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Abstract

Maximal cardiac stress exercise testing is one of the common health checks es-
pecially for heart diseases. One of the crucial results is the maximal workload
which a patient achieves during the examination. The aim of this thesis is to
derive normal values of the maximal workload using a regression analysis with
variables selection. This is done with the data from the medical institute ZARG
and ProDoc, which include in total 28,625 ergometries. The resulting normal
values are compared with the normal values, which are currently recommended
in the guidelines of Austria. The newly calculated normal values have a better
goodness of fit, especially for women, than the currently used normal values.
Furthermore, the analysis of in total 1,453 ergometries at entry examinations of
stage II and stage III of cardiac out-patient rehabilitation is done to calculate the
normal values of maximum workload. Finally, the improvement of maximum
workload during stage II and stage III of cardiac out-patient rehabilitation is
analyzed.

Zusammenfassung

Die Ergometrie ist eines der Standard-Gesundheitschecks speziell bei Herzer-
krankungen. FEine der wesentlichen Resultate ist die maximale Leistung, die
ein Patient wahrend der Untersuchung erreicht. Das Ziel dieser Arbeit ist es mit
Hilfe einer Regressionsanalyse mit Variablenselektion Normalwerte fiir die max-
imale Leistung zu erhalten. Dies wird mit Hilfe der Daten des medizinischen
Instituts ZARG gemacht. Insgesamt standen dafiir Daten von 28.625 Ergome-
trien zur Verfiigung. Die resultierenden Normalwerte werden mit den in Oster-
reich momentan in den Praxisleitlinien empfohlenen Normalwerten verglichen.
Die neu berechneten Normalwerte besitzen eine bessere Anpassungsgiite als die
momentan verwendeten Normalwerte, speziell fiir Frauen. Weiters beinhaltet
die Arbeit Normalwerte fiir die maximale Leistung wie auch Normalwerte fiir
die Verbesserung der maximalen Leistung fiir Ergometrien wéahrend der Ein-
gangsuntersuchung von Phase II und Phase III der ambulanten Rehabilitation.
Fiir diese Analyse wurden insgesamt Daten von 1.453 Ergometrien verwendet.
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Chapter 1

Introduction

Cardiovascular diseases are responsible for 45% of all deaths in Europe. In
2015, more than 85 million people across Europe were living with cardiovas-
cular diseases, 48% of cases were in males and 52% in females. In that year,
Austria had 399,912 females and 409,542 males suffering from cardiovascular
diseases [Wilkins et al., 2017]. For more than six decades now, maximal car-
diac exercise stress testing is used to evaluate the functional capacity of the
heart non-invasively and is an efficient and a cost effective way. Moreover, it is
useful in determining the risk and extent of coronary artery diseases (CAD),
prognosis and prediction of cardiovascular events, and the effect of therapy
[Fletcher et al., 2013]. The testing may involve ergometers such as stationary
bicycles, treadmills, rowing machines, arm ergometer and monitoring of car-
diac activities by electrocardiography and blood pressure monitoring (see e.g.
[Pina et al., 1995]). Such tests involve exercising at several workloads or exer-
cise intensities, during which cardiovascular and respiratory measurements are
recorded. Depending on the rationale for testing, the type of test employed,
and the health and fitness status of the individual taking part, exercise stress
tests might terminate on volitional exhaustion or upon observation of a par-
ticular clinical symptom, or at some other predetermined outcome measure
[Turner, 2013].

Cardiac rehabilitation is a multidisciplinary approach at physical, social and
psychological levels to reduce the risk and secondary progression of cardiovas-
cular diseases and reverse the disease progressions [Price et al., 2016]. Studies
have shown the benefits of cardiac rehabilitation and it has been recommended
by the European Society of Cardiology, American Heart Association and the
American College of Cardiology for the treatment of cardiovascular diseases
[Bjarnason-Wehrens et al., 2010]. Traditionally, cardiac rehabilitation is divided
into three stages (I, II, III). Stage I is started when the patient is in the hospital
whereas stage II (short-term stage) and stage III (long-term stage) are on out-
patient or in-patient basis. Cardiac rehabilitation is provided through different
models which differs across Europe depending upon local and national health
guidelines [Bjarnason-Wehrens et al., 2010]. The assessment of physical activ-
ity using cardiac exercise stress test in clinical settings is an important task for
the physicians involved in preventive cardiology [Piepoli et al., 2010]. Accord-
ing to Austrian outpatient rehabilitation guidelines, the cardiac exercise stress
test (ergometry) is performed three times, initial (beginning of stage II), inter-
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mediate (end of stage II or/and beginning of stage III) and final (end of stage
IIT) [Niebauer et al., 2012].

One of the crucial measured parameters in ergometry is the maximum work-
load achieved. For the interpretation of the results of an ergometry, the normal
values of maximum workload are used. These normal values are expected val-
ues, which a person should achieve. The literature for calculating the normal
values of the maximum workload during an ergometry is scant. For Austria,
[Wonisch et al., 2008] suggested to continue using the same normal values as
in the old guideline [Niederberger et al., 1974]. These normal values are dated
back to [Arstila, 1972]. Unfortunately, it was not possible to obtain further infor-
mation on the population and number of subjects used to develop a model for
calculating the normal values. These normal values are still used, although they
have not been updated for over 40 years. In last few decades, new mathematical
models were developed to update the normal values by [Jones et al., 1985] and
[Mohammad et al., 2012], however the sample sizes used to calculate normal
values were very small (100 and 34 respectively).

The data used in this thesis is provided by Zentrum fiir ambulante Reha-
bilitation Graz (ZARG). ZARG is a center for out-patient rehabilitation. Cur-
rently, ZARG uses the suggested normal values for the maximum workload from
[Wonisch et al., 2008], but they are interested in new approaches for normal val-
ues. Note that ZARG performs an extra ergometry in addition to suggested
guidelines at intermediate examination of stage III.

The aims of this thesis are 1) to evaluate the presently used model in Austria
and to develop new models to calculate the normal values of maximum work-
load (n = 28625) and 2) to calculate the normal values of maximum workload
of the entry examination for stage II (n = 779) and stage III (n = 674) of cardiac
out-patient rehabilitation and the expected improvement in maximum workload
during these stages (stage II: n = 644 and stage III: n = 787).

For answering these questions, statistical methods are used. For getting an
overview about the data, an exploratory data analysis is utilized. For deriving
normal values, regression trees as well as a regression analysis is done. For
tinding the best model, variable selection is used.

In Chapter 2 there is an overview about the medical background. Chapter
3 gives an introduction about the statistical methods used in this thesis. After-
wards Chapter 4 deals with the data preparation and shows the final data which
are analyzed in the further thesis. Chapter 5 gives an exploratory data analysis
both univariate and multivariate. The first research question to derive normal
values for the maximum workload, is answered in Chapter 6. Chapter 7 ana-
lyzes the data of cardiac out-patient rehabilitation. Finally, Chapter 8 contains a
conclusion and outlook for further research.



Chapter 2

Medical literature overview

In this chapter, a short overview of the relevant medical topics is given. This
starts with cardiovascular diseases, risk factors for cardiovascular diseases, car-
diovascular stress testing and medications used in treatment of cardiovascular
diseases.

2.1 Cardiovascular diseases

The cohort used for the analysis in this thesis consists of patients with different
diagnoses such as coronary artery diseases, arrhythmias and fibrillation, conduc-
tion disorders and valvular heart diseases. Some of these diseases are explained
here in short:

Coronary Artery Disease (CAD) ([DeSilva, 2013, Chapter 3]): Coronary artery
disease or ischemic heart diseases are caused due to blockage or narrowing of
coronary arteries due to plaques resulting in reduction or complete obliteration
of blood to heart muscles. The disease diagnosis, which falls under this category
in our cohorts are CAD, myocardial infarction, atherosclerosis, stenosis etc.

Cardiac arrhythmias ([DeSilva, 2013, Chapter 6]): The group of disorders
due to irregular rhythm and rate of heartbeat. The heart rate could be too fast
or too slow, or the rhythm is irregular. The diagnosis from our cohort, which
falls under this category are ventricular tachycardia, atrial fibrillation, fibrillation
arrhythmias etc.

Conduction disorders ([DeSilva, 2013, Chapter 6]): The group of cardiac dis-
orders caused due to improper progression of electrical impulses through the
heart, or complete blockage thereof. A diagnosis such as disturbance of conduc-
tion left bundle branch block, sinoatrial block, atrioventricular blocks from our
cohort, falls under this category.

Valvular heart diseases ([DeSilva, 2013, Chapter 4]): It is caused by malfunc-
tioning or nonfunctioning of one or more heart valves. This includes regurgi-
tation - leakage of blood back into the heart chambers and stenosis - due to
thickening, stiffening or fusion of valve flaps resulting in failure in the open-
ing of heart valves completely. The diagnoses, which fall under this category
are aortic insufficiency, aortic stenosis, mitral insufficiency, mitral regurgitation,
tricuspid insufficiency, tricuspid stenosis etc.
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4 2.2. RISK FACTORS FOR CARDIOVASCULAR DISEASES

2.2 Risk factors for cardiovascular diseases

Conventionally, older age is associated with an increased risk of heart diseases,
over 45 years in men and 55 years in women. In addition, family history of early
heart diseases put an individual at additional risk. Other risk factors for heart
diseases are obesity, high blood pressure, high cholesterol level etc. Obesity is
associated with increased risk of vascular risks. Waist circumference, waist-to-
high-ratio (WHR) and body mass index (BMI) are the measures of obesity. The
surveys indicate that there is a coherence between the waist circumference and
the risk of getting a heart attack (see e.g. [De Koning et al., 2007]]). Increasing
risks arise for the waist circumference of more than 80 cm for women and more
than 94 cm for men. A better measurement than the waist circumference is the
WHR, which is the quotient between the waist circumference and the height.
If this value is above 0.95 for men and above 0.8 for women, they will have a
high cardiovascular risk. BMI is calculated from body weight and height by the
formula

weight|kg]

BMIlkg/m"] = size[m)?

and is an estimate of body fat. Values above 25 identify overweight and above
30 obesity [Han et al., 1995].

High blood pressure is defined as systolic blood pressure > 140 mmHg and
diastolic blood pressure >90 mmHg. It increases the risk for a variety of cardio-
vascular diseases. High levels of blood cholesterol are associated with greater
risk of heart diseases. Total cholesterol level is the sum of three components
HDL cholesterol, LDL cholesterol and 20% of triglycerides. HDL cholesterol is,
because of its higher level of proteins, considered as good cholesterol. LDL and
VLDL are considered as bad cholesterol because of their high level of choles-
terol and increased levels are associated with a substantial increase in the risk of
heart diseases. Total cholesterol level > 240 mg/dL, LDL level >160 mg/dL and
triglycerides >200 mg/dL are considered high whereas HDL levels <40 mg/dL
are considered as a major risk factor for heart diseases [Nelson, 2014].

2.3 Maximal cardiac exercise stress testing

Maximal exercise stress testing (ergometry) is a noninvasive way used to assess
the diagnostic and prognostic information of cardiovascular diseases, specifically
coronary artery disease (CAD). It studies the physical work activity, including
that performed by specific muscles or muscle groups. The testing may involve
ergometers such as stationary bicycles, treadmills, rowing machines, arm er-
gometer and monitoring of cardiac activities by electrocardiography and blood
pressure monitoring [Pina et al., 1995]. Such tests involve exercising at several
workloads or exercise intensities/difficulties, during which cardiovascular and
respiratory measurements are recorded. Depending on the rationale for testing,
the type of test employed, and the health and fitness status of the individual
taking part, exercise stress tests might terminate at volitional exhaustion, upon
observation of a particular clinical symptom, or at some other predetermined
outcome measure [Turner, 2013]].
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2.4 Normal values for the maximum workload of max-
imal cardiac exercise stress testing

The articles addressing the normal values of parameters such as resting oxygen
consumption, the maximal oxygen consumption, the maximum workload and
the maximal heart rate obtained during the exercise stress testing are abundant
(see e.g. [Koch et al., 2009], [Luks et al., 203] and [Brown et al., 2005]). Many
articles focus on the prediction of the maximal oxygen consumption, while only
few deal with the prediction of the maximum workload. However, this thesis
explicitly deals with the maximum workload during ergometry.

In the Austrian practice guidelines for ergometry [Wonisch et al., 2008|], the
maximum workload is calculated separately for males and females using the
following model. First the body surface area is calculated with the Du Bois
formula (see [Du Bois and Du Bois, 1916])

BSA[m?*] = 0.007148workload [kg]*** height[cm]*7*.

followed by actual calculation of the maximum workload.
Formula for the maximum workload for men

W Liax[W] = 6.773 + 136.141BS A[m?] — 0.916BS A[m?]age[years).
Formula for the maximum workload for women
W Lyax[W] = 3.933 + 86.641BS A[m?] — 0.346BS A[m?|age[years].

In addition to the Du Bois formula, the body surface area can be calcu-
lated using other formulas; for the calculation of the body surface we refer to
[Verbraecken et al., 2006].

There also exist other models to predict the maximum workload (see e.g.
[Nogueira and Pompeu, 2006]), but most of them use just small sample sizes. In
[Jones et al., 1985], the maximum workload is calculated using

W Lyax [kpm / min] = 20.4height[cm] — 8.74age[years] — 288genderl|— 1.909%pm /min.
However, these values are calculated using 50 males and 50 females constituting

100 ergometries. In [Mohammad et al., 2012] the maximum workload is pre-
dicted with a regression. They developed two formulas

W Lnax[W] = —436 — 1.2age[years] + 1.8weight[kg]

and
WLyax[W] = —436 + 3.6height [cm).

This study was a pilot study and involved only 34 participants from Iran.

10..man, 1..woman
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2.5 Medications used in the treatment of cardiovas-
cular diseases

There are many medications used in the treatment of cardiovascular diseases,
however, in this thesis only two main drugs, beta-blockers and statins are con-
sidered for further evaluation of normal values of maximum workload.

Beta blockers are the group of drugs used to manage high blood pressure
and other cardiac ailments. Cardioselective beta blockers are Carvedilol, Dila-
trend, Hemangiol, Inderal, Sotacor, Sotahexal and Sotastad. Non cardioselective
beta blockers are Atehexal, Atenolan, Atenolol, Beloc, Bilokord, Bisocor, Biso-
prolol, Bisostad, Brevibloc, Concor, Esmolol, Hypoloc, Lanoc, Metohexal, Meto-
prolol, Metoprololsuccinat, Nebivolol, Nomexor, Rapibloc, Rivacor, Seloken and
Tenormin.

Statins are the group of compounds used to reduce the lipid levels hence
reducing the risk of heart diseases. The types of statins are Atorvadivid, Ator-
valan, Atorvastatin, Atozet, Crestor, Fluvastatin, Gerosim, Inegy, Lovastatin, Ny-
zoc, Panchol, Pravastatin, Simvastad, Simvarcana, Simvastatin, Simvatin, Sortis
and Zocord.



Chapter 3

Statistical literature overview

The aim of this chapter is to provide an overview of basic statistics used in anal-
ysis of the data in this thesis. Theoretical description of each statistical topic is
followed by an example in the statistical programming language R. The remain-
der of this chapter is organized as follows: Section contains an introduc-
tion of R. Section ?? deals with the exploratory data analysis. Section |3.3| gives
an overview of multiple linear regression. Finally in Section the variable
selection for multiple linear regression is clarified and in Section dummy
regression is explained. The following notation is used in this chapter: The ob-
servations are notated by x1, x2, ..., x,; and the ordered observations are notated
by X(l) <...< X(n)

3.1 Statistical programming language R

R is a free language and environment for statistical computing and graphics.
There exist different implementations of R for Linux, Windows and MacOS. R is
a highly extendable environment used for linear and nonlinear modelling, time-
series analysis, classification and clustering etc. Moreover, R provides a high
flexibility to plot well-designed publication-quality graphics including mathe-
matical symbols and formulas ([R Core Team, 2017]).

There are several statistical books which use R. E.g. [Wollschldger, 2010] con-
tains a good introduction and the installation guides. [Faraway, 2009] explains
use of R to generate linear models. [Muche et al., 2011] uses Microsoft Excel
combined with the Add-In 'RExcel’, with which R can be used within Excel.
[Ramachandran and Tsokos, 2014] provides computer examples of many statis-
tical programs including R for each statistical topic. Additional information
about R is available on [Cornelissen, 2018] and for information about the pack-
age ggplot2, which is used in this thesis, see [Wickham, 2009].

3.2 Exploratory data analysis

Exploratory data analysis (EDA) is a use of tools of the descriptive statistics to
summarize and to find structures and coherences in the data. With the help
of these methods, patterns and irregularities in one- and multidimensional data
sets can be found, in addition, the information about the dispersion, symmetry,
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concentration, and outliers can be obtained (see for example [Akkerboom, 2008,
Chapter 9], [Burkschat et al., 2012, Chapter 1] or [Fahrmeir et al., 2016, Chapter
2]).

The EDA can be classified in two different ways. The first approach is to
classify the EDA in univariate and multivariate analysis. Often as a first step, an
univariate analysis is performed in which, as the name suggests, each variable is
investigated separately. In a second step the relationship between two or more
variables can be analyzed by using multivariate analysis ([Fahrmeir et al., 2016,
Chapter 2], [Clett, 2014, Chapter 3]).

In the second approach, the EDA can be classified by graphical methods
and methods involving the calculation of numerical summaries. Examples for
graphical methods of the EDA are histograms, box plots, quantile-quantile plots
and scatter plots. Examples for methods involving the calculation of numerical
summary measures are means, standard deviations and correlation coefficients
(see for example [Devore and Berk, 2012, Chapter 1]).

In the following subsections, EDA methods used in the thesis are explained.
For this purpose, after explanation an example is given. For this example, the
data of patients between the age of 30 and 60 years in year 2016 is analyzed

3.2.1 Numerical summary measures

Numerical summary measures can be used to characterize the data set. They
can be characterized in measures of location and measures of variability. The
following definitions for these measures are taken from [Devore and Berk, 2012,
Chapter 1].

Mean

— . . . - 1wvn
The sample mean & of observations x1,x2,...,x, is given by ¥ = 37" ; x;. To
calculate the mean with R, the command mean can be used.

Example 3.1. The calculation of the mean of the variable workload_max of table
exampledata can be done in R in the following way:

mean (exampledata$workload_max)

## [1] 179.3922

Therefore, the mean of the maximum workload of the ergometries is 179 W.

Median

The sample median ¥ is indeed the middle value of the ordered observations,
i.e. it divides the data set into two parts of equal size. If n is odd, then it is
the single middle value X(ni1y, and if n is even, then it is the average of the

2
two middle values, i.e. %(x(%) + X1 +1y). To calculate the median with R, the

command median can be used.
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Example 3.2. The calculation of the median of the variable workload_max of table
exampledata can be done in R in the following way:

median(exampledata$workload_max)
## [1] 180

Therefore, the median of the maximum workload of all ergometries is 180 W.

Quartiles

The quartiles divide the data set into four equal parts. The first quartile Q; =
do.2s separates the lower quarter from the upper three-quarters, the second quar-
tile Q> = qos5 is equivalent to the median and the third quartile Q3 = qo75
constitutes the upper quarter of the data set. To calculate the quartiles with R
the command quantile can be used.

Example 3.3. The calculation of the quartiles of the variable workload_max of
table exampledata can be done in R in the following way:

quantile(exampledata$workload_max)

## 0% 25% 50% 75% 100%
## 30 142 180 210 400

Therefore the minimum of the maximum workload is 30 W, the maximum is
400 W and the median is 180 W (as calculated above). Moreover we know that
25% of the maximum workload is less than 142 W and 25% of the maximum
workload is higher than 210 W.

Inter quartile range

The inter quartile range (IQR) is defined as Q3 — Q;. To calculate the IQR with
R the command IQR can be used.

Example 3.4. The calculation of the IQR of the variable workload_max of table
exampledata can be done in R in the following way:

IQR (exampledata$workload_max)
## [1] 68

Therefore the range of 50% of the data around the median is 68 W.

Quantiles

The quantiles are a generalization of the quartiles with the property that at least
a relative share of p data are smaller or equal to g, and maximal a relative share
of (1 — p) is bigger than g, (see for example [Cleff, 2014, Chapter 3]). In R it can
be done with the command quantile, but additional percentages for calculating
the quantiles have to be defined.
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Example 3.5. The calculation of the 5%-and 95%-quantiles of the above men-
tioned variable workload_max of table exampledata can be done in R in the fol-
lowing way:

quantile(exampledata$workload_max, probs=c(0.05, 0.95))

## 5% 95%
## 100 262

Therefore 5% of the ergometries have a maximum workload of less than 100
W and 5% of them have a maximum workload of more than 262 W.

Variance and standard deviation

The sample variance s? is given by -1 Y ; (x; — £)2. To calculate the variance
with R the command var can be used.

The sample standard deviation s is the square root of the variance, i.e. V/s2.
To calculate the standard deviation with R the command sd can be used.

Example 3.6. The calculation of the variance and standard deviation of the vari-
able workload_max of table exampledata can be done in R in the following way:

var (exampledata$workload_max)
## [1] 2662.902
sd (exampledata$workload_max)

## [1] 51.60331

Therefore the variance of the maximum workload is 2662.9 W and the stan-
dard deviation is 51.6 W.

3.2.2 Box plot

A box plot is a pictorial summary used to describe most prominent features of
data sets. These include the center, the spread, the extend and nature of any de-
viation from symmetry and the identification of outliers, which are observations
that are located unusually far from the main body of the data (see for example
[Devore and Berk, 2012, Chapter 1]).

There exist several variations of box plots. The box plots which are created
in this thesis provide the following information: The bottom and the top of the
boxes are the first and third quartiles gg 25 and gg75. The notches display a 95%-
confidence interval around the median £, i.e. the true median is with a probabil-
ity of 95% covered by this interval. The width of the boxes is proportional to the
number of observations. These are also written in the middle of the box. The
upper whisker is defined as min(max(x), Q3 + 1.5IQR) and the lower whisker
is max(min(x), Q1 — 1.5IQR). The points which are less than Q; — 1.5IQR or
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greater than Q3 + 1.5IQR are classified as outliers and represented by points in
the box plots.

The creation of a box plot can be done in R in different ways. The easiest way
is to use the command boxplot. With the package ggplot2 and the command
geom_boxplot more adjustments can be done.

Example 3.7. This example shows two possibilities to create a box plot of the
variable workload_max of table exampledata in R.

boxplot (exampledata$workload_max)

ggplot (exampledata, aes(x=gender, y=workload_max)) +
geom_boxplot (notch=TRUE, varwidth=TRUE)+
stat_summary(fun.data = function(workload_max)

{return(c(y = median(workload_max)+8,

label = length(workload_max)))}, geom = "text")+

ggtitle("Box plot")+
labs(y="maximum workload [W]")

Box plot

400+

400
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1

v
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gender

(a) Variant 1: Standard box plot in R b) Variant 2: Box plot with the package
p p p &
ggplot2 and additional adjustments

Figure 3.1: Box plots for the variable maximum workload

Figure 3.1(a) shows the standard box plot in R. Without an additional pack-
age just limited adjustments can be done. With the help of package ggplot2
many additional characteristics can be adjusted, as in Figure [3.1(b) shown. Here
the box plots for the maximum workload are separated by gender by using
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aes (x=gender, y=workload_max). The width of the boxes are correlated to the
number of observations with varwidth=TRUE and additionally the number of
observations is given with the command stat_summary. There are additional
notches, which represent 95%-confidence intervals around the median, done
with notch=TRUE.

3.2.3 Bar plot

In a bar plot rectangular bars represent categorical variables. The length of these
bars are proportional to the number of observations in the corresponding value
of the categorical variable (see e.g. [Akkerboom, 2008, Chapter 7]).

Again like for the box plot, the creation of a bar plot can be done in R in dif-
ferent ways. The easiest way is to use the command barplot. With the package
ggplot2 and the command geom_bar more adjustments can be done.

Example 3.8. This example shows two possibilities to create a bar plot of the
variable gender of table exampledata in R.

barplot(table(exampledata$gender))

ggplot (data=exampledata) +

geom_bar (aes(factor(gender)) ,stat="count",
position = position_dodge(width=0.9))+

geom_text (aes(x=gender, label=..count..),stat="count",
position = position_dodge(width = 0.8), vjust = -0.6)+

ggtitle('Barplot of the gender')+
labs(x="'gender"')

Figure [3.2(a) shows the standard bar plot in R. The bar plot with the help of
package ggplot2 is shown in Figure 3.2(b). Here the number of observations is
given with the command geom_text.

3.2.4 Histogram and density plot

In a histogram the n values xi,...,x, of a sample will be summarized in k
uniform classes. For each class the frequency is determined and above each
class interval a rectangle is drawn whose height is the corresponding frequency.

In order to create the histogram, the ordered data X(1) <... < X(n) are used
to calculate the total area of the sample [x(1), x(,)]. This area is divided into k
uniform classes [ag < x(),a1),[a1,2),. .. ,[44_1),ax > X(y)], which all have the
same width b and the height h; with
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Barplot of the gender
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(a) Variant 1: Standard bar plot in R (b) Variant 2: Bar plot with the package
ggplot2 and additional adjustments

Figure 3.2: Number of ergometries seperated by gender

h(x) = hj, ifaja<x<apj=1....kaj—aj1=0b
0, else.

The height h]- can be scaled through using the absolute frequency nj, rela-
tive frequency % or density Z—] With defining the height of the rectangles as
the density, classes with different widths can be used ([Cleff, 2014, Chapter 3]),
[Devore and Berk, 2012, Chapter 1] and [Toutenburg et al., 2009, Chapter 2]).

Note, that the selection of suitable intervals is important, because different
class widths have a big influence on the appearance of the histogram ([Cleff, 2014,
Chapter 3]).

Additional information in a histogram can be obtained, if the mean is marked
with a line.

Like before, the creation of a histogram can be done in R in different ways.
The easiest way is to use the command histo. With the package ggplot2 and
the command geom_histogram more adjustments can be done.

Example 3.9. This example shows two possibilities to create a histogram of the
variable workload_max of table exampledata in R.

hist (exampledata$workload_max)

ggplot (exampledata, aes(x=workload_max, fill=gender)) +

geom_histogram(aes(y=. .density..), position="identity",
alpha=0.5,binwidth=20)+
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geom_vline(data=ddply(exampledata, "gender", summarise,
grp .mean=mean (workload_max)),
aes(xintercept=grp.mean, color=gender),
linetype="dashed")+

ggtitle("Histogram plot")+
labs (x="maximum workload(W)", y = "density")

Histogram plot

Histogram of exampledata$workload_max
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exampledata$workload_max 100 200 300 400
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(a) Variant 1: Standard histogram in R (b) Variant 2: Histogram with the package
g & p &
ggplot2 and additional adjustments

Figure 3.3: Histogram for the variable maximum workload

Figure 3.3(a) shows the standard histogram in R. The histogram with the help
of package ggplot2 is shown in Figure[8.3(b). Here the histograms are separated
by the gender and the additional dashed lines mark the means.

Histograms can be approximated with a smooth curve, the so-called den-
sity plot (see [Fahrmeir et al., 2016, Chapter 2]). The density plot visualizes the
distribution of data over a continuous interval of a variable (see for example
[Devore and Berk, 2012, Chapter 4]).

The creation of a density plot can be done in R in different ways. The easiest
way is to use the command density and plot it with the command plot. With
the package ggplot2 and the command geom_density more adjustments can be

done.

Example 3.10. This example shows two possibilities to create a density plot of
the variable workload_max of table exampledata in R.

plot(density(exampledata$workload_max))

ggplot (exampledata, aes(x=workload_max, fill=gender))+
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geom_density(alpha=0.6)+

ggtitle("Density plot")+

labs(x="maximum workload(W)", y = "density")
) Density plot
density.default(x = exampledata$workload_max)
g | 0.010—
2z = = gender
2 8+ 2 [ JFEMALE
° 3 CImaLE

0.005—

0.002

0.000
1

T T T T T 0.000—
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| 1 | |
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N =1183 Bandwidth = 11.09 .
andwids maximum workload(W)

(a) Variant 1: Standard density plotin R (b) Variant 2: Density plot with the package
ggplot2 and additional adjustments

Figure 3.4: Density plot for the variable maximum workload
Figure [3.4(a) shows the standard density plot in R. The density plot with the

help of package ggplot2 is shown in Figure 3.4(b), where the density plots are
separated by the gender.

Note, histogram and density plot can be also combined in one plot, as shown
in the Figures in Chapter [6]

3.2.5 Plot of the empirical distribution function

The empirical distribution function (see e.g. [Fahrmeir et al., 2016, Chapter 2])
of a random sample is defined as

0, ifx<x(l-)
F.(x) = %, if x) <xgppyi=1,...,n—1L

1, if X(n) S X

In the corresponding plot the shifted step function F5(x) = F,(x) — 5 for xX(i) <
x < X(y41) is presented instead of plotting directly Fy(x).

The easiest way to create the plot of the empirical distribution function in
R is to use the command ecdf and plot it with the command plot. With the
package ggplot2 and the command stat_ecdf more adjustments can be done.

Example 3.11. This example shows two possibilities to plot the empirical distri-
bution function of the variable workload_max of table exampledata in R.
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plot(ecdf (exampledata$workload_max))

ggplot (exampledata, aes(x=workload_max))+

stat_ecdf (geom = "point")+
stat_function(fun = pnorm, n = 101, args
list (mean

mean (exampledata$workload_max),
sd = sd(exampledata$workload_max)),
colour='red')+

ggtitle("Plot of the empirical distribution function")+
labs (x="maximum workload(W)", y="Empirical distibution function")

ecdf(exampledata$workload_max)

2 t’-",...-fro—‘
/4
-’
2 14
14
4
B /
T 4
= 7/
S 4
/4
/
S A /
.—d//,

(a) Variant 1: Standard plot of the empirical

distribution function in R

Plot of the empirical distribution function

1.00-

I

3

a
1

0.50
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B
Il

0.00+

| | | |
100 200 300 400
maximum workload(W)

(b) Variant 2: Plot of the empirical distribu-
tion function with the package ggplot2 and
additional adjustments

Figure 3.5: Plot of the empirical distribution function for the variable maximum

workload

Figure [3.5(a) shows the standard plot for the empirical distribution function
in R. The plot for the empirical distribution function with the help of package
ggplot2 is shown in Figure 3.5(b). It contains also the distribution function of
the corresponding normal distribution with mean ¥ and standard deviation sd.

3.2.6 Quantile-quantile plot

In a Quantile-quantile plot (Q-Q plot), the distribution of two variables is com-
pared by plotting their quantiles against each other (see [Kohn and Oztiirk, 2013,
Chapter 15]). Often this plot is used to compare the distribution of a sample with
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the theoretical distribution, i.e. the ordered sample values x;) against the the-

oretical quantile F ’1(n+'r1), with i = 1,...n. Therefore the deviation from the
reference line, a line with a slope of 45°, can be evaluated.

The easiest way to create a Q-Q plot to compare the empirical quantiles with
the quantiles of the standard normal distribution N (0, 1) is to use the command
qgnorm to create the points and the command gqline to create the line. With the
package ggplot2 the command stat_qq can be used to create the dots and the

command geom_abline can be used to create the line.

Example 3.12. This example shows two possibilities to make a Q-Q plot of the
variable workload_max of table exampledata in R.

qqnorm(exampledata$workload_max)
qqline (exampledata$workload_max)

y <- quantile(exampledata$workload_max, c(0.25, 0.75), type=5)
X <- gnorm( c(0.25, 0.75))

slope <- diff(y) / diff(x)

int  <- y[1] - slope * x[1]

ggplot (exampledata, aes(sample=workload_max))+

stat_qq(geom = "point")+
geom_abline(intercept=int, slope=slope,colour='red')+

getitle("Q-Q plot")

Figure [3.6(a) shows the standard Q-Q plot in R. The Q-Q plot with the help
of package ggplot2 is shown in Figure [3.6(b). Here the line has to be calculated
separately. The plot indicates a remarkable deviation from the normal distribu-
tion.

3.2.7 Scatter plot

A scatter plot uses Cartesian coordinates to display values of two variables (see
[Devore and Berk, 2012, Chapter 12]). Therefore it belongs to the multivariate
analysis. The resulting point cloud gives information about the correlation be-
tween these variables (see e.g. [Pruscha, 2015, Chapter 1]).

The easiest way to create the scatter plot in R is to use the command plot.
With the package ggplot2 the command geom_point can be used to create the
dots. To add an additional regression line the command geom_smooth can be
used. For this function different methods like linear regression or generalized
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Q-Q plot

Normal Q-Q Plot
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(a) Variant 1: Standard Q-Q plotin R (b) Variant 2: Q-Q plot with the package
ggplot2 and additional adjustments

Figure 3.6: Q-Q plot for the variable maximum workload

additive model, which is the standard method for more than 1000 observations,
can be applied.

Example 3.13. This example shows two possibilities to make a scatter plot of the
variables age and workload_max of table exampledata in R.

plot(exampledata$age, exampledata$workload_max)

ggplot (exampledata, aes(age,workload_max))+
geom_point ()+
geom_smooth () +

ggtitle("Scatter plot")+
labs(x="age", y="maximum workload(W)")

Figure [3.7(a) shows the standard scatter plot in R. The scatter plot created
with the help of package ggplot2 is shown in Figure 3.7(b). Here additionally a
regression line including a 95%-confidence interval around it is added.

3.2.8 Correlation coefficient

A measurement for the linear correlation between two samples x and y is the
(Pearson) correlation coefficient (see e.g. [Devore and Berk, 2012, Chapter 5],
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(a) Variant 1: Standard scatter plot in R (b) Variant 2: Scatter plot with the package
ggplot2 and additional adjustments

Figure 3.7: Scatter plot for the variables age and maximum workload

[Clett, 2014, Chapter 4]). The correlation coefficient is defined by

Sxy _ i i (v ~—')(yi—y') i1 (i _)(]/i—}?) .
SxS?/ n—1 \/Zz 1 xl ?:1 (yl - g)Z \/Zz 1 xl Z?:l (yl - y)z
sxy is the co-variance between x and y, sy is the standard deviation of x and

sy is the standard deviation of y.
For the Pearson correlation coefficient the following properties hold:

r_x’y —

e ris normalized, ie. —1 <r < +1.

¢ If r > 0 then there is a positive linear correlation, if » < 0 then there is a
negative linear correlation and if r = 0 then there is no linear correlation.

¢ If x and y come from independent random variables X and Y, then r =~ 0,
the inversion is not valid in general. Two variables can be uncorrelated,
but dependent because of a nonlinear relationship.

In R the Pearson correlation coefficient can be calculated with the function
cor(x,y). Additionally it is possible to create correlation matrices for several
variables. This can be done for example with the package lattice [Sarkar, 2008]
and the command corrgram.

Example 3.14. This example shows how to calculate the correlation between two
variables and how to create a correlation matrix between several variables in R.

cor (exampledata$workload_max,exampledata$age)
## [1] -0.2815862

The correlation between the maximum workload and age is -0.28, conse-
quently they are negatively correlated.
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corrgram(subset (exampledata, select = c("weight","height","age",
"workload_max")),
lower.panel = panel.ellipse, upper.panel = panel.pie)

Ve 7 — (" workload_max
/ / N >

Figure 3.8: Correlation matrix between the variables weight, height, age and
maximum workload

Figure shows the correlation matrix with the help of package lattice.
The variables are written on the diagonal line.

The lower triangle matrix shows both ellipses and loess lineﬂ Long, narrow
ellipses represent high correlations while circular ellipses represent low correla-
tions.

The value of the correlation can be deducted from the upper triangle matrix.
For a positive correlation, blue color is used and the correlation is seen clockwise.
A full clock represents a correlation of 1. On the contrary to this a clock with a
negative correlation is colored red and counter clockwise.

3.3 Multiple linear regression

In general a regression analysis is a statistical method to model the relationship
between two or more variables to gain information about one of them through
knowing the values of the other(s). In the simple linear regression the depended
or response variable is predicted by a single independent, explanatory or predic-
tor variable. However, in most cases more than one predictor variable is useful.
In this case we use multiple linear regression (see e.g. [Devore and Berk, 2012,
Chapter 12], [Kleinbaum et al., 1998, Chapter 8], [Fahrmeir et al., 2008, Chapter
2], [Sheather, 2009, Chapter 5], [Gareth et al., 2014, Chapter 3]).

IThese lines are constructed by local polynomial regression fitting. For the documentation of
the algorithm see [Cleveland et al., 1992]



CHAPTER 3. STATISTICAL LITERATURE OVERVIEW 21

3.3.1 Multiple linear regression model

The standard model for multiple linear regression (see [Sheather, 2009, Chapter
5] or [Bingham and Fry, 2010, Chapter 3]) is the following;:

Yi = Bo+ Prxa + ...+ ﬁpxip +e€, i=1,..,n,

with

Yi,..., Y, ... observed metric variables

X1jy eoes Xpj - - - deterministic values of the variables Xj

€1,...,€n ... unobserved random variables, which are independent and identi-

cally distributed with E(e;) = 0, Var(e;) = 0® and Cov(e;j, €j) = 0 for i # j
Bo, - Bp - - . coefficients of the regression

The matrix notation of this is:

Y = Bol+pBix1+..+Bpxpt+e€
= XB+e,
with

Y = (Y1,...,Yy)T ... n x l-vector of dependent observations

X ... n x k-design matrix (with a full column rank)
€... n x 1-vector of unobserved residuals
B... k x l-parameter vector

With given values of the regressors, the Yj, ..., Y, are independent with the
expected value and variance

E(Y;) = pi=Bo+Bixit+ ...+ BpXip, i=1,..,n
Var(Y;) = 0%, i=1,..,n.
With the assumption of normal distribution for the error values
e ~N(0,0%), i=1,.,n
follows the normal distribution for the target variable, therefore
Y; ~ N(p;,0%), i=1,..,n.

Note, that the dependent variable is a linear combination of the parameters,
but is not necessarily linear in the independent variables [Kleinbaum et al., 1998,
Chapter 8]. For example the model with all possible first- and second order
terms

Y = Bol + Br1x1 + Baxz + axT + Baxs + Bsxixy + €

can be rewritten as
Y = Bol + B1x1 + Boxo + Baxz + Paxs + Psxs + €.

In R for the linear regression the command 1m can be used. Note that in R
for high order terms and other nonlinear relations the function I(.) and for
interactions between variables the symbol : can be used.
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Example 3.15. This example shows how to create a linear regression for the re-
sponse variable workload_max and the predictor variables age, weight and height
in R. Additionally the second order term age? and interaction between weight
and height are used in the regression.

regression_model=1m(workload_max ~ age+weight+height+I(age~2)+
weight:height,data=exampledata)

3.3.2 Estimating the regression coefficients
The fitted regression model is given by
Y = Bol+Bix1+ ...+ Bpxp.

The regression coefficients fy, ..., Bp can be determined with the least-squares
method ([Kleinbaum et al., 1998, Chapter 8], [Devore and Berk, 2012, Chapter
12]). This method minimizes the sum of squares of the distances between the
observed responses and those predicted by the fitted model, i.e.

n

SSE(B) = Y_(Y;— Y;)* > min .

= Bo-1Bp
This difference is called as residual sum of squares, error sum of squares or sum
of squares about regression.

Another possibility to estimate the regression coefficients is the maximum

likelihood estimation (see [Fahrmeir et al., 2008, Chapter 3]). The likelihood
function, under the assumption of normal distributed residuals, is given by

1 1
L(y|B, (72) = m exp(—ﬁSSE).

Therefore the Log-Likelihood function is
2y _ 1 2y _ 1
log L(y|B,0°) = 5 log(27to<) 2(TZSSE.

One can see that maximizing the Log-Likelihood function leads to minimiz-
ing the SSE. This is because the constant and the factor in front of the SSE can
be eliminated for the maximization and maximizing the negative SSE is equiv-
alent to minimizing SSE. Therefore the least-squares method and the maximum
likelihood estimation lead to the same result.

The maximum likelihood estimator of the variance ¢? can be calculated by
2
setting w to zero and is
SSE
0r =",
n

Because this is a biased estimator?] the unbiased estimator

72 = SSE — MSE
n—p

2The bias of an estimator is the difference between an estimator’s expected value and the true
value of the parameter.
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is used.

For receiving the regression coefficients of a linear regression model in R just
the name of the model has to be typed. With the command summary before the
name of the model, more information about the coefficients can be achieved.

The summary consists of the following parts:

Call

The first part shows again the predictor variable and the response variables as
seen before.

Residuals

The next part shows the residuals. These are the differences between the actual
observed response values and the response values that the model predicted, i.e.
Y; — Y;. For these residuals, five summary measures are given, i.e. the minimum,
the first quartile, the median, the third quartile and the maximum. The residuals
should be symmetrical distributed around the mean value 0.

Coefficients

The next part of the summary gives information about the coefficients of the
model. Therefore, first, the coefficient estimates are given. The first one is the in-
tercept and the others refer to the predictor variables. Additionally the standard
error of the coefficients are given. This measures the average amount that the co-
efficient estimate varies from the actual average value of the response variable.
Therefore the standard error should be low compared to its coefficients. For
the t-value the coefficients estimate is divided by its standard error, therefore it
should be far away from zero as this would indicate to reject the null hypothesis,
and there is a relationship between the coefficient and the dependent variable.
With this t-value, the p-value (in the R output Pr(>1tl)) can be calculated. The
p-value gives the probability that the null hypothesis is true. In our case the null
hypothesis says that there is no relationship between the predictor and the re-
sponse. Finally, the significance codes evaluate the p-values. For example, three
stars refer to a highly significant p-value of less than 0.001.

Residual standard error

The residual standard error (RSE) is a measure of the quality of a linear regres-
sion fit. It is defined as the square root of the residual sum of squares SSE (see

Subsection [3.3.3) and therefore should be small. The degree of freedom is the
number of data points minus the number of parameters.

Multiple R-squared, Adjusted R-squared

The coefficient of determination R? as well as the adjusted coefficient of determi-
nation R2 4j are measures of how well the model is fitting the actual data. More

information about these coefficients can be found in Subsection [3.3.3
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F-Statistic

F-statistic is a good indicator of whether there is a relationship between the
predictors and the response variables. The further the F-statistic is from 1 the
better it is. However, how much larger the F-statistic needs to be, depends on
both the number of data points and the number of predictors. Generally, when
the number of data points is large, an F-statistic that is only a little bit larger
than 1 is already sufficient to reject the null hypothesis, which says that there is
no relationship between the predictor and the response variables. The reverse
is true as if the number of data points is small, a large F-statistic is required
to be able to ascertain that there may be a relationship between predictor and
response variables. Additionally, the p-value for the test is given.

Example 3.16. In the last example the regression model was stored in the vari-
able regression_model. To get the coefficients this variable has to be called:

regression_model

##

## Call:

## 1lm(formula = workload_max ~ age + weight + height + I(age~2) +
#Hi weight:height, data = exampledata)

##

## Coefficients:

##  (Intercept) age weight height

#it -812.36511 3.66709 4.97133 5.40829

#H I(age~2) weight:height

H# -0.05335 -0.02832

As a result we can see the previously defined formula of the regression model
and the calculated coefficients. Therefore the regression model is

workload_max = —812.37 + 3.67age + 4.97weight + 5.41height — 0.05age?
—0.03weight : height.

The summary of the previously model provides the following information:

summary (regression_model)

##

## Call:

## 1lm(formula = workload_max ~ age + weight + height + I(age~2) +
## weight:height, data = exampledata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -144.019 -25.229 -0.348 23.652 185.211

##

## Coefficients:
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## Estimate Std. Error t value Pr(>|t])

## (Intercept) -812.36511 121.33092 -6.695 3.32e-11 **x
## age 3.66709 1.84674 1.986 0.047298 *
## weight 4.97133 1.39243  3.570 0.000371 *x*x*
## height 5.40829 0.66814 8.095 1.42e-15 *xx*
## I(age~2) -0.05335 0.01949 -2.736 0.006303 *x*
## weight:height  -0.02832 0.00792 -3.576 0.000363 *x*x*
#Ho--—-

## Signif. codes:

# 0 "xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

##

## Residual standard error: 41.29 on 1177 degrees of freedom
## Multiple R-squared: 0.3624,Adjusted R-squared: 0.3597
## F-statistic: 133.8 on 5 and 1177 DF, p-value: < 2.2e-16

We see a considerable symmetrical distribution of the residuals. As men-
tioned above, the standard error should be small compared to the coefficients’
estimate, which is the case in our example. The t-statistic values are relatively
far away from zero and are considerably large relative to the standard error. The
p-values are very close to zero and the significance codes show a high signifi-
cance for all predictor variables. The residual standard error is 41.29 calculated
with 1,177 degrees of freedom. We had 1,183 data points and 6 parameters. The
coefficient of determination is 0.3624 and the adjusted coefficient of determina-
tion is 0.3597. The F-statistic is 133.8 which is relatively larger than 1, given the
size of our data.

3.3.3 Analysis of variance and the coefficient of determination

The analysis of variance (ANOVA) provides an overall summary of a multiple
regression analysis (see [Kleinbaum et al., 1998, Chapter 8]). The total sum of
squares (SST) consists of the regression sum of squares (SSR) and the error sum
of squares (SSE), i.e.

SST = SSR +SSE
n n

YV, —Y)2?= Y, -Y)?2 +)Y. (v, - V)~

i=1 i=1

The mean of squares are defined as the sum of squares divided by the degree
of freedom:

__ SST
MST = 551
_ MSR
MSR = 25
_ MSE
MSE = 5L

The sum of squares as well as the mean of squares can be calculated in R with
the command anova. It presents the degree of freedom (df), the sum of squares
(Sum Sq), the mean of squares (Mean Sq), the F-value, the p-value (Pr(>F)) and
the significance codes. It tests whether the model terms are significant.
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Example 3.17. The ANOVA for the previous example in R is the following:
anova(regression_model)

## Analysis of Variance Table

##

## Response: workload_max

#H Df Sum Sq Mean Sq F value Pr(>F)

## age 1 249572 249572 146.3661 < 2.2e-16 **x
## weight 1 301878 301878 177.0419 < 2.2e-16 **x
## height 1 552022 552022 323.7438 < 2.2e-16 **x
## I(age~2) 1 15350 15350 9.0023 0.0027532 x*x*
## weight:height 1 21803 21803 12.7870 0.0003632 x**x
## Residuals 1177 2006926 1705

#Ho---

## Signif. codes:

## 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

In this table the SSE is 46987470. The SSR is the sum of the first five sum of
squares, i.e. age to weight:height. Finally, the SST is the sum of all of them.

The coefficient of determination, which is a quantitative measure of how well
the fitted model predicts the dependent variable, is defined as

SSE  SSR

RP=1-"F =",
SST ~ SST

The coefficient of determination R? lies between 0 and 1. If it is equal to 1,
then the model fits perfect (SSE=0) and if it is equal to O, then there is no linear
correlation (SSR=0).

Different models can just be compared under the following three assump-
tions (see [Fahrmeir et al., 2008, Chapter 3]):

1. In all models the same dependent variable y is used, i.e. a comparison of
models with objective criterion y and log(y) is not possible.

2. In all models the number of regression coefficients is the same.

3. All models have a constant .

Therefore, in general, different models cannot be compared with the coefficient
of determination, because the coefficient of determination R? is dependent on the
number of predictor variables. If the number of predictor variables gets height,
then R? rises. It is therefore desirable to adjust the coefficient of determination.
The adjusted coefficient of determination (see [Devore and Berk, 2012, Chapter
12]) is defined by

MSE n—1SSE

adj MST n—pSST
To display the coefficient of determination and the adjusted coefficient of deter-
mination from the summary of a linear model, the commands r.squared and

adj.r.squared can be used.
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Example 3.18. The summary of the previous model provides the following in-
formation:

summary (regression_model)$r.squared
## [1] 0.3623848
summary (regression_model)$adj.r.squared

## [1] 0.3596762

3.3.4 Diagnostics of the model

As mentioned before, several assumptions had to be made to use the multiple
linear regression. The diagnostics of the model can be separated into the follow-
ing parts (see [Faraway, 2009, Chapter 4]):

1. The error values are independent and identically normally distributed €; Y
N(0,0?), i=1,.,n
2. The structural part of the model Y = X is correct.

3. Unusual observations, which do not fit the model and therefore might
change the selection and fit of the model, should be identified.
Constant variance
To identify a constant variance, the residual vs. fitted plots can be used. This
plot is expected to appear random.
Normality

For the normality check a Q-Q plot can be used. It will give a straight line if the
errors are distributed normally.

Correlated errors

To identify correlated errors a Scale-Location plot can be used. This plot is
expected to appear random with no discernable patterns.

Identification of unusual observations

To identify unusual observations the residual vs. leverage plot can be used. In
this plot, the Cook’s distance is marked to show which points have the greatest
influence on the regression, i.e. are leverage points.

This diagnostics of the model can be done in R with the command plot.

Example 3.19. The diagnostics for the above example can be done in the follow-
ing way:
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plot(regression_model)

Residuals vs Fitted Normal Q-Q
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Figure 3.9: Diagnostic plot of the example linear regression model

In the first plot of Figure [3.9 the residuals are plotted against the predicted
values. One can see that the variance is not constant. The second plot of Fig-
ure 3.9 shows a Q-Q plot of the standardized residuals. For small and big values
there is a deviation from the line, i.e. there is a skinny positive and skinny neg-
ative tail. The third plot of Figure 3.9 should appear random with no patterns,
as with the first plot. But this is again not the case, therefore the errors are
correlated. Finally, the last plot of Figure 3.9/ shows which points have the great-
est influence on the regression (leverage points) which are observations 23032,
28008 and 26236.

3.3.5 Analysis of collinearity

In multiple linear regression it can happen that the predictor variables are cor-
related (see [Fahrmeir et al., 2008, Chapter 3]). The higher the linear correlation
between the predictor variables, the higher the variance. In this case the estima-
tions can be extremely inexact.
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To remove strong collinearity, the relevant covariables can be omitted, from
them a jointly (easy interpreted) variable can be built, a ridge-regression can be
done or a main component regression can be used. More information about
these methods can be found in [Fahrmeir et al., 2008, Chapter 3].

3.3.6 Box-Cox transformation

In Section it has already been mentioned that predictor variables can be
transformed for example by adding a polynomial term. Also the response vari-
able can be transformed. A popular method to determine a transformation on
the response variable is the Box-Cox transformation (see [Faraway, 2009, Chap-
ter 7]). The goal of this method is to find a parameter A for a variance stabilizing
transformation, i.e. to make sure that the variance of the transformed response
variable y*(A) is independent of its mean. The transformation is given by

I SR WA
y (A)_{l/(\)g(y) A=0.

An estimator of the parameter A can be obtained by the profile log-likelihood
function.

In R the command boxcox of the package MASS([Venables and Ripley, 2002])
calculates the estimator for A and draws the profile of the likelihood function
including a 95%-confidence interval for A.

Example 3.20. For the above example the Box-Cox plot can be shown in the
following way:

boxcox (regression_model)

95%

log-Likelihood
1 1 1 1 1

-3800 -3600 -3400 -3200 -3000 -2800 -2600
I

Figure 3.10: Box-Cox plot of the example linear regression model

One can see in Figure that a transformation with A ~ 0.4 is necessary:.
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3.3.7 Confidence intervals and prediction intervals

In the regression for a new given observation, the value of the response vari-
ables can be predicted. For this value, also confidence intervals and prediction
intervals can be calculated (see [Faraway, 2009, Chapter 3]).

The confidence interval covers the expected value of the dependent variable
E(y+) of a new observation x4 with a probability of (1 — «) and is defined as

P by prg 02T (XTX) Ty

The prediction interval covers the actual new observation iy of a new obser-
vation x4 with a probability of (1 — &) and is defined as

P & by prg\02(1+ 2T (XTX) 1),

Note, that by definition the prediction interval is always bigger than the confi-
dence interval.

In R both intervals can be calculated with the command predict. For a con-
fidence interval the additional option interval="confidence" has to be chosen
and for a prediction interval the option interval="prediction" has to be added.
In both cases the level can also be specified.

Example 3.21. For our example the intervals can be calculated for an observation
with a height of 170 cm, a weight of 60 kg and an age of 50 years in the following
way:

test <- data.frame(height=170,weight=60,age=50)
predict(regression_model, test, se.fit=TRUE, interval="confidence",
level=0.90)$fit

H# fit lwr upr
## 1 166.4537 162.4279 170.4795

predict(regression_model, test, se.fit=TRUE, interval="prediction",
level=0.90)$fit

#Hi fit lwr upr
## 1 166.4537 98.35998 234.5474

The new observation has v 166.45 W. The confidence interval for this obser-
vation is [162.43;170.48], which means that the expected value of the new obser-
vation E(y4 ) is to 90% in this interval. The prediction interval is [98.36;234.55],
which means that the actual new observation y is to 90% in this interval.

3.4 Variable selection

3.4.1 Steps in selecting the best regression equation

For selecting the best regression model, the following steps have to be followed
(see e.g. [Kleinbaum et al., 1998, Chapter 16]):
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1. Specification of the maximum model
2. Specification of a criterion for selecting a model
3. Specification of a strategy for selecting variables
4. Conduction of the specified analysis

5. Evaluating the reliability of the chosen model

3.4.2 Specification of the maximum model

The maximum model should contain the following elements (see for more infor-
mation [Kleinbaum et al., 1998, Chapter 16]):

1. All conceivable basic predictor variables
2. High-order powers of basic predictor variables
3. Other transformations of predictor variables

4. Interactions among predictor variables, including two-way and higher-
order interactions

5. All possible “control” variables, as well as their powers and interactions

Note that overfitting a model, i.e. including variables in the model with truly
zero regression coefficients in the population, will not introduce bias on the re-
sult if usual regression assumptions are met, but it must be ensured that overfit-
ting does not introduce harmful collinearity (see Subsection [3.3.5). Also under-
titting the model, i.e. by leaving important predictor variables out, will introduce
bias in the estimated regression coefficients.

3.4.3 Selection criteria

In general, larger models will fit better and have smaller error sum of squares
SSE, but use more parameters. Thus for the choice of the model these two factors
have to be balanced. Therefore, for evaluating potential subsets of predictor
variables, selection criteria can be used. A selection criteria is an index, which
can be calculated for each candidate model to compare the models. Thus, for a
given selection criteria, the different models can be ordered from the best to the
worst (see [Kleinbaum et al., 1998, Chapter 16]).

However, more than one selection criteria should be considered, because no
single criterion works best. In practice, using a different selection criteria may
lead to a different model choice (see [Kleinbaum et al., 1998, Chapter 16]).

The discussion of the following four criteria for evaluating subsets of predic-
tor variables are taken from [Sheather, 2009, Chapter 7].
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R? and adjusted R?

The coefficient of determination, as already mentioned in Subsection is

defined as
SSE  SSR

T SST ~ SST
Because adding a new variable to a model can only decrease the coefficient of
determination R?, always the biggest model would be chosen and the adjusted

coefficient of determination is a better choice. The adjusted coefficient of deter-
mination, as already mentioned in Subsection is defined by

RZ=1

MSE n—1SSE
R, =1-—"—"—=1-— —
adj MST n—pSST’

where p is the number of predictor variables in the current model.
Using the adjusted R? as the selection criterion, the model with the highest
R2, i should be selected.

Akaike’s Information Criterion AIC

The AIC evaluates the
AIC = nlog (% +2p) .
The smaller the value of the AIC, the better the model.

Corrected Akaike’s Information Criterion AICc

2
AICc = AIC + ( -

The AICc is especially suitable for a small sample size compared to the number

. i . ;
of predictor variables, i.e. eS| < 40.

Bayesian Information Criterion BIC

BIC = —2log L(B,5%,y) + (p + 1) log(n).
The smaller the value of the BIC, the better the model.

Mallow’s C,,
Mallow’s C,, (see [Kleinbaum et al., 1998, Chapter 16]) is defined as

SSE

A small value of C, means that the model is relatively precise.

Mallows’s C;, has been shown to be equivalent to the AIC in the special case
of Gaussian linear regression (see [Boisbunon et al., 2014]).

Using the BIC results in simpler models, which are more robust. Therefore
in Chapter [6| the BIC will be the chosen criterion.
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3.4.4 Specification of a strategy for selecting variables

The third step in choosing the best model is to specify the strategy for selecting
variables. [Sheather, 2009, Chapter 7] classifies these methods into two different
approaches to choose the potential subsets of predictor variables, namely

1. all possible subsets, and
2. stepwise methods.

The stepwise methods include the forward and backward selection.

All subset selection

The all subset selection is to be preferred over all other variable selection strate-
gies, if it is possible (see [Kleinbaum et al., 1998, Chapter 16]). This is the only
method, where it is guaranteed that the model with the best value of the selected
selection criterion is found.

In R all subsets can be calculated with the function regsubsets, which is in
the package leaps. Useful options are nbest and nvmax. With nbest=n it can be
specified, that n models of each size are kept in the result object. Without this
option n = 1 is assumed. With nvmax=n the maximal size model, i.e. the number
of variables to include are defined. Without this option n = 8 is assumed.

Example 3.22. The following example shows the summary of the two best re-
gression subsets for one to five variables of the above model:

model_regsubsets<-regsubsets(workload_max ~ agetweight+height+
I(age~2)+weight:height,
data=exampledata,nbest=1,nvmax=5)
summary (model_regsubsets)$outmat

## age weight height I(age~2) weight:height
## 1 ( 1 ) nononon Lpoall non non
N G BT T 0
# 3 (1) "xv oo R ! e
## 4 (1) "o omxn Ly " iy
## 5 (1 ) M"x" otmxn Ubicll D3 Ubiclll

To evaluate which model is the best, the selection criteria BIC (standard cri-
terion), R?, Ridj and C, from Subsection 3.4.3| can be used. The first line, which

has no option scale automatically uses BIC:

plot(model_regsubsets)

plot (model_regsubsets, scale="r2")
plot(model_regsubsets, scale="adjr2")
plot(model_regsubsets, scale="Cp")

Figure shows the results for the different selection criteria.
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Figure 3.11: Results for different selection criteria for the example linear regres-
sion

plot(model_regsubsets$rss, xlab="Number of Variables", ylab="SSE",
type="1")
plot (summary(model_regsubsets)$adjr2, xlab="Number of Variables",
ylab=expression(R[adj]l~2), type="1")
points(which.max (summary(model_regsubsets)$adjr2),
summary (model_regsubsets)$adjr2 [which.max(
summary (model_regsubsets)$adjr2)]
, col="red", cex =2, pch =20)
plot (summary (model_regsubsets)$cp, xlab="Number of Variables",
ylab="CP", type="1")
points(which.min(summary (model_regsubsets)$cp),
summary (model_regsubsets)$cp[which.min(
summary (model_regsubsets) $cp)]
, col="red", cex =2, pch =20)
plot (summary(model_regsubsets)$bic, xlab="Number of Variables",
ylab="BIC", type="1")
points(which.min(summary (model_regsubsets)$bic),
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summary (model_regsubsets)$bic[which.min(
summary (model_regsubsets)$bic)],
col="red", cex =2, pch =20)
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Figure 3.12: Information criteria for the example linear regression

The first plot in Figure shows the SSE for the best models with one to
five variables. The other plots show the values of the different selection criteria.
As a result the model with five parameters is the best for all selection criteria.

Note, that also the function leaps exists in R, which is similar to the function
regsubsets.

However, if the number of variables in the maximum model exceeds a certain
size, it becomes impractical and instead it is preferable to use a stepwise method.
The most popular stepwise methods are the forward selection and the backward
selection.

Forward selection

The forward selection starts with a model, which just includes the intercept.
In each iteration one predictor variable, taken from the set of the variables of
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the maximum model, is included. The predictor variable is chosen such that
the resulting model improves the selection criterion as much as possible. The
algorithm ends, if all predictor variables are in the model or if no further im-
provement is possible.

Backward selection

The backward selection is the opposite of the forward selection, i.e. it starts with
the maximum model with all predictor variables. In each step the predictor
variable, which improves the selection criterion as much as possible, gets ex-
cluded. The algorithm ends, if all predictor variables got excluded or no further
improvement is possible.

Stepwise selection

The stepwise selection combines the forward and the backward selection. In
each iteration it will be decided, if a further variable comes into a model or if a
variable gets excluded.

In R the variable selection can be done with the function step. The used
selection criterion in this function is the AIC.

Example 3.23. The following is an example for the forward selection. For each
step first the actual AIC and regression coefficients are given. For the coefficients,
which can be included, the resulting sum of squares, the residual sum of squares
RSS and the AIC are given:

null<-Im(workload_max ~ 1,data=exampledata)
full<-lm(workload_max ~ agetweight+height+I(age~2)+weight:height,
data=exampledata)
modell_regression_step_fs<-step(null, scope=list(lower=null,
upper=full),
direction="forward")

## Start: AIC=9331.52
## workload_max ~ 1

#it

#i#t Df Sum of Sq RSS AIC
## + height 1 982714 2164836 8890.8
## + weight 1 314399 2833151 9209.0
## + I(age~2) 1 257059 2890491 9232.7
## + age 1 249572 2897978 9235.8
## <none> 3147550 9331.5
#i#t

## Step: AIC=8890.75

## workload_max ~ height

#it

#i# Df Sum of Sq RSS AIC
## + I(age~2) 1 127448 2037388 8821.0
## + age 1 120669 2044167 8824.9
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## <none> 2164836 8890.8
## + weight 1 424 2164413 8892.5
#it

## Step: AIC=8820.97
## workload_max ~ height + I(age~2)

#it
#it Df Sum of Sq RSS AIC
## + age 1 8657.5 2028730 8817.9
## <none> 2037388 8821.0
## + weight 1 64.1 2037324 8822.9
#it

## Step: AIC=8817.93
## workload_max ~ height + I(age~2) + age

#it
#Hit Df Sum of Sq RSS AIC
## <none> 2028730 8817.9

## + weight 1 1.4482 2028729 8819.9

Afterwards a summary of the best model can be given by:

summary (modell_regression_step_fs)

#it

## Call:

## Im(formula = workload_max ~ height + I(age~2) + age,
## data = exampledata)

##

## Residuals:

#it Min 1Q Median 3Q Max

## -139.584 -25.128 -0.323 23.625 188.828

#t

## Coefficients:

it Estimate Std. Error t value Pr(>|tl)

## (Intercept) -420.55335 50.28850 -8.363 <2e-16 xx*x*

## height 3.10155 0.13891 22.327 <2e-16 *xx*
## I(age~2) -0.05838 0.01949 -2.995  0.0028 *x*
## age 4.13965 1.845564 2.243 0.0251 *
## ---

## Signif. codes:

## 0 '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 41.48 on 1179 degrees of freedom
## Multiple R-squared: 0.3555,Adjusted R-squared: 0.3538
## F-statistic: 216.7 on 3 and 1179 DF, p-value: < 2.2e-16

The backward selection can be done in the following way:



38 3.5. DUMMY REGRESSION

modell_regression_step_bs<—Step(full, direction="backward")

And finally the combination of both forward and backward selection can be
done in the following way:

modell_regression_step_fbs<-step(null, scope = list(upper=full),
data=exampledata, direction="both")

All directions give the same result.

3.5 Dummy regression

In Section only continuous predictor variables were considered. To ex-
tend the predictor variables to categorical variables, dummy variables can be
used. The dummy variable in a regression equation takes on a finite number
of values, so that different categories of a nominal variable can be defined (see
[Gareth et al., 2014} Chapter 3] and [Kleinbaum et al., 1998, Chapter 14]).

The term dummy is due to the fact that the values taken on by such variables
do not indicate meaningful measurements but rather the categories of interest
(see [Kleinbaum et al., 1998, Chapter 14]).

[Kleinbaum et al., 1998, Chapter 14] defines a rule for defining dummy vari-
ables for regression analysis to avoid collinearity: "If the nominal independent
variable of interest has k categories, then exactly k — 1 dummy variables must be
defined to index these categories, provided that the regression model contains
a constant term (i.e. an intercept o). If the regression model does not contain
an intercept, then k dummy variables are needed to index the k categories of
interest."

[Fahrmeir et al., 2008, Chapter 3] gives an explicit definition to model the
categorical variable with c levels x € {1,...,c} as ¢ — 1 dummy variables:

1

2 1 x= 1 x=c—1
X = = X1 = e Xe—1 =

: 0 else 0 else

c

The resulting dummy variables can be used in R in the same way as continuous
variables.

3.6 Regression surfaces

Regression surfaces are used to examine the relationship between a response
variable and the exploratory variables. The visualization of a regression surface
can be done with the package visreg [Breheny and Burchett, 2017].

In this thesis, two functions from this package are used. The first is visreg
with which the regression model can be visualized. The default plots contain
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a confidence band, prediction line, and partial residuals. Also, options for fac-
tors, transformations, conditioning and interactions are supported. The second
function is visreg2d and with this function it can be shown how two variables
interact to affect the response in a regression model.

Example 3.24. This example shows regression surfaces for the above regression
with the formula

WL = age + weight + height + I(age?) + weight : height.
The function visreg can be used in the following way:

visreg(lm(workload_max ~ agetweight+height+I(age~2)+weight:height,
data=exampledata) ,
'age',band=TRUE, gg=TRUE, overlay=TRUE, partial=FALSE,alpha=0.05,
breaks=c(25,50,75) ,ylab="'WL',print.cond=FALSE)+ylim(50, 220)
visreg(lm(workload_max ~ agetweight+height+I(age~2)+weight:height,
data=exampledata),
'weight',by='height',plot.type="persp",band=TRUE, gg=TRUE,
overlay=TRUE,
partial=FALSE,alpha=0.05,breaks=c(150,170,190) ,ylab="'WL')+
y1im(50,250)
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(a) Regression line for the maximum work- (b) Regression lines for the maximum work-
load denpendent on age load depending on weight for three differ-
ent breaks of height

Figure 3.13: Plots of the regression line and confidence bands of the regression
surface

Figure shows these plots. Figure [3.14(a) shows the maximum workload
depending on the age. To plot this, the other parameters have to be fixed. I(age?)
is calculated by the age. The other parameters are set to the median values., i.e.
weight is set to 78 and height is set to 173. The function visreg can also be
used to see how the effect of weight differs depending on the height with the
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option by. Figure [3.14(b) shows this. Here the height is fixed at three different

stages. The slope of the regression lines of the surface is different for each of

these heights. In both plots additionally the 95%-confidence bands are plotted.
The function visreg2d can be used in the following way:

visreg2d (Im(workload_max ~ agetweight+height+I(age~2)+weight:height,
data=exampledata),
'weight', 'height',plot.type='gg',zlab="'WL")
visreg2d (1lm(workload_max ~ age+weight+height+I(age~2)+weight:height,
data=exampledata),
'weight', 'height',plot.type="'persp',zlab='WL")
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(a) Contour plot (b) Perspective plot

Figure 3.14: Plots of the regression surface of the maximum workload depending
on weight and height

The resulting plots are in Figure The first plot, Figure 3.14(a), shows
a contour plot (option plot.type=’gg’) and Figure 3.14(b) shows a perspective
plot (option plot.type=’persp’). In both plots the interaction between height
and weight can be observed.

3.7 Decision trees

Decision trees are a way to visualize regression models (e.g. [Falk et al., 2014,
Chapter 9] or [Bankhofer and Vogel, 2008, Chapter 18]). There exist two variants
of decision trees: classification trees and regression trees. The classification trees
are used for nominal dependent variables and decision trees for quantitative
dependent variables.

Decision trees are used for an automatic classification of data objects in order
to solve decision problems. A decision tree consists of a root vertex, inner ver-
texes and leaves. Every vertex except the leaves represent one logical decision.
The leaves represent an answer of the decision tree. This answer could be in the
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form of the mean or box plots. Therefore, in the tree, the target variable for each
observation can be predicted by following the path from the root node to the
corresponding leaf.

To create a decision tree in R, the command tree from the package tree can
be used.

Example 3.25. This example shows a regression tree for the maximum workload.
As stated before, the maximum workload depends on age, height and weight.
The right branch refers in this tree to yes and the left one to no.

plot(tree(workload_max ~ agetheight+weight,data=exampledata))
text (tree(workload_max ~ aget+height+weight,data=exampledata))

height < 168.5
I
height £ 179.5
131.9
age 452.5 age 4 50.5
weight|< 69.5
168.8 2225 201.4
163.0 196.5

Figure 3.15: Regression tree for the example linear regression

We can see that the regression tree only contains the variables height and
age. This corresponds to the result that the correlation between the maximum
workload and the height and age is higher than with the weight.

If a new observation is 40 years old and has a height of 170 cm, then expected
maximum workload is 165.1 W.

For the following variant of a regression tree the packages rpart and party
are needed.

Example 3.26. This example shows another variant to get a regression tree. First
the tree can be created with the command rpart.
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tree<-rpart(workload_max ~ agetheight+weight,data=exampledata)
tree

## n= 1183

#i#

## node), split, n, deviance, yval
Hi#t * denotes terminal node
#it

## 1) root 1183 3147550.00 179.3922
#i#t 2) height< 168.5 281 325207.10 131.8826 *
#i#t 3) height>=168.5 902 1990486.00 194.1929

#it 6) height< 179.5 497 886373.40 181.0966

#it 12) age>=52.5 221 380658.10 168.7783 *

#it 13) age< 52.5 276 445328.60 190.9601

#it 26) weight< 69.5 46  66799.91 163.0435 *
#it 27) weight>=69.5 230 335509.10 196.5435 *
#it 7) height>=179.5 405 914264.70 210.2642

#i#t 14) age>=50.5 235 437771.70 201.4340 *

#it 15) age< 50.5 170 432840.40 222.4706 *

The cptable gives information about the complexity parameter (CP), which
is used to control the size of the regression tree.

tree$cptable

#it CP nsplit rel error Xerror xstd
## 1 0.26428697 0 1.0000000 1.0012694 0.04480537
## 2 0.06031623 1 0.7357130 0.7469441 0.03803352
## 3 0.01918529 2 0.6753968 0.6917521 0.03440656
## 4 0.01386877 3 0.6562115 0.6846830 0.03403352
## 5 0.01366764 4 0.6423427 0.6799076 0.03439675
## 6 0.01000000 5 0.6286751 0.6708352 0.03421516

To adjust the size of the tree the command prune can be used.

tree_size<-prune(tree, cp = tree$cptable[3,"CP"])
tree_size

## n= 1183

#it

## node), split, n, deviance, yval
#it * denotes terminal node
#

## 1) root 1183 3147550.0 179.3922

## 2) height< 168.5 281 325207.1 131.8826 *
##  3) height>=168.5 902 1990486.0 194.1929

#it 6) height< 179.5 497 886373.4 181.0966 *
#it 7) height>=179.5 405 914264.7 210.2642 *
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Finally the regression tree can be plotted with the command plot.

plot(as.party(tree_size))

<168.5 >168.5
<179.5 >179.5
\
Node 2 (n = 281) Node 4 (n = 497) Node 5 (n = 405)
400 400 400 —
_8
300 300 8 300 1

8 i
200 ! 200 — E 200 — E

100 ; 100 ! 100 L
' — 8

Figure 3.16: Regression tree for the example linear regression with the package
party
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Chapter 4

Data preparation

In this chapter, steps involving the preparation of raw data (received from ZARG)
for statistical evaluation are explained in detail. The chapter starts with a de-
scription of the received raw data. Afterwards each step involved in the data
preparation is described.

The data preparation required 5 steps:

Step 1: Transformation of the XML files in a CSV file
Step 2: Integration of the CSV files in a MySQL database

Step 3: Integration of the files with information on blood parameters, medica-
tion and diagnosis in the main table with a Java program

Step 4: Reading the MySQL database into R

Step 5: Adaptation of the table in R
Figure [4.1 shows these steps.

4.1 Received data

The received data consists of separate files with information on ergometries,
blood parameters, diagnoses and medication prescribed.

4.1.1 XML files for data of the ergometries

The data from the ergometries have been provided in XML files. For each er-
gometry, there was one XML file. These XML files consist of variables such as
age, gender, height, weight, maximum workload. In addition, files had informa-
tion about the time series of the ergometry, start time of the step, the workload,
systolic blood pressure, diastolic blood pressure, heart rate and cadence.

4.1.2 CSV files for the blood parameters, diagnosis and medica-
tion

The information on blood parameters, medication and diagnoses of the partici-
pants has been provided in CSV files.

45
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CSV file: Blood parameters

step 1

step 2

¢ XSL style sheet

ergometry data
CSV File

MySQL script
A

MySQL database with tables ergometry
data, blood parameters, medication

Java program

R-script

R-script

Figure 4.1: Workflow for the data preparation

This CSV file contains information about total cholesterol (TC), low-density
lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), creatinine
(Cr), fasting blood sugar level (FBS) and uric acid (UA) levels in blood. The
information on the variables present in this file are shown in Table The first
column contains the value of that parameter if it was measured within the range
of two weeks before or after the relevant ergometry, and the second column
states whether this measured value is pathological (T) or not (F).

Variables | Units | Description

patient_id | - Patient ID

entry_id | - identification number for the entry

lab_date date date when the laboratory was taken
parameter | - parameter of the lab

lab_value | mg/dl | corresponding value of the parameter
evaluation | - T for pathological and F for not pathological

Table 4.1: Description of the variables in CSV file blood parameters

CSV file: Diagnosis

The information about the diagnosis of participants who performed at least one
ergometry is present in this CSV file. The information on the variables present
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in this file are shown in Table

Variables | Units | Description

patient_id | - Patient ID

entry_id | - identification number for the entry
date date | date of the diagnosis

diagnosis | - type of the diagnosis

Table 4.2: Description of the variables in Table diagnosis

CSV file: Medication

This file contains information about the types and doses of medication pre-
scribed to participants. The information on the variables present in this file
are shown in Table 4.3

Variables Units | Description

patient_id - Patient ID

entry_id - identification number for the entry

date date | date on which the medication was prescribed
medication - type of the drug

doses - doses of the medication

medication_id | - identification number of the medicine

Table 4.3: Description of the variables in Table medication

4.2 Step 1: Transformation of the XML files in a CSV
file

As first step, the data from the XML files have been transformed into a CSV file
using XSL stylesheet. The stylesheet is attached in Appendix|A] The variables of
the resulting CSV file are described in Table This table contains the general
information about the participants and some parameters of the corresponding
ergometry. The general information includes patient ID, age, gender, height,
weight and abdominal measurement. The ergometry information includes start
time, end time, device, pace maker, resting heart rate, maximal heart rate, maxi-
mal power, resting systolic blood pressure, resting diastolic blood pressure, max-
imal systolic blood pressure, maximal diastolic blood pressure and the reason
for termination.

In total, there were 29,805 records each containing information about one
ergometry. After quality control, some of the records were deleted due to lack of
correct information. Finally, 28, 625 records were used for downstream analysis

which passed the quality control step. These records were collected between
2004-01-27 and 2017-06-13 (14 years).
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Variables Units Description

patient_id - Patient ID

start_time | date and time | date and time of the ergometry’s start
end_time date and time | date and time of the ergometry’s end

age years patient’s age

gender - patient’s gender

height cm patient’s height

weight kg patient’s weight

waist cm patient’s waist circumference

pacemaker | - binary variable for existence of pacemaker
device - type of device, ergometer / treadmill

WL W maximum workload the patient could achieve
SBP, mmHg resting systolic blood pressure

DBP, mmHg resting diastolic blood pressure

SBP ;0 mmHg systolic blood pressure at maximum workload
DBP 0 mmHg diastolic blood pressure at maximum workload
HR, bpm resting heart rate

HRyax bpm maximal heart rate during the ergometry
termination | - reason for termination of the ergometry
purpose - purpose for the ergometry

Table 4.4: Description of the variables in Table maindata

4.3 Step 2: Integration of the CSV files in MySQL
database

Four CSV files maindata, blood parameters, diagnosis and medication are in-
tegrated in a MySQL database. The MySQL program for this is attached in

Appendix

4.4 Step 3: Integration of the blood parameters, diag-
nosis and medication in the table maindata with
Java programs

For the sake of convenience in table maindata additional columns for blood

parameters, diagnosis and medication were generated with the help of Java pro-
grams. These programs are attached in Appendix|C|to Appendix

4.4.1 Columns for the blood parameters

For each ergometry, the information on each blood parameter is inserted in two
new columns. These columns refer to the value of the corresponding blood
parameter and its evaluation as mentioned in Table
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4.4.2 Column for diagnosis

The column for diagnosis contains information in the form of binary numbers.
The participant with a diagnosis of cardiovascular diseases is assigned 1, other-
wise 0.

4.4.3 Columns for medication

The information on beta blockers and statins is inserted in two separate columns.
Here, also the binary numbers are used to indicate if the participant is taking
medication or not. The participant taking beta blockers, from the list mentioned
in Section is assigned 1, otherwise 0. The convention is the same for statins
too.

4.5 Step 4: Reading the table maindata into R

The finished table maindata is exported into R. The corresponding R script is
attached in Appendix

4.6 Step 5: Adaptation of the table maindata in R

In the last step, additional variables calculated from existing variables are added.
For this calculation, the following formulas are used:
Formula for the body mass index:

weight|kg]

height[cm]
( 8100 )2

BMI[kg/m?] =

Formula for the waist-to-height-ratio:

waist[cm|

WHR = height[cm]

Formula for the workload-to-weight-ratio:

WL[W]
R Al 1AF T
WWRIW/kg] weight|kg]
TC
TC:HDL = DL
LDL
LDL: HDL = DL
TG
TG: HDL = DL

The body surface area is calculated from weight and height using the Du
Bois formula (see Chapter 2) and the maximum workload using the model from
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[Wonisch et al., 2008]. Furthermore, the column showing the year in which ero-
gometry was performed has been added.

Finally, two tables with information which correspond to stage II and stage III
of cardiac out-patient rehabilitation are created. In these tables, above mentioned
information available from these two stages for a single participant is presented

in one row.
The R script for this is added in Appendix

4.7 Variables used in the statistical analysis

Table 4.5 shows a summary of all variables which will be used in the next chap-
ters.

\Variables \ Units \Description

‘Té gender - patient’s gender!
'€ | medication - medication history?
2 diagnosis - diagnosis®
g | age years | age
%= | height cm | height
E | weight kg weight
ug waist cm waist circumference
'S | BMI kg/m? | body mass index
‘s | WHR - waist to height ratio
A | BSA m? body surface area
g | SBP, mmHg | systolic blood pressure at the beginning of the ergometry
E DBP; mmHg | diastolic blood pressure at the beginning of the ergometry
& SBPiax mmHg | maximal systolic blood pressure during the ergometry
& | DBP,ux mmHg | maximal diastolic blood pressure during the ergometry
:% HR, bpm | heart rate at the beginning of the ergometry
O | HRax bpm | maximal heart rate during the ergometry
TC mg/dl | total cholesterol
LDL mg/dl | low-density lipoprotein
£ HDL mg/dl hi‘gh—der}sity lipoprotein
s | TG mg/dl | triglyceride
8 | Cr mg/dl | creatinine
B | FBS mg/dl | fasting blood sugar level
2 | UA mg/dl | uric acid
M 'TC:HDL - ratio between the TC and the HDL
LDL:HDL - ratio between the LDL and the HDL
TG:HDL - ratio between the TG and the HDL
"g WL 4% maximum workload the patient could achieve
5 | WWR W/kg | maximum workload to weight ratio
o

Table 4.5: Description of the variables used in the statistical analysis

L M... male, E... female
21... statin, 2... beta blocker, 3... both, 0... none
31... cardiac diagnosis, 0... non-cardiac or no diagnosis



Chapter 5

Exploratory data analysis

In this chapter, an exploratory data analysis (EDA) is used to analyze the data for
patterns and relationships. A mathematical description of EDA and its methods
are given in Section In Section a univariate analysis is done, where each
variable is analyzed separately by a calculation of statistical indicators and pre-
sented as an illustration. In Section a multivariate analysis, correlation ma-
trices are used to provide an insight into the linear relationship between paired
variables, also scatter plots are used to identify patterns between multiple vari-
ables. In Section a gender specific comparison between the maximum work-
load obtained in ergometries from the first (2004 & 2005) and last two years
(2016 & 2017) of study is done for the quality control of the data. Finally a short
conclusion of this chapter is given in Section

5.1 Univariate analysis

The EDA for each variable is performed to summarize their main characteristics
and to find structures. The aim of this analysis is to verify the data and to find
and eliminate errors in it.

5.1.1 Composition of the data regarding gender, medication and
diagnosis

Figure shows the categorization of the ergometries by three nominal vari-
ables namely gender, medication and diagnosis. Figure 5.1(a) shows that 18,919
ergometries are done by males and 9,706 by females. Males performed twice
as many ergometries as females. For the categorization using medications only
two medication groups are taken into account as mentioned in Chapter 4, Fig-
ure 5.1(b) shows the number of ergometries in patients with no medication, with
either one of statin or beta blocker and with both. In total, 4,031 ergometries are
done by patients taking statin and 4,904 taking beta blocker. In most of the cases,
the participants were not taking statins or beta blocker. Figure [5.1(c) shows the
categorization of ergometries in two groups. The first group of 17,544 ergome-
tries is a group with the diagnosis of non-cardiac diseases or no diagnosis and
the second group with 11,081 ergometries is with the diagnosis of cardiac dis-
eases. So the majority of data for the ergometries is from the participants without

51
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any cardiac disease diagnosis.
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Figure 5.1: Number of ergometries separated by gender, medication and diag-
nosis

5.1.2 Statistical indicators of the variables

Detailed assessment of statistical indicators is given in Table 5.1| along with the
missing values in the data. It shows that just 8 variables have no missing values.
Unfortunately the waist circumference is measured during just 3,800 ergome-
tries. Each variable is discussed thoroughly in the upcoming subsections.
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variable | min  qo25s  qos x go7s max s NA’s
age 10 49 60 57.92 69 94  14.84 0
height 139 167 173 172.60 179 208  8.98 0
weight 32 69 78 78.99 88 160 14.82 0
waist 62 92 99 99.55 107 158 12.04 24825
BMI 1522 2374 26.03 2644 28.73 5528 4.06 0
WHR 037 053 057 0.57 0.61 089 0.07 24825
BSA 1.15 1.77 191 1.91 205 276 0.020 0
DBP_r 36 71 79 79.06 87 223  19.30 1339
DBP_max 36 76 86 86.67 96 257 30.88 315
SBP_r 6 106 118 11940 130 291 13.23 1390
SBP_max 73 164 184 185.10 204 347 18.54 31
HR r 35 67 76 77.61 86 179 14.88 98
HR_max 55 127 148 146.20 166 324 26.44 0
TC 78 158 188 193.19 223 434 47.82 9767
LDL 8.6 82.2 105.8 11221 1374 345.0 40.63 9839
HDL 16 43 51 52.83 61 157  14.09 9872
TG 27 86 118 140.75 167 1204 88.31 9767
Cr 058 097 1.09 1.12 1.23 329 0.024 14219
FBS 42 96 104 11036 115 378 25.50 13443
UA 1.50 5.09 5.92 5.98 6.81 1286 1.38 14152
TC:HDL 1.51 3.04 3.61 3.80 438 1062 1.02 9872
LDL:HDL | 0.29 1.62 2.04 2.19 263 618 080 9912
TG:HDL 030 153 235 3.02 3.63 4519 056 9872
WL 21 113 150 158 200 440 58.53 0
WWR 024 150 196 2.02 246 6.10 0.73 0

Table 5.1: Descriptive statistics of all variables with the following indicators:
minimum, 1-quartile, median, average, 3-quartile, maximum, standard deviation
and the number of missing values

5.1.3 Analysis of the variables age, height, weight and waist
circumference

The following analysis shows box plots, histograms and density plots for the
variables age, height, weight and waist circumference categorized by gender.
These variables age, height and weight are measured for each ergometry. In
contrast to that, the waist circumference is just available for 3,800 ergometries as
it is measured only during out-patient rehabilitation.

Figure shows a box plot, a histogram and a density plot for age. All of
them are categorized by gender. The mean age of females is 59.13 with a stan-
dard deviation of 14.00, whereas for males mean age is 57.30 and the standard
deviation of 15.22. Both plots show that the distribution of age is similar for both
genders, although the median as well as the mean in females is slightly higher
and the standard deviation is slightly smaller. The range for females and males
is similar, the minimum is 10 and 11 and the maximum is 93 and 94, respectively.
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Figure 5.2: Exploratory data analysis for the variable age

The mean height in females (164 cm) is 13 cm less than in males (177 c¢cm).
The standard deviation is similar in females and males. It is 6.16 and 6.74. The
height of females spans from 139 cm to 190 cm while for male it is from 143 cm

to 208 cm as seen in Figure 5.3
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Figure 5.3: Exploratory data analysis for the variable height

As that of variable height, similar trends, i.e. similar standard deviation and
different mean, are present in weight as seen in Figure reffig:weight. The mean
weight for females is 68.94 kg, whereas for men it is 84.14 kg. The maximum
weight for male in the cohort is 160 kg and female 140 kg.
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Figure 5.4: Exploratory data analysis for the variable weight

Figure 5.5/ shows the plots for the waist circumference. Although the mean
for female is 7.58 cm lower compared to male, the standard deviation is higher.
Equivalent to the mean, the median is higher for male, and the length of the
95%-confidence interval around the median is much higher for both genders as
compared to other variables due to availability of only 3,800 measurements.
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Figure 5.5: Exploratory data analysis for the variable waist
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5.1.4 Analysis of the additionally calculated variables body mass
index and waist-to-height-ratio

Both variables BMI and WHR are calculated from variables in the section above.
The relevance of these variables for the heart attack risk is given in Chapter [2|
Although the weight and the height of males and females are different, the BMI

is similar for both genders as shown in Figure
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Figure 5.6: Exploratory data analysis for the variable BMI
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Figure 5.7: Exploratory data analysis for the variable WHR
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Similar to the BMI, the analysis of variable WHR yields similar results for
males and females. Although the mean of WHR is similar, the standard devia-

tion is higher for females as seen in Figure

5.1.5 Analysis of the blood pressure

Figure 5.8/and Figure 5.9/ show box plots of the resting blood pressure and blood
pressure at maximum workload, respectively, separated by the gender. There is
only a big difference in the systolic blood pressure at maximum workload among
males and females but other values are similarly distributed in both genders.
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Figure 5.8: Exploratory data analysis for the variable diastolic blood pressure
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Figure 5.9: Exploratory data analysis for the variable systolic blood pressure
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To analyze the correlation between the resting blood pressure and the in-
crease in the blood pressure during an ergometry, the difference between blood
pressure at the maximum workload and the resting blood pressure is calculated.
Figure shows the scatter plot of the resting blood pressure compared with
the increase in blood pressure. It is interesting to note that the increase in the di-
astolic blood pressure is also negative. The reason for this could be the difficulty
in measuring the diastolic blood pressure during the exercise, which results in
lower diastolic blood pressure values than actual. For both systolic and diastolic
blood pressure the increase can get higher if the resting blood pressure is low.
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pressure pressure

200 250

200

150

ASBP [mmH(g]

1004 -

ADBP [mmHg]

50

-100+

J | 1 |
50 100 150 200 0

DBP, [mmHg]
(a) Scatter plot for the resting diastolic blood (b) Scatter plot for the resting systolic blood
pressure and the increase of the blood pres- pressure and the increase of the blood pres-
sure during the ergometry sure during the ergometry

SBP, [mmHg]

Figure 5.10: Increase of the blood pressure during ergometry

5.1.6 Analysis of the heart rate

Figure shows gender specific box plots for the resting and the maximum
heart rate. It shows that the heart rate is very similar between the genders,
but the median of the resting heart rate is slightly higher for females while the
median of the maximum heart rate is higher for males.

Figure shows the relationship between resting heart rate and increase of
the heart rate during an ergometry. The increase of the heart rate is a difference

between the resting heart rate and the heart rate at the end of that ergometry. No
negative values indicate that during all ergometries, heart rate was increased.
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Figure 5.11: Exploratory data analysis for the variable heart rate
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Figure 5.12: Scatter plot for the resting heart rate and the increase of the heart
rate during an ergometry

5.1.7 Analysis of the blood parameters

For the ergometries 7 different blood parameters were measured. Figure
shows the box plots of the variables TC, LDL, HDL, TG. The median of the
variables TC, LDL and HDL are higher for females. In contrary, the median for
the variable TG is similar, but some outliers are far away from the median.
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Figure 5.13: Box plots for the variables TC, LDL, HDL, TG

The analysis of the variables Cr, FBS and UA, Figure shows higher
medians for male than for female.
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Figure 5.14: Box plots for Cr, FBS and UA

5.1.8 Additionally calculated variables TC to HDL ratio, LDL to
HDL ratio and TG to HDL ratio

For analyzing the effect of blood cholesterol level on cardiac health, the TC:HDL

ratio, the LDL:HDL ratio and the TG:HDL ratio are calculated. These param-

eters are better indicators of cardiac health. Figure shows that there is no
remarkable difference between the genders.
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Box plot of TC:HDL Box plot of the LDL:HDL ratio
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Figure 5.15: Box plots for the calculated variables TC:HDL, LDL:HDL and
TG:HDL

5.1.9 Analysis of the maximum workload and maximum workload-
to-weight-ratio

Finally the variables WL and WWR are analyzed. Figure shows box plots
categorized by gender, medication and diagnosis, respectively, and a histogram
and density plot of the maximum workload. The mean of the variable maximum
workload is much higher for men. If participants of the ergometry have an
cardiac diagnosis or take statin or beta blocker, then the maximum workload is
decreasing.
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Figure 5.16: Exploratory data analysis for the variable maximum workload

Figure shows box plots categorized by gender, medication and diagnosis,
respectively, and a histogram of the maximum workload-to-weight-ratio. The
difference between the maximum workload-to-weight-ratio between males and

females is less than in the maximum workload.
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weight-ratio

5.2 Multivariate analysis

(d) Histogram and density plot of the max-
imum workload-to-weight-ratio divided by

gender

for the variable maximum-workload-to-

The multivariate analysis is used to investigate the correlation between more

than one parameters.
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5.2.1 Correlation

The correlation between the variables is explored in a correlation matrix, which
explores the linear relationship. Figure and Figure [5.19 show the correlation
between the variables. One can see that the correlation to the WL is in average
less than to the WWR. The WWR has a correlation of more than 0.5 with the
age and the waist-to-height-ratio. Further, four variables, height, waist, BMI and
FBS have a correlation of more than 0.25 to the WWR.

Due to the low correlation between the cardiac parameters and the blood
parameters with the WWR, in the regression analyses of the next chapter these
variables will not be taken into account.

Sy SOV SOUI L.
= OOOEOOOHOQ)
pery ' QOULY
Ty, " OOue)
sl P OO0

DBPr
oo oo ——o—o—o— o

RO O — h Hh— M
OO NS SO H—b— / WWR

Figure 5.18: Correlation between the variables of the basic information and the
measured parameters during an ergometry, the WL and the WWR for all er-
gometries together
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Figure 5.19: Correlation of the blood parameters, the WL and the WWR of all
ergometries together
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5.2.2 Scatter plots

For the variables of the basic information scatter plots with the WWR are shown.
Figure shows scatter plots for the variables height, age, weight and waist
and the WWR and Figure shows the plots for the calculated variables BMI,
WHR and BSA and the WWR. In both Figures also regression lines are drawn
in.
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Figure 5.20: Scatter plots between the variables of the basic information and the
maximum workload-to-weight-ratio
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Figure 5.21: Scatter plots between the calculated varaibles of the basic informa-
tion and the maximum workload-to-weight-ratio

5.3 Quality control of the data

Figure asserts that the maximum workload is distributed similarly at the
beginning (2004 & 2005) and the end of the study (2016 & 2017). A deviation of
the maximum workload in the beginning and the end of the study would point
to an error in the measurement.
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Boxplot of the maximum workload Boxplot of the maximum workload
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ing the years 2004 and 2005 ing the years 2016 and 2017

Figure 5.22: Quality control for the maximum workload during time

5.4 Discussion

In summary, in this chapter, the data is analyzed using both univariate and mul-
tivariate EDA. The first aim of this analysis was to analyze the data to find incor-
rect entries and eliminate them. Without checking the data for quality, incorrect
entries would have an influence on the results of the regression ultimately yield-
ing wrong results. The second objective was to get a general overview of the
data and find its structures. These results can be further used in the next chap-
ters, in which normal values for the maximum workload and the maximum
workload-to-weight-ratio are derived.

The first observation of this analysis is that the variables weight, height and
waist differ a lot in gender, whereas the BMI and WHR are similar for both gen-
ders. This observation can be used for choosing the variables for the regression
analysis. Another observation is that the variable WWR has a higher correlation
to the other variables than the maximum workload. Consequently, it is prefer-
able to use the WWR as a prediction variable in the regression analysis instead
of the maximum workload.

The cardiac parameters and the blood parameters have a low correlation to
the maximum workload and the maximum workload-to-weight-ratio. Whereas,
the variables of basic information have quite a good correlation to them. For this
reason, the variables for cardiac parameters and blood parameters are omitted
from further analysis. The EDA showed that there is approximately a linear rela-
tionship between the variables of basic information and the maximum workload
and maximum workload-to-weight-ratio. Therefore a linear regression can be
used for the calculation of normal values.
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Chapter 6

Normal values for the maximum
workload of exercise testing

The aim of this chapter is to model normal values for the maximum workload
of ergometries. The chosen method for this is a linear regression. The currently
used normal values for ergometries in Austria are suggested in the Austrian
practice guidelines for ergometries ([Wonisch et al., 2008]). However, the infor-
mation about the applied data to develop this model is not available. For this
reason, in this Chapter, the currently used normal values are analyzed and com-
pared with new approaches which use similar independent variables. As a start-
ing point, a correlation analysis is done in Section 1 followed by regression trees
in Section 2. In Section 3 to Section 7 different models are introduced. Section 3
explains the model used. First, a linear regression model with the same effects
is derived in Section 4. Afterwards, the best model with the same independent
variables but with all main effects and all intersections is built in Section 5. Next,
the model is extended by the variables weight and height in Section 6. As the last
step in Section 7, instead of the maximum workload, the maximum workload-
to-weight-ratio is used as the dependent variable. In Section 8, all models are
compared along with a conclusion. Finally, in Section 9 a dummy regression
model is introduced.

6.1 Correlation

Figure |6.1| shows the correlation between weight, height, age, body surface area
(calculated with the formula of Du Bois), the outputs of an ergometry maxi-
mum workload and maximum workload-to-weight-ratio. In this chapter, there
are regression models for the maximum workload as well as for the maxi-
mum workload-to-weight-ratio. One result of Chapter 5 is that the maximum
workload-to-weight-ratio is preferable over the maximum workload.

Since the body surface area is calculated with the formula of Du Bois, the
correlation in Figure 6.1 between it and the weight and height is very high. The
correlation between the other independent variables is quite low.
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6.2. REGRESSION TREES
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Figure 6.1: Analysis of correlation with the variables weight, height, age, BMI,
BSA, maximum workload and maximum workload-to-weight-ratio

6.2 Regression trees

This section shows regression trees for the maximum workload and the maxi-
mum workload-to-weight-ratio, respectively, in Figure [6.2] and Figure
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(a) Regression tree for the maximum workload (b) Regression tree for the maximum workload-
to-weight-ratio

Figure 6.2: Regression trees for males with the independent variables weight,
height, age, body surface area and the dependent variables maximum workload
and maximum workload-to-weight-ratio

The structure of the trees is the same for males and females, i.e. in the
regression trees for the maximum workload in both decision vertices the age
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plays a role and in the regression trees for the maximum workload-to-weight-
ratio, the first vertex splits the age and the second one the weight.
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(a) Regression tree for the maximum workload (b) Regression tree for the maximum workload-
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Figure 6.3: Regression trees for females with the independent variables weight,
height, age, BSA and the dependent variables maximum workload and maxi-
mum workload-to-weight-ratio

6.3 Model P: Linear regression model from the Aus-
trian practice guidelines for ergometries

The Austrian practice guidelines for ergometries ([Wonisch et al., 2008]) contains
a formula for the physical performance. This formula traced back to the pub-
lication from [Arstila, 1972]. With this formula, the normal values of the max-
imum workload can be calculated by knowing the body surface area and the
age. Because males and females reach different values, there exist two different
formulas separated by gender:

male: WLyx[W] = 6.773 +136.141BS A[m?] — 0.916BS A[m?*]age[y]
female: WLyx[W] = 3.933 + 86.641BS A[m?] — 0.346BS A[m?|agely].

For determining the body surface area the formula of Du Bois is used in the
formulas above (see [Du Bois and Du Bois, 1916]):

BSA[m?] = 0.007148weight [kg)**® height[cm)®">

Applying this formula on the data from ZARG provides the results in Ta-
ble
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response variable Model P

male female
SSR 20430888 1745237
SSE 39733086 9513851
SST 60964358 12347738
RZ4j 0.3483  0.2295

Table 6.1: Results of Model P

6.4 Model 1: Linear regression model for the maxi-
mum workload depending on the surface and the
interaction of the BSA and the age

Model 1 has the same main effect and interactions as the currently used model,
i.e. the surface and the interaction between the BSA and the age:

WL[W] = Bo + B1BSA[m?] + B,BS A[m?|agely].

6.4.1 Analysis of the model

Table [6.2] and Table summarize the results of Model 1 for males and females.
In the models for both genders, all coefficients are highly significant. The ad-

justed coefficient of determination R?,. is for male 0.3744 and for female it is

adj
0.4055.

WL ~ BSA + BSA : age

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  93.19284  4.05615 22.98 <2e-16 i
BSA 105.67996  2.02190 52.27 <2e-16 i
BSA:age -1.09894 0.01102 -99.74 <2e-16 o
RSE 44.9 on 18916 degrees of freedom
R? 0.3745
R? 0.3744

adj
F-statistic 5663 on 2 and 18916 DF
p-value: < 2.2e-16

Df SumSq MeanSq Fvalue Pr(>F)
BSA 1 2777209 2777209  1377.6 <2.2e-16 ***
BSA:age 1 20054085 20054085 99479 < 22e-16 ***

Residuals 18916 38133065 2016
Signif. codes 0 "*** 0.001 "** 0.01 ** 0.05".” 0.1"" 1

Table 6.2: Summary and ANOVA of Model 1 for males
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WL ~ BSA + BSA : age

Coefficients:
Estimate Std. Error tvalue Pr(>I1tl)
(Intercept) 67.2302 3.1903 21.07 <2e-16 ok
BSA 83.0788 1.9365 42.90 <2e-16 ok
BSA:age -0.9214 0.0116 -79.41 <2e-16 ok
RSE 27.5 on 9703 degrees of freedom
R? 0.4057
RZ4j 0.4055

F-statistic 3311 on 2 and 9703 DF
p-value: < 2.2e-16

Df SumSq MeanSq Fvalue Pr(>F)
BSA 1 240237 240237  317.64 <22e-16 ***
BSA:age 1 4768876 4768876  6305.32 <2.2e-16 ***

Residuals 9703 7338625 756
Signif. codes 0 ** (0.001 **" 0.01 * 0.05"."0.1"" 1

Table 6.3: Summary and ANOVA of Model 1 for females

6.4.2 Diagnostics of the model

The Box-Cox plots in Figure show that a transformation of the maximum
workload is necessary for both genders. Due to better comparability with the
formula of [Wonisch et al., 2008] this is not done in Model 1.

95% 95%
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-75000
-34000
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log-Likelihood

-80000
-36000

-38000

-85000

(a) Male (b) Female

Figure 6.4: Box-Cox plots of Model 1

Following the regression, the requirements of the regression model have to
be checked. Figure and Figure show the results of the diagnostics for
male and female, respectively.

The first plot of Figure 6.5 and Figure respectively, shows a scatter plot
between residuals and predicted values. For both genders, a small pattern is
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Residuals vs Fitted Normal Q-Q
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Figure 6.5: Diagnostic plots of Model 1 for males

recognizable, although it should look random. The second plot of Figure
and Figure|6.6/shows a Q-Q plot of the residuals. It will give a straight line if the
errors are normally distributed. Both plots for males and females show that for
very small and big values there is a deviation from this line, i.e. there is a skinny
positive and skinny negative tail. The third plot of Figure and Figure
should look random with no patterns, which is the case in both plots. The last
plot of Figure and Figure identifies the points which have the greatest
influence on the regression (leverage points).

6.4.3 Confidence intervals and prediction intervals for Model 1

In this subsection, the confidence intervals and prediction intervals are created
in Table |6.4] for males and in Table 6.5 for females. In this table, for the age and
BSA, three different values are chosen. One can see that the confidence intervals
are much tighter than the prediction intervals. Note, that the intervals are not
reasonable for Model 1, because in Model 1 there was no transformation done
although it was necessary.
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Residuals vs Fitted Normal Q-Q
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Figure 6.6: Diagnostic plots of Model 1 for females

Men
age/BSA | 15 2 25

2105 249.61 288.71
25 [208.04,212.96] [248.08,251.13] [286.2,291.21]
[122.46,298.54] [161.59,337.63] [200.67,376.75]
169.29 194.66 220.03
50 [167.16,171.42] [193.95,195.37] [217.97,222.09]
[81.26,257.32] [106.65,282.67]  [132,308.06]
128.08 139.71 151.34
75 [126,130.16]  [138.71,140.71] [148.92,153.76]
[40.05216.11]  [51.7,227.72]  [63.3,239.38]

Table 6.4: Prediction values for the maximum workload [W] (first row), confi-
dence intervals (second row) and prediction intervals (third row) of Model 1 for
males

6.4.4 Regression surface of Model 1
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Women
age/BSA | 15 2 2.5

157.3 187.32 217.34
25 [155.74,158.85] [185.44,189.19] [213.98,220.7]
[103.36,211.23] [133.38,241.26] [163.33,271.35]

122.74 141.25 159.75
50 [121.68,123.81] [140.09,142.41] [156.93,162.58]
[68.82,176.66]  [87.33,195.17] [105.77,213.73]

88.19 95.18 102.16
75 [87.06,89.33]  [93.85,96.5]  [99.21,105.12]
[34.27,142.11]  [41.25,149.1]  [48.18,156.15]

Table 6.5: Prediction values for the maximum workload [W] (first row), confi-

dence intervals (second row) and prediction intervals (third row) of Model 1 for
females

NG
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Figure 6.7: Plots of the regression surface of Model 1

Figure shows the regression surface of Model 1. One can see that there is
a main effect and also interaction. This interaction can be seen more precisely
in Figure Here the age is fixed at the three different stages from the tables
above. The slope of the regression lines of the surface is different for each of
these ages. Additionally, the 95%-confidence bands are plotted.
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Figure 6.8: Plots of the regression line and confidence bands of the BSA for
different ages of Model 1

6.5 Model 2: Linear regression model for the max-
imum workload depending on the body surface
area and the age and its interaction

Based on the same independent variables, body surface area and age, the best
model is chosen. Both main effects and the interaction can be considered, but
to reduce the number of variables, a variable selection is done. Therefore, all
possible subsets of the pool of the explanatory variables are calculated, and the
model that fits the data best according to the chosen criterion is found.

6.5.1 Variable selection

Table 6.6/ shows the best model for different numbers of parameters. In the best
model with one parameter, just the age is chosen and in the best model with two
parameters the BSA, and the age are chosen. This is in contrast to the model
which is currently used, where the BSA and the interaction are used. This will
hold for both males and females.

no. of parameters BSA age BSA:age
*

1
2 * *
3 * * *

Table 6.6: Summary of the best models with 1 to 3 parameters for deriving Model
2 for males and females

In a next step, the best model among these models in Table is chosen.
For this selection, Figure [6.9| shows plots for the different selection criteria. Fig-
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ure [6.9(a) shows the error sum of squares SSE, which should be small. The ad-

justed coefficient of determination R2, j is shown in Figure b). The resulting
value of the R2,. should be as high as possible. The chosen selection criterion for

our models is the Bayesian Information Criterion because this criterion chooses
quite small models.
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0.40—

1e+06 0397

SSE
2

5e+05 0377

0.36

T T T T T T T
1 4 1 3

2 3 2
Number of Variables Number of Variables

(a) Graphical description of the error sum of (b) Graphical description of the R2, j for the
squares for the best models with 1 to 4‘pa— best models with 1 to 3 parameters (blue
rameters (blue lines refer to male, red lines lines refer to male, red lines refer to female)
refer to female)

Bayesian Information Criterion

-5000-

—-6000—

BIC

=7000—

—-8000—

-9000-

T T T
1 3

2
Number of Variables

(c) Graphical description of the BIC for the
best models with 1 to 3 parameters

Figure 6.9: Information criteria for deriving Model 2

As a result in the final version of Model 2 for both males and females, the two
variables BSA and age are chosen. Therefore, the following regression model is

used: . o X X X
WL [W] = Bo + p1BSA[m?] + paagely].
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6.5.2 Analysis of the model

Table[6.7|and Table [6.8] show a summary of the chosen regressions for males and
females. All coefficients are highly significant.

WL%” ~ BSA + age

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)

(Intercept)  42.240422  0.655197 64.47 <2e-16 oA
BSA 6.747887  0.300029 22.49 <2e-16 o
age -0.320909  0.003223 -99.58 <2e-16 o
RSE 6.672 on 18916 degrees of freedom
R? 0.3746
R? 0.3745

adj
F-statistic 5665 on 2 and 18916 DF
p-value: < 2.2e-16

Df Sum Sq MeanSq Fvalue Pr(>F)
BSAe 1 62933 62933 1413.8 < 22e-16 ***
age 1 441375 441375 9915.7 <22e-16 ***
Residuals 18916 842000 45

Signif. codes 0 ™*** 0.001 ** 0.01 * 0.05".”0.1"" 1

Table 6.7: Summary and ANOVA of Model 2 for males

WLY ~ BSA + age

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  34.562048 0.576806 59.92 <2e-16 el
BSA 5.102416  0.308410 16.54 <2e-16 ok
age -0.265126  0.003363 -78.83 <2e-16 Aok
RSE 4.636 on 9703 degrees of freedom
R? 0.4026
R? 0.4025

adj
F-statistic 3270 on 2 and 9703 DF
p-value: < 2.2e-16

Df Sum Sq MeanSq Fvalue Pr(>F)
BSA 1 6998 6998 3256 <2216 **
age 1 133566 133566  6214.7 <2.2e-16 ***
Residuals 9703 208535 21

Signif. codes 0 ™*** 0.001 ** 0.01 ** 0.05".” 0.1"" 1

Table 6.8: Summary and ANOVA of Model 2 for females

6.5.3 Diagnostics of the model

The Box-Cox plots in Figure show that the already performed transforma-
tion of the maximum workload was necessary.
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Box-Cox plots of Model 2
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Figure 6.11: Diagnostic plots of Model 2 for males



CHAPTER 6. NORMAL VALUES FOR THE MAXIMUM WORKLOAD 83

Figure and Figure analyze Model 2 to check the requirements of the
regression model for both male and female.
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Figure 6.12: Diagnostic plots of Model 2 for females

6.5.4 Confidence intervals and prediction intervals for Model 2

In this subsection the confidence intervals and prediction intervals are created
in Table[6.9]and in Table In this table, for the age and BSA, the same values
as for Model 1 are chosen. Note that the values of this tables are transformed
back to the maximum workload itself.
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Men
age/BSA | 15 2 2.5
2252 250.07 275.71
25 [222.35,228.06] [248.38,251.76] [273.05,278.37]
[136.66,325.82] [158.23,353.48] [180.69,381.85]
169.33 192.24 216
50 [167.21,171.45] [191.51,192.97] [213.81,218.2]
[89.46,262.78]  [108.6,288.76] [128.78,315.52]
118.54 139.23 160.9
75 [116.66,120.42] [138.31,140.16] [158.65,163.15]
[48.85204]  [65.05228.15]  [82.53,253.15]

Table 6.9: Prediction values for the maximum workload [W] (first row), confi-
dence intervals (second row) and prediction intervals (third row) of Model 2 for

males
Women
age/BSA | 1.5 2 2.5
164.49 181.59 199.19
25 [162.62,166.37] [179.63,183.56] [195.58,202.82]
[107.92,227.66] [123.07,246.46] [138.73,265.78]
122.54 138.25 154.51
50 [121.44,123.64] [137.04,139.45] [151.45,157.58]
[71.54,180.98] [85.02,198.56] [99.11,216.7]
84.53 98.66 113.42
75 [83.46,85.61] [97.45,99.87] [110.57,116.29]
[40.07,137.68] [51.53,153.93] [63.77,170.77]

Table 6.10: Prediction values for the maximum workload [W] (first row), confi-
dence intervals (second row) and prediction intervals (third row) of Model 2 for
females

6.5.5 Regression surface of Model 2

Figure shows the regression surface of the regression for males and females.

In Figure as well as in Figure the age is fixed in three different stages
from the tables above. In both figures, the slope of the regression lines is al-
ways the same, because there is no interaction. Additionally, the 95%-confidence
bands are plotted.
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Figure 6.13: Plots of the regression surface for Model 2
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Figure 6.14: Plots of the regression lines and confidence bands of the surface for
different ages of Model 2

6.6 Model 3: Linear regression model for the maxi-
mum workload to weight ratio depending on BSA
and age and its interaction

In the next modification, the maximum-workload-to-weight-ratio is the depended
variable instead of the maximum workload.

6.6.1 Variable selection

The best models with one to three variables for males and females are shown in

Table [6.11]
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Figure 6.15: Plots of the regression lines and confidence bands of the age for
different surfaces of Model 2

no. BSA age BSA:age
*

* *

W N =

* * *

Table 6.11: Summary of the best models with 1 to 3 parameters for deriving
Model 3

For choosing the best model out of these, Figure shows plots for the
information criteria.

As a result, 3 parameters can be chosen. Therefore, the following regression
model will be used:

WWR"*[W] = Bo + PiBSA[m?| + paagely] + PsBSA[m?|age[y).
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Figure 6.16: Information criteria for deriving Model 3

6.6.2 Analysis of the model
In Table and Table summary and ANOVA are presented for males and

females.
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WWRY® ~ BSA xage

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  3.9290491 0.0837277  46.927 < 2e-16 el
BSA -0.8184991 0.0422183 -19.387 < 2e-16 il
age -0.0213401 0.0014378  -14.842 < 2e-16 il
BSA:age 0.0043623 0.0007305  5.972 2.39¢e-09 il
RSE 0.2523 on 18915 degrees of freedom
R? 0.3942
R? 0.3941

adj
F-statistic 4103 on 3 and 18915 DF
p-value: < 2.2e-16

Df SumSq MeanSq Fvalue Pr(>F)
BSA 1 80.87 80.87 1270.325 <2.2e-16 ***
age 1 700.48 700.48  11003.647 < 2.2e-16 ***
BSA:age 1 2.27 2.27 35.664  2.387e-09 ***

Residuals 18915 1204.12 0.06
Signif. codes 0 ** (0.001 ** 0.01 ** 0.05"."0.1"" 1

Table 6.12: Summary and ANOVA of Model 3 for males

WWRY® ~ BSA x age
Coefficients:

Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  3.786664  0.099688 37.98 < 2e-16 o

BSA -0.958777  0.057894  -16.56 < 2e-16 o
age -0.021056 0.001673  -12.59  <2e-16 o
BSA:age 0.004878  0.000973 5.01 5.4e-07 o
RSE 0.21 on 9702 degrees of freedom
R? 0.487
R2 0.487

adj
F-statistic 3.08e+03 on 3 and 9702 DF
p-value: < 2.2e-16

Df Sum Sq MeanSq Fvalue Pr(>F)
BSA 1 97 96.9 2209.8 <2e-16 ***
age 1 307 306.6 6990.3 < 2e-16 ***
BSA:age 1 1 1.1 251 5.4e-07 ***
Residuals 9702 426 0.0

Signif. codes 0 *** 0.001 ** 0.01 * 0.05".”0.1" "1

Table 6.13: Summary and ANOVA of Model 3 for females

6.6.3 Diagnostics of the model

The Box-Cox plots in Figure show that the already performed transforma-
tion of the maximum workload was necessary.
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Figure 6.17: Box-Cox plot of Model 3

Residuals vs Fitted

17868°
219505

1.0

T T T
15 2.0 25

Fitted values
Im(workload_to_weight_ratio®0.6 ~ surface * age)

Scale-Location

219505
178680

95909

15 20 25

Fitted values
Im(workload_to_weight_ratio”0.6 ~ surface * age)

Figure 6.18: Diagnostic plots

Standardized residuals

Standardized residuals

-6

95%
T T T T T
-2 -1 0 1 2
A
(b) Female
Normal Q-Q
59090
h &
017868
19505
T T T T T
-4 -2 0 2 4
Theoretical Quantiles
Im(workload_to_weight_ratio”0.6 ~ surface * age)
Residuals vs Leverage
b 258
230058

- Cook's distance

125540

T
0.000

T
0.002

T T T T
0.004 0.006 0.008 0.010

Leverage
Im(workload_to_weight_ratio*0.6 ~ surface * age)

of Model 3 for males

T
0.012



90

6.6. MODEL 3

Figure and Figure analyze Model 3 to check the requirements.
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Figure 6.19: Diagnostic plots of Model 3 for females

6.6.4 Confidence intervals and prediction intervals for Model 3

In this subsection, the confidence intervals and prediction intervals are created
in Table and in Table In these tables for the age and BSA, again the
same values are chosen. Note that the values of this tables refer to the maximum
workload to weight ratio instead of the maximum workload.
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Men
age/BSA | 1.5 2 2.5
41 3.11 2.24
25 [4.02,4.17] [3.09,3.14] [2.18,2.3]
[2.75,5.65] [1.93,4.52] [1.22,3.49]
3.07 2.33 1.67
50 [3.04,3.11] [2.32,2.34] [1.65,1.7]
[1.89,4.47] [1.29,3.6] [0.79,2.8]
2.17 1.64 1.17
75 [2.13,2.21] [1.63,1.65] [1.14,1.21]
[1.17,3.41] [0.76,2.76] [0.43,2.18]

Table 6.14: Prediction values for the maximum workload-to-weight-ratio [W /kg]
(tirst row), confidence intervals (second row) and prediction intervals (third row)

of Model 3 for males

Women

age/BSA |

1.5

2

2.5

25

3.19
[3.14,3.24]
[2.18,4.35]

2.16
[2.11,2.21]
[1.31,3.17]

13
[1.2,1.4]
[0.62,2.15]

50

2.33
[2.31,2.35]
[1.45,3.37]

1.56
[1.54,1.58]
[0.83,2.46]

0.91
[0.87,0.95]
[0.35,1.67]

75

1.58
[1.56,1.61]
[0.85,2.49]

1.04
[1.01,1.06]
[0.44,1.82]

0.59
[0.54,0.63]
[0.14,1.24]

Table 6.15: Prediction values for the maximum workload-to-weight-ratio [W/kg]
(tirst row), confidence intervals (second row) and prediction intervals (third row)
of Model 3 for females

6.6.5 Regression surface of Model 3

Figure shows the regression surface of the regression for males and females.

In Figure as well as in Figure the age is fixed in three different
stages from the tables above. In both figures, the slope is changing because of
the interaction. Additionally, the 95%-confidence bands are plotted.
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Figure 6.20: Plots of the regression surface for Model 3
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Figure 6.21: Plots of the regression lines and confidence bands of the surface for
different ages for Model 3

6.7 Model 4: Linear regression model for the maxi-

mum workload to weight ratio depending on height,
weight and age

To reduce the number of variables a variable selection is made. Therefore, all

possible subsets of the pool of explanatory variables are calculated, and the
model that best fits the data according to the BIC is developed.
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Figure 6.22: Plots of the regression lines and confidence bands of the age for
different surfaces for Model 3

6.7.1 Variable selection

Table and Table show the best model for different numbers of param-
eters for males and females, respectively. For example, in the best model for
males with four parameters the height, age and the interaction between height
and weight and between height and age are chosen. Whereas, in the best model
for females with four parameters the weight, age and the interaction between
weight and age and between height, weight and age are chosen.

no. height weight age height:weight age:height weight:age height:weight:age

1 *

2 * *
3 * * *

4 * * * *

5 * * * * *
6 * * * * * *
7 * * * * * * *

Table 6.16: Summary of the best models with 1 to 7 parameters for deriving
Model 4 for males

In the next step, the best model among these models in Table is chosen.
As in the model above, the BIC is the chosen criterion. Figure[6.23|shows plots
for the information criteria.

For convenience, for both males and females, three parameters are chosen.
This has the advantage that both regressions have the same parameters

WWR0'6[W] = ,80 + Blweight[kg] + Bzage[y] + theight[cm]age[y].
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no. height weight age

1

N OO W N

height:weight age:height weight:age height:weight:age

* *

Table 6.17: Summary of the best models with 1 to 7 parameters for deriving

Model 4 for females
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Figure 6.23: Information criteria for deriving Model 4
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6.7.2 Analysis of the model
In Table and in Table a summary and ANOVA are presented.

WWRY® ~ weight + age + age : height

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  3.160e+00 1.362e-02  232.07 <2e-16 e
weight -1.140e-02 1.463e-04  -77.91 <2e-16 ok
age -4.413e-02 8.675e-04  -50.87 <2e-16 ok
age:height  1.875e-04  5.067e-06 37.01 <2e-16 ok
RSE 0.2342 on 18915 degrees of freedom
R? 0.4782
RZ4; 0.4781
F-statistic =~ 5777 on 3 and 18915 DF
p-value: < 2.2e-16
Df SumSq MeanSq Fvalue Pr(>F)
weight 1 214.85 214.85 3918.0 <22e-16 ***
age 1 660.53 660.53  12045.1 <22e-16 ***
age:height 1 75.09 75.09 13694 < 22e-16 ***
Residuals 18915 1037.26 0.05

Signif. codes 0 "*** (0.001 ** 0.01 * 0.05"."0.1"" 1

Table 6.18: Summary and ANOVA of Model 4 for males

WWRY ~ weight + age + age : height

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  2.775e+00 1.330e-02  208.68 <2e-16 ok
weight -1.089e-02  1.639e-04  -66.45 <2e-16 ot
age -3.374e-02  9.083e-04  -37.15 <2e-16 o
age:height  1.394e-04  5.732e-06 24.32 <2e-16 o
RSE 0.1937 on 9702 degrees of freedom
R 0.5616
R2,; 0.5615
F-statistic 4143 on 3 and 9702 DF
p-value: <2.2e-16
Df SumSq MeanSq Fvalue Pr(>F)
weight 1 175.68 175.680  4683.15 <2.2e-16 ***
age 1 268.44 268.435 715575 <22e-16 ***
age:height 1 22.19 22.187 59146 <22e-16 ***
Residuals 9702 363.95 0.038

Signif. codes 0 "*** 0.001 ** 0.01 ** 0.05".” 0.1"" 1

Table 6.19: Summary and ANOVA of Model 4 for females
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6.7.3 Diagnostics of the model

The Box-Cox plots in Figure [6.24]

tion of the maximum workload was necessary.
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Figure 6.24: Box-Cox plots of Model 4
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Figure 6.25: Diagnostic plots of Model 4 for males
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Figure and Figure analyze Model 4 to check the requirements of the
regression model for males and females, respectively.
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Figure 6.26: Diagnostic plots of Model 4 for females

6.7.4 Confidence intervals and prediction intervals for Model 4

In this subsection, the confidence intervals and prediction intervals are created
in Table for men and in Table for women. In this tables, the variables
age, weight and height are necessary.
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Men, weight=70

age/height |

170

180

190

25

3.32
[3.3,3.35]
[2.18,4.65]

3.45
[3.43,3.48]
[2.29,4.8]

3.58
[3.55,3.61]
[2.4,4.94]

50

2.54
[2.53,2.55]
[1.53,3.75]

2.77
[2.76,2.79]
[1.72,4.01]

3.01
[2.99,3.04]
[1.92,4.29]

75

1.84
[1.83,1.86]
[0.97,2.92]

2.15
[2.13,2.17]
[1.22,3.29]

2.48
[2.45,2.51]
[1.48,3.68]

Men, weight=90

age/height |

170

180

190

25

2.73
[2.71,2.76]
[1.69,3.97]

2.85
[2.83,2.87]
[1.79,4.11]

297
[2.95,2.99]
[1.88,4.25]

50

2.01
[2,2.03]
[1.11,3.12]

2.22
[2.21,2.23]
[1.27,3.37]

2.44
[2.43,2.46]
[1.45,3.63]

75

1.38
[1.37,1.4]
[0.63,2.36]

1.66
[1.65,1.67]
[0.83,2.7]

1.96
[1.93,1.98]
[1.06,3.06]

Men, weight=110

age/height |

170

180

190

25

2.19
[2.16,2.22]
[1.25,3.33]

2.3
[2.27,2.32]
[1.33,3.46]

241
[2.38,2.43]
[1.42,3.59]

50

1.54
[1.52,1.56]
[0.74,2.55]

1.73
[1.71,1.74]
[0.88,2.78]

1.92
[1.91,1.94]
[1.04,3.02]

75

0.98
[0.96,1]
[0.35,1.85]

122
[1.21,1.24]
[0.51,2.16]

1.49
[1.46,1.51]
[0.7,2.49]

6.7. MODEL 4

Table 6.20: Prediction values for the maximum workload-to-weight-ratio [W /kg]
(tirst row), confidence intervals (second row) and prediction intervals (third row)
of Model 4 for males

6.7.5 Regression surface of Model 4

Figure shows the regression surface of the regression for males and females.

Figure and Figure visualize the regression function. In both plots,
the age is fixed in three different stages from the tables above. Figure shows
that there is no interaction between weight and height. In contrary to that, the
interaction between age and height can be observed in Figure In both plots,
the parameter which is not used is set to the median value and additionally, the
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Women, weight=50

age/height \ 150 165 180
2.94 3.07 3.21
25 [2.91,297] [3.053.1] [3.18,3.24]
[2.03,3.98] [2.154.13] [2.27,4.28]
2.16 241 2.66
50 [2.14,2.19] [2.39,2.42] [2.63,2.69]
[1.37,3.09] [1.58,3.37] [1.79,3.66]
1.49 1.8 2.15
75 [1.46,1.51] [1.78,1.83] [2.11,2.19]
[0.82,2.3] [1.08,2.68] [1.36,3.08]
Women, weight=70
age/height | 150 165 180
24 2.53 2.65
25 [2.37,2.43] [2.52.55] [2.63,2.68]
[1.57,3.37] [1.68,3.51] [1.79,3.65]
1.69 1.91 2.14
50 [1.67,1.71] [1.9,1.92] [2.12,2.17]
[0.99,2.54] [1.17,2.8] [1.36,3.07]
1.09 1.37 1.68
75 [1.07,1.11] [1.36,1.38] [1.65,1.71]
[0.51,1.82] [0.73,2.16] [0.97,2.53]
Women, weight=90
age/height | 150 165 180
1.91 2.02 2.14
25 [1.88,1.94] [1.99,2.05] [2.11,2.17]
[1.16,2.8] [1.26,2.93] [1.35,3.07]
1.27 1.47 1.67
50 [1.24,1.29] [1.45,1.48] [1.65,1.7]
[0.65,2.04] [0.81,2.28] [0.97,2.52]
0.74 0.98 1.26
75 [0.72,0.76]  [0.97,1] [1.23,1.28]
[0.27,1.38] [0.44,1.69] [0.64,2.02]

Table 6.21: Prediction values for the maximum workload-to-weight-ratio [W /kg]
(tirst row), confidence intervals (second row) and prediction intervals (third row)

of Model 4 for females

95%-confidence bands are plotted.
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6.8. COMPARISON

(a) Men

(b) Women

Figure 6.27: Plots of the regression surface for Model 4
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Figure 6.28: Plots of the regression lines and confidence bands of the weight for

different ages of Model 4

6.8 Comparison of the models

In this section the models are compared.

6.8.1 Summary of the models

Model 1: WL[W] = Bo + B1BSA[m?] + BoBSA[m?]agel[y]
Model 2: WL"'[W] = By + B1BSA[m?] + Baagely]
Model 3: WIWR"® [W/kg] = Bo + B1BSA[m?] + Baagely] + B3BSA[m?|age[y]
Model 4: WIWVR"® [W/kg] = Bo + Birweight[kg] + Boagely] + Bsheight[cm)age[kg]
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Figure 6.29: Plots of the regression lines and confidence bands of the age for
different surfaces of Model 4

6.8.2 Comparison of the sum of squares and the adjusted coef-
ficient of determination

To compare these models the coefficient of determination R? and the correlation
are compared for males in Table and for females in Table

response variable W wo7 WWR®

Model P Model 1 | Model 2 | Model 3 Model 4
SSR 20430888 22831293 | 504308 783.6 950.5
SSE 39733086 38133065 | 842000 | 1204.12 1037.26
SST 60964358 60964358 | 1346308 1988 1988
Ridj 0.3483 0.3744 0.3745 0.3941 0.4781
corr 0.9740719

Table 6.22: Comparison of the Models for males

response variable 14 wo7 WWRY6

Model P Model 1 | Model 2 | Model 3 Model 4
SSR 1745237 5009113 | 140564 405 466.3
SSE 9513851 7338625 | 208535 426 363.95
SST 12347738 12347738 | 349099 831 830.2
Rgd]. 0.2295 0.4055 0.4025 0.4870 0.5615
corr 0.7827556

Table 6.23: Comparison of the Models for females
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6.8.3 Comparison of the surfaces

The three-dimensional regression surfaces are compared to show the difference
between Model 1 and Model P. In both models, the same parameters are taken.
Unfortunately, for the model from [Wonisch et al., 2008|] no additional informa-
tion, e.g. the distribution of age, is available. Figure [6.30 shows the difference
between the surfaces of Model P and Model 1 for both males and females.

1.0 50 age E
15 1}\\\
20 = 2.0
surface surface
25 25
0 0

3.0 3.0

(a) Male (b) Female

Figure 6.30: Surface of Model P and Model 1: orange surface belongs to Model
P and the blue surface belongs to Model 1

Figure shows scatter plots between Model P and Model 1. In Fig-
ure [6.31(a), which shows the situation for males, one can see that the points
are close to the red line. In Figure [6.31(b), which shows the situation for fe-
males, one can see that the point cloud differs from the red line. This effect can
be also seen in the discrepancy of the correlation.
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Figure 6.31: Scatter plot of the maximum workloads for Model P and Model 1
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6.9 Model D: Dummy linear regression model for
the maximum workload to weight ratio depend-
ing on the height, weight and age and the dummy
variables gender, diagnosis and medication

In addition to the maximum workload to weight ratio, the diagnosis and medica-

tion are included. To reduce the number of variables a variable selection is done.

Therefore, all possible subsets of the pool of explanatory variables are calculated
and the model that best fits the data according to the BIC is developed.

6.9.1 Regression tree

Figure shows a regression tree for the variable WWR. The independent
variables are BSA, age, height, weight, gender, diagnosis and medication.

>54.5 <545
>885 <885
>69.5 <69.5
/ \ FEMALE  MALE
/
Node 3 (n = 6718) Node 4 (n = 11396) Node 6 (n = 2870) Node 8 (n = 2947) Node 9 (n = 4694)

6 6 6 6 6
5 5 o 5 5 5
4 4 l 4 i 4 i 4 3
3 i 3 ! 3 : 3 ! 3 E
24 = 24 =3 24 B3 = 24
1 ; 1 ! I 1 # 14
04— o4 0 0 0 - °

Figure 6.32: Regression tree for the variables of Model D

6.9.2 Variable selection

Table shows the best model for different numbers of parameters. For exam-
ple in the best model with four parameters height, weight, age and the interac-
tion between height and gender is chosen.

In a next step, the best model among models in Table is chosen. As in
the above model the BIC is the chosen criterion. Figure shows plots for the
information criteria.
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no. height weight age weight:age height:age height:MALE age:MALE heighttMED MALE:MED height:age:MALE
1 *

2 * *

3 * * *
4 * * * *

5 * * * * *

6 * * * * * *

Table 6.24: Summary of the best models with one to six parameters for deriving
Model D

Sum of squares error Adjusted coefficient of determination
0.55+
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0.50
1500—
0.45+
“%J oF
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0 20 40 60 1 2 3 4 5 6
Number of Variables Number of Variables

(a) Graphical description of the error (b) Graphical description of the Rgdj for
sum of squares for the best models the best models with 1 to 6 variables
with 1 to 64 variables

Bayesian Information Criterion

-12500—

-15000—

BIC

-17500—

—20000—

—22500—

T T T T T T
1 2 3 4 5 6

Number of Variables

(c) Graphical description of the BIC for
the best models with 1 to 6 variables

Figure 6.33: Information criteria for deriving Model D
For Model D the best model with six parameters is chosen:

WWR"™ (W] = ,@0 + ﬁlweight[kg] + ﬁzage[y] + theight[cm]age[y]
+Bsheight[cm|MALE + Beagely) MALE + Byheight[cm] MED.
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6.9.3 Analysis of the model
In Table a summary and ANOVA is presented.

WWRY ~ weight + age + height : age

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  2.777e+00 1.158e-02  239.82 <2e-16 o
weight -1.100e-02 1.114e-04  -98.79 <2e-16 o
age -3.463e-02 6.441e-04  -53.76 <2e-16 o
age:height 1.465e-04  3.846e-06 38.08 <2e-16 o
height MALE 1.989e-03  6.320e-05 31.46 <2e-16 o
age:MALE  -2.053e-03 1.804e-04  -11.38 <2e-16 ok
height MED  -3.225e-04 1.843e-05  -17.50 <2e-16 o
RSE 0.2201 on 28618 degrees of freedom
R? 0.5455
RZ4j 0.5454
F-statistic 5726 on 6 and 28618
p-value: < 2.2e-16
Df Sum Sq Mean Sq F value Pr(>F)
weight 1 94.58 94.58 195241 <2.2e-16 ***
age 1 995.48 995.48 20550.35 < 22e-16 ***
age:height 1 388.27 388.27 8015.30 < 2.2e-16 ***
height:MALE 1 164.06 164.06  3386.81 <2.2e-16 ***
age:MALE 1 6.89 6.89 14215 < 22e-16 ***
height: MED 1 14.83 14.83 306.21 <2.2e-16 ***
Residuals 28618 1386.29 0.05

Signif. codes 0 *** 0.001 ** 0.01 ** 0.05".” 0.1 " "1

Table 6.25: Summary and ANOVA of Model D

6.9.4 Diagnostics of the model

The Box-Cox plots in Figure show that the already performed transforma-
tion of the maximum workload was necessary.

Figure analyzes Model D to check the requirements of the regression
model.
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Figure 6.34: Box-Cox plots of Model D
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Figure 6.35: Diagnostic plots of Model D

6.10 Discussion

In summary, in this chapter, different models for obtaining normal values for
the maximum workload and the maximum workload-to-weight-ratio are ana-



CHAPTER 6. NORMAL VALUES FOR THE MAXIMUM WORKLOAD 107

lyzed. In Austria, Model P is currently used to calculate the normal values of
ergometries. Based on this model, new models are derived. New models show
that an improvement of the currently used model is possible. In Model P, the
maximum workload is calculated based on BSA and the interaction between age
and BSA. When compared to the newly developed Model 1, it can be observed
that Model P has a poor goodness of fit for females. This could be due to the
different structure of underlying data while deriving Model P. Secondly, Model
1 shows that a transformation of the prediction variable is necessary. The next
model, Model 2, already includes the transformation of the prediction variable
and uses a maximum model which includes both main effects and the interac-
tion. Comparison of Model 2 shows that this model has no particular effect on
the adjusted coefficient of determination, though it produces correct prediction
and confidence intervals. Use of the maximum workload-to-weigth-ratio as a
prediction variable instead of the maximum workload results in Model 3. Com-
parison with prior models shows that an increase of the adjusted coefficient of
determination is possible. Model 4 is using weight and height instead of BSA
and yields the best results among all these models.

Finally, a dummy regression model is introduced at the end of this chapter.
This model D uses the information about the diagnosis and medication (statin
and beta blocker) along with age, gender, weight, and height. In contrary to the
other models, Model D used just one regression for males and females.



108 6.10. DISCUSSION




Chapter 7

Normal values for the maximum
workload of exercise testing during
cardiac out-patient rehabilitation

This chapter deals with the results of ergometries during cardiac out-patient
rehabilitation. The data of the cardiac out-patient rehabilitation consists of the
ergometries during stage II and stage III (see Chapter 2). For stage II there exists
one ergometry at the entry examination and one at the final examination. During
stage III there exists an ergometry additionally at the intermediate examination.

One of the reasons to execute these ergometries is to discover the physical
constitution of the patients. This can be measured inter alia by the maximum
workload which is achieved at the ergometries. To evaluate these results normal
values can be used. Generally speaking the goal of this chapter is to find normal
values of the maximum workload for these ergometries. Therefore, the following
research questions are answered in this chapter:

1. What are the normal values of the maximum workload at the entry exam-
ination of stage II in cardiac out-patient rehabilitation?

2. How much should be contributed in stage II of cardiac out-patient rehabil-
itation?

3. What are the normal values of the maximum workload at the entry exam-
ination of stage III in cardiac out-patient rehabilitation?

4. How much should be contributed in stage III of cardiac out-patient reha-
bilitation?

The remainder of this chapter is the following: Section [7.1| shows the com-
position of the data and an analysis of the maximum workload. The next four
sections are answering the research questions. Section |/.2| deals with the normal
values for the entry examination of stage II. Afterwards the contribution during
stage II is covered in Section Section [7.4| deals in the same manner with the
normal values of stage III and Section deals with the contribution during
stage III. Finally Section [7.6] gives a short conclusion of the results.

109



110 7.1. COMPOSITION OF THE DATA

7.1 Composition of the data

There is data of 5,029 ergometries during cardiac out-patient rehabilitation avail-
able in total. As a first step the composition of the data is analyzed in this section.
For this purpose the data is split into four categories: reason for examination,
gender, medication and diagnosis.

Starting with the purpose of examination, Figure [7.1(a) shows the number of
ergometries during the different stages. The available data for stage II consist
of 779 ergometries at the entry examination and 792 ergometries at the final
examination. For stage III the data of 674 ergometries at the entry examination,
1,320 ergometries at the intermediate examination and 1,464 ergometries at the
final examination are available. Note that there is no entry examination of stage
III if stage III starts directly after stage II. In this case the final examination of
stage II is the entry examination of stage III.

Figure [7.1[b) shows the split of ergometries by gender. In total the data
consist of 3,870 ergometries done by men and 1,159 ergometries done by women.
Concluding that the number of men in the cardiac out-patient rehabilitation is
more than three times higher than the number of women.

Barplot of the purpose of examination Barplot of the gender
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(a) Number of ergometries during the dif- (b) Number of ergometries split by gender
ferent stages of cardiac out-patient rehabili-

tation (*Number without the occurences in

which the final examination of stage II is

also the entry examination of stage III)

Figure 7.1: Number of ergometries during cardiac out-patient rehabilitation split
by the reason for examination and gender

Another way of splitting the data is the medication and diagnosis. For the
medication the drug groups statin and beta blocker are used and are noted in the
following by heart medication. For more information about these medications
see Section 2.5 Figure [7.2(a) shows split of ergometries in these medications. In
the data 2,517 ergometries were done without statin and beta blocker and 2,512
ergometries were done under a heart medication. This means that around the
half of the people did not take any heart medication.
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Figure [7.2(b) shows the split of ergometries by diagnosis. The diagnosis is
split into people which have a heart disease, e.g. infarct or coronal heart disease.
For more information about the actual used diagnoses see Chapter IZl 4,062
ergometries were done with a heart disease and just 947 patients of cardiac out-
patient rehabilitation does not have any heart disease. This was unexpected
because typically just people with a heart disease make a cardiac rehabilitation.

Barplot of the medication Barplot of the diagnosis
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nor betablocker) khk nor another kardio disease)

Figure 7.2: Number of ergometries during cardiac out-patient rehabilitation sep-
arated by medication or diagnosis

Finally the analysis of the maximum workload which is achieved in the er-
gometries during cardiac out-patient rehabilitation is shown in Figure Fig-
ure [7.3(a) shows the maximum workload for males and Figure [7.3(b) shows the
maximum workload for females. The first fact which can be observed is that the
maximum workload is much less for females. In each sub-figure the data are fur-
ther split into the different stages during cardiac outpatient-rehabilitation. For
both males and females an increase of the maximum workload during stage II
as well as during stage III can be observed. Another interesting result is that
the maximum workload decreases between the two stages. One reason for this
could be that the patients do not do any exercises during the break between
stage II and stage III. A more precise analysis of the maximum workload during
stage II and stage III is done in the following sections.

7.2 Normal values for the maximum workload of the
entry examination of stage II during cardiac out-
patient rehabilitation

In this section a linear regression is done for deriving normal values for the
maximum workload of the entry examination of stage II during cardiac out-
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Box plots of the maximum workload Box plots of the maximum workload
for males for females
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Figure 7.3: Box plots of the maximum workload during the different stages of
cardiac out-patient rehabilitation split by gender

patient rehabilitation. First the relevant variables are identified by a correlation
analysis. Afterwards a regression tree is built to identify the main variables.
Finally this section includes a regression model for deriving the normal values.
Therefore also a variable selection is done. The resulting model is notated by
Model RII (rehabilitation stage II).

For deriving normal values the waist circumference is a crucial variable. Un-
fortunately, not for all data the waist circumference is available. For this reason
just the data which include values for the waist circumference are included. This
constraint reduces the data from 779 to 430 ergometries.

7.2.1 Correlation

Figure shows the correlation between all variables for male and female. In
both correlation matrices the maximum workload-to-weight-ratio has a higher
correlation to the other variables than the maximum workload. For this reason
the normal values refer to the maximum workload-to-weight-ratio. Note that
also further independent variables were considered at the beginning. The first
group of variables are the variables which are measured in the beginning of
the ergometry, i.e. resting heart rate, resting systolic blood pressure and resting
diastolic blood pressure. The second group were the results of the laboratory,
i.e. cholesterol, low-density lipoprotein, high-density lipoprotein, triglyceride,
creatinine, fasting blood sugar level and uric acid. Due to the complexity in
practice and the low correlation to the maximum workload-to-weight-ratio these
variables are not used for the regression. The remaining independent variables
weight, height, age, waist and waist-to-height-ratio form the pool of variables
for the regression.
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Figure 7.4: Analysis of correlation with the variables weight, height, body
mass index, age, waist, waist-to-height-ratio, maximum workload and maxi-
mum workload-to-weight-ratio for the entry examination of stage II

7.2.2 Regression trees

In a next step regression trees are built for the maximum workload-to-weight-
ratio. For the regression tree the independent variables waist and BMI are re-
moved because of the high correlation to other independent variables. The re-
sulting variables are weight, height, age, and waist-to-height-ratio. Figure
shows the regression trees. For both males and females the variables waist-to-
height-ratio and age are relevant. For females also the variable weight is crucial.
To sum it up, the structure of the regression trees varies and the resulting box
plots of the leaf vertices are crucially different for both genders.

7.2.3 Variable selection

For deriving the regression model a variable selection is done first to find out
the best variables. Table [Z.1] and Table [7.2] show the best models for different
numbers of parameters.

no. height age WHR height:weight height:age weight:age age:WHR weight:age:WHR
1 *

* *

2
3 * * *
4

Table 7.1: Summary of the best models with one to four parameters for deriving
Model RII for males

In a next step the best model in Table [7.1| and in Table [7.2 has to be chosen.
The variables in the best models are different for males and females, hence there
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Figure 7.5: Regression trees with the independent variables weight, height, age,
body mass index, waist, waist-to-height-ratio and the dependent variable maxi-
mum workload-to-weight-ratio for the entry examination of stage II
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no. height:weight weight:age height: WHR age:WHR height:weight: height:weight: weight:age:

age WHR WHR
1 *
2 * *
3 * * *
4 * * * *

Table 7.2: Summary of the best models with one to four parameters for deriving
Model RII for females

Sum of squares error Adjusted coefficient of determination
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Figure 7.6: Information criteria for deriving Model RII

exist different parameters for both models. This is consistent to the observation
that the regression trees have a different structure. Figure[7.6|shows the plots for
the error sum of squares, the adjusted coefficient of determination and the BIC.

For the resulting regression models for males 3 parameters are chosen and
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for females 4 parameters are chosen:
Model RII for males:

WWR"® [W] = Bo + Brheight[cm|weight[kg] + Brweight[kg|age[y] + Bzage[y]WHR
Model RII for females:

WWRO'6[W] = Bo + Biheight[cm|weight[kg] + Brage[y]WHR +
Bsheight[cm|weight[kglage[y] + Bsheight[cm] : weight[kg] : WHR

7.2.4 Analysis of the model

WWRY ~ height : weight + weight : age + age : WHR
Coefficients:

Estimate Std. Error tvalue Pr(>Itl)
(Intercept)  2.428e+00 8.497e-02 28578 <2e-16 ***
height:weight -5.521e-05 6.803e-06 -8.116 1.02e-14 ***
weight:age  1.782e-04 3.159e-05 5.642 3.67e-08 ***
age:WHR  -3.594e-02 3.979e-03 -9.032 <2e-16 ***

RSE 0.1697 on 323 degrees of freedom
R? 0.4539
RZ4i 0.4489

F-statistic =~ 89.5 on 3 and 323 DF

p-value: <2.2e-16

Signif. codes 0 “*** 0.001 “* 0.01 ** 0.05".70.1°"1

Table 7.3: Summary of Model RII for males

WWRY® ~ height : weight + age : WHR + height : weight : age
+height : weight : WHR

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept) 2.847e+00 3.339e-01 8528 1.87e-13 ***
height:weight -1.754e-04 5.432e-05 -3.230 0.001687 **
age:WHR -4.145e-02 8.710e-03 -4.759 6.72e-06 ***

height:weight:age = 1.485e-06 4.100e-07  3.622  0.000465 ***
height:weightt WHR  1.116e-04 4.916e-05 2271 0.025328 *

RSE 0.1393 on 98 degrees of freedom
R® 0.5929
RZ4; 0.5763

F-statistic 35.68 on 4 and 98 DF

p-value: < 2.2e-16

Signif. codes 0 ** 0.001 ** 0.01 * 0.05°.”0.1""1

Table 7.4: Summary of Model RII for females

Table [7.3] and Table [7.4] show the summaries for the models. The adjusted
coefficient of determination is 0.45 for males and 0.58 for females.
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7.2.5 Diagnostics of the model

The Box-Cox plots in Figure[7.7|show that the already performed transformation
of the maximum workload was necessary.
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Figure 7.8: Diagnostic plots of Model RII for males
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Figure 7.8/ and Figure|7.9|analyze Model RII to check the requirements of the
regression model for males and females, respectively.
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Figure 7.9: Diagnostic plots of Model RII for females

7.3 Normal values for the contribution of the max-
imum workload in stage Il during cardiac out-
patient rehabilitation

In this section the contribution of the maximum workload in stage II is analyzed.
Therefore just the data of patients which attend both the entry examination and
the final examination of stage II are considered. In total there exist 848 patients
who did at least one of the ergometries during stage II. 644 patients completed
both ergometries. For the following analysis just the patients, who completed
both ergometries are relevant.

As a starting point the maximum workload in stage II is presented graphi-
cally. Figure [7.10(a) compares the maximum workload of stage II in the entry
examination with the final examination. The red line highlights where both
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workloads are equal. All the points above the red line have an improvement, all
the points under the red line have a deterioration.

Figure [7.10(b) shows box plots of the improvement of the maximum work-
load itself. In this figure the data are additionally separated by gender. For both
males and females the boxes are in the positive area. The median of the im-
provement for males is higher than the median of the improvement for females.

Scatter plot of the maximum workload at Boxplot of the improvement of the
the beginning and the end of stage Il maximum workload during stage I
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(a) Comparision of the maximum workload (b) Box plot of the improvement of the max-
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examination of stage II der

Figure 7.10: Graphical illustration of the improvement of the maximum work-
load in stage II of cardiac out-patient rehabilitation

Table [7.5| contains statistical indicators for the improvement. During stage II
the mean of the improvement for males is about 17.9 W and for females it is
about 11.8 W.

| min goos qos X  goys max s> NA’s

male -41 10 20 1786 25 72 23424 165
female | -19 5 11 11.76 19 40 106.86 39

Table 7.5: Descriptive statistics of the improvement during stage II: minimum,
1-quartile, median, average, 3-quartile, maximum, standard deviation and the
number of missing values

7.3.1 Correlation

Figure shows the correlation between the independent variables height,
age, weight, waist, body mass index, waist-to-height-ratio and the dependent
variable improvement. It shows that the correlation between all independent
variables and the improvement is quite low for males as well as for females.

In addition to the variables specified above the normal values for the im-
provement can also be derived from the maximum workload, the maximum
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Figure 7.11: Correlation matrix for stage II of cardiac out-patient rehabilitation
between the variables height, age, weight, waist, body mass index, waist-to-
height-ratio and the improvement

workload-to-weight-ratio and the duration of stage II. The maximum workload
and the maximum workload-to-weight-ratio only refer to the entry examination
of stage II. Figure shows the correlation matrix for these variables and the
improvement. It shows that the correlation is very low.
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Figure 7.12: Correlation matrix for stage II of cardiac out-patient rehabilitation
between the variables maximum workload at entry examination of stage II, maxi-
mum workload-to-weight-ratio at entry examination of stage II, duration of stage
IT and the improvement
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7.3.2 Regression trees

This section shows regression trees for the improvement in Figure The
structure of the trees is different for males and females. The box plots in the leaf
vertices are quite similar.

7.3.3 Regression model

Executing a linear regression with variable selection leads to a regression model
with 5 parameters for males and 4 parameters for females. Both models have
very low adjusted coefficients of determination: under 0.15 and about 0.1. For
this reason the regression model is not shown in this chapter.

7.4 Normal values for the maximum workload of the
entry examination of stage III during cardiac out-
patient rehabilitation

In this section a linear regression is done for deriving normal values for the
maximum workload of the entry examination of stage II during cardiac out-
patient rehabilitation. First the relevant variables are identified by a correlation
analysis. Afterwards to illustrate the main variables a regression tree is built.
Finally this section includes a regression model for deriving the normal values.
Therefore also a variable selection is done. The resulting model is notated by
Model RIII (rehabilitation stage III).

For deriving normal values the waist circumference is a crucial variable. Un-
fortunately, not for all data during rehabilitation the waist circumference is avail-
able. For this reason just the data which include values for the waist circumfer-
ence are included. This constraint reduces the data from 674 to 340 ergometries.

7.4.1 Correlation

Figure shows the correlation between all variables for males and females. In
both correlation matrices the maximum workload-to-weight-ratio has a higher
correlation to the other variables than the maximum workload. For this reason
the normal values refer to the maximum workload-to-weight-ratio. Note that
also further independent variables were considered in the beginning. The first
group of variables are the variables which are measured at the beginning of
the ergometry, i.e. resting heart rate, resting systolic blood pressure and resting
diastolic blood pressure. The second group were the results of the laboratory,
i.e. cholesterol, low-density lipoprotein, high-density lipoprotein, triglyceride,
creatinine, fasting blood sugar level and uric acid. Due to the complexity in
practice and the low correlation to the maximum workload-to-weight-ratio this
variables are not used for the regression. The remaining independent variables
weight, height, age, waist and waist-to-height-ratio form the pool of variables
for the regression.
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Figure 7.13: Regression trees for the improvement of stage II with the inde-
pendent variables weight, height, age, waist-to-height-ratio and the dependent
variable maximum workload-to-weight-ratio
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Figure 7.14: Analysis of correlation with the variables weight, height, body
mass index, age, waist, waist-to-height-ratio, maximum workload and maxi-
mum workload-to-weight-ratio for the entry examination of stage III

7.4.2 Regression trees

In a next step regression trees are built for the maximum workload-to-weight-
ratio. For the regression tree the independent variables waist and BMI are re-
moved because of the high correlation to other independent variables. The re-
sulting variables are weight, height, age, and waist-to-height-ratio. Figure
shows the received the regression trees. For both males and females the vari-
ables waist-to-height-ratio and age are relevant. For females also the variable
weight is crucial. To sum it up, the structure of the regression trees varies and
the resulting box plots of the leaf vertices are crucially different for both genders.

7.4.3 Variable selection

For deriving the regression model a variable selection is done first to find out
the best variables. Table [7.6 and Table [Z.7] show the best models for different
numbers of parameters.

no. height:age weight:age age:WHR height:weight: height:age: weight:age: height:weight:age:

age WHR WHR WHR
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

Table 7.6: Summary of the best models with 1 to 5 parameters for deriving Model
RIII for males
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Figure 7.15: Regression trees with the independent variables weight, height,
age, body mass index, waist, waist-to-height-ratio and the dependent variable
maximum workload-to-weight-ratio for the entry examination of stage III
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no. height age WHR height:WHR age:WHR height:weight: height:age: weight:age:

WHR WHR WHR
1 *
2 * *
3 * * *
4 * * * *
5 * * * *

Table 7.7: Summary of the best models with 1 to 5 parameters for deriving Model

RIII for females
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Figure 7.16: Information criteria for deriving Model RIII

In a next step the best of the models in Table [7.6] and in Table [7.7] has to be
chosen. Unfortunately the variables in the best models are different for males
and females. This is consistent to the observation that the regression trees have
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a different structure. Figure shows the plots for the error sum of squares,
the adjusted coefficient of determination and the Bayesian information criterion.

Using the BIC for men 3 parameters and for women 2 parameters are chosen.
male:

WWRO'S[W] = Bo + Biweight : age + Boheight : age : WHR
+Baheight : weight : age : WHR
female:

WWR"’[W] = Bo + prage + BaWHR

7.4.4 Analysis of the model
Table and Table summarize both models.

WWRY® ~ weight : age + age : height : WHR + weight : age : height : WHR

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept) 1.597e+00 6.005e-02 26.601 <2e-16  ***
weight:age 2.131e-04 4.598e-05 4.636 5.73e-06  ***
age:height: WHR -1.197e-04 1.964e-05 -6.094 4.15e-09  ***

weight:age:heightt WHR  -1.283e-06 2.292e-07 -5.599  5.66e-08  ***
Residual standard error 0.1653 on 250degrees of freedom

R? 0.3817
RZ4j 0.3743
F-statistic 51.45 on 3 and 250 DF
p-value: < 2.2e-16
Signif. codes 0 “***.0.001 ** 0.01 ** 0.05°.” 0.1""1

Table 7.8: Summary of Model RIII for males

WWRY ~ age + WHR

Coefficients:
Estimate Std. Error tvalue Pr(>Itl)
(Intercept) 2.227838  0.169508 13.143 <2e-16 ***
age -0.005608 0.001355  -4.138 8.36e-05 ***
WHR -1.273880  0.274596  -4.639  1.29e-05 ***
Residual standard error 0.1708 on 83 degrees of freedom
R? 0.3375
RZ4j 0.3215
F-statistic 21.14 on 2 and 83 DF
p-value: 3.805e-08
Signif. codes 0 #**0.001 ** 0.01 **0.05°" 01" "1

Table 7.9: Summary of Model RIII for females
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7.4.5 Diagnostics of the model

The Box-Cox plots in Figure show that the already performed transforma-
tion of the maximum workload was necessary.
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Figure 7.18: Diagnostic plots of Model RIII for males
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Figure and Figure analyze Model RIII to check the requirements of
the regression model for men and women,respectively.
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Figure 7.19: Diagnostic plots of Model RIII for females

7.5 Normal values for the contribution of the max-
imum workload in stage III during cardiac out-
patient rehabilitation

In this section the contribution of the maximum workload in stage III is ana-
lyzed. Therefore just the data of patients which attend both the entry exami-
nation and the final examination of stage III are considered. In total there exist
1476 patients who did at least one of the ergometries during stage III. 787 pa-
tients completed entry examination and the final examination. Note that for the
missing entry examinations of stage III, the final examinations of stage II are
used, which are missing in Figure

As a starting point the maximum workload in stage III is presented graphi-
cally. Figure [7.20(a) compares the maximum workload of stage III in the entry
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examination with the final examination. The red line highlights where both
workloads are equal. All the points above the red line have an improvement, all
the points under the red line have a deterioration.

Figure [7.20(b) shows box plots of the improvement of the maximum work-
load itself. In this figure the data are additionally separated by gender. For both
males and females the boxes are in the positive area. The median of the im-
provement for males is higher than the median of the improvement for females.
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Figure 7.20: Graphical illustration of the improvement of the maximum work-
load in stage III of cardiac out-patient rehabilitation

Table contains statistical indicators for the improvement. During stage
III the mean of the improvement for males is about 14.2 W and for females it is
about 9.7 W.

| min goos qos X  goys max s>  NA’s

male -80 0 12 1422 30 80 388.75 508
female | -60 0 10 9.65 20 60 234.27 143

Table 7.10: Descriptive statistics of the improvement during stage III: minimum,
1-quartile, median, average, 3-quartile, maximum, standard deviation and the
number of missing values

7.5.1 Correlation

Figure shows the correlation between the independent variables height,
age, weight, waist, body mass index, waist-to-height-ratio and the dependent
variable improvement. It shows that the correlation between all independent
variables and the improvement is quite low for males as well as for females.
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Figure 7.21: Correlation matrix for stage III of cardiac out-patient rehabilitation
between the variables height, age, weight, waist, body mass index, waist-to-
height-ratio and the improvement

For deriving normal values for the improvement the maximum workload and
the maximum workload-to-weight-ratio, respectively, during the entry examina-
tion and the duration of stage III can be used. Figure shows the correlation
matrix for these variables and the improvement. It shows that the correlation is
very low.
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Figure 7.22: Correlation matrix for stage III of cardiac out-patient rehabilitation
between the variables maximum workload at entry examination of stage III,
maximum workload-to-weight-ratio at entry examination of stage II, duration of
stage III and the improvement
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7.5.2 Regression trees

This section shows regression trees for the improvement in Figure The
structure of the trees is different for males and females. The box plots in the leaf

vertices are quite similar.
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Figure 7.23: Regression trees for the improvement of stage III with the inde-
pendent variables weight, height, age, waist-to-height-ratio and the dependent
variable maximum workload-to-weight-ratio
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7.5.3 Regression model

As for the normal values of the improvement of stage II the result of a linear
regression has a very low adjusted coefficient of determination. For this reason
the regression model is not shown in this chapter.

7.6 Discussion

At the moment, to my knowledge, there exist no normal values of the maximum
workload in ergometries specific to the stages of rehabilitation. The same normal
values are used for interpretation of ergometries from healthy people as well as
people in rehabilitation. Nevertheless, these normal values should be adjusted
to get rehabilitation specific normal values. In this chapter, normal values for
the maximum workload for the entry examination stage II as well as for stage
III are derived. The newly derived normal values have an adjusted coefficient
of determination of 0.45 for males and 0.58 for females in stage II and 0.37 for
males and 0.42 for females in stage III. Note, that the output of the regression
models is the maximum workload-to-weight-ratio, which has to be multiplied
with the weight to gain the maximum workload.

Furthermore, the improvement in the maximum workload during stage II
and stage III is analyzed. For the improvement, the mean is calculated and also
regression trees are created. Due to the low correlation between the independent
variables and the maximum workload-to-weight-ratio, a regression analysis is
not done.

A planned further research question is to find the optimal duration of stage
III during cardiac out-patient rehabilitation. Due to only small changes in the
duration of stage III and slight differences in the results, it was not possible to
answer this by the underlying data.



Chapter 8

Conclusion and outlook for further
research

8.1 Summary

In Austria, currently used reference values for the maximum workload reached
during an ergometry are based on a model from 1972. ZARG uses the same
values for the evaluation of ergometries performed at their center, but they doubt
that the presently used reference values fit well.

For that reason, the evaluation of the currently used Model P with data from
28,625 ergometries against newly developed models was done to calculate the
normal values of maximum workload. The analysis showed that the adjusted
coefficient of determination for females in Model P is 0.23 as compared to 0.41
in Model 1, but there was not as much improvement seen in the adjusted coeffi-
cient of determination for males (0.35 vs 0.37). Therefore, it could be concluded
that Model P does not fit well to calculate the normal values of maximum work-
load in females. This could be due to a different population used to calculate
Model P. Furthermore, the use of the predicted variable maximum workload-to-
weight-ratio and its box cox transformation leads to the development of another
model (Model 3) which has an adjusted coefficient of determination of 0.39 for
males and 0.49 for females, respectively. Hence, use of the variable maximum
workload-to-weight-ratio instead of maximum workload leads to a better model.
The use of the predicted variable maximum workload-to-weight-ratio and inde-
pendent variables height and weight instead of the conventional variable body
surface area resulted into Model 4. This model has an improved adjusted co-
efficient of determination of 0.48 for males and of 0.57 for females. Therefore,
higher values of the adjusted coefficient of determination from Model 4 suggest
this model is more precise in calculating the normal values of the maximum
workload. Finally, development of a gender independent model using the his-
tory of medication as an independent dummy variable along with the previously
used variable in Model 4 resulted in an adjusted coefficient of determination of
0.55. Therefore, we may conclude that the use of Model D eliminates the need for
using gender specific models without compromising the value of the adjusted
coefficient of determination.

In the current scenario, there is only one set of normal values used to inter-
pret the maximum workload in ergometries irrespective of the cardiac fitness of

133
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that individual. Even if the person is recovering from a heart attack or is entirely
fit, the normal values of the maximum workload are the same. Therefore, the
new normal values for the entry examination of stage II as well as for stage III
of cardiac rehabilitation were calculated using the ergometry data of the people
in cardiac rehabilitation. The newly derived normal values have an adjusted
coefficient of determination of 0.45 for males and 0.58 for females in stage II,
and of 0.37 for males and 0.42 for females in stage III. Henceforth, these cardiac
rehabilitation stage-specific normal values could be used for the evaluation of
ergometries during cardiac rehabilitation. Finally, the average improvement in
the maximum workload during stage II of cardiac rehabilitation was 17.86 W in
males and 11.76 W in females, whereas for stage III, the average improvement
was 14.22 W for males and 9.65 W for females. Hence, these values could be
used as the normal values to evaluate the improvement of a person in cardiac
rehabilitation in the respective stages.

8.2 Limitation and Recommendations

The results of this thesis show that the waist circumference is a crucial parameter
for deriving normal values of the maximum workload. However, in the cohort
of 28,625 ergometries it was measured only during 3,800 ergometries. Therefore,
it is suggested that for each ergometry the waist circumference should be mea-
sured. With more data of the waist circumference, the model would also contain
information about the waist, to include the WHR in the model which should
lead to an even better fit.

Because of non uniformity in the written diagnosis of the heart diseases in
this cohort, the variable ,diagnosis’ was not precisely measured to be useful for
the regression. Therefore, adaptation of the international statistical classification
of diseases (ICD) codes for disease diagnosis will help to have more precise
information for regression to calculate the normal values.

8.3 Further research questions

* Does statin therapy influence the maximum workload in cardiac exercise
stress testing?

¢ What are the benefits of an out-patient cardiac rehabilitation over an in-
patient cardiac rehabilitation?

* What can be concluded from a curve of the heart rate during a maximal
cardiac exercise stress testing?

The analysis to answer the questions above could not be conducted due to the
time constraint and unavailable data of in-patient cardiac rehabilitation.

To sum up the added value of this thesis, new improved normal values of
the maximal workload for ergometries as well as specific normal values for out-
patient rehabilitation can be directly applied in practice.
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Appendix A

XSL stylesheet for converting the
XML files in a CSV file

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://mwww.w3.0rg/1999/XSL/

Transform">
<xsl:output method="text" />
<xsl:template match="/">
<xsl:choose>
<xsl:when test="/CardiologyXML/PatientInfo/PID_!=_""">
<xsl:value—of select="/CardiologyXML/PatientInfo/PID"/>
</xsl:when>
<xsl:otherwise>
<xsl:text>0</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationDateTime/Year" />
<xsl:text>—</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationDateTime/Month" />
<xsl:text>—</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationDateTime/Day" />
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationDateTime/Hour" />
<xsl:text>:</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationDateTime/Minute" />
<xsl:text>:</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationDateTime/Second" />
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationEndDateTime/Year" />
<xsl:text>—</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationEndDateTime/Month"/
>
<xsl:text>—</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationEndDateTime/Day" />
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationEndDateTime/Hour" />
<xsl:text>:</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationEndDateTime/Minute"
/>
<xsl:text>:</xsl:text>
<xsl:value—of select="/CardiologyXML/ObservationEndDateTime/Second"
/>
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<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/PatientInfo/Age_ !=_""">
<xsl:value—of select="/CardiologyXML/PatientInfo/Age"/>
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/PatientInfo/Gender"/>
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/PatientInfo/Height_!=_""">
<xsl:value—of select="/CardiologyXML/PatientInfo/Height"/>
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/PatientInfo/Weight_!=_""">
<xsl:value—of select="/CardiologyXML/PatientInfo/Weight"/>
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/Interpretation/
CustomSummaryStatement" />
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/PatientInfo/PaceMaker"/>
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/Protocol/Device"/>
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/ExerciseMeasurements/
MaxWorkload" />
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/TrendData/TrendEntry[PhaseName="
VORBEL. ' _and, SystolicBP][1]/ SystolicBP _!=_""">
<xsl:value—of select="/CardiologyXML/TrendData/TrendEntry |
PhaseName="VORBEL. ' _and,  SystolicBP][1]/ SystolicBP"/>
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>

<xsl:text> </xsl:text>

<xsl:choose>
<xsl:when test="/CardiologyXML/TrendData/TrendEntry[PhaseName="
VORBEL. ' _and_DiastolicBP][1]/ DiastolicBP_!=_""">
<xsl:value—of select="/CardiologyXML/TrendData/TrendEntry|
PhaseName="VORBEL. ' ,and, DiastolicBP ][1]/ DiastolicBP"/>
</xsl:when>
<xsl:otherwise>
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<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/ExerciseMeasurements/
MaxSystolicBP _!=_""">
<xsl:value—of select="/CardiologyXML/ExerciseMeasurements/
MaxSystolicBP " />
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/ExerciseMeasurements/
MaxDiastolicBP !=_""">
<xsl:value—of select="/CardiologyXML/ExerciseMeasurements/
MaxDiastolicBP" />
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/ExerciseMeasurements/
RestingStats /RestHR !=_'"">
<xsl:value—of select="/CardiologyXML/ExerciseMeasurements/
RestingStats/RestHR" />
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:choose>
<xsl:when test="/CardiologyXML/ExerciseMeasurements/
MaxHeartRate !=_'"'">
<xsl:value—of select="/CardiologyXML/ExerciseMeasurements/
MaxHeartRate" />
</xsl:when>
<xsl:otherwise>
<xsl:text>—1</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/Interpretation/
ReasonForTermination" />
<xsl:text> </xsl:text>
<xsl:value—of select="/CardiologyXML/Clinicallnfo/ReasonForStudy"/>
<xsl:text>
</xsl:text>
</xsl:template>
</xsl:stylesheet>
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Appendix B

MySQL script for integrating the
CSV files in a MySQL data base

use ergometry;

drop
drop
drop
drop
drop

table
table
table
table
table

if
if
if
if
if

exists
exists
exists
exists
exists

timeseries;
maindata;
diagnosis;
medication;
lab ;

SET SQL_SAFE_UPDATES = 0;
SET default_storage_engine=InnoDB;

CREATE TABLE maindata (
patient_id int not null auto_increment,
start_time datetime not null default current_timestamp,
end_time datetime,
age int(11) null,

gender text,

height int(11) null,
weight int(11) null,

waist int(11) null,

pacemaker text null,
device text null,
workload_max decimal null,
systolicbp_rest int(11) null,
diastolicbp_rest int(11) null,
systolicbp_max int(11) null,
diastolicbp_max int(11) null,

hr_rest int(11) null,

hr_max int(11) null,
termination_reason text,
reason_for_study text,
special_workload text,

primary key (patient_id, start_time))
ENGINE=InnoDB ;

CREATE TABLE timeseries (
patient_id int not null,
start_time datetime not null default current_timestamp,
entry_id int not null,
start_entry time null,
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workload decimal null,

diastolicbp int(11) null,

systolicbp int(11) null,

hr int(11) null,

cadence int(11) null,

primary key (patient_id, start_time, entry_id))
ENGINE=InnoDB ;

— add the foreign key constraint:
ALTER TABLE timeseries
ADD CONSTRAINT fk_timeseries_maindata
foreign key (patient_id, start_time)
references maindata (patient_id, start_time)
ON DELETE CASCADE;

— deleting foreign key constraint
— alter table timeseries drop foreign key fk_timeseries_maindata;

CREATE TABLE diagnosis (
patient_id int not null,
entry_id int not null,
diagnosis_date date not null,
diagnosis text,
primary key (patient_id, entry_id))
ENGINE=InnoDB;

CREATE TABLE medication (
patient_id int not null,
entry_id int not null,
medication_date date null,
medication text,
dosis text,
medication_id int(11) null,
primary key (patient_id, entry_id))
ENGINE=InnoDB ;

CREATE TABLE lab (
patient_id int not null,
entry_id int not null,
lab_date date not null,
parameter text,
lab_value numeric(6,2) null,
evaluation text null,
primary key (patient_id, entry_id))
ENGINE=InnoDB ;

— add data to maindata:
load data infile '/var/lib/mysql/maindata.csv' into table maindata
CHARACTER SET UTE8 fields terminated by '\t';

— add data to timeseries:
load data infile '/var/lib/mysql/timeseries.csv' into table timeseries
fields terminated by '\t';

— add data to diagnosis:
load data infile '/var/lib/mysql/diagnosis.csv' into table diagnosis
fields terminated by '\t';



96

97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120
121

122

123

124

125

126
127
128
129
130
131
132

APPENDIX B. MYSQL SCRIPT 147

— add data to medication:
load data infile '/var/lib/mysql/medication.csv' into table medication
fields terminated by '\t';

— add data to lab:
load data infile '/var/lib/mysql/lab.csv’' into table lab fields
terminated by '\t';

— test which data sets are in the timeseries but not in the maindata

— select = from timeseries left join maindata on maindata.patient_id=
timeseries . patient_id and maindata.start_time=timeseries.start_time
where maindata . patient_id is NULL;

— setting empty cells (—=1) to NULL

UPDATE maindata SET patient_id = patient_id, start_time = start_time
age = NULL WHERE maindata.age =—1;

UPDATE maindata SET patient_id = patient_id, start_time = start_time,
height = NULL WHERE maindata.height =—1;

UPDATE maindata SET patient_id = patient_id, start_time = start_time,
weight = NULL WHERE maindata.weight =—1;

UPDATE maindata SET patient_id = patient_id, start_time = start_time
workload_max= NULL WHERE maindata.workload_max =-—1;

UPDATE maindata SET patient_id = patient_id, start_time = start_time,
workload_max= NULL WHERE maindata.workload_max =0;

UPDATE maindata SET patient_id = patient_id, start_time = start_time,
systolicbp_rest= NULL WHERE maindata.systolicbp_rest=—1;

UPDATE maindata SET patient_id = patient_id, start_time = start_time,
diastolicbp_rest = NULL WHERE maindata. diastolicbp_rest =-1;
UPDATE maindata SET patient_id = patient_id , start_time = start_time,

systolicbop_max = NULL WHERE maindata.systolicbp_max =-1;
UPDATE maindata SET patient_id = patient_id, start_time = start_time
diastolicbp_max = NULL WHERE maindata.diastolicbp_max=—1;
UPDATE maindata SET patient_id = patient_id, start_time = start_time,
hr_rest= NULL WHERE maindata. hr_rest=-—1;
UPDATE maindata SET patient_id = patient_id, start_time = start_time,
hr_max= NULL WHERE maindata.hr_max=—1;
UPDATE maindata SET patient_id = patient_id, start_time = start_time
waist= NULL WHERE maindata.waist=—1;

~

~

~

~

UPDATE timeseries SET patient_id = patient_id, start_time start_time
workload= NULL WHERE timeseries.workload =-1;

UPDATE timeseries SET patient_id = patient_id, start_time
systolicbp= NULL WHERE timeseries.systolicbp=—1;

UPDATE timeseries SET patient_id = patient_id, start_time
diastolicbp = NULL WHERE timeseries.diastolicbp =-1;

UPDATE timeseries SET patient_id = patient_id, start_time
hr = NULL WHERE timeseries.hr =—1;

UPDATE timeseries SET patient_id = patient_id, start_time
cadence = NULL WHERE timeseries.cadence =—1;

start_time

start_time

start_time

start_time

— deleting data sets

delete from maindata where device = 'Treadmill';
delete from maindata where workload_max is NULL;
delete from maindata where patient_id=3276; — test ID

delete from maindata where workload_max<=20;
delete from maindata where termination_reason LIKE '';
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delete from

— changing
ALTER TABLE
ALTER TABLE

— deleting

the last
delete from
delete from
delete from

maindata where termination_reason='Kreislaufkollaps';

decimal to int (ergometer does not have decimal values)
maindata CHANGE workload_max workload_max INT(11) null;
timeseries CHANGE workload workload INT(11) null;

the entries of the other tables whichs dates after after
ergometry

lab where lab_date > '2017—-07-01";

medication where medication_date > '2017-07-01";
diagnosis where diagnosis_date > '2017—-07-01";

— adding lab

alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table
alter table

maindata add CHOL int;

maindata add e CHOL Text;
maindata add CREA decimal (7,2);
maindata add e CREA Text;
maindata add HDL int;

maindata add e HDL Text;
maindata add HSRE decimal(7,2);
maindata add e HSRE Text;
maindata add LDL decimal(7,2);
maindata add e LDL Text;
maindata add NBZ int;

maindata add e NBZ Text;
maindata add TRIGL int;
maindata add e_TRIGL Text;
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Appendix C

Java program to integrate the
diagnosis in Table maindata

.Connection;
sql.Date;
sql.DriverManager;
sql.PreparedStatement;
sql . ResultSet;
sql.SQLException;
sql.Statement;

sql . Timestamp ;

util . ArrayList;

util .HashMap;

util . TreeMap ;

util .regex.Pattern;
util . regex.Matcher;

import
import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

sql

// Program RefactorDiagnosisDB . java
// The colums "infarkt”,
"maindata”

"khk” and "kardio” will be appended in table

// For each ergometry in table "maindata” the table "diagnosis” will be
scanned for the strings "infarkt”, "khk” oder "kardio” with the
same patient_id as in table "maindata”.

// In case of a hit, the particular columne will be marked

public class RefactorDiagnosisDB
{
Connection db;

boolean test = false;

private ArrayList<HashMap<String , Object>> maindata;
private ArrayList<HashMap<String , Object>> medication;
private ArrayList<HashMap<String , Object>> diagnosis;

public RefactorDiagnosisDB() throws SQLException

{
try {
// The newlnstance ()
Java implementations

call

is a work around for some broken

Class .forName ("com.mysql.jdbc.Driver").newlnstance() ;

}

catch (Exception ex)

149
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}

ArrayList<HashMap<String , Object>> loadAllRows(String table) throws

{

{

// handle the error

}

String username
String password = "sqluser";

"sqluser";

db = DriverManager.getConnection (

"jdbc:mysql://localhost:3306/ergometry?autoReconnect=true&

useSSL=false ",
username, password);

maindata = loadAllRows ("maindata");
medication = loadAllRows("medication");

diagnosis =

// end constructor

SQLException

PreparedStatement ps = db.prepareStatement("SELECT_x _FROM_" + table

) .

loadAllRows ("diagnosis");

ResultSet rs = ps.executeQuery () ;

java.sql.ResultSetMetaData md = rs.getMetaData () ;
int columns = md. getColumnCount() ;

ArrayList<HashMap<String , Object>> ret =

while (rs.next())

{

HashMap<String , Object> row
ret.add(row);

for (int i = 1; i <= columns;

{

new ArrayList<>();

new HashMap () ;

i++4)

row . put (md. getColumnName (i), rs.getObject(i));

}
}

return ret;

} // end ArrayList

public void runMethod () throws SQLException

{

String [] diagnostic =

diagnostic[0]
diagnostic[1]
diagnostic[2]
diagnostic[3]
diagnostic[4]
diagnostic[5]
diagnostic[6]
diagnostic[7]
diagnostic[8]
diagnostic[9]
diagnostic[10]
diagnostic[11]
diagnostic[12]
diagnostic[13]

"aorten";

"aorto";

"arrhythmie";
n

"asystolie";
"av—block";

new String[53] ;
= "aorta";

"blutdruckentgleisung";

"bradykardie";

"cabg";

'"cardial";
"cardio";
"cordis";
"coronar";

"diastolisch";



92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144

145
146
147

patient_id);
if(list == null)

list = new ArrayList<>();
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diagnostic[14] = "endopericardiale”;
diagnostic[15] = "erregungsleitungsstorung";
diagnostic[16] = "extrasystol";
diagnostic[17] = "flimmer";
diagnostic[18] = "herz";
diagnostic[19] = "hhk";
diagnostic[20] = "hinterwand";
diagnostic[21] = "hypertonus";
diagnostic[22] = "hypertropie";
diagnostic[23] = "insuffienz";
diagnostic[24] = "kardiovascular";
diagnostic[25] = "khk";
diagnostic[26] = "klappe";
diagnostic[27] = "koronar";
diagnostic[28] = "ldh";
diagnostic[29] = "linksschenkelblock";
diagnostic[30] = "mins";
diagnostic[31] = "mitral";
diagnostic[32] = "myocardiopathie”;
diagnostic[33] = "nstemi";
diagnostic[34] = "pericard";
diagnostic[35] = "pfo";
diagnostic[36] = "ptca";
diagnostic[37] = "rca";
diagnostic[38] = "rhythmopathia";
diagnostic[39] = "rv-reiz";
diagnostic[40] = "sa—block";
diagnostic[41] = "schenkelblock";
diagnostic[42] = "schrittmacher";
diagnostic[43] = "stenose";
diagnostic[44] = "stent";
diagnostic[45] = "sves";
diagnostic[46] = "svt";
diagnostic[47] = "synkope";
diagnostic[48] = "tachycardie";
diagnostic[49] = "vetrik";
diagnostic[50] = "ves";
diagnostic[51] = "vorhof";
diagnostic[52] = "zavk";
if (!maindata.iterator () .next().containsKey ("kardio"))
{
Statement stmt = db.createStatement () ;
stmt. execute ("ALTER_TABLE_maindata, ADD_COLUMN_kardio INT(1)");
}
TreeMap<Integer , ArrayList<HashMap<String , Object >>>
idxPIDDiagnosis ;
idxPIDDiagnosis = new TreeMap<>();
for (HashMap<String , Object> row : diagnosis)
{
Integer patient_id = (Integer) row.get("patient_id");
ArrayList <HashMap<String , Object >> list idxPIDDiagnosis . get (
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173
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175
176
177
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179
180
181
182
183
184
185
186
187

188

189

190
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}

idxPIDDiagnosis . put(patient_id , list);

}
list .add(row);

PreparedStatement cardio = db.prepareStatement("UPDATE_maindata_SET

_kardio_=_? WHERE patient_id_=_7? AND_ start_time_=_7?");

int cardioCount = 0, no_diag_count = 0;
if (test) System.out.println("");

for (HashMap<String , Object> mainrow : maindata)

{

Integer patient_id = (Integer) mainrow.get("patient_id");
Timestamp start_time = (Timestamp) mainrow.get("start_time");

ArrayList<HashMap<String , Object>> diaglist = idxPIDDiagnosis. get
(patient_id);

if (diaglist == null)
{
System. err.println (String . format("_Patient, %d _has _no_diagnosis"
, patient_id));
no_diag_count++;
}
else for(HashMap<String , Object> diagnosis : diaglist)
{
Date diagnosis_date = (Date) diagnosis.get("diagnosis_date");
String diags = (String) diagnosis.get("diagnosis");

if (diagnosis_date == null || diags == null) continue;
if (test)
{
System.out. println ("\n_Patient___ . .. =" + patient_id);

"

System.out. println (" _diagnosis___....=" + diags);
System.out. println (" _diagnosis—date=" + diagnosis_date);

"

System.out. println (" _Start_time =" + start_time);

[T T

}

if ( diagnosis_date.before(start_time))

if ( diags.toLowerCase () .contains(diagnostic[0].toLowerCase())
cllilags .toLowerCase () . contains (diagnostic[1].toLowerCase())
diags| .ItoLowerCase () .contains (diagnostic[2]. toLowerCase () )
diagsI .ltoLowerCase() .contains (diagnostic[3].toLowerCase())
diags| .ItoLowerCase () .contains (diagnostic [4].toLowerCase () )
diagsI .ltoLowerCase () .contains (diagnostic [5]. toLowerCase () )
cliagsI .ltoLowerCase() .contains (diagnostic[6].toLowerCase () )
diags| .ItoLowerCase () .contains (diagnostic[7].toLowerCase () )
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diags

.toLowerCase ()

diags

.toLowerCase ()

diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)

.toLowerCase ()
.ltloLowerCase ()
.ItloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ItloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase ()
.ItloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ItloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase )
.ItloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ItloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ItloLowerCase ()
.ltloLowerCase )
.ltloLowerCase ()

.contains (diagnostic[10].
.contains (diagnostic[11].
.contains (diagnostic[12].
.contains (diagnostic[13].
.contains (diagnostic[14].
.contains (diagnostic[15].
.contains (diagnostic[16].
.contains (diagnostic[17].
.contains (diagnostic[18].
.contains (diagnostic[19].
.contains (diagnostic[20].
.contains (diagnostic[21].
.contains (diagnostic[22].
.contains (diagnostic[23].
.contains (diagnostic[24].
.contains (diagnostic[25].
.contains (diagnostic[26].
.contains (diagnostic[27].
.contains (diagnostic[28].
.contains (diagnostic[29].
.contains (diagnostic [30].
.contains (diagnostic[31].
.contains (diagnostic[32].
.contains (diagnostic[33].
.contains (diagnostic[34].
.contains (diagnostic[35].

.contains (diagnostic[36].

.contains (diagnostic [8].toLowerCase())

.contains (diagnostic[9].toLowerCase())

toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()

toLowerCase ()



224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
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diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)
diags
)

int updateStatus=-1;

.toLowerCase ()
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase 0
.ltloLowerCase ()
.ltloLowerCase ()
.ltloLowerCase )
.ltloLowerCase ()
.ltloLowerCase 0
.:t:oLowerCase ()

.toLowerCase ()

)

if (test)

{

System.out. println (" _patient_id="
System.out. println (" _start_time="

}

cardio.setlnt (1,

1);

.contains (diagnostic[37].
.contains (diagnostic[38].
.contains (diagnostic[39].
.contains (diagnostic [40].
.contains (diagnostic[41].
.contains (diagnostic[42].
.contains (diagnostic[43].
.contains (diagnostic[44].
.contains (diagnostic[45].
.contains (diagnostic[46].
.contains (diagnostic[47].
.contains (diagnostic[48].
.contains (diagnostic[49].
.contains (diagnostic[50].
.contains (diagnostic[51].

.contains (diagnostic[52].

1

1

cardio.setInt (2, patient_id);
cardio.setTimestamp (3, start_time);
updateStatus=cardio.executeUpdate () ;
cardioCount ++;

toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()
toLowerCase ()

toLowerCase ()

+ patient_id);
+ start_time);

if (test) System.out.println("_Update_Status=" +
updateStatus) ;
break;
Y // end if diags.
} // end if diagnostics_date before start_time

else

{

System.out. println (String.format("_Patient _%d _took after
ergo: %tF", patient_id, diagnosis_date));
Y // end if diagnostics_date before start_time
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264 } // end else for HashMap

265 } // end for HashMap

266

267 System.out. println (String . format("_%d_Patients_had _no_diagnosis",
no_diag_count ));

268 System.out. println (String . format (" _%d_Patients_had,_heart—Problems",

cardioCount ));
269 } // end Method

270

271 public static void main(String[] args) throws Exception
272 {

273 RefactorDiagnosisDB dbc = new RefactorDiagnosisDB () ;
274 dbc . runMethod () ;

275 }

76}
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Appendix D

Java program to integrate the
medication in Table maindata

import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

java.
java.

sql
sql
sql
sql

sql

.Connection;
.Date;
.DriverManager;
sql.
sql.
.SQLException;
sql.
.Timestamp;

PreparedStatement;
ResultSet;

Statement;

util . ArrayList;
util .HashMap;

util . TreeMap ;

util .regex.Pattern;

// Program RefactorMedDB . java

// The colums
"maindata
// For each ergometry in the table "maindata” the table "medication”

”

"statin” and "betablocker” will be appended in table

’

will be scanned for the substrings "statin” and "betablocker”.
// The drugs to be considered are stored in the string—arrays
and betablocker .
// Is the date of the intake of the drug bofore the date of beginning
of the ergometry , will this be marked in the particular columne.

public class RefactorMedDB {

Connection db;
boolean

private
private
private

test

false; // for testprints

ArrayList <HashMap<String , Object>> maindata;
ArrayList <HashMap<String , Object>> medication;
ArrayList <HashMap<String , Object>> diagnosis;

’

"statine’

//

// Constructor refactorDB. in main wird mit new das Object dbc
// runMethod ist eine Methode des Objectes dbc.

public RefactorMedDB () throws SQLException

{

157

erzeugt.
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}

try
{

// The newlnstance() call is a work around for some broken Java
implementations

Class .forName("com.mysql.jdbc.Driver").newlnstance () ;
} catch (Exception ex)

{
}

// handle the error

String username = "sqluser";
String password = "sqluser";
db = DriverManager. getConnection (
"jdbc:mysql://localhost:3306/ergometry?autoReconnect=true&
useSSL=false ",
username, password);

maindata = loadAllRows("maindata");
medication = loadAllRows("medication");
diagnosis = loadAllRows("diagnosis");
// end RefactorMedDB

ArrayList <HashMap<String , Object>> loadAllRows(String table) throws

{

}

SQLException

PreparedStatement ps = db.prepareStatement("SELECT_x FROM_" + table
) .

ResultSet rs = ps.executeQuery();

java.sql.ResultSetMetaData md = rs.getMetaData () ;
int columns = md. getColumnCount() ;
ArrayList <HashMap<String , Object>> ret = new ArrayList<>();
while (rs.next())
{
HashMap<String , Object> row = new HashMap () ;
ret.add(row);
for (int i = 1; i <= columns; i++)

{
}

row . put (md. getColumnName (i), rs.getObject(i));

}

return ret;
// end ArrayList

//

// Method runMethod

public void runMethod () throws SQLException

{

// 18 statines has been found in the Austrian Codex.
String [] statine = new String[18];
statine [0] = "Atorvadivid";
statine[1] = "Atorvalan";

statine [3]
statine [4]

[

[
statine [2]

[

[

"Atorvastatin";
"Atozet";
"Crestor";
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115
116
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120
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124
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statine [5]
statine [6]
statine [7]
statine [8]
statine [9]
statine [10
statine[11
statine[12
statine[13

"Fluvastatin";
"Gerosim" ;
"Inegy";
"Lovastatin";
"Nyzoc";
"Panchol";
"Pravastatin";
"Simvastad";
"Simvarcana";
"Simvastatin";

statine[15
statine[16
statine[17

]
]
|
]
statine [14]
]
]
]

"Sortis";
"Zocord";

"Simvatin";

"

String [] betablocker = new String[29];
// Beta blocker without cardioselectivity

betablocker[0]
betablocker[1]
betablocker[2]
betablocker [3]
betablocker[4]
betablocker[5]
betablocker[6]

"Carvedilol";
"Dilatrend";
"Hemangiol";
"Inderal";
"Sotacor";
"Sotahexal";
"Sotastad";

// Beta blocker with relative cardioselectivity

betablocker[7]
betablocker [8]
betablocker[9]
betablocker[10]
betablocker[11]
betablocker[12]
betablocker[13]
betablocker[14]
betablocker[15]
betablocker[16]
betablocker[17]
betablocker[18]
betablocker[19]
betablocker[20]
betablocker[21]
betablocker[22]
betablocker[23]
betablocker[24]
betablocker[25]
betablocker[26]
betablocker[27]
betablocker[28]

String meds;

if (! maindata.iterator () .next().containsKey("statin"))

{

"Atehexal";

"Atenolan";

"Atenolol";
"Beloc";
"Bilokord";
"Bisocor";
"Bisoprolol";
"Bisostad";
"Brevibloc";
"Concor";
"Esmolol";
"Hypoloc";
"Lanoc";
"Metohexal";
"Metoprolol";
"Metoprololsuccinat";
"Nebivolol";
"Nomexor" ;
"Rapibloc";
"Rivacor";
"Seloken";
"Tenormin" ;

Statement stmt = db.createStatement () ;

stmt. execute ("ALTER_TABLE_maindata, ADD_COLUMN statin INT(1)");

}

if (!maindata.iterator () .next().containsKey("betablocker"))

{
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154
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157
158
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160
161
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164
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166
167
168
169

Statement stmt = db.createStatement () ;
stmt. execute ("ALTER_TABLE_maindata  ADD COLUMN_betablocker INT(1)"

)

TreeMap<Integer , ArrayList<HashMap<String , Object >>>

idxPIDMedication;

idxPIDMedication = new TreeMap<>();

for (HashMap<String , Object> row : medication)

Integer patient_id = (Integer) row.get("patient_id");
ArrayList <HashMap<String , Object >> list = idxPIDMedication. get (
patient_id);

if(list == null)
{
list = new ArrayList<>();
idxPIDMedication . put(patient_id , list);
}
list.add(row);
// for HashMap ... medication

// Question marks are placeholder in the SQL—Statement. They will be
replaced with actual values with the method statim.setlnt (ind,
value)

170
171

172
173

174
175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192

193

194

195
196

PreparedStatement statin = db.prepareStatement("UPDATE_maindata_SET

_statin_=_? WHERE_ patient_id_=_7? AND_ start_time_=_7?");

PreparedStatement betablock = db.prepareStatement("UPDATE_maindata,,

SET_betablocker_=_? WHERE patient_id_=_? AND_ start_time_=_7");

int statinCount = 0, betablockerCount = 0, no_med_count = 0;

for (HashMap<String , Object> mainrow : maindata)

Integer patient_id = (Integer) mainrow.get("patient_id");
Timestamp start_time = (Timestamp) mainrow.get("start_time");
boolean hasStatin = false, hasBetablocker = false;

ArrayList<HashMap<String , Object>> medlist = idxPIDMedication. get
(patient_id);

if (medlist == null)
{

no_med_count++;

}
else for(HashMap<String , Object> medication : medlist)

{

Date medication_date = (Date) medication.get("medication_date")

Integer medication_id = (Integer) medication.get("medication_id
")’.

String smedication = (String) medication. get("medication");

if ( smedication.indexOf(".") < 0)
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{

meds = smedication;
}
else
{
meds = smedication.substring (0, smedication.indexOf("_"));
}
if (test)
System.out. println( "index_=" + smedication.indexOf("_ ")+ "_"
smedication) ;
if (medication_date == null || medication_id == null) continue;

// check for statines

if ( meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds.
meds
meds.
meds.

if ( medication_date.before(start_time))

{

.equalslgnoreCase(statine[15])

equalslgnoreCase(statine [0])
equalslgnoreCase(statine [1])
equalslgnoreCase(statine [2])
equalslgnoreCase(statine [3])
equalslgnoreCase(statine [4])
equalslgnoreCase(statine [5])
equalslgnoreCase(statine [6])
equalslgnoreCase(statine [7])
equalslgnoreCase(statine [8])
equalslgnoreCase(statine [9])
equalslgnoreCase(statine [10])
equalslgnoreCase(statine[11])
equalslgnoreCase(statine [12])
equalslgnoreCase (statine[13])
equalslgnoreCase(statine [14])

equalslgnoreCase(statine [16])
equalslgnoreCase(statine [17])

~ —_ — — — — — — — —_— —_— —_— —_— —_— — — — —

hasStatin = true;

} else

{

System.out. println (String . format("Patient _%d_took _after

ergo: %tF", patient_id, medication_date));

}

} // meds.equalsignoreCase(statine

// check for beta blocker

if ( meds.
meds.
meds.
meds
meds.
meds.
meds.
meds.
meds
meds.

equalslgnoreCase (betablocker [0
equalslgnoreCase (betablocker[1
equalslgnoreCase (betablocker [2

.equalsIgnoreCase(betablocker[3

1)
1)
1)
1)
equalslgnoreCase (betablocker[4])
equalslgnoreCase (betablocker[5])
equalslgnoreCase (betablocker [6])
equalslgnoreCase (betablocker [7])

1)

D

.equalslgnoreCase (betablocker[8

equalslgnoreCase (betablocker [9

+
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254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305

306
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meds. equalsIgnoreCase (betablocker [
meds. equalslgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds . equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [
meds. equalsIgnoreCase (betablocker [

101])
11])
12])
13])
147)
15])
16])
171)
181])
191])
20])
21])
22])
23])
24])
25])
26])
271])
28])

if ( medication_date.before(start_time))
{

hasBetablocker = true;
} else

{

System.out. println (String . format("Patient _%d_took _after

}

ergo: %tF", patient_id, medication_date));

} // meds.equalsignoreCase(betablocker

} // else for HashMap ... medlist

if (hasStatin)

{

statin .

statin
statin
statin

setInt (1, 1);

.setInt (2, patient_id);
.setTimestamp (3, start_time);
.executeUpdate () ;

statinCount ++;

}

if (hasBetablocker)

{

betablock.setlnt(1, 1);
betablock.setInt (2, patient_id);
betablock.setTimestamp (3, start_time);
betablock .executeUpdate () ;
betablockerCount ++;

}

} // end for hashMap ... maindata

System.out. println (String . format("%d_Patients_took_nothing",

no_med_count ));

System.out. println (String . format("%d_Patients _took _statin",

statinCount ));

System.out. println (String . format("%d_Patients_took_betablocker",

betablockerCount ));
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}

}

public static void main(String[] args) throws Exception

{

}

// end runMethod

RefactorMedDB dbc = new RefactorMedDB () ;
dbc.runMethod () ;

// end main

// end class RefactorMedDB
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Java program to integrate the
laboratory in Table maindata

import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

sql
sql
sql

.Connection;
.DriverManager;
.SQLException;
sql.
sql.
sql.

PreparedStatement;
ResultSet;
Statement;

lang . =*;
io .*;

util . =;
text .x;

// Program RefactorLabDB .java
// This Programm searches for each ergometry in the table

for labvalues in the table "lab”, which have been taken

range +/— 14 days of the start of the ergometry.
// Within this range that value will be taken , which is

start of the
// The scaned wvalue and the corresponding flag will be inserted into
the table

ergometry .

"maindata” .

public class RefactorLabDB

{

public static void main(String[] args)

{

Database db = new Database() ;
try

{

boolean test = true;

db.connect () ;

// open database

System.out. println("");

if (test) {System.out.println("__Die_Datenbank ist _verbunden_!")

7

db.read () ;

// evaluate data

catch (Exception e)

e.printStackTrace () ;
return;
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db.close () ;
} // end main
} // end class

//

class Database
{

private Connection con = null;
private Statement stateMaindata = null;
private Statement stateLab = null;
private ResultSet reslab = null;
private ResultSet resmain = null;
private String string, device, sex;
private String datum;

private boolean update = false;

private boolean test = false; // if true, activate testprints

public void connect() throws Exception
{

if (con != null) return;

try

{

Class .forName( "com.mysql.jdbc.Driver");
} catch (ClassNotFoundException e)
{

throw new Exception ("Kein_MySQL-Driver_installiert._Mit\n_ "

+
"$_sudo_apt—get_install_libmysql—java\n" +

"den,_Driver_installieren_und_die_Environment—Variable_ " +

"CLASSPATH,_ setzen,_mit:\n" +
"export, CLASSPATH=\n" +

"/Directory/von/TestDB:/ usr/share/java/mysql—connector—java

Jar");

}

String connectionURL =

"jdbc:mysql://localhost/ergometry?autoReconnect=true&useSSL=

false";
con = DriverManager. getConnection (connectionURL, '
sqluser");
return;
} // end connect

//

//

public void read() throws Exception

{
Calendar dateMin, dateMax = Calendar. getlnstance () ;
Calendar calMain = Calendar. getlnstance () ;

Calendar calLab = Calendar. getlnstance();
Calendar calMin = Calendar. getlnstance();
Calendar calMax = Calendar.getlnstance();

DateFormat formatl, format2;



90
91
92
93
94
95
96
97
98
9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
1

=

4
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135

136
137
138
139
140
141
142

143
144

APPENDIX E. JAVA PROGRAM FOR LABORATORY

167

//

/!
/!

//

Date dateMain=null, dateLab=null;

int[] array_CHOL = new int[20];
float[] array_CREA = new float[20];
int[] array_ HDL = new int[20];
float[] array_HSRE = new float[20];
float[] array LDL = new float[20];
int[] array_ NBZ = new int[20];
int[] array_TRIGL = new int[20];
String [] labWerte = new String|[7];
String[] flags = new String|[7];

long[] AtimeDiff = new long[20];
long[] AtimeDiffMin = new long[20];
int[] AindMin = new int[20];

int ind=0;

long timeDiff=0;

long[] timeDiffMin = new long[7];

int CHOL=0, CREA=1, HDL=2, HSRE=3, LDL=4, NBZ=5, TRIGL=6;

int id=0, pid=0, record_nr=0, noLabData=0;

formatl = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss");

format2 = new SimpleDateFormat("yyyy-MM-dd") ;

timeDiffMin must be initialized with a time—value of 14 days (in ms)

for (int i=0; i<7; i++)

{
timeDiffMin[i] = 1210000000;
flags[i] = null;

}

try
{

stateMaindata = con.createStatement () ;
stateLab = con.createStatement() ;

if (stateMaindata != null)
{

System.out. println ("__Das_SQL—Object_wurde_instantiiert\n");

}

resmain = stateMaindata.executeQuery ("SELECT_+ FROM _maindata;")

7

With object.next() the focus will be set to the next line.
Within a record the data will be read by her columne—name possible

methods are:

obj.getString ("name”), obj.Getlnt("name”)), obj.getFloat("name”)

record_nr = 0;
while (resmain.next())

{

record_nr = record_nr + 1;
if (test) {System.out.println("__Patientenrecord,’

I}

int pidm = resmain. getlnt("patient_id");

1

+ record_nr)
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//
//
//
//
//

//

//

String datumMain = resmain. getString ("start_time");

To be able to calculate with a date, it must be existent in the
Calendar—Format .

The conversion of a string into the Calendar—format has to be done
via the Date—format: String —> Date—format —> Calendar—format.
With the method getTime() the type Calendar will be converted into
the type Date.

Example for Calendar to Date: Date dateM = calMax.getTime(string);
Example for Date to Calendar: Calendar calMax.setTime (dateMain);
Only the type Date can be converted into a String. This string is
necessary in the SQL-SELECT—Statement for comparison of time

dateMain = formatl.parse(datumMain); // string to Date—format

calMax . setTime (dateMain) ; // Date+format to Calendar—
format

calMin .setTime (dateMain) ; // Date+format to Calendar—
format

calMax.add (Calendar .DAY_ OF MONTH, 14);
calMin .add(Calendar .DAY OF MONTH, -14);

String sdateMin
String sdateMax

format2.format(calMin.getTime());
format2 . format(calMax.getTime() ) ;

The wvariables for the lab—data must be initialized for each
ergometry
if (test) {System.out.println("__Werte_werden _initialisiert");}

for (int i=0; i<7; i++)

{
timeDiffMin[i] = 1210000000;
flags[i] = null;
labWerte[i] = null;

}

if (test)
{
System.out. println("__Suchbereich_ "
sdateMax) ;
System.out. println("");
System.out. println("__patient_id__ . .. ......=." + pidm );
System.out. println("__Zeit_des_Pat.Records=_" + datumMain);
System.out.println("");
System.out. println ("

+ sdateMin + " bis " +

— —

"

[

7

}

The time—strings in the SELECT—-Statement must be enclosed by single
quotes ('yyyy-MM-dd ')

String sell "SELECT_x_FROM_lab WHERE patient_id=" + pidm;

String sel2 = "_and _lab_date _>_" + "'" + sdateMin + "'";
String sel3 = "_and_lab_date_<_" + "'" + sdateMax + "'";
String selectstring = sell + sel2 + sel3 ;

if (test) {System.out.println("__Select—String=\n" +

Tabelle_lab_mit:_where_patient_id=pid")
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selectstring);}
// reslab is an objekt of Typ ResultSet , in which the results will be
stored .
reslab = stateLab.executeQuery(selectstring);
ind =0;

update=false;

while (reslab.next())

{

ind=ind +1;
if (test) {System.out.println("\n__nédchster_Record, ind=" +

ind) ;}

String datumlab = reslab.getString("lab_date");
dateLab = (Date)format2.parse(datumlab) ;
calLab .setTime (dateLab);

timeDiff = Math.abs(dateMain. getTime () — dateLab.getTime() );

id

St
St
St

if
{

= reslab.getlnt("patient_id");
pid = reslab.getInt("entry_id");

ring parameter = reslab.getString ("parameter");

ring wert = reslab.getString ("lab_value");

ring flag = reslab.getString("evaluation");
(test)

System.out. println (
System.out. println (

"

"

[T

[T

Zeitoffset_in_ms=" + timeDiff);
"+ pid+ "\t" + id +

"\t" + datumlab + "\t" + parameter + "\t" + wert + "\t" +

flag);

switch (parameter)

case "CHOL":
if (timeDiff < timeDiffMin[CHOL])
{
labWerte [CHOL] = wert;
flags [CHOL]=""" + flag + "'";
timeDiffMin [CHOL] = timeDiff;
update = true;
}
break;
case "CREA":
if (timeDiff < timeDiffMin[CREA])
{
labWerte [CREA] = wert;
flags [CREA]=""" + flag + "'";
timeDiffMin [CREA] = timeDiff;
update = true;
}
break;
case "HDL":

if (timeDiff < timeDiffMin[HDL])

{
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labWerte [HDL] = wert;

flags[HDL]=""" + flag + "'";
timeDiffMin [HDL] = timeDiff;
update = true;
}
break;
case "HSRE":
if (timeDiff < timeDiffMin[HSRE])
{
labWerte [HSRE] = wert;
flags[HSRE]=""" + flag + "'";

timeDiffMin [HSRE] = timeDiff;
update = true;

}
break;
case "LDL":
if (timeDiff < timeDiffMin[LDL])
{
labWerte [LDL] = wert;
flags[LDL]=""" + flag + "'";
timeDiffMin[LDL] = timeDiff;
update = true;
}
break;
case "NBZ":
if (timeDiff < timeDiffMin[NBZ])
{
labWerte [NBZ] = wert;
flags[NBZ]=""" + flag + "'";
timeDiffMin [NBZ] = timeDiff;
update = true;
}
break;
case "TRIGL":
if (timeDiff < timeDiffMin[TRIGL])
{
labWerte [TRIGL] = wert;
flags [TRIGL]=""" + flag + "'";

timeDiffMin [TRIGL] = timeDiff;
update = true;

break;
} // end switch
} // end while lab

if (test)
{
System.out. println ("\n__Aktuellste_Laborwerte") ;
System.out. println ("\n__Wert___ ...
System.out. println("__Evaluation_" + flags[0]);
System.out. println("__Tagesoffset:" + timeDiffMin
[0]/(24+3600+1000));

System.out. println ("\n__Wert__ . ...

System.out. println("__Evaluation_:" + flags[1]);

System.out. println("__Tagesoffset:" + timeDiffMin
[1]1/(24+3600+1000));

:" + labWerte [0]) ;

:" + labWerte[1]);
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System.out. println("\n__Wert__ . . ..:" + labWerte[2]);
System.out. println("__Evaluation_:" + flags[2]);
System.out. println (" _ _ Tagesoffset:" + timeDiffMin

[2]1/(24+3600%1000));

System.out. println("\n__Wert__ . ...:" + labWerte[3]);
System.out. println("__Evaluation_:" + flags[3]);
System.out. println("__Tagesoffset:" + timeDiffMin

[3]1/(24+3600%1000));

System.out. println ("\n__Wert__ . ....:" + labWerte[4]);
System.out. println("__Evaluation_:" + flags[4]);
System.out. println("__Tagesoffset:" + timeDiffMin

[4]/(24+3600%1000));

"

System.out. println("\n__Wert__ . ....:" + labWerte[5]);
System.out. println("__Evaluation_:" + flags[5]);
System.out. println("__Tagesoffset:" + timeDiffMin

[5]/(24+3600+1000));

"

System.out. println ("\n__Wert___....:" + labWerte[6]);

System.out. println("__Evaluation_:" + flags[6]);

System.out. println("__Tagesoffset:" + timeDiffMin
[6]/(24+3600+1000));

}

String selectstringul = "UPDATE_maindata_SET";

String selStringull= " _CHOL =" + labWerte[0] + ",_e CHOL_ =,
String selStringu2l= ", CREA =" + labWerte[1] + ",_e CREA ="
String selStringu3l= ", HDL =" + labWerte[2] + ", e HDL_=";
String selStringu4l= ", HSRE =" + labWerte[3] + ", _e HSRE =_"
String selStringubl= ", LDL =" + labWerte[4] + ",ue_LDL_,:_,";
String selStringu6l= ", NBZ =" + labWerte[5] + ",_e NBZ =_
String selStringu71= ", TRIGL_=_" + labWerte[6] + ue_TRIGL._, .
String selectstringu8 = "_where_patient_id_=_" + id + ";";

for (int i=0; i<7; i++)
{
System.out. println("flags (i)=" + flags[l]),
if (flags[i] == "null") {flags[i]="NULL";};
}

String selectstringUpdate = selectstringul +

selStringull + flags[0] +
selStringu2l + flags[1] +
selStringu31 + flags[2] +
selStringu41l + flags[3] +
selStringub51 + flags[4] +
selStringu6l + flags[5] +
selStringu71 + flags[6] +
selectstringu8

if (test)
{System.out. println("\n__Selectstring _fir das,_Update_der,
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Laborwerte=\n" + selectstringUpdate);

}

if (update)
{

" "

System.out. println ( Labordaten_bei_patient_id=_

int status = stateLab.executeUpdate(selectstringUpdate);
} else

noLabData++;
System.out. println ("Keine_Labordaten_bei_patient_id=_"
)
}
} // end while maindata

} // end try

catch (Exception e)
{
throw e;

}

"

System.out. println ("\nAnzahl_Ergometrie—Datensdtze _ . . . ....=
record_nr);

System.out. println ("Anz._Ergometrie—Datensédtze _ohne_Labor=" +
nolLabData) ;

System.out. println("\n");

return;

Y // end function read

//

}

public void close ()

if (con !'= null)
{

try

{

con.close();
} catch (SQLException e)

{

}

}
// end close

// end class Database

e.printStackTrace () ;

+ pidm

+ pidm
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Appendix F

R script for adjusting the tables

#reading the data form the data base

library (DBI)

mydb = dbConnect (RMySQL::MySQL() , user='sqluser ', password='sqluser',
dbname="'ergometry ', host='127.0.0.1")

maindata <— dbReadTable(conn = mydb, name = 'maindata ')

#calculating additional variables

maindata$bmi<—maindata$weight/ (maindata$height/100)/2

maindata$waist_to_height_ratio<—maindata$waist/maindata$height

maindata$workload_to_weight_ratio<—maindata$workload/maindata$weight

maindata$TCtoHDI<—maindata$CHOL/ maindata$HDL

maindata$LDLtoHDI<—maindata$LDL/ maindata$HDL

maindata$TGtoHDI<—maindata$TRIGL/maindata $HDL

maindata$date <— as.Date(maindata$start_time, '%Y—%m%d ")

maindata$year <— format(as.Date(maindata$start_time, format="%Y—"%m%d")
LY )

maindata$surface<—0.007148+*maindata$weight”0.425+*maindata$height~0.725

maindata$reg_paper_men<—6.773+136.141 *maindata$surface —0.916+*maindata$
surface*maindata$age

maindata$reg_paper_women<—3.933+86.641*maindata$surface —0.346*maindata$
surface*maindata$age

#creating values for regression from paper

for (i in 1:dim(maindata)[1]) {
maindata$reg_modl[i]J<—NA

}

for (i in 1:dim(maindata)[1]) {
if (maindata$gender[i]=="MALE") {
maindata$reg_modl[i]<—93.19284+105.67996*maindata$surface[i
]—1.09894*maindata$surface[i]*maindata$age[i]
}
if (maindata$gender[i]=="FEMALE") {
maindata$reg_modl[i]<—67.2302+83.0788*maindata$surface[i] —0.9214+*
maindata$surface[i]*maindata$age[i]
}
}

#creating column for medication
for (i in 1:dim(maindata)[1]) {
maindata$medication[i]<—INA

}
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for (i in 1:dim(maindata)[1]) {

if (is.na(maindata$statin[i])&&is.na(maindata$betablocker[i])){

maindata$medication[i]<—0

)

if (!is.na(maindata$statin[i])){

maindata$medication[i]<—1

}

if (!is.na(maindata$betablocker[i])){

maindata$medication[i]<—2

}

if (!is.na(maindata$statin[i])&&!is.na(maindata$betablocker[i])) {

maindata$medication[i]<—3
}
}

#creating binary column for medication

for (i in 1:dim(maindata)[1]) {

maindata$medication_binary[i]<NA

}

for (i in 1l:dim(maindata)[1]){

if (maindata$medication[i]==0)
maindata$medication_binary[i]<—0

)

else {

maindata$medication_binary[i]<—1

)
}

#creating column for diagnosis
for (i in 1:dim(maindata)[1]) {

maindata$diagnosis_binary[i]<-NA

}

for (i in 1l:dim(maindata)[1]) {

if (is.na(maindata$kardio[i])){
maindata$diagnosis_binary[i]<—0

}

else{

maindata$diagnosis_binary[i]<—1

)
}

#data for rehabilitation

data_rehab <— maindata[ which((maindata$reason_for_study=='Phase II_EU'

)|

#creating data for stage 2

(maindata$reason_for_study=='Phase_II
AU") |
(maindata$reason_for_study=='Phase_III |
EU") I
(maindata$reason_for_study=="'Phase_III |
ZU' )|
(maindata$reason_for_study=='Phase_III
AU")) ]

data_stage2 <— subset(maindata,(maindata$reason_for_study=='Phase_II_EU
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maindata$reason_for_study=='Phase_II |
AU"))
dim(data_stage2)[1]
data_stage2_duration <— data.frame(patient_id = unique(data_stage2$
patient_id))

for (i in 1:dim(data_stage2_duration)[1]){
data_stage2_duration$date_EU[i]<-INA
data_stage2_duration$date_AU[i]<-NA
data_stage2_duration$duration[i]<-NA
data_stage2_duration$workload_max_EU[ i ]<-NA
data_stage2_duration$gender[i]<-INA
data_stage2_duration$age[i]<-INA
data_stage2_duration$weight[i]<-NA
data_stage2_duration$height[i]<-NA
data_stage2_duration$waist[i]<-INA
data_stage2_duration$bmil i J<-INA
data_stage2_duration$waist_to_height_ratio[i]<NA
data_stage2_duration$workload_to_weight_ratio[i]<—NA
data_stage2_duration$systolicbp_rest[i]<—NA
data_stage2_duration$diastolicbp_rest[i]<—NA
data_stage2_duration$hr_rest[i]<-NA
data_stage2_duration$workload_max_AU[ i ]<-NA
data_stage2_duration$CHOL[ i [<-INA
data_stage2_duration$e_CHOL[ i J<-NA
data_stage2_duration$CREA[i]J<-NA
data_stage2_duration$e_CREA[i]<-NA
data_stage2_duration$HDL[ i [<-INA
data_stage2_duration$e HDL[i]<-INA
data_stage2_duration$LDL[ i J<-NA
data_stage2_duration$e_LDL[i]<-NA
data_stage2_duration$HSRE[ i ][<-NA
data_stage2_duration$e_HSRE[ i ]<-NA
data_stage2_duration$NBZ[ i [<-NA
data_stage2_duration$e_NBZ[i ]<-INA
data_stage2_duration$TRIGL[ i J<-NA
data_stage2_duration$e_TRIGL[i]<-NA

for (j in 1:dim(data_stage2)[1]) {
if (data_stage2$patient_id[j]==data_stage2_duration$patient_id[i] &
& data_stage2$reason_for_study[j]=="Phase_II_EU' && is.na(data_
stage2_duration$date_EU[j])) {
data_stage2_duration$date_EU[i]<—data_stage2$date[j]
data_stage2_duration$workload_max_EU[i]<—data_stage2$workload_max
[j]
data_stage2_duration$gender[i]<—data_stage2$gender|[j]
data_stage2_duration$age[i]<—data_stage2$age[j]
data_stage2_duration$weight[i]<—data_stage2$weight[j]
data_stage2_duration$height[i]<—data_stage2$height[j]
data_stage2_duration$waist[i]<—data_stage2$waist[]j]
data_stage2_duration$bmi[i]<—data_stage2$bmilj]
data_stage2_duration$waist_to_height_ratio[i]<—data_stage2$waist_
to_height_ratio[j]
data_stage2_duration$workload_to_weight_ratio[i]<—data_stage2$
workload_to_weight_ratio[j]
data_stage2_duration$systolicbp_rest[i]<—data_stage2$systolicbp_
rest[j]
data_stage2_duration$diastolicbp_rest[i]<—data_stage2$diastolicbp
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_rest[j]
139 data_stage2_duration$hr_rest[i]<—data_stage2$hr_rest[j]
140 data_stage2_duration$CHOL[ i ]<—data_stage2$CHOL[j ]
141 data_stage2_duration$e_CHOL[ i J<—data_stage2$e CHOL[ ] ]
142 data_stage2_duration$CREA[i]<—data_stage2$CREA[ ] ]
143 data_stage2_duration$e_CREA[i]<—data_stage2$e CREA[] ]
144 data_stage2_duration$HDL[i ]<—data_stage2$HDL[j ]
145 data_stage2_duration$e_HDL[i]<—data_stage2$e HDL[] ]
146 data_stage2_duration$LDL[i ]<—data_stage2$LDL[ ]
147 data_stage2_duration$e_LDL[i]<—data_stage2$e_LDL[]]
148 data_stage2_duration$HSRE[ i ]<—data_stage2$HSRE[j ]
149 data_stage2_duration$e_HSRE[i]<—data_stage2$e_HSRE[ ] ]
150 data_stage2_duration$NBZ[i ]<—data_stage2$NBZ[j ]
151 data_stage2_duration$e_NBZ[i]<—data_stage2$e_NBZ[] ]
152 data_stage2_duration$TRIGL[i]<—data_stage2$TRIGL[] ]
153 data_stage2_duration$e_TRIGL[i]<—data_stage2$e_TRIGL[j ]

154 }

155 }

156 for (j in 1:dim(data_stage2)[1]) {

157 if (data_stage2$patient_id[j]==data_stage2_duration$patient_id[i] &
& data_stage2$reason_for_study[j]=="Phase_II _AU'&& is.na(data_
stage2_duration$date_AU[j])) {

158 data_stage2_duration$date_AU[i]<—data_stage2$date[]j]

159 data_stage2_duration$workload_max_AU[ i ]<—data_stage2$workload_max
[j]

160 if (is .na(data_stage2_duration$gender[i])) {

161 data_stage2_duration$gender[i]<—data_stage2$gender[j]

162 }

163 }

164 }

165 data_stage2_duration$duration[i]<—data_stage2_duration$date_AU[i]—
data_stage2_duration$date _EUJ[1i]
166 data_stage2_duration$improvement|[i]<—data_stage2_duration$workload_
max_AU[i]—data_stage2_duration$workload_max_EU[1i]
167}
168
1w # creating data for stage 3
170 data_stage3 <— subset(maindata,(maindata$reason_for_study=='Phase III
EU'|l maindata$reason_for_study=='Phase_III_ZU'l maindata$reason_for
_study=="Phase_III_AU"))
171 dim(data_stage3)[1]
172 data_stage3_duration <—
173 data.frame(patient_id = unique(data_stage3$patient_id))
174 dim(data_stage3_duration)[1]
175 for (i in 1:dim(data_stage3_duration)[1]) {

176 data_stage3_duration$date_EU[i]<—NA
177 data_stage3_duration$date_ZUJ[ i ][<-NA
178 data_stage3_duration$date_AU[ i ]<-NA
179 data_stage3_duration$duration[i]<-INA

180 data_stage3_duration$durationl[i]<—NA
181 data_stage3_duration$duration2[i]<-NA

182 data_stage3_duration$workload_max_EU[ i ]<-NA
183 data_stage3_duration$workload_max_ZU[ i ]<-NA
184 data_stage3_duration$workload_max_AU[ i ]<-NA

185 data_stage3_duration$gender[i]<-NA
186 data_stage3_duration$age[i]<-INA

187 data_stage3_duration$weight[i]<-NA
188 data_stage3_duration$height[i]<-NA



189
190
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193
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216
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218
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222

223

224

225

226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
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data_stage3_duration$waist[i]<-INA
data_stage3_duration$bmil i J<-INA
data_stage3_duration$waist_to_height_ratio[i]<—NA
data_stage3_duration$workload_to_weight_ratio[i]<—NA
data_stage3_duration$systolicbp_rest[i]<—NA
data_stage3_duration$diastolicbp_rest[i]<—NA
data_stage3_duration$hr_rest[i]<-INA
data_stage3_duration$workload_max_AU[ i ]<-NA
data_stage3_duration$CHOL[ i ][<-NA
data_stage3_duration$e_CHOL[ i J<-NA
data_stage3_duration$CREA[iJ<-INA
data_stage3_duration$e_CREA[i]<-NA
data_stage3_duration$HDL[ i [<-INA
data_stage3_duration$e_HDL[ i J<-NA
data_stage3_duration$LDL[ i J<-INA
data_stage3_duration$e_LDL[i]<-NA
data_stage3_duration$HSRE[ i [<-NA
data_stage3_duration$e_HSRE[i J<-INA
data_stage3_duration$NBZ[ i [<-INA
data_stage3_duration$e_NBZ[ i ]<-NA
data_stage3_duration$TRIGL[ i J<-NA
data_stage3_duration$e_TRIGL[i]<-NA

for (j in 1:dim(data_stage3)[1]){
if (data_stage3$patient_id[j]==data_stage3_duration$patient_id[i] &
& data_stage3$reason_for_study|[j]=="'Phase III_EU"){

data_stage3_duration$date_EUJ[i]<—data_stage3$date[j]
data_stage3_duration$workload_max_EU[ i ][<—data_stage3$workload_max| j ]
data_stage3_duration$gender[i]<—data_stage3$gender][j ]
data_stage3_duration$age[i]<—data_stage3$age[]j]
data_stage3_duration$weight[i]<—data_stage3$weight[j]
data_stage3_duration$height[i]<—data_stage3$height[j]
data_stage3_duration$waist[i]<—data_stage3$waist[j]
data_stage3_duration$bmi[i]<—data_stage3$bmilj ]
data_stage3_duration$waist_to_height_ratio[i]<—data_stage3$waist_to_

height_ratio[j]
data_stage3_duration$workload_to_weight_ratio[i]<—data_stage3$workload

_to_weight_ratio[j]
data_stage3_duration$systolicbp_rest[i]<—data_stage3$systolicbp_rest][j

]
data_stage3_duration$diastolicbp_rest[i]<—data_stage3$diastolicbp_rest

[j]
data_stage3_duration$hr_rest[i]<—data_stage3$hr_rest[j]
data_stage3_duration$CHOL[ i ]<—data_stage3$CHOL[j ]
data_stage3_duration$e CHOL[i]<—data_stage3$e CHOL[j ]
data_stage3_duration$CREA[i ]<—data_stage3$CREA] ] ]
data_stage3_duration$e_CREA[i]<—data_stage3$e_CREA[j ]
data_stage3_duration$HDL[ i J<—data_stage3$HDL[ ] ]
data_stage3_duration$e_HDL[i]<—data_stage3$e_HDL[] ]
data_stage3_duration$LDL[i]<—data_stage3$LDL[] ]
data_stage3_duration$e_LDL[i]<—data_stage3$e_LDL[j ]
data_stage3_duration$HSRE[ i J<—data_stage3$HSRE] ] ]
data_stage3_duration$e_HSRE[i]<—data_stage3$e_HSRE] ] ]
data_stage3_duration$NBZ[i [<—data_stage3$NBZ][j ]
data_stage3_duration$e_NBZ[i]<—data_stage3$e_NBZ[] ]
data_stage3_duration$TRIGL[i]<—data_stage3$TRIGL[j ]
data_stage3_duration$e_TRIGL[i]<—data_stage3$e_TRIGL[j ]

}
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}
for (j in 1:dim(data_stage2)[1]) {
if (data_stage2$patient_id[j]==data_stage3_duration$patient_id[i] &
& (is.na(data_stage3_duration$date _EU[j])&&kdata_stage2$reason_
for_study[j]=="Phase_II,AU")) {
data_stage3_duration$date_EU[i]<—data_stage2$date[j]
data_stage3_duration$workload_max_EU[i]<—data_stage2$workload_max
[j]
data_stage3_duration$gender[i]<—data_stage2$gender|[j]
data_stage3_duration$age[i]<—data_stage2$age[j]
data_stage3_duration$weight[i]<—data_stage2$weight[j]
data_stage3_duration$height[i]<—data_stage2$height[j]
data_stage3_duration$waist[i]<—data_stage2$waist[j]
data_stage3_duration$bmi[i]<—data_stage2$bmilj ]
data_stage3_duration$waist_to_height_ratio[i]<—data_stage2$waist_
to_height_ratio[j]
data_stage3_duration$workload_to_weight_ratio[i]<—data_stage2$
workload_to_weight_ratio[j]
data_stage3_duration$systolicbp_rest[i]<—data_stage2$systolicbp_
rest[j]
data_stage3_duration$diastolicbp_rest[i]<—data_stage2$diastolicbp
_rest[j]
data_stage3_duration$hr_rest[i]<—data_stage2$hr_rest[j]
data_stage3_duration$CHOL[ i [<—data_stage2$CHOL[j ]
data_stage3_duration$e_CHOL[i]<—data_stage2$e CHOL[] ]
data_stage3_duration$CREA[i]<—data_stage2$CREA[ ] ]
data_stage3_duration$e_CREA[i]<—data_stage2$e CREA[] ]
data_stage3_duration$HDL[i [<—data_stage2$HDL][ j ]
data_stage3_duration$e HDL[i]<—data_stage2$e HDL[] ]
data_stage3_duration$LDL[i J]<—data_stage2$LDL[ ]
data_stage3_duration$e_LDL[i]<—data_stage2$e_LDL[]]
data_stage3_duration$HSRE[ i ]<—data_stage2$HSRE[j ]
data_stage3_duration$e_HSRE[i]<—data_stage2$e HSRE[ ] ]
data_stage3_duration$NBZ[ i ]<—data_stage2$NBZ[j ]
data_stage3_duration$e_NBZ[i]<—data_stage2$e NBZ[] ]
data_stage3_duration$TRIGL[i]<—data_stage2$TRIGL[] ]
data_stage3_duration$e_TRIGL[i]<—data_stage2$e_TRIGL[j ]
}
}
for (j in 1:dim(data_stage3)[1]) {
if (data_stage3$patient_id[j]==data_stage3_duration$patient_id[i] &
& data_stage3$reason_for_study|[j]=="'Phase III_ZU"){
data_stage3_duration$date_ZU[i]<—data_stage3$date[j]
data_stage3_duration$workload_max_ZU[i]<—data_stage3$workload_max

[j]

}
}
for (j in 1:dim(data_stage3)[1]){
if (data_stage3$patient_id[j]==data_stage3_duration$patient_id[i] &
& data_stage3$reason_for_study|[j]=="'Phase III_AU"){
data_stage3_duration$date_AU[i]<—data_stage3$date[j]
data_stage3_duration$workload_max_AU[ i ]<—data_stage3$workload_max] j ]
if (is.na(data_stage3_duration$gender[i])) {
data_stage3_duration$gender[i]<—data_stage3$gender[j]
}
}
}
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data_stage3_duration$duration[i]<—data_stage3_duration$date_AU[i]—
data_stage3_duration$date_EUJ[1i]
data_stage3_duration$durationl[i]<—data_stage3_duration$date_ZU[i]—
data_stage3_duration$date _EUJ[i]
data_stage3_duration$duration2[i]<—data_stage3_duration$date_AU[i]—
data_stage3_duration$date_ZUJ[1i]
data_stage3_duration$improvement|[i]<—data_stage3_duration$workload_
max_AU[i]—-data_stage3_duration$workload_max_EU[1i]
data_stage3_duration$improvementl|[i]<—data_stage3_duration$workload_
max_ZU[i]—data_stage3_duration$workload_max_EU[i]
data_stage3_duration$improvement2|[i]<—data_stage3_duration$workload_
max_AU[i]-data_stage3_duration$workload_max_ZU[i]
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