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Abstract

The importance of the Industrial Internet of Things (IIoT) is increasing
rapidly. IIoT devices live in production environments as well as in the
public infrastructure and hence typically contain security-relevant software
that is responsible for controlling critical tasks. Their deep integration into
the environment, however, often allows attackers to gain physical access
to IIoT devices. This physical access represents a huge attack surface for
these devices. In particular, memory safety attacks, replay attacks, and
side-channel attacks are serious threats to the software in the IIoT. For
example, an attacker can exploit a memory safety vulnerability in the
software to take control of a device. To repair these software vulnerabilities,
vendors hence continuously create and deploy security updates. However,
an attacker with physical access can revert these updates by using replay
attacks, where they force a device to use an old and flawed version of the
software. Even further, an attacker can use side-channel attacks to learn
data processed on the device. These side-channel attacks, for example, allow
to learn cryptographic keys used by mechanisms that aim to protect the
confidentiality and authenticity of software executed on these devices, such
as secure boot. Eventually, all these attacks threaten the software executed
on an IIoT device and therefore the processed data as well. As a result, the
whole IIoT system is endangered.

In this thesis, we improve the security of IIoT devices by presenting a
bootloader concept that prevents replay attacks. The bootloader uses secure
storage, located in a Trusted Platform Module (TPM), to verify that the latest
firmware version is being loaded. This verification is based on a crypto-
graphic hash calculated over the encrypted firmware image that represents
a unique identifier of the version. This value is stored inside the TPM and
compared to the hash of the loaded image on every system boot. After
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successful verification, the firmware image is decrypted. To protect the de-
cryption against side-channel attacks, we use a leakage-resilient encryption
scheme. We use the modern programming language Rust to prevent against
memory safety issues. With a proof-of-concept implementation running
on a physical device, we verify the practical feasibility of the bootloader
concept.

Keywords: Secure Boot, Replay Attacks, Side-Channel Attacks, Memory
Safety, Rust
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Kurzfassung

Das Industrielle Internet der Dinge (IIoT) verbreitet sich zunehmend und
wird direkt in unsere Umwelt integriert. Aus diesem Grund bieten IIoT
Geräte eine große Angriffsfläche. Im Speziellen können Angreifer Schwach-
stellen in der Software ausnutzen. Solche Schwachstellen werden mit Sicher-
heitsupdates zwar behoben, jedoch kann ein Angreifer mit physikalischem
Zugriff ein eingespieltes Update mit einer sogenannten Replay Attacke
rückgängig machen. Weiters kann ein Angreifer Seitenkanalinformationen
nutzen um im Gerät verarbeitete Daten zu extrahieren. Besonders inter-
essant sind dabei kryptographische Schlüssel, wie sie zum Beispiel für
verschlüsselte Firmware verwendet werden. Mit den genannten Angriffen
kann ein Angreifer die volle Kontrolle über ein Gerät übernehmen und so
auch das gesamte IIoT System gefährden.

Wir verbessern in dieser Arbeit die Sicherheit von IIoT Geräten indem wir
ein Bootloader Konzept zur Verhinderung von Replay Attacken vorstellen.
Dafür wird über die verschlüsselte Firmware ein kryptographischer Hash be-
rechnet und in einem sicheren Speicher abgelegt. Als sicherer Speicher dient
uns ein Trusted Platform Module (TPM). Bei jedem Systemstart wird der
Hash der geladenen Firmware berechnet und mit dem gespeicherten Wert
verglichen. Nur bei Gleichheit wird die Firmware entschlüsselt. Um den Ent-
schlüsselungsvorgang gegen Seitenkanalangriffe zu schützen, verwenden
wir sogenannte Leakage-Resilient Cryptography. All diese Funktionen sind
in Software implementiert und müssen daher gegen Softwareschwachstellen,
speziell Speicherzugriffsverletzungen, geschützt werden. Dafür verwenden
wir die moderne Programmiersprache Rust, welche Speichersicherheit ga-
rantiert. Wir zeigen die Machbarkeit des Konzepts mit einer praktischen
Implementierung, welche auf einem pysikalischem Gerät läuft.

Schlüsselwörter: Secure Boot, Replay Angriffe, Seitenkanalangriffe, Speicher-
zugriffssicherheit, Rust
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1 Introduction

The Internet of Things (IoT) is getting more and more relevant today. The
IoT contains things that are connected to the Internet. These things are
interconnected computers, called IoT devices, that are spread all over the
world to fulfill tasks of our everyday life.

A modern home is full of IoT devices. Smart Televisions (TVs), smart-
watches, smartphones, smart household appliances and smart homes are
interconnected and fulfill different tasks of our private lives. IoT devices
connect to a cloud via the Internet. The cloud acts as central storage and
control point for the IoT system. For example, a smartphone can be used to
control the room temperature of a smart home via the Internet, even if the
operator is not at home or even on the other side of the planet.

The IoT gets popular not only in the private world but also for the industry.
The cloud can be used to monitor, evaluate or control industrial systems.
Different industrial computers, so-called Industrial Internet of Things (IIoT)
devices, connect to the cloud. These devices are for example found in a
power plant, in traffic management or controllers of a production machine.
Programmable Logic Controllers (PLCs) are controlling production ma-
chines and are responsible for the production progresses. With a connection
to the internet, the PLCs turn into IIoT devices and benefit from this con-
nection. The usage of the IIoT offers the possibility to provide customized
production. E.g., a factory for sport shoes can fit the product to the cus-
tomer’s needs. Based on a 3D scan of the customer’s feet, it is possible to
produce a pair of shoes with the perfect fit. The data is transferred over
the Internet to the factory where a fully automatic production process fab-
ricates the individual pair of shoes. This concept of individualization is
adaptable to many other products. Further, it is possible to monitor the
production machine and detect mechanical problems before the machine

1



1 Introduction

fails. Therefore, the analysis is performed in the cloud, and the machine
owner gets notified over the Internet. Although there are many benefits
of using IIoT systems, there is the risk of broken cybersecurity. Different
adversaries are, e.g., cybercriminals, competitors or secret services endan-
ger the IIoT devices. Attackers can use the Internet access to espionage
or sabotage on IIoT devices. Further, an attacker can use physical access
if the IIoT devices are located in unsafe environments, like smart meters
of a smart grid located in a private household or a PLC of a production
machine located in a foreign country. IIoT devices contain secret information
like domain knowledge of a process that is Intellectual Property (IP) of a
company. Further, cryptographic secrets used to authorize against the cloud
are stored on the device. Protecting these assets is necessary. Whenever an
attacker gains access to the assets, the operator of the IIoT system gets into
trouble. For example, the misusage of cloud credentials can threaten the
whole IIoT system. Further, the attacker can duplicate IIoT devices or send
fake data into the cloud. This behavior risks the production and makes the
IIoT system unusable. Therefore, an attack can threaten a whole company
and hence the economy. When using IIoT for power grids, attacks endanger
the energy supply of whole nations. Today’s population depends on the
electrical energy. A permanent loss would be a significant threat to our
society. For this reason, IIoT systems require strongest protections against
cyber attacks.

1.1 Attacks on Industrial Internet of Things
(IIoT) Devices

However, IIoT devices are distributed all over the world and therefore cannot
always be protected against physical access of an attacker. E.g., production
machines can be located in a foreign country, where malicious persons have
physical access to the machine. This physical access is a problem for the
IIoT device, a computer deeply embedded in the environment.

Like almost every computer, it consists of Central Processing Units (CPUs),
Random-Access Memory (RAM) and some storage, like a hard disk or an
SD-card. Further, the IIoT device has a network connection to establish a

2



1 Introduction

link to the cloud. On the other hand, the IIoT device is connected to the
environment. The IIoT device interacts with the environment using sensors
and actors. With a sensor, the device can monitor environmental values
from a process. With an actor, the device can influence a process.

A physical attacker can target every part of the device. By opening the
housing of the IIoT device, the attacker can tamper with the inner structure,
including measuring signals and modifying the device. For example, when
attacking the storage medium, the attacker can read or write data and
software that is executed by the IIoT device. This attack gives the attacker
full access to the assets and therefore needs to be protected. A state-of-the-
art mechanism to protect storage is secure boot. Based on cryptography,
the integrity and confidentiality of the executed software and stored data
are guaranteed. Confidentiality in this context is the protection against
unpermitted reads that is reached with encryption. The integrity is reached
with Message Authentication Codes (MACs) to prevent the execution of
unintended firmware. These two cryptographic mechanisms require secure
places to store keys. Therefore, the hardware of the IIoT device needs to
support secure boot and therefore verify and decrypt the firmware before
execution. In detail, the device starts a bootloader and this bootloader
starts the firmware. The bootloader and the firmware are implemented
as a software and therefore are at risk of software bugs. These bugs are
programming errors that can lead to security vulnerabilities. Vulnerabilities
are quite common in modern software as shown in the list of common
vulnerabilities and exposures [Cor18]. A particular class of vulnerabilities
are memory-safety problems. These problems are caused by unsafe memory
handling. For example, a stack-based buffer overflow belongs to this class
of vulnerabilities. A vulnerability can be exploited by an attacker so that
it can lead to full control over the device. This means that the attacker
can execute arbitrary software on the IIoT device and therefore obtains
access to the assets. With security updates, vulnerabilities are fixed and the
security problem is repaired. However, with a so-called replay attack, an
old firmware image can be restored even if secure boot is in place. Due to
the fact, that secure boot is based on cryptographic keys that are only once
writeable to secure storage in hardware, an old firmware image stays valid.
This attack can bring back old vulnerabilities, and allows to exploit the IIoT
device.

3
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Another problem resulting from physical access for an attacker are side-
channel attacks. The IIoT device leaks information through side channels
while processing data. Namely, processing data generates side effects, like
timing differences, EM emanation, heat, and power consumption. These
side channels allow concluding on the processed data. For example, the de-
cryption of a firmware image while secure boot is a target for a side-channel
attack. The attacker wants to get knowledge of the firmware plaintext to
extract secrets and IP. In order to do so, the attacker can use a Differential
Power Analysis (DPA), a common side-channel attack based on the power
consumption of the device, while decrypting. With this attack, it is possible
to extract the cryptographic key and further decrypt the firmware image.
Again, this gives the attacker permissions to reproduce IIoT devices as well
as impersonating the IIoT device when connecting to the cloud.

We conclude that the mitigation of memory-safety, replay and side-channel
attacks are a necessary property for building secure IIoT devices. Robust
mechanisms are required to ensure these properties. Currently, there is no
solution available that prevents all attacks covered in this thesis. IIoT devices
need to be secure and trustworthy, otherwise, IIoT devices run into danger
to threaten our world.

1.2 Contributions

This thesis covers three main contributions:

1. Replay resistance for operating system updates.
2. Memory safety for the implemented bootloader.
3. Side-channel mitigations for operating system decryption.

We verify the feasibility of these security mechanisms with a proof-of-
concept implementation of a secure bootloader. To protect against replay
attacks, a cryptographic hash over the encrypted next stage is stored inside a
Trusted Platform Module (TPM). The TPM guarantees that this data can not
be modified. On every system start, the bootloader then computes a hash
over the encrypted next-stage and compares it against the securely stored
value. This approach prevents executing old next stage copies and thus

4



1 Introduction

a replay attack. We implemented a bootloader using the modern system
programming language Rust. Rust guarantees memory safety without a
Garbage Collector (GC) by enforcing a robust ownership model for program
variables. To cope with side-channel attacks on the bootloader, we use a
leakage-resilient cryptographic mode of operation, such as proposed by
Pereira et al. [PSV15], for the encryption of the next stage. However, as dis-
cussed by Dobraunig et al. [Dob+17], leakage-resilient encryption schemes
are yet vulnerable to side-channel attacks where attackers maliciously al-
ternate the ciphertext. To also protect the decryption at startup, we hence
check the hash of the ciphertext before actually performing the decryption.
In this respect, this work shows that secure modifiable storage can help to
mitigate side-channel attacks during the decryption of boot images.

Our results further indicate that it is possible to secure a device against
replay attacks and mitigate side-channel attacks without being in danger
of memory safety issues. From our results, we suggest using Rust for new
IoT implementations and encounter replay and side-channels as potential
threats.

Outline

In Chapter 2, the fundamental property of memory safety is covered, and
different attacks and mitigations are explained. Chapter 3 focuses on phys-
ical attacks, particularly replay, and side-channel attacks. Moreover, cryp-
tographic primitives are described in the context of side-channel attacks.
Basic concepts of secure systems, including secure boot, random number
generation, and the TPM, can be found in Chapter 4. Chapter 5 gives details
on the actual implementation. Chapter 6 concludes this thesis.
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2 Memory Safety

Devices in the Internet of Things (IoT) are computers integrated into an
embedded world. These computers run software written by programmers.
C and C++ are currently the standard programming languages for low-
level programs like operating system kernels, device drivers, or bare-metal
applications. Therefore, a large share of software running on IoT devices
is written in C/C++. C/C++ is well established and offers easy hardware
access. Memory mapped Input/Output (I/O) is used to control interfaces,
timers or interrupts. Hardware interrupts can be implemented to get no-
tifications on events so that real-time applications can be programmed.
However, C/C++ is error-prone in the sense of dealing with memory. The
language does not prevent the introduction of different flaws and therefore
expects the programmer to deal with all these problems. Using C/C++, it is
easy to implement a program that accidentally allows illegal access to mem-
ory. If such an implementation is introduced unintentionally, a so-called
software bug occurs. Such a software bug could be exploited by an attacker
to threaten the security of the IoT device. An exploitable bug in this context
is called a vulnerability. As shown in the list of common vulnerabilities
and exposures [Cor18], security vulnerabilities commonly occur in software
products.

A particular class of vulnerabilities are memory safety issues, commonly
found in applications written in C/C++. Memory safety is a central property
in information processing promising that no memory area can be illegally
read or written. However, memory safety vulnerabilities often occur in
software today. By exploiting memory safety vulnerabilities, an attacker can
reach different goals, up to full control over a device. Recent programming
languages can assure the absence of memory safety issues, but are not
widely used or do not fulfill the requirements of embedded programming.
These languages often introduce a massive overhead in execution time

6



2 Memory Safety

and hardware requirements so that C/C++ was not replaced by now. A
promising, new system programming language, which tackles memory
safety issues with a novel concept of an ownership model, is Rust, covered
in Section 2.3.

Memory safety issues often lead to code execution attacks. This class of
attacks allows an attacker to execute malicious software on the device under
attack. The attacker hereby crafts a user input which causes a special behav-
ior of a software program. In this way, the attacker exploits a vulnerability
and therefore gains more permissions as intended for a user of the program.
Memory safety attacks can give an attacker full control over the device,
including unauthorized access to data, taking control over the behavior
of the system and Denial of Service (DoS) attacks. A so-called DoS attack
threatens the availability of a device. For example, this can be achieved by
crashing the application. A DoS attack already is a serious problem, but
other attacks are more powerful and even more harmful.

Section 2.1 gives a brief overview of common vulnerabilities found in
today’s software. Section 2.2 covers state-of-the-art attacks and mitigations
of memory safety vulnerabilities.

2.1 Vulnerabilities

As already motivated, exploitable software bugs lead to vulnerabilities.
There exist many different classes of vulnerabilities that can lead to memory
safety attacks. Serious vulnerabilities found in popular software are collected
and rated in the list of common vulnerabilities and exposures [Cor18]. This
list is extensive and visualizes that vulnerabilities are a severe problem
in present information processing systems. In the following, we give an
overview of the most relevant types of vulnerabilities.

Buffer Overflow. Stack-based buffer overflows were first shown by Levy
[Lev98] in the 90s and enable an attacker to gain unauthorized access to a
system by rewriting the stack. In general, a stack is a data structure following
the Last In First Out (LIFO) principle. With a push operation, data can be

7



2 Memory Safety

Listing 2.1: Buffer overflow example written in C.

1 #include <stdbool.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 int main()

6 {

7 char buffer[10];

8 bool is_admin = false;

9 printf("Please enter your name: ");

10 scanf("%s", buffer);

11 printf("Hello %s\n", buffer);

12

13 if(is_admin == true)

14 {

15 printf("Welcome Administrator, here is your shell:\n");

16 system("/bin/sh");

17 }

18 return 0;

19 }

placed on the stack and with a pop instruction the last pushed value can
be retrieved. The stack, as used by C/C++ compilers, is a memory region
inside the Random-Access Memory (RAM) and is used to store arguments,
local variables and return addresses.

User input is typically stored in buffers, meaning every character is stored
next to another in a memory range defined while programming. Listing 2.1
shows a small code snippet receiving user input and storing it to the array
buffer. The code provides a maintenance access if the is admin flag is set
to true. Although the code seems correct, the implementation is vulnerable.
Missing bounds checks on a memory buffer can lead to a buffer overflow
in the variable buffer. In the example, scanf accepts more characters than
can be stored into the buffer. As shown in Figure 2.1, is admin and buffer

are located on the stack. By writing out of bounds, the variable is admin

is overwritten. Doing so, the condition is admin == true in line 13 in

8



2 Memory Safety

0 1 2 3 4 5 6 7 8 9

buffer

is_admin

return

address

Stack

Figure 2.1: Memory layout for the example program shown in Listing 2.1.

Listing 2.2: Console output of Listing 2.1.

1 Please enter your name: ABCDEFGHIJK

2 Hello ABCDEFGHIJK

3 $ uname

4 Linux

Listing 2.1 can be triggered to evaluate to true. In this way, the maintenance
entrance is unlocked as demonstrated in Listing 2.2, which shows the
console output of the program execution. The bug in the example is easy
to fix within the scanf format string: scanf("%9s", buffer). With this
modification, no more than nine characters are accepted. Since strings are
zero-terminating in C, only nine characters can be stored in a ten-byte
buffer.

Integer Overflow. Integral data types, as used in modern computers, have
limited memory footprints, and therefore a restricted range of possible
values. For example, an unsigned eight-bit datatype can hold values from
0 to 255. When incrementing over this limit, the variable overflows. The
equation 255 + 1 results in the value 0. A similar behavior occurs when
decrementing the variable. Integer Overflows also occur on signed datatypes.
This vulnerability is a class of hard-to-find software bugs. If this problem
occurs in a length check of a buffer, the attacker is able to write out of
bounds. In this case, the attacker can overflow a buffer, as shown before.
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Use After Free. A Use After Free attack abuses the dynamic memory
management. While programming C or C++, the programmer can allocate
memory on the heap, which is the memory region for dynamic memory.
The programmer is entirely responsible for initialization, usage, and freeing
this memory. If the program frees such a memory element, no automatic
mechanism will clear the content nor invalidate any pointer to this memory.
By abusing a weak implementation, an attacker can leak information or
execute malicious code from these unchecked memory regions.

Type Confusion. A C++ object can contain function pointers located in
the virtual method table. As discussed by Jeon et al. [Jeo+17], these function
pointers can be abused by type conversion. If an illegal type conversion, an
illegal cast, is performed, an unintended function call can arise.

Format Strings. A format string is the format representation used in the C
standard library. For example, printf uses format strings to determine the
output format. If a user can control the format string, e.g., through the user
input, the program is in general exploitable. Listing 2.3 shows the usage
of the format string of the printf function. If fmt results from user input,
a malicious user can gain arbitrary read and write access to the program
memory, which in turn can result in code execution. A vulnerable format
string used in printf is Turing complete, as shown by Carlini et al. [Car+15].
This property means that the exploitation is universal programmable. As a
consequence, an attacker can program the vulnerability to perform malicious
actions.
Modern compilers are aware of this vulnerability and can output warnings
to inform the programmer. Unfortunately, large software projects tend to
be full of compiler warnings. In this case, essential warnings can easily be
missed.

Listing 2.3: Format string example written in C.

1 char* fmt = "%d";

2 printf(fmt, 42);

10
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2.2 Attacks and Mitigations

This section covers state-of-the art attacks that allow an attacker to execute
code on the device under attack. The attacker gains full control over a system
if malicious code is executed. Of course, there exist defensive mechanisms,
so-called mitigations, that hinder an attacker from exploiting a vulnerability.
New mitigations lead to the development of new attacks and vice versa.
The following list contains attacks and mitigations showing the efforts of
both sides.

Attack: Shellcode. The simplest case is to write a so-called shellcode
through user input to the memory. A common goal when attacking binaries
is to get access to the computer’s command line, which is also known
under the name shell. A shellcode contains machine instructions that the
attacked computer executes in order to gain access to the shell. Therefore,
the shellcode attack belongs to the group of code injection attacks. Of course,
there are mitigations in place that lead to an evolution of this attack.

Mitigation: Write Xor Execute. Write Xor Execute (W⊕X) is a state-of-
the-art mechanism that limits the scope of code injection attacks by using
memory privileges. The mechanism prohibits that a memory area is both
writeable and executable, analogous to the truth table of the Exclusive OR
(XOR) function. In that way, an attacker cannot write instructions to the
memory and execute it afterwards. This approach mitigates code injection
attacks since user-writeable memory regions are no longer executable. A
simple shellcode attack is made impossible.

Attack: Return into Libc. As discussed in Section 2.1, a stack-based buffer
overflow can overwrite other elements on the stack. Unfortunately, return
addresses are also stored on the stack. This behavior is necessary, because
whenever a called function returns, the program should continue right
after the point, where the function was called. Therefore, before a function
is called, the so-called return address is pushed to the stack. However,
instead of returning to the calling function, the attacker can use a function
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return to call arbitrary functions by overwriting the return address on
the stack. Therefore, Return-Into-libc (RILC) belongs to the group of code
reuse attacks. Hereby, an attacker typically uses functions of the C Standard
Library (libc) to exploit a program. The libc is the standard library on
gnu Linux for programs written in C, including functions for file I/O and
process execution. These functions are powerful tools for an attacker to
gain full control over the system. Even when W⊕X is in place, it is possible
to perform a RILC attack. RILC is Turing complete, as shown by Tran et al.
[Tra+11].

Mitigation: Stack Canary. As a mitigation against buffer overflows, as
shown in Section 2.1, the compiler inserts a magic value, the so-called stack
canary, between buffers and return addresses on the stack. By exploiting
a buffer overflow, the attacker will overwrite the stack canary. An added
piece of code checks the canary value before returning from a function
because the return address is a common goal for attackers. If the canary
value alters, the program will stop its execution. However, a stack canary
can be tricked if the program leaks the exact value of the stack canary. In
this way, the attacker can read out the stack canary and knows what to write
to the critical position.

Attack: Return oriented Programming. Return-Oriented Programming
(ROP) is a well-established attack. Existing tools [Gal18; Sch18; Sal17] help
attackers to exploit vulnerabilities with ROP. ROP gadgets are automatically
searched and the toolchains can orchestrate them together.
ROP is a generalization of RILC, which was described before, and is classi-
fied as a code reuse attack. There is no need to call an entire library function,
also small chunks of instructions work. If such a chunk ends with a return
instruction, it is considered as a so-called ROP gadget. Gadgets can be
linked to a so-called ROP chain. When executing a ROP chain, one gadget
returns and therefore calls the next gadget. As a result, the attacker can
write a program in the shape of a ROP chain, by writing a sequence of
addresses of ROP gadgets as return addresses on the stack. Figure 2.2 shows
an example ROP chain. The gadgets consist of a few instructions and end
with the ret instruction. Libraries, like the libc, and the binary itself are

12



2 Memory Safety

0x004005d5      pop rdi

0x004005d6      ret

Gadget 1Stack

0x0047a781      pop rax

0x0047a782      pop rdx

0x0047a783      pop rbx

0x0047a784      ret

Gadget 2

0x004005d5

0x0047a781

Figure 2.2: Example ROP chain built out of two ROP gadgets. The address shows the
location of the gadgets. The stack contains the entry points of each ROP gadget.

mapped to the memory. The gadgets found in the mapped memory can be
used for ROP. The program returns to the start address of the gadget and
executes the instructions. Another interesting fact is, that for architectures
with variable length instructions, like x86, one binary blob can result in
different ROP chains. In this way, the number of ROP gadgets is increased.
The ROP chain is packed into user input, as so-called payload, and sent to
the process under attack. The ultimate goal is to get control over the process.
This approach is known as process owning. By process owning, an attacker
can, for example, get access to a command line interface on an online server.
Using this command line interface the attacker can connect to other services,
maybe a local network of the server, or can use other bugs to get more
privileges on the server. If a so-called privilege escalation is successful, the
attacker can gain full control over the server and all processes running there.
Full control means that the attacker can kill every process, delete all data,
destroy data, write data, run programs, read all data and especially copy all
data to the local computer.

13
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Mitigation: Address Space Layout Randomization. Randomization ap-
proaches were invented to prevent code reuse attacks. Address Space Layout
Randomization (ASLR) is a state-of-the-art mitigation technique to prevent
memory safety attacks. Hereby, the location of essential memory regions is
randomized. On every execution of a binary, the position of memory sec-
tions, like the stack, is randomized. As the location of the stack changes, the
memory addresses are randomized. An attacker cannot rely on the position
of a library and is handicapped in performing a code reuse attack.

Mitigation: Position Independent Code. Position-Independent Code (PIC)
is a randomization approach to hide memory regions. The compiler removes
absolute addresses so that the code runs on arbitrary position. Compared
to ASLR, also the position of the main binary is moved. This approach
mitigates code injection and code reuse attacks. However, for both ASLR
and PIC, an attacker can recompute target locations if the program leaks a
memory offset of a location of interest.

Mitigation: Control Flow Integrity. A software program consists of in-
structions. While execution, different paths of instructions can be taken.
These paths form the control-flow graph, which is a graph with finite size.
During normal operation, the execution follows the edges of the control-flow
graph. When the control-flow graph is left, a vulnerability is exploited, or a
fault occurred. A fault can be caused by a defective memory cell or a power
glitch. Control Flow Integrity (CFI), proposed by Abadi et al. [ABE05], is a
mechanism to ensure that the control-flow graph is never left. Usually, CFI
schemes require hardware support integrated into the Central Processing
Unit (CPU). The CFI scheme mitigates code injection and code reuse attacks
but does not prevent against type confusion vulnerabilities as mentioned in
Section 2.1.
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Advanced Attacks. Multiple attacks, like Jump-Oriented Programming
(JOP) [Ble+11], Sigreturn-Oriented Programming (SROP) [Mab16] and Loop-
Oriented Programming (LOP) [Lan+15], were developed to overcome differ-
ent mitigations. An exciting attack further is Counterfeit Object-Oriented
Programming (COOP), proposed by Schuster et al. [Sch+15], that circum-
vents CFI.

The sum of all attacks against memory safety issues shows that they are a
serious threat to current software. Mitigation techniques were bypassed by
new types of attacks and never solved the original problem of software con-
taining vulnerabilities. As a result, it is time that a compiler can guarantee
memory safety.

2.3 Modern Programming Languages

Most of the vulnerabilities described in Section 2.1 are closely related to
the programming languages C and C++. C was introduced in the year
1972, when the security threat situation was different. With the invention
of the Internet, much more threats arose. Before the Internet, exploiting a
vulnerability on a local computer would mean to attack the own computer.
Security was not a big deal for a long time. Nowadays, millions of computers
are connected to the Internet and vulnerabilities offer attack capabilities to
attackers from all over the world. More recent programming languages like
Java, Python or Go offer stronger guarantees for memory safety, but are
not that valuable for embedded programming as a system language. These
programming languages are focused on higher-level applications.
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2.3.1 Rust

Graydon Hoare introduced Rust, a modern programming language, in
the year 2010. Today Mozilla Research is the driving force behind the
project. Mozilla uses Rust in the currently experimental browser engine
Servo [Moz17]. Further, Rust is found in the release of Firefox Quantum,
where the CSS rendering engine was rewritten in Rust. Clark [Cla17] praises
Quantum CSS for the high performance.

Rust is designed for the same purpose as C/C++, as a system language. It
is suitable for applications running on a modern Operating System (OS)
as well as embedded programming. Further, Rust guarantees memory
safety by design. The guarantee is based on a strong ownership model for
program variables, which also protects against data races in concurrent
executions. Rust introduces a concept named lifetimes, which replaces
a Garbage Collector (GC). Based on the concept of lifetimes, use after
free vulnerabilities can be excluded. By using zero-cost abstractions, Rust
implementations reach execution times that are competitive with programs
written in C/C++.

The language is compiled with the Rust compiler (rustc), that itself is
written in Rust. The compiler uses an LLVM backend, a state-of-the-art
toolchain capable of cross-compilation to many different CPU architectures.
The Rust package manager (cargo) manages dependencies to different
crates. A crate is a project that could be a either an executable or a library.
Dependencies are distributed as source code and automatically fetched from
the repository and built locally. It is easy to include external library crates
into a software project.

As discussed by Wilson [Wil16], integer overflows are not always checked
for performance reasons. The current default strategy is to perform the tests
in debug builds and skip the tests in performance-optimized release builds.
Of course, the programmer can override the default behavior. Another way
is to use library functions, offered for all integral types, to perform a check
manually.
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Unsafe Rust. Low-level programming requires direct access to hardware
registers. This requirement can not fulfill the memory safety guarantees
of Rust. Unsafe Rust solves this problem. The unsafe keyword is used to
define blocks that override all security mechanisms. Such a block can be
embedded in a Rust program, where the remaining source code will be
handled as safe Rust. A good practice is to keep the amount and size of
unsafe blocks as small as possible.

Embedded Rust. At the time of programming the project behind this
thesis, embedded Rust was still in development. Unstable features were
required to compile a bare-metal project for an embedded platform. There-
fore, a nightly built Rust compiler (rustc) and the tool Xargo were required.
Xargo is an extension for Cargo with the ability to compile the core library
for all kinds of platforms. The Rust developers are currently working on
stabilizing these features [Apa18a]. Moreover, the features Xargo provides
will be merged into Cargo [Apa18b]. With this work, the Rust developers
make Rust even more attractive for embedded programming. These efforts
are planned to be finished by the end of 2018 [Tea18c].
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Physical attacks are the class of attacks on a computing device where the
attacker has physical access to the device. Because Industrial Internet of
Things (IIoT) devices are widespread and operate in unsafe environments,
they are in high danger of physical attacks. Therefore we need to protect
IIoT devices against physical attacks where an attacker has hands-on access
to the device. Because of this access, the attacker can open the housing of
the device, replace components, measure signals or introduce faults.

Two families of physical attacks are in the focus of this work. The first family
are physical replay attacks. Replay attacks are not only limited to physical
attacks and allow an attacker to use obsolete information to bypass security
mechanisms. This attack is a critical threat to communications as well as for
software running on an IIoT device. The attacker can replay an old software
image with a physical attack even if the image is encrypted. The second
family of physical attacks are side-channel attacks. Side-channel attacks
allow an attacker to break cryptography and gain knowledge of secret
information from observing physical device properties. With a side-channel
attack, the attacker can leak the encryption key and decrypt the software
image.

Section 3.1 gives details on the IIoT device and the different attack vectors.
Section 3.2 covers replay attacks and mitigations. Section 3.3 discusses
side-channel attacks with the focus on cryptographic algorithms.

3.1 Motivation

IIoT devices are deeply integrated into the environment to fulfill sophis-
ticated tasks. However, this deep integration causes the risk of physical
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RAM
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SoC Peripherals

Internet

IPv4/IPv6
different
interfaces

memory bus

IIoT device

... root of trust

Figure 3.1: General structure of an IIoT device embedded into the environment.

attacks. For example, a device located in a data center is protected by physi-
cal barriers, and therefore the attacker needs to break the physical barrier
before mounting a physical attack. For an IIoT device, usually it is impossi-
ble to protect the device with physical barriers. Attackers can gain physical
access to the device and therefore can access and tamper with the physical
properties.

The attackers want to steal or manipulate data on the IIoT device or want to
clone the device itself. Figure 3.1 shows the basic structure of an IIoT device
embedded into its environment and gives a basic overview of what parts can
be attacked. On the one hand, the device is connected to the internet, shown
as a cloud. Through this connection, the IIoT device communicates with
servers that belong to cloud services. In this way, the IIoT device is associated
to an overall IIoT system. On the other hand, the IIoT device is connected
to peripherals. Through these connections, the device can gain insights or
control the physical world. In other words, an IIoT device is a computer that
connects the physical world with a cloud backend. It consists of memory
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storage, like an SD-card, to save firmware and data. Also, Random-Access
Memory (RAM) is part of the IIoT device that is used as a working memory
for the computations. Both memory types are connected to a System on
Chip (SoC), the core component of the IIoT device, through memory busses.
The heart of a SoC are one or multiple Central Processing Units (CPUs), but
also memory controllers and interface controllers are included in a SoC. For
example, General Purpose Input Output (GPIO), Universal Asynchronous
Receiver Transmitter (UART), Controller Area Network (CAN) or Serial
Peripheral Interface (SPI) are common interfaces offered by a SoC design.

A physical attacker has the opportunity to attack every single point of the
IIoT device. For example, the connection to the cloud can be intercepted.
There exist proper standard protocols that ensure protection on this channel.
The linkage to the peripherals is another entry point. First, the applied
interfaces, e.g., CAN, often implement no security measures at all. Second,
physical parameters can be manipulated directly. For example, the tem-
perature that is measured by a temperature sensor can be modified by an
attacker. Further, a physical attacker can access the inner structure of an
IIoT device, even on the inner structure of the SoC.

In this thesis, we do not encounter attacks on the inner structure of IIoT
devices. These attacks are expensive and require sophisticated knowledge of
chip structures. Attacks on peripherals are also not considered in this work.
For example, protecting a temperature sensor against manipulation is not
easy at all in the presence of physical access. Further, we do not encounter
attacks on the connection to the cloud since there are well-established
standard protocols like Transport Layer Security (TLS).

The considered attacks focus on all components the IIoT device consists
of. An attacker can gain access to the memory by tampering with memory
busses or getting direct access to a storage medium, e.g., an SD-card. Further,
an attacker can measure all kinds of physical properties, like Electromag-
netic (EM) emanation, heat, and power consumption. Through all these
possibilities, an attacker can reach the goals defined before. Section 3.1.1
gives some examples of practical, physical attacks.
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3.1.1 Recent Incidents

A possible attack vector is to manipulate values inside the RAM. By rewrit-
ing memory, an attacker can hijack the device. For example, Jacob et al.
[Jac+17] proposed to rewrite bootloader arguments to force the device to
boot from a malicious network location. The described attack uses hardware
trojans to manipulate memory, but unprotected memory is also at risk of
being modified by an attacker. To prevent such attacks, memory can be pro-
tected with transparent memory encryption and authentication as proposed
by Werner et al. [Wer+17].

A simple physical attack is to clone the device by cloning the hardware
design and duplicating the firmware. Although there exist countermeasures,
still a large number of devices are vulnerable to this type of attack. The
attacker can read all secrets from the storage and use them for malicious
actions. Similar to this, parts of the firmware can be modified on an unpro-
tected device, so that the device executes software written by an attacker. For
example, sensor values that are reported to the cloud can be manipulated.

Muellner and Kammerstetter [MK17] showed on the 34th Chaos Communi-
cation Congress that Hoermann BiSecur devices include a cryptographic
vulnerability, allowing to deduce the cryptographic key and to clone a re-
mote control for garage door systems. They were able to read out and reverse
engineer the firmware. This analysis is a good example of a physical attack.
Using the recovered firmware, the cryptographic flaw was detected.

3.2 Replay Attacks

When performing a replay attack, an attacker records a message and replays
it later. This type of attack is simple, but powerful, and often used to over-
come specific security features. Originally, replay attacks were performed
on network communication, but these could also be applied to our everyday
life. For example, if a concert ticket is used and not devalued correctly, an
attacker can reuse a copy to get access to the event.
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Figure 3.2: Replay Attack on firmware images.

As indicated in Figure 3.2, the same concept can be applied to firmware
images. An attacker with physical access can always take copies from the
storage and replay it at a time of choice. An old firmware version can be
replayed by an attacker with physical access to the device. A replay attack
on firmware images is dangerous, because firmware updates often include
security updates, where vulnerabilities are removed. Performing the attack
brings back the vulnerabilities that can be exploited afterwards. Even if
the firmware image is encrypted and the encryption key is not known by
the attacker, a replay attack can be accomplished. Further, secure boot, a
state-of-the-art mechanism to protect storage discussed in more detail in
Section 4.1, does not protect against replay attacks.

A prominent example by Skorobogatov [Sko16] showed how to mirror the
storage of an iPhone 5c. The phone could be configured with a security
feature which deletes all data if a wrong passcode was entered too often.
By replaying the old image one could circumvent this security feature.
Namely, it allows to reset the password counter and therefore apply a brute-
force attack to crack the passcode. Further, all possible combinations of the
passcode can be tested because there is no limit for the number of tries
anymore.
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Similar to the password counter in the previous example, devices may
contain sensitive data like counters for pricing, bank account balance or a
usage counter of a machine. In any of these cases, a replay attack has to be
considered.

3.2.1 Mitigations

One way to prevent replay attacks is to use a tamper-resistant single-chip
computer. In this case, the firmware storage is inside the chip and can not
be modified by an attacker. Therefore a built-in firmware update solution
is required. When performing an update, the firmware update tool checks
if the version is increasing to prevent replay attacks. For example, secure
microcontrollers or smart cards fulfill the requirement that memory cannot
be manipulated. Physical barriers prevent an attacker from accessing the
built-in memory.

Another option is a secure, writeable memory inside the SoC, to store
the version number. This number is then matched while boot. A popular
implementation of such a secure storage are fuses, a memory that is only
writeable once. With this instrument, every version needs to consume one bit.
In turn, the number of possible firmware update depends on the number of
fuse bits integrated into the SoC. Indeed, not all SoC chips available include
custom programmable fuses.

The best solution is an on-chip secure writeable memory to keep track of
the software version, but this is rare in current SoC implementations. As a
workaround, an external secure element, like a Trusted Platform Module
(TPM), can offer tamper-resistant secure storage. In this case, it is essential
to pay attention to secure communication between the secure element and
the SoC. If the attacker can impersonate the secure element, replay attacks
are feasible again.
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3.3 Side Channels

A computer leaks information through side channels when processing
data. Timing, EM emanation, heat or power are well known physical side
channels. For example, if the execution time depends on the processed
data, a timing side channel exists. In this case, the time can be measured
and under certain circumstances the processed data can be reconstructed.
Timing leakage can be mitigated with constant time implementations. If the
execution time is independent of the processed data, no timing information
can be exploited. In general, the information leakage through side channels
depends on implementation characteristics. Two implementations of the
same algorithm can have different exploitability.

Side-channel attacks are potentially dangerous for cryptographic algorithms,
where secret keys are involved. The goal of an attacker is to learn these keys
and to use them later. In this way, an attacker can decrypt ciphertexts, or
even impersonate as an authenticated user.

In this thesis, we focus on the power side channel. Based on the power
consumption of the device different attacks are applied. The basis of all
analysis is the measurement of power (PDUA) on the device under attack.
More precisely, a time series of values proportional to the power (PDUA) is
required. Since computers are supplied with a constant voltage, the current
is such a proportional value to the power as shown in Equation 3.1.

PDUA = VDD · IDUA (3.1)

VShunt = RShunt · IDUA (3.2)

An oscilloscope is an instrument that allows the measurement of time
series. Figure 3.3 shows a basic measurement setup by using an oscilloscope
to measure the voltage drop on the shunt resistor. Based on Ohm’s law,
as shown in Equation 3.2, the voltage drop (VShunt) on the shunt resistor
is proportional to the current, and therefore proportional to the power
consumption of the device under attack. By using an oscilloscope with
a current probe or a shunt resistor, it is possible to record time series of
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VShunt ... voltage drop on shunt resistor

Figure 3.3: Measurement setup for power analysis attacks.
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Figure 3.4: Example power trace of an AES encryption on an embedded device.
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power values, so-called traces. Generating multiple traces means to repeat
the recording with different inputs for the device under attack. Figure 3.4
shows an example power trace. Side-channel attacks perform analysis on
these traces to extract the information that is leaked through the power side
channel.

Simple Attacks. On the one hand, there are single-trace attacks, where the
measurement of a single event is enough to extract the data of interest. For
example, Courrège et al. [CFR10] show a Simple Power Analysis (SPA) on an
implementation of the Rivest–Shamir–Adleman (RSA) algorithm [RSA78].
Based on the shape of a single power consumption trace [CFR10, Figure 3],
the exponent used in the computation can be determined. Squaring uses
different parts of a chip than multiplying, and hence generates a distinguish-
able power consumption. Some implementations produce obvious traces so
that the value can be determined by visual inspection only.

Differential Attacks. On the other hand, there are differential attacks.
Multiple, up to thousands, of traces are used to expose minimal differences
that arise in a computation. One example of differential attacks is Differential
Power Analysis (DPA), a state-of-the-art attack proposed by Kocher et al.
[KJJ99], based on power side channels. Recording the power consumption
of a system while encrypting or decrypting different inputs with the same
key generates traces. With these traces, an attacker can deduce the key used.
The reason for this is while processing data, the power consumption of
the system depends on the processed data. For example, a Complementary
Metal-Oxide-Semiconductor (CMOS) transistor consumes more energy, if
the state changes. The reason is that the electrical charge of the gate capacity
needs to be changed. This event occurs just for a very short time but depends
on the data processed. Since a DPA requires multiple traces capturing this
event, they need to be aligned. This means that the recording has to start
every time at the same point and the executed instructions always happen
at the same position in the recorded trace. This can be done by using the
oscilloscope trigger input. Of course, an event is required that is used for
this trigger. It is possible to improve the alignment in the analysis phase, for
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Figure 3.5: Measurement setup for a DPA.

example, by maximizing the correlations between traces by shifting them
on the time axis.

3.3.1 Differential Power Analysis (DPA)

DPA is a well established physical attack on cryptographic devices. One
advantage is that it is possible to perform this attack with relatively cheap
equipment. Namely, an oscilloscope or similar device like the ChipWhis-
perer [Inc18] is required to record timing power traces. These devices are
affordable for a few hundred dollars. Figure 3.5 shows the basic setup of a
DPA. It consists of a device under attack, an oscilloscope to measure traces
and a Personal Computer (PC) for processing. The PC is the attacker’s tool
to feed the device under attack with inputs and receive the associated traces
from the oscilloscope.
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Intermediate Result. The first task to perform in a DPA is to select a
function inside the algorithm that uses the secret and a selectable value as
an input. The function’s output is an intermediate result that is the target
of the attack. The power consumed while storing the intermediate result in
some memory depends on the value of the intermediate result and therefore,
information is leaked.

Measurement. The second step is to record traces. Therefore, the mea-
surement setup is installed, and the cryptographic operation is performed
multiple times with different inputs. The attacker needs to inject these in-
puts, for example, with a PC. Within this process, the power consumption
of the device is recorded. Essential for this step is that the operation under
attack is inside the time frame of the recorded trace. As mentioned before,
proper alignment of the traces is required for the following analysis.

Hypothesis. As a third step, possible intermediate values need to be com-
puted, the so-called hypothesis. Therefore, the selected function under attack
is calculated locally for one selected input value and all possible values
for the secret. This is continued for all selected input values and results
in a matrix with the shape of all possible secret values times all selected
inputs.

Power Model. As the fourth step, the power model is applied to the
hypothesis. The power model is a function that maps the value of a specific
intermediate result to the expected power consumption. A common model
is the Hamming weight, which counts the number of bits that are true. This
follows the assumption that enabling more bit requires more power.

Compare. The last step is to compare the result of the power model to the
hypothesis with the measured data. A popular method is to use a correlation
function to compare a vector containing the power model of all selected
input values for one particular possible secret value. This vector is correlated
with every timestep of all recorded traces. For every timestep, a correlation
factor is computed. At the timestep, where the operation of interest is
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Figure 3.6: Example correlation of a DPA attack on an eight-bit AES implementation. The
correct key guess is 66.

performed, the correlation of the correct key will be highest. Depending on
the type of correlation, this can also mean the lowest correlation coefficient,
as in the following example. Figure 3.6 shows the minimal correlation
coefficient of all traces for different key guesses. The correct key guess is
clearly visible. Therefore, a secret is extracted out of the recorded power
traces.

3.3.2 Advanced Encryption Standard (AES)

Cryptographic algorithms are a common goal for side-channel attacks. The
attacker’s ambition is to learn the key involved that, for example, can
be used to decrypt ciphertexts. Symmetric encryptions are used to en-
crypt and decrypt big blocks of data. The same key is used for encryption
and decryption, therefore this mechanism is called symmetric encryption.
The AES is the current standard for symmetric encryption. A competi-
tion was started in 1997 to find the best algorithm for the new standard.
As the winner of the selection process, the Rijndael algorithm proposed
by Daemen and Rijmen [DR98] was standardized in the year 2000 by the
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Figure 3.7: Block cipher for encryption and decryption.

National Institute of Standards and Technology (NIST). The AES encryp-
tion and decryption functions perform cryptographic operations with a
secret key involved. The operations can leak information through side-
channels. We take a closer look at the AES and different modes of operation,
including a leakage resilient mode.

AES is a block cipher, that means the algorithm operates on fixed-size data
blocks. The AES algorithm has a block size of 128 bits and the possible key
sizes are 128, 192, and 256 bits. The left part of Figure 3.7 illustrates a block
cipher encryption function. The encryption function encrypts the plaintext
(pt) with the key (k) and hence generates a ciphertext (ct). Plaintext (pt) and
ciphertext (ct) have the same size as the block size. The decryption function
decrypts the ciphertext (ct) with the same key (k) as used for encryption,
shown right in Figure 3.7.

DPA on AES. The AES encryption and decryption functions are often a
target of DPA attacks with the goal to extract the secret key. One essential
part of the AES algorithm is the S-box. It is a substitution step that can be
implemented using a lookup table, as shown in Listing 3.1. Within the AES
algorithm, the input plaintext and key get connected with an Exclusive OR
(XOR) and then the S-box is applied, as shown in Listing 3.2. This part of
the algorithm is a good intermediate result to mount a DPA attack. The
measurement is focused on the timestep where the described operation is
performed and uses a lot of different input plaintexts. Further, Listing 3.2
is used to generate the hypothesis by calculating this equation for every
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Listing 3.1: AES S-box implemented as lookup table in C/C++.

1 uint8_t sbox[256] =

2 {

3 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01,

4 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D,

5 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4,

6 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,

7 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7,

8 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,

9 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E,

10 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,

11 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB,

12 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB,

13 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C,

14 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,

15 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C,

16 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D,

17 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A,

18 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,

19 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3,

20 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,

21 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A,

22 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,

23 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E,

24 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9,

25 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9,

26 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,

27 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99,

28 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16

29 };

Listing 3.2: AES S-box usage implemented in C/C++.

1 intermed = sbox[plaintext ^ key];
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Figure 3.8: Electronic Code Book (ECB) mode for encryption.
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Figure 3.9: Cipher Block Chaining (CBC) mode for encryption.

possible value of the key byte. Next, the power model is applied and
compared to the recorded traces using a correlation coefficient. In the end,
the correct key guess leads to the highest correlation to the measurement.
This procedure is repeated for every key byte, and the attacker finally knows
the whole secret key. A DPA is successfully applied to the AES algorithm.

Modes of Operation. Block ciphers, like AES, are used in so-called modes
of operations to deal with memory junks bigger than a single block. The
most straightforward example is the Electronic Code Book (ECB) mode,
where the input is split up into blocks and then fed into the block cipher,
as shown in Figure 3.8. The ECB mode is however not recommended since
equal plaintext blocks result in the same ciphertext block. This problem is
fixed in chained operation modes like the Cipher Block Chaining (CBC)
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Figure 3.10: Leakage-resilient mode of operation.

mode. In CBC, an initialization vector (iv) is used to get freshness for
each ciphertext. With this additional randomness, two identical messages
get different initialization vectors and therefore a different ciphertext. As
shown in Figure 3.9, every cipher block operates with the same key (k).
Therefore the scheme is vulnerable to differential attacks, even if only one
ciphertext/plaintext pair is processed because every block creates a trace
belonging to the same key (k). By exploiting all the traces, an attacker can
gain knowledge of the key.

Leakage Resilience. To overcome DPA vulnerabilities in modes of opera-
tions, Pereira et al. [PSV15] proposed a leakage resilient encryption scheme.
The underlying construction is shown in Figure 3.10 and uses an AES en-
cryption function as a Pseudo-Random Generator (PRG). This structure
of two PRGs driven with one key is called 2PRG. The scheme is a stream
cipher, creating a key stream (xi), the so-called pad. This pad is then applied
with the XOR operation on a plaintext to encrypt, or on a ciphertext to
decrypt. First, the round key k∗1 is generated by encrypting the constant
C0 with the key k∗0. Second, a pad, used later as a key stream, is generated
by encrypting the constant C1 with the key k∗0. As a result, one key, e.g.,
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Figure 3.11: Re-keying function (g) used in Figure 3.10.

k∗0 is used no more than twice in an AES encryption function. Therefore,
an attacker can observe no more than two different traces using the same
key. This property is called 2-limiting. It is a common assumption in the
literature [Sta+10] that two traces using the same key are not enough to
sucessfully perform a DPA.

A number only used once (nonce) is included in the scheme to get freshness.
If the same content is encrypted twice, the ciphertext will differ, since on
every encryption a fresh nonce is used. In perspective of side-channel attacks,
this means, that the applied round keys (k∗0, k∗1, ...) will differ and the attacker
can not collect more traces with the same key. The re-keying function g
is used to apply the nonce on the root key K. The re-keying function also
uses the 2PRG construction using symmetric encryption and is shown in
Figure 3.11. Depending on the value of the nonce n, a different path through
the graph is taken. Every nonce bit decides whether the constant C0 or
the constant C1 will be encrypted. The output of the re-keying function is
derived from the root key K and used as first round key k∗0. Every possible
key inside the re-keying function is only used in two different encryption
runs, particularly for the constant C0 and the constant C1. Therefore, the
re-keying function is also 2-limited, and the same argument regarding
differential side-channel attacks as stated before holds.
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3.3.3 Hash function

Hash functions are fundamental and necessary building blocks in today’s
cryptography. A hash function is a cryptographic one-way function. MD5,
SHA-1 and the families of SHA-2 and SHA-3 are well-known hash functions.
A big data block, a so-called image x, is mapped to a constant-size hash
value h, e.g., with a size of 256 bits for SHA256, by computing h = H(x).
For example, when downloading Linux images, hash values of different
algorithms are displayed on the webpage to check for transmission errors
after downloading. In this way, a hash function fulfills the same require-
ments as a checksum, but has additional cryptographic requirements. The
requirements are collision resistance, preimage resistance and second preimage
resistance.

A collision occurs, if it is computationally feasible to find two images x 6= x′

that result in the same hash value h = H(x) = H(x′). Due to the fact that
the hash value computed on a large input is of limited size, usually only a
few hundred bits, there will always exist collisions. This problem is known
as birthday paradox. The requirement for the hash function is to hinder the
calculation of collisions, which is known as collision resistance.

If it is possible to reverse the hash function H(x) = h, such that an image
x can be computed from a given hash h, it is possible to compute preim-
ages. For example, hash functions are used as a one-way function to store
passwords one-way encrypted into a database. If an attacker gets access to
the password database, computing a preimage from the hash value allows
recovering passwords. The preimage resistance prevents from recovering the
passwords.

Computing a second preimage means to compute a second image x′ given
the orignal image x, where x′ 6= x, such that H(x′) = H(x). A hash function
that is vulnerable to second preimage attacks is useless for many applica-
tions of cryptography. Second preimage resistance is important for signature
schemes, where hash functions are used within a proof that states the origin
of the image. For example, a document containing a contract is cryptograph-
ically signed. If an attacker can modify the document such that the hash
value of the document stays unchanged, by computing a second preimage,
it is possible to forge the contract while the signature stays valid.
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As hash functions are used to guarantee integrity, they are also used in
encrypt-then-hash schemes. A plaintext is encrypted first, and the resulting
ciphertext is hashed. In this scheme, the hash function operates with no
secret values. Therefore, the hash function is not valuable for side-channel
attacks in this scheme.

3.3.4 Message Authentication Code

A Message Authentication Code (MAC) is used to verify the origin of a
message. This approach ensures the integrity of messages sent between two
parties. The two parties share a secret, also called password or a key, that is
used to compute the MAC value. This MAC is sent along with the message,
and the other party can verify it, using the shared secret. A MAC protects
against transmission errors and illegal modifications.

HMAC Definition. A Hash-based Message Authentication Code (HMAC)
is a MAC based on hash functions, which takes a message and the shared
secret key as an input. As proposed by Bellare et al. [BCK96] the HMAC
function is defined as shown in Equation 3.3 using a hash function (H), a
secret key (k) and input data (x). The key length is variable, thus the security
relies on this length. An attacker can apply a brute-force attack to find the
secret used for the HMAC calculation. The key complexity as well as the
size of the hash determines the computation time an attacker has to spend
to find the secret. Of course, an attacker can rent a massive amount of cloud
instances to reduce the real time to success, but the key complexity and
hash size influences the financial effort required.

HMAC(x, k) = H(k⊕ opad, H(k⊕ ipad, x)) (3.3)
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HMAC Computation. The constants ipad and opad are applied with the
XOR function to the key. Therefore, the key is padded with zero bytes to
64 bytes length. The constants are byte vectors with the length of 64 bytes
where every byte of a vector holds the same value. Bellare et al. [BCK97]
define 0x36 for ipad and 0x5C for the opad. After computing the inner
term (k⊕ ipad) the result is concatenated to the input data (x). The result is
hashed with the function (H) and the result of this operation is appended
to the result of the outer term (k⊕ opad). Again the result is hashed with
the hash function (H) and the result is the output HMAC value.

An HMAC implementation can be vulnerable to side-channel attacks. For
instance, Lemke et al. [LSP04] show a DPA on the HMAC algorithm, that
extracts the involved secret. If an attacker can reveal the secret, the ap-
plication building on the HMAC is threatened. For example, an attacker
can create authenticated telegrams in an HMAC protected communication,
which breaks the authenticity of the communication.
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Physical attacks are a significant problem for Industrial Internet of Things
(IIoT) devices. One possible attack is to read out or exchange storage, for
example, an SD-card. To protect the storage, a suitable mechanism is secure
boot. Secure boot checks the authenticity of software before decryption and
execution. However, as already covered in Section 3.2, secure boot is vulner-
able to replay attacks. To mitigate these attacks, we use a Trusted Platform
Module (TPM) to provide secure storage. An authenticated communication
channel is used to prevent physical attacks on the communication to the
TPM. This channel requires good random numbers.

Section 4.1 covers details about secure boot. Section 4.3 explains general
properties and function of TPMs. Section 4.2 describes different approaches
for random number generation.

4.1 Secure Boot

Unprotected IIoT devices do not require a highly educated attacker to
steal data. With physical access, an attacker has easy access to the storage,
e.g., an SD-card, of the IIoT device. Consider the following example: An
attacker removes the SD-card from the IIoT device and puts it into a Personal
Computer (PC). Doing so, the attacker has full read and write access to
software and data stored on the SD-card. All secrets of the IIoT device are
visible to the attacker. Further, the attacker can modify the software and for
example, introduce backdoors and malware.

Encryption is used to prevent an attacker from reading storage. The use
of encrypted storage requires a key for decryption. This key needs to be
stored somewhere on the device. If this key is also saved in an unprotected
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location, the attacker can steal the key and decrypt the storage. To protect
against this attack, the key needs to be stored securely. Secure boot is an
established mechanism to protect the executed firmware. As ground truth,
keys are burnt into a once writeable memory inside a System on Chip (SoC).
The ground truth is also known as the root of trust, a physically protected
storage. An attacker can not read out the root keys. In secure boot, the
execution starts with the zero-stage bootloader, the so-called BootROM,
which is located in a Read-Only Memory (ROM) and must not be changed.
The BootROM, implemented by the SoC vendor, allows the verification
and decryption of the executed software, that for example, is stored on an
SD-card. Usually, several boot stages, as shown in Figure 4.1, are used in an
IIoT device. Every stage verifies and decrypts the next one. This series is
commonly known as the chain of trust. Hereby, secure boot ensures integrity
and confidentiality for all software stages running on the device. Therefore,
secure boot is an excellent feature to secure IIoT devices.
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However, secure boot is vulnerable to replay attacks, as discussed in Sec-
tion 3.2. Further, side-channel attacks, as discussed in Section 3.3, can break
the chain of trust. We will revisit these problems later in this thesis.

4.2 Random Number Generation

True random numbers are a fundamental need for computer security. Ran-
dom Number Generators (RNGs) are, as indicated by the name, used to
generate random numbers. To generate cryptographic keys, for example,
symmetric encryption keys, an RNG is used. An RNG is encountered as
weak if the entropy of the output is too low, which means, that there is not
enough randomness included. This problem leads to a limited set of possible
outputs even if the output may be larger. If the key generation only creates a
few thousand different keys, an attacker can try all possibilities and find the
correct key. If the RNG always creates the same sequence of numbers, keys
generated from these numbers can be predicted. These examples show that
good random numbers are essential. Two different approaches are discussed
in the following paragraphs.

Pseudo-Random Number Generator (PRNG). One approach is to use a
PRNG, that uses a deterministic algorithm to generate new random numbers
from a random initial value, the so-called Initialization Vector (IV). There
exist different ways how to build a PRNG. One possible design is the use of
cryptographic sponges, as proposed by Bertoni et al. [Ber+10]. Another way
is to use the Advanced Encryption Standard (AES) as a Pseudo-Random
Generator (PRG) for the generation of a random stream. Figure 4.2 shows
an AES based PRNG that is similar to the leakage-resilient cryptography
scheme described in Section 3.3.2. The IV, also known as the seed of the
PRNG, is composed out of different sources that is expected to include
randomness. Typical sources used to compose the IV are uninitialized
memory, network traffic or the noise in analog inputs. The structure of
the PRNG ensures, that when the output ri is known, it is not possible to
calculate back to the state si. Further, it is not possible to compute a previous
output ri−1 or a future output ri+1. These properties are fundamental in
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Figure 4.2: Advanced Encryption Standard (AES) based 2PRG scheme used as Pseudo-
Random Number Generator (PRNG).

the design of PRNGs. Important for selecting the parameters is that the
constants C0 and C1 are not equal. In this case, the output ri and the next
state si+1 are equal, and a calculation of all future outputs is possible.
It is possible to store the state of the PRNG on an encrypted filesystem. In
this way, the system can continue with the same state at the next power
cycle. However, this behavior is vulnerable to replay attacks, as described
in Section 3.2. If an attacker can restore old images of the filesystem the
PRNG is threatened. Using this attack, the generated random numbers
will be equal to the one from the last power cycle. Since PRNGs are used
to generate numbers only used once (nonces), communication protocols
are in danger in this case. For example, if the device under attack sends
a request to a server, the request can contain a nonce to ensure freshness.
More precisely, the nonce protects against a replay of the server response.
If the nonce stays constant, an attacker can replay a server response and
therefore trick the device under attack.
Another problem of PRNGs using this approach is that the device might get
not enough randomness for the IV. Heninger et al. [Hen+12] demonstrated
that weak randomness could cause serious problems. For example, on the
first start of a device, Secure Shell (SSH) keys might be generated. If there is
not enough randomness in this phase, the security of communications is
compromised. This problem is caused by missing entropy in the IV, which
propagates to the output of the PRNG. Missing entropy on an RNG output
is a problem, as initially mentioned.
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Side-channel attacks are also a threat for PRNGs. The output of a PRNG
is often security relevant, for example, used as a cryptographic key. Since
the attacker must not learn the key, the PRNG design needs to be hardened
against side-channel attacks as well.

True Random Number Generator (TRNG). A TRNG is a hardware im-
plementation of an RNG that generates random numbers out of a physical
process. For example, a lottery machine is a TRNG, which uses physical
randomness to draw random numbers. In electronic devices, sources for
randomness are, e.g., the noise of analog measurements or unsteady electric
circuits. A TRNG claims to produce true random numbers, which means
that the output is from high-quality randomness. However, testing random-
ness is not trivial. When encountering a binary output signal with the states
0 and 1, one test is to check for the occurrence of both symbols in a very
long sequence. An alternating sequence ”010101...” will perfectly master this
test, but is not random at all. More sophisticated tests for randomness are
standardized by the National Institute of Standards and Technology (NIST)
[Bas+10].
Different SoCs, like the AM3358 of Texas Instruments, have a hardware
RNG integrated. However, not all SoC vendors integrate a TRNG to their
designs. If the SoC has no TRNG, but a Field Programmable Gate Array
(FPGA) included, a Phase-Locked Loop (PLL) based TRNG can be realized.
For example, Allini et al. [All+18] developed a TRNG to be integrated into
an FPGA design. The TRNG is shipped as a so-called Intellectual Property
(IP) block. This IP block can then be added to an FPGA design. On system
startup, the TRNG is loaded with a bitstream into the FPGA. This process
can also be protected by the secure boot. During operation, the TRNG emits
random numbers that can be processed in the system. In this way, a system
can use strong random numbers that are required for cryptographic opera-
tions. TRNGs are also used to seed a PRNG if the output bandwidth of the
TRNG is too low.
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4.3 Trusted Platform Module (TPM)

A Trusted Platform Module (TPM) is a security module in today’s com-
puters, which offers a lot of different possibilities. A TPM has features
like a TRNG, Platform Configuration Registers (PCR), non-volatile storage,
sealing, authentication and cryptographic primitives. Therefore a TPM is a
universal component for all kinds of different usecases, like Digital Rights
Management (DRM), attestation of secure boot, the so-called measured boot,
or as security coprocessor.

There exist different types of TPMs. First there is a software TPM, which
is mostly used for testing purposes as a TPM simulator. If the software
implementation runs inside a trusted execution environment, it can also
be a secure TPM. Another option is the firmware TPM, where the TPM
implementation is integrated into a security coprocessor that may fulfill
other tasks as well. For example, the Intel Management Engine (ME) is a
security coprocessor on the PC mainboards, where a TPM is integrated. The
last option is a hardware TPM, an external chip that implements the TPM
specification. The hardware TPM is the most secure option. Vendors like
Atmel, Intel, Infineon, and STMicroelectronics integrate physical protections
to the TPM chips.

The Trusted Computing Group (TCG) specifies the functionality and in-
terfaces of a TPM in the TPM specification. Earlier TPMs, following the
outdated TPM specification version 1.2 had multiple problems. First, these
TPMs had vulnerabilities to physical attacks as shown by Winter and Diet-
rich [WD11] and Kauer [Kau07]. Second, the specification was restricted to a
fixed set of cryptographic algorithms. For example, the hash algorithm MD5

was broken in the last years, which lead to the requirement of a revision of
the TPM specification. The current version of the TPM specification, version
2.0 [Gro14], improved this property and is now flexible regarding the used
cryptographic algorithms. Trusted Platform Module version 2 (TPM2) is
not backward compatible to old TPM specifications. Section 4.3.1 covers
fundamental features of TPM2.
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4.3.1 TPM Features

Cryptographic Primitives. The TPM implements different cryptographic
primitives including hash algorithms, Hash-based Message Authentication
Code (HMAC), asymmetric and symmetric algorithms. The algorithms are
used internally, for example, in PCRs described in the next paragraph, but
also are available to a caller as commands. In this way, a TPM can be used
as a cryptographic coprocessor and provide cryptographic primitives for
platforms with little computational power. The advantage of this approach
is that the cryptographic implementations are reviewed and should be error
free. However, using the TPM as cryptographic coprocessor does not allow
to build a secure channel between a caller and the TPM. Cryptography
needs to be implemented on the caller’s side, to build a secure channel.
As a result, this approach is only suitable for settings without physical
attackers.

Platform Configuration Registers. Platform Configuration Registers (PCR)
are an attractive technique suitable for attestation of secure boot. It is based
on the principle of a hash chain, in terms of TPMs called hash extend. The
hash of the previous input is concatenated to the next input and hashed
together. The resulting hash is concatenated with the next input value and
again a hash computed. The mechanism of PCRs is used for the so-called
measured boot. Measured boot is used additionally to secure boot and is
used to monitor the process. While the secure boot progress is executed,
hashes over every boot stage are written to the PCR and therefore appended
to the hash chain. After the boot progress, the TPM can use the measurement
to prove the performed secure boot. The result of the PCR is a guarantee
for the executed chain of trust and can be used for attestation to prove a
systems state.

Non-volatile storage. Chips implementing the TPM2 specification offer
storage of non-volatile data in different variants, like unstructured data,
counters, bitfields, and hash extend fields. The most straightforward case is
unstructured data, that can be read and written with arbitrary data. Next,
there are counters that only can be incremented. One use case for these
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counters would be a version information to protect against replay attacks.
TPM2 also supports bitfields, that can be configured so that bits can only be
set. This is like a hardware fusebox, with the exception, that a privileged
user can reset it. Non-volatile storage can also be configured as an hash
extend field. The hash extend field works equivalent to the PCR. This feature
offers the possibility to use hash chains for custom tasks, for example, if all
PCRs are already used.

Authorization. Different authentication techniques are supported to han-
dle permissions for the TPM access. For example, the stored non-volatile
data should only be read by authorized parties. The supported methods are
password, Hash-based Message Authentication Code (HMAC) and policy.
A password is the simplest method. The password is transferred in plaintext
on the communication channel to the TPM. This type of authentication
is vulnerable to a physical attacker since the attacker can eavesdrop the
password. Once the password is known, the attacker can impersonate as
an authorized user and read or write data. On the other hand, an HMAC
session allows building an integer channel between a caller and TPM. The
key used in the HMAC session is a shared secret between the caller and the
TPM. Based on the protocol used for the HMAC session, the communication
parties prove the knowledge of the shared secret. For all telegrams, requests,
and responses, in an HMAC session, an HMAC value is calculated and
verified. To ensure freshness, the HMAC authorization includes nonces.
Therefore good random numbers are required on both sides, on the side of
the caller and on the side of the TPM. Freshness ensures that old telegrams
are not reused again in a replay attack on the TPM communication. The
policy authorization is based on the HMAC authorization but requires
additional conditions, like for example, a dedicated TPM state. Based on
the methods of authentication, the caller can trust the values read from
the TPM so that no one modified it. On the other hand, the caller proves
the authorization to the TPM, so that the TPM can trust the caller. For this
reason, the TPM can, for example, accept a write command to a secure
non-volatile variable.
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Random Number Generator. A True Random Number Generator (TRNG)
is an essential component in modern cryptography. The TCG specifies that a
TPM requires a TRNG. It is up to every TPM vendor to implement a proper
TRNG into a hardware TPM. The TPM uses the TRNG internally to ensure
freshness in HMAC sessions by generating nonces. A caller can request
random numbers from the TPM. The required command is described in the
next section.

4.3.2 TPM2 Commands

The TCG specifies an interface with several commands to communicate
with a TPM. These commands are mapped to a binary representation that
every TPM2 needs to support. A so-called TPM software stack implements
the commands and offers an Application Programming Interface (API) to
a programmer. This section lists a few of them and hereby focuses on
commands used in this work.

TPM2 Startup. The TPM2 Startup command is used to bring the TPM
into the operational state after power-on or a reset. If the command is not
sent, the TPM will respond with an error and refuse the execution of any
other command. In case the TPM2 Startup command is sent twice, the TPM
also responds with an error.

TPM2 GetRandom. Using the TPM2 GetRandom command, random data
can be requested from the TPM TRNG. It is a simple command with only
one free parameter, the number of requested bytes. The TPM responds with
the number of random bytes requested.

TPM2 StartAuthSession. To start an authorized Hash-based Message Au-
thentication Code (HMAC) session, the TPM2 StartAuthSession command
is used. Using this command, the caller has to provide a nonce to the TPM.
The TPM answers with a nonce and a session handle. Both nonces have to
be used in the following command belonging to the authorized session.
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TPM2 NV DefineSpace. With TPM2 NV DefineSpace a caller can define a
non-volatile object in the TPM memory. Therefore the caller has to select
a free index, where the object should be located. Several parameters like
size and type of the non-volatile object, e.g., unstructured data, counter or
bitfield, can be selected. Also, the authorization has to be configured, this
means, the secret for password authorization or an HMAC session.

TPM2 Write. After defining a non-volatile object, the caller can write data.
TPM2 Write is used to write objects with the type unstructured data. The
command can be used with all types of authorizations including password-
based authorization and HMAC sessions. The index specified while defining
the object is used for addressing the variable. It is possible to write only
parts of a variable by specifying the offset and sending data smaller than
the whole variable.

TPM2 Read. TPM2 Read is used to read all types of non-volatile objects.
It supports the same authorization techniques like TPM2 Write. If an object
was never written before, the TPM flags an error. This behavior is essential
to prevent uninitialized reads and Use After Free problems, like described
in Section 2.1, inside the TPM.

TPM2 NV UndefineSpace. TPM2 NV UndefineSpace is used to undefine a
non-volatile object in the TPM memory. The command requires the index as
an argument, removes the data and releases the index for future usage. The
index needs to be defined within the command. Otherwise, the TPM will
return an error.
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Figure 4.3: The timing diagram of an example SPI communication.

4.3.3 Hardware TPM / Low Level Protocol

The PC Client Platform TPM Profile (PTP) specification [Gro17] standardizes
many properties a hardware TPM has to fulfill including chip packaging,
interfaces, and the low-level protocol. For example, Serial Peripheral In-
terface (SPI) is one interface that can be used to connect a TPM to other
components, like a SoC. The low-level protocol runs on the SPI and is used
as a transport layer for the TPM commands.

SPI is a synchronous serial bus that is often used to connect different
components in a range of up to a few meters, depending on the transmission
speed. An SPI bus has one master and can have multiple slaves. The SPI
master controller is a component that most SoC designs implement. This
offers the possibility to extend the functionality of a SoC with external
devices. Slaves could be, e.g., a memory, Input/Output (I/O) extensions,
LED drivers, ethernet modules and many more. The bus consists of Master
In Slave Out (MISO), Master Out Slave In (MOSI), Serial Clock (SCK) and
Chip Select (CS) lines, where MISO and MOSI are data lines. Figure 4.3
shows an example timing diagram of communication on the SPI. The SCK
line is used as a synchronous clock and driven by the SPI master. The
master defines the transmission speed with the SCK line. With the CS line
different members can be addressed on a bus, and the master can schedule
the communications to the slaves. The SPI bus works with the principle
of a shift register. Within one clock period, one bit is transmitted, which
means that one bit is written and one bit is received. At the specified clock
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Figure 4.4: Example usage of the SPI bus with chained clients and a single CS.

edge, for example, the rising edge, the shift register reads the input. On the
other clock edge, for example, the falling edge, the shift register writes its
output. The parameter with the two possible options, positive or negative
edge for reading from a data line, is called clock phase. Because SPI uses
one clock edge for writing and the other clock edge for reading, SPI slaves
can be chained together, as shown in Figure 4.4. The other free parameter
is the clock polarity. Depending on the idle level of the SCK, the first edge
is falling or rising. This parameter is called clock polarity and has two
possible options. These two parameters, clock phase and clock polarity, have
to match for all parties on an SPI bus. For the TPM, these properties are
specified in the PTP. SPI also supports the use of multiple CSs, as shown in
Figure 4.5, to use multiple clients on the same physical bus.

Because of the simple structure of SPI, there is no protection against physical
attacks. To spy on the bus, devices like the Bus Pirate, are available. In any
case, a physical attacker can apply a Denial of Service (DoS) attack, but
that holds true for all Internet of Things (IoT) applications. The integrity
and confidentiality of SPI based communication needs to be secured on a
higher-level protocol.

The TPM uses a simple bit protocol on top of SPI as transport layer for
TPM commands, described in the PTP [Gro17, Table 46]. It consists of one
bit deciding whether it is a read or a write operation, address and data. A
simple implementation of this protocol can be found in the tpm2 server
[vbe16]. Using the bit protocol different registers can be accessed. These
registers include a revision id and a vendor id, that is used to determine
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Figure 4.5: Example usage of the SPI bus with multiple CSs, where CS1 is the first CS and
CS2 is the second CS.

the TPM origin. Further, there are status registers, access registers, and First
In First Out (FIFO) registers. The FIFO registers are used to transmit TPM
commands.

50



5 Prototype

The usage of secure boot for IoT devices is a good step towards device
security. Nevertheless, secure boot is vulnerable to replay attacks. A sig-
nificant requirement for Industrial Internet of Things (IIoT) devices is the
resistance against these attacks. This chapter covers details about how the
basic building blocks showed in Chapter 4 are used to reach the goals of
replay resistance, mitigating side-channel attacks and excluding memory
safety issues, and the respective implementation.

The central part of this work is the implementation of a bootloader, named
rs-zynq-boot. We implemented the bootloader to prevent replay attacks on
the firmware within secure boot. For the purpose, a version identifier of
the firmware image is stored in secure storage that allows the bootloader to
verify the version on every boot. The bootloader implementation is based on
the modern programming language Rust to exclude memory safety issues.
This is essential since the bootloader must not suffer from programming
errors. Otherwise, the chain of trust and the replay resistance of the firmware
would be threatened. In addition, we considered side-channel attacks in
the implementation and integrated different side-channel countermeasures.
We run rs-zynq-boot on the Zybo platform. However, the prototype platform
being used does not offer secure storage, so we use a Trusted Platform
Module (TPM) to save a version identifier.

Section 5.1 describes the concept and how the building blocks together fulfill
our security goals. Section 5.2 gives details about the Zybo platform, the
used TPM, and the required tools. Section 5.3 explains the structure and the
implemented methods to mitigate replay attacks in secure boot. Section 5.4
covers the actual implementation of the bootloader. Section 5.5 illustrates
the provisioning and the steps that are required in production to build a
secure IIoT device.
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5.1 Concept

In this work, our goal is to build a secure Industrial Internet of Things (IIoT)
device. Since IIoT devices are deeply integrated into the environment, they
suffer from physical attacks. For this reason, we want a strong binding of
the firmware to the device. The device should only execute firmware of
the IIoT device vendor, and the firmware should be kept confidential. The
device needs protection from cloning and the production of replicas. We
also require protection against replay and side-channel attacks, as covered
in Section 3.2 and Section 3.3.

Secure boot is the first block we use to ensure the authenticity and confi-
dentiality of firmware. However, secure boot is vulnerable to replay attacks.
To prevent replay attacks, we need to verify the version of the firmware
image. The IIoT device hence requires a tamper-resistant memory to store
the reference value of the firmware version. However many System on Chips
(SoCs) do not offer such storage that is unmodifiable by an attacker. A TPM
offers secure storage and is hence chosen to be the second building block in
our design. To prevent an attacker from tampering with the connection be-
tween the TPM and the CPU inside the IIoT device, we use an authenticated
communication protocol. This protocol requires random numbers to prevent
replay attacks on the communication. To get good random numbers, we
use a True Random Number Generator (TRNG), which is the third building
block. This setup can successfully defeat replay attacks.

However, if rs-zynq-boot, the bootloader implementing this concept, suffers
from memory safety issues or is vulnerable to side-channel attacks, the
whole concept is broken. We hence use the programming language Rust
to guarantee memory safety for the implementation of the bootloader.
We further ensure resistance against side-channel attacks by applying the
following approach. First, a hash, which is stored in the TPM, prevents an
attacker from modifying the ciphertext to enhance the leaked information.
Second, a leakage-resilient cryptographic scheme, described in Section 3.3.2,
reduces the number of ciphertexts decrypted using the same key to prevent
differential side-channel attacks. Third, a bit-sliced implementation of the
AES encryption function hinders single-trace attacks.
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The combination of all these mechanisms results in a strong shield to protect
an IIoT device against physical attacks. We prove the practicality of our
concept with an implementation of a prototype. Section 5.1.1 takes a closer
look at the implemented side-channel mitigations.

5.1.1 Side Channel Mitigations

Side channel attacks, as discussed in Section 3.3, on secure encrypted boot
are a severe threat to IIoT devices. The different boot stages of the chain-of-
trust are decrypted during boot. Therefore, every stage uses cryptographic
algorithms and processes confidential data that is threatened by side-channel
attacks. The implemented algorithms hence need to be hardened against
side-channel attacks.

rs-zynq-boot is in the scope of a side-channel attacker. The decryption of the
next stage is the target for such an attack. An attacker is interested in the
next stage plaintext, which contains confidential credentials and Intellectual
Property (IP). Also, the cryptographic key needs to be protected, since it
also offers access to the plaintext. To protect the confidentiality of the next
stage, we implemented countermeasures against side-channel attacks.

The first countermeasure against side-channel attacks is the usage of an
encrypt-then-hash scheme in the next stage encryption. While boot, the
hash is verified before decrypting. The decryption is only performed if the
integrity has been successfully verified. The correct hash over the encrypted
next stage is stored in our secure storage, the TPM. In particular, the boot-
loader computes the hash over the encrypted image on every boot and
compares the result with the value stored in the TPM. Since we can trust the
secure storage, we can ensure the integrity of the encrypted next stage. If the
computed hash value does not match the hash stored in the TPM, because
malicious data was introduced, the decryption is not performed. This miti-
gation prevents an attacker from creating a large number of side-channel
traces by modifying the ciphertext. Therefore the attacker is unable to collect
enough traces for a differential side-channel attack such as a Differential
Power Analysis (DPA). Since there is no confidential data involved in the
hash computation, this approach is not vulnerable to side-channel attacks.
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However, as discussed in Section 3.3.2, several modes of operations are
vulnerable to side-channel attacks. For example, Cipher Block Chaining
(CBC) uses the same key in every block and therefore generates a large num-
ber of traces that can be used in a differential side-channel attack. For this
reason, the leakage-resilient scheme, based on Pseudo-Random Generators
(PRGs), described in Section 3.3.2, was implemented and integrated into
rs-zynq-boot. The implementation is encapsulated in a dedicated Rust crate,
named rs-crypto. This offers the possibility to use this crate in other projects,
like for the encryption of the firmware images, described in Section 5.5. The
crate uses unit tests to check the implementation against test vectors.

While the vulnerability to differential side-channel attacks is covered quite
well, a bad Advanced Encryption Standard (AES) implementation can
lead to single trace side-channel attacks. Our implementation uses an AES
implementation from the RustCrypto project [Tea18b]. It is a bit-sliced
implementation of the AES function [RSD06; Kön08]. In this thesis we
assume the bit-sliced AES implementation to be safe against Simple Power
Analysis (SPA). This crate is called aes-soft and can be found in the crates
repository.
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Figure 5.1: IIoT device with Trusted Platform Module (TPM).

5.2 Platform

This section covers the platform, which our implementation is based on.
This platform supports the features described in Figure 5.1 and is used for
building the prototype. Figure 5.2 shows the used hardware: a Zybo board,
and a TPM module.

The Zybo board is a single-board computer, suitable for a wide range of
tasks. The Zybo has different connectors, including an ethernet interface
for a network connection and Universal Serial Bus (USB) connectors for all
kinds of different peripherals. Important for this project are the so-called
Peripheral Module (PMOD) connectors that the Zybo board includes, as
shown in Figure 5.2 . Figure 5.3 shows the pin assignment of the PMOD
connectors used on the Zybo boad. These connectors are 12 pin connectors
with power supply and eight configurable signal lines. The signal lines are
connected to the SoC, which is the core component of the Zybo board. It is
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Figure 5.2: Zybo platform and TPM.
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Figure 5.3: PMOD pin assignment, front view. VDD and GND are used to supply a PMOD
module. The signals are directly connected to the FPGA and can be used for
different use cases.

possible to use the signal lines as General Purpose Input Output (GPIO),
where a digital signal can be read or written by software.

The SoC built into the Zybo board is a Xilinx Zynq 7010 SoC that comes
with two ARM Cortex-A9 processor cores as the processing system. Further,
the Zynq 7010 includes an FPGA of the Xilinx 7-series, that is internally
connected to the processor cores with a memory bus. The functionality
implemented on the FPGA can be accessed from the processing system with
the concept of Memory Mapped Input/Output (MMIO). This means that
a register of a component is mapped to a specific address the processor
can reach. In software, this address is used to access the component. The
SoC supports secure boot, as described in Section 4.1, to boot firmware to
and load the bitstream file for FPGA configuration. Unfortunately, the Zynq
7010 SoC does not include secure storage to protect against replay attacks.
For this reason, we use a TPM as a provider for secure storage.

The TPM being used is an Infineon SLB9760 Trusted Platform Module ver-
sion 2 (TPM2) with a Serial Peripheral Interface (SPI). Distributors recently
released a suitable TPM PMOD extension board as well. Since we realized
the implementation earlier, we however used a TPM2 module for the Rasp-
berry Pi, and built an adapter to fit the PMOD specifications. Figure 5.4
shows the wiring diagram realized inside this adapter. Through this adapter,
a program executed on the Zynq SoC can communicate with the hardware
TPM.
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Figure 5.4: Wiring diagram between Zybo PMOD connector and the TPM board.

To establish a secure connection to the TPM, the SoC requires secure random
numbers. Since the Zynq SoC does not offer a TRNG, an implementation
from Viktor Fischer and Oto Petura, as described in Section 4.2, is used.
The TRNG is an IP core for the FPGA and is accessible from the software
running on the Central Processing Units (CPUs).

Software Tools. The Xilinx tools Vivado and Xilinx SDK are used in ver-
sion 2017.2. Xilinx Vivado is used to program the FPGA and to configure
hardware-related settings like clock frequencies for the processing system.
Vivado creates a bitstream file and a hardware description file. The bit-
stream file is a binary file that is used for FPGA initialization. The hardware
description file is reused in the Xilinx SDK. The Xilinx SDK is based on the
Eclipse Integrated Development Environment (IDE) [Fou18] and used to
program the processing system. Based on the hardware description file, a
so-called board support package is created. With the board support package,
drivers are generated to control basic components of the SoC and compo-
nents integrated into the FPGA. The Xilinx SDK supports to also generate
a First Stage Bootloader (FSBL). Since the Xilinx SDK is an IDE for the
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languages C and C++, it is not suitable for programming Rust. We used the
Rust package manager Cargo in version 0.25.0 for compiling and testing
library crates. The bare-metal application is built with Xargo in version
0.3.10. Both build tools use the Rust compiler rustc underneath. The exact
version information of the rustc used is shown in Listing 5.1.

Listing 5.1: rustc version.

1 $ rustc --version

2 rustc 1.24.0-nightly (73bca2b9f 2017-11-28)

5.3 Structure of Bootloader Implementation

Figure 5.5 shows the boot process of our bootloader. It is based on the
secure boot feature the Xilinx Zynq SoC offers, but uses an additional root-
of-trust. The original root-of-trust is located on-chip in the BootROM and
the additional one is located in the TPM.

The execution starts in the BootROM, with the on-chip, non-modifiable
zero-stage bootloader in the Zynq SoC. It loads the firmware image from
the SD-card. This image includes the encrypted and signed FSBL. After
verification and decryption, the BootROM hands over to the FSBL.

The FSBL is responsible for loading additional binaries and the bitstream
file. The encrypted and signed bitstream file includes the TRNG, GPIO and
the SPI wiring. Also, our bootloader, rs-zynq-boot, is included in the image
located on the SD-card. It is encrypted and signed so that it is part of the
secure boot process. The FSBL also loads the encrypted next stage firmware
to the Random-Access Memory (RAM), where it is later processed by the
rs-zynq-boot. As an alternative, rs-zynq-boot could be extended to access the
SD-card and load the firmware directly.

When rs-zynq-boot takes over control, rs-zynq-boot first builds up an authenti-
cated communication channel to the TPM and fetches the hash value stored
in the TPM. Next, it computes the hash value over the encrypted next stage
and compares it with the value received from the TPM. If both match, the
integrity is proven and the next stage is decrypted. rs-zynq-boot hands over
to the next stage.

59



5 Prototype

BootROM on chip

Xilinx

FSBL

rs-zynq-boot

next stage

TPM

FPGA

Figure 5.5: Chain of Trust implemented.

5.3.1 Crates

rs-zynq-boot is a bare-metal application for the Zynq processing system. An
Executable and Linking Format (ELF) file is the result of a project build,
that can be executed on the SoC. Figure 5.6 shows the dependency graph of
the bootloader implementation. Every node is a Rust crate. rs-zynq-boot is
the main crate, with the same name as the overall project, where the main
function is located. The other crates are libraries included with Cargo, the
package manager. Some of them are found locally since they live in the
directory structure. Others are part of the official crates repository [Tea18a]
and downloaded automatically with Cargo.

zynq. The zynq crate includes all Zynq related low-level implementations
based on the principle of MMIO. It supports GPIO to control LEDs located
on the Zybo board and to trigger a reset on the TPM module. The im-
plemented UART allows input and output of text on the serial interface.
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Figure 5.6: Dependency graph of crates used inside the bootloader.

This enables the possibility to track the program behavior and is used for
logging of warnings and errors. Further, the SPI unit of the Zynq SoC can be
controlled with the zynq crate. This is essential for the communication with
the TPM. Since the TRNG is integrated into the FPGA design and reachable
via MMIO, the zynq crate is responsible for fetching random values from
the TRNG.
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rs-tpm2. rs-tpm2 is a light-weight implementation of a TPM software stack.
It supports different commands and can use them with Hash-based Message
Authentication Code (HMAC) authorization. To compute the HMAC value,
a cryptographic hash primitive is required. Therefore the sha2 crate from
the RustCrypto project is included. The sha2 crate is used in version 0.7 and
supports the SHA2 family of cryptographic hash functions. Out of these, the
SHA256 function is used. The TPM also supports SHA256 for the HMAC
session. To calculate the HMAC, the hmac crate from the RustCrypto project
is used in version 0.5.

rs-tpm2-spi. rs-tpm2-spi is a Rust crate that handles the TPM low-level
connection. It is responsible for starting up the TPM. The crate sets up the
bit protocol to the TPM, described in Section 4.3.3. The implementation is
based on the C implementation of tpm2 server, that we ported to Rust. On
startup, the TPM vendor ID is checked to ensure that the TPM is responsive.
Because of the available hardware, only the vendor ID of Infineon is accepted,
but this check can be easily extended to other vendors. The rs-tpm2-spi crate
offers a callback function to be used in the rs-tpm2 crate. With this callback
function bytes can be sent to the TPM, and the response is propagated
back to the caller. Underneath, data is packed into the bit protocol and sent
through the First In First Out (FIFO) register of the TPM to the TPM2 core.
The response is fetched and written back to the caller.

rs-crypto. We implemented the leakage resilient AES mode of operation
described in Section 3.3 in the crate rs-crypto. The crate includes the stream-
cipher implementation and the re-keying function. Section 5.1.1 explains
the motivation for the implementation.

rs-zynq-boot. rs-zynq-boot is the main crate of this project, which depends
on the sha2 crate since the SHA256 hash function is used to calculate the
hash of the next stage. The calculated hash is compared to the value read
from the TPM. It uses the rs-tpm2 crate for assembling TPM2 commands
that are transmitted via the callback function offered by the rs-tpm2-spi crate.
rs-zynq-boot includes the rs-crypto crate for the leakage-resilient decryption
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Figure 5.7: Processing sequence performed by rs-zynq-boot.

of the next stage. It also depends on the zynq crate to output debug messages
and for logging. The exact procedure is described in the next section.

5.4 rs-zynq-boot

Figure 5.7 shows the execution flow that rs-zynq-boot follows. It includes
six states that are executed sequentially until the next stage, possibly a
bootloader or an operating system, is executed. This process guarantees the
integrity and confidentiality of the next stage and prevents replay attacks
on the next stage’s firmware.

The initialization step sets up all hardware components. First, it performs a
reset of the TPM module via GPIO. For this purpose, a one-bit output line
is connected physically to the TPM module reset input. Using this line, the
TPM can be reset, meaning the TPM is brought back to a clean state. Next,
rs-zynq-boot sets up the SPI unit of the Zynq SoC. These settings contain the
SPI baud rate, clock phase, and polarity that are set according to the PC
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Client Platform TPM Profile (PTP). After initializing the SPI unit, rs-zynq-
boot can start the communication with the TPM. The low-level initialization
of the TPM bit protocol, implemented in rs-tpm2-spi, is performed.

A cryptographic hash of the next stage represents a specific version since ev-
ery modification on the next stage can be detected. The TPM is used to store
the cryptographic hash of the next stage. While booting the system, the hash
of the next stage is read from the TPM through an authenticated channel,
based on the protocol shown in Figure 5.8. The TPM enters the operational
state after receiving the TPM2 Startup command. We use an HMAC au-
thorized session to the TPM to ensure the integrity of the connection and
further, the integrity of the secure storage.

5.4.1 Authorized TPM Session

To use an authorized session with the TPM, a session needs to be created first.
The TPM responds with a session handle that is used to assign commands
to the correct session. When sending a telegram, the caller and the TPM
generate a fresh number only used once (nonce). The nonce of the other
party is used within the next command in the respective session.

The command TPM2 StartAuthSession(nonceCaller) is used to start an
authorized session on the TPM. As an argument, the nonceCaller, a fresh
nonce, is sent. The TPM responds with the sessionHandle and the nonceTPM.
The sessionHandle is an identifier for the current session and equals
0x2000000 if only one session exists. The nonceTPM is required for the next
command in the authorized session.

In rs-zynq-boot the command TPM2 NV Read(sessionHandle, nvIndex, size,

offset, nonceCaller, nonceTPM, HMAC) is used to read from the non-
volatile variable. This command is already authenticated. As described
before, the sessionHandle is used in every request to the TPM. The non-
volatile storage is addressed with the arguments nvIndex. The size and
offset refer to the memory inside the variable. For example, it is possible to
read the last two bytes of a 32-byte variable with size=2 and offset=30. The
bootloader however reads from zero offset 32 bytes, according to the block
size of the SHA256 hash function, that is used to compute the hash over the
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rs-zynq-boot TPM

generate fresh

nonceCaller

generate fresh

nonceCaller

TPM2_Startup Command

TPM2_Startup Response

TPM2_StartAuthSession Command

TPM2_StartAuthSession Response

sessionHandle, nonceTPM

nonceCaller

TPM2_NV_Read Command

TPM2_NV_Read Response

data,

nonceCaller, nonceTPM, HMAC

sessionHandle, nvIndex, size, offset,

nonceCaller, nonceTPM, HMAC

generate fresh

nonceTPM

generate fresh

nonceTPM

Figure 5.8: Sequence diagram showing the communication between the bootloader and
TPM performed on every boot.
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next stage. A fresh nonceCaller and the nonceTPM of the last command are
included. The caller, rs-zynq-boot, calculates an HMAC over the command
using the shared secret. The HMAC result is inserted into the command
before sending.

After receiving the command, the TPM verifies the command HMAC with
the help of the shared secret. On success, the TPM responds with the
requested data. Again, a fresh nonce, the nonceTPM, is generated and packed
into the response. The nonceCaller of the request is also part of the response.
The TPM calculates an HMAC, over the response and inserts the result into
the packet.

After transmitting the response back to the rs-zynq-boot, the HMAC is
verified. If this is successful, the rs-zynq-boot accepts the answer. Otherwise,
the boot process is terminated. In this way, the bootloader can ensure that
the TPM knows the shared secret and therefore can trust the read data,
representing the hash over the next stage.

5.4.2 Verification and Start of Next Stage

The third step in Figure 5.7 is the calculation of the cryptographic hash
over the next stage. The next stage now already been loaded into the
main memory at this point, done by the Xilinx FSBL. As a result, rs-zynq-
boot simply calculates a SHA256 sum over this memory area. If the result
equals the hash value received from the TPM, the execution can continue.
Otherwise, the boot process aborts.

In the next step, the next stage is decrypted. The decryption is performed
with the leakage-resilient scheme described in Section 5.1.1. The decrypted
next stage is written back to the RAM, where it is ready for execution.

At this point, the integrity of the next stage is assured, the image is de-
crypted, and the next stage is ready to start. Since the processor cores inside
the Zynq SoC have separated first-level instruction and data caches, the de-
cryption of the firmware can cause unexpected behavior. While decryption,
the firmware is handled as data, and therefore the data cache is used. For
execution, the dedicated memory is however loaded to the instruction cache.
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To cope with this situation, rs-zynq-boot flushes the caches before calling
starting the next stage. In the last step, rs-zynq-boot finally executes the next
stage with a branch instruction to the dedicated address. As a result, the
replay-protected next stage runs and can fulfill the tasks of an Internet of
Things (IoT) device.

5.4.3 Security Properties

The nonce used for the rekeying function is stored within the next stage
image. The authenticity of the nonce is protected with the hash over the
next stage. Therefore, a replay attack on the nonce is not possible. All
cryptographic constants used for the leakage-resilient cryptography as
shown in Figure 3.11, including the secret key and the constants C0 and C1,
are stored inside rs-zynq-boot and therefore protected by the secure boot.
Secure boot guarantees confidentiality and authenticity for these values.

As pointed out in Section 5.4.1, the generation of random numbers is
required to get fresh nonces. A good random number generator is not only
required inside the TPM. The SoC also requires a good random number
generator. Otherwise, the secure communication between the SoC and the
TPM is vulnerable. rs-zynq-boot fetches all required random number from
the FPGA TRNG that was described in Section 4.2.

5.4.4 TPM2 Software Stack

A TPM software stack is a software library handling the interaction with a
physical TPM. The TPM software stack provides an Application Program-
ming Interface (API) to be integrated in arbitrary software implementations.
Through API calls, different TPM commands, such as described in Sec-
tion 4.3.2, can be executed.

There exist multiple open-source TPM software stack implementations, like
from Tricca et al. [Tri+18] and Goldman [Gol17]. Neither of these is simply
adaptable for bare-metal usage, the usage without an Operating System
(OS), nor was written in Rust. For this reason, we implement a lightweight
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TPM software stack using Rust. The implementation is encapsulated in the
crate rs-tpm2, and we use it in the secure bootloader. The rs-tpm2 crate is a
library that is statically linked into rs-zynq-boot. In the end, the TPM stack is
part of the final ELF file.

On the backend, the TPM software stack connects to the hardware TPM via
SPI. To generalize the implementation for future usage, the SPI driver is not
part of the TPM library crate. A callback function, following the footprint
shown in Listing 5.2, is passed to the TPM software stack. This callback is
responsible for sending and receiving raw commands, represented as byte
sequences. Using this logic, the TPM software stack is used once inside
the bare-metal bootloader with an SPI backend and second in Continuous
Integration (CI) tests with a Transmission Control Protocol (TCP) backend
for connecting to a TPM simulator.

Listing 5.2: Rust source code for the footprint of the callback function used in rs-tpm2.

1 pub fn transmit_handle(req: &CommandBuffer,

2 resp: &mut CommandBuffer) -> Result<(), &’static str> {

3 Err("not implemented")

4 }

The implemented TPM software stack rs-tpm2 supports two types of autho-
rization. It supports password-based and HMAC authorization as described
in Section 4.3.1. While the boot progress, rs-zynq-boot only uses HMAC
authorization, since password-based authorization is vulnerable to eaves-
dropping on the SPI bus.

The TPM software stack supports the following commands that allow an
application to use the TPM as secure storage. The functionality of the
different TPM commands is described in Section 4.3.2.

• TPM2_Startup

• TPM2_StartAuthSession

• TPM2_Clear

• TPM2_GetRandom

• TPM2_NV_DefineSpace

• TPM2_NV_UndefineSpace

• TPM2_NV_Read

• TPM2_NV_Write
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Listing 5.3: Example using Rust TPM software stack.

1 let ts = Tpm2Stack::new(transmit_handle);

2 let mut data = [0u8; 32];

3 ts.tpm2_getrandom(&mut data).unwrap();

4 println!("data: {:?}", &data);

Example of Usage. Listing 5.3 shows the usage of the Rust TPM software
stack on the example of the TPM2_GetRandom command. This command
is used to fetch random numbers from the TRNG inside the TPM. Line
1 in Listing 5.3 creates a new TPM stack object with transmit_handle,
the callback method for send and receive, specified. Line 2 creates a zero-
initialized mutable array of 32 bytes. In line 3, ts.tpm2_getrandom detects
the size of the argument and sends a request for that amount of bytes. In this
example, 32 bytes are requested and line 4 prints the output to the console.
When executing this code, the TPM stack triggers a request that is sent to
the hardware TPM. Figure 5.9 shows the byte sequence sent to the TPM.
The tag, TPM ST NO SESSIONS in this case, indicates that no authorization
session is used for this request. The field commandSize contains the number
of bytes that are sent with this request. The remaining fields contain the
command code and the number of requested bytes. Figure 5.10 shows one
possible answer from the TPM. The TPM stack processes the response, then
extracts the requested random bytes and in the end hands them back to the
caller. The console output of the example is shown in Listing 5.4 and will
alter for the next request since the response contains random bytes.

Listing 5.4: The decimal output of the example, produced by line 4 in Listing 5.3.

data: [228, 230, 125, 208, 127, 233, 30, 183,

49, 17, 86, 222, 116, 29, 181, 113, 17, 85, 149,

148, 175, 125, 219, 200, 68, 193, 142, 152,

79, 153, 219, 36]
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0x00 0x0C0x000x00 0x01 0x7B0x00 0x00 0x00 0x200x010x80

TPM2_GetRandom Request

0x010x80

0x00 0x0C0x000x00

0x01 0x7B0x00 0x00

0x00 0x20

tag = TPM_ST_NO_SESSIONS

commandSize = 12

commandCode = TPM_CC_GetRandom

bytesRequested = 32

Breakdown of the parameters:

Figure 5.9: TPM2 GetRandom example request with description of all parameters, that are
sent to the TPM. Every box represents one byte.

5.5 Provisioning

The provisioning process is an essential part of the production of IIoT
devices. While provisioning, brand-new hardware is prepared for the tasks
in a production environment, basic configurations are set, and software is
installed. Both secure boot and our mechanisms to protect replay attacks add
additional steps in the provisioning process. These steps require additional
time in production, but these resources are well invested in security.

In the first step, secure boot has to be configured. Therefore, encryption and
signature keys need to be generated. The decryption and verification keys
are burned into so-called eFUSES on the device and are used later. This step
is performed with tools offered by the SoC vendor.

The second step is to encrypt the firmware with the leakage-resilient scheme
and compute the hash value. Therefore, a root key needs to be generated.
We created a small Rust application, named next-stage, to encrypt-then-hash
the firmware image. The dependency graph of all used crates is shown in
Figure 5.11. This application uses the rs-crypto library crate, that is also used
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0x00 0x2C0x000x00 0x00 0x000x00 0x00 0x00 0x200x010x80

0xE4 0xE6 0x7D 0xD0 0x7F 0xE9 0x1E 0xB7 0x31 0x11 0x56 0xDE

0x74 0x1D 0xB5 0x71 0x11 0x55 0x95 0x94 0xAF 0x7D 0xDB 0xC8

0x44 0xC1 0x8E 0x98 0x4F 0x99 0xDB 0x24

TPM2_GetRandom Response

0x010x80

0x00 0x2C0x000x00

0x00 0x000x00 0x00

0x00 0x20

tag = TPM_ST_NO_SESSIONS

commandSize = 12

responseCode = TPM_RC_SUCCESS

size (next field) = 32

Breakdown of the parameters:

0xE4 0x24 data = random

Figure 5.10: TPM2 GetRandom example response with description of all parameters, that are
received from the TPM. Every box represents one byte.
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next-stage

rs-crypto

aes-soft

sha2

Figure 5.11: Dependency graph of crates used to prepare the next stage firmware.

within the bootloader. The application is designed for a host computer so
that a developer can use it for shipping the firmware. next-stage reads a
firmware binary file and processes it. It generates a fresh nonce and uses
it for encrypting the plaintext firmware with the leakage-resilient scheme
explained in Section 3.3.2. The SHA256 hash is computed over the encrypted
firmware image and displayed to the user. The tool then saves nonce and
the encrypted firmware image into a binary file. The generated root key is
finally compiled into the rs-zynq-boot.

As the third step, the hash value of the encrypted firmware image needs
to be stored inside the TPM. Therefore the rs-zynq-boot bootloader can be
compiled for the provisioning usage. Hereby, the non-volatile variable needs
to be defined. With this step, the shared secret is set, which will be later
used for authorization. Parties that know the shared secret are permitted to
read and write the non-volatile variable inside the TPM. Figure 5.12 shows
the sequence diagram of the TPM communication in the provisioning step.
This is only required once in the lifetime of the TPM used in the IoT device.
In this sequence, the TPM is brought into the operational state with the
TPM2 Startup command. Next, the non-volatile variable is defined with the
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rs-zynq-boot TPM

TPM2_Startup Command

TPM2_Startup Response

TPM2_NV_DefineSpace Command

TPM2_NV_DefineSpace Response

index, size, secret

TPM2_NV_Write Command

TPM2_NV_Write Response

nvIndex, data, offset

Figure 5.12: Sequence diagram showing the communication between the bootloader and
TPM performed while provisioning.
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TPM2 NV DefineSpace command. With this command, the index, size, and
secret are set. Moreover, the hash value over the encrypted firmware image
is written to the non-volatile variable with the TPM2 NV write command.

The fourth and last step is to prepare the storage of the device. We use a
micro-SD-card in this project with the Zybo board. The bootloaders and
bitstream file need to be encrypted and signed. Therefore, the SoC vendor,
Xilinx in our case, offers a tool named bootgen. The tool receives all files
and keys as input and creates an encrypted binary file. The resulting bi-
nary file can be stored on the SD-card. When putting all together, the IoT
device starts with secure boot and our bootloader works with replay attack
countermeasures.

5.6 Evaluation

We created a proof-of-concept firmware used as the next stage after rs-zynq-
boot. The purpose of this implementation is to show the successful handover
to the next stage. Based on this firmware, we perform different experiments
trying to bypass the implemented security features.

Setup. The Zybo board is prepared as described in Section 5.5. The SD-
card includes the packaged boot image, including Xilinx FSBL, the bitstream
file, rs-zynq-boot and the firmware. The firmware is a small assembler im-
plementation that prints out the string ”Next stage!”. Listing 5.5 shows the
source code of the implementation. After loading the register address of
the Universal Asynchronous Receiver Transmitter (UART), the characters
are written to the UART register. It is not necessary to poll on the transmit
flag since the UART includes a FIFO. Because of that, it is possible to write
up to 128 characters, which are buffered and transmitted afterwards. The
proof-of-concept firmware is packed into the boot image.

74



5 Prototype

System Boot. As already mentioned, the BootROM loads the Xilinx FSBL
and further ensures authentication and decryption. After starting the FSBL,
it first loads the FPGA configuration with the bitstream file. Second, it
verifies, decrypts and loads the rs-zynq-boot. Third, the Xilinx FSBL loads
the firmware into the main memory. rs-zynq-boot verifies and decrypts the
firmware later. As the last step, the Xilinx FSBL hands over to the rs-zynq-
boot. The rs-zynq-boot executes as described in Section 5.4. If the calculated
hash over the encrypted firmware is correct, the next stage is decrypted and
started. Otherwise, rs-zynq-boot reports an error and terminates the boot
sequence. The following evaluation will cover both cases.

Listing 5.5: Source of the next stage prototype written in assembler.

1 movw r0, 0x1030

2 movt r0, 0xe000

3 mov r1, #0x4E

4 str r1, [r0]

5 mov r1, #0x65

6 str r1, [r0]

7 mov r1, #0x78

8 str r1, [r0]

9 mov r1, #0x74

10 str r1, [r0]

11 mov r1, #0x20

12 str r1, [r0]

13 mov r1, #0x73

14 str r1, [r0]

15 mov r1, #0x74

16 str r1, [r0]

17 mov r1, #0x61

18 str r1, [r0]

19 mov r1, #0x67

20 str r1, [r0]

21 mov r1, #0x65

22 str r1, [r0]

23 mov r1, #0x21

24 str r1, [r0]

25 EndL: b EndL
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Listing 5.6: Output of a successful boot process.

1 Welcome to RS-ZYNQ-BOOT!

2 Correct vendor ID

3 Connected to device, rid: 00 00 00 10

4 transmit_command: 80 01 00 00 00 0C 00 00 01 44 00 00

5 transmit_command resp: 80 01 00 00 00 0A 00 00 00 00

6 startup with rc: 00 00 00 00

7 trng random bytes:

8 AD A9 94 52 0C DD F7 E0 69 B3 F0 06 1D ED A1 D9

9 97 73 59 8B 03 8B 33 21 F3 B5 F1 D4 23 F6 D8 B0

10 transmit_command:

11 80 01 00 00 00 3D 00 00 01 76 40 00 00 07 40 00

12 00 07 00 20 AD A9 94 52 0C DD F7 E0 69 B3 F0 06

13 1D ED A1 D9 97 73 59 8B 03 8B 33 21 F3 B5 F1 D4

14 23 F6 D8 B0 00 00 00 00 0A 00 0B 00 0B

15 transmit_command resp:

16 80 01 00 00 00 30 00 00 00 00 02 00 00 00 00 20

17 06 7A 95 59 3B 36 7C CC E3 24 CA CC 8F 32 09 4F

18 C4 34 EA D5 CD 11 18 7F 41 40 1E 36 B1 9A 85 C4

19 nonce_tpm:

20 06 7A 95 59 3B 36 7C CC E3 24 CA CC 8F 32 09 4F

21 C4 34 EA D5 CD 11 18 7F 41 40 1E 36 B1 9A 85 C4

22 trng random bytes:

23 30 C0 1D 40 DA C6 5F 65 17 F0 FC 7F D2 3E F7 12

24 6A 05 55 7D 3E EE 6A 28 2B 80 9F 74 5B 1C 2B 68

25 transmit_command:

26 80 02 00 00 00 63 00 00 01 4E 01 50 00 15 01 50

27 00 15 00 00 00 49 02 00 00 00 00 20 30 C0 1D 40

28 DA C6 5F 65 17 F0 FC 7F D2 3E F7 12 6A 05 55 7D

29 3E EE 6A 28 2B 80 9F 74 5B 1C 2B 68 01 00 20 2F

30 BF CC AB 17 97 EF 8C 54 BC 0F 7E 3C 4C FD 31 19

31 A6 FF 16 06 67 40 AA 28 E5 76 BE 72 21 86 B6 00

32 20 00 00

33 transmit_command resp:

34 80 02 00 00 00 75 00 00 00 00 00 00 00 22 00 20

35 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03
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36 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

37 00 20 7D 98 F2 FE 73 F7 C6 49 3F DA 50 26 67 AE

38 E4 08 D7 7C 68 80 60 70 75 EE B3 DF 51 26 99 6A

39 00 B7 01 00 20 CA DC C2 81 55 F4 76 C9 A8 4F A9

40 FB 12 2A E9 97 DC 1F 2B F0 C9 D1 EE 19 2C F4 95

41 90 04 51 CD 7D

42 read_bytes:

43 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03

44 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

45 size: 00 00 00 80

46 hash from TPM:

47 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03

48 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

49 hash calc:

50 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03

51 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

52 next stage ciphertext:

53 5D BC 02 59 E7 A3 D4 3C A0 D3 ED B5 3F 2D 2F CC

54 B5 4A 4A BF C8 9F F2 DD E2 0F 08 BA A6 9C CE A8

55 A2 94 63 AB D5 7E C6 7A DF 6A C4 76 BF 3A FC 8A

56 18 2D 41 14 AB 34 4B 30 AC 79 2F 77 0B 8D 99 0C

57 9B C7 30 67 D7 AC 19 2D AD EB 99 AC B0 10 53 E4

58 19 7F 2F BA 65 5B EC 21 C0 1F 8B BB 8C 0A 10 00

59 A9 D7 57 19 E7 CC BC BE 6A 0C 5E C6 97 B2 55 D0

60 next stage plaintext:

61 30 00 01 E3 00 00 4E E3 4E 10 A0 E3 00 10 80 E5

62 65 10 A0 E3 00 10 80 E5 78 10 A0 E3 00 10 80 E5

63 74 10 A0 E3 00 10 80 E5 20 10 A0 E3 00 10 80 E5

64 73 10 A0 E3 00 10 80 E5 74 10 A0 E3 00 10 80 E5

65 61 10 A0 E3 00 10 80 E5 67 10 A0 E3 00 10 80 E5

66 65 10 A0 E3 00 10 80 E5 21 10 A0 E3 00 10 80 E5

67 FE FF FF EA 00 00 00 00 00 00 00 00 00 00 00 00

68 handover to: 1C E0 00 14

69 Next stage!
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Successful Boot. Listing 5.6 shows the output on the serial interface of a
successful boot process. Line 4 shows the TPM2 Startup command sent to
the TPM that is successfully executed with return code 0, as shown in line 6.
Next, 32 random bytes are drawn from the hardware TRNG, shown in line
7, that are included into the TPM2 StartAuthSession command in line 8.
The response, shown in line 9, includes the nonceTPM. The nonceTPM and a
freshly drawn nonceCaller are used for the TPM2 NV Read command in line
12. This command also includes a valid HMAC. The response, shown in line
13, includes an HMAC and the requested data. The bootloader successfully
verifies the HMAC and proceeds with the boot progress. Next, the hash
over the encrypted firmware image is calculated and displayed in line 17.
The calculated hash equals to the hash read from the TPM, shown in line
16. Through this property, a replay attack is impossible. Line 18 shows the
encrypted firmware image and line 19 the decrypted version. This output is
only for debug purpose and has to be removed from a production device.
Line 20 indicates the entry point memory address of the firmware, where
the bootloader hands over to. Finally, line 21 shows the output of the next
stage firmware.

Listing 5.7: Output of a boot process with a replay attack.

1 Welcome to RS-ZYNQ-BOOT!

2 Correct vendor ID

3 Connected to device, rid: 00 00 00 10

4 transmit_command: 80 01 00 00 00 0C 00 00 01 44 00 00

5 transmit_command resp: 80 01 00 00 00 0A 00 00 00 00

6 startup with rc: 00 00 00 00

7 trng random bytes:

8 7F 43 6E 27 C2 AB 01 33 26 6B 5A 4E E6 E0 4F 73

9 FC 97 3E 00 7B FD 69 E7 F6 18 40 71 E4 F8 1D 80

10 transmit_command:

11 80 01 00 00 00 3D 00 00 01 76 40 00 00 07 40 00

12 00 07 00 20 7F 43 6E 27 C2 AB 01 33 26 6B 5A 4E

13 E6 E0 4F 73 FC 97 3E 00 7B FD 69 E7 F6 18 40 71

14 E4 F8 1D 80 00 00 00 00 0A 00 0B 00 0B

15 transmit_command resp:

16 80 01 00 00 00 30 00 00 00 00 02 00 00 00 00 20

17 51 F7 99 0D 18 25 29 5E 2C 65 4E AD B8 D7 6E 81
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18 E9 67 D1 7E 19 9E ED 49 75 7E F7 BA D0 C9 46 18

19 nonce_tpm:

20 51 F7 99 0D 18 25 29 5E 2C 65 4E AD B8 D7 6E 81

21 E9 67 D1 7E 19 9E ED 49 75 7E F7 BA D0 C9 46 18

22 trng random bytes:

23 6E 2C CA 3B 0F F0 2E 2C D0 7A DD 5E 6A 45 F7 AE

24 BA 5B AA CD 57 1C 15 EE 1F 77 2B 62 01 4D 53 C5

25 transmit_command:

26 80 02 00 00 00 63 00 00 01 4E 01 50 00 15 01 50

27 00 15 00 00 00 49 02 00 00 00 00 20 6E 2C CA 3B

28 0F F0 2E 2C D0 7A DD 5E 6A 45 F7 AE BA 5B AA CD

29 57 1C 15 EE 1F 77 2B 62 01 4D 53 C5 01 00 20 F4

30 48 18 DE AC 49 89 7F 88 B7 E3 16 E9 06 2B 3D 00

31 9A 4A 88 1B 2A F6 DC EB 59 32 90 F0 15 6F DF 00

32 20 00 00

33 transmit_command resp:

34 80 02 00 00 00 75 00 00 00 00 00 00 00 22 00 20

35 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03

36 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

37 00 20 AA C0 A4 B3 C8 A5 CC 63 17 17 86 7F AB 03

38 0A 23 64 E1 DC E2 D2 2B 95 10 23 58 E9 2C 24 51

39 97 9A 01 00 20 44 7A 1D C3 D9 DC B2 1E 17 39 28

40 AF DC 08 18 5F BE 0C CB 79 69 3E CE 72 2A 10 08

41 2B 87 AA CA DA

42 read_bytes:

43 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03

44 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

45 size: 00 00 00 80

46 hash from TPM:

47 E6 1D CA 1E F4 D8 6F 40 33 61 5C 9A 1C 90 E9 03

48 3B EB 3E B3 93 6E 6A BA D2 F3 90 0D 92 77 6F 78

49 hash calc:

50 3D 47 15 B4 DC 94 04 E5 EF E6 AF AA D0 80 23 03

51 71 95 C2 0A B7 0E 40 98 1A 11 E4 7C CB 76 29 2F

52 wrong hash
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Replay Attack. Listing 5.7 shows a replay attack applied on the firmware,
where an old firmware image is used. Listing 5.7 equals Listing 5.6 until line
16 with the exception of the random values. Next, the bootloader calculates
the hash over the encrypted next stage firmware. The calculated hash, shown
in line 17 of Listing 5.7, does not match the value from the secure storage,
and therefore, a replay attack is detected. The bootloader terminates the
boot progress and prompts an error.

5.7 Future Work

We point out that secure storage is essential for secure systems. We hence
propose that future SoC designs include secure storage. Future projects
would benefit from such storage as it would avoid the need for a TPM
and a TRNG. Since secure network connections also rely on good random
numbers, including a TRNG into a future SoC design is desirable as well.
These features will however not be available by default in the next years,
because the product life cycle of silicon chips is slow.

Moreover, we propose integrating side-channel protected cryptographic
functions in upcoming SoC designs. With a protected hardware implemen-
tation of the AES function and the HMAC scheme, we can further improve
the side-channel security of the implemented prototype. An evaluation of
side-channel attacks on the current implementations is future work and will
determine if protected implementations are necessary for the prototype.
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The Industrial Internet of Things (IIoT) is getting increasingly popular today.
However, these devices need to be secured against various attacks to protect
the functionality of an IIoT ecosystem. For instance, today’s computers often
suffer from memory safety attacks. Hereby, programming errors introduce
problems that are exploited by attackers. While security updates solve these
problems, the rollback of a security update is a serious threat as well. This
so-called replay attack is even possible for encrypted boot and is a severe
problem for IIoT devices. Further, an attacker can use side-channel attacks
to attack an IIoT device to reveal secrets stored inside the IIoT device.
Consequently, designs of IIoT devices need to encounter attacks on memory
safety, replay attacks, and side-channel attacks.

In this thesis, we developed a concept to secure IIoT devices against afore-
mentioned attacks. With a practical implementation, we verified the feasi-
bility of our concept. The proof-of-concept implementation used a Zybo
board as a platform. The Zybo board comes with a Xilinx Zynq System
on Chip (SoC), which supports secure boot. We used this feature as the
basis for our work and enhanced it with protection against replay attacks
of the firmware. For this reason, we implemented a secure bootloader. To
protect against replay attacks, we integrated a method to verify the current
firmware version into the bootloader. This method consists of calculating a
cryptographic hash of the firmware image and comparing it with a reference
value. The respective reference value is stored in a modifiable secure storage.
Since the Zynq SoC does not offer such secure storage, we added another
component, a Trusted Platform Module (TPM).

A TPM is a security element that offers, among other security features, secure
storage. We used the secure storage of a TPM in our design. Because we
face physical attackers, we also had to secure the communication between
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the TPM and the SoC. In particular, we used the Hash-based Message
Authentication Code (HMAC) authorization offered by the TPM. Based
on a secret shared between both parties and freshness in the protocol, the
integrity of the transferred data is ensured. The freshness is caused by fresh
numbers only used once (nonces) used in every telegram sent between the
SoC and the TPM. The generation of fresh nonces requires good random
number generators for both communication parties. The TPM comes with a
hardware True Random Number Generator (TRNG), but the Xilinx Zynq
SoC does not offer such a feature. We hence integrated a hardware TRNG
into the Field Programmable Gate Array (FPGA) inside the Xilinx Zynq
SoC.

Since an IIoT device is exposed to physical attackers, it is also in danger of
side-channel attacks. A bootloader can leak encryption keys and therefore
break the chain of trust. In this way, the attacker can read the firmware plain-
text or learn the cryptographic key to decrypt the firmware. We hardened
our bootloader implementation to ensure the confidentiality of the executed
firmware image in the presence of side-channel attacks. Namely, we used
an encrypt-then-hash scheme for the firmware encryption. Using leakage-
resilient cryptography, we encrypted the firmware that is started with the
implemented bootloader. For this, we implemented a leakage-resilient mode
of operation that uses frequent rekeying. Hereby, one key is never used more
than twice, which limits the possibilities for a side-channel attacker. We
saved the cryptographic hash of the encrypted firmware image in the secure
storage. While the system boots, the hash of the ciphertext is calculated
and compared with the stored hash before decryption. This step merged
with the replay protection and prevented the application of differential
side-channel attacks. These two methods together mitigate side-channel
attacks on the implemented bootloader.

Further, memory safety issues are problems for a bootloader implemen-
tation. An attacker can exploit these issues and break the secure boot by
using code injection or code reuse attacks. To ensure error-free memory
handling in our implementation, we implemented the bootloader prototype
in the programming language Rust. Rust is a modern system programming
language that guarantees memory safety based on a so-called ownership
model. It allows implementing bare-metal applications that execute on the
bare hardware without an Operating System (OS) running. We implemented
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the bootloader as a bare-metal application. Our implementation includes a
TPM software stack, the low-level protocol to communicate with the hard-
ware TPM, and leakage-resilient cryptography. We showed that all these
components together follow our concept and successfully verify, decrypt
and start the protected firmware.

With the prototype, we were able to reach the goals of this thesis. The im-
plemented bootloader rs-zynq-boot prevents replay attacks, and is protected
against memory safety and side-channel attacks. In the end, we showed
that it is possible to increase the security of an IIoT device with off-the-shelf
components. As a consequence, we want to see this concept in production
to make the world more secure.
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