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Abstract

In this master’s thesis, a three-dimensional integrator for guiding center orbits of
charged particles in toroidal fusion devices is described. The integrator is intrinsically
designed to preserve the total energy and the perpendicular adiabatic invariant as
constants of motion up to computer accuracy, and thus belongs to the class of geometric
integrators. Furthermore, also the phase space volume is conserved.
The purpose of that integrator is to be used in Monte Carlo procedures to simulate
the particle distribution function where a box counting method (within spacial cells)
is used for the calculation of macroscopic plasma parameters. Such a computation is
needed for the evaluation of plasma response currents as well as charges caused by
external non-axisymmetric electromagnetic perturbations in tokamaks.
At the cost of orbit accuracy and exactness of time evolution, the integrator possesses
about the same computation speed as a conventional high order adaptive ODE
integrator, while already providing the particle’s coordinates and velocities at the
boundaries of spacial cells which is needed for the evaluation of the distribution function.
Thus, it is more efficient than a direct solution of the equations of motion with a high
order adaptive ODE integrator, where these quantities at the cell-boundaries have to
be computed additionally. Moreover, it is less sensitive to inaccurate representation
of the electromagnetic field, due to numerical inaccuracies resulting from statistical
noise in the data.
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Kurzfassung

In dieser Masterarbeit wird ein dreidimensionaler Integrator für die Gyrationszentrums-
trajektorien von geladenen Teilchen in toroidalen Fusionskammern präsentiert. Der
Integrator ist intrinsisch dafür entworfen, die Gesamtenergie, das magnetische Moment
der geladenen Teilchen und das Phasenraum-Volumen bis auf Computer-Genauigkeit
zu erhalten. Auf Grund dieser Eigenschaft gehört er zur Gruppe der geometrischen
Integratoren.
Das Einsatzgebiet dieses Integrators sind Monte-Carlo-Simulationen zur Berech-
nung der Teilchen-Verteilungsfunktion. Diesbezüglich ist es notwendig, Teilchen-
Koordinaten und -Geschwindigkeiten an den Rändern von dreidimensionalen Raum-
zellen zu berechnen. Mit Hilfe der Teilchen-Verteilungsfunktion können makroskopis-
che Plasma-Parameter ermittelt werden. Im Speziellen wird eine derartige Simulation
für die Berechnung von Plasma-Response-Strömen und -Ladungen auf externe, nicht-
axisymmetrische, elektromagnetische Störungen in Tokamaks durchgeführt.
Auf Kosten der Trajektoriengenauigkeit und der Exaktheit der Zeitentwicklung be-
sitzt dieser Integrator ungefähr die gleiche Rechengeschwindigkeit wie gewöhnliche
adaptive ODE-Integratoren höherer Ordnung, wobei im Gegensatz zu diesen Teilchen-
Koordinaten und -Geschwindigkeiten bereits an den Rändern von dreidimensionalen
Raumzellen berechnet werden. Dadurch wird eine Ersparnis an Rechenleistung erreicht,
die bei gewöhnlichen adaptiven ODE-Integratoren zusätzlich anfällt. Außerdem ist
der Integrator weniger sensitiv für ungenaue Darstellung des elektromagnetischen
Feldes auf Grund von numerischen Ungenauigkeiten, die von statistischem Rauschen
in den zu Grunde liegenden Daten stammen.
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Introduction

Chapter 1

Introduction

1.1 Background

In plasma physics, in particular in controlled fusion physics, kinetic theory is used
to explain macroscopic properties of the plasma. Each particle of a plasma can be
represented as a point in six-dimensional phase space (r,v). Due to the fact that
the physical problem with an exact microscopic description of a plasma, consisting
of a high number of interacting particles, is intractable, the microscopic theory was
developed further to kinetic theory. In kinetic theory one applies statistical concepts
and further sophisticated approximations in order to calculate macroscopic properties.
The key quantity in kinetic theory is the particle distribution function fα [1] which
can be implicitly defined by the number of particles of kind α per unit volume in
phase space near the point z = (r,v) at the time t

fα(r,v, t) d3rd3v. (1.1)

Following [2], an evaluation of the distribution function and/or its moments by direct
modelling of particle orbits in Monte Carlo simulations is widely used in plasma
physics (see e.g. codes like EUTERPE [3, 4] or ASCOT [5]).
A key issue in such codes is an efficient algorithm for the calculation of trajectories
(orbits) of non-interacting charged particles in complex (quasi-)stationary magnetic
and electric fields. The reason for that is the high number of test particle orbits which
is required to minimize the statistical error of such calculations, that scales inversely
with the square root of the number of test particles.
This issue is especially important in global transport modelling (see e.g. [6]) where
the profiles of plasma parameters are calculated self-consistently from test particle
trajectories which have to be traced over the profile relaxation (confinement) time.
In particular, such a computation is needed for the evaluation of plasma response
currents as well as charges caused by external non-axisymmetric electromagnetic
perturbations in tokamaks [7].
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Introduction

Within transport modelling, computation of stochastic test particle orbits [8] requires
the solution of guiding center equations [9, 10], which is usually performed with the
help of conventional adaptive high order ODE integrators.

Such adaptive high order ODE integrators have two big disadvantages: First, the
particle’s coordinates and velocities are naturally calculated at accuracy-adapted
integration steps. In order to calculate the distribution function, these quantities are
needed at the boundaries of defined cells, which involves further computational effort.
Second, high order spline-interpolation of the field quantities can lead to unwanted
oscillations in case of an inaccurate representation of the electromagnetic field (noise
in the data). Further, these high oscillations in the field quantities can destroy the
physical properties of the particle orbit.

For axisymmetric fusion devices an algorithm which is roughly an order of mag-
nitude more efficient than a standard high order adaptive ODE integrator and which
is less sensitive to noise in the field quantities was already developed [2]. However,
this particular code is only a two-dimensional integrator for charged particle orbits. If
one is interested in the particle motion inside an axisymmetric device with weak non-
axisymmetric perturbations (e.g. tokamak with ELM-mitigation-field), an algorithm
for a three-dimensional integrator must be developed.

Thus, one can formulate the following requirements for a three-dimensional inte-
grator for charged particle orbits in toroidal fusion devices:

1. Particle orbit-coordinates and velocities must be computed at the boundaries of
spacial three-dimensional cells.

2. The algorithm should be less sensitive to the accuracy of the representation of
the electromagnetic field (noise in the data).

3. Computational effort should be less than in a conventional adaptive ODE
integrators.

1.2 Overview

In chapter 2 such an integrator which satisfies the requirements from above is derived.
In order to reduce computational effort, one neglects the exactness of time evolution
and approximates field quantities with linear functions, which diminishes also the
sensitivity to noise in the representation of the electromagnetic field. The obtained
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integrator belongs to the class of geometric integrators, therefore it is called 3DGeoInt.

In order to evaluate the distribution function by direct modelling of particle or-
bits, coordinates and velocities must be computed at the boundaries of spacial cells.
Chapter 3 presents a simple method how space can be split into cells (tetrahedrons).

To calculate the particle orbit in a cell, the linearized field quantities for each and every
cell must be provided. In chapter 4 is described how these quantities are computed
and how the tetrahedron-specific algorithm-constants of the linearized set of equations
of motion are calculated.

Chapter 5 is the main ”numerical“ part in this thesis. An algorithm for a com-
putationally inexpensive calculation of the particle orbit inside a cell is developed.
From given entry coordinates and velocities, the particle’s exit coordinates and veloci-
ties at the respective point are computed by the Runge-Kutta method, applied in an
iteration procedure.

The calculated particle orbits are presented in chapter 6 in a qualitative manner. An
overview of the orbits of passing particles and trapped particles is given. Additionally,
the bounce time and bounce frequency are computed. Finally, orbits of axisymmetric
toroidal fusion devices with weak non-axisymmetric perturbation are calculated and
qualitatively analyzed.

In order to assess the algorithm’s accuracy and computation speed, several tests
are executed in chapter 7. For that purpose 3DGeoInt is compared to a conventional
adaptive ODE integrator. Additionally, also the effect of noise in the field quantities
is tested. Furthermore, the conservation of the canonical toroidal angular momentum
is examined.

In Appendix A the linearized set of equations which is derived in chapter 2 is
mathematically analyzed. The obtained results can further be used to optimize
3DGeoInt.

3
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Chapter 2

Derivation of the geometric integrator

2.1 Definition of a geometric integrator

Following [11], geometric integration is the numerical integration of a differential
equation, while preserving one or more of its ”geometric“ properties exactly within
computer accuracy. Many of these geometric properties are of crucial importance in
physical applications: preservation of energy, momentum, angular momentum, etc.
This definition is rather loose, whereas a subclass of geometric integrators is the class of
symplectic integrators, which have a more restricted definition. Symplectic integrators
[12, 13] possess, as a conserved quantity, a (slightly perturbed) Hamiltonian.
The particle orbits that are calculated with a geometric integrator do not necessarily
satisfy Hamilton’s equations of motion, as in the case of orbits computed with a
symplectic integrator.

In order to obtain a particle distribution function in six-dimensional phase space, we
are interested in the particle’s coordinates and velocities at the boundaries of a cell at
a certain time, as described in chapter 1. Hence, we must split the space into small
cells.
In each cell we approximate the exact equations of motion by a set of linear ordinary
differential equations, in order to be less sensitive to noise in the field quantities and
to save computation power. Additionally, we will also approximate the exact time
evolution by keeping the orbit’s exact geometry to reduce computational effort.
This linear set has two exact properties: it conserves the total energy and the magnetic
moment, thus the integrator belongs to the class of geometric integrators. Furthermore
it is ensured, that the orbits are divergence free in coordinate space.

4



Derivation of the geometric integrator

2.2 Guiding center equations in vector form and in

curvilinear variables

The equations of guiding center motion with w and J⊥, the total energy and the
perpendicular adiabatic invariant (both invariants of motion), can be written in a
rather simple symbolic equation, as derived in [10]:
The divergence free (Hamiltonian) form of drift orbits can be described by the lines
of force of the effective Morozov-Solov’ev field [9],

B∗ = ∇×A∗, (2.1)

where the effective vector potential is expressed through the magnetic field parame-
ters and the invariants of motion w (total energy) and J⊥ (perpendicular adiabatic
invariant) as following

A∗ = A +
v‖
ωc
B, v‖ = σ

(
2

mα

(w − J⊥ωc − eαΦ)

)1/2

, (2.2)

where A, B, ωc = eαB/(mαc) are the usual vector potential, the magnetic field
strength and the cyclotron frequency, respectively. Φ is the electrostatic potential,
and σ, eα, mα and c are parallel velocity sign, particle charge and mass and the speed
of light, respectively. Note that A∗ = cP/eα where P is the canonical momentum in
guiding center approximation.

The big advantage of this form is, that v‖ is a function of coordinates, already
treating the invariants of motion w = mαv

2/2 + eαΦ and J⊥ = mαv
2
⊥/(2ωc) as con-

stants. Hence, derivatives in (2.1) are computed treating v‖ as function of coordinates
given by (2.2).

The equations of guiding center motion, using the the effective Morozov-Solov’ev field,
are

ṙ = v‖
B∗

B∗‖
, B∗‖ = h ·B∗, (2.3)

with h = B/B being the unit vector along the magnetic field.
In curvilinear variables xi equations of motion (2.3) are

ẋi =
v‖εijk√
gB∗‖

∂A∗k
∂xj

, (2.4)

5
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where g is a metric determinant and covariant components of effective vector potential
A∗k are expressed via covariant components of vector potential Ak and of the magnetic
field Bk as follows

A∗k = Ak +
v‖
ωc
Bk. (2.5)

Introducing the notation

v2‖
2

= U =
1

m
(w − J⊥ωc − eαΦ) (2.6)

in order to avoid difficulties with the sign of v‖, we can write the equation of motion
for v‖ as

v̇‖ =
1

v‖
ẋi
∂U

∂xi
(2.7)

where U = U(x) and ẋi are given by (2.4). Treating v‖ as an independent variable
guiding center equations become a set of four equations

dxi

dt
=

1

B∗‖
√
g
· εijk

(
v‖
∂Ak
∂xj

+ 2U
∂

∂xj
Bk

ωc
+
Bk

ωc

∂U

∂xj

)
,

dv‖
dt

=
1

B∗‖
√
g
· εijk ∂U

∂xi

(
∂Ak
∂xj

+ v‖
∂

∂xj
Bk

ωc

)
. (2.8)

2.3 Geometric integrator: Neglect exactness of time

evolution

We can formally introduce the orbit parameter τ , related to time by dt = B∗‖
√
gdτ ,

and the set of guiding center equations becomes

B∗‖
√
gẋi =

dxi

dτ
= εijk

(
v‖
∂Ak
∂xj

+ 2U
∂

∂xj
Bk

ωc
+
Bk

ωc

∂U

∂xj

)
,

B∗‖
√
gv̇‖ =

dv‖
dτ

= εijk
∂U

∂xi

(
∂Ak
∂xj

+ v‖
∂

∂xj
Bk

ωc

)
. (2.9)

If τ is used as an independent variable of the ODE set, time evolution is obtained in
the implicit form integrating the above equation for t(τ) with B∗‖

√
g being a known

function of τ .
As it was described in chapter 1, a major goal of 3DGeoInt is computational efficiency.
Thus, one has to consider to make certain approximations at the cost of exactness.
In order to reduce this exact equation set to a linear set we notice that the common
factor B∗‖

√
g does not influence the geometry of the orbits, but only affects time

evolution which is not needed very accurately. Therefore this factor can be set to a

6
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constant within a cell, what makes implicit time dependence explicit.

Note, that due to this approximation, the exactness of time evolution is neglected and
therefore, the particle motion doesn’t satisfy Hamilton’s equations of motion anymore.
If one is interested in a symplectic integrator, that satisfies Hamilton’s equation of
motion, the implicitly time dependent differential equation dt = B∗‖

√
gdτ has to be

solved.

2.4 Approximate field quantities by linear functions

2.4.1 Introduction and effects

In order to reduce the integrator’s sensitivity to noise in the field quantities, one can
approximate the field quantities with linear functions in a cell, instead of a 5th order
spline interpolation, as it is done for convential adaptive ODE integrators [22, 23, 24].
A second benefit due to the approximation with linear functions occurs at the compu-
tation speed. Obviously a linear interpolation takes less computational effort than a
5th order spline interpolation.

Hence, the field quantities will be approximated by piecewise linear functions with
discontinuous first derivatives. The particle’s motion in an axisymmetric device can
be described by one single equation, due to the reduction of dimensionality. For
such axisymmetric systems, discontinuous first derivatives in the field quantities will
not have an effect on the physical properties. Briefly speaking, particle orbits will
stay closed in the poloidal plane. It is assumed, that for our purpose the effects of
discontinuous first derivatives in the field quantities in axisymmetric systems with
weak non-axisymmetric perturbations, are small enough.

2.4.2 Linearized equation set in standard form

Approximating the quantities Ak, Bk/ωc, Φ and ωc by linear functions, equation (2.9)
becomes a set of four linear equations. Note that quantities Ak, Bk/ωc and ωc are
linearly interpolated independently from each other. Although they are linked with
each other, mutual relations contain the metric tensor, so one can assume that this
tensor is modified in such a way that those relations hold.
Denoting the extended set of variables with zi where zi = xi for i = 1, 2, 3 and z4 = v‖,

7



Derivation of the geometric integrator

the linearized equation set (2.9) takes a standard form

dzi

dτ
= ailz

l + bi, (2.10)

where for i, l = 1, 2, 3 matrix elements are

ail = εijk
(

2
∂U

∂xl
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂xl
Bk

ωc

)
for 1 ≤ i, l ≤ 3,

ai4 = εijk
∂Ak
∂xj

for 1 ≤ i ≤ 3,

a4l = 0 for 1 ≤ l ≤ 3,

a44 = εijk
∂U

∂xi
∂

∂xj
Bk

ωc
, (2.11)

and components of vector bi are

bi = εijk
(

2U0
∂

∂xj
Bk

ωc
+

(
Bk

ωc

)

0

∂U

∂xj

)
for 1 ≤ i ≤ 3,

b4 = εijk
∂U

∂xi
∂Ak
∂xj

. (2.12)

Here, quantities denoted with subscript zero mean the value at the origin of the
coordinates,

U = U0 + xi
∂U

∂xi
,

Bk

ωc
=

(
Bk

ωc

)

0

+ xi
∂

∂xi
Bk

ωc
. (2.13)

Furthermore it is possible to express a44 as trace of ail for 1 ≤ i, l ≤ 3.
The diagonal elements of ail are

a11 = ε1jk
(

2
∂U

∂x1
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂x1
Bk

ωc

)
,

a22 = ε2jk
(

2
∂U

∂x2
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂x2
Bk

ωc

)
,

a33 = ε3jk
(

2
∂U

∂x3
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂x3
Bk

ωc

)
. (2.14)

The trace of ail is the sum over a11, a22 and a33 and can be written as an implicit sum
over i

tr{ail} = a11 + a22 + a33 = εijk(2
∂U

∂xi
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂xi
Bk

ωc︸ ︷︷ ︸
?

). (2.15)

By using the anticyclic behaviour of the Levi-Civita symbol (εijk = −εjik), the term

8



Derivation of the geometric integrator

marked by ? can be rewritten as

εijk
∂U

∂xj
∂

∂xi
Bk

ωc
= −εjik ∂U

∂xj
∂

∂xi
Bk

ωc
. (2.16)

Interchanging the names of i and j in the ?-term (i↔ j), leads to the expression

tr{ail} = εijk
(

2
∂U

∂xi
∂

∂xj
Bk

ωc
− ∂U

∂xi
∂

∂xj
Bk

ωc

)

= εijk
(
∂U

∂xi
∂

∂xj
Bk

ωc

)

= a44 for 1 ≤ i, l ≤ 3. (2.17)

9
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Chapter 3

Generating the mesh: Split space into
tetrahedrons

For a first examination of the working principle of 3DGeoInt a rather simple mesh is
used.
Since 3DGeoInt should calculate particle orbits for toroidal fusion devices, a torus-like
space (hollow cylinder) has to be split into finite cells. For splitting a three-dimensional
space into three-dimensional cells, tetrahedrons have been proved to be very practical.
[21]

First of all, a hollow cylinder is split into hexahedrons, as can be seen in figure
3.1. A cylindrical coordinate system (R,ϕ,Z) is used to define hexahedron-cells with
side lengths ∆R, ∆ϕ and ∆Z. This hexahedron-mesh fits to the geometry of the toka-
mak ASDEX Upgrade [18], but can be easily modified for any toroidal fusion device.
The size of the cell-elements is crucial for the accuracy of all further calculations. One
has to make a trade-off between calculation speed and accuracy.

In order to obtain tetrahedrons as cell-elements, the hexahedron is split into two
prisms, as one can see in figure 3.2. Prism 2 can be handled the same way as prism 1
after the inversion of all axes. Each prism is then subsequently split into 3 tetrahe-
drons, as one can see as well in figure 3.2. The 3 tetrahedrons can be identified by a
set of four vertices of the prism. Table 3.1 lists the tetrahedrons with their defining
vertices of the prism. Furthermore, the prism vertices (1,2,3,4,5,6) are mapped to
tetrahedron vertices (1,2,3,4) for each of the 3 tetrahedrons, as can be seen in table
3.2.
With this method of splitting the space into tetrahedron-cells it is guaranteed, that
every face of a tetrahedron matches exactly the opposite face of the neighbouring
cell with the same area and shape. In other words, every tetrahedron has only four
neighbouring tetrahedrons.

10



Generating the mesh: Split space into tetrahedrons

0
50

100
150

200

0
50

100
150

−50

0

50

100

X [cm]Y [cm]

Z
[c

m
]

Figure 3.1: Hexahedron-mesh:
A torus-like space (hollow cylinder) is split into hexahedron-cells (red),
with side lengths ∆R, ∆ϕ and ∆Z. The hollow cylinder is toroidally
closed, but only a small section is depicted in order to make the visibility
of the mesh better.
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(a) Prism 1

4
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(b) Prism 2

Figure 3.2: Tetrahedron-cells:
Each hexahedron of the mesh in figure 3.1 is split into two prisms, which
are in each case subsequently split into three tetrahedrons.
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Table 3.1: Identification of tetrahedrons from the vertices of the prism.

tetrahedron id vertices of prism
1© 1,2,3,4
2© 2,3,4,5
3© 3,4,5,6

Table 3.2: Mapping of prism vertices (1,2,3,4,5,6) to tetrahedron tetrahedron vertices
(1,2,3,4) for each of the 3 tetrahedrons

1© 2© 3©
tetrahedron prism tetrahedron prism tetrahedron prism
1 1 1 2 1 3
2 2 2 3 2 4
3 3 3 4 3 5
4 4 4 5 4 6

Every tetrahedron of the mesh can be described by four normal vectors ni of four
infinitely extended planes. Three of these planes go through the vertex with index-
number 1. The fourth plane defines the face, that is exactly on the opposite side of
vertex 1. Its normal distance to vertex 1 must be calculated.
Thus, a tetrahedron is fully described by four normal vectors nαi for the planes
α = (1, 2, 3, 4) and additionally for the fourth plane the distance to the first vertex
dα. (Obviously three elements of dα, which are the distance of three planes to vertex
1, are zero.) The location of the cell-element (tetrahedron) in space is given by the
coordinates of vertex 1.
Per definition all normal vectors nαi are calculated in such a way, that they point to
the inward of the tetrahedron.
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Chapter 4

Calculate tetrahedron-specific
quantities

4.1 Obtain the field quantities in the tetrahedron

The field quantities A (vector potential), B (magnetic field vector) and B (magnetic
field modulus) at the mesh-points are given by a code [22, 23, 24], that uses a 5th

order spline interpolation for the field quantity data from an equilibrium file in the
EFIT-format of a toroidal fusion device. Furthermore, also the poloidal magnetic flux
Ψ is given at the mesh-points.

Since 3DGeoInt is designed to integrate particle orbits for field quantities, that
are approximated by linear functions in a cell, these linear functions have to be
provided. In total the quantities Ak, Bk/ωc, Φ and ωc are independently from each
other linearly interpolated in between the given quantities at the mesh-points. Thus,
the respective quantity at the vertex number 1 and its gradient in the tetrahedron is
required.

4.2 Calculate tetrahedron-specific matrix-elements ail
and the components of the vector bi

In order to integrate the linear set of ordinary differential equations, the matrix-
elements ail and the components of the vector bi need to be computed for every
tetrahedron.

As explained in section (2.2), the parallel velocity v‖ is a function of coordinates. In
order to avoid difficulties caused by the sign of v‖, the quantity U is introduced

U =
v2‖
2

=
1

m
(w − J⊥ωc − eαΦ) , (4.1)
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where the total energy w and the perpendicular adiabatic invariant J⊥ are constants
of motion and the coordinate dependence of U lies in ωc and Φ.
By inserting the constants of motion, given by the quantities at the particle’s entry
point into the tetrahedron (w = mv2e.p./2 + eαΦe.p., J⊥,e.p. = mv2⊥,e.p./(2ωc,e.p.), U can
be written as

U =
1

m

( mv2e.p.
2

+ eαΦe.p.

︸ ︷︷ ︸
w

− mv2⊥
2︸ ︷︷ ︸

J⊥,e.p.·ωc

−eαΦ
)
, (4.2)

where ve.p. is the particle’s absolute velocity at the entry point and v⊥ is particle’s
gyration velocity around the guiding center perpendicular to the magnetic field.
Respectively v⊥,e.p. is the gyration velocity at the entry point. Φ is the electrostatic
potential and Φe.p. is respectively the electrostatic potential at the particle’s entry
point.
The particle’s absolute velocity is given by

v =
√
v2‖ + v2⊥. (4.3)

Some of the vector components of bi contain the quantity U0, which is U at the origin
of the coordinates. J⊥ is invariant all over the tetrahedron and ωc is a linear function
of the module of the magnetic field B. Thus, the particle’s perpendicular kinetic
energy at the origin of the coordinates can be calculated by using the quotient of the
magnetic field module B0 at the coordinate origin and Be.p. and the particle’s entry
point

mv2⊥
2

∣∣∣∣
xi=0

=
mv2⊥,e.p.

2ωc,e.p.︸ ︷︷ ︸
J⊥,e.p.

·ωc,0 =
m2v2⊥,e.p.c

2eBe.p.

· eB0

mc
=
mv2⊥,e.p.

2Be.p.

·B0, (4.4)

where ωc,e.p. is the cyclotron frequency at the entry point.

Due to the fact that also the electrostatic potential Φ is a linear function all over the
tetrahedron

Φ = Φ0 + xi
∂Φ

∂xi
, (4.5)

the quantity U0 at the coordinate origin can be expressed by

U0 =
1

m

(
mv2e.p.

2
+ eαΦe.p. −

mv2⊥,e.p.

2Be.p.

·B0 − eαΦ0

)
. (4.6)
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Furthermore the gradient of the quantity U is

∂U

∂xi
= −

v2⊥,e.p.

2Be.p.

· ∂B
∂xi
− eα
m
· ∂Φ

∂xi
. (4.7)

The gradient of the electrostatic potential, namely the electric field, can be separated
into components parallel and perpendicular to the magnetic field.

∂Φ

∂xi
= −Ei = −E‖,i − E⊥,i (4.8)

Therefore it is useful to introduce h = B/B as the unit vector along the magnetic
field, in order to express the electric field components

E‖,i =

(
− ∂Φ

∂xj
· hj
)
hi and

E⊥,i = Ei − E‖,i = − ∂Φ

∂xi
+

(
∂Φ

∂xj
· hj
)
hi. (4.9)

The electric field parallel to the magnetic field causes an acceleration of the particle’s
guiding center into the direction of the magnetic field. Whereas the electric field
perpendicular to the magnetic field causes an E×B-drift of the guiding center into the
third direction, perpendicular to both the magnetic field and the respective electric
field.
Thus, a decrease of the electrostatic potential energy eΦ in the direction of the mag-
netic field, namely an electric field E‖,i, yields to an increase of the parallel kinetic
energy and vice versa. Therefore, the parallel velocity v‖ is modified.

Things are more complicated, if the particle doesn’t move along the magnetic field,
but drifts across, due to an electric field E⊥,i. First of all we use a standard drift
ordering, where the electric field is weak, such that the E×B-drift velocity is of the
same order as the magnetic drift velocity. In this ordering ρ

L
<< 1, where ρ is the

Larmor radius and L is the spatial scale of the electromagnetic field. Thus, the kinetic
energy of the E×B-drift is quadratic in the Larmor radius and should be ignored in
this ordering. Therefore the E ×B-drift doesn’t change the electrostatic potential
energy.

Furthermore one has to distinguish in between uniform and not uniform magnetic
fields. In the first case, if the magnetic field is uniform, there is no magnetic field
drift present and the cross-field drift is purely an E×B-drift. Such a drift goes along
contours of Φ by definition. The electrostatic potential Φ, respectively, stays constant
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along the drift orbit. Thus, the electrostatic potential energy eΦ remains unchanged
and the parallel velocity v‖ is not modified.
If the magnetic field is not uniform, magnetic field drifts occur and such drifts do
not need to go along contours of Φ. But the E×B-drift crosses contours of B, and
since J⊥ is invariant, the changing magnetic field causes a change in the perpendicular
gyration velocity v⊥. Thus, a decrease of the electrostatic potential energy, yields to
an increase of kinetic perpendicular gyration energy and vice versa. Once again the
parallel velocity v‖ is not modified.

If we insert the calculated quantities U0, ∂U
∂xi

into equation (2.11) and (2.12), and use
Bk
ωc

= hk · cmeα , we obtain for the matrix elements

ail = εijk
[

2cm

eα

(
−
v2⊥,e.p.

2Be.p.

· ∂B
∂xl
− eα
m
· ∂Φ

∂xl

)
∂

∂xj
hk

+
cm

eα

(
−
v2⊥,e.p.

2Be.p.

· ∂B
∂xj
− eα
m
· ∂Φ

∂xj

)
∂

∂xl
hk

]

= −
v2⊥,e.p.

2Be.p.

· cm
eα
· εijk

(
2
∂B

∂xl
∂

∂xj
hk +

∂B

∂xj
∂

∂xl
hk

)

︸ ︷︷ ︸
αil

−c · εijk
(

2
∂Φ

∂xl
∂

∂xj
hk +

∂Φ

∂xj
∂

∂xl
hk

)

︸ ︷︷ ︸
βil

for 1 ≤ i, l ≤ 3,

ai4 = εijk
∂Ak
∂xj

for 1 ≤ i ≤ 3,

a4l = 0 for 1 ≤ l ≤ 3,

a44 = −
v2⊥,e.p.

2Be.p.

· cm
eα
· tr{αil} − c · tr{βil} for 1 ≤ i, l ≤ 3, (4.10)

and for the components of vector bi
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bi =
cm

eα
· εijk

[
2

m

(
mv2e.p.

2
+ eαΦe.p. −

mv2⊥,e.p.

2Be.p.

·B0 − eαΦ0

)
∂

∂xj
hk

+hk,0 ·
(
−
v2⊥,e.p.

2Be.p.

· ∂B
∂xj
− eα
m
· ∂Φ

∂xj

)]

=
cm

eα
· εijk

[(
v2e.p. −

v2⊥,e.p.

Be.p.

·B0

)
∂

∂xj
hk −

v2⊥,e.p.

2Be.p.

· ∂B
∂xj
· hk,0

]

−c · εijk
[
2 (Φ0 − Φe.p.) ·

∂

∂xj
hk +

∂Φ

∂xj
· hk,0

]

for 1 ≤ i ≤ 3,

b4 =

(
−
v2⊥,e.p.

2Be.p.

· ∂B
∂xi
− eα
m
· ∂Φ

∂xi

)
· εijk ∂Ak

∂xj
(4.11)

where hk,0 is the unit vector along the magnetic field at the coordinate origin.
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Chapter 5

Calculation of the orbit in a
tetrahedron

5.1 Introduction

The calculation of the orbit in a tetrahedron is done by the routine pusher_tetr_orb.f90.
As one can see in section (3), the space has to be split into small cells (tetrahedrons)
for our purpose. These tetrahedrons are given by four planes α, that are described by
inward pointing normal vectors nαi , and the coordinates of the vertex with index 1.
Three out of these four planes pass through this vertex with the index 1. Additionally
for the fourth plane the distance to the first vertex dα is given. (Obviously three
elements of dα are zero.)

A particle enters this tetrahedron at a given position xie.p. with the parallel velocity
v‖,e.p. and the perpendicular velocity v⊥,e.p.. Furthermore the respective plane (iface),
through which the particle enters the tetrahedron, must be defined. The exact
equations of motions are approximated in these tetrahedrons by a linear set of
ordinary differential equations (2.9). The result of this initial value problem is the
point of intersection xi(τ) in between the orbit and the tetrahedron (the point, where
the particle leaves the tetrahedron) and v‖(τ) at this point. For the calculation of
this implicitly τ -dependent set of ODEs the Runge-Kutta method is used. Usually,
a numerical standard approach is to guess an integration time (in our case τ) and
iteratively repeat the Runge-Kutta method, until the respective exit point is found.
Since the goal of 3DGeoInt is to calculate a vast amount of orbits, a high number of
"orbit-pushings" through tetrahedrons has to be computed. Therefore the calculation
of the orbit in a tetrahedron has to be as efficient as possible. In the following
subsections the functional principle of the routine pusher_tetr_orb.f90 is explained
in detail.
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5.2 Approximate solution of τ to pass the tetrahe-

dron

To find the point of intersection in between the orbit and the tetrahedron (exit point),
first of all one has to integrate the set of ODEs (2.9). Furthermore one has to find a
way how to determine the point of intersection. The four faces of the tetrahedron are
given by four infinitely extended planes, more specifically by their normal vectors nαi .
To understand through which of these four planes the orbit leaves the tetrahedron,
intersection points with all four planes have to be calculated.

As one can easily see in figure 5.1, the point of intersection that can be reached
in the smallest positive "time" τ is the respective one.
As explained above, the calculation of the orbits should be as efficient as possible.
That’s why the better the guessed τ for the Runge-Kutta method can be approximated,
the more efficient the integrator will be. The first goal is to find an approximate
solution for the guessed τ .

5.2.1 Approximation to integrate the set of ODEs

The approach that is used to obtain a good guess for τ is to simplify the set of ODEs
by setting the implicitly τ -dependent variables to constants of motion. The set of
ODEs can then be analytically solved.

As one can see in section (2.2) the linear set of ordinary differential equations can be
put in the standard form (2.10):

dzi(τ)

dτ
= ailz

l(τ) + bi,

where zi(τ) = xi(τ) for 1 ≤ i ≤ 3 and z4(τ) = v‖(τ).
If we consinder the equation of motion of v‖ (2.7) in the standard form (2.10), dv‖

dτ
has

the form
dv‖(τ)

dτ
= a44 · v‖(τ) + b4. (5.1)

Since Ak, Bk
ωc
, Φ, and ωc are independently linearly interpolated in the tetrahedron,

a44 and b4 are constants. As a first approximation, we set v‖(τ) = v‖,const. all over the
tetrahedron.
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xi
e.p.

1

23

← xi(τ)

Figure 5.1: Intersections in between the orbit and the cell’s faces:
For a better understanding, the 3D-cell (tetrahedron) is depicted as a
2D-triangle. The figure shows the particle’s orbit, starting at xie.p., the
particle’s entry point into the tetrahedron. The cell is left by the particle at
point 1©, the intersection in between the orbit and one of the tetrahedron’s
faces. Further on, the particle will have more intersections with other
planes at the points 2© and 3©, respectively. Obviously, the right exit point,
through which the particle will leave the tetrahedron, is the intersection
point that can be reached in the smallest positive "time" τ .

This approximation enables us to integrate equation (5.1) and one obtains

v‖(τ) = (a44 · v‖,const. + b4)τ + v‖,e.p., (5.2)

where v‖,e.p. = v‖(τ = 0) is the parallel velocity at the entry point of the tetrahedron.

The linear set of ODEs for the coordinates xi in standard form is

dxi(τ)

dτ
=

dzi(τ)

dτ
= ailz

l(τ) + bi for 1 ≤ i ≤ 3. (5.3)

By splitting the matrix multiplication ailzl(τ) into two terms 1 ≤ l ≤ 3 and l = 4, one
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gets
dxi(τ)

dτ
= ailx

l(τ) + ai4z
4(τ) + bi for 1 ≤ i, l ≤ 3, (5.4)

where z4(τ) = v‖(τ) can be replaced by the approximation for v‖(τ), namely equation
(5.2):

dxi(τ)

dτ
= ailx

l(τ) + ai4(a
4
4 · v‖,const. + b4)τ + ai4v‖,e.p. + bi for 1 ≤ i, l ≤ 3. (5.5)

Once again it is necessary to set the τ -dependent variable constant in order to be
able to integrate the differential equation: xl(τ) = xlconst.. It is easy to analyze, which
values can be taken by xlconst.. Obviously only coordinates xl that are inside the
tetrahedron are allowed as constants.

The integration over dτ yields

xi(τ) =
1

2
ai4(a

4
4 · v‖,const. + b4)τ 2 + (ai4v‖,e.p. + bi + ailx

l
const.)τ + xie.p., (5.6)

where xie.p. = xi(τ = 0) are the coordinates of the particle’s entry point into the
tetrahedron.

The point of intersection in between the orbit and the tetrahedron must lie on one
of the four planes that span the tetrahedron. By multiplying the normal vectors nαi
of the 4 planes (α = 1 . . . 4) with the equation for xi(τ), the result is the distance
in between xi(τ) and the plane α, that passes through the coordinate origin. The
particle leaves the tetrahedron, when this distance is zero.

nαi · xi(τ)︸ ︷︷ ︸
dist

!
=0

=
1

2
nαi ·ai4(a44 ·v‖,const.+ b4)(τα)2 +nαi · (ai4v‖,e.p.+ bi+ailx

l
const.)τ

α+nαi ·xie.p..

(5.7)
Furthermore one hast to subtract dα, since one of the four planes is not passing
through the origin, but is in distance d from the origin. (Three elements of dα are
zero.)
τα is a vector with 4 τ -values that solves the quadratic equation for the respective
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plane α. Thus one obtains four quadratic equations for τα:

1

2
nαi · ai4(a44 · v‖,const. + b4)︸ ︷︷ ︸

aα

(τα)2 + nαi · (ai4v‖,e.p. + bi + ailx
l
const.)︸ ︷︷ ︸

bα

τα + nαi · xie.p. − dα︸ ︷︷ ︸
cα

= 0

(5.8)

1

2
aα(τα)2 + bατα + cα = 0 (5.9)

5.2.2 Estimation of v‖,const. and xlconst.

In order to obtain an approximative analytical value of τα, that is as close as possible
to the value, that can be later numerically calculated by an iterative use of the
Runge-Kutta method, the following assumptions are made:

1. The parallel velocity v‖ doesn’t change while the particle is passing the tetrahe-
dron.

v‖,const. = v‖,e.p.

2. The Matrix ail = 0 for 1 ≤ i, l ≤ 3. This is equivalent to the assumption of
setting xlconst. to the coordinate origin.

xlconst. = 0

5.2.3 Calculate the approximate solution of τ

The point of intersection in between the orbit and the tetrahedron is very likely the
one, that can be obtained with the smallest τ of τα. If the real orbit passes the
tetrahedron, definitely the respective plane is the one, that can be reached in the
smallest positive "time" τ . But since we made approximations in order to be able to
integrate the set of ODEs, this law is no longer guaranteed to be true. The constants
xlconst. and v‖,const. are in reality dependent on τ and therefore the real orbit might
leave the tetrahedron through a different face than the approximated orbit. Figure
5.2 depicts a situation, where xl(τ) and v‖(τ) are not constant during motion and
thus, the approximated orbit differs from the real orbit.
Nevertheless, we will look for the smallest τ of τα to get an approximate solution of τ
to pass the tetrahedron.

22



Calculation of the orbit in a tetrahedron

xi
entry point

xi
exit point

xi
approx. exit point

xi(τ) ↓

↑ xi
approx.(τ)

ab

Figure 5.2: Influence of the approximation xl(τ) = xlconst. and v‖(τ) = v‖,const. on
the orbit: For the real orbit (red) the quantities xl(τ) and v‖(τ) are not
constants during motion, whereas they are ones for the approximated
orbit (blue). Since the analytical approximation of integration variable
τ is done for approximated quantities, the law that the right exit point
is reached in the smallest positive "time" τ , is not guaranteed. For the
approximated orbit, the intersection point with a plane that is reached
in smallest positive τ is located at plane a, whereas the real exit point is
located at plane b.

The general solutions of equation (5.9) for τα are

τα1 =
−bα +

√
(bα)2 − 2aαcα

aα
and

τα2 =
−bα −

√
(bα)2 − 2aαcα

aα
(5.10)
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with the constants

aα = nαi · ai4(a44 · v‖,e.p. + b4),

bα = nαi · (ai4v‖,e.p. + bi) and

cα = nαi · xie.p. − dα. (5.11)

One can easily show, that cα ≥ 0. The quadratic equation coefficient c is zero, if the
orbit leaves the tetrahedron through the same face where it entered (the tetrahedron).
In all other cases, it is greater than zero. Mind the case, where the particle leaves the
tetrahedron through the face, where the plane doesn’t pass through the origin. In
this case ni · xie.p. < 0, but the respective d < 0, thus c > 0.
In principle one has to make sure, that the discriminant (bα)2 − 2aαcα is positive,
otherwise no real solutions for orbit-tetrahedron-intersections can be found.

One can show, that for the inequality

0 < τα1 < τα2

0 <
−bα +

√
(bα)2 − 2aαcα

aα
<
−bα −

√
(bα)2 − 2aαcα

aα
(5.12)

the following solutions exist:

aα < 0, bα > 0 and
(bα)2

2aα
< cα < 0 (5.13)

Whereas for the inequality

0 < τα2 < τα1

0 <
−bα −

√
(bα)2 − 2aαcα

aα
<
−bα +

√
(bα)2 − 2aαcα

aα
(5.14)

the following solutions exist:

aα > 0, bα < 0 and 0 < cα <
(bα)2

2aα
(5.15)

Furthermore one also has to consider the inequality

τα1 < 0 < τα2

−bα +
√

(bα)2 − 2aαcα

aα
< 0 <

−bα −
√

(bα)2 − 2aαcα

aα
(5.16)
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with the solutions
aα < 0 and cα > 0 (5.17)

and the inequality

τα2 < 0 < τα1

−bα −
√

(bα)2 − 2aαcα

aα
< 0 <

−bα +
√

(bα)2 − 2aαcα

aα
(5.18)

with the solutions
aα > 0 and cα < 0. (5.19)

If the discriminant becomes zero (c = (bα)2

2aα
, τα = − bα

aα
), or cα becomes zero (τα = −2bα

aα
)

there are solutions for

aα > 0 , bα < 0 or

aα < 0 , bα > 0. (5.20)

In our problem cα ≥ 0, that’s why we can neglect the solution τα1 . Furthermore the
probability, that the discriminant is zero, is very low, thus we will also neglect this
case. In conclusion the smallest τ can be found among the following solutions:

τα = −2bα

aα
for c = 0, or

τα =
−bα −

√
(bα)2 − 2aαcα

aα
for aα < 0, or

τα =
−bα −

√
(bα)2 − 2aαcα

aα
for aα > 0 and bα < 0. (5.21)

In order to calculate the smallest τ with the least computational power, one must
compute the coefficients aα, bα and cα for all four planes. If cα > 0, one has to validate,
if the discriminant (bα)2 − 2aαcα is positive. Only those τα have to be calculated,
where the discriminant is positive, and one can discard the calculation, if both aα and
bα are positive. Inevitably τα for c = 0 must be computed.
Obviously the guessed τ is the smallest among the calculated positive values. We
assume that the particle will leave the tetrahedron through the respective face α.

5.2.4 No approximated analytical positive solution for τ exists

Furthermore one has to consider a special case, where the analytical approximation
for τ fails, and therefore no positive solution for τ exists. As described above, in
order to obtain an approximative analytical value of τ , v‖,const. was set to v‖,e.p.. Let’s
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consider an orbit that enters a certain face, turns around close to this face and leaves
the tetrahedron through the same face as it entered. (See figure 5.3) According to the
described analytical approximation, in this case the quadratic equation coefficient c is
zero and the solution for τ can be obtained by

τ = −2b

a
,

where both a and b depend on v‖,const..
The approximation v‖,const. = v‖,e.p. is not valid anymore in this special case, because
v‖(τ) changes sign when the orbit turns around. Due to neglecting the change of sign
in the approximation, τ yields a negative and therefore invalid result.
Since the considered orbit turns very close to the face, no approximate analytical
solutions with the other faces exist. Whereas, a solution should only exist with the
face, through which the particle entered.

This special case, where no approximated analytical positive solution for τ exists, will
be treated separately in section (5.4).

xi
entry point

xi
exit point

xi(τ) ↓

Figure 5.3: Orbits makes a turn close to the incoming face:
Since the approximation v‖,const. = v‖,e.p. is not valid anymore, the analyt-
ical approximation can yield an invalid result.
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5.3 Calculate the orbit with the Runge-Kutta method

The following section is loosely based on [14].

In order to obtain the particle’s coordinates xi(τ) and v‖(τ) for a certain τ , the
implicitly τ -dependent differential equation

dzi(τ)

dτ
= ailz

l(τ) + bi︸ ︷︷ ︸
f(zl(τ))

, (5.22)

where xi(τ) = zi(τ) for 1 ≤ i ≤ 3 and v‖(τ) = z4(τ), has to be solved for the initial
values xi0 = xi(τ0) and v‖,0 = v‖(τ0).
The subroutine rk4, which uses the classical 4th order Runge-Kutta method, is used
to solve this initial value problem numerically.

The classical 4th order Runge-Kutta method is a numerical solution method to
solve initial value problems of ordinary differential equations. Hence, differential quo-
tients are approximated by difference quotients. Obviously for non-linear functions,
errors will occur necessarily, due to neglecting higher order terms of the Taylor series
expansion. These errors can be reduced by combining various difference quotients.
The classical 4th order Runge-Kutta method is such a method, that compensates
discretization errors up to the 3rd derivative.

The set of ordinary differential equations

dzi(τ)

dτ
= f(zl(τ)), zl0 = zl(τ0) (5.23)

is a 1st order initial value problem. For a certain step-size h, the classical Runge-Kutta
method for calculating the approximation value uj+1 ≈ zi(τj+1) has the procedure
function

Φ(τj, uj, h, f) =
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4, (5.24)
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with the four difference quotients

k1 = f (τj, uj) ,

k2 = f

(
τj +

h

2
, uj +

h

2
k1

)
,

k3 = f

(
τj +

h

2
, uj +

h

2
k2

)
,

k4 = f (τj + h, uj + hk3) . (5.25)

Thus, the recursion equation to calculate the approximation is

uj+1 = uj + h · Φ(τj, uj, h, f)

= uj +
h

6
(k1 + 2k2 + 2k3 + k4) , i = 0, 1, . . . (5.26)

The difference quotient k4 for 1 ≤ i ≤ 3 gives the particle’s approximate velocity vi

after the integration for the step h. The first iteration step is always calculated with
h = τ , for the guessed τ of the analytical approximation from the previous section. In
order to achieve a certain accuracy for the particle’s exit point of the tetrahedron,
more iteration steps may be needed and the step size must be changed. The following
section (5.5) will demonstrate, how to propose a new τ for the Runge-Kutta step size
h.
Figure 5.4 depicts, how the classical 4th order Runge-Kutta method uses four difference
quotients to obtain an approximate value of e.g. z(τ) = z1(τ).
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z0

z0+h · k1 / 2

z0+h · k2 / 2

z0+h · k3

z1

z(τ)

τ0 τ0+h/2 τ0+h τ

← k1

← k2

← k3

← k4

← z(τ)

Figure 5.4: The classical 4th order Runge-Kutta method combines four difference
quotients (red) in order to obtain an approximation value (green) of the
real function (blue) at the function value τ0 + h.

5.4 Calculate the orbit with the Runge-Kutta method,

when no analytical approximation exists

As described in the previous section 5.2.4, the analytical approximation can fail for
orbits that turn close to the face, through which the particle entered. By assuming
that the particle leaves through the same face, the solution is given by

τ = −2b

a
,

which yields a negative result in case of an approximation error.
In order to apply a numerical procedure to find the exit coordinates xi(τ), the absolute
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value of the equation above is taken as a first approximation

τnew =

∣∣∣∣−
2b

a

∣∣∣∣ . (5.27)

By using the routine rk4 the Runge-Kutta method is applied for the guessed τnew.
The normal velocity vnorm(τnew) regarding the assumed plane after the Runge-Kutta
iteration can be calculated by multiplying the particle’s velocity vi(τnew), that is
obtained with the Runge-Kutta method, with the plane’s normal vector ni:

vnorm(τnew) = ni · vi(τnew) (5.28)

The plane’s normal vector is pointing to the inward of the tetrahedron, thus vnorm(τnew)

is positive, if the particle moves inwards the tetrahedron, and negative, when it moves
outwards.

The aim is to find the location xi(τ), where vnorm(τ) becomes negative. In other
words: the location after the orbit has turned. Therefore vnorm(τnew) is calculated
after the first Runge-Kutta iteration for τnew. If vnorm(τnew) is positive, a new τ is
guessed for a consecutive Runge-Kutta iteration:

τnew := 2 · τnew (5.29)

This procedure is repeated until vnorm(τnew) becomes negative or the maximum number
of iterations is exceeded.

5.5 Iteration procedure

5.5.1 Convergence criterion

After the Runge-Kutta method has been used to calculate the coordinates xi(τ) of
the orbit and v‖(τ) for the analytically approximated guess for τ , one is interested in
calculating the exit point (intersection with the plane) to a certain accuracy. Therefore
one has to define the relative accuracy ε. Since the volume of each tetrahedron is not
necessarily the same, the absolute accuracy can be calculated by

distmin = ε · d, (5.30)

where d is the nonzero element of dα, namely the distance between the coordinate
origin and the one plane, that doesn’t pass through the origin.
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Our goal is to propose a new τ and compute another Runge-Kutta calculation.
Then one repeats this procedure until the distance in between the exit point xi(τ)

and the respective plane α is smaller than distmin.

ni · xi(τ)
!
< distmin (5.31)

In case that this convergence criteria cannot be fulfilled, the respective plane is not
the correct plane, through which the particle leaves the tetrahedron. The plane was
initially proposed, by assuming that the particle will leave the tetrahedron through
the face that can be reached in the smallest positive τ . But since τ was approximated,
the estimation for the appropriate face might have been wrong. For non-converging
cases, a new approximation for τ with another face has to be made.

5.5.2 Calculate a new τ with Newton’s method

For a clearer understanding, let’s set τ after the initial Runge-Kutta iteration to τ0
and xi(τ0) to xi0. Therefore we will try to suggest a new τ with Newton’s method to
integrate the orbit with the Runge-Kutta method from xi(τ0) to xi(τ). The suggested
face, through which the particle leaves the tetrahedron, is represented by ni.

The distance between the particle’s position and the plane after the initial Runge-
Kutta iteration is ni · xi0. We are looking for a position xi(τ) depending on τ , for
which this distance becomes zero.

ni · xi(τ)︸ ︷︷ ︸
F (τ)

!
= 0 (5.32)

If we make a first degree Taylor series expansion, one obtains

F (τ) = F (τ0) + F ′(τ0) · (τ − τ0) = F (τ0) + F ′(τ0)τ − F ′(τ0)τ0 !
= 0. (5.33)

By setting τ0 to 0 and rearranging the equation to express τ explicitly, the result is

τ = − F (τ0)

F ′(τ0)
, (5.34)
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where F (τ0) is the initial distance to the plane and F ′(τ0) is the normal velocity
vnorm(τ0), that is obtained from the precedent Runge-Kutta iteration:

τ = − ni · xi0
vnorm(τ0)

(5.35)

The Runge-Kutta method is applied for this new τ . Afterwards the distance F (τ) in
between the resulting position xi(τ) to the plane is compared with the distance F (τ0)

in between xi(τ0) and the plane. There are two possibilities: Either the distance to the
plane became smaller with the use of Newton’s method and the consecutive calculation
of a Runge-Kutta iteration, or the distance became larger. If the distance became
smaller (see figure 5.5), Newton’s method and Runge-Kutta will be repeated until
the convergence criterion is fulfilled or a certain number of iteration steps is exceeded.
If the distance became larger, a quadratic approach is taken into consideration (see
figure 5.6).

ni · xi(τ)︸ ︷︷ ︸
F (τ): new distance

< ni · xi(τ0)︸ ︷︷ ︸
F (τ0): old distance

→ Newton’s method

ni · xi(τ) > ni · xi(τ0) → quadratic approach (5.36)

ττNewtonτ0

F(τ)

F′(τ0) ↑ F(τNewton) xi
exit point

↓ F(τ0)
↓ F(τ) = ni xi(τ)

Figure 5.5: The use of Newton’s method with a subsequent calculation of a Runge-
Kutta iteration yielded to a smaller distance to the plane F (τNewton), than
the initial distance F (τ0), before the iteration step.

5.5.3 Calculate a new τ with a quadratic approach

Let us assume, that the distance in between the orbit and the face, through that it is
assumed that the particle will leave the tetrahedron, has a quadratic behaviour. As
one can easily see in figure 5.6 (a), (b), (c) and (d) there are four different quadratic
behaviour possibilities, for that reason the use of Newton’s method will result in a
larger distance F (τNewton) to the plane than the previous iteration step F (τ0).
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In this case we will make a second degree Taylor series expansion and set it to
zero in order to obtain the root.

F (τ) = F (τ0) + F ′(τ0) · (τ − τ0) +
1

2
F ′′(τ0) · (τ − τ0)2 !

= 0. (5.37)

By setting τ0 to 0 the problem turns into the quadratic equation

1

2
F ′′(τ0)
︸ ︷︷ ︸

a

τ 2 + F ′(τ0)︸ ︷︷ ︸
b

τ + F (τ0)︸ ︷︷ ︸
c

= 0, (5.38)

with the quadratic equation coefficients a, b and c.

In order to obtain the quadratic equation coefficients b and c, one can use the
same procedure that was used for Newton’s method. Since we don’t know the second
derivative F ′′(τ0) of the distance-function, we have to search for another way how to cal-
culate the remaining coefficient a. Therefore we will make use of F (τNewton), that was
calculated at the previous iteration step and that had resulted in F (τNewton) > F (τ0).

τ
τ0

τNewton

F(τ)

↑ F′(τ0) F(τ0)

xi
exit point

↓ F(τNewton)

F(τ) = ni xi(τ) ↓

(a) τNewton is negative and F (τNewton) is positive.

τ
τ0

τNewton

F(τ)

↑ F′(τ0)F(τ0)
xi

exit point

F(τNewton) ↓

↓ F(τ) = ni xi(τ)

(b) τNewton is positive and F (τNewton) is positive.
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ττ0

τNewton

F(τ)

↓ F′(τ0) F(τ0) xi
exit point

↑ F(τNewton)

F(τ) = ni xi(τ) ↑

(c) τNewton is negative and F (τNewton) is negative.

ττ0

τNewton

F(τ)

↓ F′(τ0)F(τ0)

xi
exit point

F(τNewton) ↑

↑ F(τ) = ni xi(τ)

(d) τNewton is positive and F (τNewton) is negative.

Figure 5.6: Quadratic behaviour of the distance in between the orbit and the assumed
exit face:
There are four possibilities, why the use of Newton’s method will result in
a larger distance. Figure (a) and (b) show a positive sign of the quadratic
function, whereas in figure (c) and (d) the sign of the quadratic function
is negative. Furthermore it has to be distinguished, if the extrema of the
quadratic function is overshot or undershot. The distinction in between
these four cases results in different combinations of the sign of τNewton and
F (τNewton).

We will start by evaluating the quadratic equation at τNewton

F (τNewton) = a · τ 2Newton + b · τNewton + c (5.39)

and rearrange this equation to the missing quadratic equation coefficient a

a =
F (τNewton)− b · τNewton − c

τ 2Newton

. (5.40)

Furthermore we will express the first derivative F ′(τ0) by τNewton and F (τ0)

b = F ′(τ0) = − F (τ0)

τNewton

= − c

τNewton

. (5.41)
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By inserting this expression into the equation above, the quadratic equation coefficient
a simplifies to

a =
F (τNewton)

τ 2Newton

. (5.42)

The quadratic equation for τ can then be solved by

τ1,2 =
−b±

√
b2 − 4ac

2a

=

F (τ0)
τNewton

±
√(

F (τ0)
τNewton

)2
− 4 · F (τNewton)

τ2Newton
· F (τ0)

2 · F (τNewton)

τ2Newton

=
τNewton ·

(
F (τ0)±

√
F (τ0)2 − 4 · F (τNewton) · F (τ0)

)

2 · F (τNewton)

=
τNewton

2 · F (τNewton)︸ ︷︷ ︸
h

·
(
F (τ0)±

√
F (τ0)2 − 4 · F (τNewton) · F (τ0)

)
(5.43)

One has to pay attention to the sign of τNewton, if one looks for a specific solution of
the quadratic equation τ1 or τ2. In one of the simplification steps above, 1

τ2Newton
was

excluded from the square root and as a result τNewton is subsequently multiplied with
the square root. Thus, ± change sign, if τNewton is negative.

As one can see in figure 5.6, quadratic behaviour has to be separated into a first
case a > 0 (figure 5.6 (a) and (b)), where the quadratic equation coefficient a is
positive, and a second case a < 0 (figure 5.6 (c) and (d)), where a is negative. In the
case that a > 0, the particle comes from a random point and leaves the tetrahedron
on a quadratic trajectory, whereas in the case that a < 0, the particle entered the
tetrahedron through the same face as it leaves the tetrahedron. The ”left” root has to
be chosen in the case that a > 0, since this is the one, where the particle exits the
tetrahedron. The ”right” root has to be chosen for a < 0 instead, because in this case,
the ”left” root is the one, where the particle entered. Both cases (a > 0 and a < 0)
can be easily distinguished, by the sign of F (τNewton). Furthermore, in both cases the
solution is also dependent on the sign of τNewton.

One can save computation power if h is calculated first.

h =
τNewton

2 · F (τNewton)
(5.44)

Before the solution τ for the quadratic approach is calculated, one has to examine, if
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the solution even exists. Therefore the discriminant of the quadratic equation must
be calculated

D = F (τ0)
2 − 4 · F (τNewton) · F (τ0). (5.45)

Table (5.1) shows the solutions of the quadratic equation for τ depending on the signs
of F (τNewton) and h.
If D > 0, a real solution exists and the appropriate solution of table (5.1) is calculated.

Table 5.1: Solutions of the quadratic equation for τ depending on the signs of
F (τNewton) and h

σ(F (τNewton)) . . . sign of F (τNewton)

σ(h) . . . sign of h

σ(F (τNewton)) σ(h) τ

+1
+1 h ·

(
F (τ0)−

√
D
)

-1 h ·
(
F (τ0) +

√
D
)

-1
+1 h ·

(
F (τ0) +

√
D
)

-1 h ·
(
F (τ0)−

√
D
)

Further on, a Runge-Kutta iteration is computed with this τ . Afterwards the whole
convergence procedure is repeated: If the convergence criterion is not yet fulfilled,
once again Newton’s method is applied, and so on.

Whereas if D < 0, no real solution for the quadratic equation exists. This means that
the orbit makes a turn close to the assumed exit face and that’s why the particle
doesn’t leave the tetrahedron through this face. Thus, another face must include the
point, through which the particle leaves the tetrahedron.

5.5.4 Calculate a new τ with a new analytical approximation

Consecutive iterations of Newton’s method and/or a quadratic approach showed, that
the orbit makes a turn close to the assumed face. Therefore the orbit didn’t converge at
the assumed exit face, that was proposed by the analytical approximation. The reason
is, that the plane was initially proposed, by assuming that the particle will leave the
tetrahedron through the face that can be reached in the smallest positive τ . But since
τ was approximated, the assumption for the appropriate face could yield a wrong re-
sult. In such cases, where the orbit didn’t converge, the assumption is obviously wrong.
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In a next step a new analytical approximation for another face is made, exclud-
ing the previous face. Therefore one defines a logical array allowed_faces and sets
the appropriate logical value to false, if the discriminant of the quadratic approach is
negative. In a similar manner as in a previous section, one has to solve a quadratic
equation, to obtain an approximation for τ . Once again the smallest τ can be found
among the following solutions

τα = −2bα

aα
for c = 0, or

τα =
−bα −

√
(bα)2 − 2aαcα

aα
for aα < 0, or

τα =
−bα −

√
(bα)2 − 2aαcα

aα
for aα > 0 and bα < 0, (5.46)

where a solution α is excluded, if the respective value in allowed_faces is false.

In comparison to the initial analytical approximation, the quadratic equation co-
efficients are different. After an unsuccessful attempt to converge at the previous
face, the particle’s location is now xi0, close to the forbidden face. Instead, at the
initial analytical approximation, the particle’s location was xie.p.. Thus, the quadratic
equation coefficients are

aα = nαi · ai4(a44 · v‖,e.p. + b4),

bα = nαi · (ai4v‖,e.p. + bi) and

cα = nαi · xi0 − dα. (5.47)

Obviously, for the smallest positive τ among the solutions of eq. (5.46), the routine
rk4 is used to compute a Runge-Kutta calculation. The respective face α is the new
assumed exit face. Afterwards the whole convergence procedure is repeated.

5.6 Error diagnostic and troubleshooting

5.6.1 Introduction to possible errors

In the previous section, the exit coordinates xi(τ) of the particle and the parallel
velocity v‖(τ) at this exit point were searched. Every tetrahedron is spanned by four
planes, that are described by four normal vectors nαi . An orbit was considered to be
converged, when the distance in between the exit point xi(τ) and the assumed plane
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α was smaller than distmin.

With this definition of convergence, it is not guaranteed, that the ”convergence-
point” is also the appropriate exit point. Furthermore it is even possible, that under
some conditions, the particle’s entry point is erroneously chosen as the ”convergence-
point”. Therefore two additional conditions have to be introduced to guarantee, that
the chosen ”convergence-point” is also the real exit point:

1. The orbit must not pass through another plane, before it reaches the exit point.

2. The particle’s velocity vector must point outwards the tetrahedron at the exit
point.

In the following subsections possible errors of the convergence procedure are explained
in detail and solutions to troubleshoot these errors are introduced.

5.6.2 Orbit converged at the wrong plane

Figure 5.7 depicts an example, how the analytical approximation for the appropriate
exit face can fail. A wrong plane was proposed by the analytical approximation and
the orbit converged at this proposed plane. To reach this convergence-point, it is
necessary for the orbit to cross the right plane before.

To calculate the distance in between the particle’s position and a certain plane α, one
simply has to multiply the plane’s normal vector nαi with the particle’s coordinates
xi. Obviously, the plane that doesn’t pass through the coordinate-origin has to be
treated separately by subtracting d.

distα = nαi · xi − dα (5.48)

Since all normal vectors are pointing inwards the tetrahedron, one can use the sign
of this product to understand, if the particle is inside or outside the tetrahedron
respective to this plane.

distα > 0 → Particle is inside the tetrahedron respective to plane α.

distα < 0 → Particle is outside the tetrahedron respective to plane α.(5.49)

When an orbit is considered to be converged at a plane, the sign of the distance in
between particle’s coordinates and respective plane might be plus or minus. Therefore
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xi
entry point

xi
exit point →

← xi
convergence point

← xi(τ)
ab

c

Figure 5.7: Orbit converged at the wrong plane:
The particle’s exit point is very close to one of the tetrahedrons vertices.
Initially the analytical approximation proposed, that the particle will
leave the tetrahedron through face a, but the real orbit passes through
face b. Thus, the orbit converged at the wrong plane.

only the sign of the distance in between the particle’s coordinates and the other three
planes has to be examined. In the Fortran code the four planes have the indices
α = 1, . . . , 4. To examine only the three other planes, if the plane with a certain index
must not be examined, the following code is very helpful,

do i=1,3

j=iface_new+i

j=modulo(j-1,4)+1

end do

where iface_new is the index of the plane that must not be considered, and j adopts
the remaining three indices.

If distα > 0 for all three planes α, then it is guaranteed, that the right plane was
chosen to be the plane, through which the particle leaves the tetrahedron. Although
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it is not guaranteed yet, that the appropriate exit point was chosen.

If distα < 0 for only one plane out of the three planes, the chosen exit face is
wrong, because the particle is outside the tetrahedron respective to this plane. That
means that the orbit has crossed this plane first, before it converged at the assumed
plane. Therefore troubleshooting for such a case has to be introduced.

5.6.3 The particle’s velocity vector points inwards the tetra-

hedron at the exit point (positive vnorm)

There exists a special case, in which the orbit converges at the right plane, but
the convergence-point is not the real exit point of the orbit. Figure 5.8 depicts a
case, in which the orbit is almost tangential to a plane. According to the analytical
approximation the particle should leave the tetrahedron through the respective face
at a certain τ . When the coordinates of the real orbit at τ are calculated with the
Runge-Kutta method, it turns out, that this particle doesn’t leave the tetrahedron
at this position. The reason is, that either τ was approximated too small for the
assumed exit point, or in reality the particle leaves through another face.
Furthermore in this special case, the normal velocity vnorm(τ) after the Runge-Kutta
iteration points inwards the tetrahedron, because of the almost tangential behaviour.
The subsequent convergence procedure will try to use Newton’s method to decrease the
distance in between the particle’s coordinates and the respective plane. Since the orbit
is almost tangential, the ”new” point, that is proposed by Newton’s method, is very
close to the entry point and indeed the distance decreases. That’s why this iteration
step seems useful for to the convergence procedure. Finally, when the convergence
criterion is fulfilled, the orbit converges ”at/around” the coordinates of the entry point.
Obviously the normal velocity vnorm,e.p. at the entry point is positive, since the particle
moves inwards the tetrahedron at this position. To identify such a case, one has to
calculate the normal velocity vnorm(τ) of the particle at the exit point and examine, if
it is positive or negative.

If it can be guaranteed, that the right exit face is chosen (see previous section)
and if additionally the normal velocity at the convergence point is negative (the
velocity vector points outwards the tetrahedron), one can assume to have found the
right exit point.
Whereas, if the velocity vector points inwards the tetrahedron (positive vnorm) at the
convergence-point, the right exit point has not been found. Thus, troubleshooting for
such a case has to be introduced as well.
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xi
entry pointxi

prop. exit point

↓ xi
convergence point↓ xi(τ)

(a) The orbit is almost tangential to one of the cell’s faces.

ττ0τnew

F(τ)

↓ F′(τ0)

↑ ni xi
entry point

ni xi
prop. exit point

↓ ni xi
convergence point ↑ ni xi(τ)

(b) Newton’s method finds a convergence point, that is not the right exit point.

Figure 5.8: In the depicted special case (a), the orbit is almost tangential to one of
the cell’s faces. Furthermore the analytical approximation proposed a
wrong exit point. Since the orbit has not turned towards the respective
face, the derivative at the proposed exit point is positive. That’s why
Newton’s method (b) finds a convergence point that is close to the particle’s
entry point into the tetrahedron. Obviously the normal velocity at this
convergence point is positive.

5.6.4 Troubleshooting for orbits with a wrong exit point

As it was described in the previous sections, the convergence-point doesn’t match
with the right exit point, if either the orbit converged at the wrong plane, or vnorm is
positive at the exit point. If the convergence procedure yielded a wrong result, the
following steps have to be applied. The detection of errors and the troubleshooting
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itself is part of the same code.

First of all one starts with a logical array allowed_faces with four values, where
all values are set true by default. If it turns out during the error detection process,
that the exit through a certain plane is not allowed, because another plane has been
crossed before, the respective value of this logical array is set to false. Another logical
variable finish is introduced, that is by default true.

The whole detection and troubleshooting code consists of a loop over all four planes.
First of all, it is examined, if the orbit converged at the right plane. (The distances in
between the particle’s coordinates and the other three planes are positive). If the orbit
didn’t converge at the right plane, finish and the respective value of allowed_faces
are set to false. Further on, in case of proper convergence, the normal velocity at the
exit point is examined. Once again finish and the respective value of allowed_faces
are set to false, if vnorm is positive at the exit point.
If no errors were detected, namely finish is true, the loop is immediately exited and
the right exit point has been found.

Orbit converged at the wrong plane:
For the wrongly converged orbits, a new exit face is proposed. Since the distance in
between the particle’s coordinates and another plane is negative, if a certain face had
been crossed before, the respective face is assumed to be the right one. But this face
can only be taken into consideration, if the respective value of allowed_faces is true,
otherwise another allowed face is chosen.

Normal velocity at the convergence point is positive:
The normal velocity at the convergence point vnorm can be positive, if the orbit is
almost tangential to a certain plane. The orbit has the possibility, either to make a
slight turn and to exit through the plane, to that it is almost tangential, or to exit
through another face.
That’s why a new analytical approximation is made, in which forbidden faces are
excluded. One uses the routine rk4 to push the orbit to the new assumed face. If no
analytical approximation exists, one assumes, that the orbit turns close to the face
and exits through the same face as it entered. In this case, one proceeds as explained
in subsection (5.4).

Depending on which error occurred, either the orbit has been pushed to another
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face, or the coordinates xi(τ) remain the same and just the assumed exit face was
changed. As shown in subsection (5.5), one continues with the usual convergence
procedure: Newton’s method or a quadratic approach. If the discriminant in the
quadratic equation of the quadratic approach is negative, meaning that the particle
doesn’t exit through this face, the respective value of allowed_faces is set to false and
this loop-step is cycled.
If the orbit converged at the new assumed face, a new iteration in the loop is started,
beginning with the error detection.

At some step in the loop, the right exit point might have been found and one
exits the loop, since finish remains true. In such a case, the described troubleshooting
procedure was successful. Nevertheless, there is still the possibility, that this procedure
fails. If all four values of allowed_faces become false, the troubleshooting procedure
was not able to find the proper exit point.

5.6.5 Troubleshooting failed: Last line of defense

Up to this point, the aim of the explained algorithm was to be as computationally
inexpensive as possible. It turns out, that there are special cases, in which the
inexpensive algorithm fails, and one has to take into account to use a computationally
more expensive code. This ”last line of defense” should be used in as few cases as
possible, but it guarantees to find the right exit point.

Example for failed troubleshooting procedure:
For instance let us consider a case, where the initial analytical approximation yielded
a wrong exit point. Further on the error could be detected, but not solved.
As one can see in figure 5.9, the particle leaves the tetrahedron through face a close to
one of its vertices and makes a turn right after the exit face had been passed. After the
orbit’s turn, the plane b is crossed, but outside the tetrahedron. The initial analytical
approximation proposed plane b as the exit face. The convergence procedure was
successful and the orbit converged at this particular plane (convergence point 1). Since
the convergence-point was outside the tetrahedron, the error was detected and the
plane, that was crossed by the orbit first (plane a), was considered as a new proposal
for the exit face.
The troubleshooting procedure then applies Newton’s method or the quadratic ap-
proach until the orbit converges at the assumed plane. In our case Newton’s method
seems to be useful, since the distance decreases. As described above, if the orbit
converged at the wrong plane, the coordinates of the convergence-point xi(τ) are
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considered as "starting"-coordinates xi0 for the troubleshooting procedure and just
another face is proposed for a consecutive convergence procedure. What makes this
case so special is, that the orbit had turned before it converged at the second plane
(b). When Newton’s method is applied from the coordinates of convergence point 1,
for the plane, that had been crossed first (b), another ”wrong” convergence point 2 is
found at the proper face. This particular convergence point is in fact the orbit’s third
crossing with a plane. Since this convergence-point is also outside the tetrahedron,
the troubleshooting procedure will consider this face as not allowed. In fact, the
proper face has been found, but not the right exit point. As a result all faces will be
forbidden and therefore the troubleshooting fails.

xi
e.p.

xi
exit point

xi
convergence point 1

xi
convergence point 2 ↑

xi(τ) →

ab

Figure 5.9: The standard troubleshooting procedure fails:
Convergence point 1 is detected as a wrong exit point. The following
convergence procedure (Newton’s method) finds convergence point 2,
which is as well a wrong exit point. The reason, why the standard
troubleshooting procedure fails, is that the orbit makes a turn right after
the proper exit face had been passed, but before the orbit converged at
the wrong plane.
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Functionality principle of the last line of defense code:
First of all the orbit that has been calculated up to this point, is considered to be
useless, since the convergence-point can be at a random location. That’s why, one
starts from the beginning with the orbit calculation, by setting the coordinates of the
orbit to the particle’s entry point into the tetrahedron xie.p.(τ0).
The functionality principle, that is used further on for the last line of defense code, is
the bisection method. As a first task, it is necessary to integrate the orbit, until the
tetrahedron is left by the particle. For that reason an analytical approximation like in
the very beginning is made. The only difference is, that almost tangential cases, as
explained in subsection (5.6.3), are excluded from the possible results. This increases
the probability, that the orbit will cross a plane.
For this first guess of τ one Runge-Kutta iteration is calculated and the distance to
the four planes is evaluated. In most of the cases, the particle should have left the
tetrahedron, but still there are some special cases, where the distance to all four planes
is positive, meaning that the particle is still inside the tetrahedron. This can happen,
if the particle didn’t leave through the face, that was proposed by the analytical
approximation. To assure, that the particle leaves the tetrahedron, a loop is used
with consecutive Runge-Kutta iterations, where the guessed τ is doubled for every
iteration, until the distance to one of the four planes becomes negative.

Afterwards, it can be guaranteed, that the particle left the tetrahedron, the ac-
tual bisection method begins. The last Runge-Kutta iteration for τ , integrated the
orbit from a point inside the tetrahedron to a point outside the tetrahedron. By
setting

τnew = −τ
2

(5.50)

for the next Runge-Kutta iteration, the orbit is integrated towards the inside of the
tetrahedron. As a next step, one has to examine, if the new point is inside or outside
the tetrahedron. The location of the particle, if inside or outside, determines the sign
of the consecutive iteration step

all
α

(distα) > 0 → τnew =
|τ |
2

(particle is inside)

any
α

(distα) < 0 → τnew = −|τ |
2

(particle is outside), (5.51)

where distα is the distance to the four planes (dist = nαi x
i(τ)).

This procedure is repeated in a loop, until only one of the four elements of distα is nega-
tive, namely the particle is only outside the tetrahedron respective to one of the planes.
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The usual convergence procedure with Newton’s method or the quadratic approach,
as explained in subsection (5.5), is used to find the right exit point up to a certain
accuracy. Finally, one must approve, that the particle is not outside the respective
other three faces and that the normal velocity vector points outside the tetrahedron,
otherwise the last line of defense as a troubleshooting method has failed.

5.7 Final processing

After a successful numerical integration of the particle orbit and convergence of the
trajectory at the right exit point, the particle’s coordinates xi(τ) and parallel velocity
v‖(τ) are given. For the functionality of the algorithm, also the perpendicular velocity
v⊥(τ) at the exit point is needed. Since J⊥ =

mv2⊥
2ωc

is by definition of the integrator an
invariant of motion and the magnetic field modulus B is a linear function inside the
tetrahedron, the perpendicular velocity v⊥(xi(τ)) at the exit point can be obtained by

v⊥(xi(τ)) =

√
2J⊥ωc(xi(τ))

m
=

√
2J⊥eB(xi(τ))

m2c
. (5.52)
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Chapter 6

Evaluation of particle orbits
calculated by 3DGeoInt

The following chapter is loosely based on the books [1], [15] and [16].

6.1 Physical set-up for orbit integration

For the calculations the Gaussian-cgs units are used.

As test particles for the orbit integration we choose nuclei of fully ionized Helium-
atoms (α-particles). The mass of one α-particle consists of twice the proton mass
(mp = 1.6726 · 10−24 g) and twice the neutron mass (mn = 1.6749 · 10−24 g), thus
mα = 6.6446 · 10−24 g. Furthermore the speed of light c = 2.9979 · 1010 cm/s and the
electron charge e = 4.8032 · 10−10 Fr are needed as constants.

The initial kinetic energy (Ekin = mαv2

2
) of an α-particle is set to 3 keV, which

is 4.8066 · 10−9 erg. Therefore, the particle’s absolute velocity is set to

v =

√
Ekin

mp +mn

. (6.1)

To clearly specify the starting condition for the orbit integrator, also the pitch
parameter at the starting point

λ0 = cos (χ0) =
v‖,0
v0
, (6.2)

where χ0 is the pitch angle, v‖,0 the parallel velocity and v0 the absolute velocity at
the starting point, must be defined for every calculation.
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6.2 Qualitative evaluation of orbits for axisymmetric

devices

For a first qualitative evaluation of the orbits of the three-dimensionally geometric
integrator 3DGeoInt, the field quantities from the equilibrium in the EFIT-format
from the tokamak ASDEX Upgrade [18] (shot g26884, at 4300 ms) are used.

The magnetic field of an axisymmetric fusion device consists of two axisymmet-
ric components: A strong toroidal magnetic field generated by external coils and a
much weaker poloidal field generated by the toroidal plasma current. In the following
configuration the magnetic field is constant along the toroidal ϕ-axis.
The electrostatic potential Φ can be manually set to an arbitrary function. In our
case, Φ is a linear function of the magnetic flux Ψ

Φ = C ·Ψ, (6.3)

where C is a constant. The constant C is chosen in such a way, that the electrostatic
potential energy is in the order of the initial kinetic energy of the particle. For our
calculation, the constant C is set to 1

3·107 , since Ψ is in the order of 107.
With this choice of a linear dependence of Φ on Ψ, the electric field E = −∇Φ is
always perpendicular to the magnetic flux surface, and thus, E×B-drifts occur only
along the magnetic flux surface.

In the following sections the kinetic behaviour of the orbits is shown, by various
set-ups of the pitch angle χ0 at the starting point and different functions for the
electrostatic potential Φ.

6.2.1 Passing particle

As a first example, one can see the orbit of a passing particle in three dimensions in
figure 6.1. In an axisymmetric fusion device, the passing particles are almost confined
to magnetic flux surfaces. If one makes a cut in the three dimensional space along
a constant toroidal angle ϕ, one obtains a Poincaré cut. The orbits in the poloidal
plane ϕ = 0 stay exactly closed for axisymmetric devices. Figure 6.2 depicts the
Poincaré-cut for ϕ = 0. As one can easily see, the orbit of the particle is confined.
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Figure 6.1: Example of a passing particle:
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle:
χ0 = 2.1, electrostatic potential: Φ = 0
The pitch angle at the starting position is chosen in such a way, that no
magnetic mirror effect occurs.
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Figure 6.2: Poincaré-cut of a passing particle at ϕ = 0:
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle:
χ0 = 2.1, electrostatic potential: Φ = 0
The plot clearly depicts that for an axisymmetric system the orbit is
exactly closed in the poloidal plane.
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6.2.2 Trapped particle
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Figure 6.3: Example of a trapped particle:
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle:
χ0 = 2.0, electrostatic potential: Φ = 0
The pitch angle at the starting position is chosen in such a way, that the
magnetic mirror effect occurs.
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Figure 6.4: Poincaré-cut of a trapped particle at ϕ = 0:
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle:
χ0 = 2.0, electrostatic potential: Φ = 0
The plot clearly depicts that for an axisymmetric system the orbit is
exactly closed in the poloidal plane.
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One can see the three dimensional plot of the orbit of a trapped particle in figure
6.3. Due to the magnetic mirror effect, v‖ changes sign, the particle is reflected and
the orbit has the shape of a banana. Furthermore, the banana precesses toroidally
along the ϕ-axis, because of the magnetic and electric drifts. Figure 6.4 shows the
Poincaré-cut of a trapped particle at ϕ = 0. The Poincaré-cut of the precessing
banana is shaped like a banana as well. In an axisymmetric fusion device the orbits
are closed.

By introducing an electrostatic potential, the toroidal banana precession frequency
Ωtor is increased (see section 6.3 and [19]). One can see a strongly precessing banana
in the three dimensional plot of a trapped particle in figure 6.5.
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Figure 6.5: Toroidally precessing banana orbit:
The starting condition of the particle is the same as in figure 6.3, but
additionally also an electrostatic potential Φ = 7 ·C ·Ψ is turned on. This
causes an increase of the toroidal banana precession frequency Ωtor.
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6.2.3 Trapped and passing particles due to the pitch-parameter

In the previous plots, the orbits of trapped and passing particles were depicted. If
a particle is trapped or can pass, depends on its ratio of v⊥ to v‖. Thus, the pitch
parameter at the starting position λ0 determines the kind of orbit. Figure 6.6 depicts
4 orbits of particles with exactly the same starting positions and the same total
energy. The electrostatic potential is set to zero for this calculation. One can see
3 banana orbits and 1 passing orbit, only differing on the pitch parameter at the
starting position.
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Figure 6.6: Trapped and passing particles:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm), electrostatic
potential Φ = 0
The 4 particles have exactly the same starting position and the same total
energy, they only differ on pitch parameter at the starting position λ0.
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6.2.4 Magnetic guiding center drifts

The drift velocity of the guiding center vd for zero electric field can be written as

vd =
cµ

e

B×∇B
B2

+
cmv2‖
eR2

c

Rc ×B
B2

, (6.4)

where Rc is the curvature radius of the magnetic field line. The particular drifts of
the guiding center are the ∇B drift and the curvature drift. Both drifts are inversely
proportional to the squared magnetic field modulus B.
Furthermore in force-free magnetic fields (j || B) the ∇B drift and the curvature drift
can be combined to

cµ

e

B×∇B
B2

+
cmv2‖
eR2

c

Rc ×B
B2

=
cµ

e

(
1 +

2v2‖
v2⊥

)
B×∇B
B2

(6.5)

If one increases manually the magnetic field modulus B in the fusion device, the
magnetic guiding center drifts decrease, and the guiding center follows the magnetic
field line.

Figure 6.7 shows the orbits of (a) two passing and (b) two trapped particles with
the same starting position. For orbit 0, the magnetic field modulus B was manually
increased up to an order, so that the magnetic drifts disappear and the particle follows
the magnetic field line. Orbits 1 and 2 feel the unchanged magnetic field, but they
differ in the sign of v‖. One can see the influence of the magnetic guiding center drifts
on the particle orbits. Depending on the sign of v‖, the particle drifts either inside or
outside the magnetic flux surfaces.
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(a) Passing particle
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(b) Trapped particle

Figure 6.7: Influence of the magnetic guiding center drifts on the particle orbits:

(a) Passing particle:
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle
orbit 1: χ0,1 = 0.9, pitch angle orbit 2: χ0,2 = 2.2, electrostatic potential:
Φ = 0

(b) Trapped particle :
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle
orbit 1: χ0,1 = 1.1, pitch angle orbit 2: χ0,2 = 2.0, electrostatic potential:
Φ = 0

To compute the orbit 0 along the magnetic field line, the mag-
netic field modulus was manually increased up to an order until the
magnetic drifts vanish. The sign of v‖ at the starting position defines, if
the particle drifts inside (blue) or outside (red) the magnetic flux surface.

6.2.5 Trapped-passing particle boundary due to the electro-

static potential Φ

With the introduction of an electrostatic potential Φ that is a linear function of the
magnetic flux Ψ, obviously also the electrostatic potential energy eΦ is linear in Ψ. If
a particle drifts through flux surfaces, e.g. due to the magnetic guiding center drifts,
the electrostatic potential energy eΦ increases or decreases. Since the particle’s total
energy w is conserved, the kinetic energy must change, because of the cross field drift.
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Figure 6.8 depicts the influence of the electrostatic potential Φ on the particle’s
orbit. At a certain electrostatic potential Φ, the loss of parallel kinetic energy is high
enough to cause the magnetic mirror effect. The particle’s parallel velocity v‖ changes
sign, meaning it is reflected. A former passing particle becomes a trapped particle.
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Figure 6.8: Influence of the the electrostatic potential Φ on the particle’s orbit:
Starting position: xi = (R = 192.97 cm, ϕ = 0, Z = 0 cm), pitch angle:
χ0 = 2.1 The electrostatic potential Φ is a linear function of the magnetic
flux Ψ. The figure depicts the Poincaré cut for four particle orbits with the
same starting position and same χ0. Due to cross field drifts, the particle’s
kinetic energy decrease, while the electrostatic potential energy increases.
A passing particle becomes a trapped particle at a certain electrostatic
potential Φ, when v‖ changes sign.

6.3 Bounce time τb and bounce frequency ωb

Universally, one can define the bounce time as the return time to the point with
exactly the same (R,Z) coordinates.
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In order to calculate the bounce time of a trapped particle, one follows its trajectory
from a certain location (R,ϕ,Z), until the particle passes both banana-tips and reaches
the same (R,Z) coordinates. In the meantime, the banana precessed in toroidal
direction, as one can see in figure 6.5, meaning the location differs in ϕ.
For a passing particle the bounce time is the period of a poloidal motion. The
displacement during the bounce time in the toroidal direction for passing particles is
approximately 2 · π · q, where q is the safety factor. The exact toroidal displacement
of passing particle differs from this number, but only in a small term linear in the
Larmor radius. This small term is of the same order (and has the same origin, due to
the cross-field guiding center drift) as the displacement for trapped particles.

Figure 6.9a depicts the bounce time τb versus the pitch parameter λ0 at the starting
position. One can see on the left side of the plot, the bounce time for trapped particles.
As λ0 increases, also the bounce time τb increases, due to the larger size of the banana
(see figure 6.6). It is clearly visible, that at the transition from a trapped particle
to a passing particle, the bounce time has a singularity, meaning that the particle
stands still at the point of transition. On the right side of figure 6.9a the bounce
time for passing particles is depicted. By contrast, the bounce time increases, with
decreasing pitch parameter, due to the particle’s parallel deceleration when passing
the “magnetic mirror”.
Figure 6.9b shows the bounce frequency, which is calculated by ωb = 2π

τb
.

In both figures one can see small oscillations, that are very likely caused by the cell
size of 3DGeoInt.
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(b) Bounce frequency ωb

Figure 6.9: Bounce time (a) and bounce frequency (b) of trapped and passing particles:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
In figure (a), τb is the bounce time for every particle orbit averaged over
200 bouncing periods. At the transition from trapped particles (left side
of the plot) to passing particles (right side of the plot), a singularity
(particle stands still) is clearly visible. The bounce frequency in figure (b)
is calculated by ωb = 2π

τb
.

6.4 Evaluation of orbits under non-axisymmetric per-

turbation

For the demonstration of the working functionality of 3DGeoInt only axisymmetric
systems were examined in the previous sections. One of the main reasons to develop
3DGeoInt is to calculate particle orbits for axisymmetric devices with weak non-
axisymmetric perturbations. Such three-dimensional perturbations are for instance
created by coils, that are used for the mitigation of edge localized modes (ELMs) [20].
The field quantities with a weak non-axisymmetric perturbation, that are used for the
orbit integration with 3DGeoInt, are obtained from [17].

6.4.1 Single trapped particle

Figure 6.10a depicts the Poincaré cut of a trapped particle under a non-axisymmetric
perturbation. For non-axisymmetric systems the orbit is not necessarily confined
anymore in the poloidal plane. Already a first glimpse at the plot of 6.10a shows, that
under the given physical condition the orbit is not exactly closed. The enlargement of
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the banana tip in 6.10b, clearly shows the non-confinement in the poloidal plane.
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(b) Enlargement of banana tip

Figure 6.10: Poincaré cut of a trapped particle orbit under non-axisymmetric pertur-
bation:
Starting position: xi = (R = 186 cm, ϕ = 0, Z = 0 cm), pitch angle:
χ0 = 2.0, electrostatic potential: Φ = 0
The enlargement of the banana tip in figure (b) depicts, that the particle
orbit is not exactly closed anymore under a non-axisymmetric perturba-
tion.

6.4.2 Ensemble of non-interacting passing particles

As contrasted with section 6.4.1, where only a single trapped particle was examined,
an ensemble of non-interacting passing particles with various starting positions in
the fusion device is analysed. In particular, we are interested, how a weak non-
axisymmetric perturbation is influencing the particle orbits.
Figure 6.11 depicts the Poincaré cut of many passing particle orbits, that are started
from different positions. As one can clearly see, the particle orbits are definitely
affected by the non-axisymmetric perturbation, especially towards the wall of the
fusion device. The particle orbits are not necessarily closed anymore in the poloidal
plane and behave chaotically. Furthermore, magnetic islands appear plainly visible.
In order to examine the behaviour in vicinity of the walls better, the density of orbits
was increased.
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Figure 6.11: Ensemble of passing particles under non-axisymmetric perturbation:
Pitch parameter: λ0 = 0.9
Towards the wall of the fusion device, chaotic behaviour of particle orbits
and magnetic islands can bee seen.
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Chapter 7

Benchmarking

7.1 Accuracy of 3DGeoInt

The following section evaluates the accuracy of physical quantities which were cal-
culated by 3DGeoInt. For that purpose, the conservation of the toroidal angular
momentum, which is an invariant of motion in axisymmetric systems, is examined.
Furthermore the electrical component of the toroidal precession frequency is compared
to an analytical expression. Finally, the influence of the mesh-size on these quantities
is analysed.

7.1.1 Conservation of canonical toroidal angular momentum

Following [2], in case of an axisymmetric system, the guiding centre motion is fully
integrable, because there exist three integrals of motion, which determine each orbit
in the 5D phase space: the total energy w, the magnetic moment µ and the canonical
toroidal angular momentum pϕ. They are respectively given by

w =
m
(
v2⊥ + v2‖

)

2
+ eΦ,

µ =
mv2⊥
2B

and

pϕ = mv‖
Bϕ

B
+
e

c
Aϕ, (7.1)

where Bϕ is the co-variant toroidal component of the magnetic field and Aϕ is the
co-variant component of the vector potential. For transport modelling it is of primary
importance, that the invariants (7.1) are accurately conserved.
As it is described in section 2, the conservation of the total energy w and the magnetic
moment µ are guaranteed up to the computer accuracy by definition of the geometric
integrator. The conservation of the canonical toroidal angular momentum pϕ has not
been used for the algorithm of the geometric integrator, thus one has to assess, if pϕ
remains a constant of motion.
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Figure 7.1 depicts the canonical toroidal angular momentum pϕ versus the number of
passes through a cell for 6 different starting positions. As one can easily see in the plot,
pϕ seems to remain constant. The mesh (see chapter 3), that was used for the orbit
calculation, has the following number of hexahedrons: nR × nZ × nϕ = 85× 100× 20.
For 107 passes through tetrahedrons (6 per 1 hexahedron), the relative change of pϕ
is in the order of 10−7. In average the relative change of pϕ in a cell is in the order of
10−14. Thus, in conclusion the 3DGeoInt conserves the invariants of motion up to a
sufficient accuracy.
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Rstart,1 = 172.3 cm
Rstart,2 = 176.9 cm
Rstart,3 = 181.5 cm
Rstart,4 = 186.9 cm
Rstart,5 = 190.7 cm
Rstart,6 = 195.3 cm

Figure 7.1: Canonical toroidal angular momentum pϕ vs. the number of passes through
a cell:
Starting positions for all 6 particles: xi = (ϕ = 0, Z = 0 cm). Rstart can
be taken from the plot’s legend.
Total number of hexahedrons in the mesh: nR× nZ × nϕ = 85× 100× 20.
The canonical toroidal angular momentum pϕ is in average conserved up
to the relative change in the order of 10−14 for a pass through a cell.

7.1.2 Toroidal precession frequency Ωtor

As mentioned in section 6.3, after the particle has moved through one bounce period,
meaning that the same (R,Z) coordinates are reached again, the particle is toroidally
displaced by the angle ∆ϕ. The toroidal displacement per bounce time is called the
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toroidal precession frequency

Ωtor =
∆ϕ

τb
. (7.2)

According to [19] the toroidal precession frequency for trapped particles can be
decomposed into a magnetic and electric term

Ωtor = ΩtE + ΩtB, (7.3)

where ΩtE is the toroidal precession frequency caused by electric guiding center drifts
and ΩtB the respective drift frequency caused by magnetic guiding center drifts.
Furthermore, for the electric toroidal precession frequency a very simple analytical
formula is given by

ΩtE = c
∂Φ

∂Ψ
, (7.4)

where c is the speed of light, Φ the electrostatic potential and Ψ the poloidal magnetic
flux.

In Figure 7.2 the toroidal precession frequency Ωtor versus the pitch angle at the
starting position λ0 for various electrostatic potentials Φ is depicted. The missing
data in the center of the plot is caused by the singularity of the bounce time at
the transition from trapped particles to passing particles. Resulting from equation
(7.4) and as one can assume from the plot, the toroidal precession frequencies of
trapped particles (left side of the singularity) for various electrostatic potentials are
equidistantly spaced.
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Figure 7.2: Toroidal precession frequency versus pitch angle for various electrostatic
potentials:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
The electrostatic potential is linearly increased for equally sized steps.
The toroidal precession frequency is depicted under the variation of the
pitch angle at the starting position for the electrostatic potentials.

In order to examine if the calculation of the toroidal precession frequency by 3DGeoInt
is accurate, one tries to approve equation (7.4). By subtracting the toroidal precession
frequencies of two different electrostatic potentials (Φ2 = Ψ · C · 2, Φ4 = Ψ · C · 4)

Ωtor,4 − Ωtor,2 = ΩtE,4 − ΩtE,2

= c ·
(
∂Φ4

∂Ψ
− ∂Φ2

∂Ψ

)

= c ·
(
∂

∂Ψ
Ψ · C · 4− ∂

∂Ψ
Ψ · C · 2

)

= c · C︸︷︷︸
C′

·2 (7.5)

the magnetic toroidal precession frequency ΩtB vanishes. One can normalize the
difference of the electric toroidal precession frequencies by C ′, which is essentially the
electric toroidal precession frequency for the electrostatic potential Φ = C ·Ψ, and
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obtains
ΩtE,4 − ΩtE,2

C ′
= 2. (7.6)

Figure 7.3 shows the normalized difference of two toroidal precession frequencies for
the electrostatic potentials Φ2 = Ψ · C · 2, and Φ4 = Ψ · C · 4 under the variation of
the pitch parameter. Once again, the mesh has the following number of hexahedrons:
nR × nZ × nϕ = 85× 100× 20.
According to equation (7.6) the theoretical result is the constant 2. The plot clearly
depicts relative deviations of up to 5 %, which is very likely caused by the choice of
the number of cells of 3DGeoInt.
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Figure 7.3: Normalized difference of two toroidal precession frequencies:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
Total number of hexahedrons in the mesh: nR× nZ × nϕ = 85× 100× 20.
Toroidal precession frequencies for different electrostatic potentials:
Ωtor,2 = Ωtor(Φ2 = Ψ · C · 2), Ωtor,4 = Ωtor(Φ4 = Ψ · C · 4)
The normalized difference of two toroidal precession frequencies is depicted
under the variation of the pitch parameter at the starting position λ0.

7.1.3 Variation of the mesh-size

In the previous sections the conservation of the canonical toroidal angular momentum
and the electrical component of the toroidal precession frequency were examined in
order to understand the accuracy of 3DGeoInt. An important influence had been
neglected so far: the mesh-size. Unlike high order adaptive ODE integrators, the
algorithm of 3DGeoInt does not check how accurate single Runge-Kutta steps are.
That’s why the size of a Runge-Kutta step (roughly equivalent to the size of the mesh)
in 3DGeoInt has an impact on its accuracy. Note, that the field quantities are approx-
imated by linear functions in a cell. Thus, the piecewise linear representation of the
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field quantities is dependent on the mesh-size. For further examination, the accuracy
tests from the sections 7.1.1 and 7.1.2 are repeated under the variation of the mesh-size.

Canonical toroidal angular momentum:
First of all, one can see in figure 7.4 the canonical toroidal angular momentum 〈pϕ〉,
averaged over 105 orbit mappings (orbit-crossing of poloidal plane at ϕ = 0), for
several different mesh-sizes. Additionally, for each treated mesh-size the relative
change of pϕ per tetrahedron-cell is given. It is clearly visible, that orbit-calculations
with too few grid-points ( 1©, 2© and 3©) yield a canonical toroidal angular momentum,
that differs from a realistic one. Whereas, the canonical toroidal angular momentum
of the calculations from 4© on seems to converge towards a realistic value.
For the calculations 4©, 5© and 6© the number of mesh-points nR and nZ was held
constant, while the number of points in toroidal ϕ-direction was increased. Since we
deal with an axisymmetric system, the mesh-size in toroidal direction has almost no
influence, as one can see in figure 7.4.
The relative change of pϕ per tetrahedron-cell decreases with a finer mesh. Dou-
bling the number of mesh-points in each three directions ( 6©, 7© and 8©), results in
a decrease of the respective relative change of almost one order of magnitude per
mesh-point doubling.

Electrical component of the toroidal precession frequency:
Second, also the electrical component of the toroidal precession frequency is examined
under the variation of the mesh-size. Figure 7.3 in section 7.1.2 shows the normalized
difference of two toroidal precession frequencies for two electrostatic potentials under
the variation of the pitch angle at the starting position. One can see a deviation from
the expected value. The maximum relative deviation from this expected value of the
difference of normalized electrical components under the variation of the mesh-size is
shown in figure 7.5. Intuitively, one expects a decreasing relative deviation with the
increase of mesh-points. Nevertheless, figure 7.5 clearly depicts, that one does not
obtain such an expected result.
The reason might be the complicated physical behaviour of ΩtB (see eq. 7.3). In
order to examine the electrical component of the toroidal precession frequency, the
difference of two toroidal precession frequencies with different electrostatic potentials
is made. The underlying assumption is, that the magnetic component of the toroidal
precession frequency does not change with a variation in the electrostatic potential.
Due to the complicated physical behaviour of ΩtB, this assumption might be wrong
for 3DGeoInt, which results in the deviation that can be seen in figure 7.5.
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Figure 7.4: Accuracy of the averaged canonical toroidal angular momentum under
the variation of the mesh-size:
Starting position: xi = (R = 195 cm, ϕ = 0, Z = 0 cm)
Pitch parameter: λ0 = 0.56
The canonical toroidal angular momentum was averaged over 105 orbit
mappings (orbit-crossing of poloidal plane at ϕ = 0). Additionally, the
relative change of 〈pϕ〉 per tetrahedron-cell is given.
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Figure 7.5: Maximum relative deviation of the difference of normalized electrical com-
ponents of two toroidal precession frequencies with different electrostatic
potentials:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
Pitch parameter for every mesh-size varied: λ0 = 0.37 . . . 0.45
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7.2 Comparison of 3DGeoInt with a high order adap-

tive ODE integrator ODEINT45

In the following sections, particle orbits that were calculated by 3DGeoInt are compared
to particle orbits, originating from a high order adaptive ODE integrator [25], called
ODEINT45. The major difference in between these two integrators is, that in the
case of 3DGeoInt the field quantities are approximated by linear functions in cells,
which results in a piecewise linear representation of the field quantities with the
benefit of less sensitivity to noise in the data. Whereas, the field quantities in the case
of ODEINT45 are interpolated by high order splines. For the sake of convenience,
particle orbits are compared for axisymmetric systems.

7.2.1 Orbits

First of all, we want to analyse qualitatively how the particle orbits of the two
integrators differ. For that purpose several particle orbits are calculated by 3DGeoInt
with different mesh-sizes, meaning a variation of the cell-size in which the field
quantities are approximated by linear functions. Figure 7.6 depicts the Poincaré
cut of these 3DGeoInt-particle orbits, and additionally also one orbit calculated by
ODEINT45. An overview of the orbits of passing particles is given in figure 7.6a with
an indication of enlargement, that is depicted in figure 7.6b.
As one can see very clearly, the size of the mesh has a strong influence on the particle’s
orbit. The orbit accuracy is dramatically reduced, if there are too few cell-elements.
The finer the mesh-grid is, the more accurate are the particle orbits that are calculated
by 3DGeoInt. As one can read in section 7.2.2, the computational effort increases
with the number of cells. Thus, one has to make a trade-off in between orbit-accuracy
and computation speed.
The particle orbit that is calculated by ODEINT45 can be treated as the ”real“
reference-orbit.

67



Benchmarking

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
−8

−6

−4

−2

0

2

4

6

8

10

12

14

16

18

R [cm]

Z
[c

m
]

3DGeoInt: nR = 42, nZ = 50, nφ = 3
3DGeoInt: nR = 85, nZ = 100, nφ = 3
3DGeoInt: nR = 170, nZ = 200, nφ = 40
3DGeoInt: nR = 340, nZ = 400, nφ = 80
ODEINT45: nφ = 40

(a) Overview with enlargement indication

177.5 177.55 177.6 177.65 177.7 177.75 177.8 177.85 177.9 177.95 178 178.05 178.1 178.15 178.2
5

6

7

8

9

10

11

12

13

R [cm]

Z
[c

m
]

3DGeoInt: nR = 42, nZ = 50, nφ = 3
3DGeoInt: nR = 85, nZ = 100, nφ = 3
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(b) Enlargement

Figure 7.6: Poincaré cut of particle orbits, differing in the integration method and
mesh size:
Starting position: xi = (R = 173 cm, ϕ = 0, Z = 0 cm)
Pitch angle: λ0 = 0.9
The orbit accuracy is dramatically influenced by the mesh-size.
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7.2.2 Computation speed

One of the requirements for 3DGeoInt is computational efficiency. To examine the
CPU-speed of 3DGeoInt, particle orbits with same starting conditions but different
computation (orbit-integration) times for various mesh-sizes were calculated. Before
the actual orbit-integration can take place, the field quantities at the mesh-points
must be provided and the tetrahedron-specific algorithm-constants of the linearized
set of equations of motion have to calculated. That is why, there is the same offset
for a certain mesh-size in each and every orbit calculation for different integration
times. In order to obtain the computation speed, a linear fit was made for the tracked
samples of CPU-time versus orbit integration time.

As one can see in figure 7.7, the computation speed was tracked for both 3DGeoInt
and ODEINT45 in order to compare the geometric integrator with a conventional high
order adaptive ODE integrator. The maximum step size of the adaptive ODEINT45
can be manually stated: nϕ gives the minimum number of steps per toroidal orbit
circulation (orbit integration in toroidal ϕ-direction) that are imposed to ODEINT45
for the orbit integration.
Since we are interested in systems with weak non-axisymmetric perturbations, a not
too coarse mesh in toroidal direction is a requirement. Thus, one is in particular
focused on the computation speed for higher numbers of nϕ for the orbit integration.
Figure 7.7 clearly depicts, that the computation speed of 3DGeoInt and ODEINT45
are about the same for nϕ = 40. Furthermore, one has to mention, that 3DGeoInt
already provides the particle’s coordinates and velocities at the boundaries of spacial
cells, what is needed for the evaluation of the distribution function. Thus, it is more
efficient than a direct solution of the equations of motion with ODEINT45, where
these quantities at the cell-boundaries have to be computed additionally.

Obviously, the computation effort decreases, with decreasing mesh-size, whereby
ODEINT45 slightly beats 3DGeoInt in speed, but note that we are mainly not
interested in that regime.
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Figure 7.7: Computation speed: comparison of 3DGeoInt with ODEINT45 :
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
Pitch parameter: λ0 = 0.56
The CPU-time versus the orbit time is tracked for various mesh-sizes and
linearly fitted.

7.3 Effect of noise in the field quantities

One of the big disadvantages of high order adaptive ODE integrators are unwanted os-
cillations of the field quantities. These are caused by a high order spline-interpolation
of an inaccurately represented electromagnetic field (noise in the data). Such oscilla-
tions in the field quantities can destroy the physical properties of the particle orbit.
Typically, a high order adaptive ODE integrator is unable to calculate proper particle
trajectories, if there is noise in the underlying data of the electromagnetic field.
In the following section, it is qualitatively demonstrated that 3DGeoInt is able to
compute particle orbits even for inaccurately represented electromagnetic fields, due
to the approximation of field quantities with linear functions.
For all calculations a mesh size of nR × nZ × nϕ = 85× 100× 3 was chosen.
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7.3.1 Axisymmetric noise in the vector potential

First of all, the vector potential is perturbed by an axisymmetric noise. For that
purpose a random number generator (ξ = 0 . . . 1) is used to create noise, which was
subsequently added in a relative magnitude to the vector potential, such that

Anoise
k = Ak · (1 + ε · ξ), (7.7)

where Anoise
k and Ak are the perturbed and respective unperturbed vector potential

and ε gives the relative magnitude of noise.

Figure 7.8 and 7.9 show the Poincaré cut of trapped and passing particles for ε = 1 %,
5 %, 10 % and 20 %.
As one can easily see, the particle orbits remain closed in the poloidal plane, due to
the fact that the perturbation is axisymmetric, meaning that the canonical toroidal
angular momentum is conserved. Even though the magnitude of the added noise is
quite high, the particle orbits keep a similar shape in comparison with the unperturbed
orbit. Thus, the physical behaviour of particle trajectories computed by 3DGeoInt
is not completely destroyed (chaos), if the electromagnetic field is inaccurately but
axisymmetric represented.

7.3.2 Non-axisymmetric noise in the vector potential

Second, the vector potential is perturbed by a non-axisymmetric periodic noise, such
that

Anoise
k = Ak · (1 + ε · ξ · cosϕ), (7.8)

where ϕ is the toroidal angle coordinate.

Figure 7.10.a shows the Poincaré cut of a passing particle orbit, whereby the vector
potential was perturbed by a non-axisymmetric periodic noise with a relative magni-
tude of ε = 0.1 %. It is clearly visible, that the orbit does not remain closed in the
poloidal plane. Even more, dynamical chaotic behaviour becomes apparent.
Furthermore, one is interested in time-evolution of the canonical toroidal angular
momentum. Therefore, in figure 7.10.b pϕ is depicted for roughly 2 · 108 tetrahedron
passes which corresponds to 106 toroidal mappings. Qualitatively spoken, the variance
of pϕ doesn’t broaden extremely within the ”high“ number of mappings, that’s why
one can assume diffusive behaviour. In order to calculate the particle distribution
function within Monte-Carlo simulations, the mean free path length of a particle is
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much smaller than 106 toroidal mappings, thus the relative change of pϕ seems to be
within sufficient accuracy limits. Obviously, a detailed quantitative examination of
the time evolution of pϕ is needed in order to draw a conclusion regarding diffusive
behaviour.
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(a) 1 % of relative noise added
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(b) 5 % of relative noise added

170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210
−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

60

70

80

R [cm]

Z
[c

m
]

(c) 10 % of relative noise added
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(d) 20 % of relative noise added

Figure 7.8: Poincaré cut of trapped particle orbits, differing in magnitude of relative
axisymmetric noise added to the vector potential:
Starting position: xi = (R = 204 cm, ϕ = 0, Z = 0 cm)
Pitch angle: λ0 = 0.37
The noise was created with a random number generator (0 . . . 1) and
added to the vector potential, whereby the magnitude of the relative noise
was varied. Additionally to the particle orbits with noisy vector potential
(red), also the unperturbed orbits (grey) are depicted.
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(b) 5 % of relative noise added
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(c) 10 % of relative noise added
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Figure 7.9: Poincaré cut of passing particle orbits, differing in magnitude of relative
axisymmetric noise added to the vector potential:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
Pitch angle: λ0 = 0.90
The noise was created with a random number generator (0 . . . 1) and added
periodically in ϕ-direction to the vector potential, whereby the magnitude
of the relative noise was set to 0.1 %. In figure (a), additionally to the
particle orbit with noisy vector potential (red), also the unperturbed orbit
(grey) is depicted. Figure (b) shows the respective canonical toroidal
angular momentum of the passing particle orbit.
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(b) Canonical toroidal angular momentum

Figure 7.10: Poincaré cut of passing particle orbit and canonical toroidal angular
momentum under non-axisymmetric noise in the vector potential:
Starting position: xi = (R = 193 cm, ϕ = 0, Z = 0 cm)
Pitch angle: λ0 = 0.90
Number of toroidal orbit-turns (mappings): 106.
The noise was created with a random number generator (0 . . . 1) and
added to the vector potential, whereby the magnitude of the relative
noise was varied. Additionally to the particle orbits with noisy vector
potential (red), also the unperturbed orbits (grey) are depicted.

7.4 Statistical evaluation of the iteration procedure

In section 5.5 the equations of motion are solved by using the Runge-Kutta method,
applied in an iteration procedure. This procedure uses Newton’s method, a quadratic
approach and further analytical approximations, in order to meet the convergence
criterion to find an appropriate exit point. One might be interested, how these different
methods are used quantitatively for random orbits. For that purpose several orbits
under random starting positions and random pitch parameters were computed. In
total particles had to pass more than 5 · 108 tetrahedron-cells.
In table 7.1 the different methods, that are used in the iteration procedure, are listed
with their relative contribution among the used methods.
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Table 7.1: Relative contribution of methods used in the iteration procedure until the
orbit is converged at the exit point:

Total number of hexahedrons in the mesh: nR × nZ × nϕ = 85× 100× 20

Methods used in the iteration procedure relative contribution / %
0 Newton iterations (1 analytical approximation) 0.0514
1 Newton iteration 64.3124
2 Newton iterations 35.2788
3 Newton iterations 0.2941
4 Newton iterations 0.0055
Quadratic approach + Newton iterations 0.0003
New analytical approximation + Newton iterations 0.0204
Troubleshooting: Wrong convergence 0.2941
Troubleshooting failed: Bisection method 0.0055

The iteration procedure in a cell starts with an analytical approximation for the time
to pass through the cell. If the convergence criterion is not met, the methods in table
7.1 are applied to obtain additional integration time steps.
As one can easily see in table 7.1, the particle orbit converged at the appropriate exit
point in about 64 % of the cases after only one Newton iteration. Further 35 % are
covered with a second Newton iteration. Troubleshooting for convergence points, that
are not the appropriate exit point, has to be applied in 0.3 % of the cases and the
computationally expensive bisection method is only used in 0.006 %.
These figures indicate, that the analytical approximation that is made in the beginning
of the iteration procedure, matches the actual time of a particle to pass the tetrahedron-
cell quite good. Thus, the reason for the computational efficiency of 3DGeoInt can be
found in the order of accuracy of the analytical approximation. A further analysis of
the theoretically possible extrema of the initial integration time step τα can be found
in appendix A.
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Chapter 8

Conclusion and outlook

In this thesis a three-dimensional integrator for guiding center orbits of charged
particles in toroidal fusion devices was described.
Apart from its theoretical derivation and numerical implementation, a qualitative
evaluation of particle orbits was performed. It was shown that for axisymmetric de-
vices the physical behaviour of particle orbits calculated by 3DGeoInt coincides with
the description in the literature. In particular, it was demonstrated that the orbits in
axisymmetric devices remain closed in the poloidal projection plane. Furthermore,
two kind of particles appeared, depending on the pitch parameter at the starting
position or the electrostatic potential: trapped and passing ones.
With the introduction of a weak non-axisymmetric perturbation, dynamical chaotic
behaviour of the particle trajectories became apparent.

In addition to the qualitative demonstration of the physical properties of parti-
cle orbits, the accuracy of physical quantities was also studied. For that purpose the
conservation of the canonical toroidal angular momentum, which is an invariant of
motion in axisymmetric systems, was examined. It could be shown that for a fine
mesh-size the average relative change of the canonical toroidal angular momentum
in a cell is below the order of 10−16, which is a sufficient accuracy for the purpose
of evaluating the particle distribution function where the respective conservation is
important. Furthermore, it could clearly be demonstrated that the accuracy of the
canonical toroidal angular momentum is a function of the mesh-size.
Additionally, the electrical component of the toroidal precession frequency was com-
pared to an analytical expression. By varying the mesh-size, the accuracy of the
electrical component of the toroidal precession frequency could not be enhanced.
Thus, further examination is needed, in particular of the complicated physical be-
haviour of the magnetic component of the toroidal precession frequency, in order
to understand how the accuracy of the electrical component is related to the mesh-size.

One of the requirements for 3DGeoInt was computational efficiency. Therefore,
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the computation speed of 3DGeoInt was compared to a high order adaptive ODE
integrator, which resulted in roughly the same value. However, it must me mentioned
that 3DGeoInt already provides the particle’s coordinates and velocities at the bound-
aries of spacial cells, which is needed for the evaluation of the distribution function.
Thus, it is more efficient than a direct solution of the equations of motion with a high
order adaptive ODE integrator, where these quantities at the cell-boundaries have to
be computed additionally.
For the purpose of understanding the underlying reason for the computational effi-
ciency of 3DGeoInt, a quantitative evaluation of the numerical iteration procedure
was accomplished. This examination exposed that the particle orbit converged at
the appropriate exit point in about 64 % of all cases after only one Newton iteration.
Further 35 % were covered with a second Newton iteration. Thus, the reason for
the computational efficiency of 3DGeoInt is the accuracy of the initial analytical
approximation.

Finally, it was qualitatively demonstrated that unlike high order adaptive ODE
Integrators, 3DGeoInt is able to compute particle orbits even for inaccurately repre-
sented electromagnetic fields due to the approximation of field quantities with linear
functions. An axisymmetric noise term in the relative magnitude of up to 20 % was
added to the vector potential. The particle orbits remained closed in the poloidal
projection plane and kept a similar shape in comparison with the unperturbed orbit.
With the introduction of periodic non-axisymmetric noise, the particle orbits behaved
chaotically. In order to understand the time evolution of the canonical toroidal angu-
lar momentum, a detailed quantitative examination is needed to draw a conclusion
regarding diffusive behaviour.

Before 3DGeoInt can be inserted in the Monte-Carlo simulation, which solves the
overall problem of calculating the particle distribution function, further studies and
improvements have to be conducted. First of all, a more sophisticated field-aligned
mesh must be applied to 3DGeoInt, because that is needed in the overall Monte-Carlo
simulation.
Second, the chaotic behaviour of particle orbits must be examined quantitatively when
weak non-axisymmetric perturbations are introduced. In particular, the diffusive
behaviour should be studied under the variation of the mesh-size.
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Appendix A

Analysis of linear set of ODEs

A.1 Introduction

The approach that is used in section (5) to calculate the orbits in a tetrahedron as
efficient as possible, is to make an analytical approximation for the integration variable
τ . In order to obtain a good value for τ , the set of ODEs is simplified by setting
the implicitly τ -dependent variables xl(τ) and v‖(τ) to constants of motion. For this
reason the following assumptions were made:

1. The parallel velocity v‖ doesn’t change while the particle is passing the tetrahe-
dron.

v‖,const. = v‖,e.p.

2. The Matrix ail = 0 for 1 ≤ i, l ≤ 3. This is equivalent to the assumption of
setting xlconst. to the coordinate origin.

xlconst. = 0

The set of ODEs could then be analytically solved.

It is in our interest to improve the 3D-Integrator, thus one should analyse the quality
of those assumptions and, if possible, improve the proposal for the integration variable
τ .

A.2 Extrema of the integration variable τ

If one follows the path of the particle during its way through the tetrahedron, the
implicitly τ -dependent variables xl(τ) and v‖(τ) will adopt different values. Our first
task is to understand, how the solution for τ can vary for obtaining an intersection in
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between the orbit and the tetrahedron. Therefore, we are interested in the extrema of
the integration variable τ . In section (5.2.1) a quadratic equation for τ was obtained,
after xl(τ) and v‖(τ) were set to constants of motion and the set of ODEs was
integrated:

1

2
aα(τα)2 + bατα + cα = 0, (A.1)

with the constants

aα = nαi · ai4(a44 · v‖,const. + b4)

bα = nαi · (ai4v‖,e.p. + bi + ailx
l
const.)

cα = nαi · xie.p. − dα (A.2)

To obtain the extrema of τ , the coefficients aα, bα and cα must be examined, and thus
the extremal values of xl(τ) and v‖(τ), that can be adopted in the tetrahedron, have
to be evaluated.

A.2.1 Extrema of v‖ and xl

Extrema of v‖:
First of all, one has to understand, what is the minimum and the maximum that
v‖ can adopt in the cell. By introducing a notation with the quantity U (2.6), the
complications that can occur with the sign of v‖ vanish.
Thus, we will try to find the minimum and maximum of v2‖ and we will later analyze
how to determine the extrema of v‖. Following the notation (2.6), v2‖ takes the form

v2‖ = 2U =
2

m
(w − J⊥ωc − eαΦ), (A.3)

where w =
mv2e.p.

2
, J⊥ =

mv2⊥,e.p.
2ωc,e.p.

and ωc = eB
mc

.
After Ak, Bkωc , Φ, and ωc are independently linearly interpolated, v2‖ has the form

v2‖ = 2 · (U0 + xi
∂U

∂xi
), (A.4)

where U0 is the quantity U at the origin of the coordinates, namely the vertex with
index-number 1. As shown in section (4.2), both U0 and ∂U

∂xi
are constant in a cell.

Since equation (A.4) is linear in xi, the extrema of v2‖ must lie in the vertices of the
tetrahedron.
Now we are interested in the extrema of v‖. If v2‖ is negative, v‖ is imaginary and
this is why there is no real solution of the orbit in this subvolume of the tetrahdron.
When the particle moves to a region, where v2‖ = 0 and therefore also v‖ = 0, the orbit
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will make a turn and v‖ will change in sign. Depending of the sign of v‖,e.p. at the
orbit entry point of the tetrahedron and the sign of the extrema of v2‖, the following
cases have to be distinguished:

1. v2‖(x
i
vertexj) > 0 for j = 1 . . . 4 (v2‖ is positive in all 4 vertices.)

The square root of v2‖ cannot become zero or negative and therefore the sign of
v‖ is conserved. The extrema of v‖ depend on the sign of v‖ at the entry point.

(a) v‖,e.p. > 0

min(v‖) = +
√
min
j

(v2‖(x
i
vertexj))

max(v‖) = +
√
max
j

(v2‖(x
i
vertexj))

(b) v‖,e.p. < 0

min(v‖) = −
√
max
j

(v2‖(x
i
vertexj))

max(v‖) = −
√
min
j

(v2‖(x
i
vertexj))

2. v2‖(x
i
vertexj) < 0 for j = 1 . . . 4 (v2‖ is negative in all 4 vertices.)

There is no real solution of v‖ in the whole tetrahedron.

3. v2‖(x
i
vertexj) < 0 in at least 1 vertex and v2‖(x

i
vertexj) > 0 in at least 1 vertex.

The square root of v2‖ can become zero or negative and therefore the sign
of v‖ is not conserved.

min(v‖) = −
√
max
j

(v2‖(x
i
vertexj))

max(v‖) = +
√
max
j

(v2‖(x
i
vertexj))

Thus, if for the approximation of τ , v‖ = v‖,const. is set to a constant, v‖,const.. must lie
inside the range [min(v‖),max(v‖].
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Extrema of xl:
It is also necessary for the integration of the set of ODEs to set another implicitly
τ -dependent variable constant: xl = xlconst.. In this case it is easy to analyse, which
values can be taken by xlconst.. Obviously only coordinates xl, that are inside the
tetrahedron are allowed as constants. Thus, the extrema of xl are given by

min
(
xl
)

= min
j

(
xivertexj

)
,

max
(
xl
)

= max
j

(
xivertexj

)
, (A.5)

and xlconst. must lie inside the range [min
(
xl
)
,max

(
xl
)
].

A.2.2 Extrema of the quadratic equations coefficients aα and

bα

To find the extrema of τα one has to examine the extrema of the quadratic equations
coefficients aα and bα.

Extrema of the quadratic equations coefficients aα:
By assuming, that the constant v‖,const. is variable again, we get

aα(v‖,const.)→ aα(v‖) = nαi a
i
4(a

4
4 · v‖ + b4)

= nαi a
i
4b

4

︸ ︷︷ ︸
aα0

+ v‖ · nαi ai4a44︸ ︷︷ ︸
δaα

(A.6)

which is a linear function in v‖.
Thus aα(v‖) is extremal, if the function is evaluated at the extrema of v‖:

v‖,j =

(
min(v‖)

max(v‖)

)

min(aα) = nαi a
i
4b

4 + min
j

(v‖,j · nαi ai4a44) = aα0 + min(δaα)

max(aα) = nαi a
i
4b

4 + max
j

(v‖,j · nαi ai4a44) = aα0 + max(δaα) (A.7)
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Extrema of the quadratic equations coefficients bα:
By making the constant xlconst. variable again, we get the function

bα(xlconst.)→ bα(xl) = nαi a
i
l x

l + nαi (ai4v‖,e.p. + bi)

= nαi b
i + nαi a

i
4v‖,e.p.︸ ︷︷ ︸

bα0

+nαi a
i
lx
l

︸ ︷︷ ︸
δbα

, (A.8)

which is linear in xl.
On account of the linearity of this equation, the extrema must lie in the vertices of
the tetrahedron:

min(bα) = nαi (ai4v‖,e.p. + bi) + min
j

(nαi a
i
l x

l
vertexj) = bα0 + min(δbα)

max(bα) = nαi (ai4v‖,e.p. + bi) + max
j

(nαi a
i
l x

l
vertexj) = bα0 + max(δbα) (A.9)

A.2.3 Dependence of the solution for τα on the coefficients aα

and bα of the quadratic equation

As it was shown in section (5.2.3), the smallest positive solution for τα can be found
among the following solutions of the quadratic equation:

ταc=0 = −2bα

aα
for c = 0, or

ταc>0 =
−bα −

√
(bα)2 − 2aαcα

aα
for aα < 0, or

ταc>0 =
−bα −

√
(bα)2 − 2aαcα

aα
for aα > 0 and bα < 0. (A.10)

Now we are interested, how the solutions τα are changing, when the coefficients aα

and bα are varied. Is τα getting smaller or larger, when aα and bα are varied?

The partial derivatives of ταc>0 with respect to aα and bα are

∂ταc>0

∂aα
=

bα
√

(bα)2 − 2aαcα − aαcα + (bα)2

(aα)2
√

(bα)2 − 2aαcα
and

∂ταc>0

∂bα
= −

√
(bα)2 − 2aαcα + bα

aα
√

(bα)2 − 2aαcα
. (A.11)
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Under the condition

aα > 0 , bα < 0 and 0 < cα <
(bα)2

2aα
or

aα < 0 , cα > 0 (A.12)

we want to examine, if there are negative solutions of the partial derivatives

∂ταc>0

∂aα
< 0 and

∂ταc>0

∂bα
< 0. (A.13)

One can show that for both inequalities (A.13) under both conditions no solutions exist.

Finally also the partial derivatives for the case cα = 0 (ταc=0 = −2bα

aα
) have to be

calculated:

∂ταc=0

∂aα
=

2bα

(aα)2

∂ταc=0

∂bα
= − 2

aα
(A.14)

Under the condition
aα > 0, bα < 0 (A.15)

no solutions for positive derivatives exist, whereas under the condition

aα < 0, bα > 0 (A.16)

no solutions for negative derivatives exist.

A.2.4 Extrema of the quadratic equations solution τα

By summarizing the results of the previous sections, table A.1 is generated. The
interval of the solutions for τα and the sign of their partial derivatives determine the
extremal values of the smallest positive real solution for τα.
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Table A.1: Extrema of τα for various solution intervals

c = 0 aα < 0, bα > 0

∂ταc=0

∂aα
> 0 min(ταc=0) = ταc=0(a

α
min, b

α
min)

∂ταc=0

∂bα
> 0 max(ταc=0) = ταc=0(a

α
max, b

α
max)

ταc=0 = −2bα

aα
aα > 0, bα < 0

∂ταc=0

∂aα
< 0 min(ταc=0) = ταc=0(a

α
max, b

α
max)

∂ταc=0

∂bα
< 0 max(ταc=0) = ταc=0(a

α
min, b

α
min)

c > 0 aα > 0, bα < 0, cα < (bα)2

2aα
∂ταc>0

∂aα
> 0 see 1©

ταc>0 =
−bα−
√

(bα)2−2aαcα
aα

aα < 0
∂ταc>0

∂bα
> 0

min(ταc>0) = ταc>0(a
α
min, b

α
min)

max(ταc>0) = ταc>0(a
α
max, b

α
max)

To determine the extrema of 1© in table (A.1), one must consider, that only imaginary
solutions for the quadratic equation exists, when the discriminant becomes negative.

Extrema of ταc>0 in 1©:
There is a solution of the quadratic equation for ταc>0, if the coefficient cα lies in the
interval

(
0, (b

α)2

2aα

)
, otherwise the discriminant becomes negative (no real solutions).

Since cα is a constant in every tetrahedron and aα and bα are linear functions of v‖
and xl, these interval boundaries can only be exceeded, when (bα)2

2aα
becomes smaller

than cα.
To understand, how aα and bα have to be varied in order to decrease (bα)2

2aα
, one has to

examine the sign of the partial derivatives.

∂

∂aα
(bα)2

2aα
= − (bα)2

2(aα)2
< 0

∂

∂bα
(bα)2

2aα
=

bα

aα
< 0 (A.17)

Since both partial derivatives are negative, (bα)2

2aα
will decrease, if aα and bα increase.

Thus cα = (bα)2

2aα
is an upper bound for the quadratic equation coefficients aα and bα.

In principal we are interested in the extrema of ταc>0. When the discriminant is zero,
the solution for ταc>0 = − bα

aα
. If we insert the upper bound (cα = (bα)2

2aα
→ aα = (bα)2

2cα
)

into the solution, we get

ταc>0 = − b
α

aα
= − bα

(bα)2

2cα

= −2cα

bα
. (A.18)

As one can see in table (A.1), the partial derivatives of ταc>0 in the considered solution
interval are positive. That’s why the upper bound for aα and bα is the upper bound
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for ταc>0, due to the discriminant that becomes zero.

ταmax-discr =
2cα

bαmax

. (A.19)

Moreover it is also possible to rearrange cα = (bα)2

2aα
→ bα = ±

√
2aαcα and insert the

negative bα (see table A.1) into the solution, then we get

ταc>0 = − b
α

aα
= −
√

2aαcα

aα
. (A.20)

Since ∂
∂aα

(
−
√
2aαcα

aα

)
< 0, the maximum of ταc>0 can be found, when aα becomes

minimal:
ταmax-discr =

√
2aαminc

α

aαmin

(A.21)

One must keep in mind, that aαmin > 0. When aα and bα decrease, (bα)2

2aα
increases and

the interval for cα becomes larger. There is no lower bound for aα and bα due to the
discriminant, that can become negative.
Furthermore the extrema of aα and bα must still be taken into account, when one is
looking for the extrema of ταc>0.

ταminval = ταc>0(a
α
min, b

α
min)

ταmaxval = ταc>0(a
α
max, b

α
max) (A.22)

In conclusion the extrema of 1© in table (A.1) are

min(ταc>0) = ταc>0(a
α
min, b

α
min)

max(ταc>0) = max

(
ταc>0(a

α
max, b

α
max),−

2cα

bαmax

)
. (A.23)

An equivalent formulation of the maximum of ταc>0 is

max(ταc>0) = max

(
ταc>0(a

α
max, b

α
max),

√
2aαminc

α

aαmin

)
. (A.24)
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A.2.5 Extrema of τα under the consideration of the sign of aα

and bα

As it was shown in section (A.2.2) aα and bα are linear functions of v‖ and xl:

aα(v‖) = nαi · ai4(a44 · v‖ + b4) = aα0 + δaα,

bα(xl) = nαi a
i
l x

l + nαi (ai4v‖,e.p. + bi) = bα0 + δbα (A.25)

For this reason the sign of aα and bα can be both, positive and negative. Thus, also
the sign of aαmin, aαmax, bαmin and bαmax can be positive or negative.
In order to evaluate the extrema of τα under a given aαmin, aαmax, bαmin and bαmax with
various signs, the extrema for all possible combinations must be taken into considera-
tion.
In principal there are 3 combinations of signs for aαmin and aαmax. (The combination
σ(aαmin) = +1 and σ(aαmax) = −1 is not possible.) These 3 combinations can be
combined with 3 combinations of signs for bαmin and bαmax, which gives in total 9 combi-
nations.

Extrema of the solutions for ταc>0 under various signs of aα and bα:
In figure (A.1) one can see the real and imaginary part of the solution of the quadratic
equation for c > 0. Table (A.1) in a previous section shows the extrema of τα for
various solution intervals. A given aαmin can for instance belong to a different solution
interval than aαmax. Not all of these solution intervals are continuously connected to
another solution interval. In some cases one can observe singularities, when aα → 0.
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(a) Real part of the solution
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(b) Imaginary part of the solution

Figure A.1: The solution ταc>0 =
−bα−
√

(bα)2−2aαcα
aα

of the quadratic equation for aα =
(−10, 10), bα = (−10, 10) and cα = +2 is depicted. As one can easily
see in figure (a) the real part of the solution has a singularity at aα → 0
for positive values of bα. The solution, where the discriminant is zero(
cα = (bα)2

2aα

)
, is an upper bound for aα and bα. In the region, where

both aα and bα are positive, there are only negative solutions for τα2 and
therefore no physical solutions exist.

Table (A.2) lists the extrema of ταc>0(a
α, bα) under consideration of the combination

of different signs of the quadratic equation coefficients aα and bα. The plot in figure
(A.1) helps to understand, why for a certain combination of aαmin, aαmax, bαmin and bαmax

the maximum value of ταc>0 becomes infinite.
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Table A.2: Extrema of the solutions for ταc>0 under various signs of aα and bα

σ(aαmin) σ(aαmax) σ(bαmin) σ(bαmax) extrema of ταc>0

+1 +1 +1 +1
no solution
no solution

+1 +1 −1 +1
min(ταc>0) = ταc>0(a

α
min, b

α
min)

max(ταc>0) = max

(
ταc>0(a

α
max, b

α
max),

√
2aαminc

α

aαmin

)

+1 +1 −1 −1
min(ταc>0) = ταc>0(a

α
min, b

α
min)

max(ταc>0) = max
(
ταc>0(a

α
max, b

α
max),− 2cα

bαmax

)

−1 +1 +1 +1
min(ταc>0) = ταc>0(a

α
min, b

α
min)

max(ταc>0) = +∞

−1 +1 −1 +1
min(ταc>0) = ταc>0(a

α
min, b

α
min)

max(ταc>0) = +∞

−1 +1 −1 −1
min(ταc>0) = ταc>0(a

α
min, b

α
min)

max(ταc>0) = max
(
ταc>0(a

α
max, b

α
max),− 2cα

bαmax

)

−1 −1 +1 +1
min(τα2 ) = τα2 (aαmin, b

α
min)

max(ταc>0) = ταc>0(a
α
max, b

α
max)

−1 −1 −1 +1
min(τα2 ) = τα2 (aαmin, b

α
min)

max(ταc>0) = ταc>0(a
α
max, b

α
max)

−1 −1 −1 −1
min(ταc>0) = ταc>0(a

α
min, b

α
min)

max(ταc>0) = ταc>0(a
α
max, b

α
max)

Extrema of the solutions for ταc=0 under various signs of aα and bα:
In figure (A.2) one can see the solution of the quadratic equation for c = 0. Table
(A.3) lists the extrema of ταc=0(a

α, bα).
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Figure A.2: The solution ταc=0 = −2bα
aα

of the quadratic equation for aα = (−10, 10),
bα = (−10, 10) is depicted. As one can easily see the solution has a
singularity at aα → 0 for both positive and negative values of bα. In the
regions, where either both aα and bα are positive or negative, there are
only negative solutions for ταc=0 and therefore no physical solutions exist.
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Table A.3: Extrema of the solutions for ταc=0 under various signs of aα and bα

σ(aαmin) σ(aαmax) σ(bαmin) σ(bαmax) extrema of ταc=0

+1 +1 +1 +1
no solution
no solution

+1 +1 −1 +1
min(ταc=0) = 0

max(ταc=0) = ταc=0(a
α
min, b

α
min)

+1 +1 −1 −1
min(ταc=0) = ταc=0(a

α
max, b

α
max)

max(ταc=0) = ταc=0(a
α
min, b

α
min)

−1 +1 +1 +1
min(ταc=0) = ταc=0(a

α
min, b

α
min)

max(ταc=0) = +∞

−1 +1 −1 +1
min(ταc=0) = 0

max(ταc=0) = +∞

−1 +1 −1 −1
min(ταc=0) = ταc=0(a

α
max, b

α
max)

max(ταc=0) = +∞

−1 −1 +1 +1
min(ταc=0) = ταc=0(a

α
min, b

α
min)

max(ταc=0) = ταc=0(a
α
max, b

α
max)

−1 −1 −1 +1
min(ταc=0) = 0

max(ταc=0) = ταc=0(a
α
max, b

α
max)

−1 −1 −1 −1
no solution
no solution

A.3 Application to 3DGeoInt

The obtained values for τα can be introduced to all analytical approximations in
the iteration procedure, presented in section 5.5. One has to compare, the usually
calculated values for τα in the iteration procedure, with the more sophisticated
values, that were presented in this chapter. If discrepancies occur, meaning that the
sophisticated approach provides additional values for τα, these values are proposed in
the iteration procedure as the ”best guess“ for τα, obviously on condition that τα is
the smallest positive value.
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