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Abstract

In 2004, by isolating single layers of graphite, the 2D-Material Graphene was found,
giving rise to a huge amount of research papers investigating on its fascinating elec-
tronic, magneto-electronic and opto-electronic properties. One year later, the existence
of a quantum spin Hall state was proposed for lattices of the honeycomb type, as re-
alized in graphene, by including spin-orbit coupling. This was the starting point for
the completely new field of topological insulators. In this thesis we use the honeycomb
lattice as a playground to investigate the effects of strong correlations, non-local inter-
actions, and spin-orbit coupling, using one orbital per site at half filling. The model
Hamiltonian of our choice is the extended Hubbard model with an additional spin-orbit
coupling term. This model provides, besides the unordered phase, two ordered phases,
namely spin density waves (SDW) and charge density waves (CDW), as well as the
additional characterization of being topologically trivial or non-trivial.
To analyze the interplay between the different phases we calculated phase diagrams
using mean-field theory (MFT), and further compared them to calculations performed
with the more sophisticated method of dynamic mean field theory (DMFT).
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Kurzfassung

Im Jahr 2004 wurde durch Isolierung einzelner Graphitschichten das 2D-Material Graphen
entdeckt was einer großen Anzahl von Forschungsarbeiten zur Folge hatte, die sich
damit beschäftigten die elektronischen, magneto-elektronischen und opto-elektronischen
Eigenschaften zu untersuchen.
Im darauffolgenden Jahr wurde die Existenz eines Quanten-Spin-Hall-Zustandes für
das Bienenwabengitter, wie es in Graphen realisiert ist, durch Einbeziehung der Spin-
Bahn-Kopplung vorgeschlagen. Dies war der Ausgangspunkt für das völlig neue Gebiet
der topologischen Isolatoren. In dieser Arbeit verwenden wir das Bienenwabengitter,
um die Auswirkungen von starken Korrelationen, nicht-lokalen Wechselwirkungen und
Spin-Bahn-Kopplung zu untersuchen. Hierfür verwenden wir das erweiterte Hubbard-
Modell mit einem Orbital pro Gitterplatz bei halber Füllung und ergänzen selbiges
um einen zusätzlichem Spin-Orbit Kopplungsterm. Dieses Modell liefert neben der un-
geordneten Phase, zwei geordnete Phasen, bekannt als Spindichtewellen (SDW) und
Ladungsdichtewellen (CDW). Zusätzlich erhalten wir eine weitere Charakterisierung in
topologisch trivial oder nicht-trivial. Um das Zusammenspiel der verschiedenen Phasen
zu analysieren, haben wir zunächst unter Verwendung der Mean-Field-Theorie (MFT)
Phasendiagramme berechnet und dann die Ergebnisse mit weiteren Berechnungen unter
Zuhilfenahme der ausgefeilteren dynamischen Mean-Field-Theorie (DMFT) verglichen.
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Introduction

When in 1946 Philip Russel Wallace theoretically first described the electronic prop-
erties of Graphene [1], not even he himself did believe that such a two dimensional
material could exist in nature. In fact, he used it as an approximation for the three-
dimensional Graphite. However, in 2004 Geim and Novoselov [2] managed to isolate
these single layers of the carbon crystal for the first time, and exceptional interest for
this exotic material was born among theorists as well as experimentalists. They found
a material that has many desirable properties united. Due to its structure and the
low atomic number of carbon it obviously is thin and light. Additionally, the crystal
provides more not so intuitive characteristics. Its unique band structure lets electrons,
that travel through the lattice, behave similar to light and hence gives rise to extraordi-
narily good conductivity. Besides, the arrangement of carbon atoms on the honeycomb
lattice makes it one of the strongest materials ever found.
The honeycomb lattice itself gave rise to a completely new type of materials. In 2005
Kane and Mele proposed the existence of a quantum spin Hall effect (QSHE) [3, 4],
which compares to the similar quantum Hall effect but does not require a strong exter-
nal magnetic field. Differently, the effect is caused by strong spin-orbit coupling. The
generalization of this QSHE to other dimensions is what we refer today to as topolog-
ical insulators, which are materials that are insulating in the bulk and conducting on
the edges of the sample. These edge states are especially interesting as they are also
insensitive to disorders and interactions.
Apart from that, the topic of strongly-correlated systems has come more and more into
the focus of today’s condensed matter physics, as they often show unusual electronic
and magnetic properties. The standard model Hamiltonian to investigate on such sys-
tems is the so called Hubbard model, which consist of a tight-binding term and an
on-site interaction term. Nonetheless, studies have shown that in case of dimensional
constraint also non-local interactions need to be considered making it reasonable to in-
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clude further terms to the Hamiltonian. The natural expansion of the Hubbard model
is the extended Hubbard model, where nearest-neighbor interactions are additionally
considered.

The aim of this thesis is to investigate on the different phases and transitions between
them, using an extended Hubbard model with additional spin-orbit coupling on a hon-
eycomb lattice. For this purpose it is split into two parts: the non-relativistic treatment
consisting just of the extended Hubbard model and the relativistic treatment including
spin-orbit coupling.
In the first chapter we provide the theoretical background to the (extended) Hubbard
model and discuss the appearance of the different phases namely spin density waves
(SDW), charge density waves (CDW) and an unordered phase caused by the domi-
nance of one parameter respective to the others. Further, two methods in order to
calculate the phase diagram for the extended Hubbard model are explained and the ac-
cording results are shown. Therefore, we start with mean-field theory (MFT) as a very
simple approximation obtained by neglecting spatial fluctuations to get a qualitative
idea. Afterwards, local quantum fluctuations are recovered by the application of the
more accurate approximation of dynamic mean-field theory (DMFT).
Finally in the second chapter a brief overview on the field of topological insulators is
given and thereafter spin-orbit coupling is added to the model to study the interplay
between spin-orbit coupling and strong correlations. Besides, the consequence of the
broken degeneracy of the spin-orientations is discussed and for MFT the two possibili-
ties of out-of and in-plane magnetization are calculated. In DMFT we consider just the
easier, but energetically non-favorable out-of plane magnetization.



Chapter 1

Non-relativistic treatment

The full Hamiltonian that describes any molecule or solid (in a non-relativistic manner),
given in atomic units, reads

Ĥ = −1

2

∑
i

∇2
i −

∑
α

1

2Mα

∇2
α −

∑
α,i

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

(1.1)

where α and β are nuclei indices and i and j electron indices of the system, Rα and ri
are the positions of the nuclei and electrons, Mα and Zα labels the mass and charge of
the nuclei.
The first two terms describe the kinetic energy and the last three terms the potential
energy of all particles in the system. The third term is caused by the attractive coulomb
force between every electron and every nucleus, and the last two terms by the repulsive
intra-nucleus and intra-electron Coulomb force.
Even though it is simple to write down this Hamiltonian, it is for almost every system
impossible to be solved.
Solving means finding the eigenstates Eν and eigenenergies |Ψν〉 of the Hamiltonian
(1.1)

Ĥ |Ψν〉 = Eν |Ψν〉 . (1.2)

The only exact solution can be found for the hydrogen atom, as this consists only of
one proton and one electron.
As a first simplification usually the Born-Oppenheimer approximation is applied, which
takes into account that due to the much bigger mass of the nuclei compared to the
electrons (more than 103 times larger), the nuclei move a lot slower and can therefore

3



1.1. Second quantization 4

be fixed in position to calculate the energy. This makes the second term in eq. (1.1)
vanish and the last term become a constant. As a constant in the Hamiltonoperator
just gives an overall energy-shift which can always be subtracted or added at any point,
one is left with the remaining three terms

Ĥ =
1

2

∑
i

∇2
i

kinetic energy

−
∑
α,i

Zα
|ri −Rα|

lattice potential

+
∑
i<j

1

|ri − rj|
interaction

(1.3)

Still, this problem turns out to need further simplifications in order to be solved. The
reason is the electron-electron interaction, that leaves it still a complex many-body
problem.
The easiest approximation can be found by simply neglecting the interaction-part. How-
ever this so-called free-electron approximation is just suitable for metals, where electrons
are delocalized over the whole crystal, and it catastrophically fails for semiconductors
or insulators. But even more sophisticated models like the density functional theory
(DFT), whereby the electron-electron interaction is included via an effective potential
are not satisfactory in the description of strongly-correlated materials.
In the following chapters we will go over to second-quantization, which is a more con-
venient description to deal with many-body problems and eventually introduce the
(extended) Hubbard model.

1.1 Second quantization

When we go over from a one-particle to a many-particle description we could naively
write down the many-body state as a product of one-particle states

∣∣φN〉 =
∣∣∣φ(1)

1

〉 ∣∣∣φ(2)
2

〉
. . .
∣∣∣φ(N)
N

〉
=
∣∣∣φ(1)

1 , φ
(2)
2 . . . φ

(N)
N

〉
=

N∏
i=1

∣∣∣φ(i)
i

〉
(1.4)

where N gives the total number of particles, the superscript is the particle number and
the subscript labels the state index. But identifying a particle with a state, requires
them to be distinguishable.
Identical particles hold the same properties like spin, mass, volume, charge, magnetic
momentum, etc. Since identical particles are indistinguishable any observable must
stay the same under the permutation of two or more particles.
For electrons (fermions) this means that a correct description has the form of a totally
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antisymmetric wave function
∣∣φN〉

(−)
, which can be written in the form of a so-called

Slater-determinant:

∣∣φN〉
(−)

= Ŝ−

N∏
i=1

∣∣∣φ(i)
i

〉
=

1

N !

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣φ(1)
1

〉 ∣∣∣φ(2)
1

〉
. . .

∣∣∣φ(N)
1

〉∣∣∣φ(1)
2

〉 ∣∣∣φ(2)
2

〉
. . .

∣∣∣φ(N)
2

〉
...

... . . . ...∣∣∣φ(1)
N

〉 ∣∣∣φ(2)
N

〉
. . .

∣∣∣φ(N)
N

〉

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.5)

where Ŝ− is the anti-symmetrization operator and 1
N !

the normalization factor. Ex-
changing two columns (this is equal to the permutation of two particles) changes the
determinant’s sign, as it is required for anti-symmetry. Besides, as the determinant
always vanishes when two rows or columns are equal, no two electrons are allowed to
occupy the same state (this fulfills the Pauli principle).

1.1.1 Occupation number representation

As equation (1.5) is a rather complicated description of (fermionic) many-body states
one therefore chooses the more convenient occupation-number description, which does
not require to label indistinguishable particles

∣∣φN〉
(−)

= |n1, n2, . . . 〉 (1.6)

with ∑
i

ni = N, (1.7)

where ni is the number of particles in state i, that for fermions must either be zero
or one (Pauli principle). To change particle numbers, creation c†i and annihilation ci

operators are used

c†i |n1 . . . ni . . . 〉 =
√
ni + 1 |n1 . . . (ni + 1) . . . 〉

ci |n1 . . . ni . . . 〉 =
√
ni |n1 . . . (ni − 1) . . . 〉

(1.8)

Repeatedly applying the creation operator onto the vacuum state |0〉 gives the occupa-
tion number representation

|(n1 = 1) . . . (ni = 1), (nj = 1) . . . 〉 = c†1 . . . c
†
ic
†
j . . . |0〉 . (1.9)
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The anti-symmetrization of the state is encoded in the anti-commutation relations of
the creation and annihilation operators

{ci, c†j} = cic
†
j + c†jci = δij

{ci, cj} = {c†i , c†j} = 0
(1.10)

⇒ c†ic
†
j = −c†jc†i . (1.11)

This means that equation (1.9) is already a correctly anti-symmetrized representation
of a fermionic many-body state. Equation (1.11) must be zero on both sides in the case
i = j which guarantees that the occupation number of one state cannot exceed one.

1.1.2 Operators in second quantization

To find a representation of observables in second quantization the corresponding oper-
ators need to be expressed in terms of creation and annihilation operators.
The simplest example is given by the number operator

n̂ci = c†ici, (1.12)

counting the occupation number of a given state i.

A general operator in every physical relevant case can be written as a sum of one-
particle and two-particle operators, i.e., the individual terms depend and act only on
one or two particle coordinates.
One-particle operators have the generic form

T̂ =
∑
α

t̂(α), (1.13)

where t̂(α) can for instance be the kinetic energy or a external potential. In second
quantization this becomes (for t̂α being the kinetic energy 1

2
∇2

(α))

T̂ =
∑
ij

tijc
†
icj

tij =

∫
drφ∗i (r)

1

2
∇2

(α)φj(r’),
(1.14)



1.2. The Hubbard model 7

with the transition matrix-element tij giving the transition from one orbital |φi〉 to an-
other |φj〉. Hereby it should be stressed that φ∗i (r) are Wannier functions (see appendix
A), which are, similar to molecular orbitals, localized around the individual lattice sites
in the crystal.
Similarly the two-particle operator

F̂ =
1

2

∑
α 6=β

f̂(α,β) (1.15)

can be expressed in second quantization as follows

F̂ =
1

2

∑
ijkm

fijkmc
†
ic
†
jcmck

fijkm =

∫
drdr′φ∗i (r)φ

∗
j(r
′)V (|r− r′|)φk(r)φm(r′)

(1.16)

1.2 The Hubbard model

A very successful model to describe solids in which electron correlations cannot be ne-
glected is the Hubbard model, where electrons are rather confined to the atoms, but can
tunnel from one atom to the nearest neighboring one. So one can talk about electrons
sitting on one specific atom (or lattice site) or hop from one atom to a neighboring atom.
Further, electron-electron interactions are just considered for two electrons sitting on
the same site. For the elementary situation of one orbital per site this is equivalent to
setting the fijkm in (1.16) equal to zero except for the case of coinciding indices, namely

fijkm =

U for i = j = k = m

0 else
(1.17)

Together with the definition of the number operator (equation (1.12)), the Hubbard
model thus reads

H = −
∑
〈ij〉,σ

tijc
†
iσcjσ + U

∑
i

nci↑n
c
i↓ + ε0

∑
iσ

nciσ. (1.18)

The hopping energy tij is given by the overlap between two neighboring atomic orbitals
and U is the repulsive Coulomb potential of two electrons within the same orbital.
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The third term, which describes the orbital energy, could in a single orbital system
be removed as this again just gives a constant shift to the energy. Summing over 〈ij〉
means, that just nearest neighbors are taken into account and σ labels the spin (up ↑
and down ↓).
nci↑n

c
i↓ gives the only remaining term (nci↑nci↓ = nci↓n

c
i↑) of the on-site interaction which

does not vanish due to the anti-commutation rules of equation (1.10). In the absence of
hopping, there are 4 eigenstates for the atom (|0〉 , |↑〉 , |↓〉 , |↑↓〉) with the eigenenergies:
(0, ε0, ε0, U + 2ε0)

1.2.1 Screening and the extended Hubbard model

The reason why reducing the electron-electron interaction to an on-site phenomenon is
a quite good assumption for many 3D materials is the ’screening effect’.
Other than the Coulomb potential of a free charge, that decreases with the distance r
proportional to 1

r
, a charge surrounded by movable charge-carriers is screened, i.e., the

electric field is reduced exponentially

Z

r
→

screening

Z

r
e−r/λ (1.19)

where Z gives the charge number and λ a characteristic screening length. In a 3D-
material the length will typically be short enough that just electrons sitting on the
same atom ’feel’ each other, and considering just on-site interactions will be a good
approximation.
On the other hand, for two dimensional materials this assumption does not hold any-
more. Due to the reduced density of electrons, caused by the lower dimension, the
screening effect becomes weaker and further non-local interactions need to be taken
into account. This brings us to the definition of the extended Hubbard model

H = −t
∑
〈ij〉,σ

c†iσciσ + U
∑
i

nci↑n
c
i↓ +W

∑
〈ij〉

ncin
c
j (1.20)

with
nci = nci↑ + nci↓ (1.21)

where W now gives the strength of electron-electron interaction between the electrons
of neighboring atoms. Here the term for the on-site energy has been removed (as in our
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case it just gives a constant).
To get a qualitative picture of what happens in the cases that one parameter is dominant
against the other two parameters, we look at the case of an infinite one dimensional
atomic string at half filling. We find for a vanishing nearest neighbor and a large on-site
interaction that an electron hopping away from the ground-state configuration (energy
0) gets penalized by an energy of U . Similarly, the inverted situation (U = 0,W/t �)

leads to an energy-penalty of 3 W. In the final case that t is the dominant parameter
the act of hopping is energetically favorable and the totally unordered system will be
preferred, which is equivalent to the delocalization of electrons in metals. The situation
is documented in table 1.1

case configuration energy preferred ordering

W = 0, U
t
� 1 0 SDW

U

U = 0, W
t
� 1 0 CDW

3W

U
t
≈ W

t
� 1 -t

no
-t

Table 1.1: extended Hubbard describing electrons on an atomic string

While the ground state configuration for the last two cases is quite intuitive, the ar-
rangement of the electrons for W = 0 and U

t
� 1 is less trivial. For this situation the

hopping term can be described in form of a perturbation. Then the according unper-
turbed ground state has no twofold occupations of lattice sites. Nevertheless, still many
different configurations, with only one electron per site are possible. Turning on a small
perturbation t, however favors an anti ferromagnetic configuration, as this still allows
virtual hopping processes. These are processes, where an electron hops from one site
to the neighboring and back, leading to a reduction of the energy ∝ − t2

U
. Electrons on

neighboring sites, with parallel orientated spins, cannot perform these virtual hoppings
as they are restricted by the Pauli principle.
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Summarizing, this means that U triggers anti-ferromagnetic ordering, where spin-up
and spin-down electrons appear alternately (also known as spin-density wave SDW),
whereas W prefers a charge ordering, where the electrons doubly occupy every second
site (i.e., charge-density wave CDW). But as long as both are small compared to t no
ordering will happen.
To go from a qualitative picture to a quantitative one, one needs to actually solve the
Schrödinger equation, but by looking at equation (1.20) we encounter a last remaining
problem. As the kinetic energy term becomes diagonal in reciprocal space and the
potential energy term in real space, a simultaneous diagonalization is difficult, and we
need to make further approximations. In this thesis, two approaches are applied and
compared to each other, namely mean-field (MFT) and dynamical mean-field theory
(DMFT). MFT is a rather simple method which neglects quantum fluctuations, but
still often suites to get a qualitative idea, whereas DMFT recovers fluctuations locally
and gives a more accurate result. Both methods and the respective results are discussed
and shown in the following two sections.
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1.3 Mean Field Theory

A typical illustration of the classical mean field theory is the application to the Ising
model:

H = −h
∑
i

Si −
∑
(ij)

JijSiSj (1.22)

with i and j again labeling the lattice site. Unless there exist exact solutions for 1D and
2D lattices (strictly speaking: just for j = i + 1), one has to make approximations for
three dimensions. For MFT this means finding an effective non-interacting Hamiltonian
in the form of:

Heff = −
∑
i

heff
i Si (1.23)

with the (Weiss) effective field heff
i and the single-site spin-operator Si. The crucial idea

now is to choose heff
i such that the magnetization is reproduced accurately, meaning

mi = 〈Si〉

=
1

Z

∑
n

〈
n|e−βHeff Si|n

〉
=

1

Z

∑
n

〈
n|e

∑
i h

eff
i SiSi|n

〉
.

(1.24)

As there are just two possible eigenstates |↑〉 and |↓〉 with

Si |↑〉 = |↑〉
Si |↓〉 = − |↓〉 .

(1.25)

the normalisation becomes

Z = e+βheff 〈↑ | ↑〉+ e−βheff 〈↓ | ↓〉 = 2 · cosh(βheff
i ). (1.26)

Evaluating the expectation value of (1.24) in this local two-state basis gives

mi =
sinh(βheff

i )

cosh(βheff
i )

= tanh(βheff
i ) (1.27)
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Thus we define the condition heff
i needs to fulfill,

βheff
i = tanh−1(mi). (1.28)

So far everything is exact, but to get a hamiltonian in the form of eq. (1.23) one has
to neglect fluctuation terms (mean-field approximation)

(Si − 〈Si〉)(Sj − 〈Sj〉)
!≈ 0, (1.29)

so it follows that
SiSj = Sj 〈Si〉) + Si 〈Sj〉)− 〈Si〉 〈Sj〉 . (1.30)

The last term in eq. (1.30) is not relevant, as it again just gives a constant to the
Hamiltonian, which now reads

H = −h
∑
i

Si −
∑
(ij)

Jij(Sj 〈Si〉+ Si 〈Sj〉) (1.31)

With eq. (1.23) and (1.30) one now has an expression for the (Weiss) effective field. If
we further consider isotropy (Jij = J , mi = m) and J > 0 (ferromagnetic solution) one
gets

heff
i = heff = h+ zJm. (1.32)

Finally, we have the self-consistency equation

m = tanh(β(h+ zJm)) (1.33)

which can be solved graphically.
A more general approach, when one cannot write the problem in terms of m = f(m),
is to solve the problem iteratively. One therefore starts with a value m0, as an initial
guess for the true m, and calculate heff with eq. (1.32). Eq. 1.24 then gives a new
guess m1, which is used to calculate heff again etc... This procedure is repeated until
convergence is reached, i.e., the values of m for two consecutive iterations l and l + 1

do not differ more than a small tolerance value εtol

|ml −ml+1| < εtol . (1.34)
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1.3.1 Mixing

Numerical instabilities can slow down extremely or even destroy convergence. Simple
mixing is the easiest way to overcome this problem. Therefore the self-consistency
parameter of iteration i+ 1 gets mixed with the one of iteration i, i.e., one replaces

mi+1 (1.35)

by
p ·mi+1 + (1− p) ·mi, (1.36)

where p takes a value between 1 and 0. p = 1 means no further solution is mixed in and
may lead to instabilities, whereas p � 1 obviously convergences too slow. Typically p
around 0.7 gives the fastest possible convergence.

1.3.2 Application of MFT to the extended Hubbard Model

To treat eq. (1.20) in a mean-field way the two Coulomb-interaction terms need to be
approximated. The easiest way to do so is to take the mean value of the particle density
〈nciσ〉 as control parameter and again neglect fluctuation terms similar to eq. (1.30).
Before applying MFT to the on-site interaction term we initially need to rewrite as

U
∑
i

ni↑ni↓ =
U

2

∑
iσ

niσniσ̄. (1.37)

Further we write the particle operators in terms of the average value plus a fluctuation
operator

U

2

∑
iσ

(〈niσ̄〉+ δniσ) (〈niσ̄〉+ δniσ̄)

=
U

2

∑
iσ

〈niσ〉 〈niσ̄〉+ δniσ 〈niσ̄〉+ δniσ̄ 〈niσ〉+ δniσ̄δniσ︸ ︷︷ ︸
≈0

(1.38)

and neglect, in a similar manner as in eq. (1.30), the fluctuation-fluctuation term. To
restore an expression without fluctuation terms we again use:

δniσ = (niσ − 〈niσ〉) (1.39)
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and obtain

U

2

∑
iσ

niσniσ̄ ≈
U

2

∑
iσ

(niσ 〈niσ̄〉+ niσ̄ 〈niσ〉 − 〈niσ〉 〈niσ̄〉) (1.40)

as the two terms in the sum describe the same it follows that

U
∑
i

nci↑n
c
i↓ ≈ U

∑
i,σ

nciσ 〈nciσ̄〉 −
〈
nci↑
〉 〈
nci↓
〉
. (1.41)

Similar to eq. (1.40), one gets for the nearest neighbor interaction term

W
∑
〈ij〉

ninj ≈ W
∑
〈ij〉,σ

niσ 〈nj〉+ njσ 〈ni〉 − 〈ni〉 〈nj〉 (1.42)

1.3.3 The honeycomb lattice

x

y

δ1

δ2

δ3

a1a2

A

B

primitive unitcell

Figure 1.1: Honeycomb lattice

The honeycomb lattice as shown in figure 1.1 is a two dimensional hexagonal crystal
structure with two atoms in the basis (here denoted as A and B). Every translation
vector t of the crystal can be written in terms of two primitive lattice vectors

t = l1a1 + l2a2 (1.43)
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with l1 and l2 being integer values and

a1 =
a

2

(
1√
3

)
, a2 =

a

2

(
−1√

3

)
(1.44)

being the primitive lattice vectors with the lattice parameter a as their length.
The vectors δ1, δ2, δ3 connecting two neighboring atoms A and B further read

δ1 =
a√
3

(
0

−1

)
, δ2 =

a

2
√

3

(√
3

1

)
, δ3 =

a

2
√

3

(
−
√

3

1

)
. (1.45)

Using the basis (1.44), we find the reciprocal lattice vectors b1 and b2

b1 =
2π

a
√

3

(√
3

1

)
, b2 =

2π

a
√

3

(
−
√

3

1

)
. (1.46)

The according Brillouin zone is drawn in figure 1.2, with the following high-symmetry
points:

Γ =

(
0

0

)
, M =

π

a
√

3

(√
3

1

)
, K =

2π

3a

(
1√
3

)

M′ =
2π

a
√

3

(
0

1

)
, K′ =

2π

3a

(
−1√

3

) (1.47)

ky

kx

b1b2

Γ

K ′ K

M

M ′

Figure 1.2: Honeycomb lattice in reciprocal space
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We now split the total Hamiltonian in three parts, one k-dependent kinetic energy term
including nearest-neighbor hopping and the two interaction terms:

H(k) = H ′(k) +HU +HV (1.48)

To evaluate the Hamiltonian resulting from equation (1.20) in the approximation of
(1.41) and (1.42) we first consider the tight-binding Hamiltonian (hopping-term)

HTB = −t
∑
〈ij〉,σ

(a†iσbjσ + h.c.), (1.49)

where bjσ destroys an electron with spin σ on the sublattice B and a†iσ creates the same
electron on sublattice A. As the Hamiltonian does not depend on the spin it is sufficient
to evaluate just the term

− t
∑
〈ij〉

a†ibj = −t
∑
i

(a†ibi+n1 + a†ibi+n2 + a†ibi+n3) (1.50)

where n1 labels the nearest-neighbor atom the electron is coming from (going to). For
instance a†ibi+n1 stands for an electron hopping from atom B at lattice-site position
ri + δ1 to atom A at position ri etc. This term is evaluated by exploiting the fact that
a periodic crystal structure is assumed, which allows us to rewrite the construction and
annihilation operators as a fourier series:

ci =
1√
N

∫
BZ

cke
−ikri (1.51)

Taking this definition and its hermitian conjugate respectively leads to

HTB =− t
∑
i

1

N

∫
BZ(k)

∫
BZ(k′)

a†ke
ikribk′e

−ik′(ri+δ1) + ...

=− t
∑
i

1

N

∫
BZ(k)

∫
BZ(k′)

a†kbk′ e
i(k−k′)ri︸ ︷︷ ︸
δ(k−k′)

e−ik
′δ1 + ...

=− t
∑
i

1

N︸ ︷︷ ︸
1

∫
BZ(k)

a†kbke
−ikδ1 + ...

=−
∫
BZ(k)

gk a
†
kbk + h.c.
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With eq. (1.45) we find

gk = t

[
e
i
aky√

3 + 2 cos

(
akx
2

)
e
−i aky

2
√
3

]
. (1.52)

Taking the basis set as Ψ†k =
(
a†k,↑, b

†
k,↑, a

†
k,↓, b

†
k,↓

)
, the tight-binding term in matrix

representation can be written as

HTB := H ′(k) =


0 −gk 0 0

−gk∗ 0 0 0

0 0 0 −gk
0 0 −gk∗ 0

 , (1.53)

containing two independent and identical spin-blocks.
Using again equation (1.51) to rewrite the interaction term in mean-field approximation
(equation (1.41) without constant terms), we get

HU =
∑
i,σ

(
a†i,σai,σ 〈nAσ̄〉+ b†i,σbi,σ 〈nBσ̄〉

)
=
∑
σ

∫
BZ

(
a†k,σak,σ 〈nAσ̄〉+ b†k,σbk,σ 〈nBσ̄〉

), (1.54)

resulting in the matrix representation

HU = U


〈nA↓〉 0 0 0

0 〈nB↓〉 0 0

0 0 〈nA↑〉 0

0 0 0 〈nB↑〉

 . (1.55)

Similarly the inter-site interaction term becomes

HV = zW︸︷︷︸
V


〈nB〉 0 0 0

0 〈nA〉 0 0

0 0 〈nB〉 0

0 0 0 〈nA〉

 , (1.56)

where z gives the coordination number (i.e., the number of nearest neighboring atoms,
which is z = 3 for the honeycomb lattice). At this point we define the product of
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zW as the total nearest-neighbor interaction V and will from now on only use V as a
parameter for nearest neighbor interactions.
As for numerical reasons we need to approximate the integral over the Brillouine zone∫
BZ

by a finite sum of k- point
∑

k the total mean-field Hamiltonian states

HMFT =
1

NΛ

∑
k

Ψ†k (H ′(k) +HU +HV ) Ψk − c·, (1.57)

with the number of k-points NΛ and a constant energy shift c coming from (1.40) and
(1.42),

c = (〈nA↓〉 〈nA↑〉+ 〈nB↓〉 〈nB↑〉) + 〈nB〉 〈nA〉 . (1.58)

This energy-shift for now does not need to be considered, but will become important
for the calculation of the total energy later.

1.3.4 Self-consistency condition

The expectation values for the density 〈nA↓〉, 〈nA↑〉, 〈nB↓〉, 〈nB↑〉 determine the Hamil-
tonian of equation (1.57). On the other hand, theses expectation values are given by
the occupied eigenstates umk with the energy emk as

〈noσ〉 =
∑
k,m

Θ (µ− emk) |uomk|2 (1.59)

where o labels the different atom types A and B, and µ is the chemical potential, which
needs to be chosen such that half filling is assured. Due to the particle-hole symmetry
of the (extended) Hubbard model the chemical potential can be found a priori in the
case of half-filling.

1.3.5 Particle-hole symmetry and chemical potential at half fill-

ing

We may consider an operator which exchanges the role of creation and annihilation. A
creation operator c†iσ of a fermionic particle (obeying the anti-commutation relations of
equation (1.10)) hence can be replaced by a destruction operator diσ of a hole (obeying
the same anti-commutation relations). For a bipartite lattice like the honeycomb-lattice
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the following particle-hole transformation can be done [5]

c†iσ =

−diσ for sublatticeA

diσ for sublatticeB
(1.60)

Applying this transformation on the kinetic energy term of equation (1.20) leaves the
form unchanged

c†iσcjσ → −diσd†jσ = d†jσdiσ, (1.61)

for i and j belonging to different sublattices (which is the case for nearest-neighbor
hopping).
On the other hand, diagonal terms (density operators), as we can find them in both
other potential energy terms, will transform as

nciσ = c†iσciσ → diσd
†
iσ = 1− d†iσdiσ︸ ︷︷ ︸

=ndiσ

(1.62)

So if the filling given by nciσ equals one, the filling of ndiσ becomes zero and the other way
around. If we rewrite the on-site and the nearest-neighbor interaction in the following
form

U
∑
i

(
nci↑ −

1

2

)(
nci↓ −

1

2

)
+W

∑
〈ij〉

(nci − 1)
(
ncj − 1

)
, (1.63)

this term becomes also symmetric to the transformation of equation (1.60), just as the
kinetic energy term. Expanding equation (1.63) results in the previous form of the
interaction terms plus a trivial shift in the chemical potential and an overall constant
energy

U
∑
i

nci↑n
c
i↓ +W

∑
〈ij〉

ncin
c
j −

(
U

2
+ V

)∑
i

nci +
U

2
+ V, (1.64)

where again the above definition of zW = V was used. But as no chemical potential
was used until now this gives us the definition of the chemical potential that ensures
half-filling and particle-hole symmetry:

µ =
U

2
+ V (1.65)
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In the following sections the parameter t was set to one, and the interaction parameters
U and V as well as the energy, are given in units of t.

1.3.6 Results

For all calculations in this section the following parameters were chosen:

• At least 400 k-points in the Brillouin zone to approximate the density of states
of a infinite crystal. For higher numbers of k-points the critical transition values
do not change significantly (i.e., in the order of 10−3).

• A tolerance of εtol ≥ 10−4.

• A mixing of the particle densities between 0.9 and 0.7.

For the tight-binding Hamiltonian without interaction we find the conduction and va-
lence band intersect at the two high-symmetry K points (see figure 1.3). The linearity
of the dispersion relation around these points makes a corresponding electron behave
like a massless particle. The dispersion around K and K’ are called Dirac-cones.

Γ M K M ′ K ′ Γ

−2

0

2

E
(k

)/
t

Figure 1.3: Dispersion relation for V = U = 0

Only on-site interaction (SDW-transition)

For the quantification of the SDW-order, the anti-ferromagnetic order parameter MAF

is defined as
MAF = −〈nA↑〉+ 〈nA↓〉+ 〈nB↑〉 − 〈nB↓〉 . (1.66)
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As the sum over the densities
∑

o,σ 〈no,σ〉 must give two (due to half filling), MAF will
be in the range of [−2, 2]. But as exchanging A and B changes the sign of MAF and
still is an equivalent expression, we will just consider positive values ofMAF and refrain
from using |MAF | in figures an descriptions.
To investigate the transition to anti-ferromagnetic ordering we continuously change the
interaction U and evaluated a self-consistent solution using equation (1.59) taking a
density distribution 〈no,σ〉 corresponding to a finite value of MAF as initial parame-
ters. To guarantee fast convergence, calculations were performed starting from strong
interactions and going over to lower ones using the previous solution of MAF as a new
starting parameter.
We can gather from figure 1.4 that a gap opens up and anti-ferromagnetic ordering ap-
pears above a critical value Uc =2.23t. This value is consistent with existing literature
[6].
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Figure 1.4: SDW-transition (left) and dispersion relation for U = 2.4t, V = 0 (right)

Only nearest neighbor interaction (CDW-transition)

Similar to the above situation we can define a charge ordering parameter

∆AB = −〈nA↑〉 − 〈nA↓〉+ 〈nB↑〉+ 〈nB↓〉 , (1.67)

quantifying the CDW phase. With a similar discussion as for MAF , ∆AB is restricted
to values between [−2, 2], but it is sufficient to consider just positive values.
For the transition a critical value of Vc = 1.12t is found.
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Figure 1.5: CDW-transition (left) and dispersion relation for U = 0, V = 1.12t (right)

Comparing figure 1.4 and 1.5 we see a similar behavior of the two transition types.
This will be further discussed in a more general way also including spin-orbit coupling
in section 2.3.1.

Interplay between the different phases

To investigate the interplay between on-site and nearest-neighbor interaction, respec-
tively, SDW and CDW calculations were performed for different sets of V and U .
Hereby we find that the critical value Uc is independent of V , whereas U seems to
reduce the effective nearest-neighbor interaction:

Veff = V − U

2
(1.68)

Between CDW and SDW we find a first order transition at U = V . (this can also be
shown analytically and will be further discussed together with spin-orbit coupling)
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Figure 1.6: Phase diagram using MFT, M . . . metallic phase (unordered), SDW . . .
spin density wave, CDW . . . charge density wave

Apart from the three phases already known from the general extreme cases considered
for an atomic chain (see table 1.1) no other phases are found. Independently from the
initial parameters 〈no,σ〉 always one of these phases is found self-consistently. There are
no ferromagnetic solutions, i.e.

〈nA↑〉+ 〈nB↑〉 = 〈nA↓〉+ 〈nB↓〉 (1.69)

is always valid. Besides we can find no stable mixed solution of CDW and SDW, so
either ∆AB or MAF is always zero, whenever the other order parameter is finite.
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1.4 Dynamical Mean Field Theory

The following pages follow mainly [7]. The dynamical mean-field theory (DMFT) is the
quantum generalization of mean-field theory. This means that for the (Weiss) effective
field of the model also local quantum fluctuations are considered. Moreover the local
problem is treated as an exact manybody interaction problem. The crucial idea of
DMFT is to replace a lattice model by a single site coupled to a self-consistent bath
(see figure 1.7), where the bath has the role of an effective field. The central quantity
used in DMFT calculations is the local (lattice) Green’s function

BATH

Figure 1.7: Idea of Mean-filed theory: replace a lattice problem by an impurity problem

Gσloc (τ − τ ′) ≡ −
〈
Tciσ(τ)c†iσ(τ ′)

〉
(1.70)

We take again the simple Hubbard model with single-orbital atoms (1.18) as example
for our lattice model. Additionally we now need to introduce an impurity model which
describes a single atom coupled to an effective bath. In case of the Hubbard model this
would be the Anderson impurity model (AIM [8])

HAIM = Hatom +Hcoupling +Hbath (1.71)

here the site index for the impurity orbital c†σ is dropped for simplicity reasons with:

Hatom = Unci↑n
c
i↓ + (ε0 − µ)

(
nci↑ + nci↓

)
Hcoupling =

∑
k,σ

Vk

(
a†kσcσ + c†σakσ

)
Hbath =

∑
k,σ

ε̃ka
†
kσakσ
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where the first term describes the on-site interaction of the electron, with U being the
interaction of two electrons within an orbital. The second term gives the coupling (or
hybridization) with the bath, where the a†kσ’s are the non-interacting fermions of the
effective bath and the Vk’s are the hopping amplitudes of electrons hopping from the
bath to the impurity site and back. The bath Hamiltonian consists just of the effective
non-interacting electron energies ε̃k, which should not be confused with the electron
energies of the lattice model εk.
The impurity Green’s function Gimp can now be written in the form of a Feynman path
integral

Gimp(τ − τ ′) =
1

Z

∫
D[ĉ†σ, ĉσ]ĉ†σ(τ ′)ĉσ(τ)eSeff , (1.72)

depending on an effective action

Seff = −
∑
σ

∫ β

0

dτ

∫ β

0

dτ ′ĉ†σ(τ)
(
G0
imp(τ − τ ′)

)−1
ĉσ(τ ′) + U

∫ β

0

dτn̂c↑(τ)n̂c↓(τ) (1.73)

for the impurity orbital, which represents the effective dynamics of the local site. Hereby
G0
imp(τ − τ ′) describes the bare propagation of an electron created at imaginary time τ

on the lattice site (coming from the bath) and destroyed at a later imaginary time τ ′

(going back to the bath).
This effective non-interacting Green’s function is also referred to as dynamic Weiss-field,
as it is the quantum generalization of the mean-field effective field and can directly be
obtained by solving the (Fourier transformed) time-dependent Schrödinger equation

(iωn − T ) G 0
imp(iωn) = 1 (1.74)

in which T is equal to the HAIM without the U -term and G 0
imp(iωn) gives the full free

Green’s function of the AIM including the bath degrees of freedom.
Due to the periodicity of G0

imp(τ − τ ′), this so called Matsubara Green’s function is
defined for discrete (but infinitely many) Matsubara frequencies

ωn =
(2n+ 1)

β
(1.75)

depending on the inverse temperature β and an integer n. By integrating out the
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non-interacting bath degrees of freedom one can derive the following expression

(
G 0
imp(iωn)

)
00

:= G0
imp(iωn) =

1

iωn + µ− ε0 −∆(iωn)
(1.76)

∆(ωn) =
∑
k

|Vk|2
iωn − ε̃k

.

As one can see the Vk’s and ε̃k’s are now only entering through the so called hybridiza-
tion function ∆(iω).
The equation of motion for a general interacting Hamiltonian can effectively be written
in form of a Dyson equation

G(k, iωn) ≡
((
G0(k, iωn)

)−1 − Σ(k, iωn)
)−1

(1.77)

where G(k, iω) gives the full interacting Green’s function and Σ(k, iω) the so called
self-energy which represents the interaction.
This lets us write the lattice Green’s function in the following form:

G(k, iωn) =
1

iωn + µ− ε0 − εk − Σ(k, iωn)
(1.78)

in which εk is the Fourier transform of the hopping integral tij.
Now, DMFT approximation comes into the play,

Σ (k, iωn) ≈ Σ (iωn)

Σ (iωn) ≈ Σimp (iωn) ,
(1.79)

which means we neglect all non-local terms of the lattice self-energy and approximate
the local terms by the impurity self-energy Σimp (iωn)

Replacing Σ (k, iωn) by Σimp (iωn) in eq. (1.78) and rewriting the impurity self-energy
according to the Dyson equation (1.77) gives the lattice Green’s function in terms of
the impurity Green’s function. By subsequently summing over k one obtains the local
lattice Green’s function,

Gloc(iωn) =
∑
k

1

∆(iωn) + Gimp(iωn)−1 − εk
, (1.80)
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which by construction must coincide with the impurity Green’s function

Gloc(iωn)
!

= Gimp(iωn). (1.81)

Equation (1.80) and (1.81) define the self-consistency condition of DMFT. The correct
choice of the Vk’s and the ε̃k’s will be reached when the two local Green’s functions of
both models coincide. The only thing left from the original model here are the hopping
amplitudes εk. To get a computational more practical term one can now replace the εk
by a continues variable εk and multiply by the density of states

D(ε) ≡
∑
k

δ (ε− εk) , (1.82)

which leads to
Gloc(iωn) =

∫
dε

1

∆(iωn) + Gimp(iωn)−1 − ε (1.83)

1.4.1 The self-consistency loop

The only two necessary input parameters for DMFT are

• the density of states D(ε) of the non-interacting lattice model

• the on-site interaction parameter U

Given that, the self-consistency loop in its simplest form is performed as shown in figure
1.8 by

1. making an initial guess for the self-energy. This will usually be zero (unless
we know better).

2. plugging the result into the modified ’Dyson equation’ (G0
imp)−1 = (Gloc)−1 + Σ

to obtain a non-interacting impurity Green’s function. This will become
a real Dyson equation in the end when Gimp = Gloc is fulfilled.

3. calculating the impurity Green’s function by using an appropriate impurity
solver Γ(G0

imp, U) to estimate the Feynman path integral of equation (1.72).

4. comparing Gimp and Gloc.
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5. if Gimp and Gloc differ less than a chosen tolerance εtol DMFT is converged.
Otherwise we go back to 2.

add 5. : In practice one should also check if the self-energy remains unchanged from
one iteration to the following!

initial guess for
self-energy
usually:

Σ = 0

Gloc =

∫
dε

D(ε)

iωn + µ− εk − Σ

(G0
imp)−1 = (Gloc)−1 + Σ

Gimp = Γ(G0
imp , U)

Σimp = (G0
imp)−1 − (Gimp)−1

|Gimp − Gloc| < εtol?

NO

Σ ≈ Σimp

YES
converged X

Figure 1.8: self consistency loop of DMFT. All Green’s functions and self-energies are
given in Matsubara frequencies

1.4.2 The self-consistency loop for two impurities

Due to the bipartite form of the honeycomb lattice we need to consider two impurities,
one at atom A and another at atom B, as soon as the lattice sites become different due
to ordering. This leads to a slightly altered situation as shown in figure 1.9, where two
loops, similar to the one of figure 1.8, are implemented to calculate the self-energies for
the different Atoms separately and are brought together for the evaluation of Gloc.
Gloc is then given by a block-diagonal Green’s function, containing one block for each
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impurity. Equivalent to the above situation, convergence is reached when both

(Gloc)A
!

= (Gimp)A
(Gloc)B

!
= (Gimp)B .

(1.84)

Gloc =

∫
dε

D(ε)

iωn + µ− εk − Σ

Impurity Solver
for Atom A

Impurity Solver
for Atom B

;

ΣA = ΣB = 0new ΣA new ΣB

Figure 1.9: self consistency loop of DMFT considering 2 impurities, all Green’s functions
and self-energies in Matsubara frequencies

1.4.3 Calculation of the filling within DMFT

As we are interested in the determination of ordered phases a way to calculate particle
densities from Green’s functions is needed.
Therefore, we take equation (1.70) and replace τ ′ with zero and τ with an infinitesimally
small -δ (δ > 0)

Gσloc (−δ) = −
〈
Tci,σ (−δ) c†i,σ(0)

〉
=
〈
c†i,σ(0)ci,σ (−δ)

〉
(1.85)

Taking the limit δ → 0 thus gives

lim
δ→0+

Gσloc (−δ) = lim
δ→0+

〈
c†i,σ(0)ci,σ (−δ)

〉
= 〈niσ〉 (1.86)
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But Gσloc (τ) is the Fourier transformed of Gσloc (iωn),

〈niσ〉loc = lim
δ→0+

1

β

∑
ωn

eiωnδGσloc (iωn) . (1.87)

This means that there is a direct connection between the Matsubara Green’s function
for a given sublattice o and the average particle density on this sublattice. But this must
be true for both the impurity and the local Green’s function. Hence the convergence
criterion for our purpose implies that∣∣∣〈noσ〉loc − 〈noσ〉imp∣∣∣ < εtol∣∣∣∣(〈noσ〉imp)

i
−
(
〈noσ〉imp

)
i+1

∣∣∣∣ < εtol∣∣(〈noσ〉loc)i − (〈noσ〉loc)i+1

∣∣ < εtol

(1.88)

must be fulfilled for the individual spin classes ↑ and ↓ of both sublattices A and B

separately.

1.4.4 Exact limits

There are three limits in which the DMFT approximation becomes exact:

1. In the non-interacting limit, i.e., U = 0. Taking the interaction strength
to zero makes Σ = 0 and hence G equal to G0. The local Green’s function is
therefore reduced to the free on-site Green’s function. As the self-energy is not
just k-independent but even zero, the approximation becomes exact.

2. In the atomic limit. When the hopping amplitude tij vanishes (isolated Atoms)
also εk must vanish. Equation (1.80) implies then that ∆ (iωn) = 0, i.e. the bath
is completely decoupled and Σ can only have on-site components.

3. In the limit of infinite coordination, similar to MFT. As shown by Metzner
and Vollhardt [9] the self-energy becomes a local quantity in the limit of infinite
dimensions.
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1.4.5 Solving the AIM - (CT-QMC)

To solve the Anderson impurity model a variety of methods, such as iterative pertur-
bation theory (ITP), numerical renormalization group (NRG), exact diagonalisation
(ED), quantum Monte-Carlo (QMC, CT-QMC) and equation of motion based methods
(EO) exist. As the method used here is based on quantum-Monte-Carlo we will limit
the discussion on this.
Simulations based on the Hirsch-Fye algorithm [10] have been for almost 20 years the
method of choice. However, Hirsch-Fye QMC requires an equally spaced discretisation
of imaginary time, which turns out to be a huge drawback in case of low temperatures
and/or strong interactions. Therefore continous-time approaches (CT-QMC), which do
not require time discretisation, have become increasingly important.
The principle of CT-QMC algorithms is a diagrammatic expansion of the partition
function. Hereby the Hamiltonian (1.71) is split into two parts

H = Ha +Hb (1.89)

which gives a partition function with respect to Ha expanded in powers of Hb, which
does not need to be discretised in the termodynamical time interval 0 ≤ τ ≤ β,

Z =Tr

[
Te−βHa exp

[
−
∫ β

0

dτHb(τ)

]]
=
∑
k

(−1)k
1

k!

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτkTr
[
Te−βHaHb(τk)Hb(τk−1) · · ·Hb(τ1)

] (1.90)

The trace can now be represented by Monte-Carlo methods, sampling stochastically
over all τ...τk and all orders of pertubation k.
As the method does not require a separation into an ’interacting’ and a ’non-interacting’
term multiple kinds of expansions are possible. The most common ones are the strong-
coupling expansion in terms of Hcoupling and the weak-coupling expansion in powers of
the interaction-term Hatom. In this work the strong-coupling approach [11] was used.
For a more detailed overview on the different CT-QMC Methods the reader is referred
to [12].
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1.4.6 Results

For all calculations in this section the following parameters where chosen:

• 400 k-points in the Brillouin zone (just like in MFT).

• An inverse temperature of βt = 40.

• A tolerance of εtol ≥ 10−2.

• A mixing of Σ between 1.0 and 0.8.

In order to perform DMFT calculations the TRIQS library was used [13].

Only on-site interaction (SDW-transition)

As we already expect SDW ordering for strong on-site interactions (see MFT-results
and the considerations for a linear atomic string), we may just implement one of the
two self-consistency loops (e.g. for sublattice A) drawn in figure 1.9 and use for the
quantities of the second (e.g. sublattice B) the according anti-symmetric solutions

ΣB↑ = ΣA↓ GB↑imp = GA↓imp

ΣB↓ = ΣA↑ GB↓imp = GA↑imp .
(1.91)

Similar to the splitting in the particle densities within MFT, in DMFT we use a finite
splitting in the initialization of the self-energy to obtain ordered phases, i.e.,

ΣA,↑ = c

ΣA,↓ = −c
(1.92)

with c being a constant (we used values between 0.5 and 1.8).
Due to the effect of fluctuations DMFT should run into a magnetic solution (for high
enough U) also without this approach, but taking an adequate splitting leads to a faster
convergence.
As an example, impurity and lattice Green’s functions in Matsubara frequency space
calculated with on-site interaction of U = 4t are plotted in figure 1.10. We can clearly
see that they are coinciding, and the DMFT SC condition is fulfilled.
To illustrate the convergence of the filling of the different orbitals, the evolution of the
densities throughout the iterations is plotted in figure 1.11 (this is similar to MFT).



1.4. Dynamical Mean Field Theory 33

0 2 4 6 8

−0.2

0

0.2

ωn

G(
iω

n
)

Re Gloc ↑
Re Gloc ↓
Re Gimp ↑
Re Gimp ↓

0 2 4 6 8

−0.2

0

0.2

ωn

G(
iω

n
)

Im Gloc ↑
Im Gloc ↓
Im Gimp ↑
Im Gimp ↓

Figure 1.10: Convergence criteria for DMFT: comparison of Gimp (iωn) and Gloc (iωn)
for the last iteration using U = 4t.
left: real part, right: imaginary part. All quantities are given for one sublattice
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Figure 1.11: Evolution of the densities calculated from Gloc and Gimp over the iterations,
U = 4t.

We performed calculations for several values of U and found a transition around Uc ≈
3.5t, which is a bit smaller than the similar dynamical cluster approximation result
Uc / 3.6t in [14].
The reason why MFT gives a much smaller result (Uc = 2.23t) is that fluctuations
destroys ordering, i.e., in DMFT a stronger interaction is needed to observe a transition.
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The SDW-transition for DMFT using purely on-site interaction is found in figure 1.12.
To get a comparison, the MFT-result was plotted in the same figure.
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Figure 1.12: Phase transition using DMFT for V = 0

Only nearest-neighbor interaction (CDW-transition)

To get a CDW solution we no longer can symmetrize the impurity solutions like in
equation (1.91), but need two independent impurity solvers for atom A and atom B.
But as it is only possible in DMFT to include on-site interactions exactly, the nearest-
neighbor interaction terms must again be approximated in a mean-field way. As U = 0

this gives
HA = V nA 〈nB〉 HB = V nB 〈nA〉 , (1.93)

where 〈nB〉 and 〈nA〉 need to be updated every iteration, starting with a inital splitting
of 〈nB〉 = 1− c and 〈nB〉 = 1 + c with c ∈ [0, 1].
This, however, results in an effective non-interacting problem, and we should obtain
the same result as for MFT. Nevertheless, since we use the strong coupling expansion
CTQMC algorithm, this is a non-trivial test for the method.
Our (confirming) result is given in figure 1.13.
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Figure 1.13: Phase transition using DMFT for U = 0

Interplay between the different phases

By including both local and nearest-neighbor interactions the phase diagram plotted in
figure 1.14 was obtained. Solid lines represent the separation of the according phases
within DMFT, whereas dotted lines give a comparison to MFT.
Just as in MFT, the critical U for the transition between the metallic and the SDW-
phase has no dependence on V. Moreover, the separating line between metallic (M) and
CDW-phase is an extension of the corresponding one obtained by mean-field calcula-
tions. Both of these results seem quite intuitive as the nearest-neighbor contribution
remains in a mean-field approximation.
For the transition line between SDW and CDW we should stress the fact that the as-
sociated phase transition is of first order, and an calculation of the energy would be
required to precisely determine the transition point. However, this is quite complicated
within DMFT and was not performed -in. Instead, a large splitting in both the charge-
ordering as well as the spin-ordering was chosen to initialize the calculations, arguing
that DMFT runs into the solution associated with a steeper gradient. No solution with
both SDW and CDW was found.
We find this line to differ from the mean-field solution, giving V = U . Aichhorn et al.
[15] showed using variational cluster pertubation theory on a two dimensional square
lattice, i.e., coordination number of z = 4) that SDW and CDW are seperated by the
line of U = V , confirming also earlier quantum monte-carlo studies. Apart from the
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fact that the position of the transition in our case is not unquestionable, we think that
the deviation from V = U might happen as a result of the different treatments of on-site
and nearest neighbor interactions.
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Figure 1.14: Phase diagram comparing MFT and DMFT. All points refer to self-
consistent solutions received by DMFT-calculations. Black points signify that no finite
order parameter was found (metallic-phase), green points denote a finite ∆AB (CDW-
phase) and blue points denote a finite MAF (SDW-phase). Solid lines mark the tran-
sitions between the phases for DMFT. Dotted lines give the corresponding transitions
obtained in MFT (figure 1.6).



Chapter 2

Relativistic treatment

2.1 Topological non-trivial phases

In this section the background of topological insulators will be shortly explained.
This introduction is loosely based on [16].

2.1.1 From the Hall effect to the quantum spin Hall effect

If an electric field is applied to a metallic sample in longitudinal direction, and a mag-
netic field perpendicular to it, one can observe the so called Hall effect. The accel-
erated charges will get deflected (perpendicular to the plane spanned by magnetic and
electric field) and separated by the resulting Lorentz force. The following accumulation
at the boundaries gives a potential difference VH and one can define the hall resistance as

RH =
VH
I

B

qρe
, (2.1)

with the current in the direction of the magnetic field I, the charge of the particles q and
the density of the charge carriers ρe. The anomalous Hall effect, a similar effect, can
be observed in ferromagnetic metals, even without an external magnetic field, leading
to the empirical relation

RH = R0B +RAM, (2.2)

where we find not just a proportionality to B, but also a contribution from the mag-
netization M. As the second part of the resistance RA can not be explained simply by
Lorentz force, it took almost 100 years to understand its physical origin.

37
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Now we can link the AHE to the relativistic effect of spin-orbit coupling. Spin-orbit
coupling can be understood as a momentum-dependent magnetic field coupling to the
spin of the electron. Therefore in the presence of strong spin-orbit coupling, charged
particles propagating in the same direction get separated according to their spin. As
in ferromagnets the ratio between spin-up electrons and spin-down electrons is imbal-
anced, this results in an effective charge separation and therefore in the anomalous Hall
effect.
But even without magnetic field or magnetization, the spin-dependent deflections can
lead to an observable effect [17], the so called spin Hall effect. It consists of spin
accumulation on the lateral surfaces of a current-carrying sample, the signs of the spin
orientations being opposite on two opposite boundaries. Reversing the current direction
leads to a reversion of the spin orientations.

Quantum Hall effect

In 1980 it was observed that in two-dimensional electron gases at semiconductor hetero-
junctions high magnetic fields in combination with sufficiently low temperatures lead
to a quantized Hall conductance

σxy = ν
e2

h
, (2.3)

with h being Planck’s constant, the electron charge e and an integer ν. Additionally,
the longitudinal resistance drops to zero repeatedly while increasing the magnetic field.
This is explained by the Landau quantization of motion perpendicular to the magnetic
field. The movement of a charged particle in a uniform magnetic field is given by a
harmonic oscillator with the well known energy quantization

En = ~ωc
(
n+

1

2

)
(2.4)

and the cyclotron frequency ωc = eB
m
.

The density of states is given by broadened delta-functions, where the spacing between
the levels is proportional to B, while the broadening of the delta-functions depends on
the temperature. This explain why the effect is only observed for low temperatures and
strong magnetic fields. The Landau levels for a specific magnetic field and the behavior
of the longitudinal as well as the Hall resistance ρxy = 1/σxy with respect to magnetic
field is shown in figure 2.1. Increasing the magnetic field continually lets Landau levels
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Figure 2.1: Hall resistance ρxy and longitudinal resistance ρxx with respect to the applied
magnetic field are shown in the right figure. The corresponding Landau quantization for
the magnetic field, indicated by the red point, is shown in the left figure. The position
of the Fermi energy EF shows that the bulk is insulating, but the vanishing resistance
ρxx indicates conducting edge states. (adopted from [19])

pass through the Fermi energy.
Usually an insulator is defined as a material with a large band gap, i.e., there are no
possible states close to the Fermi energy, whereas in a metal there are. In the case of
the QHE, the longitudinal resistance however drops, exactly when the Fermi energy is
between two Landau leves. In a semiclassic explanation, one can now find the charged
particles in the bulk cycle around the magnetic flux (insulating), but in contrast, the
particles on the boundary are not able to form a whole orbit, as they are confined by
the edge. Therefore they start bouncing back and skip forward along the boundary
forming a conduction channel. As the energy of the particles in the bulk is much lower
than the energy of the electrons on the edge, there are no allowed states to scatter
into other then the conduction channel itself. These so-called edge states are therefore
insensitive to impuritiy scattering. The integer1 ν in (2.3) is known as the filling factor
giving the number of filled Landau levels and further also the number of edge states. It
is now also realized that ν is a topological invariant (Chern-number).

1For completeness we should stress the fact, that this is just true for the integer quantum Hall effect,
but that there is also something like the fractional quantum Hall effect where ν becomes a rational
fraction (first observed in 1982 [18])
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Quantum Spin Hall Effect

In 1987 Haldane [20] showed (for a honeycomb-lattice model) that breaking time-
reversal symmetry can lead to a quantum Hall effect even in the absence of magnetic
field or Landau levels. This quantum generalization of the anomalous Hall effect QAHE
has been experimentally shown in 2013 [21].
Following Haldane, Kane and Mele created a model for a quantum generalization of the
spin Hall effect by combining two quantum anomalous Hall effects of spin-up and spin-
down electrons. The opposite chirality of spin-up and spin-down electrons results in
two edge states traveling in opposite directions, which gives a vanishing charge current,
but a non-zero spin current

~
2e

(
σ↑xy − σ↓xy

)
=

2

4π
. (2.5)

The generalization of this quantum spin Hall effect to other dimensions is called topo-
logical insulator. A topological insulator behaves like an insulator in the balk while as
a metal on the boundary. However in this thesis we concentrate on the two dimensional
honeycomb lattice, therefore in the following sections topological phase and quantum
spin Hall phase will be used as synonyms. In figure 2.2 an overview of the different
kinds of Hall effects is shown.

(a) Hall effect
(b) Anomalous 

Hall effect
(c) Spin Hall 

effect

(d) Quantum 

Hall effect

(e) Quantum 

anomalous Hall effect

(f) Quantum 

spin Hall effect

B M

B M

SOC

SOC

Figure 2.2: Overview on the different types of (quantum) Hall effects, B: magnetic field,
M: magnetization, SOC: spin-orbit coupling (adopted from [22])
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2.1.2 Berry phase and topological invariants

The choice of a Bloch state |unk〉 (see Appendix A) is always defined just up to a phase.
The transition

|unk〉 → eif(k) |unk〉 (2.6)

has no observable effect.
When we consider a system Hamiltonian H(R) adiabatically evolving in time through
a parameter R→ R(t) on a closed path, the time evolved state |φn(t)〉 is related to its
instantaneous eigenfunction |un(R(t))〉 in the following way

|φn(t)〉 = eiγn(t)e−
i
~
∫ 0
t dt

′εn(R(t′)) |un(R(t))〉 , (2.7)

with a dynamical phase (second exponential) and a global phase γn which depends just
on the path and cannot simply be transformed away by a gauge transformation.
For a closed path γn is given by

γn = i

∮
C

dR 〈un(R) |∇R|un(R)〉 (2.8)

and is known as the Berry phase, which can, due to the single-valued condition of the
wave function, just take values of 2πn (n being an integer).
This Berry-phase is connected to the Chern topological invariant in a two dimensional
topological insulators

C =
∑
n

∮
∂Bz

dk

2π
· i 〈un(k) |∇k|un(k)〉 , (2.9)

which is a uniquely defined integer as long as the gap between valance and conduction
band remains finite. It is equal to ν of the (integer) quantum hall effect (equation (2.3).
For the spin Hall effect C will vanish (as time-reversal symmetry is preserved), however
as long as spin is conserved, a spin chern number may be defined by calculating the
individual Cσ for each spin separately

Cs =
∑
σ

σCσ =

(
C↑ − C↓

)
2

. (2.10)
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The topological invariant classifying the quantum spin Hall effect is a so called Z2

invariant
ν = Cs mod 2, (2.11)

taking two possible values, 0 for topologically trivial and 1 for non-trivial phases.
Even though in the absence of Sz-conservation the quantization of spin Hall conduc-
tance breaks down, the Z2 invariant can still be defined differently ([4]) and may lead
to a nonzero result as long as time-reversal symmetry remains valid.

Protected topology

The spin Chern number Cs is protected by spin conservation, whereas the Z2 topological
invariant is protected by time reversal symmetry. This means that as long as one of
these conditions are present, the gap needs to close to change topology.
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2.2 Spin-orbit coupling in Graphene

This term used here was derived by Kane and Mele [3, 4] following the work of Haldane
[20]. Hereby σz gives the Pauli matrix in z-direction and νij specifies whether the
electron makes a right turn (= +1) or a left turn (= −1). An illustration of the νij can
be found in figure 2.3. The Hamiltonian can be written as

HSO = iλSO
∑
〈〈ij〉〉

νijc
†
iσσ

zciσ. (2.12)

νij=-1 νij=+1

Figure 2.3: Illustration of the sign νij for the honeycomb lattice. Every right turn gives
νij the value +1 and every left turn the value −1.

It has been shown by Zheng et al. [5] that this term also conserves particle hole sym-
metry. Hence, adding it to the extended Hubbard model leaves the chemical potential
at µ = U

2
+ V .

Including spin-orbit coupling to the extended Hubbard model finally leads to the com-
plete model Hamiltonian this thesis is concentrated on:

H = −t
∑
〈ij〉,σ

c†iσciσ + U
∑
i

nci↑n
c
i↓ +W

∑
〈ij〉

ncin
c
j + iλSO

∑
〈〈ij〉〉

νijc
†
iσσ

zciσ (2.13)

The k-dependent Hamiltonian H ′(k) of equation (1.53) thus modifies as follows
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H ′(k) =


γk −gk 0 0

−gk∗ −γk 0 0

0 0 −γk −gk
0 0 −gk∗ γk

 (2.14)

with

γk = 2λSO

[
2 sin

(a
2
kx

)
cos
(a

2

√
3ky

)
− sin (akx)

]
. (2.15)

As spin-orbit coupling breaks the degeneracy of spin-up and spin-down and couples
the spin to the orbital moment, one loses SU(2) symmetry in the spin sector. This
means that in-plane (xy) magnetization will generally be energetically different from
out-of plane (z) magnetization. In MFT spin-directions are decoupled, therefore we
will always run into the local minimum of the considered orientation, but also within
DMFT we know from experience that we cannot flip the magnetic orientation within a
regular DMFT-loop. Therefore in the following both directions are discussed.
Even though it is already known that the minimum in energy will be found for an
purely in-plane magnetic order [23, 24], for completeness we will first concentrate on
the solution for a magnetic order in z-direction.
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2.3 Out-of plane direction

2.3.1 Results in MFT

In this case the total Hamiltonian (eq. (1.48)), becomes block-diagonal with two 2× 2

spin-blocks, it can be diagonalized analytically and gives the following energy-bands:

E↑± =
U 〈n↓〉+ V 〈n〉

2
±
√
|gk|2 + [γk − 0.5 · (U(〈nB↓〉 − 〈nA↓〉)− V∆AB)]2

E↓± =
U 〈n↑〉+ V 〈n〉

2
±
√
|gk|2 + [γk + 0.5 · (U(〈nB↑〉 − 〈nA↑〉)− V∆AB)]2

(2.16)

We assume that no anti-ferromagnetic moment is present (which turns out to be gen-
erally true, if all parameters 〈niσ〉 are chosen arbitrarily and plugged into the self-
consistent equation (1.59)) and first terms to be equal to the chemical potential (1.65)

E↑± = µ±
√
|gk|2 + [γk − 0.5 · (U(〈nB↓〉 − 〈nA↓〉) + V∆AB)]2

E↓± = µ±
√
|gk|2 + [γk + 0.5 · (U(〈nB↑〉 − 〈nA↑〉) + V∆AB)]2.

(2.17)

Effect of spin-orbit coupling on the band-structure (V = U = 0)

Setting the spin-orbit coupling λSO to a finite value results in an opening of the gap,
see figure 2.4. This is similar to the situation of a transition to an ordered state.
However, unlike the gap-opening associated with an order parameter where the bands
are continuously dragged apart when one increases U (or V , resp.), for a SO-coupling
induced gap opening the energy at the symmetry points M and M ′ remains unaffected
and hence above a critical value of λSO the gap remains constant.
Plugging K/K ′ and M/M ′ into equation (2.17) (U = V = 0) gives

∆K = ∆K′ = 6
√

3λSO

∆M = ∆M′ = 2t.
(2.18)

The gap is hence for λSO < 1/(3
√

3)t determined by ∆K and for λSO > 1/(3
√

3)t by
∆M.
More importantly, the gap induced by SO-coupling implies a topologically non trivial
phase. Using the python package Z2Pack [25, 26] to calculate ν this was confirmed.
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Figure 2.4: Dispersion relation for λSO = 0.1 (left) and λSO = 0.3, for U = V = 0

Spin-orbit coupling together with SDW (V = 0)

A finite λSO together with a non-vanishing SDW-order parameter MAF destroys the
degeneracy at the time reversal invariant K - points (figure 2.5 (right)), i.e., time
reversal symmetry is broken. But as long as Sz is conserved we can use the definition
of equation (2.11) to calculate ν.
The transition from semi metallic to SDW for λSO = 0.3 can be taken from figure 2.5
(left). As a gap closing may indicate, and is a necessary condition for, a topological
phase transition, the gap is also plotted in the same figure. After checking ν before and
after the gap closing we can distinguish three different phases

• quantum spin Hall state (QSH)

• quantum spin Hall state together with spin-ordering (SDW-QSH)

• topologically trivial SDW-phase (SDW)

separated by U c
s (SDW-transition) and U c

g (gap closing).
The according transitions for different values of λSO are plotted in figure 2.6.
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Figure 2.5: SDW-transition (left) and dispersion relation for U = 5t, V = 0 (right),
λSO = 0.3
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Figure 2.6: Critical values for the on-site interaction U for different λSO and V = 0

Spin-orbit coupling together with CDW (U = 0)

In the presence of SO-coupling and charge ordering the degeneracy of the spin sectors is
broken. This is illustrated in figure 2.7 (right), where we can find two non-overlapping
(except forM ,M ′ and Γ) energy-bands below the chemical potential. This is caused by
the broken inversion symmetry accompanying an energy difference between the sublat-
tices. However, time-reversal symmetry is preserved as the dispersion at the respective
points is the same.
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Similarly to above, for the transition from QHS to CDW, a CDW-QSH phase in be-
tween the two critical values V c

c and V c
g can be found. For different values of λSO we

observe a very similar situation as above (figure 2.8).
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Figure 2.7: CDW-transition (left) and dispersion relation for U = 0t, V = 2.5t (right),
λSO = 0.3
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Figure 2.8: Critical values for the nearest-neighbor interaction V for different λSO and
U = 0

What is noticeable in figure 2.8 is, that for a given λSO the critical value for the phase-
transition to the SDW-phase is always double the critical value of the phase transition
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to the CDW-phase, i.e.,

V c
c (λSO, U = 0) =

U c
s (λSO, V = 0)

2
. (2.19)

This also holds for the critical value of the gap closing.

Interplay between the different phases

Investigating the rest of the phase-diagram by implementing a self-consistent loop and
taking into account the 3 parameters λSO, U and V , we notice three more interesting
things, when setting the spin-orbit coupling to an arbitrary value:

• We always, independently of the starting-parameters, obtain either a pure CDW,
SDW or unordered (all niσ ≡ 0.5) solution, i.e., there are no stable mixed solutions
of CDW and SDW.

• The critical interaction value U s
c between the semi-metallic and the SDW phases

does not depend on V.

U s
c (λSO, V ) ≡ U s

c (λSO) (2.20)

Whereas V c
c starts at U s

c /2 and increases with U/2

V c
c (λSO, U) =

U s
c (λSO) + U

2
(2.21)

• in a certain region around U ≈ V for U > U g
c (λSO) and V > V g

c (λSO, U
g
c ) one

ends up with different solutions for different initial parameters, i.e., if we start
with a CDW(SDW)-like distribution of the density the self-consistent loop will
give a CDW(SDW) solution. This is linked to a first order transition.

To clarify the last two points we will take a closer look at the total energy of the system.
Therefore we first rewrite the particle densities using the definition of MAF and ∆AB

(see equation (1.66) and (1.67)).
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〈nA↑〉 =
1

2
− MAF + ∆AB

4
〈nB↑〉 =

1

2
+
MAF + ∆AB

4

〈nA↓〉 =
1

2
+
MAF −∆AB

4
〈nB↓〉 =

1

2
− MAF −∆AB

4

(2.22)

The total energy (1.57) thus is given by:

Etot =− 1

NΛ

∑
k

√|gk|2 +

[
γk + 0.5 ·

(
U

2
(MAF −∆AB) + V∆AB

)]2

+

√
|gk|2 +

[
γk + 0.5 ·

(
U

2
(MAF + ∆AB)− V∆AB

)]2


+ U

(
M2

AF

8
− ∆2

AB

8

)
+ V

∆2
AB

4
+ c(U, V )

(2.23)

As we already know that in every self-consistent solution either MAF or ∆AB (or both)
must be zero, we are interested in these cases.
Let us first just focus on the two different cases V = 0 and U = 0:

• V = 0 means that ∆AB = 0, too, which gives (see also [27])

Etot =− 2

NΛ

∑
k

√
|gk|2 +

[
γk +

U

4
MAF

]2

+ U
M2

AF

8
(2.24)

• on the other hand U = 0 means MAF = 0 and thus leads to

Etot =− 1

NΛ

∑
k

√|gk|2 +

[
γk +

V

2
∆AB

]2

+

√
|gk|2 +

[
γk −

V

2
∆AB

]2


+ V
∆2
AB

4
(2.25)

Equation (2.24) and (2.25) have a very similar form, and if we choose V = U/2 and
MAF = ∆AB they become almost equal, except that in equation (2.25) the two terms
differ in there sign between γk and V

2
∆AB and in (2.24) they don’t. This corresponds to

the degeneracy and non-degeneracy of the respective dispersion relationships in figure
2.7 and 2.5. However, if we take into account that |gk|2 ≡ |g−k|2 and γk ≡ −γ−k and
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∑
k goes over the whole brillouin zone the result for total energy will be the same.

This explains why we are observing the exact same form of transition for V and U in
respect to their ordering parameters they are associated with.
Lets further focus on the case where neither V nor U are zero. As either MAF or ∆AB

must be zero to minimize the energy, we find in case of a SDW-solution for equation
(2.23) no difference to the expression (2.24), which is consistent with the observation
that the transition from SM to SDW is independent of V . On the other hand, in case
of a CDW-solution (MAF = 0), we can find that the total energy is given by

Etot =− 1

NΛ

∑
k

√|gk|2 +

[
γk +

1

2

(
V − U

2

)
∆AB

]2

+

√
|gk|2 +

[
γk −

1

2

(
V − U

2

)
∆AB

]2
+

(
V − U

2

)
∆2
AB

4
.

(2.26)

Comparing (2.26) with (2.24), an effective Veff in the form of

Veff = V − U

2
(2.27)

is found.
This explains the U -dependence of V c. On the other hand this means that for V = U

we have Veff = U/2, which will give the same energy for the anti-ferromagnetic state
and the charge-ordered-state for an equal value of the order-parameter. Therefore in
the region where CDW and SDW are stationary solutions, V = U gives the transition
between those two phases.
The fact that in the direct neighborhood of V = U always two stable solutions can be
found indicates a phase-transition of first order.
To illustrate the two stationary solutions and to show that no other mixed solution
(CDW+SDW) is possible, the total energy as a function of the order-parameters (2.23)
is plotted in figure 2.9 for the two parameter sets (U = 4, V = 4, λSO = 0.0) and
(U = 4.3, V = 4, λSO = 0.0) . The plot shows only values for MAF + ∆AB ≤ 2, as other
combinations would require negative density values.
We can also find a saddle point between the two stationary CDW and SDW solutions.
In the case of U = V this point can be found on the line where ∆AB = MAF . Using
equation (2.22) this gives a random distribution over the two atoms for one spin-class
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and an unequal distribution for the other spin-class. Initializing the self-consistency
loop for U = V = 5 with that condition led to a metastable band structure shown in
figure 2.10.
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Figure 2.9: Total energy for λSO = 0.0 and V = 4,
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Figure 2.10: Band structure for U = 5t, V = 5t, λSO = 0.3t
(metastable solution: MAF = ∆AB)

To conclude, our phase diagram for the extended Hubbard model for two values of λSO
(0.5t and 0.9t) is shown in figure 2.11. For finite spin-orbit coupling the unordered
phase becomes topologically non-trivial, and the in-between phase (CDW-QSH and
SDW-QSH) appears which increases with increasing λSO. The phase diagrams can be
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generated simply by the results shown in figure 2.6 and 2.8.
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2.3.2 Results in DMFT

To recover an exact treatment of the on-site interaction, DMFT has again been applied
to the problem and for λSO = 0.2t and V = 0 a phase transition to SDW was calculated
(see figure 2.12 (left)). The according critical value was found to be Uc(λSO = 0.2) =

6.2(3)t and is indistinguishable from the topological transition, meaning that we could
not find a QSH state with SDW order. Calculations with stronger spin-orbit couplings
(λSO = 0.4t) turned out to demand too many warm up cycles and measurements within
CTQMC, hence no other transitions of that kind are shown here.

5 6 7 8 9 10
0

0.5

1

1.5

2

U/t

M
A
F

DMFT
Topological Transition

0 2 4 6 8

0

2

4

6

8

10

SDW

CDW

QSH

V/t

U
/t

Figure 2.12: Phase transition for V = 0 (left). Phase diagram comparing MFT and
DMFT for λSO = 0.2t (right): All points refer to self-consistent solutions received
by DMFT-calculations. Black points signify that no finite order parameter was found
(metallic-phase), green points denote a finite ∆AB (CDW-phase) and blue points denote
a finite MAF (SDW-phase). Solid lines mark the transitions between the phases for
DMFT. Dotted lines give the corresponding transitions obtained in MFT

We calculated also different regimes of the phase diagram and plotted the results in
figure 2.12 (right). Again Uc is found to be independent of the (MFT-treated) on-site
interactions, and the transition line between QSH state and CDW state is roughly
similar to mean field.
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2.4 In-plane direction (in MFT)

Due to the symmetry of x- and y-direction, we can reduce our discussion to the x-
direction.
To treat the extended Hubbard model including SO-coupling (2.13) within MFT (1.41)
(1.42) for spin in the x-direction we replace the creation and annihilation operators in
our model Hamiltonian as follows

c†i↑ → c†i→, ci↑ → ci→

c†i↓ → c†i←, ci↓ → ci←
(2.28)

Where c†i→ creates an electron with spin in the ’up’ x-direction (+x) and c†i← creates
an electron with spin in the ’down’ x-direction (−x) etc. But, this just has an effect on
terms that explicitly depend on spin, like the U and the λSO-term.
We can find that Hx

U hence becomes diagonal in the x-basis of the spin, while Hx
SO is

still diagonal in the z-basis. For the remaining terms these bases are equivalent. The
total Hamiltonian hence, has no longer a block diagonal form and we cannot find a
analytic expression similar to (2.17). To calculate the eigenenergies and eigenstates we
evaluate the different terms in their eigenbasis and then transform one term into the
other basis to diagonalize the full matrix.
Hx
U in the x-basis is given by

(Hx
U)x =


〈n→A 〉

〈n→B 〉
〈n←A 〉

〈n←B 〉

 (2.29)

The rotation operator for rotations around the y axis by an arbitrary angle Θ states as
follows:

Ry(Θ) = e−iΘσy = cos(Θ/2)·
(

1 0

0 1

)
−i sin(Θ/2)·

(
0 −i
i 0

)
=

(
cos(Θ/2) − sin(Θ/2)

sin(Θ/2) cos(Θ/2)

)
(2.30)

As the transformation on lattice subspace must be the unitary matrix, the whole trans-
formation from x- to the z-basis is given by:
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Tx→z = Ry(π/2) ~ I (2.31)

The Hx
U Hamiltonian in z-basis therefore reads:

(Hx
U)z = Tx→z (Hx

U)x T
−1
x→z

= cos2(Θ/2)


〈n→A 〉

〈n→B 〉
〈n←A 〉

〈n←B 〉

+ sin2(Θ/2)


〈n←A 〉

〈n←B 〉
〈n→A 〉

〈n→B 〉



+ sin(Θ/2) cos(Θ/2)


0 0 〈n←A 〉 − 〈n→A 〉 0

0 0 0 〈n←B 〉 − 〈n→B 〉
〈n←A 〉 − 〈n→A 〉 0 0 0

0 〈n←B 〉 − 〈n→B 〉 0 0


(2.32)

As one can see immediately, this transformation just gives a nontrivial result if there is
a finite anti-ferromagnetic moment MAF i.e. 〈niσ〉 6= 〈niσ̄〉.
But for a change in the entire Hamiltonian one of the other terms also needs to transform
nontrivial. If we perform the transformation now in the other direction (T−1

x→z = Tz→x)
for the Hx

SO term, we similarly obtain an expression which is non-trivially (if γk i.e.
λSO is finite).

This means the spin-directions are degenerate if at least either λSO or MAF is zero,
thus we only experience a change to the out-of plane situation, when a finite anti-
ferromagnetic moment is present. Therefore the transition from QSH to CDW will not
change, but the U c does. The observed values for different λSO are shown in figure 2.13.
It is important to note here that there is gap closing neither at the SDW transition
nor anywhere after. However, topology has changed and the critical value Uc for the
topological transition is equal to the one for the SDW transition. That is caused by the
fact that topology is no longer protected, as time-reversal symmetry is broken (due to
a finite MAF ) and spin is no longer conserved (due to a finite λSO).
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A phase diagram for two different values of λSO is shown together with the according
lines belonging to the out-of plane solutions in figure 2.14. Apart from the fact that the
phase diagram is ’truncated’ in favor of the SDW phase we observe a new transition
between a topologically non-trivial CDW and the trivial SDW phase. Besides the
condition of V = U is fulfilled at least for strong interactions.
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Figure 2.14: Phase diagram λSO = 0.6 (left), λSO = 0.8 (right). Solid lines are the
according lines belonging to out-of plane orientation



Conclusion

In this work we investigated the general phase diagram of the extended Hubbard model
on a honeycomb lattice, in particular with emphasis on the effects of spin-orbit cou-
pling. Therefore we started using mean-field decoupling of both interaction terms and
further recovered local fluctuations by means of DMFT to calculate the phase bound-
aries between metallic, topological, spin-density wave, and charge-density wave phases.
In the first chapter the pure extended Hubbard model was studied and we found for
the transition between metallic and SDW a critical on-site interaction of U c

MFT = 2.23t

for MFT and U c
DMFT ≈ 3.5t for DMFT. Both of which compare to values we found in

the literature: 2.23t (MFT) and / 3.6t (DCA which is similar to DMFT). Moreover we
found that non-local interactions do not shift this value neither in MFT nor in DMFT,
however for DMFT this might be intrinsic as nearest-neighbor interactions have still
been treated in a mean-field approximation. In MFT for the transition between metal-
lic and CDW phase, we found the simple conditions for the (effective) nearest-neighbor
interaction of V c

MFT = (U c
MFT +U)/2 and in the case of very strong interactions, SDW

and CDW are separated by a line fulfilling V = U . Both of these conditions have been
shown analytically in the second chapter. The transition line between metallic and
CDW remains in DMFT roughly at the same position. Even though U ≈ V should
be a general condition, our calculations in DMFT have a stronger tendency towards
SDW ordering. We considered the first-order type phase transition and/or the unequal
treatment of on-site and nearest-neighbor interactions within our approximation to be
the reason for that.
In the second chapter by adding spin-orbit coupling λSO we found four different phases
in MFT, including QSH state, CDW, SDW and the mixed CDW-QSH. A SDW-QSH
phase is just present in the metastable state of out-of plane magnetization. Qualita-
tively we find with increasing λSO, that the transition lines between the unordered (here
QSH) and the ordered phases are shifted in favor of the unordered state and that the

58



2.4. In-plane direction (in MFT) 59

in-between phase of CDW-QSH grows. In DMFT we calculated just the meta-stable
state, as it can be treated more easily. We find for λSO = 0.2t that the transition line
between QSH and SDW is shifted to U c

DMFT ≈ 6.2t. An in-between phase of SDW-QSH
cannot be found here.



Appendices

60



Appendix A

Bloch functions and Wannier functions

In a periodic lattice the wave function of an electron is given by a so called Bloch wave
or Bloch state. The underlying Bloch theorem states that for a Hamiltonian of the form
H(r) = H(r + R) with the period of the crystal lattice R the eigenfunctions must have
the form of

|ψn,k (r)〉 = eikr |un,k (r)〉 . (A.1)

Where the cell periodic eigenstates un,k (r) = un,k (r + R) together with the Bloch
Hamiltonian H(k) = e−ikrH(r)eikr give the reduced Schrödinger equation

H(k) |un,k (r)〉 = Enk |un,k (r)〉 (A.2)

For (effectively) non-interacting systems, this gives the basis of band-structure calcula-
tions in a solids.
However function of that kind (equation (A.1)) do not allow spatial charge localizations,
which is necessary for an accurate description of two-particle coulomb interactions.
Therefore Wannier functions are introduced

φR(r) =
1√
N

∑
k

e−ikRψk (r) , (A.3)

representing an orthogonal set of functions, similar to molecular orbitals, localized
around each lattice site R.
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