1 shows how the rules for this model look. We have

85

6. Case Study: Procedural Modeling of Architecture with Round Geometry

programmed our system with our own in-house language (GML [38]), so we
show only pseudo-code (in a python-like syntax). The first rule Start sets up the
coordinate systems (one cylindrical for every barrel vault, and one Cartesian
for the decoration and trimming geometry). Then it calls the two rules for each
vault direction (Vault0, Vault1) and the decoration (Decoration). The rule Vault0
generates one vault with normal split rules (Figures 6.6a - 6.6c), and then cuts
out the part where the other vault will join (Figure 6.6d). For the other vault
the same is done (Figures 6.6e, 6.6f) and both are joined (Figure 6.6g). At last,
the decoration in the rule Decoration is created. Here we use for the first time
coordinate-bounds from different coordinate systems for the scope of an element
(Listing B.1 - line 69). Then at the end, all elements are joined to form the final
model (Figure 6.6h). In the code (Listing B.1 - line 23) this happens implicitly,
since the geometry of all the sub-shapes in the children attribute is automatically
joined to build the final geometry.

6.6. Further Methods

6.6.1. Automatic Generation of Coordinate Systems

One of the central elements of our method is to create shapes with different
coordinate systems automatically. We can automatically place new shapes with
new coordinate systems into an existing one. Figure 6.4 shows two cases.

Figure 6.4a shows an operation that is useful for the generation of arches. Here
the operator fit-cylindrical-into-cartesian takes a shape (green) with a Cartesian
coordinate system and generates two new shapes. The first one (red) is with the
same coordinate system, but with a modified scope that only extends up to the
point where the arch starts. And the second one (blue) has a new cylindrical
coordinate system which fits in and is centered at the top of the old shape. This
shape can then be used to model the actual arch. For example, radial splitting
can be used to model single bricks in the arch.

Figure 6.4b shows an operation that is useful for aligning elements in a circular
way. A shape with a cylindrical coordinate system can be used and split radially.
The operator wrap-cartesian-over-cylindrical creates a new shape with a new
Cartesian coordinate system. The scope has dimensions such that the new shape
is wrapped around the original wedge-like shape. If this is done for many of the

86

6.6. Further Methods

wedge-like shapes, the new shapes will all have Cartesian coordinate systems
that are aligned in a circular fashion. They can then be further split to generate
detail, or new coordinate systems can be fit in, in order to generate elements such
as circular arranged pillars or arches.

6.6.2. Customizable and Reusable Modules

The high degree of customization through parameter arguments or modification
of code parts also makes models very reusable.

In Figure 6.7, the model of a cross vault is varied by two high-level parameters.
Many of these cross vaults can now, for example, be combined to form gangways
(Figure 6.9). Here, only the parameters of the same axis of adjacent cross vaults
have to match, the other axis can differ arbitrarily.

6.6.3. High-level Geometry Specifications

When multiple modules are combined, high level alignment elements can be used
to align and adapt them. Additionally, parameters can be specified that allow
for the adaption of the individual modules. This provides a way to create and
modify the model on a significantly higher and easier level. That means that even
inexperienced users can modify the model and create different variations on a
coarse but not detailed level.

We have implemented the processing of polylines and graphs as high level input.
Examples show a castle wall that is automatically placed along a polyline (see
Figure 6.1) and the roofing of a gangway with a section where multiple gangways
come together (arranged by a graph structure - see Figure 6.10). The polyline and
the graph structure that control the high level geometrical alignment are also
shown in the Figures. Each node and each edge of the polyline or graph have
additional parameters attached that control the appearance of the model there.

This means, that the creation of such models can be split into two parts. One,
where experienced users create a model with a high-level primitive and attached
parameters. And one, where inexperienced users can simply modify the high-
level primitive and the parameters. The second part is significantly easier and is
possible for new users who are not familiar with the system.

87

6. Case Study: Procedural Modeling of Architecture with Round Geometry

Figure 6.7.: Variations of a procedural cross-vault model. To the right the width increases, and
the arch automatically adopts to the new space. To the bottom the angle of the arch
decreases and the arch becomes a pointed arch.

88

6.6. Further Methods

Figure 6.8.: Model of a segment of a castle wall. Each row shows the model with different
parameters. Splits that subdivide an area can be performed on rectangular geometry
(straight wall part), as well as on round geometry (round tower part) in the same
fashion. The bricks are actual 3D geometry and have been modeled by using repeat
splits.

89

6. Case Study: Procedural Modeling of Architecture with Round Geometry

Figure 6.9.: The cross vault from Figure 6.7 can be easily repeated to form gangways. The length
and width of a procedural cross vault are independent, which allows them to be
combined in interesting ways. Additionally, the bricks have been modeled with repeat
splits.

Figure 6.10.: Model of a roofing for a gangway. Elements are aligned according to a graph, with a
multi-way crossing in the middle. A vault is placed over every edge of the graph
and the pillars are created for every node. The graph is shown as an inset image on
the bottom right.

90

6.7. Implementation

6.7. Implementation

A challenge that our approach experiences in comparison to normal shape
grammars is that we must be able to address specific coordinates and coordinate
systems and switch between them. For example, the cutouts and the decoration in
Figure 6.6 are modeled by referencing different coordinate systems. Also, boolean
operations are often needed to cut out geometry, for example, the windows in
Figure 6.11. In an ordinary split grammar with rectangular geometry, the hole
for a window can often be modeled by simply splitting a wall first horizontally
and then vertically, leaving the resulting inner element simply empty. With round
windows this is no longer possible, and round geometry has to be created that
is then subtracted via a boolean operation from the wall geometry. Due to these
factors, a simple grammar is no longer sufficient and we take a more general
approach to programming our models, which is still inspired by split grammars
in order to ease modeling.

We implemented our prototype in GML [38], our in-house procedural modeling
language. As described in Section 6.4.2, we have rule functions, which are imple-
mented as ordinary functions in GML. The splitting operators call the functions
and set the programming scope to the newly generated shapes. Inside a function
the user can program with all the available features of the language.

Every shape has a set of attributes. When called, each rule function creates a
new shape and the attributes of the parent shape are copied to the newly created
one. Table B.1 shows a table of the attributes of a shape. Every attribute can be
modified by the user. Listing B.1 shows pseudo code for the model in Figure
6.5.

In general the user first creates one or more coordinate systems in the start shape
by setting the coordsystem attribute. He then defines the scope of the shape by
setting the dimensions for each coordinate in the bounds attribute, and setting
the scope attribute to the names of the coordinates that are used to bound the
shape. He can save arbitrary data in the user attribute, and access it in subsequent
rule functions. He can now split the shape with splitting-operators that save the
resulting sub-shapes in the children attribute. The parent attribute is automatically
set to the (parent) shape whose rule function created this shape. Finally, by
default the geometry attribute is automatically set to the union of geometries of all
children. This, however, can be overridden by the user. He can manually take the
geometry from various children and perform Boolean operations on them, and

91

6. Case Study: Procedural Modeling of Architecture with Round Geometry

then save the result there. Alternatively, he can even save some arbitrary geometry
there. After the rule function is executed, the geometry from the geometry attribute
is passed up to the parent shape.

As with other split grammars, our method splits a shape into multiple sub-shapes
and thereby generates new scopes for them. In our implementation there is no
geometry involved so far, everything simply operates on the parameters of the
shapes/scopes. Later, leaf shapes are filled with geometry. This process is fast,
since geometry creation is a local process here. After that the parent-shapes can
access this geometry. By default, parent shapes only collect the geometry of
their children and pass it along the hierarchy to the top. However, they can also
implement their own behavior, for example perform boolean operations on the
geometry that they receive from their children.

The geometric kernel that we use is based upon convex polyhedra, where solids
are represented as a collection of convex polyhedra. It is also our in-house
development, and it allows for fast and exact boolean operations on solids. Exact
also means, that we do not get topological problems when we do multiple,
complex boolean operations. We approximate round shapes with a reasonable
amount of convex polyhedra, and can set parameters for the level of detail.

The final models were then exported as .obj files and the renderings were done
in blender [18].

6.8. Limitations

6.8.1. Solid and Mesh Limitations

The type of geometric data structure that is used determines the operations that
can later be performed. While a data structure representing solids makes it easy
to perform boolean operations (union, intersection, difference), shapes that are
more free-form shapes which do not follow the geometry of conic sections can
be difficult or impossible to reproduce, and may need elaborate approximation.
On the other hand, a mesh data structure is well-suited for the representation of
arbitrary forms (or for their approximation to a certain degree), but is often error
prone when it comes to boolean operations.

92

6.8. Limitations

Since we need boolean operations in the more complex structures, we decided on
a solid modeling data structure. This limits the forms generated. In fact we do
not have any examples of spherical models, since our approximation methods
for them are currently still slow. However, with the right data structures and
algorithms, the set of primitive forms that are possible, can be extended.

6.8.2. Performance

The possibility to perform Boolean operations on the created geometry allows
for the creation of a wide variety of shapes, but can also result in serious costs
in terms of performance. Because the system only creates geometry in the leaf
nodes of the derivation (as described in Section 6.7), it is a fast and local process,
but Boolean operations can work with arbitrary complex geometry, and therefore
become a time-consuming process.

For example the bricks in the wall in Figure 6.1 are all modeled with split rules
and create a lot of geometry. Cutting out the window openings from the fully
generated brick wall now becomes the most time consuming part of the evaluation
of the model, because there is so much geometry involved.

However, this depends on the method with which Boolean operations are im-
plemented in the system. Using screen-space CSG, for example, would probably
significantly reduce the cost of Boolean operations on geometry-rich parts.

6.8.3. Modeling Edge Decorations

We have shown that it is possible to model edge decorations because we can
access all the different coordinate systems of multiple intersecting elements. For
example, in Figure 6.5 we modeled a cross vault and decorations along the
intersecting edges of the vaults. For the decorations access to the coordinate
systems was needed, but this was not enough. Additionally, for each decoration
along an edge, we needed a Cartesian coordinate system in order to bound the
elements of the decoration (see green coordinate system in Figure 6.5c). This
works, because both intersecting vaults have the same dimensions, and intersect
along two edges that each lie in a plane. If the vaults had different dimensions,
the intersection would be more complicated. In this case, a normal coordinate

93

6. Case Study: Procedural Modeling of Architecture with Round Geometry

system is not sufficient to model the details, and some kind of moving coordinate
frame would be needed.

6.9. Results and Applications

6.9.1. Castle Wall

For the model in Figure 6.8, a Cartesian and a cylindrical coordinate system are
set up for the respective parts. Additionally, various parameters that determine
the dimension of different parts are specified. Then, rule functions for both main
parts are called separately, where the splitting process begins. Splits are specified
by the user for the circular tower part simply like for the straight wall part. In fact,
in this model many rule functions for details (windows, bricks, crenelations, etc.)
are used in both branches (wall and tower), and do not have to be specified twice.
Where needed, differences for both branches can be resolved with conditional
statements in the rule functions. This shows that rule functions can be reused,
and that the splitting method is independent of the coordinate system. The bricks,
windows, and pinnacles have all been modeled with repeat rules, such that the
number of elements automatically adapts to the space given.

The area where the wall and the tower join, needs special handling. Because we
have set up the two coordinate systems in advance, we can reference them from
both branches. This allows us to construct volumes that are used to cut out holes
in each part (via Boolean operators), so that then, both parts fit perfectly together
(producing a disjoint union as result). From the straight part segments are cut
out that correspond to the cylindrical coordinate system, and at the round part at
the top the pinnacles are trimmed with geometry corresponding to the Cartesian
coordinate system.

The full castle wall (as in Figure 6.1) uses the high-level system described in 6.6.3.
The user can place a polyline on the ground that is used to align the straight and
round wall parts. Straight walls are created along the line segments, and round
towers are created in the corners.

94

6.10. Conclusion

6.9.2. Neuschwanstein Castle Towers

Figure 6.11 shows photos of two towers which are part of Neuschwanstein castle
in Germany. We have created models which are inspired by them. They illustrate
the technique described in Section 6.6.1. Additionally, a visualization of most of
the created coordinate systems in the two models is shown.

For the tower on the left, first the main cylindrical coordinate system is set up.
It is split into a bottom, middle, top, and roof part. The parts are refined with
further splits. Then there are some parts that need additional coordinate systems.
These are, for example, all the arcs that exist in the model. For these, the process
is always the same. First, the main cylindrical coordinate system is split radially
into multiple wedge-like shapes. Each of them will later contain one arc. Then, for
each wedge, a shape with a Cartesian coordinate system is wrapped around (as
in Figure 6.4b). The shape is now used to fit a shape with a cylindrical coordinate
system vertically (as in Figure 6.4a). This last shape is then further used and
refined to model the arc, or to model geometry that represents the inner, empty
part of the arc which is later used for Boolean subtraction.

For the tower on the right, the process is similar but it involves two separate
towers that are joined together.

6.9.3. Gangway

The gangway model (Figure 6.10) uses a graph as high-level input to align its
elements. For each line segment a vault is created. At the nodes, additional
Cartesian coordinate systems are created (such as the green Cartesian system
in Figure 6.5c), that are needed for the edge geometry and the pillars. These
coordinate systems are also needed to trim the vault geometry at the nodes. Their
alignment is along the angle bisectors of the line segments that meet in one node.
The pillars are modeled in a similar way as the decoration along the edges in
Figure 6.5

6.10. Conclusion

We have described and illustrated a method that allows for the definition and
further refinement of round geometry in procedural modeling. This approach

95

6. Case Study: Procedural Modeling of Architecture with Round Geometry

Figure 6.11.: Towers of Neuschwanstein castle in Germany. The photos (sides - bottom, taken
from [34]) show two different examples of the castle’s towers. The respective 3D
models (center) have been created with our method. Not all elements have been
modeled, nevertheless the highly detailed results of our approach are visible (e.g.,
the bricks and all bumps are actual 3D geometry). The models have complex setups
with many nested coordinate systems that are generated via the method (sides - top).
Cartesian coordinate systems are indicated via boxes, cylindrical ones via cylinders,
and conical ones via cones. Not all of them are shown, since this would overload
the depiction. The technique in Figure 6.4 is used multiple times to generate the
coordinate systems.

96

6.11. Future Work

is new and has not been explored in this form so far. Existing methods are
limited when it comes to detailed generation of procedural geometry which
needs further refinement. Our approach allows for the procedural modeling of
geometry following conic sections, which are often present in historical buildings.
We have shown that our approach can adequately represent at least parts of their
geometry.

Furthermore, we have described a method to let users specify high-level input in
order to arrange automatically generated procedural elements.

6.11. Future Work

Our method provides a basis to specify round geometry for procedural mod-
els. The following subsections give example areas where this concept could be
extended.

6.11.1. Profiles and Extrusions

Giving the user the possibility to define profiles in the system would allow for
solid building primitives that are generated by extrusion or revolution. They fit
perfectly into Cartesian, respectively cylindrical coordinate systems and could
be fully integrated into the splitting process. This would enhance the form
expressiveness of the system.

6.11.2. Parametric Surfaces

Our approach could naturally be extended to parametric surfaces. A parametric
surface already has two coordinates (input parameters), and the third can be
augmented. This would most likely be the distance from the surface (along the
surface normal at that point). Using this method, it would be possible to model
modern buildings that have a building shell in the form of free-form surfaces.
These free-form surfaces could be parameterized and then further refined with
our method.

97

6. Case Study: Procedural Modeling of Architecture with Round Geometry

6.11.3. Ornaments

A possible method to model ornaments in architecture, is to model an ornamental
pattern in a 3D software such as Blender and save the geometry. This geometry is
then inserted into the terminals of a split grammar and transformed accordingly.
Because the terminals in our system cannot only be boxes, but also round shapes,
we can extend the ornamental pattern to round, circular, spherical, or other
geometry.

6.11.4. Mechanical parts

Many mechanical parts have geometry following conic sections and consist of
details and sub-parts that are placed according to exactly specified dimensions.
This specification formalism can also be described with procedural modeling,
and our modeling method should be possible to extend to cover a part of this
domain.

98

7. Case Study: Curvature-controlled
Curve Editing using Piecewise
Clothoid Curves

This chapter was published as the research paper Curvature-controlled curve editing
using piecewise clothoid curves [41] in Computers & Graphics. It was written at
the Institute of Computer Graphics and Knowledge Visualisation (CGV) [46] at Graz
University of Technology. The paper has been adapted here.

7.1. Introduction

The creation of good-looking curves is a fundamental task in 2D (and 3D) shape
design. Through a recent collaboration with the surfacing department of a car
manufacturer we realized how difficult it is in practice to convert a given design
curve into a high-quality parametric curve that is suitable for further processing
in a high-end CAD system (CATIA). Observing the work of the surface engineers
we developed three hypotheses about their requirements:

Hypothesis 1 The control polygon alone must unambiguously, and in a predictable way,
define the shape.

Hypothesis 2 The control polygon must be as sparse as possible (a) to offer control and
(b) to avoid artifacts.

Hypothesis 3 Controlling curvature is essential; much time is spent on removing
curvature artifacts.

99

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.1.: An ornamental wrought iron form, captured with PCCs.

Curvature control is so important in high-quality (“class-A”) shape design because
curves are the basis for creating surfaces, and curvature artifacts lead to bad light
reflections. State of the art in industrial design is the use of (piecewise) polynomial
curves such as Bézier curves, B-splines, and their numerous variations. They are
efficient to compute, their properties are well understood, and many algorithms
exist for knot insertion, degree elevation, etc. The first hypothesis, however,
precludes curve representations with invisible extra parameters such as NURBS,
β-, τ-, or ν-splines; even varying the knot spacing is usually avoided. The use of
any such non-graphical parameters has the crucial disadvantage that the curve
shape cannot be judged only by looking at the control polygon; but this is exactly
the expertise of surface engineers. This is why professional class-A surfacing
software like IcemSurf still uses exclusively the oldest and most direct surface
technique, tensor product Bézier surfaces of degree three up to nine.

The curvature of spline curves is difficult to control. In some cases it is even
impossible to obtain the desired curvature practically, i.e., using a sparse control
polygon (see Section 7.7). The reason is that, informally speaking, spline control
points exert an ’extra pull’ on the curve. A B-Spline with a regular n-gon as
control polygon still deviates noticeably from a circle; without an extra weight
parameter (rational splines) it is impossible to obtain a perfect circle. The real
problem, however, is the lack of clear rules for the placement of control points.

100

7.1. Introduction

Surface engineers need years of experience to master the control point placement
intuitively.

7.1.1. Piecewise Clothoid Curves as superior Alternative

The work presented in this chapter is the result of the quest for a curve represen-
tation that has no hidden parameters and offers exactly the degrees of freedom
that designers need in order to control both the shape and the curvature of a
2D curve. We propose replacing splines by piecewise clothoid curves (PCCs).
The heart of the framework is a fast algorithm to compute a PCC from a given
(open or closed) sequence of input points. The problem can be stated formally as
follows:

Given 2D points p1, . . . , pn, compute clothoid segments c1(t), . . . , cn−1(t)
with arc lengths d1, . . . , dn−1 so that c1(0) = p1, ci(0) = ci−1(di−1) = pi
for i > 1, and cn−1(dn−1) = pn.

There is no suitable closed-form representation of clothoid curves; they are
defined via Fresnel integrals and computing them is impractical [42]. Therefore
we use an iterative discrete scheme (see Section 7.3).

7.1.2. Contribution

Our contribution is a unified framework for curvature-controlled curve design
with PCCs:

• Fast adaptive clothoid interpolation algorithm
• Curvature simplification by dynamic programming
• Clothoid blending by nonlinear subdivision
• Direct editing of the curvature plot
• Physical interpretation of curvature smoothing
• Different control modes for points: free, constrained tangents, and con-

strained curvature.

101

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

7.1.3. Benefit

Clothoid curves are well known for their aesthetic quality. However, they have
never been widely used in shape design, maybe for efficiency reasons, but
certainly also because of the lack of suitable design tools. We argue that with
PCCs, designers can reach their goal much faster and with an excellent level
of control, for example to meet max/min curvature constraints, to limit the
curvature variation, and to obtain aesthetically pleasing results. PCCs are much
more ’relaxed’ than splines; the infamous ’spikes’ with unbounded curvature
are avoided. Tension can still be added to the curve intentionally by explicitly
inserting short segments as it is demonstrated, e.g., in Figures 7.1 and 7.14.

In summary, we show that PCCs are superior to splines in practice: Any spline
curve can be approximated by a PCC with a sparse control polygon, but the
converse is not true (see Section 7.7).

7.2. Related Work

A variational approach for computing discrete approximations of piecewise
clothoid curves was presented in a fairing context in [75]. Like in our algorithm,
they refine a given polygon by inserting new points and moving them such
that the curvature distribution becomes piecewise linear (direct approach). They
also propose an indirect approach, iteratively alternating between curvature
estimation at the control points and curvature interpolation at intermediate
points. Our method is similar to their direct method, but we take the segment
lengths into account. This assures fast convergence also for adjacent segments of
greatly varying lengths. This is the key for adding fine details and ’tension’ to
the clothoids. Clarifying about terminology, our piecewise clothoid curve (PCC) is
called discrete clothoid spline (DCS) in [75]; but since splines are often associated
with convolution or blending, we find it more appropriate to call a clothoid spline
the result of the curvature refinement process presented in Section 7.5.

It was observed already in the 1970s that clothoids are useful for interpolating
data points with specified tangent and curvature. As proposed in [66] they can
be connected with linear curvature elements (linces) that are integrated to yield
clothoids. The approach was extended by [68, 74] who developed blending
patterns for bi-, tri-, quadrilinces to connect a pair of data points. They used a
direct integration method while our method is global and works in a variational

102

7.2. Related Work

setting, interpolating all control points. While their method requires tangents and
curvature in every control point, our method guarantees that every two points
are connected only by a single clothoid. An advantage of their method is that
modifications have only local impact, in contrast to our method where the impact
is global; however, we can also achieve the same, since specifying constraints
effectively decouples the parts of our curves.

An extension of the clothoid (Cornu spiral) to the generalized Cornu spiral (GCS)
is presented in [10]. The curvature is not only linear but rational, so additional
degrees of freedom are available; however, they are not visual, and so they are
difficult to control by designers. A useful overview of clothoid (Euler spiral)
techniques is given in the comprehensive thesis [55]. It includes mathematical
foundations, application examples, and also historical background.

The approaches [58, 59] are concerned with fitting a clothoid curve to sketched
input data. They use a dynamic programming approach in the curvature domain
in order to identify portions of the input curve that can be approximated by a
clothoid segment. The fitting algorithm presented in Section 7.8.3 borrows from
their dynamic programming approach, but we use it to directly extract suitable
PCC control points from the input curve. This simplifies the procedure since we
do not have to fit so many clothoid segments; and our PCC does not deviate so
much from the input curve since the control points are interpolated.

The method of [14] builds upon the principles of [58] for fitting clothoid curves to
sketched input data. A large number of straight line, circle, and clothoid segments
is tentatively fitted, and then represented as nodes of a graph from which the best
candidate segments are identified using a flow algorithm. The segments found
are then optimized in order to meet, thus obtaining a piecewise clothoid curve.
This approach has fewer problems than [58] concerning the deviation from the
input data, but the method is much more complex than ours; and it does not
yield conveniently editable control points.

Another approach building upon [58] is [57]; it is concerned with the related
topic of fitting French curves to sketched input data. Also concerned with fitting
curves to sketched input data is [88]. They define a so-called Elasticurve which is
roughly a smooth version of the input curve, represented as lines, parabolas, and
arcs.

Like this chapter, [94] is concerned with a clothoid curve representation that is
interactively controllable. In contrast to our interpolated control points, they use
a control polyline to which a clothoid curve is fitted. A generalization of clothoids

103

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

to 3D was presented in [16]; their fitting algorithm produces 3D curves where
not only curvature but also torsion varies linearly with arc length; however, they
are not concerned with high-quality curve design as their main topic.

7.3. Computing Piecewise Clothoid Curves

A piecewise clothoid curve (PCC) consists of various clothoid segments, which
may also comprise line segments and circle segments. The segments are joined
together such that they are both tangent and curvature continuous in the joints
(G2 continuous).

7.3.1. Discrete PCC Curves

We use a method where a sequence of control points is either specified inter-
actively by the user, or chosen appropriately from a given input curve; then
our algorithm constructs clothoid segments joining these points. Clothoids are
defined by Fresnel integrals, for which different approximations exist [42]. Instead
of computing the parameters of the clothoid segments we use a variational ap-
proach generating a polyline with linear discrete curvature, thus approximating
the clothoid segment. The approximation error can be made arbitrarily small by
iterative refinement.

7.3.2. Iterative Algorithm

The iteration starts with the control polygon, i.e., the polyline through the control
points. Then we repeat two alternating steps. First, a new point is inserted between
every two points of the polyline; the sequence of points that are inserted between
consecutive control points are called a segment. Second, the position of all inner
segment points (i.e., except the original control points) is optimized. The new
position of a point is computed on the perpendicular bisector of its neighbors
in such a way that the curvature is the arithmetic mean of the curvatures of its
neighbors.

Throughout this chapter, the (discrete) curvature in a point p of a polyline is
computed simply as the inverse radius of the circle through p and its two polyline

104

7.3. Computing Piecewise Clothoid Curves

A

B
C

D

C ′

E

δBα

δC γ
δD β

γ

Figure 7.2.: Optimization of point C. Angles α and β are given by the position of the points with
respect to the dotted line g through B and D. C′ is positioned on the perpendicular
bisector of B and D such that δC is the arithmetic mean of δB and δD. γ is used for
the calculation.

neighbors. Consequently, five points are involved when optimizing C, namely
its direct neighbours and their respective neighbours. The curvature information
is transferred from one segment to the next over control points. The second
consequence is that inner segment points quickly converge to equal spacing and
to linear curvature distribution, thus obtaining a discrete clothoid.

7.3.3. Point Positioning

Figure 7.2 illustrates the position computation. In order to insert (or update) point
C with neighbours B and D, their respective neighbors A and E are considered.
Without loss of generality we use the normalized configuration where B lies in
(−1, 0)T and D in (1, 0)T.

We use the following notation:

• let X be one of the five control points, and Xl his left and Xr his right
neighbor
• δX is the angle between

−−→
XXl and

−−→
XXr

• κX is the discrete curvature in point X
• g is the line through B and D
• α is the angle between g and

−→
BA

• β is the angle between g and
−→
DE

• γ is the angle between g and
−→
BC

105

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Two conditions must be fulfilled for C:

• C must lie on the perpendicular bisector between B and D.
• κC must be the arithmetic mean of κB and κD

As more and more points are inserted, the polyline gets refined and the angles
between segments approach π, and angles α and β approach 0. In the following
formulae we use some simplifications whose errors converge to 0 when α and β
approach 0. From the conditions we obtain:

κC =
1
2
(κB + κD). (7.1)

We approximate the discrete curvature of X by

κX = 2
π − δX

|−−→XXl|+ |
−−→
XXr|

(7.2)

as proposed in [15]. Then we substitute

δB = π − α + γ (7.3)
δC = π − 2γ (7.4)
δD = π − β + γ. (7.5)

Since |−→BD| = 2 we approximate |−→BC| and |−→CD| with 1, because when α and
β approach 0, γ also approaches 0. Solving the resulting formula for γ finally
yields

γ =
β(|−→BA|+ 1) + α(|−→DE|+ 1)

2|−→BA||−→DE|+ 3(|−→BA|+ |−→DE|) + 4
. (7.6)

Point C is now inserted on the perpendicular bisector between B and D in distance
tan γ from g.

When inserting a point next to an endpoint the problem is that a neighbor is
missing on one side, i.e., A with α, or E with β. We need to specify an additional
constraint to obtain a unique solution. We can enforce either a tangent or a
curvature constraint, which are presented in Section 7.4. For endpoints the usual
default is a curvature constraint that enforces zero curvature.

In the case of evenly spaced points this formula is identical to the discrete fairing
approach proposed by [75]. Their discrete clothoid spline (DCS) is an evenly spaced

106

7.3. Computing Piecewise Clothoid Curves

Figure 7.3.: PCC configurations. The closed PCC through three control points always becomes a
circle. Four control points in an ’elliptical’ configuration do not lead to an ellipse, but
to an ellipse-like ovoid with piecewise linear curvature.

polyline with the condition that the curvature at each point is the average of its
neighbor curvatures:

κi = (κi−1 + κi+1)/2 .

Thus, the curvature varies linearly, and the resulting curve must be a clothoid.
Note that κi is the discrete curvature, i.e., the inverse radius of the circle through
three points pi−1, pi, pi+1. It can be computed using the inverse of the well-known
triangle circumcircle formula κ = 1/r = 4A/abc of a triangle with edge lengths
a, b, c and (signed) area A.

7.3.4. Properties

PCCs have some nice properties for designers. The closed PCC through three
points always is a circle (see Fig. 7.3); adding further control points is required
only to define the deviation from a circle shape.

The position of a control point influences the PCC globally, meaning that every
part of the PCC changes when moving a single control point. The influence of the
control point, though, is heavily damped, as shown in Fig. 7.4. The damping effect
can also be amplified by placing control points very closely together; moving a
point on one side then has little effect on the curve on the other (Fig. 7.5). This is
similar to a tangent constraint.

Inserting additional control points on a PCC neither changes the curve nor its
curvature. This is extremely helpful in order to add fine detail, since a few close
points can be inserted to ’nail down’ some part of the curve by exploiting the

107

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.4.: Damping of PCC curves. Top: The control points of the PCC are uniformly distributed,
and the middle one is moved upwards by the same distance. Bottom: Curvature of
the PCC.

Figure 7.5.: Damping effect of closely spaced control points.

108

7.4. Constraints on Tangents and Curvature

damping effect. One consequence of the piecewise linear curvature behaviour is
that curvature maxima always lie in the control points (in contrast to splines!).
This makes PCCs much easier to understand and control by designers.

7.4. Constraints on Tangents and Curvature

To speed up the design process, tangent or curvature constraints can be defined
for each control point:

• A tangent constraint defines the tangent of an adjacent clothoid segment.
• A curvature constraint defines the curvature of an adjacent clothoid seg-

ment.

The constraints can be the same or different on both sides, e.g., different tangents
produce a corner (G0). It is also possible to define a tangent constraint on one
side and a curvature constraint on the other, to maintain G1. Note, however, that
prescribing the same curvature on both sides will in general still lead to a corner
(G0). This mode is still valuable since the designer can move the control point to
make the tangents gradually more collinear, to trade shape against curvature (see
Fig. 7.6).

7.4.1. Tangent Constraints

Formula (7.6) can be easily modified to account for a tangent constraint (c.f.
Fig. 7.2): B is the point with the tangent constraint and neighbour A is discarded
for the computation. Instead, angle α is set to the angle between the prescribed
tangent and the line g through B and D. Length |−→BA| can be set to zero because
for the computation we consider a point on the tangent instead of A, and the
tangent condition has more influence the closer the point is to B.

7.4.2. Curvature Constraints

Let again B be the point with the curvature constraint. δB and κB are not relevant
now, but we can imagine a virtual segment

−→
BA and choose it in such a way that

109

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.6.: Trading shape against curvature. With three points in a row, a curvature constraint
(marked in red) leads to a corner. It can be alleviated by moving the control point,
changing shape until eventually the designer chooses to release the curvature con-
straint as it is sufficiently met. The curvature plot of all four curves is identical.

κB has the desired curvature value. If |−→BA| = 1, then

κB ≈
1

1
2 sec δB

2

= 2 cos
δB

2
= 2 sin

(
π

2
− δB

2

)
≈ π − δB (7.7)

for small values of π − δB. From this follows:

γ =
2 β + κB (|

−→
DE|+ 1)

4 |−→DE|+ 6
(7.8)

At last, when we only have two endpoints and insert a point between them, on
both sides a neighbor is missing. Taking |−→DE| = 1 and κD = π − δD then leads
to

γ =
1
4
(κB + κD) . (7.9)

7.4.3. Restoring G2 Continuity for collinear Tangents

A control point P with collinear tangents still achieves only G1 continuity since
in general, the curvatures do not match anymore. To restore G2, another control

110

7.4. Constraints on Tangents and Curvature

Figure 7.7.: Restoring G2 continuity. Top: A 90◦ configuration with straight sides and a rounded
corner. The straightness of the sides is ensured with tangent constraints. The con-
straints permit continuous curvature, as can be seen in the curvature plot. Note:
Because only the discrete curvature is measured, the spot with the curvature jump
deviates from a vertical line. Bottom: An additional inserted point, moved to the right
spot restores continuous curvature.

point can be inserted on one side of P and moved such that the curvatures at P
match on both sides; its position is not unique, so there is some design freedom.

Especially useful is the case of G2 continuous rounded corners (see Fig. 7.7). First,
control points are set in the positions for the start and end of the rounding. Then
the tangents for the rounding are specified. At last, an additional control point is
inserted in such a position that the joints at both control points simultaneously
become G2. The position of this point is unique and can, thus, be computed
automatically, e.g., iteratively.

111

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

7.4.4. Direct Curvature Control

The properties presented so far suggest a very straightforward workflow for curve
reconstruction with PCCs: Since control points are interpolated, and inserting
a point does not change the curve, the designer can simply keep adding points
along the desired contour. Curvature, however, is a very sensitive measure.
Obtaining a good curvature profile is a fiddling task. We now present a method
where the designer can directly edit the curvature profile to obtain very rapidly the
profile shown in the bottom.

The idea is to simply move the control point perpendicular to the line through
its neighbours. Consider three points A, B, C and a desired target curvature
κt for B. We use a simple linear estimate for the new position of B. Let κB be
the discrete curvature for B, x the perpendicular projection of B to

−→
AC, and d

the distance between B and x. When x is positioned more towards the center
of A and C, then the curvature does vary less when B is moved perpendicular
to
−→
AC. So we calculate a scalar factor λ for the relative position of x with

λ = 2 min(‖A− x‖, ‖C− x‖) / ‖C− A‖.

The estimate for the needed offset distance is then do = λ · (κt− κB) · ‖C− A‖2 · c
with the constant c = 1

11 that was determined by experiment. Point B is moved
by do along the perpendicular to line

−→
AC. Then the whole PCC is recomputed,

and the process is repeated until the desired accuracy is achieved, or further
movement does not bring the curvature closer to the target curvature anymore,
e.g., in case a high curvature was desired but the neighbours are too far apart.

7.5. Curvature Blending and Clothoid Splines

7.5.1. Eliminating Curvature Spikes

The curvature of a PCC is piecewise linear but not bounded; there can be arbi-
trarily steep spikes. One possibility to get rid of a curvature spike in a control
point P is to first insert two new control points close to P on either side, which
changes neither the curve nor its curvature. Then removing P does change the
curve, but only slightly; and the curvature-spike is cut off.

112

7.6. A physical Interpretation of Clothoids

Figure 7.8.: Construction of a clothoid spline. Repeated insertion of new points and removal of
old points.

7.5.2. Clothoid Splines: Approaching the Limit

Our method for iterating this scheme is inspired by Chaikin’s corner cutting
method for obtaining quadratic B-Spline curves [20]. The method from the
previous Section 7.5.1 can be repeated arbitrarily often.

For closed PCC curves, new control points are inserted on each clothoid segment
at 1

4 and 3
4 of the arc length. Then the old control points are removed and the

PCC is recalculated. This leads to a PCC with twice the number of control points.
This process is repeated for a certain number of iterations. The control points of
the last step are taken as the points of a “clothoid spline”.

For open curves, the process is nearly the same. However, the start point and the
end point are never removed. In the first and in the last segment, only a single
new control point is inserted at position 1

2 in the first iteration; otherwise the
refined points would accumulate at the start and at the end. Fig. 7.8 illustrates
this construction of a clothoid spline with G3 continuity.

7.6. A physical Interpretation of Clothoids

A vast number of different curve representations has been proposed in CAGD
over the last 60 years. With any new representation the question must be answered
how suitable it is for the targeted purpose. For high-end curve design, it should

113

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.9.: PCC spline. The control points are the same as in Fig. 7.4. There is hardly any
difference between the curves, but a great difference between the curvatures: The
PCC spline is G3.

make designing aesthetic curves as simple as possible. Capturing the notion
of aesthetics is difficult, however, which is witnessed by the lack of a common
mathematical definition of class A quality.

We have approached the problem from a different side. The reader is encouraged
to try a very simple physical experiment, namely designing a ’smooth’ curve
with fixed-length segments, e.g., Kapla bricks (Fig. 7.10). It will turn out sooner
or later that instead of looking ’along’ the curve, the obvious thing to do is
focusing on the gap angles between the bricks, and to balance them; an uneven
gap distribution is deemed ugly by anybody.

Since the gaps are small, attaching normal rods to the segments shows problems
more clearly. Equalizing the gap angles can then be seen as equalizing the
distances between the end points of consecutive rods. Physically, this could be
accomplished by attaching springs on the end points; and for symmetry reasons,
two such rods should be attached, one on eiter side of the segment.

This leads to a variational energy minimization problem: A spring element is made
out of five points A, B, C, D, E connected by line segments with two normal rods
that are connected by six springs with rest length zero (Fig. 7.11). The position
of C(t) is optimized on the perpendicular bisector between B and D, the other
points are fixed. Finding t for which the spring energy Es(t) is minimal is a
convex univariate problem.

114

7.6. A physical Interpretation of Clothoids

Figure 7.10.: Design experiment: Aesthetic improvement of a curve. In this situation, virtually
anybody will move the bricks down to equalize the gap angles. Normal rods show
the angle distribution more clearly.

The spring energy is proportional to the square of the distance, but the derivative
is not linear in t. However, since the energy is convex, the optimum is easily
reached by a few Newton iterations. Mimicking the manual method, we turned
this into a curve optimization scheme by keeping some of the input points fixed
while optimizing the free points. The implementation revealed a surprise: It
converged rapidly to a curve with a linear curvature profile between the fixed
points – obviously a sequence of clothoids! So the spring elements provide a clear,
intuitive physical interpretation of curve design with clothoids that can be easily
grasped by artists and designers.

7.6.1. Analytical Solution for Infinite Rod Lengths

The length of the normal rods is a free parameter. We made the observation that
the optimization yields better results with longer rods, which led us to examining
the case of infinite rod length. As shown in the following, this yields the same
formula as in Sec. 7.3.

The longer the rods, the smaller are the segments in comparison. So instead
of infinite rod length, we consider rods of fixed (unit) length and zero length

115

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

A

B
C

D

C ′

E

Figure 7.11.: A spring element with fife points, four segments, eight normal rods and six springs
connecting the end points of the rods. The position of the center point is spring-
optimized along the perpendicular bisector of the line segment connecting its
neighbours.

segments. The end points of the rods lie on the unit circle; let σ be the angle
between two rods, then the force f (σ) is the squared distance of their endpoints:

f (σ) = 2 chord2σ = 8 sin2 σ

2
. (7.10)

For small values of σ the sine function is approximately the identity. This yields
a simplified version fs of the force:

fs(σ) = 2 σ2. (7.11)

Figs. 7.2 and 7.11 show that the angle between the 1st and the 2nd rod is α− γ,
between the 2nd and the 3rd it is 2γ, and between the 3rd and the 4th it is β− γ.
For the spring element with points A, B, C, D, E we have a total (simplified) force
ft of

ft = fs(α− γ) + fs(2γ) + fs(β− γ) (7.12)

In order to find the value of γ with the minimal force in the spring elements we
differentiate ft, set it to zero, and solve for γ:

f ′t = −4α + 24γ− 4β (7.13)

f ′t = 0 ⇒ γ =
1
6

α +
1
6

β (7.14)

116

7.7. Comparison with B-spline Curves

This is indeed the same formula as in Eq. (7.6) when |−→BA| and |−→DE| are equal to
one. So with evenly spaced points, the two approaches yield the same results.

7.7. Comparison with B-spline Curves

As mentioned in the Introduction, a fair comparison from the design point of
view can take into account only spline types without non-visual parameters
(knots, weights). Comparing, for example, PCCs to uniform cubic B-splines,
PCCs have the obvious advantages that control points are interpolated instead of
approximated, that point insertion does not change the curve, and that circular
arcs can be reproduced.

A more serious issue, though, is that despite the variation diminishing property
and their C2 continuity, the curvature even of higher-degree polynomial splines
is unbounded and hard to control in practice. Uneven control point spacing is
likely to result in unexpected curvature maxima, and even spikes. With PCCs,
the curvature can clearly be (locally) maximal only in the control points, which is
a clear and practical placement rule.

We claim that for all practical design tasks, PCCs are in fact superior to splines:
While it is easy for PCCs to realize the ’extra pull’ of spline curves, it is impos-
sible for splines to reproduce the perfectly clean curvature profile of PCCs. For
controlling curvature (class-A design), PCCs may even be seen as the optimal
curve representation because any desired curvature profile can efficiently be
approximated using linear segments.

To quantify these claims, Fig. 7.12 shows that a PCC with three times as many
control points can nicely reproduce the curvature artifacts of a spline; and that
by doubling the number of spline control points, the artefacts are only damped
but their frequency is doubled as well. Note that curvature artifacts are unavoid-
able with splines, as shown by Augsdoerfer et al. [12] who treat the subject in
considerable depth.

117

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.12.: Curvature artifacts of spline curves. Top: A uniform cubic B-spline (magenta) with
four control points can be approximated by a PCC with twelve control points -
including the curvature artifacts (left). Completely avoiding the artifacts is not
possible (right). Bottom: A single clothoid segment is approximated by a spline.
Despite regular spacing the resulting curvature is simply inacceptable.

118

7.8. Results and Applications

7.8. Results and Applications

7.8.1. Interactive Shape Design with PCCs

An important property for a curve representation is how effective and accurate
designers can work with them. The proposed PCCs have some nice properties
for the design process:

• Reasonable approximations can be computed quite fast also for larger
numbers of control points.
• Insertion of new control points neither changes the curve nor does it affect

other control points.
• Redundant control points (with the same curvature slope on both sides) can

be removed without affecting the curve.
• Tangents or curvature constraints can be specified for all control points.

7.8.2. Curve Design Rules for PCCs

We demonstrate the typical design flow with a particularly challenging example,
the insertion of details on a larger curve with very smooth curvature (Fig. 7.13):

1. The designer draws a few spacious control points to define a shape with
smoothly flowing curvature.

2. Detail zones are isolated by inserting pairs of control points with tangent
constraints.

3. Editing the zones does not affect the rest of the curve, but reduces continuity
to C1 in these points.

4. Finally, G2 continuity can be restored with the technique explained in Sec.
7.4.3 (c.f. Fig. 7.7).

We claim that PCCs are especially well suited for high-quality curve design.
This is supported by empirical evidence since the characteristic curves of many
existing high-quality shapes can be captured using only very few control points,
as illustrated by Figures 7.1 and 7.14. And even more important is that the control
points can be obtained using a clear coarse-to-fine recipe.

119

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.13.: Inserting U-shapes on a large smooth curve segement without affecting the rest of
the curve. Top-to-bottom: Original curve. Insertion of two control points with fixed
tangents, then local modification on isolated part. The curvature of the seemably
fixed-radius blend and in the tips can be controlled by editing the curvature plot.

120

7.8. Results and Applications

Figure 7.14.: Shapes of a wrought iron captured with PCCs, c.f. Figure 7.1. The top shows the
PCC with its control-points and tangent constraints at the end-points. The bottom
additionally shows the calculated curve-points (in black).

7.8.3. Computing a PCC for a sampled Input Curve

Our second use case is fitting a PCC to a given densely sampled input curve
(polyline). The automatic algorithm presented in this section uses dynamic pro-
gramming to partition the curvature profile of the input curve in order to find
ideal control point positions. The idea to use dynamic programming was bor-
rowed from [58]; the algorithm chooses points from the input curve which are
directly used as PCC control points. The PCC shall follow the input curve very
closely and should have a sparse adaptive control polygon.

To penalize the number of control points, each PCC segment is associated with
a cost; and to enforce the similarity of both curvature profiles, the deviation
of the PCC curvature from the input curvature is penalized as well. Note that
for demonstration purposes we do not even include an explicit cost for the
geometric distance between the curves. In all of our examples it was sufficient
that (a) the PCC control points are drawn from the input polygon, and (b) the
curvature profiles are very similar; note that 2D curves are uniquely defined by
their curvature (up to rigid transformations).

In the following, let a and b denote the arclength parameters of two points P(a),

121

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

Figure 7.15.: Fitting a PCC to input data. From left to right: 1) Original curve, 2) Smoothed curve,
3) PCC fitted to the smoothed curve using dynamic programming as described in
Section 7.8.3. Big dots denote control points, small dots are points inserted by the
PCC algorithm. 4) Clothoid spline with smooth curvature profile as described in
Section 7.5.2. The input curve is taken from [14].

P(b) of the input curve (a discrete polyline), and P(a, b) is the curve segment
between a and b. We define a cost matrix M where each entry M(a, b) is the
minimal cost of placing control points at a and b, and anywhere inside P(a, b). It
is defined recursively in the typical dynamic programming fashion:

M(a, b) = min
a<k<b

{Ed(a, b) + λEi(a, b), M(a, k) + M(k, b)} (7.15)

The first term is the cost when no other control point is used between a and b, and
the second term applies when splitting up the curve by inserting another control
point at any possible parameter a < k < b of a polyline point yields (recursively)
even smaller cost. Concerning the first term, Ed penalizes the deviation of the
PCC curvature from the input curvature (discrete integral of absolute differences).
We define it as

Ed(a, b) = ∑
c∈ P(a,b)

f (c) ‖κ(a)− κ(c) + ls(c− a)‖ed (7.16)

where ls = κ(b)−κ(a)
b−a is the slope of the curvature function in this interval and

f (c) = 1
2(c+ − c−) is the local strip width with respect to the previous and next

122

7.9. Conclusion

points c−, c+ of the polyline. Ei penalizes short segments:

Ei(a, b) =
(

d
b− a

)ei

(7.17)

where d is the overall length of the polyline. Parameters λ, ed, ei can be tuned by
the user in order to specify the different trade-offs.

The matrix M is computed in a bottom-up fashion, eventually yielding M(0, d)
as the cost of the best possible selection of polyline points as PCC control points
to match the input curve.

An example of the fitting process is shown in Fig. 7.15. The input curve is
smoothed before the fitting starts in order to achieve better results.

7.9. Conclusion

We have presented in this chapter a framework for the design of high-quality
curves. To summarize, piecewise clothoid curves (PCCs) have the following key
advantages over splines:

• Direct editing: The control polygon is interpolated, rather than just approxi-
mated.
• Insertion invariance: Inserting control points does not change the curve.
• Curvature extrema: The curvature is (locally) maximal or minimal only in

the control points.
• Predictability: Control points are needed only in order to deviate from linear

(circular) curvature.

Intuitive methods were presented for constraining the PCC to specific tangents or
curvature values, and for automatically improving the piecewise linear curvature
profile, eventually resulting in a ’clothoid spline’ with smooth curvature (G3). It
was shown that a given input curve can be efficiently converted to a PCC, and
controlling curvature is possible even to the point of directly editing the curvature
profile.

For designers, this can be intuitively summarized as “PCCs are class-A by default”;
a relaxed type of curve for which introducing tension requires specific effort.

123

7. Case Study: Curvature-controlled Curve Editing using Piecewise Clothoid Curves

7.10. Future Work

An important area for future research is a practical method for designing high-
quality space curves, where not only curvature but also torsion must be controlled;
for a 3D generalization of clothoids, Ben-Haim et al.[16] propose varying also the
torsion linearly. The main goal, however, will be to find also a surface representa-
tion that is acknowledged by practitioners as being ’class-A by default’.

124

8. Evaluation of the Techniques

8.1. Modeling Capabilities

The presented methods in the case studies (see Chapters 5, 6, and 7) show
how different parts of historical buildings can be modeled via new procedural
modeling techniques. This was previously hardly possible due to the limited
expressiveness of previous methods. While parts of buildings could already be
modeled very efficiently with previous methods, others could not. This section
shows places where the new methods can be used, looking at the examples given
in the introduction in Figure 1.2.

The respective parts where the new techniques can be used are circled in Figure
8.1. There a color coding is used to identify which technique can be used in this
part. The coding is as follows:

• Blue: possible usage of the abstract building and roof model from the case
study in Chapter 5.
• Red: possible usage of spherical coordinate systems from the case study in

Chapter 6.
• Magenta: possible usage of cylindrical coordinate systems from the case

study in Chapter 6.
• Orange: possible usage of conical coordinate systems from the case study

in Chapter 6.
• Green: possible usage of piecewise clothoid curves for shape modeling

from the case study in Chapter 7.

The examples from Figure 8.1 have complex geometry that is representative of
those in historic buildings. In particular:

• St. Peter’s Basilica: In this example the dome in the middle and the little
cupolas in front give a good opportunity to be modeled via spherical
coordinate systems from the case study in Chapter 6. Beneath a dome or a

125

8. Evaluation of the Techniques

(a) St. Peter’s Basilica (b) Karlskirche

(c) Neuschwanstein Castle (d) Leaning tower
of Pisa

(e) Pantheon (f) Gate of Honour in
Versailles

(g) Palace of Versailles (h) Aerial view of Venice

Figure 8.1.: Complex historic architecture from Figure 1.2. The parts that can now be modeled
with the new modeling techniques from the case studies are circled. Images taken
from [70, 54, 95, 17, 91, 22, 89] and c©2018 Google, Map data c©2018 Google.

126

8.1. Modeling Capabilities

cupola is usually a circularly arranged set of supporting structural elements
and walls. This is also the case here and cylindrical coordinate systems from
the case study in Chapter 6 are suited to model this sections. Additionally,
on top of the dome there is a little structure that is also arranged circularly.
• Karlskirche: This example is very similar to the St. Peter’s Basilica. There

is a dome in the middle, suitable for spherical coordinate systems, and
circularly arranged structures beneath and above. Additionally this example
shows two big pillars aside the main entrance. If they should be modeled
with high detail cylindrical coordinate systems could be used here. Small
domes conclude the pillars on the top.
• Neuschwanstein Castle: In this castle a multitude of towers are present that

can be modeled with the techniques from Chapter 6. Their walls can be
modeled with circular coordinate systems, and their roofs are suited to be
modeled by conical coordinate systems (which was indeed shown in Figure
6.11). Additionally, the castle has some complex roof parts which could be
modeled by the technique described in Chapter 5.
• Leaning tower of Pisa: The tower is one big cylindrically arranged structure

and therefore its elements are obviously suited to be arranged according
to a cylindrical coordinate system as described in Chapter 6. Additionally
the round arches on the outside might also be modeled according to auto-
matically generated cylindrical coordinate systems as described in Chapter
6.6.1.
• Pantheon: The main part of the pantheon is clearly the huge dome in the

middle whose coffering in the inside follows a spherical coordinate system.
The ground floor consists of the cylindrically arranged structural elements
that support the dome. Additionally some smaller arches and cupolas
are present in the ground floor. All of those elements are suited for the
techniques from Chapter 6.
• Gate of Honour in Versailles: The decorative elements of the gate pose typical

ornamental forms that are very well suited to be modeled with picewise
clothoid curves as shown in 7. The spiraling forms have curvature properties
that can adequately be reproduced with picewise clothoid curves.
• Palace of Versailles: The different wings and building parts of the palace

can be modeled with the solid building primitives described in Chapter
5. The primitives can create the base geometry for the facades, but also
the complex roof geometry of the palace. The base facade geometry can
then afterwards be modeled with conventional split grammar techniques
similar to the example in Figure 5.1. The palace also shows some decorative

127

8. Evaluation of the Techniques

elements that can be modeled with piecewise clothoid curves as described
in Chapter 7. In Figure 8.1g some of the more complex roof constellations
of the palace are marked together with some of the decorative dormers on
top of the facade.
• Venice roof landscape: Venice has a very fine-grained roof landscaped con-

sisting of many small house and roof parts. These parts can be represented
by solid building primitives as described in Chapter 5. There are many
connections between the individual parts that result in a variety of different
roof geometries (some of them are depicted in Figure 5.3). Figure 8.1g shows
a section of the roof landscape in Venice. All of the roofs can be modeled
with the mentioned technique. Some of the building blocks with connected
roofs are marked with circles.

8.2. Used Domain Specific Methods

This section is going to briefly discuss how the presented procedural modeling
concepts compare, and which domain specific methods they are using.

In Table 8.1 the methodologies used are listed. As can be seen, a lot of procedural
modeling approaches use the split grammar method. And they are implementing
it as an external DSL as a Production Rule System.

L-Systems are used for generating the street layout for cities. Only Procedural
Modeling of Cities is really concerned with this task. The other papers assume the
street layout as a given.

Table 8.2 compares which geometric representation and techniques the meth-
ods use. The usual geometry representation is triangle meshes. However, often
constructive solid geometry (CSG) is used, and therefore geometry can be rep-
resented internally as solids. For curved geometry, point interpolation is often
used.

Table 8.3 shows which kind of objects can be modeled with a method. Most of
the methods concentrate on modeling facades - this is also the area where split
grammars are most useful. Many papers show results of complete buildings
with facades, roofs, their surrounding lot, embedded into a street layout in a
virtual city. But their method is not necessarily concerned with generating all
these components, but only one or a few.

128

8.2. Used Domain Specific Methods

Pa
pe

r

Sp
lit

gr
am

m
ar

L-
sy

st
em

Sc
ri

pt
in

g
la

ng
ua

ge

D
SL

-
in

te
rn

al

D
SL

-
ex

te
rn

al

D
SL

-
Pr

od
uc

ti
on

R
ul

e
Sy

st
em

G
U

I

Procedural Modeling of Cities - x - - x x -
Instant Architecture x - - - x x -
Procedural Modeling of Buildings x - - - x x -
Advanced Procedural Modeling of Architecture x - o - x x -
Shape Grammars on Convex Polyhedra x - o o x x -
Procedural Architecture using Deformation-Aware Split Grammars x - o o x x -
Generalized Use of Non-Terminal Symbols for Procedural Modeling x - x x x x -
Creating Procedural Window Building Blocks using the Generative Fact Labeling Method - - - - x - -
Component-Based Modeling of Complete Buildings x - x o - - -
Constructive Roofs from Solid Building Primitives - - - - x - -
Procedural modeling of Architecture with Round Geometry x - x x - x -
Curvature-controlled Curve Editing using Piecewise Clothoid Curves - - - - - - x

Table 8.1.: Comparison of used (domain specific) techniques

Pa
pe

r

Tr
ia

ng
le

m
es

h

So
lid

s
(C

SG
)

Po
in

t
in

te
rp

ol
at

io
n

Procedural Modeling of Cities x - -
Instant Architecture x - -
Procedural Modeling of Buildings x - -
Advanced Procedural Modeling of Architecture x x -
Shape Grammars on Convex Polyhedra - x -
Procedural Architecture using Deformation-Aware Split Grammars - x x
Generalized Use of Non-Terminal Symbols for Procedural Modeling x - x
Creating Procedural Window Building Blocks using the Generative Fact Labeling Method - x -
Component-Based Modeling of Complete Buildings x x -
Constructive Roofs from Solid Building Primitives - x -
Procedural modeling of Architecture with Round Geometry - x -
Curvature-controlled Curve Editing using Piecewise Clothoid Curves - - x

Table 8.2.: Geometric primitives used by the techniques

Pa
pe

r

St
re

et
s

Bu
ild

in
g

lo
ts

Bu
ild

in
g

sh
el

ls

Fa
ca

de
s

R
oo

fs

In
te

ri
or

s

O
rn

am
en

ts

Procedural Modeling of Cities x x x x - - -
Instant Architecture - - x x o - -
Procedural Modeling of Buildings - x x x x - -
Advanced Procedural Modeling of Architecture - x x x x - -
Shape Grammars on Convex Polyhedra - - x x o - -
Procedural Architecture using Deformation-Aware Split Grammars - - x x o - -
Generalized Use of Non-Terminal Symbols for Procedural Modeling - - x x - - -
Creating Procedural Window Building Blocks using the Generative Fact Labeling Method - - - x - - -
Component-Based Modeling of Complete Buildings - - x x x x -
Constructive Roofs from Solid Building Primitives - - x - x - -
Procedural modeling of Architecture with Round Geometry - - x x o - -
Curvature-controlled Curve Editing using Piecewise Clothoid Curves - - - - - - x

Table 8.3.: Objects that the techniques can generate

129

8. Evaluation of the Techniques

8.3. Coded Representation

Figure 8.2 now shows a comparison of code snippets from different papers. The
techniques that use Production Rule Systems (Figures 8.2a-8.2f) all have fairly
similar syntax.

Most of them use coded rules where the label is written at the left side, then some
kind of arrow pointing rightwards, followed by the specification of the rule on
the right side. Procedural Modeling of Cities is the only L-System here, and the form
of their rules is syntactically slightly different, but still uses the same principle of
a Production Rule Systems.

The technique Procedural modeling of Architecture with Round Geometry (Figure
8.2h) presented in this thesis is also a Production Rule System. In contrast to the
other techniques it was intended to be completely implemented in the syntax of
a host language and therefore use structures and keywords of the host language.
Nevertheless the principle is the same: a rule is encoded by first stating its label,
and then the specification of the programming steps that the host language
environments executes when the rule is activated.

Finally, Component Based Modeling of Complete Buildings (Figure 8.2g) is the only
technique that is not a Production Rule System. It is structured like a general
scripting language. The principle of how it works is based on queries that query
an existing base of objects, retrieve the wanted objects, and then refine the objects
and create new ones.

8.4. Insights

8.4.1. Creating a Domain Specific Method for a Modeling
Domain

After the presentation of all the procedural modeling techniques one question
arises:

How can we take domains of 3D models and create domain specific methods for them?

The goal would be to give some kind of recipe for how to create them. Now, there
are many possible design and implementation choices. It is very dependent on

130

8.4. Insights

(a) Procedural Modeling of Cities (b) Instant Architecture

(c) Procedural Modeling of Buildings (d) Advanced Procedural Modeling of Archi-
tecture

(e) Shape Grammars on Convex Poly-
hedra

(f) Generalized Use of Non-Terminal Symbols
for Procedural Modeling

(g) Component Based Modeling of Complete
Buildings

(h) Procedural modeling of Architecture with
Round Geometry

Figure 8.2.: Code snippets of some of the presented techniques (images taken from the respective
papers).

131

8. Evaluation of the Techniques

the specific domain and problem and hard to generalize. It is also to some degree
a matter of taste, but an attempt for an objective assessment is made here.

Simplicity

There is a famous quote made by Einstein that is very fitting for the design of
many computer systems, and overall systems in general:

”Everything should be made as simple as possible, but no simpler.”

One could also argue that in this context it could be rephrased as: ”Everything
should be made as simple as possible, and only as complex as necessary”.

Especially for DSLs things should be as simple as possible, because a DSL should
by definition only cover the domain (and not more) while also being very user
friendly. Both requirements call for restrictiveness and simplicity.

For example, in the programming language family of Lisp, all code is expressions
in lists. How this expressions are interpreted makes the difference. They can
either be treated as pure data, functions, or macros.

• Data: Data is just information and does not do anything in itself, it has to
be used by other code.
• Functions: Functions are executed. They take data and perform computa-

tions that produce new data.
• Macros: Macros at last, take data and functions and produce new functions

(which in turn are executed later).

One can see that macros are clearly more powerful than functions, because every
function can be implemented as a macro (which simply returns the function
itself) but not vice-versa. And similarly, functions are clearly more powerful than
data, because all data can be implemented as a function (which simply returns
the data itself) but not vice-versa.

So while macros are more powerful than functions and these are more powerful
than data, when one thinks of simplicity, it is the other way around.

Since data is not doing anything and is simply that what is written down (en-
coded) it is very simple and easy to understand. Functions on the contrary are
much harder to understand because the whole computation that is performed by
the functions must be understood. Finally, macros are even harder to understand,

132

8.4. Insights

since they compute something (a function) that in turn itself computes something
again. This level of indirection is the reason why macros are hard to understand
for many programmers.

This is the reason why in Lisp it can be argued that code should be written in a
way, such that it is whenever possible simple data, and only if needed a function,
and only in very rare cases a macro. This idea attempts to make the code as
simple and readable as possible.

Language concepts of domain specific methods

In the context of DSL design, similar ideas could be used in order to strive for
simplicity. There are many different language concepts that a domain specific
method could use.

The most simple are language concepts that are built upon pure data. These can
be for example:

• Tree data structures: Data contained in a hierarchical tree. Found in formats
such as JSON, XML, or YAML.
• Records: As in data entries in relational databases.
• RDF triple: Encoded information in Resource Description Frameworks.

More complex language concepts that have similarities to functions in program-
ming languages are for example:

• Production rule systems: Processing of entities according to rules. Rule
invocation is somewhat similar to function invocation in programming
languages. Further described in Section 4.1.
• Decision tables: Similar rules to Production rule systems but arranged in a

table. Further described in Section 4.1.

Even more complex language concepts with similarities to complete programming
languages are:

• State machines: State machines describe program flow by transitions be-
tween abstract states. Further described in Section 4.1.

Some other, harder to categorize language concepts are:

133

8. Evaluation of the Techniques

• Spreadsheets: Tables that let users entry data or formulas known from
programs such as Microsoft Excel.
• Dependency networks: Describe dependencies between entities. Further

described in Section 4.1.

In choosing between these options, one of course has to evaluate which method
suits the problem domain best, but can also strive for an as simple as possible
solution.

Domain specific methods in the case studies

Arguably the simplest of the mentioned language concepts is the tree data
structure. It consist of pure data that is hierarchically structured. Tree data
structures can be encoded in many widely used formats (such as JSON, XML, or
YAML), but also internally in a programming language (for example as nested
dictionaries and lists in Python), while there is no need for complicated custom
parsing. They can contain a lot of data in big structures. This can also lead to a
disadvantage: If the amount of data gets too big, they can become confusing.

The tree data structure was chosen for the Case Study Constructive Roofs from
Solid Building Primitives (See chapter 5). Different building blocks in the paper
correspond to entries in the tree. Additional attributes of the building blocks are
saved as sub-entries.

For the Case Study Procedural Modeling of Architecture with Round Geometry the
production rule system was chosen. This system is the basis of shape grammars.
A production rule system is still arguably simple in the sense that it behaves
similar to a function - it takes input (a shape) and produces output (new shapes).
When the production rule system is executed, new shapes are being created, and
the information in the system is saved in attributes of those shapes.

8.4.2. A common Language

In computer science in general, the question of how a particular problem should
be represented in code is often discussed.

A simple and straightforward approach is to encode the problem in some sort
of data notation format. This can for example be XML, JSON, or YAML. The

134

8.4. Insights

advantage is that this encoding is very simple and does not need operators or
complicated logic. This can also make it less error-prone. For things were there
is a lot of repetition a disadvantage is that everything needs to be specified and
cannot be generated via operators. Of course, many complicated facts cannot
even be stated, since the needed operators or logic is not present.

Another problem can be that there might be a multitude of possible ways to
specify the same thing. For example, in order to define an axis aligned box one
could specify one point of the box together with its width, depth and height, or
one point together with the opposite point of the box. If boxes are now specified
in different ways, all those possibilities need to be implemented in the software
that reads the specifying files and needs to be understood by the users.

Encoding a problem in a common programming language instead of a data
notation format provides much more flexibility. Instead of having different data
specifications, operators can generate the needed primitives and they can be
saved internally in a unique way (for example, boxes could internally always be
saved by a point plus width, depth, and height). Having operators also provides
the opportunity to do arbitrary calculations in order to generate the primitives.
The disadvantage of ordinary programming is of course that it is much more
complex than a simple data notation format and also more error-prone.

Analogue to the general class of computer science problems, shapes can also be
represented in different ways. There are in general two ways how this is done.

One way that shapes can be represented is by primitives that make up a particular
shape. These can be curves such as spline or clothoid curves, surfaces such as
triangle meshes, subdivision surfaces, or NURBS surfaces, or solids defined by a
boundary representation or convex polyhedra. Either way, the description defines
the shape, but not how it is constructed.

The other way that shapes can be represented is by construction. The execution
of the construction steps recreates the shape. How, and in which order the
construction steps are executed is the topic for procedural modeling. Procedural
models are basically programs that are run, which then execute a series of
construction steps usually performed by API calls to a low-level geometric
primitive library.

While the first representation is usually simpler, less error prone, and immedi-
ately examinable, the second representation has other advantages: it is usually

135

8. Evaluation of the Techniques

easier to modify, or parameterize. When one chooses the procedural represen-
tation, the question then becomes: What is an ideal way to represent the model
procedurally?

One interesting fact from computer science is that once a programming language
is touring complete it can basically perform all possible tasks, just as any other
touring complete language. Since most of modern non-trivial languages are
touring complete it concludes that they can all generate the same shapes. The
important aspect now becomes: What language has the suited expressive power
for the problem domain?

The Generative Modeling Language

The Generative Modeling Language (GML) is described in [38] and [39] and is a
language that was made with the primary focus on 3D modeling. It is derived
from postscript [71] and is therefore a simple stack-based language. Nevertheless,
it is a fully touring complete language as most modern programming languages.
Its simplicity and lack of almost any syntax might strike some as a surprise, but
it is this simplicity that brings some certain advantages.

Because of its simplicity it is easy to write an interpreter for GML (as has been
done at the Institute of Computer Graphics and Knowledge Visualization at the
TUGraz). And on the other hand, it is also easy to generate GML code from
other sources, such as higher level programming languages, domain specific
languages, or graphical user interfaces. GML is also easy to use as a language
where other systems are embedded in. This makes GML very suitable as a
common intermediate language for 3D models that is not necessarily used directly
to write procedural 3D models, but is generated or used by other systems.

Existing applications in GML

In the case of domain specific languages a particular interesting possibility is to
embed the DSL as an internal DSL into GML. This, for example was done for the
shape grammars in the papers [87, 98, 26], which are forms of production rule
system DSLs.

136

8.4. Insights

There are also declarative specifications where objects are specified in GML data
structures (such as lists and dictionaries) which are then evaluated. This is the
case in [25] and [85].

For graphical user interfaces, GML can serve as the framework that handles
graphical primitives and the visualization of 3D models. The papers [41] and [86]
use this approach.

The Euclides framework [80] deals with the translation of JavaScript to GML (or
any other PostScript dialect) because JavaScript is a much more known language
than GML. For this approach, for one part, JavaScript expressions have to be
translated. This is relatively straight-forward since it is mostly a simple infix to
postfix conversion. For the other part, all the control flow structures also have
to be translated. This is non-trivial since PostScript has no ’goto’ operation and
all the control flow structures of JavaScript are translated into the respective
PostScript control flow structures.

Interoperability through a common language

The main advantage of having a language like GML as a common language for
procedural 3D modeling is interoperability of different procedural techniques.
Different techniques can use completely different paradigms, but when they
use the same base language or encoding (such as GML) their results can be
combined. For example, this was the case in the paper [25], where the roofs and
building shells were modeled with the technique described in the paper, but the
facades were modeled with a classical split grammar approach as described in
[87]. Another possibility could be to model building walls along curves (e.g. via
splines or clothoids as described in [41]) and then use a classical split grammar
again for the facades.

In this sense GML has similarities to XML or bytecode. XML provides a common
encoding for many specification formats (XML dialects) and abolishes the need
to have an individual parser for every one. Bytecode serves as a common ground
for different programming languages that can be interpreted by the same virtual
machine. GML in analogy can serve the role of a unifying basis were other
systems, GML dialects, or domain specific languages can built upon.

GML today already has a multitude of primitives for 3D modeling included.
Notably it can represent surfaces with combined b-reps. These can either be stan-
dard triangle meshes, subdivision surfaces, or a combination of both. Combining

137

8. Evaluation of the Techniques

both variants in one representation allows shapes to have smooth surfaces as
well as sharp creases and corners. This was used in previous work where gothic
windows [40] or a pipe systems for a city [61] was created. The other representa-
tion are convex polyhedra, implemented with special precision arithmetic. They
provide a solid form of representation and allow constructive solid geometry
(CSG) operations. This means that the union, intersection, or difference of shapes
can be computed. This was used for the implementation of the shape grammars
[87, 26], the windows in [85], and the roofs in [25].

138

9. Conclusion

This thesis was concerned with the problem of modeling historic buildings in the
computer in a way that can avoid immense manual modeling effort for the ever
growing demands in computer graphics. For this, procedural modeling is the
method of choice, since it can generate geometry automatically to some degree.

While existing research in procedural modeling can produce satisfying results for
box-shaped buildings, more complex forms are harder to generate. The forms
of complex historical buildings can be grouped into different classes. In order
to model these classes, or domains, different domain specific approaches can be
sought after.

9.1. Contribution

The full scope of modeling domains necessary for historic buildings is too big for
one thesis, but three distinct problem domains were examined. For this domains
new domain specific modeling techniques were developed and described here.
These techniques comprise the modeling of complex roof landscapes for historic
buildings and historic cities, the modeling of round parts and details of historic
buildings, and the modeling of ornamental forms in historic buildings.

Roofs The technique about modeling roof landscapes uses building blocks rep-
resenting individual parts of a building. These are combined to form a complete
building and an automatic trimming algorithm is used in order to cut off surplus
geometry. The building blocks can also generate the basic wall geometry of the
building that can be refined with other methods (e.g. conventional procedural
modeling techniques) to create a complete building.

139

9. Conclusion

Round Building Geometry The technique concerned with round building ge-
ometry represents each round part of a building in its own coordinate system.
These coordinate systems can be for example cylindrical, spherical, or conical.
The choice of coordinate system naturally leads to round geometry and allows to
use existing procedural modeling techniques in the respective coordinate space.
This allows the procedural generation of towers, domes, or arches of historical
buildings.

Ornamental Forms The technique using piecewise clothoid curves shows the
further development of a special curve representation - the clothoid - that has
very favorable curvature properties, and can capture the forms of ornamental
elements with only few control points. Compared to the widely used spline curve
representation some advantages of using a piecewise colothoid curve are that
the curve passes through its control points that can be directly modified, the
invariance of the curve in respect to inserting control points, that control points
are only needed where deviation from linear curvature is needed, and that the
curve can be constrained by tangent or curvature values.

Besides developing these techniques some general insights to creating domain
specific approach for specific modeling problems were gained. Domain specific
languages are a long studied field in computer science and some lessons can be
learned there. There is always a multiplicity of options for creating a domain
specific technique for a particular problem domain. Principles of software design
such as keeping a system as simple as possible to avoid accidental complexity,
also apply here.

Further the benefits of having a common language for procedural modeling were
highlighted. All models in this thesis were created with the help of a certain
procedural modeling language - the GML. Using one common base language
allows the interoperability of different procedural techniques.

9.2. Benefit

The works presented in this thesis introduce benefits to a wide class of applica-
tions that make extensive use of 3D models. The following fields can all benefit
from using procedural modeling techniques. However, as laid out already, when
it comes to the generation of historic buildings they are limited. With the new

140

9.2. Benefit

techniques introduced in this thesis, historic buildings can now be generated in
higher detail and accuracy, which advances the creation 3D models of historic
buildings, towns, and cities.

Virtual Worlds As already mentioned, virtual worlds nowadays can include
a vast amount of 3D models, including countless building models. To create
these virtual worlds, often an army of artists has to work for years to create all
the required models. One obvious solution to lessen the workload is automatic
procedural generation of 3D models. Especially building models with their
regularities and repetitions are very well suited for procedural generation. Today,
virtual worlds are heavily used in movies and video games, and the upcoming
virtual reality (VR) technology will only increase the demand. Virtual worlds
with historic cities will benefit from the presented new techniques.

3D Scanning and Reconstruction 3D laser scanning is a technique that can scan
an objects, which yields to a resulting dense point cloud and often a following
dense triangle mesh. The detail of the result is usually high, but also is the amount
of data that is generated. The resulting geometry is also hardly modifiable. To
produce a scalable result that can also be further adapted, inverse procedural
modeling techniques are used. These techniques use a given procedural 3D model
and adapt its parameters in order to closely fit a 3D scan. When historic buildings
are scanned, the newly presented techniques will increase the quality of the
resulting models.

Cultural Heritage In order to preserve the human cultural heritage many ini-
tiatives are starting to scan important cultural sights with laser scanning. Here,
the quality and usability of the scanned result can also be increased with the
mentioned inverse procedural modeling techniques. The reconstruction of such
cultural sights can benefit greatly from the new techniques, since exiting ones
can reproduce them only in limited fashion.

Urban Planning Civil engineering already uses virtual 3D models of cities for
urban planning. One example is the company ESRI [28] whose City Engine [21]
software is used to a great degree for urban planning. Another example is the
Virtual Singapore [93] project. A project that aspires to create a complete 3D

141

9. Conclusion

model of Singapore. While existing procedural techniques are suitable to model
the building shells of most buildings in modern cities such as Singapore, the
new techniques will help reproducing historic parts of European cities in greater
detail.

Mapping Applications Mapping applications include 3D models of many cities
that are mostly generated by 3D scanning and reconstruction techniques. The
initial result usually has far too much data and needs to be simplified. The
resulting geometry is often not clean, meaning walls, windows, roofs, etc. are
slightly distorted and not one onehundred percent planar. Inverse procedural
modeling can solve this problem. As for urban planning, the presented new
techniques will aid in the creation of mapping models of historic cities.

9.3. Validation of Research Hypothesis

In Section 3.3 a list of research hypotheses was given. After presentation and
evaluation of the newly presented techniques in Chapters 5, 6, 7, and 8 these
hypothesis are revisited here.

• H1: Historic buildings cannot be reasonably modeled with existing procedural
shape modeling techniques.

This is shown in Chapter 2 and especially in Figure 1.1 and Section 2.3.
The existing techniques can model box-like buildings very well, but the
modeling capabilities for more elaborate forms are limited.

• H2: Domain Specific Languages (DSLs) are well suited for the extension of proce-
dural shape modeling techniques to model historic buildings.

Chapter 4 gives an introduction to Domain Specific Languages. Domain
Specific Methods are then used in the later Case Study Chapters. Especially,
the for architectural modeling widely used split grammar approach, can
be further adapted to work with different methods as shown in Chapter 6.
Guidelines for the creation of Domain Specific Methods can be found in
Section 8.4.1.

142

9.4. Publications

• H3: The three most effective extensions for historical buildings are: Roof landscapes,
round building geometry, and free form curves.

The Case Study Chapters 5, 6, and 7 cover all of these potential exten-
sions and give multiple results and applications.

• H4: The DSLs for the extensions can all be formulated using a common underlying
formalism.

Section 8.4.2 explains the arguments for a common base language in which
different Domain Specific Languages are implemented.

9.4. Publications

The novel works presented in this thesis have been published and peer reviewed
in following international conferences and journals:

The Case Study Constructive Roofs from Solid Building Primitives from Chapter 5

was:

• presented at the 2014 International Conference on Cyberworlds in Santander,
Spain.
• published in the conference proceedings of Cyberworlds (CW), 2014 Interna-

tional Conference on. IEEE. 2014, pp. 63–70 [24].
• published as extended journal version in Transactions on Computational

Science XXVI. Springer, 2016, pp. 17–40 [25].

The Case Study Procedural Modeling of Architecture with Round Geometry from
Chapter 6 was:

• presented at the 2016 International Conference on Cyberworlds in Chongqing,
China.
• published in the conference proceedings of Cyberworlds (CW), 2016 Interna-

tional Conference on. IEEE. 2016, pp. 81–88 [27].
• published as extended journal version in Computers & Graphics 64 (2017), pp.

14–25 [26].

143

9. Conclusion

The Case Study Curvature-controlled Curve Editing using Piecewise Clothoid Curves
from Chapter 7 was:

• presented at the 2013 Shape Modeling International (SMI) conference in
Bournemouth, United Kingdom.
• published in Computers & Graphics 37.6 (2013), pp. 764–773 [41].

144

10. Future Work

10.1. Procedural Modeling of Interiors of Buildings

Currently split grammars are mostly used for the mass generation of building
shells for whole cities, whereas detailed modeling of interiors of buildings is
partly neglected. The principles of split grammars are foremost designed to model
facades of buildings.

Interiors are harder to realize, since they need to respect all the dependencies in-
side the building. Interiors have been done with other procedural techniques, but
these are focused on simpler residential buildings and are not able to reproduce
interior geometry as found for example in complex historical buildings.

There are several drawbacks to the current split grammar systems that limit their
range of useful applications for interiors. Some drawbacks are (see Table 10.1):

1. Since simple split grammar systems use boxes as their primitives, every-
thing that is not rectangular cannot be modeled using concise grammar
rules based on splits (see example 1 in Table 10.1). Instead, the user is forced
to employ a general scripting language in order to model non-rectangular
geometry.

2. Alignment of different structures is a common requirement when modeling
architecture (see example 2 in Table 10.1). To align multiple elements along a
common axis requires additional rules to be added to the existing grammar.
This is particularly labor intensive and error prone.

3. Parts of an object can be arranged in such a way, that in order to model
them there is no way of splitting them apart without splitting through the
interior of one part (see example 3 in Table 10.1). In this case the two halves
have to be modeled separately and have to be manually aligned (as covered
in point 2.).

145

10. Future Work

1. Non-rectangular geometry 2. Alignment of geometry 3. Unsplittable geometry
When geometry is non-rectangular, a
split along the main axis of the rect-
angular bounding box (blue) cannot
partition the geometry in a useful
way. In this example, the floor plan
follows two axis (orange) that are not
perpendicular to each other.

When geometry elements (here doors
and windows) are aligned along axes
(orange), it can be hard to reproduce
the positions with split grammars be-
cause alignment information is lost
during splits.

Elements of the geometry can be ar-
ranged such that a split (blue) is
not possible without splitting right
through one element. This situation
is even more likely when there is non-
convex geometry involved.

Table 10.1.: Limitations of split grammars that complicate the modeling of building interiors.

10.2. Highly detailed Procedural Modeling

The efficiency of a modeling method depends on how rich in detail the final
model should be. Even the most complex object can be modeled with a trivial
method if the final model can be an approximation of the object with low detail.
But when more detail and more geometric properties have to be included in the
model, current procedural methods reach their limits.

For this, an approach would be needed where the focus lies on high detail
modeling and not on randomized mass generation. As long as a model has
details that follow certain rules, procedural approaches can bring much reuse in
the modeling process and therefore save work.

146

10.3. Extension of Procedural Modeling to Construction Parts

(a) Split grammars use a rule system to describe 3D models. The model is automatically
generated by successively splitting space into smaller blocks according to the rules. Here a
building is generated with a split grammar. Various instances are easily obtained through
reparametrization. Images taken from [65].

(b) CAD uses various techniques like construction planes and boolean CSG operators for 3D
modeling. With CAD, high detail models can be manually created for different fields like
architecture and engineering. Images taken from [6, 7, 8].

Figure 10.1.: Split grammar models (a) and CAD models (b) are obtained using different tech-
niques for model creation.

10.3. Extension of Procedural Modeling to
Construction Parts

Another direction where procedural modeling could expand to, and where
detailed modeling is required, is the modeling of construction parts. These parts
are usually modeled with special modeling software tailored to Computer-aided
design (CAD).

In CAD the focus is not mass modeling but the exact construction of geometry for
industrial production. Here, to clip and constrain geometry, construction lines and
planes are used (See Figure 10.1). A similar construction method incorporated in
a split grammar approach may hold the possibility to extend procedural methods
to this field.

147

Appendix

149

Appendix A.

Code for Chapter 5

1 S = arbitrary structure
2 for A ∈ solids of S do
3 for a ∈ sides of A do
4 Lsolid = empty list
5 for B ∈ solids of S where A 6= B do
6 Lside = empty list
7 for b ∈ sides of B do
8 if b rises above a then
9 g = inner side-geometry of b

10 else
11 g = outer side-geometry of b
12 end
13 append g to Lside

14 end
15 I = ∩ of all in Lside
16 append I to Lsolid

17 end
18 T = outer sub-solid of A − (∪ of all in Lsolid)
19 render the roof face (according to a) of T
20 end
21 end
Algorithm 1: Extracting the geometry for the roof of one structure. For simplic-
ity, the algorithm shown here only covers sides with one roof element and not
with a profile-polygon (as in Figure 5.12).

151

Appendix A. Code for Chapter 5

Table A.1.: Description of Algorithm 1.
Line Description
1 In our system different structures have independent roofs so we can

calculate the roof independently for one structure.
2,3 We calculate the roof face for each side of a solid separately.
4 The roof of the solid changes when another solid intersects with it. We

will trim the solid with all other solids, but because of possible double-
covered areas we have to take either the inner or outer side-geometry
of another solid, depending on the situation. Therefore we create a
new list where we will save the new other solids with inner/outer
side-geometry.

5 We iterate over all other solids of the house.
6-13 For every side of the other solid we decide whether it rises over the

side we are currently calculating (and therefore forms a double-covered
area). The test for rising over the other side is described in Section
5.5.1. If yes, we take the inner side-geometry. If no, we take the outer
side-geometry. We collect the side-geometries in a new list.

15-16 We build the boolean intersection of all the elements in the list and
thereby form a custom sub-solid that respects the double-covered areas
for each of its sides.

18 All the custom sub-solids are now boolean subtracted from the outer
sub-solid of our initial solid. This removes all areas from the roof where
another solid intersects.

19 The new roof of this side can now be rendered.

152

Appendix B.

Code for Chapter 6

attribute datatype default value description
coordsystems dict<(coord-system,

name, name, name)>
Coordinate systems. The keys are the coordinate sys-
tem names, coord-system is a specification, and the
three names are the names of the coordinates.

scope list<name> List of coordinate names whose bounds form the
scope of the shape.

bounds dict<(number, num-
ber)>

Dimension (start and end value) along a coordinate,
keys are coordinate names.

parent shape the parent shape Reference to the parent shape (automatically set).
user dict User attributes (arbitrary).
children dict<list<shape>> Child shapes. The user can choose the keys arbitrarily

(e.g. ”basement”, ”floor”, ”roof”, etc.).
geometry list<geometry> union of all child

geometries
Final geometry - will be passed to the parent.

Table B.1.: Description of the main attributes in our implementation. Split rules save the resulting
sub-shapes in the children attribute (under a given name). Per default, the geometry
attribute results in the union of all child geometries. This, however, can be overridden
by the user and gives the possibility to perform Boolean operations.

153

Appendix B. Code for Chapter 6

1 Rule Start:

2 # Setup of a cylindrical coordinate system. The first vector is the origin , the

others are for orientation:

3 coord = create -coordinate -system(’cylindrical ’, (0,0,0), (1,0,0), (0,1,0),

(0,0,1))

4 # The coordinate system is saved in the attribute ’coordsystems ’ along with the

names of its coordinates:

5 self.coordsystems[’vault0 ’] = (coord , ’radial0 ’, ’angular0 ’, ’h0’)

6 # The bounds of all three coordinates are set

7 self.bounds[’radial0 ’] = (1.7, 2)

8 self.bounds[’angular0 ’] = (0, 360)

9 self.bounds[’h0’] = (-3, 3)

10 # The same for the second cylindrical coordinate system:

11 coord = create -coordinate -system(’cylindrical ’, (0,0,0), (0,1,0), (1,0,0),

(0,0,1))

12 self.coordsystems[’vault1 ’] = (coord , ’radial1 ’, ’angular1 ’, ’h1’)

13 self.bounds[’radial1 ’] = (1.7, 2)

14 self.bounds[’angular1 ’] = (0, 360)

15 self.bounds[’h1’] = (-3, 3)

16 # A Cartesian coordinate system is needed to cut out geometry , and for the edge

decoration:

17 coord = create -coordinate -system(’cartesian ’, (0,0,0), (1,1,0), (-1,1,0), (0,0,1)

)

18 self.coordsystems[’seperator ’] = (coord , ’sep -a’, ’sep -b’, ’sep -c’)

19 # Calling of the rules for both vaults , and the edge decoration:

20 self.children[’Vault0 ’] = call -rule(’Vault0 ’)

21 self.children[’Vault1 ’] = call -rule(’Vault1 ’)

22 self.children[’Decoration ’] = call -rule(’Decoration ’)

23 # The final geometry automatically results to the union of all geometry of

elements in the ’children ’ attribute.

24

25 Rule Vault0:

26 # The scope is set to be bound by the coordinates from the ’vault0 ’ coordinate

system:

27 self.scope = [’radial0 ’, ’angular0 ’, ’h0’]

28 # The vault is split along the coordinate system axis into thin and thick pieces ,

with bounds 0.1 and 0.7:

29 self.children[’Main’] = repeat(’h0’, ’Vault0Thin 0.1 Vault0Thick 0.7’)

30 # Cutout geometry is created in order to cut away geometry from this vault where

the other vault will intersect:

31 self.children[’Cutout0 ’] = call -rule(’Cutout0 ’)

32 self.children[’Cutout1 ’] = call -rule(’Cutout1 ’)

33 # The final geometry is manually set as the main geometry minus the cutout

geometries:

34 self.geometry = difference(’Main’, union(’Cutout0 ’, ’Cutout1 ’)

35

36 Rule Vault0Thin:

37 # The inner part of this slice becomes empty , and the outer part filled with

solid geometry

38 # (bound by the scope - the bounds in ’radial0 ’, ’angular0 ’, ’h0 ’).

39 # The ’~1’ term specifies that this value is relative , and adjusts to the space

that is left:

40 return subdivide(’radial0 ’, ’EMPTY ~1 SOLID 0.2’)

41 # Because there is a return value , its geometry will automatically be the final

geometry of this shape.

42

43 Rule Vault0Thick:

44 # The bigger parts are further split angular into the horizontal bars , and the

154

inner cassettes:

45 return repeat(’angular0 ’, ’Vault0Horizontal 5 Vault0Inner 20’)

46

47 Rule Vault0Horizontal:

48 return subdivide(’radial0 ’, ’EMPTY ~1 SOLID 0.17’)

49

50 Rule Vault0Inner:

51 return subdivide(’radial0 ’, ’EMPTY ~1 SOLID 0.1’)

52

53 Rule Cutout0:

54 # The bounds are manually set to form a wedge , that is later (in Rule Vault0) cut

out on one side of the vault:

55 self.dimension[’sep -a’] = (0, +inf)

56 self.dimension[’sep -b’] = (-inf , 0)

57 self.scope = [’sep -a’, ’sep -b’]

58 return call -rule(’SOLID’)

59

60 Rule Decoration:

61 # The decoration consits of 8 parts , the intersection of the vaults forms 2 edges

that intersect ,

62 # giving 4 edge segments , and we model the left and the right side for each edge

segment:

63 self.children[’Deco0’] = call -rule(’Deco0’)

64 ...

65 self.children[’Deco8’] = call -rule(’Deco8’)

66

67 Rule Deco0:

68 self.bounds[’sep -a’] = (-0.15, 0)

69 self.scope = [’radial0 ’, ’angular0 ’, ’sep -a’]

70 return repeat(’angular0 ’, ’Deco0Small 2 Deco0Big 2’)

71

72 Rule Deco0Small:

73 return subdivide(’sep -a’, ’Deco0Small2 0.02 EMPTY ~1’)

74

75 Rule Deco0Small2:

76 return subdivide(’radial0 ’, ’EMPTY ~1 SOLID 0.2’)

77

78 Rule Deco0Big:

79 return subdivide(’radial0 ’, ’EMPTY ~1 SOLID 0.22’)

Listing B.1: Pseudo code (not the actual code) for the model in Figure 6.5 in a python-like syntax.
’self’ refers here to the dictionary containing the attributes shown in Figure B.1. The
word ’Rule’ marks the beginning of a rule function. Not all rule functions are shown
(e.g. ’Vault1’, ’Cutout1’, ’Deco1’, etc.). However, these are coded in a similar way.
Coding all of them would lead to a vast amount of code. In practice, we support
parameters for our rule functions and can therefore reuse them. This reduces the
number of them which is needed. We do not shown this here, in order to reduce
complexity.

155

Bibliography

[1] url: http://luxurydesign.vn/resources/upload/60177686.jpg (cit. on
p. 31).

[2] url: http://dhwcor.xyz/roman-vault-architecture/structure-palace-
arch-decoration-free-roman-vault-architecture-images-building-

the-aisle.html (cit. on p. 31).

[3] url: https://www.albertmilde.com/img/sturany7.jpg (cit. on p. 32).

[4] url: https://www.cypherpunk.at/files/2015/12/bspline_0.jpg (cit. on
p. 33).

[5] url: https://en.wikipedia.org/wiki/Euler_spiral (cit. on p. 33).

[6] url: http://www.thefabricator.com/article/shopmanagement/-shop-
technology-and-3-d-cad-techniques-for-modeling-bent-and-welded-

tubing (cit. on p. 147).

[7] url: http://en.wikipedia.org/wiki/Constructive_solid_geometry
(cit. on p. 147).

[8] url: http://www.danube-engineering.eu/kontakt.html (cit. on p. 147).

[9] Oswin Aichholzer et al. A novel type of skeleton for polygons. Springer, 1996

(cit. on p. 48).

[10] Jamaludin Md Ali et al. “The generalised Cornu spiral and its application
to span generation.” In: Journal of Computational and Applied Mathematics
102.1 (1999), pp. 37–47 (cit. on p. 103).

[11] Babak Ameri and Dieter Fritsch. “Automatic 3D building reconstruction
using plane-roof structures.” In: ASPRS, Washington DC (2000) (cit. on
p. 47).

[12] U.H. Augsdoerfer, N.A. Dodgson, and M.A. Sabin. “Artifact analysis on B-
splines, box-splines and other surfaces defined by quadrilateral polyhedra.”
In: Computer Aided Geometric Design 28.3 (2011), pp. 177–197. issn: 0167-8396

(cit. on p. 117).

157

http://luxurydesign.vn/resources/upload/60177686.jpg
http://dhwcor.xyz/roman-vault-architecture/structure-palace-arch-decoration-free-roman-vault-architecture-images-building-the-aisle.html
http://dhwcor.xyz/roman-vault-architecture/structure-palace-arch-decoration-free-roman-vault-architecture-images-building-the-aisle.html
http://dhwcor.xyz/roman-vault-architecture/structure-palace-arch-decoration-free-roman-vault-architecture-images-building-the-aisle.html
https://www.albertmilde.com/img/sturany7.jpg
https://www.cypherpunk.at/files/2015/12/bspline_0.jpg
https://en.wikipedia.org/wiki/Euler_spiral
http://www.thefabricator.com/article/shopmanagement/-shop-technology-and-3-d-cad-techniques-for-modeling-bent-and-welded-tubing
http://www.thefabricator.com/article/shopmanagement/-shop-technology-and-3-d-cad-techniques-for-modeling-bent-and-welded-tubing
http://www.thefabricator.com/article/shopmanagement/-shop-technology-and-3-d-cad-techniques-for-modeling-bent-and-welded-tubing
http://en.wikipedia.org/wiki/Constructive_solid_geometry
http://www.danube-engineering.eu/kontakt.html

Bibliography

[13] Franz Aurenhammer. “Weighted skeletons and fixed-share decomposition.”
In: Computational Geometry 40.2 (2008), pp. 93–101 (cit. on p. 49).

[14] Ilya Baran, Jaakko Lehtinen, and Jovan Popovic. “Sketching Clothoid
Splines Using Shortest Paths.” In: Comput. Graph. Forum 29.2 (2010), pp. 655–
664 (cit. on pp. 103, 122).

[15] Alexander G. Belyaev. “A Note on Invariant Three-Point Curvature Ap-
proximations (Singularity theory and Differential equations).” In: RIMS
Kokyuroku 1111 (Aug. 1999), pp. 157–164. issn: 1880-2818 (cit. on p. 106).

[16] David Ben-Haim, Gur Harary, and Ayellet Tal. “Piecewise 3D Euler spirals.”
In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling.
SPM ’10. Haifa, Israel: ACM, 2010, pp. 201–206. isbn: 978-1-60558-984-8
(cit. on pp. 104, 124).

[17] Saffron Blaze. Wikimedia commons - Leaning tower or Pisa. License: CC BY-
SA 3.0/Saffron Blaze. url: https://upload.wikimedia.org/wikipedia/
commons/6/66/The_Leaning_Tower_of_Pisa_SB.jpeg (cit. on pp. 3, 126).

[18] Blender - a 3D modelling and rendering package. Blender Institute, Amsterdam,
2016. url: http://www.blender.org (cit. on p. 92).

[19] Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. “A connection
between partial symmetry and inverse procedural modeling.” In: ACM
Transactions on Graphics (TOG). Vol. 29. 4. ACM. 2010, pp. 1–10 (cit. on p. 75).

[20] George Merrill Chaikin. “An algorithm for high-speed curve generation.”
In: Computer Graphics and Image Processing 3.4 (1974), pp. 346–349. issn:
0146-664X (cit. on p. 113).

[21] City Engine. url: http://www.esri.com/software/cityengine (cit. on
p. 141).

[22] Francois de Dijon/CC BY-SA 4.0. Wikimedia commons - Gate of Honour
in Versailles. License: CC BY-SA 4.0/Francois de Dijon. url: https://
upload.wikimedia.org/wikipedia/commons/7/73/Ch%C3%A2teau_de_

Versailles_-_grille_royale_01.jpg (cit. on pp. 3, 126).

[23] Dirk Dörschlag, Gerhard Gröger, and Lutz Plümer. “Semantically enhanced
prototypes for building reconstruction.” In: Stilla, U. et al.(Eds.). Proc. of
PIA’07, Intern. Archives of ISPRS 36 (2007) (cit. on p. 48).

[24] Johannes Edelsbrunner et al. “Constructive roof geometry.” In: Cyberworlds
(CW), 2014 International Conference on. IEEE. 2014, pp. 63–70 (cit. on pp. 75,
143).

158

https://upload.wikimedia.org/wikipedia/commons/6/66/The_Leaning_Tower_of_Pisa_SB.jpeg
https://upload.wikimedia.org/wikipedia/commons/6/66/The_Leaning_Tower_of_Pisa_SB.jpeg
http://www.blender.org
http://www.esri.com/software/cityengine
https://upload.wikimedia.org/wikipedia/commons/7/73/Ch%C3%A2teau_de_Versailles_-_grille_royale_01.jpg
https://upload.wikimedia.org/wikipedia/commons/7/73/Ch%C3%A2teau_de_Versailles_-_grille_royale_01.jpg
https://upload.wikimedia.org/wikipedia/commons/7/73/Ch%C3%A2teau_de_Versailles_-_grille_royale_01.jpg

Bibliography

[25] Johannes Edelsbrunner et al. “Constructive roofs from solid building primi-
tives.” In: Transactions on Computational Science XXVI. Springer, 2016, pp. 17–
40 (cit. on pp. 43, 75, 137, 138, 143).

[26] Johannes Edelsbrunner et al. “Procedural modeling of architecture with
round geometry.” In: Computers & Graphics 64 (2017), pp. 14–25 (cit. on
pp. 71, 136, 138, 143).

[27] Johannes Edelsbrunner et al. “Procedural Modeling of Round Building
Geometry.” In: Cyberworlds (CW), 2016 International Conference on. IEEE.
2016, pp. 81–88 (cit. on pp. 75, 143).

[28] ESRI. url: https://www.esri.com/en-us/home (cit. on p. 141).

[29] Dieter Finkenzeller. “Detailed building facades.” In: Computer Graphics and
Applications, IEEE 28.3 (2008), pp. 58–66 (cit. on p. 48).

[30] Dieter Finkenzeller. Modellierung komplexer Gebäudefassaden in der Computer-
graphik. KIT Scientific Publishing, 2008 (cit. on p. 48).

[31] Dieter Finkenzeller, Jan Bender, and Alfred Schmitt. “Feature-based de-
composition of façades.” In: Proc. Virtual Concept. December. 2005, pp. 1–9

(cit. on p. 80).

[32] Andre Fischer et al. “Extracting buildings from aerial images using hierar-
chical aggregation in 2D and 3D.” In: Computer Vision and Image Understand-
ing 72.2 (1998), pp. 185–203 (cit. on p. 48).

[33] Martin Fowler. Domain-specific languages. Pearson Education, 2010 (cit. on
pp. 35, 37, 38, 40, 42).

[34] Freeimages. 2016. url: http://www.freeimages.com/photographer/reneejvt-
49071 (cit. on pp. 74, 96).

[35] Freeimages. 2016. url: http://www.freeimages.com/photographer/suemax-
46273 (cit. on p. 74).

[36] Armin Grün. “Semi-automated approaches to site recording and modeling.”
In: International Archives of Photogrammetry and Remote Sensing 33.B5/1; PART
5 (2000), pp. 309–318 (cit. on p. 47).

[37] Xuekun Guo et al. “Creature grammar for creative modeling of 3D mon-
sters.” In: Graphical Models 76.5 (2014), pp. 376–389 (cit. on p. 75).

159

https://www.esri.com/en-us/home
http://www.freeimages.com/photographer/reneejvt-49071
http://www.freeimages.com/photographer/reneejvt-49071
http://www.freeimages.com/photographer/suemax-46273
http://www.freeimages.com/photographer/suemax-46273

Bibliography

[38] Sven Havemann. “Generative mesh modeling.” In: PhD Thesis, Technische
Universitaet Braunschweig, Germany 1.1-303 (2005), pp. 4–4. doi: www.digibib.
tu-bs.de/?docid=00000008. url: http://generalized-documents.org/
CGVold/DigitalLibrary/publications/TechnicalReports/bs/TR-tubs-

cg-2003-01.pdf (cit. on pp. 86, 91, 136).

[39] Sven Havemann. “Generative modellierung.” PhD thesis. Citeseer, 1997

(cit. on p. 136).

[40] Sven Havemann and Dieter Fellner. “Generative parametric design of gothic
window tracery.” In: Shape Modeling Applications, 2004. Proceedings. IEEE.
2004, pp. 350–353 (cit. on p. 138).

[41] Sven Havemann et al. “Curvature-controlled curve editing using piecewise
clothoid curves.” In: Computers & Graphics 37.6 (2013), pp. 764–773 (cit. on
pp. 99, 137, 144).

[42] Mark A. Heald. “Rational Approximations for the Fresnel Integrals.” En-
glish. In: Mathematics of Computation 44.170 (1985), issn: 00255718 (cit. on
pp. 101, 104).

[43] Hai Huang and Claus Brenner. “Rule-based roof plane detection and
segmentation from laser point clouds.” In: Urban Remote Sensing Event
(JURSE), 2011 Joint. IEEE. 2011, pp. 293–296 (cit. on p. 47).

[44] Hai Huang, Claus Brenner, and Monika Sester. “3d building roof recon-
struction from point clouds via generative models.” In: Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM. 2011, pp. 16–24 (cit. on p. 48).

[45] Hai Huang, Claus Brenner, and Monika Sester. “A generative statistical
approach to automatic 3D building roof reconstruction from laser scanning
data.” In: ISPRS Journal of Photogrammetry and Remote Sensing 79 (2013),
pp. 29–43 (cit. on p. 48).

[46] Institute of Computer Graphics and Knowledge Visualisation (CGV), Graz Uni-
versity of Technology. url: https://www.tugraz.at/institute/cgv/home/
(cit. on pp. 18, 20, 24, 43, 71, 99).

[47] Xiaogang Jin and VF Li. “Three-dimensional deformation using directional
polar coordinates.” In: Journal of Graphics Tools 5.2 (2000), pp. 15–24 (cit. on
p. 75).

160

http://dx.doi.org/www.digibib.tu-bs.de/?docid=00000008
http://dx.doi.org/www.digibib.tu-bs.de/?docid=00000008
http://generalized-documents.org/CGVold/DigitalLibrary/publications/TechnicalReports/bs/TR-tubs-cg-2003-01.pdf
http://generalized-documents.org/CGVold/DigitalLibrary/publications/TechnicalReports/bs/TR-tubs-cg-2003-01.pdf
http://generalized-documents.org/CGVold/DigitalLibrary/publications/TechnicalReports/bs/TR-tubs-cg-2003-01.pdf
https://www.tugraz.at/institute/cgv/home/

Bibliography

[48] Tom Kelly and Peter Wonka. “Interactive architectural modeling with
procedural extrusions.” In: ACM Transactions on Graphics 30.2 (2011), pp. 1–
15. issn: 07300301. doi: 10.1145/1944846.1944854. url: http://portal.
acm.org/citation.cfm?doid=1944846.1944854 (cit. on pp. 49, 80).

[49] KyoHyouk Kim and Jie Shan. “Building roof modeling from airborne
laser scanning data based on level set approach.” In: ISPRS Journal of
Photogrammetry and Remote Sensing 66.4 (2011), pp. 484–497 (cit. on p. 47).

[50] Lars Krecklau and Leif Kobbelt. “Procedural modeling of interconnected
structures.” In: Computer Graphics Forum. Vol. 30. 2. Wiley Online Library.
2011, pp. 335–344 (cit. on p. 47).

[51] Lars Krecklau, Darko Pavic, and Leif Kobbelt. “Generalized use of non-
terminal symbols for procedural modeling.” In: Computer Graphics Forum
29.8 (2010), pp. 2291–2303. issn: 01677055. doi: 10.1111/j.1467-8659.
2010.01714.x (cit. on pp. 20, 21, 47, 75, 80).

[52] Robert G Laycock and AM Day. “Automatically generating roof models
from building footprints.” In: (2003) (cit. on p. 48).

[53] Luc Leblanc, Jocelyn Houle, and Pierre Poulin. “Component-based model-
ing of complete buildings.” In: Proceedings of Graphics Interface 2011 (2011),
pp. 87–94. issn: 07135424. url: http://dl.acm.org/citation.cfm?id=
1992917.1992932 (cit. on pp. 21, 22, 79).

[54] Thomas Ledl. Wikimedia commons - Karlskirche. License: CC-BY-SA 4.0/Thomas
Ledl. url: https://upload.wikimedia.org/wikipedia/commons/3/39/
Karlskirche_Abendsonne_1.jpg (cit. on pp. 3, 126).

[55] Raphael Linus Levien and Carlo Adviser-Sequin. From spiral to spline: Opti-
mal techniques in interactive curve design. University of California at Berkeley,
2009 (cit. on p. 103).

[56] Yong Liu et al. “Semantic modeling for ancient architecture of digital
heritage.” In: Computers & Graphics 30.5 (2006), pp. 800–814 (cit. on p. 48).

[57] James McCrae and Karan Singh. “Neatening sketched strokes using piece-
wise French curves.” In: Proceedings of the Eighth Eurographics Symposium on
Sketch-Based Interfaces and Modeling. SBIM ’11. Vancouver, British Columbia,
Canada: ACM, 2011, pp. 141–148. isbn: 978-1-4503-0906-6 (cit. on p. 103).

[58] James McCrae and Karan Singh. “Sketch-Based Interfaces and Modeling
(SBIM): Sketching piecewise clothoid curves.” In: Comput. Graph. 33.4 (Aug.
2009), pp. 452–461. issn: 0097-8493 (cit. on pp. 103, 121).

161

http://dx.doi.org/10.1145/1944846.1944854
http://portal.acm.org/citation.cfm?doid=1944846.1944854
http://portal.acm.org/citation.cfm?doid=1944846.1944854
http://dx.doi.org/10.1111/j.1467-8659.2010.01714.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01714.x
http://dl.acm.org/citation.cfm?id=1992917.1992932
http://dl.acm.org/citation.cfm?id=1992917.1992932
https://upload.wikimedia.org/wikipedia/commons/3/39/Karlskirche_Abendsonne_1.jpg
https://upload.wikimedia.org/wikipedia/commons/3/39/Karlskirche_Abendsonne_1.jpg

Bibliography

[59] James McCrae and Karan Singh. Sketch-based path design. Canadian Infor-
mation Processing Society, 2009 (cit. on p. 103).

[60] Radomir Mech and Przemyslaw Prusinkiewicz. “Visual models of plants
interacting with their environment.” In: Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques. ACM. 1996, pp. 397–410

(cit. on p. 9).

[61] Erick Mendez et al. “Generating semantic 3D models of underground
infrastructure.” In: IEEE Computer Graphics and Applications 28.3 (2008) (cit.
on p. 138).

[62] Paul Merrell, Eric Schkufza, and Vladlen Koltun. “Computer-generated
residential building layouts.” In: ACM Transactions on Graphics (TOG) 29.6
(2010), p. 181 (cit. on p. 48).

[63] Judith Milde and Claus Brenner. “Graph-based modeling of building roofs.”
In: AGILE Conference on GIScience. 2009 (cit. on p. 47).

[64] J Milde et al. “Building reconstruction using a structural description based
on a formal grammar.” In: International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 37 (2008) (cit. on p. 47).

[65] Pascal Müller et al. “Procedural modeling of buildings.” In: ACM Trans-
actions on Graphics 25.3 (2006), pp. 614–614. issn: 07300301. doi: 10.1145/
1141911.1141931. url: http://portal.acm.org/citation.cfm?doid=
1141911.1141931 (cit. on pp. 2, 12, 29, 47, 48, 74, 76, 79, 81, 147).

[66] AW Nutbourne, PM McLellan, and RML Kensit. “Curvature profiles for
plane curves.” In: Computer-Aided Design 4.4 (1972), pp. 176–184 (cit. on
p. 102).

[67] Open street map. url: http://www.openstreetmap.org (cit. on p. 49).

[68] TK Pal and AW Nutbourne. “Two-dimensional curve synthesis using linear
curvature elements.” In: Computer-Aided Design 9.2 (1977), pp. 121–134 (cit.
on p. 102).

[69] Yoav IH Parish and Pascal Müller. “Procedural modeling of cities.” In:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. ACM. 2001, pp. 301–308 (cit. on pp. 8, 9).

[70] Giacomo della Porta. Wikimedia commons - St. Peter’s Basilica. License: Gi-
acomo della Porta. url: https://upload.wikimedia.org/wikipedia/
commons/1/15/Petersdom_von_Engelsburg_gesehen.jpg (cit. on pp. 3,
126).

162

http://dx.doi.org/10.1145/1141911.1141931
http://dx.doi.org/10.1145/1141911.1141931
http://portal.acm.org/citation.cfm?doid=1141911.1141931
http://portal.acm.org/citation.cfm?doid=1141911.1141931
http://www.openstreetmap.org
https://upload.wikimedia.org/wikipedia/commons/1/15/Petersdom_von_Engelsburg_gesehen.jpg
https://upload.wikimedia.org/wikipedia/commons/1/15/Petersdom_von_Engelsburg_gesehen.jpg

Bibliography

[71] Adobe Press. PostScript language reference manual. Addison-Wesley Longman
Publishing Co., Inc., 1985 (cit. on p. 136).

[72] P Prusinkiewicz and A Lindenmayer. The Algorithmic Beauty of Plants. 1990

(cit. on p. 9).

[73] Przemyslaw Prusinkiewicz, Mark James, and Radomir Mech. “Synthetic
topiary.” In: Proceedings of the 21st annual conference on Computer graphics and
interactive techniques. ACM. 1994, pp. 351–358 (cit. on p. 9).

[74] A Schechter. “Synthesis of 2D curves by blending piecewise linear curvature
profiles.” In: Computer-aided design 10.1 (1978), pp. 8–18 (cit. on p. 102).

[75] Robert Schneider and Leif Kobbelt. “Discrete Fairing of Curves and Surfaces
based on Linear Curvature Distribution.” In: Curve and Surface Design,
Saint-Malo 1999. Ed. by Pierre-Jean Laurent, Paul Sablonniere, and Larry
L. Schumaker. Innovations in Applied Mathematics. Saint-Malo, France:
Vanderbilt University Press, 2000, pp. 371–380. isbn: 0-8265-1356-5 (cit. on
pp. 102, 106).

[76] School of Computer Science and Engineering (SCSE), Nanyang Technological
University, Singapore. url: http://scse.ntu.edu.sg/Pages/Home.aspx
(cit. on pp. 43, 71).

[77] Michael Schwarz and Pascal Müller. “Advanced procedural modeling of
architecture.” In: ACM Transactions on Graphics 34.4 (2015), 107:1–107:12.
issn: 07300301. doi: 10.1145/2766956. url: http://dl.acm.org/citation.
cfm?doid=2809654.2766956 (cit. on pp. 2, 14, 79, 81).

[78] George Stiny. Introduction to shape and shape grammars. 1980. doi: 10.1068/
b070343. url: http://goo.gl/9GsWe2 (cit. on p. 74).

[79] George Stiny and James Gips. “Shape Grammars and the Generative Specifi-
cation of Painting and Sculpture.” In: IFIP Congress (2). 1971, pp. 1460–1465

(cit. on pp. 11, 47).

[80] Martin Strobl et al. “Euclides - a JavaScript to PostScript Translator.” In:
Proceedings of the International Conference on Computational Logics, Algebras,
Programming, Tools, and Benchmarking (Computation Tools). United States:
Institute of Electrical and Electronics Engineers, 2010, pp. 14–21 (cit. on
p. 137).

[81] Kenichi Sugihara and Yoshitugu Hayashi. “Automatic generation of 3D
building models from building polygons on GIS.” In: ICCCBEXI Proceedings
of the 11th ICCCBE. Montreal, Canada (2006), pp. 14–16 (cit. on p. 48).

163

http://scse.ntu.edu.sg/Pages/Home.aspx
http://dx.doi.org/10.1145/2766956
http://dl.acm.org/citation.cfm?doid=2809654.2766956
http://dl.acm.org/citation.cfm?doid=2809654.2766956
http://dx.doi.org/10.1068/b070343
http://dx.doi.org/10.1068/b070343
http://goo.gl/9GsWe2

Bibliography

[82] Kenichi Sugihara and Yoshitugu Hayashi. “Automatic generation of 3D
building models with multiple roofs.” In: Tsinghua Science & Technology 13

(2008), pp. 368–374 (cit. on p. 48).

[83] Franck Taillandier. “Automatic building reconstruction from cadastral maps
and aerial images.” In: International Archives of Photogrammetry and Remote
Sensing 36.Part 3 (2005), W24 (cit. on p. 47).

[84] Soon Tee Teoh. “Generalized descriptions for the procedural modeling of
ancient east asian buildings.” In: (2009) (cit. on p. 48).

[85] Wolfgang Thaller et al. “Creating procedural window building blocks using
the generative fact labeling method.” In: ISPRS-International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 1.1 (2013),
pp. 235–42 (cit. on pp. 22–24, 137, 138).

[86] Wolfgang Thaller et al. “Implicit nested repetition in dataflow for procedu-
ral modeling.” In: Proceedings of the International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmarking (Computation Tools),
Nice, France. Citeseer. 2012, pp. 22–27 (cit. on p. 137).

[87] Wolfgang Thaller et al. “Shape grammars on convex polyhedra.” In: Com-
puters and Graphics (Pergamon) 37.6 (2013), pp. 707–717. issn: 00978493. doi:
10.1016/j.cag.2013.05.012. url: http://linkinghub.elsevier.com/
retrieve/pii/S0097849313000861 (cit. on pp. 16, 18, 47, 73, 75, 76, 81,
136–138).

[88] Yannick Thiel, Karan Singh, and Ravin Balakrishnan. “Elasticurves: exploit-
ing stroke dynamics and inertia for the real-time neatening of sketched 2D
curves.” In: Proceedings of the 24th annual ACM symposium on User interface
software and technology. ACM. 2011, pp. 383–392 (cit. on p. 103).

[89] ToucanWings. Wikimedia commons - Palace of Versailles. License: CC BY-
SA 3.0/ToucanWings. url: https://upload.wikimedia.org/wikipedia/
commons/9/94/Vue_a%C3%A9rienne_du_domaine_de_Versailles_le_20_

ao%C3%BBt_2014_par_ToucanWings_-_Creative_Commons_By_Sa_3.0_-

_26.jpg (cit. on pp. 3, 126).

[90] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages:
An annotated bibliography.” In: ACM Sigplan Notices 35.6 (2000), pp. 26–36

(cit. on p. 35).

[91] Marco Verch. Wikimedia commons - Pantheon. License: CC BY 2.0/Marco
Verch. url: https://upload.wikimedia.org/wikipedia/commons/5/51/
Pantheon_in_Rom_%2824200809342%29.jpg (cit. on pp. 3, 126).

164

http://dx.doi.org/10.1016/j.cag.2013.05.012
http://linkinghub.elsevier.com/retrieve/pii/S0097849313000861
http://linkinghub.elsevier.com/retrieve/pii/S0097849313000861
https://upload.wikimedia.org/wikipedia/commons/9/94/Vue_a%C3%A9rienne_du_domaine_de_Versailles_le_20_ao%C3%BBt_2014_par_ToucanWings_-_Creative_Commons_By_Sa_3.0_-_26.jpg
https://upload.wikimedia.org/wikipedia/commons/9/94/Vue_a%C3%A9rienne_du_domaine_de_Versailles_le_20_ao%C3%BBt_2014_par_ToucanWings_-_Creative_Commons_By_Sa_3.0_-_26.jpg
https://upload.wikimedia.org/wikipedia/commons/9/94/Vue_a%C3%A9rienne_du_domaine_de_Versailles_le_20_ao%C3%BBt_2014_par_ToucanWings_-_Creative_Commons_By_Sa_3.0_-_26.jpg
https://upload.wikimedia.org/wikipedia/commons/9/94/Vue_a%C3%A9rienne_du_domaine_de_Versailles_le_20_ao%C3%BBt_2014_par_ToucanWings_-_Creative_Commons_By_Sa_3.0_-_26.jpg
https://upload.wikimedia.org/wikipedia/commons/5/51/Pantheon_in_Rom_%2824200809342%29.jpg
https://upload.wikimedia.org/wikipedia/commons/5/51/Pantheon_in_Rom_%2824200809342%29.jpg

Bibliography

[92] Vivek Verma, Rakesh Kumar, and Stephen Hsu. “3d building detection and
modeling from aerial lidar data.” In: Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on. Vol. 2. IEEE. 2006, pp. 2213–2220

(cit. on p. 47).

[93] Virtual Singapore. url: http://www.nrf.gov.sg/programmes/virtual-
singapore (cit. on p. 141).

[94] DJ Walton and DS Meek. “A controlled clothoid spline.” In: Computers &
Graphics 29.3 (2005), pp. 353–363 (cit. on p. 103).

[95] Jeff Wilcox. Wikimedia commons - Neuschwanstein Castle. License: CC BY 2.0/J-
eff Wilcox. url: https://upload.wikimedia.org/wikipedia/commons/3/
37/Neuschwanstein_castle.jpg (cit. on pp. 3, 126).

[96] Peter Wonka et al. “Instant architecture.” In: ACM Transactions on Graphics
22.3 (2003), pp. 669–669. issn: 07300301. doi: 10.1145/882262.882324 (cit.
on pp. 2, 11, 47, 74, 76).

[97] Rene Zmugg et al. “Deformation-aware split grammars for architectural
models.” In: Proceedings - 2013 International Conference on Cyberworlds, CW
2013 (2013), pp. 4–11. doi: 10.1109/CW.2013.11. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6680085 (cit. on pp. 18,
20, 75, 77).

[98] Rene Zmugg et al. “Procedural architecture using deformation-aware split
grammars.” In: The Visual Computer 30.9 (2014), pp. 1009–1019. issn: 0178-
2789. doi: 10.1007/s00371-013-0912-3. url: http://link.springer.com/
10.1007/s00371-013-0912-3 (cit. on pp. 18, 20, 73, 75, 77, 136).

165

http://www.nrf.gov.sg/programmes/virtual-singapore
http://www.nrf.gov.sg/programmes/virtual-singapore
https://upload.wikimedia.org/wikipedia/commons/3/37/Neuschwanstein_castle.jpg
https://upload.wikimedia.org/wikipedia/commons/3/37/Neuschwanstein_castle.jpg
http://dx.doi.org/10.1145/882262.882324
http://dx.doi.org/10.1109/CW.2013.11
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6680085
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6680085
http://dx.doi.org/10.1007/s00371-013-0912-3
http://link.springer.com/10.1007/s00371-013-0912-3
http://link.springer.com/10.1007/s00371-013-0912-3

List of Figures

1.1. Existing split grammar approaches 2

1.2. Complex historic architecture . 3

2.1. Paper: Procedural Modeling of Cities [69] 9

2.2. Paper: Instant Architecture [96] . 11

2.3. Paper: Procedural Modeling of Buildings [65] 12

2.4. Paper: Advanced Procedural Modeling of Architecture [77] 14

2.5. Paper: Shape Grammars on Convex Polyhedra [87] 16

2.6. Paper: Procedural Architecture using Deformation-Aware Split
Grammars [98] . 18

2.7. Paper: Generalized Use of Non-Terminal Symbols for Procedural
Modeling [51] . 20

2.8. Paper: Component-Based Modeling of Complete Buildings [53] . . 22

2.9. Paper: Creating Procedural Window Building Blocks using the
Generative Fact Labeling Method [85] 23

3.1. Procedurally generated roof landscape 29

3.2. Interior of the St. Peters basilica . 31

3.3. Arches of a church . 31

3.4. Wrought iron balcony . 32

3.5. Bsplines and spirals . 33

4.1. Semantic Model . 37

4.2. State Machine . 38

4.3. Production Rule System . 38

4.4. Decision Table . 38

4.5. Dependency Network . 38

4.6. Internal DSL . 40

4.7. External DSL . 42

5.1. Modeling a building by parametrizable parts 44

5.2. Building parts: simple union vs. trimmed version 45

167

List of Figures

5.3. Complex roof shapes . 46

5.4. Aerial image of the inner city of Graz, Austria 47

5.5. The components of our abstract building model 48

5.6. Cross section view of a side . 50

5.7. Specification of a solid . 52

5.8. Automatic generation of sides for solids 53

5.9. Trimming for solids by interactions of different building parts . . . 54

5.10. The four possible ways solids can influence each other 55

5.11. Solid evaluation with different parametrizations of the sides 56

5.12. Profile polygons . 57

5.13. Dormers on a solid . 58

5.14. Abstract building model . 58

5.15. Eaves and double-covered areas . 60

5.16. Side geometry . 62

5.17. Sub-solids . 63

5.18. Extracted geometry of a building . 63

5.19. Model of the royal palace of Milan 66

5.20. Model of the inner city of Graz, Austria 67

5.21. Model of the Magdalena palacio in Santander, Spain 68

5.22. Comparison of the Magdalena palacio model the one in Google
maps . 69

6.1. Model of a castle wall, showing procedural splits 72

6.2. Structures that are hard to model with current split grammar
approaches . 74

6.3. A wall split into nine pieces in different coordinate systems 78

6.4. Depiction of operators used to generate new coordinate systems
and scopes . 83

6.5. Cross vault, showing repetitive geometry at a round surface 84

6.6. Steps in the generation of the cross vault model 85

6.7. Variations of a procedural cross-vault model 88

6.8. Model of a segment of a castle wall 89

6.9. Gangway formed from multiple instances of the cross vault model 90

6.10. Model of a roofing for a gangway 90

6.11. Towers of Neuschwanstein castle in Germany 96

7.1. An ornamental wrought iron form, captured with PCCs 100

7.2. Optimization of point . 105

7.3. PCC configurations . 107

168

List of Figures

7.4. Damping of PCC curves . 108

7.5. Damping effect of closely spaced control points 108

7.6. Trading shape against curvature . 110

7.7. Restoring G2 continuity . 111

7.8. Construction of a clothoid spline . 113

7.9. PCC spline . 114

7.10. Design experiment: Aesthetic improvement of a curve 115

7.11. Spring element . 116

7.12. Curvature artifacts of spline curves 118

7.13. Inserting U-shapes on a large smooth curve segement 120

7.14. Shapes of a wrought iron captured with PCCs 121

7.15. Fitting a PCC to input data . 122

8.1. Complex historic architecture . 126

8.2. Code snippets . 131

10.1. Split grammar models and CAD models 147

169

List of Tables

3.1. Split grammars in circular geometry 30

8.1. Comparison of used (domain specific) techniques 129

8.2. Geometric primitives used by the techniques 129

8.3. Objects that the techniques can generate 129

10.1. Limitations of split grammars for interiors 146

A.1. Description of roof extracting algorithm 152

B.1. Description of the main attributes in our implementation 153

171

