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Abstract English

The predictive-corrective incompressible smoothed particle hydrodynamics method
(PCISPH) is a variant of smoothed particle hydrodynamics (SPH) introduced in 2009
for incompressible fluid flow simulations in computer graphics. It already showed
promising improvements with respect to the computation time compared to the cur-
rently common weakly compressible SPH (WCSPH) method. But neither the original
paper from 2009, in which PCISPH was presented to the public, nor any other pub-
lication so far investigated its accuracy and stability for engineering applications and
physics based simulations.

This work first gives a general introduction to SPH, which includes a derivation of
SPH and its application to the governing equations of fluid dynamics. Afterwards,
novel enhancements for PCISPH are presented to adapt the method for physics based
flows in engineering. These enhancements include 1) numerical diffusion and pressure
smoothing to reduce the noise in the pressure field; 2) an adaption of the Adami Bound-
ary Condition to PCISPH; 3) a second order time-stepping scheme; 4) a more gen-
eral derivation to also cover multiphase flows with PCISPH. This enhanced PCISPH
method is then tested against the original PCISPH method, WCSPH, other numerical
solvers, and experiments, and it is shown that the enhanced PCISPH is significantly
faster than WCSPH while preserving the accuracy.
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Abstract German

Predictive Corrective Incompressible Smoothed Particle Hydrodynamics (PCISPH) ist
eine Variante von Smoothed Particle Hydrodynamics (SPH), die erstmals in 2009 für
inkompressible Fluidsimulationen in der Computergraphik vorgestellt wurde. Sie hat
damals vielversprechende Resultate hinsichtlich der Laufzeit, im Vergleich zu der ak-
tuell üblichen Weakly Compressible SPH Methode (WCSPH), geliefert. Aber weder
das Originalpaper aus 2009, in welchem PCISPH vorgestellt wurde, noch irgendeine
andere Publikation haben die Methode auf ihre Genauigkeit und Stabilität in Anwen-
dungen der Ingenieurswissenschaften und in Physik basierten Simulationen untersucht.

Diese Arbeit gibt zu Beginn eine allgemeine Einleitung in SPH, die die Herleitung
von SPH und dessen Anwendung of die Grundgleichungen der Fluiddynamik bein-
haltet. Anschließend werden neue Entwicklungen von PCISPH, um die Methode für
physikalische Strömungen in den Ingenieursdisziplinen anzupassen, präsentiert. Diese
Entwicklungen beinhalten 1) numerische Diffusion und Glättung des Drucks, um das
Rauschen im Druckfeld zu reduzieren; 2) eine Anpassung der Adami Randbedingung
an PCISPH; 3) ein Zeitschrittverfahren zweiter Ordnung; 4) eine allgemeinere Her-
leitung, um auch Mehrphasenströmungen mit PCISPH behandeln zu können. Diese
verbesserte PCISPH Methode wird dann gegen die originale Methode, WCSPH, andere
numerische Löser und Experimente getestet, wobei gezeigt wird, dass die verbesserte
PCISPH Methode signifikant schneller ist als WCSPH, während die Genauigkeit er-
halten bleibt.
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Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle based method to
solve complex problems from fluid dynamics. It was first introduced in 1977 by Gingold
and Monaghan [13] and, independent from each other, also by Lucy [24] to solve
problems in astrophysics. Over the last four decades, the method was further developed
and adapted for many different applications and was also introduced as a method for
computational fluid dynamics (CFD) in engineering competing with Finite Difference
(FDM), Finite Element (FEM) and, especially, Finite Volume Method (FVM).

According to my knowledge, it is one of the most used and widely spread mesh-free
methods due to its great versatility, easy implementation, accurate results and further
advantages compared to common mesh-based methods like the above mentioned FEM,
FVM or FDM. Those advantages include easy ways to handle moving boundaries
(forced and two-way coupled, [33]), multiphase flows, free surface flows, and - probably
the most noteworthy of all - the expandability of meshes since in modern industrial
applications the meshing process is one of the most cost and work intense tasks, when
performing simulations.

The disadvantages of SPH are that there is no deep mathematical background yet.
In addition, numerical experiments show that the number of elements necessary to
reach a sufficient accuracy is quite high compared to mesh based methods like FVM
and that the computation times can be significantly higher than with mesh based
methods.

To counter the last disadvantage, the higher computation times, [7] presented a new
variant of SPH in 2009, called predictive-corrective incompressible SPH, for applica-
tions in computer graphics. It already showed promising improvements with respect
to the computation time compared to the currently common weakly compressible SPH
(WCSPH) method. But neither the original paper [7], in which PCISPH was presented
to the public, nor any other publication so far investigated its accuracy and stability
for engineering applications and physics based simulations.

This work should give an introduction to some fundamentals of SPH in fluid dy-
namics and push the limits of the method to make it more versatile, accurate, faster,
and worthwhile to use in engineering. For this purpose, a mathematical derivation of
SPH is given in Chapter 1, where the method is derived using convolution and some
basic properties of it. The chapter also includes information about the kernel functions
used.

Chapter 2 shows how to apply SPH to the governing equations of fluid dynamics.
This includes the continuity equation in Section 2.1, the equation of momentum in
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Introduction 8

Section 2.2, some thoughts on time-stepping in Section 2.3, enforcing incompressibility
in Section 2.4 and how to handle boundary conditions in Section 2.5.

Chapter 3 then covers PCISPH, including the original derivation and the main topic
of this thesis: the enhancement of the method to be able to handle physical correct fluid
flows. The enhancements consist of 1) numerical diffusion and pressure smoothing to
reduce the noise in the pressure field; 2) an adaption of the Adami Boundary Condition
to PCISPH; 3) a second order time-stepping scheme; 4) a more general derivation to
also cover multiphase flows with PCISPH.

In Chapter 4, other SPH variants of importance to this thesis are briefly presented.
Namely WCSPH, since it is a widely used variant of SPH, ISPH, since it is the basis
of the IISPH, which is the third alternative SPH method presented in the chapter and
the logical development of PCISPH.

The final Chapter 5 then concludes with numerical tests to compare the enhanced
PCISPH with the original PCISPH, WCSPH, other numerical solvers and analytical
solutions.

It is assumed that the reader has a good understanding of the underlying physics,
especially fluid mechanics, since there is no section dedicated to it. For an introduction
to fluid mechanics, one can refer to [44] or [14].



1 Derivation of SPH

This chapter covers the derivation of the basic SPH formalism. It is loosely based on
[44].

First, in Section 1.1, the interpolation of physical quantities is outlined, using convo-
lution and approximations of the δ-distribution, so-called kernels . Section 1.2 explains
the computation of derivatives with respect to the space coordinates of the interpolated
physical quantities. The discretization is then covered in Section 1.3, while Section
1.4 presents alternative ways to represent the derivatives using common identities for
the derivatives, called SPH Operators . Finally, Section 1.5 gives an overview of some
kernel properties and shows some kernel examples.

1.1 Interpolation

The basic idea of SPH is to represent physical quantities at a given point ~x through
an integral over some test volume and then discretize the resulting integral using
interpolation points. These interpolation points are not fixed in space, but can be
advected with the flow, and are therefore called particles .

Beginning with continuous integration, let Ω ⊂ R3 be an open, bounded domain.
Let A(~x, t) : Ω×R+ −→ R be some physical scalar valued field at a given point ~x ∈ Ω
in space and t ≥ 0 in time (e.g. pressure, density, mass, etc.). The convolution with
the δ-distribution yields

A(~x0, t) = (A ∗ δ) (~x0, t)

=

∫
Ω

A(~x, t)δ(~x0 − ~x)d~x.

For numerical purposes, the δ-distribution is an obvious problem. We get rid of it by
approximation. Let Wh : Ω −→ R be an approximation of δ in the sense

(A ∗Wh) (~x0, t)→ A(~x0, t) as h→ 0,

for all (~x0, t) ∈ Ω×R+. We call such a function kernel and the parameter h smoothing
length or smoothing radius. Section 1.5 covers them in more detail and also shows
some of the commonly used kernels. Using a similar notation as in [44], one can define
the following continuous approximation.

9



1 Derivation of SPH 10

Definition 1.1 (Continuous Approximation). As in the setting of above, let Ω ⊂ R3

be an open, bounded domain. Let A(~x, t) : Ω × R+ −→ R and let Wh : Ω −→ R be a
kernel function. The continuous approximation of A is defined as

〈A〉c(~x0, t) :=

∫
Ω

A(~x, t)Wh(~x0 − ~x)d~x = (A ∗Wh) (~x0, t).

Under sufficiently strong assumptions, one can show that this approximation is of
second order with respect to h. This is proved in Theorem 1.5.

1.2 Derivatives

This section covers the computation of derivatives of the previously defined 〈A〉c with
respect to the space variables. Of course, it is possible to numerically compute the
derivatives, using for example finite differences. This is not preferably for multiple
reasons. First, finite differences introduce another approximation error. Secondly,
evaluating finite differences requires in general multiple evaluations of the function
which can be time consuming. It would therefore be advantageous for an alternative
to exist.

One will see in the following that for SPH derivatives can be formed using exact
derivatives of the kernel Wh.

1.2.1 Gradient of 〈A〉c
First, the gradient of a scalar valued function is investigated. Let Wh ∈ C1

(
Ω
)

be a
kernel function. Then the following identity holds true

∂

∂xi
(A ∗Wh) (~x0, t) =

(
A ∗ ∂

∂xi
Wh

)
(~x0, t),

where ∂
∂~xi

denotes the derivative with respect to the i-th space coordinate ~x0,i. The
identity implies

∇~x〈A〉c(~x, t) = ∇~x (A ∗Wh) (~x, t)

=

∫
Ω

A(~x′, t)∇~xWh(~x− ~x′)d~x′

= −
∫
Ω

A(~x′, t)∇~x′Wh(~x− ~x′)d~x′

=

∫
Ω

∇~x′A(~x′, t)Wh(~x− ~x′)d~x′

= 〈∇A〉c(~x, t).



1 Derivation of SPH 11

∇~xWh(~x− ~x′) denotes the gradient with respect to ~x, i.e.(
∂Wh

∂~x1

(~x− ~x′),
∂Wh

∂~x2

(~x− ~x′),
∂Wh

∂~x3

(~x− ~x′)

)T
,

and ∇~x′Wh(~x− ~x′) denotes the gradient with respect to ~x′, i.e.(
∂Wh

∂~x′1
(~x− ~x′),

∂Wh

∂~x′2
(~x− ~x′),

∂Wh

∂~x′3
(~x− ~x′)

)T
.

Obviously, ∇~xWh(~x−~x′) = −∇~x′Wh(~x−~x′) holds true. The one to last equality follows
from the Gauss’s Divergence Theorem [5] assuming that suppWh(~x−·) ⊂ Ω = ∅. This
means, that the equality is in general wrong. Assuming the support of the kernel Wh

is compact, it is still wrong close to free surfaces or the boundary. How to handle
these cases is not covered here. It is discussed for example in [44, Section 5.2.5]. How
to handle boundaries in general is presented in Section 2.5.

The above result can be summarized in the following lemma.

Lemma 1.2. Let A : Ω × R+ −→ R be a scalar valued, continuously differentiable
function. Let Ω ⊂ R3 and let Wh(~x − ·) ∈ C1

(
Ω
)

with suppWh(~x − ·) ⊂ Ω = ∅ for
some ~x ∈ Ω. Then

∇~x〈A〉c(~x, t) = 〈∇A〉c(~x, t).

1.2.2 Divergence of 〈 ~A〉c
Similar to the computation of the gradient in the previous Section 1.2.1, one can
analyze the divergence of a vector valued function. Following the same arguments as
before, one gets the following lemma.

Lemma 1.3. Let ~A : Ω×R −→ R3 be a vector valued function. Let Wh(~x−·) ∈ C1
(
Ω
)

with suppWh(~x− ·) ⊂ Ω = ∅ for some ~x ∈ Ω. Then

∇ · 〈 ~A〉c(~x0, t) = 〈∇ · ~A〉c(~x0, t) =

∫
Ω

~A(~x, t) · ∇Wh(~x0 − ~x)d~x.

1.3 Discretization

The next step is the discretization of the integral from Definition 1.1.
Let {~x1, ~x2, ..., ~xn} be a finite set of points in Ω. These points are called particles .

We can assign each particle i = 1, . . . , n, a mass mi such that the sum over all masses
equals the total mass in Ω. I.e.:

n∑
i=1

mi =

∫
Ω

ρ(~x, t0)d~x,
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where ρ(~x, t0) denotes the initial density (the density at time t0) at a point ~x. It is
now possible to assign a volume

Vi =
mi

ρi
(1.1)

to each particle, where ρi := ρi(t) := ρ(~xi, t) and Vi := Vi(t) := V (~xi, t) for a fixed time
t. In practice, the initial distribution of the particles in Ω is in general not random
but equidistant with some predefined distance ∆r. The volume of each particle is then
given by

Vi = (∆r)3.

The computation of the mass mi then follows from equation (1.1).
Using the particles as interpolation points for a numerical integration yields

〈A〉c(~xi, t) =

∫
Ω

A(~x, t)Wh(~xi − ~x)d~x ≈
n∑
j=1

VjA(~xj, t)Wh(~xi − ~xj).

Using the shorter notation for fixed t and h with Aj := A(~xj, t) and Wij := Wh(~xi−~xj),
one can define

Definition 1.4 (Discrete Approximation). As in the setting of above, let Ω ⊂ R3

be an open, bounded domain. Let A(~x, t) : Ω × R+ −→ R, let Wh : Ω −→ R be
a kernel function and let {~x1, ~x2, ..., ~xn} be a finite set of points in Ω. The discrete
approximation of A is defined as

〈Ai〉 :=
n∑
j=1

VjAjWij, (1.2)

where the subscripts denote the evaluation at the corresponding discretization point as
described above.

The accuracy of 〈Ai〉 obviously depends on the distribution and the number of the
supporting points, i.e. the particles, ~xj, j = 1, . . . , n. The number of supporting points
considered in the approximation (1.2) depends on Wh, especially if the support of Wh

is bounded. But as the number of particles admitted by the support of Wh increases,
the δ-distribution is in general approximated worse by Wh. So for h→ 0, the accuracy
of the discretization (1.2) decreases while the accuracy of the approximation of the
δ-distribution by the kernel Wh increases. In [44, Section 5.2.3], an error estimate for
an equidistant distribution of the particles was presented. It was shown that in the

1D case the error of the discrete approximation |〈Ai〉 − Ai| behaves like h2 +
(

∆r
h

)βW
as h→ 0 with ∆r denoting the placement distance of the particles and βW a constant
depending on the kernel W . Since the particles are moving, the assumption of an
equidistant particle distribution is in general too strong. A general error estimate for
disordered particles as they occur in SPH simulations is still an unsolved problem [44].
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Analogously, the derivatives from Section 1.2 can be discretized which results in

∇〈Ai〉 =
n∑
j=1

VjAj∇Wij (1.3)

and

∇ · 〈 ~Ai〉 =
n∑
j=1

Vj ~Aj · ∇Wij. (1.4)

1.4 SPH Operators

As one can see, the identities (1.3) and (1.4) are not symmetrical in the sense that the
contribution from particle i to the value of particle j, Aj, is in general not the same
as the contribution from particle j to the value of particle i, Ai. As we will see later
(Section 2), this lack in symmetry can pose a problem. Therefore, it is necessary to
use different but equivalent representations of (1.3) and (1.4). For that purpose, the
following two identities are used, which hold true for every k ∈ R and every function
ρ ∈ C1(Ω), as simple computations show

∇A = ρk∇
(
A

ρk

)
+
A

ρk
∇
(
ρk
)

and

∇ · ~A = ρk∇ ·

(
~A

ρk

)
+

~A

ρk
· ∇
(
ρk
)
.

For practical purposes, we take ρ as the density. Note that these identities are prob-
lematic for k 6= 0 for multiphase flows or free surfaces, since in that case ∇(ρk) does
not exist in general on the interface due to the jumps in the density occurring there.
Using the previously derived approximations for the right hand-side then yields the
following classes of SPH operators

〈∇Ai〉 = ρki
∑
j

Vj
Aj
ρkj
∇Wij +

Ai
ρki

∑
j

Vjρ
k
j∇Wij =

∑
j

Vj
ρ2k
i Aj + ρ2k

j Ai

ρkjρ
k
i

∇Wij (1.5)

and analogously

〈∇ · ~Ai〉 =
∑
j

Vj
ρ2k
i
~Aj + ρ2k

j
~Ai

ρkjρ
k
i

· ∇Wij. (1.6)

Similarly, with the identities

∇A =
1

ρk
∇
(
Aρk

)
− A

ρk
∇
(
ρk
)
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and

∇ · ~A =
1

ρk
∇ ·

(
~A

ρk

)
−

~A

ρk
· ∇
(
ρk
)
,

one gets different classes of SPH operators

〈∇Ai〉 = − 1

ρ2k
i

∑
j

Vjρ
k
jρ

k
iAij∇Wij (1.7)

and

〈∇ · ~Ai〉 = − 1

ρ2k
i

∑
j

Vjρ
k
jρ

k
i
~Aij · ∇Wij, (1.8)

where ~Aij, in accordance with the notation so far, denotes the difference ~Ai − ~Aj =
~A(~xi)− ~A(~xj). One can see that these SPH operators are symmetrical.

1.5 Kernel Functions

The kernel functions were introduced in Section 1.1 as an approximation of the δ-
distribution. They have to fulfill some requirements to actually be usable for SPH,
which are discussed in some detail in Section 1.5.1. In short, they need to be nor-
malized, symmetric and sufficiently smooth. Some examples of kernels employed in
practice, fulfilling the requirements, are given in Section 1.5.2.

1.5.1 Properties

This section describes the necessary properties the kernel functions need to have ac-
cording to [44]. For that, we have a look at the accuracy of the spatial approximation
as in Definition 1.1.

Theorem 1.5. Let Ω ⊂ R3, let A : Ω × R+ → R be a C2 function with respect to
the first three variables and let the kernel Wh, as introduced above, have the following
properties

1. Wh is continuous,

2. suppWh is compact and convex and it exists a constant C > 0 such that for all
h < h0, for some h0, the support of Wh is included in a sphere with radius Ch,
i.e. suppWh ⊂ B(Ch),

3. Wh is symmetric, i.e. Wh(~x) = Wh(−~x),

4.
∫
Ω

Wh(~x− ~x′)d~x′ = 1 for all ~x ∈ Ω.
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Then the error of the approximation |A(~x, t) − 〈A〉c(~x, t)|, with 〈A〉c(~x, t) from Def-
inition 1.1, is quadratic in h for all points ~x ∈ Ω sufficiently far from the boundary
∂Ω.

Proof. Assume ~x ∈ Ω is sufficiently far from the boundary such that

{~x′ ∈ Ω | Wh(~x− ~x′) 6= 0} ∩ ∂Ω = ∅.

Using a second order Taylor approximation [23] yields

A(~x′, t) = A(~x, t) +
(
~x′ − ~x

)T
DA(~x, t) +

1

2

(
~x′ − ~x

)T
D2A(~ζ, t)

(
~x′ − ~x

)
,

where DA(~x, t) and D2A(~x, t) denote the gradient and the Hessian respectively and ζ

is a point on the line
[
~x; ~x′

]
which lies completely in Ω if ~x− ~x′ ∈ suppWh due to the

convexity of the support. Then,

〈A〉c(~x, t) =

∫
Ω

A(~x′, t)Wh(~x− ~x′)d~x′

=

∫
Ω

(
A(~x, t) +

(
~x′ − ~x

)T
DA(~x, t) + . . .

. . .
1

2

(
~x′ − ~x

)T
D2A(~ζ, t)

(
~x′ − ~x

))
Wh(~x− ~x′)d~x′

= A(~x, t) +O(h2).

The last equality uses the normalization, the symmetry of the kernel and therefore
anti-symmetry of the first order term, the assumptions to the support of the kernel
function and the continuity of the second derivatives of A.

Note that assumption 2 is not necessarily required but stated here since it is useful
in practice to increase the performance and for the sake of simplicity of the proof. The
assumption basically means that the support of the kernel goes to 0 as h → 0 which
makes the argument in the last equality, why the second order term behaves like O(h2),
obvious. This is not a strong limitation for practical purposes. A compact supported
kernel is often used in practice anyway since otherwise the complexity to evaluate the
sums (1.2) would be quadratic. The easiest and most common way to fulfill assumption
3 in practice, is to set the kernel as a function of the distance Wh(~x) = Wh(‖~x‖).

Another noteworthy fact is that the symmetry of the kernel Wh directly implies the
anti-symmetry of the gradient −∇Wh(~r) = ∇Wh(−~r) for a differentiable kernel Wh.

1.5.2 Kernel Examples

In the following, some of the most common kernels are presented. The normalization
constants given are for the 3D case. In the case of 2D simulations, the constants might
change and need to be adjusted accordingly.
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Gaussian

The Gaussian kernel [13, 25] is defined as

Wh(~r) :=
1

h3π
3
2

exp

(
−
(
|~r|
h

)2
)
.

In modern SPH codes, this kernel is rarely used since it leads to quadratic complexity
when evaluating (1.2) for every particle and the problems occurring due to the non-
empty intersection with the boundary as discussed in Section 1.2.

Wendland

The Wendland kernel [44, 47] is given as

Wh(~r) :=

{
21

16πh3

(
1− |~r|

2h

)4 (
1 + 2 |~r|

h

)
if 0 ≤ |~r| ≤ 2h

0 else
.

The Wendland kernel is well-suited as an SPH kernel since it is compactly supported
and based on only one algebraic equation. The compact support decreases the num-
ber of neighbors necessary for the evaluation of (1.2) which, consequently, reduces
the overall complexity of the computation. The simple representation avoids heavy
branching, which might lead to performance loss when using for example Graphic
Processing Units (GPUs) for computation.

3-degree B-spline

B-splines are widely used kernel functions for the SPH method [28, 29, 44]. An example
for such a B-spline is the 3-degree B-spline defined as follows

Wh(~r) :=
1

πh3


1− 3

2

(
|~r|
h

)2

+ 3
4

(
|~r|
h

)3

if 0 ≤ |~r| ≤ h,

1
4

(
2−

(
|~r|
h

))3

if h < |~r| ≤ 2h,

0 else.
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Figure 1.1: Plot of different kernel functions for h = 1.



2 Applying SPH

This chapter is about the application of the SPH formalism derived in Chapter 1 to
the basic equations of fluid mechanics, i.e. the continuity equation (Section 2.1) and
the equation of momentum (Section 2.2). Those equations are supposed to be granted
and neither derived nor discussed in any detail in this thesis. For more information
regarding these equations, see [14] or [44]. Section 2.3 then briefly discusses time
stepping in SPH. In Section 2.4, different ways to enforce incompressibility and the
resulting variants of SPH are presented. The last two sections in this chapter, Sections
2.5 and 2.6, cover some ways to handle boundaries with SPH and briefly discuss the
implementation respectively.

2.1 Continuity Equation

Let Ω ⊂ R3. Let ρ : Ω×R+ → R be the density of the fluid and ~v : Ω×R+ → R3 the
velocity. The continuity equation is then given by

dρ

dt
= −ρ∇ · ~v.

Using the results from Chapter 1, to discretize the right hand-side of the equation at
an arbitrary but fixed point ~xi ∈ Ω, yields

dρi
dt
≈
〈
dρi
dt

〉
= −ρi

n∑
j=1

Vj~vj · ∇Wij. (2.1)

In accordance with Chapter 1, the notations ρi = ρi(t) = ρ(~xi, t) and ~vi = ~vi(t) =
~v(~xi, t) are used.

Equation (2.1) is rarely used in practice due to lack of symmetry, but a different
approximation coming from the SPH operator (1.8) for k = 0. Namely,〈

dρi
dt

〉
=

n∑
j=1

mj~vij · ∇Wij, (2.2)

where mj = m(~xj) denotes the mass of particle j and ~vij = ~vi − ~vj the difference in
velocity. Approximation of the left hand-side in (2.2) with forward differences yields

ρi(t+ ∆t) ≈ ρi + ∆t
n∑
j=1

mj~vij · ∇Wij. (2.3)

18
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This is a convenient formula to update the density in a time stepping algorithm with
step size ∆t. A more detailed introduction to the time stepping is given in Section
2.3.

In the SPH community, a different way to update the density is commonly seen and
used. It can be derived by applying (1.2) directly to the density ρ. It yields

ρi ≈ 〈ρi〉 =
n∑
j=1

VjρjWij =
n∑
j=1

mjWij. (2.4)

The advantage of this formulation is that it does not depend on the velocity ~v. On the
other hand, it is not applicable to multiphase or free-surface flows since the number of
particles considered in the sum on the right hand-side decreases close to the interface
and the density is thus underestimated there.

2.2 Equation of Momentum

Similar to Section 2.1, this section shows how the SPH formalism can be used to
discretize the equation of momentum in fluid mechanics. The equation is given in
Lagrangian formulation by

d~v

dt
= −1

ρ
∇p+ ν∆~v + ~g,

where ~v = ~v(~x, t) denotes the velocity, ρ = ρ(~x, t) the density, p = p(~x, t) the pressure,
ν the kinematic viscosity, and ~g external accelerations like, for example, gravitation.
The gradient ∇p is to be understood with respect to the space variable ~x and the
Laplacian of the vector valued velocity ∆~v is meant to be taken component wise. For
a proper derivation of this equation and more information regarding it, see [44] or [14].

The first step is to spatially discretize the equation similar as already presented on
the basis of the continuity equation. This can by done by evaluating the equation at
a given discretization point ~xi and applying the SPH discretization (1.2) to the right
hand-side, which yields〈

d~vi
dt

〉
= ~gi −

1

ρi

n∑
j=1

Vjpj∇Wij + νi

n∑
j=1

Vj~vj∆Wij.

The next step is the discretization of the time derivative on the left hand-side. The
simplest way to do this is by forward differences, resulting in

~vi(t+ ∆t) ≈ vi + ∆t

(
~gi −

1

ρi

n∑
j=1

Vjpj∇Wij + νi

n∑
j=1

Vj~vj∆Wij

)
. (2.5)
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While this is a proper discretization, it is not recommended for practical usage since
the force terms are not symmetric and therefore violate Newton’s third law of motion
[12, Section 2.1]. This can be seen more clearly by multiplication with mi and using
Newton’s second law of motion [12, Section 2.1]. Skipping the brackets 〈·〉, indicating
the approximation, to increase readability, results in the following

~Fi = mi~ai

= mi
d~vi
dt

= mi~gi −mi
1

ρi

n∑
j=1

Vjpj∇Wij +miνi

n∑
j=1

Vj~vj∆Wij

= ~F ext
i −

n∑
j=1

ViVjpj∇Wij +
n∑
j=1

miνiVj~vj∆Wij

= ~F ext
i −

n∑
j=1

~F p
i←j +

n∑
j=1

~F ν
i←j,

where ~F ext
i := mi~gi denotes the external forces acting on particle i,

~F p
i←j := ViVjpj∇Wij,

denotes the pressure force acting on particle i induced by particle j, and

~F ν
i←j := miνiVj~vj∆Wij,

the viscous forces acting on particle i induced by particle j. According to Newton’s
third law of motion, one expects the anti-symmetry ~Fi←j = −~Fj←i for all particles i

and j to hold true for all forces ~F . Obviously, this is in general not the case in the
stated approximation. It makes it necessary to modify it which is discussed in the
following.

2.2.1 Pressure Term

Using (1.5) for k = 1 results in an anti-symmetrical approximation for the pressure
term 〈

∇pi
ρi

〉
=

n∑
j=1

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij.

While this formulation is widely used in the SPH community, it is not very well-
suited for multiphase flows as it was shown in [6]. The reason is that the used SPH
operator (1.5) uses the gradient of the density ∇ρ which is not defined at interfaces
for multiphase flows. This problem occurs for all k 6= 0 in (1.5). In [6], it was
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therefore proposed to use (1.5) for k = 0 which yields the following anti-symmetrical
approximation which is also well-suited for multiphase flows〈

∇pi
ρi

〉
=
∑
j

mj
pi + pj
ρiρj

∇Wij.

2.2.2 Viscous Term

There are two problems with the straight-forward viscous term used in (2.5). The
first is the above-mentioned lack of anti-symmetry. The second problem is the second
derivative of the kernel function W . The problem does not lie in the computation of the
second derivative, since it can be performed analytically, but rather in the numerical
stability of the resulting method, because the second derivative of the kernel can lead
to a high sensitivity to particle disorder [29]. Without going into further details, the
following two approximations were suggested in [10] and [30] respectively.

ν∆~v =
∑
j

8mj
νi + νj
ρi + ρj

~vij · ~xij
‖~xij‖2 + η2

∇Wij,

ν∆~v =
∑
j

αchmj
~vij · ~xij
‖~xij‖2 + η2

∇Wij,

where η is a regularization constant to avoid the singularity for ‖~xij‖ = 0 often chosen
to be 0.1h, h is the smoothing length, α is a tuning parameter and c the speed of
sound.

One of the big disadvantages of SPH is that even for inviscid flows one needs to add
an artificial viscosity term or dissipative term to the equation of momentum, similar
to the viscous terms above, to stabilize the numerical scheme.

2.3 Time Stepping

In the application of the SPH formalism to the governing equations above, a simple
forward difference scheme was used or, to be more precise, an explicit Euler scheme [45]
to discretize the time derivatives on a single equation basis. It remains to discuss the
time integration with respect to all the variables as a system. Namely, the positions
~x, velocities ~v and densities ρ, which are the three parameters with time derivatives
occurring in the governing equations. For a general discussion, let A = A(t) be a scalar
or vector valued function in a single variable t which solves the initial value problem

Ȧ = f(t, A),

A(t0) = A0,
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for some function f . Let t0 < t1 < . . . < tN be a discretization of the interval [t0, tN ]
and ∆tk := tk+1− tk for k = 0, . . . , N − 1. Then, the explicit Euler scheme is given by

Ak+1 = Ak + ∆tkfk,

where Ak ≈ A(tk) denotes the computed approximation of A(tk) and fk := f(tk, Ak)
the evaluation of f at tk and Ak. Using this scheme on all three aforementioned
variables of interest (~x, ~v, ρ) yields in total a scheme of the following design

~vk+1 = ~vk +
∆tk
m

~Fk,

~xk+1 = ~xk + ∆tk~vk,

ρk+1 = ρk + ∆tkf
ρ
k ,

where fρk is the density update of ones choice, for example (2.2) or (2.4), at time tk.
One can see that the three equations are independent of each other and the order in
which they are solved does not matter. It is a so-called fully explicit scheme.

Another approach would be to use an implicit time stepping scheme like the implicit
Euler scheme

Ak+1 = Ak + ∆tkfk+1

for time integration. Again, applying this to the three variables of interest yields

~vk+1 = ~vk +
∆tk
m

~Fk+1,

~xk+1 = ~xk + ∆tk~vk+1,

ρk+1 = ρk + ∆tkf
ρ
k+1.

In this formulation, all parameters depend on each other, since Fk+1 and fρk+1 depend
on the positions ~xk+1. Updating the values requires to solve a nonlinear system in
each time step which is not recommended due to numerical efficiency. It is a so-called
fully implicit scheme.

The last possibility is to use a mixture of explicit and implicit schemes on the
different equations. Applying the explicit scheme to the velocity equation and the
implicit scheme to the positions and the densities results in the following so-called
first order semi-implicit scheme

~vk+1 = ~vk +
∆tk
m

~Fk,

~xk+1 = ~xk + ∆tk~vk+1,

ρk+1 = ρk + ∆tkf
ρ
k+1.

It was shown in [44] that this last scheme is to prefer since it is time reversible, which
can be seen by swapping the stepping indices k with k + 1, and therefore conserves
the energy.
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So far, only first order schemes were used. Obviously, one can follow the same
thoughts using higher order schemes which would then result in, for example, the
second order Störmer-Verlet scheme [46, Section 17.4]

~xk+ 1
2

= ~xk +
∆tk

2
~vk,

~vk+1 = ~vk +
∆tk
m

~Fk+ 1
2
,

~xk+1 = ~xk+ 1
2

+
∆tk

2
~vk+1,

ρk+1 = ρk + ∆tkf
ρ
k+1,

which was shown to be more stable [31, 44] but obviously requires a higher computa-
tional effort compared to the first order schemes due to the additional computation of
an intermediate position ~xk+ 1

2
.

2.4 Incompressibility

Enforcing incompressibility is an essential part of realistic and physical correct sim-
ulations of incompressible flows. There are different approaches to achieve incom-
pressibility and, depending on the chosen method, it is one of the most expensive
steps in a SPH simulation. The common basic idea of all methods is to compute the
pressure of each particle, necessary to enforce incompressibility, from the density. To
increase readability, the brackets 〈·〉, indicating the approximations, are dropped in
the following.

Before discussing the incompressibility in more detail, the following exemplary SPH
Algorithm 1, describing a single time step with step size ∆t, sums up the work so far.
Please note that Algorithm 1 is just an example for a basic SPH algorithm. It can be
modified by using a different approximation for the density computation as described
in Section 2.1 or a different time stepping scheme to compute ~vi(t+∆t) and ~xi(t+∆t)
as described in Section 2.3. Depending on the way the pressure is computed, the order
in which the quantities are computed might change or additional loops need to be
introduced.

In the following, the different algorithms describing the methods to enforce incom-
pressibility are based on Algorithm 1. The pseudo codes that are shown here in the
following for the different ways to enforce incompressibility are just examples and can
be modified similarly as just described for the basic SPH algorithm. According to
[16], the approaches to enforce incompressibility can be classified into four categories.
Namely

• Non-iterative equation of state (EOS) solvers,

• Non-iterative EOS solvers with splitting,
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Algorithm 1 Basic SPH

for all particle i do
ρi =

∑
j

mjWij //as in (2.4)

Compute pressure pi //Enforce incompressibility
end for
for all particle i do
~F press
i = −mi

ρi
∇pi //see Section 2.2

~F ν
i = −ν∆~vi //see Section 2.2
~F ext
i = mi~g

end for
for all particle i do

~vi(t+ ∆t) = ~vi(t) + ∆t
mi

(
~F press
i + ~F ν

i + ~F ext
i

)
~xi(t+ ∆t) = ~xi(t) + ∆t~vi(t+ ∆t)

end for

• Iterative EOS solvers with splitting,

• Pressure projection solvers.

Be aware, that there are many ways to classify the variants of SPH and that there
is no common classification system available in the literature. For example, [40] only
separates the different SPH methods into weakly compressible and truly incompressible
SPH methods. The classification proposed in [16], which is also used here, is restrictive
and not all SPH methods can be classified with it. In addition, it only considers some
very rough classification depending on the way the pressure is computed and does
not consider other possible time stepping schemes, density computations, boundary
representations, etc. Depending on how these things are employed, the basic Algorithm
1 might change significantly. Nevertheless, this classification system is a good first step
to show the wide variety of different SPH methods and gives a good introduction to
them.

2.4.1 Non-iterative EOS solvers

Non-iterative EOS solvers are based on computing the pressure pi of particle i from
an equation of state (EOS) relating the pressure with the density. There are different
equations of state used, like

pi = c2
sρi

proposed in [21], where cs denotes some artificial speed of sound, or

pi = k

((
ρi
ρ0

)γ
− 1

)
, (2.6)
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as in [30], where k and γ are constant parameters and ρ0 is the rest density of the
fluid. Algorithm 1 is an example for such a non-iterative EOS solver, if the pressure
in the algorithm is computed with an equation of state. According to [16], this class
of SPH solvers is in general outperformed by iterative or pressure projection solvers.
Nevertheless, due to their simple nature, they are easy to implement and also admit
a wide range of modifications to introduce and model different physical properties.

2.4.2 Non-iterative EOS solvers with splitting

This class of SPH solvers is also based on an EOS as described in the previous Section
2.4.1. The difference is that the concept of splitting is in addition introduced. Splitting
means that the forces acting on a particle are split into known forces (i.e. external
forces like gravitation and force fields, surface tension, viscous forces, etc.) and the
unknown pressure forces. From the known forces, the new velocities, positions, and
the new densities are predicted and, based on those values, the necessary pressures
to resolve the density errors, are computed. Algorithm 2 is an example for such a
non-iterative EOS solver with splitting.

Algorithm 2 Non-iterative EOS with splitting

for all particle i do
Compute all non-pressure forces ~F ext

i

predict velocity ~v∗i = ~vi + ∆t
mi
~F ext
i

end for
for all particle i do

predict density ρ∗i =
∑
j

mjWij + ∆t
∑
j

mj

(
~v∗i − ~v∗j

)
· ∇Wij //see Section 2.1

Compute pi from ρ∗i using an EOS //see Section 2.4.1
end for
for all particle i do

compute pressure force ~F p
i = −mi

ρi
∇pi //see Section 2.2

end for
for all particle i do
~vi(t+ ∆t) = ~v∗i + ∆t

mi
~F press
i

~xi(t+ ∆t) = ~xi(t) + ∆t~vi(t+ ∆t)
end for

According to [16], there is no comparison between non-iterative EOS solver with
and without splitting in literature yet (2014). As of my knowledge, this is still true
(2018). The reason might be - to the best of my knowledge - that nobody actually
uses non-iterative EOS solvers with splitting in practice. Nevertheless, it is a good
way to introduce the idea of splitting which is also used in the following categories of
SPH methods.
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2.4.3 Iterative EOS solvers with splitting

As the name suggests, the class of iterative EOS solvers with splitting also use the
idea of splitting the pressure and the non-pressure forces as proposed in Section 2.4.2.
In contrast to the methods presented so far, this class iteratively uses the computed
pressures to predict the positions and velocities again and recompute the pressures
until a certain maximum density fluctuation is reached. Algorithm 3 is an example
of such a procedure. An obvious disadvantage of these SPH methods is the higher

Algorithm 3 Iterative EOS with splitting

for all particle i do
Compute all non-pressure forces ~F ext

i

predict velocity ~v∗i = ~vi + ∆t
mi
~F ext
i

predict position ~x∗i = ~xi + ∆t~v∗i
end for
while Density fluctuations too big do

for all particle i do
predict density ρ∗i =

∑
j

mjW
∗
ij //as in (2.4), W ∗

ij := W (~x∗i − ~x∗j)

Compute pi from ρ∗i using an EOS //see Section 2.4.1
end for
for all particle i do

compute pressure force ~F p
i = −mi

ρi
∇pi //see Section 2.2

update predicted velocity ~v∗i = ~v∗i + ∆t
mi
~F p
i

update predicted position ~x∗i = ~x∗i + ∆t2

mi
~F p
i

end for
end while
for all particle i do
~vi(t+ ∆t) = ~v∗i
~xi(t+ ∆t) = ~x∗i

end for

computational effort necessary to compute each time step. In addition, the code is
more difficult to parallelize than for non-iterative solvers. Another drawback of this
class is that there is no convergence result on the inner iteration for determining the
pressures, at least to my knowledge. Nevertheless, the advantages of iterative solvers
include bigger time steps than for non-iterative solvers, which outweigh the higher
computational costs for each time step and therefore results in a possible speed up
of multiple magnitudes compared to non-iterative solvers [7]. In addition, due to the
stricter enforcement of the incompressibility, the resulting density field is closer to the
rest density than in non-iterative solvers.
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2.4.4 Pressure Projection

The idea of pressure projection methods is to solve a Pressure Poisson Equation (PPE)
resulting from the non-pressure forces, i.e.

d

dt
~v∗ = ~g + ν∆~v

and
d

dt
~v = ~g + ν∆~v − 1

ρ
∇p =

d

dt
~v∗ − 1

ρ
∇p.

Discretizing the time derivative on the left hand-side and applying the divergence on
both sides, using ∇ · ~v = 0 from the continuity equation for incompressible fluids and
substituting the predicted veloctiy ~v∗, yields

ρ0

∆t
∇ · ~v∗i = ∇2pi. (2.7)

Or, when substituting the left hand-side with the continuity equation,

ρ0 − ρ∗i
∆t2

= ∇2pi in Ω, (2.8)

∂pi
∂~n

= 0 on ∂Ω,

where ∂
∂~n

denotes the normal derivative. The solution of (2.8) is then the pressure
necessary to resolve the density fluctuations. Solving (2.8) is the biggest drawback
of pressure projection methods since it takes in general considerable computational
effort. In addition, it is not that easy to parallelize and, as far as I know, there are
no convergence results regarding a discretization of (2.8) with the SPH formalism. In
practice, when discretizing (2.8), the resulting linear system of equations is represented
by a sparse matrix due to the compact supports of the kernel functions used, and the
solver can be parallelized effectively as was shown in [15]. Algorithm 4 is an example
algorithm for such a pressure projection method.

2.5 Boundaries

This section is about the representation of boundaries in SPH which is in general not
an easy topic and many different ways to do this were developed in the past couple of
decades. It is not far fetched to claim that basically every publication covering SPH
dedicates a section to handling the boundaries. In Section 1.5.1 it was shown that
there is a problem when the support of the kernel function intersects the boundary.
The discretization performed in SPH shown in Section 1.3 might be inaccurate close
to the boundary due to missing particles, and therefore supporting points, for the
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Algorithm 4 Pressure Projection

for all particle i do
Compute all non-pressure forces ~F ext

i

predict velocity ~v∗i = ~vi + ∆t
mi
~F ext
i

end for
for all particle i do

predict density ρ∗i =
∑
j

mjWij + ∆t
∑
j

mj

(
~v∗i − ~v∗j

)
· ∇Wij //see Section 2.1

end for
solve PPE (2.8)
for all particle i do

compute pressure force ~F p
i = −mi

ρi
∇pi //see Section 2.2

end for
for all particle i do
~vi(t+ ∆t) = ~v∗i + ∆t

mi
~F p
i

~xi(t+ ∆t) = ~xi + ∆t~vi(t+ ∆t)
end for

numerical integration. In addition to the aforementioned difficulties, another crucial
problem arises. Namely, how to ensure that the walls are not penetrated by fluid
particles. In the following, to reduce the complexity of the topic, only the treatment
of solid wall boundaries is considered.

According to [36], the different methods to treat these wall boundaries can be sep-
arated into two groups. First, filling the walls with boundary or wall particles which
are used to ensure a covered support of the kernel functions close to the boundary.
These particles are often referred to as dummy or ghost particles [22, 33, 36, 37]. Sec-
ond, introducing artificial forces to cover for the surface integral (compare Section 1.2)
which does not vanish and to guarantee non-penetrability of the wall [18].

2.5.1 Dummy Particles

The dummy particle approach is based upon the idea to not just sample the fluids
with particles but also the solids. This can be done either on the fly during the com-
putation or in advance, before the computation. Sampling particles on the fly has
in general the advantages that non-penetrability of the boundaries can be guaranteed
more easily and that boundary conditions (e.g. no-slip or free-slip conditions) can
be enforced more accurately. The disadvantages of this approach include comparably
higher computational costs and that it is difficult to implement for complex shaped
walls. The advantages of the pre-sampled methods are that it is fairly simple to im-
plement, that it is considerably fast to compute and that even complex structures can
be represented with it. The main disadvantages of this approach is that one needs
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in general multiple layers of dummy particles (in general 2 or 3 layers) to be able to
guarantee non-penetration of the boundary by fluid particles and to get correct ap-
proximations of the physical quantities. The consequence of this is that thin structures
are problematic since they can only be represented with a sufficiently high resolution.
Figure 2.1 shows a sketch of a typical dummy particle wall.

Figure 2.1: Wall sampled with dummy particles.

Adami Boundary Condition

There are many ways how to use dummy particles to enforce impenetrability of the
walls, slip conditions, no-slip conditions, moving boundaries, etc. One method, which
uses dummy particles to represent the boundary, was presented in [36] by Adami et al.
It is therefore called the Adami Boundary Condition. It is explained in the following
since it is the method of choice for the simulations performed in Section 5.

First, the solids are sampled with multiple layers of equidistantly placed particles,
with placement distance ∆r as depicted in Figure 2.1. Each particle gets an initial
mass according to the rest density ρ0 and the placement distance ∆r. The idea of
the Adami Boundary Condition is then to extrapolate the pressure pw and the density
ρw of wall particles w from the surrounding fluid particles after the initial state. For
that, an equilibrium of forces is used on the boundary, assuming that the solid is not
moving,

0
!

=
d~vf
dt

= −∇pf
ρf

+ ~g,



2 Applying SPH 30

where ~v, p, ρ and ~g denote the velocity, pressure, density and external accelerations
respectively and the subscript f indicates that all the quantities are for fluid particles.
Reordering the terms and integrating along the line between a fluid and wall particle
yields ∫

∇p · d~l = ρf

∫
~g · d~l

and consequently
pw = pf + ρf~g · ~xwf ,

where the subscript w denotes the wall particles and ~xwf = ~xw − ~xf denotes the
distance vector between w and f . Note that the equation is for a single fluid particle.
Summation over all fluid particles and normalization with the kernel then results in

pw =

∑
f

pfWwf + ~g ·
∑
f

ρf~xwfWwf∑
f

Wwf

for the extrapolation of the wall pressure from the fluid pressure.
The next step is the extrapolation of the wall particle density ρw from the fluid

particles’ densities. The method proposed in [36] was originally for the usage with an
equation of state, like (2.6). It is therefore possible to compute the density from this
equation of state similar to

ρw = ρ0,f

(pw
k

+ 1
) 1
γ
.

In [36] both, free-slip and no-slip boundary conditions, were discussed. To impose a
free-slip boundary condition is considerably easily. It can be achieved by simply omit-
ting the viscous interactions (compare equation (2.5)) with wall particles. Imposing a
no-slip condition, which means ~v = 0 at the boundary, is slightly more complex due to
(1.2), which shows that the velocity ~v at any given point is the weighted average over
the neighboring velocities. If all fluid particles close to the boundary have a non-zero
velocity in the same direction and, according to the prior assumption, the boundary
is not moving, then the weighted average over all velocities on the boundary, which
includes fluid and boundary particles alike, cannot be 0. It is for this reason necessary
to assign an artificial velocity ~̃v to the boundary particles used for the computation of
the viscous forces. In [36], the following artificial velocity ~̃vw was proposed

~̃vw = −
∑

f ~vfWwf∑
f Wwf

,

which corresponds to the negative average velocity of the neighboring fluid particles.
Note that, for the sake of simplicity, this formulation is only valid for non-moving
boundaries. In [36], a general approach for moving boundaries was covered.
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Boundary Condition according to [33]

One of the main disadvantages of the Adami Boundary Condition is that thin struc-
tures pose a problem since multiple layers of particles are necessary to guarantee
non-penetration of the wall and a fully sampled support of fluid particles close to the
boundary. In addition, it was assumed that the initial particle placement is equidis-
tant, which is, together with the necessity of having multiple particle layers, not always
easy to guarantee, especially for complex shapes. There are some approaches how to
solve this problem. One is the method presented in [33], where the density of the
boundary particles is not fixed but extrapolated from the fluid particle and the den-
sity summation used does not depend on the mass of the neighboring particles.

ρf,i = mf,i

∑
j

Wij +mf,i

∑
k

Wik,

where the subscript f indicates a fluid particle, the sum over j the sum over the
neighboring fluid particles and the sum over k the sum over the neighboring boundary
particles. The volume of a particle can be expressed in the following way

Vb,i =
mb,i

ρb,i
=

1∑
k

Wik

,

where the subscript b indicates a boundary particle. The final fluid particle density is
then computed in the following way

ρf,i = mf,i

∑
j

Wij +
∑
k

ψb,k(ρ0,i)Wik,

with ψb,k(ρ0,i) = ρ0,iVb,k, where ρ0,i denotes the rest density of particle i. In [33], it
was shown that this approach is applicable for thin structures and even fluid structure
interactions with adequate force term formulations.

2.5.2 Boundary Forces

The second approach to enforce boundary conditions, beside the dummy particle ap-
proach presented in Section 2.5.1, is the usage of artificial forces. The advantage of
this approach compared to the dummy particles is that, in general, one only requires a
single layer of particles to represent the boundary [36, 44]. Disadvantages include that
the numerical integration is inaccurate due to missing particles close to the bound-
ary, that particles tend to stick to the surface because of it and that comparably large
forces can occur on the boundary to ensure non-penetration which, consequently, leads
to much smaller time steps [33]. There are many different ways [26, 31, 42] to enforce
boundary conditions with this method, but they shall not be subject of this thesis.
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2.6 Implementation

On of the biggest advantages of SPH compared to common mesh-based methods,
such as Finite Volume Method (FVM) or Finite Element Method (FEM), is that it is
comparably simple and, consequently, easy to implement. Nevertheless, there are some
details which require special attention and were not mentioned so far. One is how to
find neighbors. From Sections 1 and 2, one can see that SPH requires the evaluation of
sums over neighboring particles. Since an evaluation against every particle would lead
to a quadratic complexity, it is thus necessary to have a closer look at the neighborhood
search. Hence, the following Section 2.6.1 introduces the concepts used for that.

To be able to use SPH for bigger simulations and more and more elements to increase
the accuracy and resolution, it is necessary to parallelize the code and harness the full
computational power of modern computer systems. In the last decade, GPU (graphics
processing unit) computing became popular and, due to the simple basic algorithm
and comparably small interactions in terms of memory access, SPH is well-suited for
it. Section 2.6.2 covers this in detail.

2.6.1 Neighbor Search

Many computations in SPH are based on summations over neighboring particles. This
means that for each particle i one needs to find all neighboring particles. Of course,
one can follow a straight forward approach and just test every particle against every
particle. The obvious disadvantage of this method would be the resulting quadratic
complexity. To avoid this, kernel functions with compact support were introduced
in Section 1.5. Additionally, it is also necessary to find all the particles within the
compact support fast to avoid a quadratic complexity. In SPH this is achieved with
a so-called search grid . It is a regular three-dimensional grid which covers the whole
computational domain, where each grid cell has edge length of the kernel support
radius. Each grid cell needs to know the neighboring grid cells. One can then perform
a bucket sort algorithm [41, Section 8], or some other linear sorting algorithm, to sort
all particles according to the grid cells they are in. According to the choice of the size
of the grid cells, one can then find all neighbors within the kernel support radius just
looking through the cell the particle i is in and all the neighboring cells of it. The
great advantage of this method is that the number of neighbors, one needs to check
for each particle, is independent of the total number of the particles in the system. In
addition, the sorting can be performed in linear time and therefore does not impede
the overall complexity. The disadvantage is the slightly higher memory consumption
due to the necessity of storing the search grid. Figure 2.2 illustrates this search grid
in 2D. The red quads indicate the grid cells, the black rectangle the domain, the blue
spheres the particles and the gray circle the kernel support. One can also see that
the search grid does not necessarily need to coincide with the domain, but needs to at
least include the domain for this approach to work.



2 Applying SPH 33

Figure 2.2: 2D sketch of neighbor search grid.

2.6.2 GPU Computing

In the last years, GPU computing got quite popular for high performance computing
(HPC). This is due to the much better price to computation power ratio as shown
in figure 2.3, where a modern Intel eon E5-2698-v4 CPU is compared to a NVidia
GeForce GTX 1080 GPU in terms of price and computation power. The data for
figure 2.3 were retrieved from [3] and [4]. It can easily be seen that in terms of raw
computation power, GPUs outperform CPUs vastly while maintaining a much better
price to computation power ratio. The disadvantages of GPU computing include the

Intel Xeon E5-2698v4 NVidia GeForce GTX 1080
Price 3145.21ea 599.00e
Cores 20 2560

Frequency 2.2 GHz 1.607 GHz
GFLOPS 352 8873
Memory up to 1.54 TB 8 GB

Price/GFLOP 8.94e 0.0675e

aPrice taken from [2]

Figure 2.3: Comparison between high-end CPU and GPU.

difficult implementation compared to CPU computing, which stems from the difficulty
of parallelizing an algorithm efficiently for thousands of independent threads and the
more complex memory management, and the significantly smaller memory available.
Additionally, the performance of GPUs is only that high for working with single preci-
sion. It drops significantly using double precision. Despite these disadvantages, GPU
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computing got popular in the SPH community [42]. Due to its simplicity and low
memory requirements, SPH is well-suited for GPU computing and the aforementioned
disadvantages are not that severe with SPH. The difficulty of the implementation can
be reduced using for example the NVidia parallel computing platform for GPUs, called
CUDA [1].

Nevertheless, there are some difficulties with SPH on GPUs, especially when one
wants to use multiple GPUs or even multiple nodes. While this is a challenging
problem, there are solutions already available and presented to the public [11, 20].



3 PCISPH

A variant of SPH is the so-called predictive-corrective incompressible smoothed particle
hydrodynamics (PCISPH) method. It was first introduced in 2009 by Solenthaler and
Parajola [7] and, basically, belongs to the iterative EOS solvers with splitting, as
described in Section 2.4.3. The method already proves that the classification system is
by far not perfect since PCISPH can also be seen as a Pressure Projection Method as
in Section 2.4.4. But due to the strong assumptions made during the derivation, which
is presented in the following, it is not really solving the PPE anymore and therefore
categorized as an iterative EOS solver with splitting.

The idea of the method is to predict the pressures and the densities based on the
known forces and then correct the pressures until a given incompressibility condition
is fulfilled. In Algorithm 5, one can see that in the while-loop the pressure pi of each
particle i is corrected according to the predicted positions ~xi. This correction depends
on the function f which is defined as

f(ρ∗err,i) :=
ρ∗err,iρ

2
0

∆t2m2

(∑
j

∇W0j ·
∑
j

∇W0j +
∑
j

(∇W0j · ∇W0j)

) ,
where W0j is the kernel function for a prototype particle with fully filled neighbor-
hood. This means that the sums in the denominator are constant and can therfore be
precomputed. Note that this formula is only valid for constant mass m = mi, for all
particles i. For a proper derivation of f , see [7] or Section 3.1.

While a single time step in PCISPH is much more expensive to compute than a
time step for a EOS based SPH variant, like weakly compressible SPH (WCSPH), it
can admit a much bigger time step. Tests show, that this outweighs the additional
computational effort per time step and that PCISPH is in many cases much faster
than WCSPH. Another drawback of PCISPH is that adaptive time stepping is only
conditionally possible due to the pressure depending on the time step size ∆t. This is
especially problematic for simulations where shocks occur.

As far as I know, there is no work on the convergence of the above described
predictive-corrective scheme so far. A thorough investigation of it might lead to new
insights regarding PCISPH and SPH in general. Additionally, the derivation of the
function f as proposed in [7] is based on some assumptions like constant mass m for all
particles and introduces some approximation errors which are not investigated further
in [7] and, according to my knowledge, in no other publication.

35
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Algorithm 5 PCISPH

for all particle i do
Compute all non-pressure forces ~F ext

i

Initialize pressure pi = 0
Initialize pressure force ~F p

i = 0
end for
while Density fluctuations too big do

for all particle i do

predict velocity ~v∗i (t+ ∆t) = ~vi(t) + ∆t
mi

(
~F p
i + ~F ext

i

)
predict position ~x∗i (t+ ∆t) = ~xi(t) + ∆t~v∗i (t+ ∆t)

end for
for all particle i do

predict density ρ∗i =
∑
j

mjW
∗
ij //as in (2.4), W ∗

ij := W (~x∗i − ~x∗j)

predict density fluctuation ρ∗err,i = ρ∗i − ρ0

update pressure pi+ = f(ρ∗err,i)
end for
for all particle i do

compute pressure force ~F p
i = −mi

ρi
∇pi //see Section 2.2

end for
end while
for all particle i do

~vi(t+ ∆t) = ~vi(t) + ∆t
mi

(
~F p
i + ~F ext

i

)
~xi(t+ ∆t) = ~xi(t) + ∆t~vi(t+ ∆t)

end for
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3.1 Derivation of Pressure Correction f

This section is about the derivation of the pressure correction scheme used in PCISPH.
The derivation, which is presented in the following, is based closely on the derivation
presented in the original publication [7].

The derivation starts from the mass summation approach (2.4) for the computation
of the density. In addition, it is assumed that the masses mj of all particles j are
equal and constant mj = m, which corresponds to a single-phase flow. Equation (2.4)
therefore simplifies to

ρi(t) = m

n∑
j=1

W (~xi(t)− ~xj(t)), (3.1)

where the time dependency is stated explicitly. The goal, when enforcing incompress-
ibility, is to enforce the density to be always the same or close to the rest density
ρ0 of the fluid. Consequently, the logically next step is to look at the future density
ρi(t+ ∆t) of each particle i. The application of equation (3.1) to ρi(t+ ∆t),

ρi(t+ ∆t) = m
n∑
j=1

W (~xi(t+ ∆t)− ~xj(t+ ∆t)),

shows that for the computation of the next density, knowledge about the next positions
~xi(t + ∆t) is required, which is an obvious problem. To solve that problem, we first
split ~xi(t+ ∆t) into the current position ~xi and the displacement ∆~xi

~xi(t+ ∆t) =: ~xi + ∆~xi,

using a notation where an evaluation at time t is not stated explicitly. Substituting
this back into the above equation yields

ρi(t+ ∆t) = m

n∑
j=1

W (~xi − ~xj + ∆~xi −∆~xj). (3.2)

The next step is to use a first order Taylor expansion of the kernel

W (~xi − ~xj + ∆~xi −∆~xj)

in the point ~xi − ~xj which yields

W (~xi − ~xj + ∆~xi −∆~xj) ≈ W (~xi − ~xj) +∇W (~xi − ~xj) · (∆~xi −∆~xj) .

Note that this approximation is more accurate for small changes in the positions ∆~xi.
Plugging the Taylor expansion back into (3.2) results in

ρi(t+ ∆t) = m

n∑
j=1

(W (~xi − ~xj) +∇W (~xi − ~xj) · (∆~xi −∆~xj)) .
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One can see that the first term in the sum, together with the mass m, equals the
density ρi. One can therefore define the change in density ∆ρi of particle i

ρi(t+ ∆t)− ρi(t) =: ∆ρi = m
n∑
j=1

∇W (~xi − ~xj) · (∆~xi −∆~xj) .

Using the usual shortened notation for the kernel and rearranging terms results in

∆ρi = m

n∑
j=1

∇W (~xi − ~xj) · (∆~xi −∆~xj) = m∆~xi

n∑
j=1

∇Wij −m
n∑
j=1

∇Wij∆~xj. (3.3)

The problem of finding the new density was reduced to finding the displacements ∆~xi
of all particles i, which can be computed knowing the forces acting on the particles.
The only forces unknown are the pressure forces F p

i , since they depend on the unknown
pressures. So, one can assume that the particle position ~xi are already known according
to the known forces and that the particle displacements ∆~xi are only induced by the
pressure p. Using a Leap Frog integration scheme shows that the particle displacements
∆~xi can be computed as follows from the pressure forces F p

i

∆~xi =
∆t2

2

F p
i

m
. (3.4)

With that, the problem changes to finding the pressure forces F p
i for all particles i. In

[7], the same pressure force formulation as described in Section 2.2.1 was used, namely

F p
i = −m2

∑
j

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij.

Now, assuming that the densities ρi are approximately the rest density ρ0 of the fluid
for all particles i and that the pressures of the neighboring particles of particles i are
approximately equal to the same pressure p̃i, one gets

F p
i = −m2 2p̃i

ρ2
0

∑
j

∇Wij.

Substituting back to (3.4) yields

∆~xi = −∆t2mp̃i
ρ2

0

∑
j

∇Wij.

With this, the unknown displacement ∆~xi in (3.3) can be computed. The computation
of the neighboring particles’ displacement ∆~xj in (3.3) can be done as described in
the following.
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Assume that the displacement of a neighboring particle ∆~xj only depends on the
current particle i,

∆~xj = ∆~xj←i,

where the subscript notation on the right hand-side denotes the contribution of particle
i to the displacement of particle j. This assumption is probably the most critical since
it is in general wrong but necessary to avoid a linear system of equations and have
independent equations for each particle. Without this assumption, it is still possible
to separate the equations and fully parallelize the method, as it was shown in [15],
but this would lead to a different variant of SPH, namely implicit incompressible SPH
(IISPH), which is briefly explained in Section 4.2. With this assumption and the anti-
symmetry of the gradient of the kernel, ∇Wji = −∇Wij, one gets for the displacement
of a neighboring particle

∆~xj =
∆t2mp̃i
ρ2

0

∇Wij.

Substituting everything back to (3.3) results in

∆ρi = m∆~xi

n∑
j=1

∇Wij −m
n∑
j=1

∇Wij∆~xj

= −∆t2m2p̃i
ρ2

0

(∑
j

∇Wij ·
∑
j

∇Wij +
∑
j

∇Wij · ∇Wij

)
.

Solving for p̃i, introducing the density deviation to the rest density ρ∗err,i := ρ∗i−ρ0, and
precomputing the sums over the gradients of the kernel in the denominator according
to the particle distribution around a prototype particle and denoting them with W0j,
gives the final formula for f as in [7]

p̃i =
ρ2

0ρ
∗
err,i

∆t2m2

(∑
j

∇W0j ·
∑
j

∇W0j +
∑
j

∇W0j · ∇W0j

) =: f(ρ∗err,i). (3.5)

3.2 PCISPH in Engineering

In [7], PCISPH was developed for applications in computer graphics and there was
no investigation regarding the accuracy and its applicability to engineering problems.
Due to the increased performance compared to other SPH variants, like WCSPH, my
colleagues at ESS - Engineering Software Steyr GmbH and I decided to further inves-
tigate into PCISPH and evaluate if the method is applicable to engineering problems.
Consequently, the results presented in this section are based on the work of my col-
leagues Dr. Chong Peng, Dr Kamil Szewc, Dr Hui Cao, and myself and until now not
available to the public.
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3.2.1 Numerical Diffusion and Pressure Smoothing

According to our investigations, the basic PCISPH algorithm suffers from strong pres-
sure oscillations. There are two reasons for this. First, equation (3.5) is basically an
EOS similar to equation (2.6) but with adaptive stiffness constants. PCISPH therefore
suffers from the same so-called short length-scale noise [32] as other EOS based SPH
variants. Second, PCISPH uses a much larger time step than other EOS based SPH
variants which further contributes to the first problem. We introduced two solutions
to this problem: pressure smoothing and numerical diffusion.

The numerical diffusion term was taken as in [9] which changes the density update
to

ρi(t+ ∆t) = ρi + ∆t

(∑
j

mj~vij · ∇Wij + δhc
∑
j

2mj (ρi − ρj) ~xij
ρj
(
‖~xij‖2 + η2

) · ∇Wij

)
,

where (2.4) is used as basic update for the density, δ is a constant parameter, usually
chosen 0.1, c is the speed of sound, and η a parameter to avoid a singularity at
‖~xij‖ = 0.

The pressure smoothing was done by replacing the computed pressure pi for each
particle i by a smoothed pressure pi which is computed the following way

pi = χpi + (1− χ)
∑
j

mj

ρj
pjWij,

where χ denotes a smoothing parameter in [0, 1] with χ = 1 being equivalent to no
smoothing at all and χ = 0 to full smoothing of the pressure. This approach allows to
get rid of pressure spikes in single particles and thus stabilizes the simulation.

3.2.2 Time Stepping

In Section 2, the time derivatives were approximated using a simple first order semi-
implicit scheme. We switched to a second order Störmer-Verlet scheme as presented
in Section 2.3. The disadvantage of using the Störmer-Verlet scheme is an increased
computational effort, since an intermediate step needs to be computed. Nevertheless,
the advantages of increased stability and accuracy are significant.

3.2.3 Boundary Handling

As boundary representation, the Adami Boundary Condition as presented in Section
2.5.1 is used. The problem with the original Adami Boundary Condition is that it
requires an EOS to compute the density ρw of the a particles from the pressure pw of
a the particle. Since PCISPH does not have such an EOS, another way to compute
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the density is necessary. We use the following formula to extrapolate the density ρw
of a wall particle w from the densities ρf of the neighboring fluid particles

ρw =
1∑

f

Wwf

∑
f

ρfWwf .

It corresponds to the weighted average of the neighboring fluid particles’ densities.
Otherwise, the Adami Boundary Condition was employed as described in Section
2.5.1.

3.2.4 Multiphase PCISPH

The derivation shown in Section 3.1 was only done for single phase flows. In engi-
neering, there are many cases where multiple fluids play an essential role. Therefore,
a general numerical method needs to be able to handle these multiphase flows. As a
consequence, I investigated how to generalize PCISPH, as presented in [7] and Section
3.1, to be able to handle multiphase flows. The general methodology was to follow
the derivation presented in Section 3.1, identify potential problems and assumptions
that might be restricting for multiphase flows, and fix them using solutions known for
other SPH variants.

The first problematic assumption in Section 3.1 was the uniformity of the masses
mi of the particles. For the derivation of a general multiphase PCISPH method, it
is necessary to assume that each particle i holds a mass mi, which can vary between
particles. Next, the choice of the density formulation (3.1) is potentially problematic.
The obvious reason is that the formulation gives different values inside a fluid, where
the smoothing radius does not intersect any boundaries, free surfaces or interfaces
to other fluids, and close to the boundary of the fluid. To get rid of that problem,
(2.3) is employed to update the density which is well-known to be better suited for
multiphase flows. Using a semi-implicit time stepping scheme one gets for the positions
∆~xi = ∆t~vi(t+ ∆t) and with it from (2.3) the following formula for the density error

∆ρi = ∆t
∑
j

mj~vij(t+ ∆t) · ∇Wij =
∑
j

mj∆~xi · ∇Wij −
∑
j

mj∆~xj · ∇Wij.

One can see that this is basically the same result as (3.3). The difference is that there
is much more flexibility in the derivation since a different time stepping scheme would
lead to a different formulation here and only one of the most basic one, a semi-implicit
first order scheme, led to the same formulation as before. Following the same pattern
as in Section 3.1, one gets

∆~xi =
∆t2

2

F p
i

mi

for the displacement of particle i according to the unknown pressure forces F p
i acting

on particle i. Previously the next step was to express the pressure forces. As was
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discussed in Section 2.2.1, [6] and [40], the formulation used before is not well-suited
for multiphase flows. Therefore, the following formulation for the pressure force is
used

F p
i = −mi

∑
j

mj
pi + pj
ρiρj

∇Wij.

From here on, the derivation is similar to Section 3.1, just without the assumption that
the densities are equal to the rest densities ρ0. It results in the following updating rule
for the pressure in the case of multiphase flows

p̃i =
ρiρ
∗
err,i

∆t2

(∑
j

mj
ρj
∇Wij ·

∑
j

mj∇Wij +mi

∑
j

mj
ρj
∇Wij · ∇Wij

) =: f(ρ∗err,i),

where the sums in the denominator cannot be precomputed anymore since they depend
on the masses and densities of the neighboring particles which might change according
to the changes of the interfaces. This concludes the derivation and shows the changes
necessary in the main algorithm to enable the computation of multiphase flows with
PCISPH.



4 Other SPH Variants

SPH is a versatile method which is constantly adapted to new purposes, to simulate
more and more complex physical problems both, in fluid and solid mechanics, to in-
crease accuracy and performance and make the method more attractive for industrial
applications. This development led to many different variants of SPH which are recog-
nized in the SPH community. While this thesis is mainly focused on further developing
one of the variants, PCISPH, it is not unimportant to have some general knowledge
of other SPH variants currently in use.

4.1 WCSPH

The so-called weakly compressible smoothed particle hydrodynamics (WCSPH) method
is the variant of SPH which is most widely known and used and it is also the first
method of SPH for handling incompressible flows and should therefore not be missing
in any work related to SPH. It belongs to the non-iterative EOS solvers as described
in Section 2.4.1. The pressure pi in Algorithm 1 is computed from an equation of state
of the form (2.6). The rest of Algorithm 1 can be taken over one to one for WCSPH
which is why it is not repeated at this place.

In WCSPH, every time step can be computed comparably fast and easily since the
pressure of each particle only depends on a single algebraic equation, which does not
depend on any values of other particles. The problems include the “correct” choice
of the parameters γ and k in the EOS (2.6) to reach a sufficient stiffness and the
comparably small time step necessary for a sufficiently stiff EOS. Consequently, this
leads in general to higher computation times compared to other SPH variants despite
the fast computation of each time step. WCSPH has the advantage that it can be
adapted quite easily to simulate different physical behaviors including heat transfer
[19], solid mechanics [34], fluid-structure interactions [33], geophysics [27], fracture
simulation [8], and many more.

4.2 IISPH

A sub-variant of the pressure projection SPH methods is the so-called implicit incom-
pressible smoothed particle hydrodynamics (IISPH) method which was first presented
in [15]. This SPH method is interesting in the context of this thesis since it is the logical
development of PCISPH and therefore explained in greater detail in the following.
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In the derivation of the pressure correction of PCISPH in Section 3, two assumptions
were used to greatly simplify the equations. The first was that the pressure pi of
a particle i equals the pressure of all neighboring particles. The second was that
the displacement ∆~xj of a neighboring particle j only depends on the pressure pi of
the current particle. These two assumptions simplify the problem from a system of
equations to a single equation for each particle, which can be explicitly evaluated to
update the pressure. Starting from (3.4), using the same pressure force formulation
as in the standard PCISPH approach but without the two simplifications, then yields

∆~xi = −∆t2

2

∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij

=

(
−∆t2

2

∑
j

mj

ρ2
i

∇Wij

)
︸ ︷︷ ︸

~dii

pi +
∑
j

−∆t2

2

pj
ρ2
j︸ ︷︷ ︸

~dij

∇Wij

= ~diipi +
∑
j

~dijpj.

Substituting this back into equation (3.3) yields

∆ρi =
∑
j

mj

(
~diipi +

∑
j′

~dij′pj′ − ~djjpj −
∑
k

~djkpk

)
∇Wij, (4.1)

where the summation indices j and j′ denote summation over neighboring particles of
particle i and the summation index k denotes summation over the neighbors’ neighbors.
Theoretically, one can stop here and use this update formula to compute the pressures
pi to guarantee incompressibility with any solver for linear systems of equations. In
practice, however, it is not recommended to do so since the computational effort is
significantly higher than for comparable methods like PCISPH or WCSPH due to the
nested sums. In addition, setting up the system of equations is difficult, memory, and
time consuming, especially in a parallel manner. It was therefore proposed in [15] to
use a weighted Jacobi method to solve the linear system.

Let a linear system of equations be given by∑
j

aijpj = ∆ρi for i = 1 . . . n,

then the weighted Jacobi algorithm yields

pl+1
i = (1− ω) pli + ω

∆ρi −
∑

j 6=i aijp
l
j

aii
,

where ω ∈ (0, 1) is some constant parameter. To be able to apply this solver, one
requires knowledge about the diagonal elements aii and the sum over all the other
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elements
∑

j 6=i aijp
l
j. Consequently, it is necessary to extract these values from (4.1).

As a result, one gets

∆ρi = pi
∑
j

mj

(
~dii − ~dji

)
∇Wij︸ ︷︷ ︸

aii

+
∑
j

(∑
j′

~dij′pj′ − ~djjpj −
∑
k 6=i

~djkpk

)
∇Wij,

which results in the following weighted Jacobi iteration

pl+1
i = (1− ω) pli + ω

1

aii

(
∆ρi −

∑
j

(∑
j′

~dij′p
l
j′ − ~djjp

l
j −

∑
k 6=i

~djkp
l
k

)
∇Wij

)
. (4.2)

The final algorithm, as proposed in [15], is shown in Algorithm 6
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Algorithm 6 IISPH

for all particle i do
Compute density ρi =

∑
j

mjWij

Compute non-pressure forces F adv
i

Compute predicted velocity ~vadv
i = ~vi + ∆t

F adv
i

mi

Compute ~dii = ∆t2
∑
j

−mj
ρ2i
∇Wij

end for
for all particle i do

Compute predicted density ρadv
i = ρi + ∆t

∑
j

mj~v
adv
ij ∇Wij

Initialize pressure p0
i = 0

Compute aii =
∑
j

mj

(
~dii − ~dji

)
∇Wij

Compute ~dii = ∆t2
∑
j

−mj
ρ2i
∇Wij

end for
while Density fluctuations too big do

for all particle i do
Compute

∑
j

~dijpj = −∆t2
∑
j

mj
ρ2j
plj∇Wij

end for
for all particle i do

Compute pl+1
i as in (4.2)

end for
l = l+1

end while
for all particle i do
~vi(t+ ∆t) = ~vadv

i + ∆t
mi
~F p
i

~xi(t+ ∆t) = ~xi + ∆t~vi(t+ ∆t)
end for



5 Numerical Tests

In this section, some numerical experiments are discussed to present the improvements
described in Section 3 and the capabilities of SPH in general.

All tests were performed on a NVidia GeForce GTX 1080 graphics card.

5.1 Dam Break

The first test case is a dam break scenario with an obstacle placed in the way of the
fluid taken from [35]. It is a well known and often used scenario in the SPH community.
The domain is sized 3.22m×1m×1m. At the far end in x-direction, there is a cuboid
shaped reservoir of liquid held by a gate. At t = 0, the gate is opened and the fluid
can freely flow, hitting the obstacle, which is placed in the first quarter of the domain
on its bottom. There are several measurement points installed in the setup. H1 to H4

are points were the height was measured and P1 to P8 mark the position of pressure
sensors installed on the cuboid shaped obstacle. The fluid is assumed to be water.
Figure 5.1 shows the initial setup for this test. This test is especially well-suited to
show the performance of SPH for violent free-surface flows and impacts. The test case
was used to investigate the difference between WCSPH, the standard PCISPH as in
[7] and the improved PCISPH presented in Section 3. In addition, the method was
compared to experimental results from [35]. Figure 5.2 shows the pressure field of
the aforementioned three different numerical methods tested, where blue marks low
pressure and red high pressure. One can see that the pressure field of the standard
PCISPH approach is considerably different to the WCSPH and the modified PCISPH
while the other two are quite similar, qualitatively speaking. The standard PCISPH
method has considerably more artifacts, especially along the edges of the domain, and
is in general not as smooth as one would expect, like in Figure 5.2a.

Figure 5.3 compares the height of the fluid at the measurement points H2 and H4
of the numerical result for ∆r = 0.02m to the experimental data from [35]. One can
see that they provide a good match, although the waves are slightly delayed. Figure
5.4 shows a comparison of the pressure values at the measurement points P1 and
P3, again for a discretization size of ∆r = 0.02m. The data show that PCISPH has
problems with shocks, which is understandable from the derivation in Section 3, since
the method is based on fixing density errors within a single time step which can lead
to high pressure values. To get a better understanding, Figure 5.5 shows a close-up
of the shock at the same measurement points compared to the WCSPH method. The

47
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(a) Top View

(b) Side View

(c) Obstacle

Figure 5.1: Initial state for the Dam Break scenario.
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∆r [m] N
FPS ∆t [s] Tsim [h]

Speed-Up
PCISPH WCSPH PCISPH WCSPH PCISPH WCSPH

0.01833 229885 78.0 120.1 7.47× 10−4 7.66× 10−5 0.028 0.181 6.46
0.01222 634657 28.5 46.1 4.28× 10−4 5.67× 10−5 0.137 0.639 4.66
0.00916 1346169 12.4 21.1 2.99× 10−4 3.80× 10−5 0.450 2.082 4.63
0.00733 2447640 5.5 11.3 2.38× 10−4 2.53× 10−5 1.281 5.848 4.57

Table 5.1: Performance comparison of PCISPH and WCSPH for the dam-break test
case.

graph shows that WCSPH is clearly much better at handling the shock than PCISPH.
A performance comparison can be seen in Table 5.1, where ∆r denotes the particle

size, N the number of particles in the simulation, FPS the average computed time
steps per second, ∆t the average time step, and Tsim the time necessary to finish
the simulation. One can see that PCISPH is significantly faster despite the longer
computation time for each time step. The data for the table were provided by my
colleague Dr. Chong Peng.

5.2 Lid-Driven Cavity

The second test is a lid-driven cavity. The domain consists of a box sized 1m×1m×1m
filled with liquid. The lid of the box is moved with 1m

s
in the positive x direction.

Figure 5.6 depicts the setup. The simulation was performed for Reynold’s number
Re = 1000. The analysis of the results was performed for the steady state solution. A
qualitative comparison of the computed velocity field after reaching the steady state
can be seen in Figure 5.7. The characteristics of this flow are the big central vortex
and the two smaller vortices in the right and left lower corners. One can see that they
are clearly visible in both WCSPH and PCISPH.

Additionally, the velocities in x direction along the vertical line at x = y = 0.5 and
the velocity in z direction along the line y = z = 0.5 were compared to results from
[48] in Figure 5.8. Those results are based on the averaged velocities of 10 seconds in
the simulation after reaching the steady-state.

Table 5.2 compares the performance between PCISPH and WCSPH, where ∆r
denotes the particle size, N the number of particles in the simulation, FPS the average
computed time steps per second, ∆t the average time step, and Tsim the time necessary
to finish the simulation. The performance gain is significant. Again, the data for the
table are a courtesy of my colleague Dr. Chong Peng.
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(a) WCSPH

(b) Standard PCISPH

(c) Modified PCISPH

Figure 5.2: Results of the Dam Break at t = 0.4s.
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Figure 5.3: Dam-Break height comparison for ∆r = 0.02m.

Figure 5.4: Dam-Break pressure comparison for ∆r = 0.02m.
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Figure 5.5: Dam-Break pressure comparison, close-up.

∆r [m] N
FPS ∆t [s] Tsim [h]

Speed-Up
PCISPH WCSPH PCISPH WCSPH PCISPH WCSPH

0.04 29791 250.2 421.2 4.01× 10−3 3.61× 10−4 0.028 0.183 6.53
0.02 175626 52.7 103.7 2.38× 10−3 1.81× 10−4 0.221 1.497 6.77

0.0133 531441 14.4 30.5 1.48× 10−3 1.21× 10−4 1.303 7.567 5.81
0.01 1191016 6.2 12.9 1.03× 10−3 9.14× 10−5 4.326 23.515 5.44

Table 5.2: Performance comparison of PCISPH and WCSPH for the lid-driven cavity
test case.
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Figure 5.6: Lid-driven cavity test, setup.

5.3 Hydrostatic Equilibrium

This test is designed to test the stability and accuracy of the newly developed multi-
phase PCISPH approach. It consists of a simple unit box where the lower half is filled
with a higher density fluid with density ρ0 and the upper half with a lower density
fluid with density ρ1. Figure 5.9 depicts this setup. The only external force applied
is gravity. One expects the fluids to not move or mix. The resulting pressure was
compared to the analytical solution which can be computed from

p = ρgh+ patm,

where p denotes the pressure, ρ the density, g the gravity, h the height of the fluid
on top of the point where p is measured, and patm the atmospheric pressure acting
on top of the fluid. The atmospheric pressure was set to 0 for this test. Four tests
were performed with density ratios ρ1/ρ0 = 1, which equals a single-phase simulation,
ρ1/ρ0 = 0.8, ρ1/ρ0 = 0.4, and ρ1/ρ0 = 0.2. One can see from the results shown in
Figure 5.10 that the numerical results are nearly identical to the analytical solution
except for values close to the boundary, where strong deviations can be observed.
This is due to the employed Adami Boundary Condition. Important to note is that
the simulation was stable for arbitrary long simulation times. This was not the case
for the standard PCISPH. Due to this, it was not possible to perform the computation
with the standard PCISPH at all.
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(a) WCSPH

(b) PCISPH

Figure 5.7: Slice of lid-driven cavity steady-state solution in 3D.
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Figure 5.8: Computed velocity profiles compared to data from [48].

5.4 Rayleigh-Taylor Instability

The so-called Rayleigh-Taylor instability occurs on the interface of two fluids with
different densities, when the lighter fluid pushes the heavier fluid [39]. It is therefore
a well-suited phenomenon to test the newly developed multiphase flow approach for
PCISPH from Section 3.

Two tests were performed. The first one is a 2D scenario. The domain is 1m× 2m,
where the lower half is filled with a lighter fluid with density ρ0 and the upper half is
filled with a heavier fluid of density ρ1. The density ratio ρ0/ρ1 is set to 0.55. A sine
shaped instability, 1 − 0.15 sin(2πx), is introduced at the interface. Gravity ~g is set
to ~g = (0,−1) and the kinematic viscosity ν of both fluids is set to ν = 1/420. This
results in a Reynolds number of Re = 420. Figure 5.11 shows a sketch of the test case.
Figure 5.12 shows the results. The white lines, where applied, indicate the shapes of
the same test case computed with WCSPH in [38]. The qualitative comparison shows
that the values on the boundaries are different. This is due to the different employed
boundary conditions and because the used Adami Boundary Condition did not enforce
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Figure 5.9: Hydrostatic test, setup.

a true no-slip condition. On the other hand, one can see that the newly developed
PCISPH method allows finer details like the fine curls at the tips.

A second test case for a 3D Rayleigh-Taylor instability was performed. It is intended
as a proof of concept and to provide validation data to other developers, since data
for such 3D cases are non-existent. Analogously to the 2D case, the domain is cuboid
shaped 1m× 1m× 2m, where the lower half is filled with a fluid of density ρ0 and the
upper half with a denser fluid of density ρ1. The density ratio ρ1/ρ0 is again set to
ρ1/ρ0 = 0.55 and the gravity ~g to ~g = (0, 0,−1). The interface is not flat, parallel to
the x-y-plane, but sine shaped to introduce an initial instability. The Reynolds number
is again set to Re = 420. Figure 5.13 is a sketch of this setup. The evolution of the
3D interface is shown in Figure 5.14. The higher density fluid is set transparent to be
able to see the interface. Slices of the domain parallel to the x-z-plane at y = 0.25
and y = 0.5 are shown in Figure 5.15 for future reference.
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Figure 5.10: Hydrostatic test, results.
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Figure 5.11: Rayleigh-Taylor 2D test, setup.
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(a) t = 0s (b) t = 1s

(c) t = 2s (d) t = 3s

(e) t = 4s (f) t = 5s

Figure 5.12: Result of the 2D Rayleigh-Taylor instability computed with the modified
PCISPH.
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Figure 5.13: Rayleigh-Taylor test, setup.
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(a) t = 1s (b) t = 2s

(c) t = 3s (d) t = 4s

(e) t = 5s (f) t = 6s

Figure 5.14: Result of the Rayleigh-Taylor instability computed with the modified
PCISPH.
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(a) t = 0s, y = 0.25 (b) t = 3s, y = 0.25 (c) t = 5s, y = 0.25

(d) t = 0s, y = 0.5 (e) t = 3s, y = 0.5 (f) t = 5s, y = 0.5

Figure 5.15: Result of the 3D Rayleigh-Taylor instability at y = 0.25 and y = 0.5
computed with the modified PCISPH.



6 Conclusion and Future Work

SPH is a promising CFD method which will definitely gain even more popularity in the
next years despite the lacking mathematical background. Currently, the main disad-
vantage of SPH is the longer computation times compared to established methods. In
this work, another step towards reducing the computation time was presented, using a
modified PCISPH method. It was shown that high quality and physical correct results
can be obtained while significantly increasing the performance.

But there are still some topics that require further attention. This includes a more
detailed validation of PCISPH, testing different boundary methods (for example as
presented in Section 2.5), improving PCISPH for high density ratio multiphase flows,
improving the shock handling of PCISPH, testing different time stepping schemes for
the outer and inner iterations, and a convergence analysis of the inner iteration of
PCISPH. In addition, a direct comparison of other SPH variants, like IISPH [15] and
DFSPH [17] with the presented PCISPH and WCSPH would be interesting. Especially,
using different boundary methods. In general, the derivation of a proper error estimate
for SPH is an interesting but presumably very difficult task, since nobody was able
to do that in the last 40 years except for special cases [43]. Another interesting topic
would be to investigate the similarities of SPH and mesh based methods like FVM or
FEM. This might lead to a better understanding of the underlying math.

To conclude, SPH was repeatedly shown to be a serious alternative to mesh-based
methods but there is still a lot of work until it will gain broad acceptance for industrial
applications.
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