
Anil Armagan

Image-Based Camera Localization by
Leveraging Semantic Information in

Urban Environments

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Vincent Lepetit

Institute of Computer Graphics and Vision

Graz, Austria, September 2018

Abstract

Accurate camera localization has been key to the success of many applications in different

domains, such as augmented reality (AR) and robotics. The problem of predicting the

position and orientation of a camera is referred as “localization task”. The localization

problem needs to be solved wisely where the accurate camera pose should be known in

advance, such as for autonomous driving or AR.

Several methods have been proposed to solve the localization problem by using in-

puts from different sources of modalities such as monocular images, infrared projectors,

laser scanners or depth sensors. Using such sensors enables researchers to produce useful

representations like ground-level images, aerial images, elevation models or textured 3D

models. However, collection of large image datasets or using sensors such as laser scanners

are costly and cumbersome to keep them up-to-date to represent the recent changes of

the environment. In this thesis, we explore the localization problem by leveraging crowd-

sourced and easy to maintain OpenStreetMap (OSM) models with recent advances in

semantic segmentation. We focus on accurate localization in urban environments using

single images and an initial pose of the camera estimated by simple available sensors, such

as a compass and a Global Positioning System (GPS).

This thesis first introduces the localization problem in details and discusses its chal-

lenges and applications. Then, we give a literature survey on image-based camera local-

ization where the previous works are mostly dominated by the methods using registered

sets of image collections. However, recent developments in deep learning and their suc-

cess bring new perspectives to the camera localization problem. Image classification and

matching based solutions mostly focus on hand-crafted features where occlusions, illumi-

nation changes and texture-less areas are usually a difficult problem to cope with. On the

other hand, this thesis explores the use of semantic information in urban environments

with three frameworks.

For accurate camera localization, we first show how to use recent advances in image

segmentation and machine learning to segment buildings and their parts in urban. Then,

iii

iv

we discuss how to use a 3D tracking system to acquire the data required for training the

segmentation method. Our first method shows that the semantic information from the

buildings in the urban environments is representative enough for accurate localization. To

localize an input image, we explore the usage of simple 2.5D maps of buildings and the

semantic segmentation. Given an initial pose estimate from the sensors, we first extract the

façades and edges of the buildings from the image, and then look for the orientation and

location that align rendering of the map with these segments by sampling the pose space

around the sensors’ estimates. We show that with the exploited semantic information,

we can make better pose estimations then the estimates from the sensors. However, the

sensor errors tend to be large in the wild and since the pose space is huge, we need a

better optimization of the pose search space to have more efficient methods in practice.

Furthermore, this thesis explores the use of the semantic information and 2.5D maps in

a learning-based iterative framework for a better pose optimization. Our key contribution

in this part is a novel, efficient and robust method to optimize the pose: We train two

deep networks to predict the best direction to improve a pose estimate, given a semantic

segmentation of the input image and a rendering of the buildings from this estimate.

We then iteratively apply the CNNs until converging to a good pose. Our networks

can estimate the pose efficiently when the errors from the sensor’s are relatively small. In

practice, since the sensor error might be very large, we sparsely sample initial poses around

the sensors’ pose estimates and start the optimization for each initial pose by applying

the networks in an iterative fashion. The proposed approach is more accurate and more

efficient than the approach described previously which is fully based on uniform sampling

of the poses. Since our methods are not using reference images, it can be applied to places

unseen during training.

Finally, we propose an approach to bridge the gap between learning-based approaches

and geometric approaches. We achieve this by extracting high-level features buildings

in the input images and well established minimal solvers. Our approach uses the same

semantic information from the buildings and additionally, we exploit the façades’ normals

in the images. Then, we introduce two minimal solvers to establish a 2D pose given the

extracted features and 2.5D map of the environment. The minimal solvers we propose

are able to compute the camera pose accurately and robustly. We propose two such

minimal solvers: one based on three correspondences of buildings’ corners from the image

and the 2.5D map and another one based on two corner correspondences plus one façade

correspondence. The advantage of our approach is the use of geometric features with

robust minimal solvers. Our experiments show that the approach is much more efficient

since it relies on more robust features as the high-level features.

Keywords. camera registration, image-based localization, camera relocalization, pose

estimation, visual localization.

Kurzfassung

Genaue Lokalisierung der Kameras war der Schlüssel zum Erfolg vieler Anwendungen in

verschiedenen Bereichen wie Augmented Reality (AR) und Robotik. Das Problem der

Vorhersage der Position und Orientierung einer Kamera wird als ”Lokalisierungsaufgabe”

bezeichnet. Das Problem bei der Lokalisierung muss mit Bedacht gelöst werden. Die

genaue Pose der Kamera sollte wie etwa für autonomes Fahren oder AR im Voraus bekannt

sein.

Mehrere Verfahren wurden vorgeschlagen, um das Lokalisierungsproblem zu

lösen. Dabei wurden Eingaben von verschiedenen Quellen von Modalitäten wie

monokularen Bildern, Infrarotprojektoren, Laserscannern oder Tiefensensoren verwendet.

Mithilfe solcher Sensoren können Forscher nützliche Darstellungen wie Bodenbilder,

Luftbilder, Höhenmodelle oder texturierte 3D-Modelle erstellen. Die Sammlung

großer Bilddatensätze oder die Verwendung von Sensoren wie Laserscannern sind

jedoch kostspielig und umständlich, um sie auf dem neuesten Stand zu halten und die

jüngsten Änderungen der Umgebung darzustellen. In dieser Arbeit untersuchen wir das

Lokalisierungsproblem, indem wir crowdsourcingfähige OpenStreetMap (OSM)-Modelle

mit aktuellen Fortschritten in der semantischen Segmentierung nutzen. Wir konzentrieren

uns auf die genaue Lokalisierung in den städtischen Umgebungen mit Hilfe von

Einzelbildern und einer ersten Pose der Kamera, die durch einfache verfügbare Sensoren,

wie einen Kompass und ein GPS (Global Positioning System) geschätzt wird.

Diese Arbeit stellt zunächst das Lokalisierungsproblem im Detail vor und diskutiert

deren Herausforderungen und Anwendungen. Anschließend geben wir eine Literaturstudie

zur bildbasierten Kameralokalisierung, bei der die bisherigen Arbeiten überwiegend von

den Methoden mit registrierten Bildsammlungen dominiert werden. Die jüngsten Entwick-

lungen im Bereich des Tiefgehendes Lernen und dessen Erfolg bringen jedoch neue Per-

spektiven für das Kameraproblem. Bildklassifizierungs- und -abgleichbasierte Lösungen

konzentrieren sich hauptsächlich auf handgefertigte Merkmale, bei denen Okklusionen,

v

vi

Beleuchtungsänderungen und strukturlose Bereiche üblicherweise ein schwieriges Problem

darstellen. Andererseits untersucht diese Arbeit die Verwendung semantischer Informa-

tionen in urbanen Umgebungen mit drei Frameworks.

Für eine genaue Kameralokalisierung zeigen wir zunächst, wie Segmentierung und

maschinelles Lernen zu verwenden ist. Dann besprechen wir, wie ein 3D-Tracking-System

verwendet werden kann, um die für die Segmentierungsmethode erforderlichen Daten

zu erfassen. Unsere erste Methode zeigt, dass die semantischen Informationen aus den

Gebäuden in städtischen Umgebungen repräsentativ genug für eine genaue Lokalisierung

sind. Um ein Eingabebild zu lokalisieren, untersuchen wir die Verwendung von einfachen

2.5D-Karten von Gebäuden und der semantischen Segmentierung. Bei einer anfänglichen

Pose-Schätzung von den Sensoren können wir zunächst die Fassaden und Kanten der

Gebäude auf den Bildern extrahieren. Anschliessend suchen wir nach der Ausrichtung

und Position, die das Rendern der Karte mit diesen Segmenten angleicht, indem der Pose-

Platz um die Schätzungen der Sensoren herum abgetastet wird. Wir zeigen, dass wir mit

den ausgenutzten semantischen Informationen bessere Pose-Schätzungen machen können.

Allerdings sind die Sensorfehler in der Regel groß und der Pose-Platz ist riesig. Daher

brauchen wir eine bessere Optimierung des Suchraums für die Pose, so können wir ef-

fizientere Methoden in der Praxis erhalten.

Des Weiteren untersucht diese Arbeit die Verwendung der semantischen Informationen

und 2.5D-Karten in einem lernbasierten iterativen Rahmen für eine bessere Optimierung

der Pose. Unser Hauptbeitrag in diesem Teil ist eine neuartige, effiziente und robuste

Methode, um die Pose zu optimieren. Wir trainieren zwei tiefe Netzwerke, um die beste

Richtung für eine bessere Schätzung einer Pose zu bestimmen und geben bei einer se-

mantischen Segmentierung des Eingangsbildes und einer Darstellung der Gebäude diese

Schätzung. Wir wenden dann die CNNs iterativ an, bis sie zu einer guten Pose kon-

vergieren. Unsere Netzwerke können die Pose effizient schätzen, wenn die Fehler vom

Sensor relativ klein sind. Da der Sensorfehler sehr groß sein kann, nehmen wir in der

Praxis die anfänglichen Posen um die Pose-Schätzungen der Sensoren herum und starten

die Optimierung für jede Anfangspose, indem wir die Netzwerke iterativ anwenden. Der

vorgeschlagene Ansatz ist genauer und effizienter als der zuvor beschriebene Ansatz. Da

unsere Methoden nicht für Referenzbilder verwendet werden, können sie auf Orte angewen-

det werden, die während des Trainings nicht sichtbar sind.

Abschließend schlagen wir einen Ansatz vor, um die Lücke zwischen lernbasierten

und geometrischen Ansätzen zu schließen. Dies erreichen wir durch das Extrahieren von

High-Level-Features-Gebäuden in den Eingabebildern und gut etablierten Minimallösern.

Unser Ansatz verwendet die gleichen semantischen Informationen aus den Gebäuden und

zusätzlich nutzen wir die Normalen der Fassaden in den Bildern. Dann führen wir zwei

Minimallöser ein, um eine 2D-Pose aufgrund der extrahierten Features und der 2.5D-

Karte der Umgebung zu erstellen. Die von uns vorgeschlagenen Minimallöser sind in der

Lage, die Kamerapose präzise und robust zu berechnen. Wir schlagen zwei solche Min-

imallöser vor: einen, der auf drei Übereinstimmungen der Gebäudeecken aus dem Bild

vii

und der 2.5D-Karte basiert und einen zweiten, der auf zwei Korrespondenzecken plus

einer Fassadenkorrespondenz basiert. Der Vorteil unseres Ansatzes ist die Verwendung

geometrischer Merkmale mit robusten Minimallösern. Unsere Experimente zeigen, dass

der Ansatz viel effizienter ist, da er auf höheren Funktionen beruht.

Schlüsselwörter. Kameraregistrierung, bildbasierte Lokalisierung, Kamera

Relokalisierung, Pose Schätzung, visuelle Lokalisierung.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Acknowledgments

First and foremost, I owe my deepest gratitude to my supervisor, Prof. Vincent Lepetit,

for his priceless guidance, encouragement, motivation and support throughout the

beginning of my work at the Institute of Computer Graphics and Vision.

Special thanks to Assoc. Prof Tae-Kyun Kim and Assoc. Prof. Denis Helic

for kindly accepting to be in my committee. I owe them my appreciation for their

support and helpful suggestions.

Similar to a chair, we are not complete as long the legs of the chair is com-

plete. For this reason, I would like to present my deepest thank to Carmen, Özlü and

Mahdi. None of this would have been possible without their love and support. I am

tremendously grateful for all the selflessness and the sacrifices you have made for me.

Finally, I would like to thank all members of CVARLab and the Institute of

Computer Graphics and Vision for giving me the chance to be a member of their groups.

This thesis is supported by the Christian Doppler Laboratory for Semantic

3D Computer Vision in collaboration with Qualcomm.

xi

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Applications . 5

1.3 Challenges . 6

1.4 Approaches . 8

1.5 Contributions . 10

1.5.1 List of Publications . 12

1.6 Outline . 13

2 Related Work 15

2.1 Background Methods . 15

2.1.1 Neural Networks . 15

2.1.1.1 Artificial Neural Networks (ANN) 15

2.1.1.2 Convolutional Neural Networks (CNNs) 18

2.1.1.3 Fully Convolutional Networks (FCNs) 21

2.1.1.4 Siamese Networks . 22

2.1.1.5 Training of Deep Networks 22

2.1.1.6 Overfitting Problem in Neural Networks 24

2.1.1.7 Famous Network Architectures 26

2.1.2 Semantic Image Segmentation . 29

2.1.3 PnP Problem for Pose Estimation 30

2.1.4 Minimal Solvers . 31

2.2 Image-based Visual Localization . 32

2.2.1 Localization with Registered Images 32

2.2.2 Localization with Combining Information from Multiple Modalities . 36

xiii

xiv

3 Camera Localization with Semantic Segmentation and 2.5D Maps 43

3.1 Semantic Image Segmentation for Urban Environments 43

3.1.1 Exploiting Fully Convolutional Network (FCN) for Building Seg-

mentation and Surface Normal Estimation 45

3.1.1.1 Using FCN for Façades’ Normal Estimation 47

3.1.1.2 Rectification of Input Images 48

3.2 Data Acquisition for the Semantic Segmentation Model 48

3.2.1 Manual Annotation of the Buildings’ Parts 48

3.2.2 Consistent and Fast Annotation of Buildings’ Parts 49

3.2.2.1 2.5D OpenStreetMap Models 50

3.2.2.2 Key-Point-Based 3D Tracking 51

3.2.2.3 Training Dataset for the Semantic Segmentation Method . 52

3.2.2.4 Test Dataset for Camera Localization 53

3.3 Combining Semantic Segmentation and 2.5D Maps for 3D Localization . . . 55

3.4 Evaluation . 56

3.5 Summary . 59

4 Learning to Refine a Pose Estimate 61

4.1 Learning to Predict a Direction for Pose Update 62

4.2 Pose Estimation Algorithm . 64

4.3 Evaluation . 65

4.3.1 Training and Evaluation Data . 65

4.4 Summary . 69

5 High-Level Feature Matching for Camera Registration 71

5.1 Method Overview . 73

5.2 Extracting High-Level Features from the Input Image 74

5.3 Minimal Solvers . 76

5.3.1 Using Three Corner Correspondences 77

5.3.2 Using Two Corner Correspondences and One Façade Correspondence 77

5.3.3 Creating Pose Hypotheses . 78

5.4 Evaluating Hypotheses . 79

5.5 Evaluation . 80

5.6 Summary . 83

6 Conclusion & Discussion 87

A Appendix 91

A.1 Minimal Solvers . 91

A.2 Intermediate Results . 94

Bibliography 133

List of Figures

1.1 Illustration of image-based camera localization. 2

1.2 Illustration of a coarse pose estimate and an accurate pose estimate. 4

1.3 An example of Augmented Reality (AR) for navigation purposes. 5

1.4 Sensors provide vision to a self-driving car. 6

2.1 Activation functions that are commonly used in neural networks. 16

2.2 Representation of a single neuron. 17

2.3 A regular 3 layer network with 2 hidden layers and an output layer. 18

2.4 An example of a convolution operation showed on an input of depth one. . 19

2.5 A convolutional layer with three filters. 20

2.6 A simple CNN architecture is given for a classification task. 20

2.7 An example for a classification network with fully connected layers. 21

2.8 First siamesenetwork architecture. 23

2.9 Visualization of dropout applied between the two hidden layers. 25

2.10 Architecture of VGG-16 network. 27

2.11 Architecture of an inception module. 28

2.12 Illustration of a residual learning block. 28

2.13 Semantic segmentation example. 29

2.14 Illustration of camera localization with aerial images. 39

2.15 Cross-view image matching with Siamese networks. 40

3.1 Example of a perfect buildings’ part segmentation. 44

3.2 Architecture of fully convolutional network (FCN). 45

3.3 Importance of vertical edges for localization. 46

3.4 Examples of outputs of the two FCNs. 47

3.5 Manual pixel-wise image annotation. 49

xv

xvi LIST OF FIGURES

3.6 Problem of inconsistent and wrong training data labeling. 50

3.7 Example of building outlines from an OSM. 51

3.8 Frame registration on 2.5D map. 52

3.9 Efficiently labeling images. 53

3.10 Sample frames from our dataset. 54

3.11 Overview of our approach to exploit semantic information for localization. . 55

3.12 Examples of available inputs to our method. 56

3.13 Illustration of similarity between the semantic information from two sources. 57

3.14 Visual comparison of poses. 58

4.1 Overview of our approach for learning to refine a pose estimate. 62

4.2 Example of our translation pose update step. 63

4.3 Illustrative example of the inputs to our localization networks. 64

4.4 Visualization of iteration steps taken by our algorithm. 66

4.5 Converging from a close initial estimate. 67

4.6 Converging from an estimate provided by real sensors. 68

4.7 Position errors for sensor poses and poses obtained by our method. 69

4.8 Orientation errors for sensor poses and poses obtained by our method. . . 69

5.1 Overview of our approach with high-level feature matching. 73

5.2 Extracting building corners and façades. 75

5.3 Extracting façade normal orientations. 75

5.4 Surface normal estimation examples of building façades. 76

5.5 Location errors obtained by our methods. 80

5.6 Orientation errors obtained by our methods. 81

5.7 Number of posterior pose evaluations done by our methods. 82

5.8 Some poses obtained using our method. 84

5.9 Intermediate results for a test scene. 85

5.10 Intermediate results for another test scene. 86

6.1 Example of convex, concave and flat vertical edge types. 89

List of Tables

3.1 Computation time for each step of our method. 59

5.1 Mean position and orientation errors of the poses found by our methods

and sensors. Errors are wrt. the ground truth positions and orientations. . 81

xvii

1
Introduction

Contents

1.1 Problem Statement . 3

1.2 Applications . 5

1.3 Challenges . 6

1.4 Approaches . 8

1.5 Contributions . 10

1.6 Outline . 13

Humans have the ability to successfully localize themselves or other objects in an

environment. For example, as soon as we enter a room or we go out of our flat, we build

an understanding of the scene, its components and most importantly we know where we

are. We have a great visual perception system and most of the times, it is not hard for

humans to create a rough mapping of the scene and roughly estimate where each object

stands or how they are oriented. It is even easily possible to make localization without

depending on if the environment was observed before or not. However, when it comes to

machines, it is not straightforward to make them able to localize themselves.

Machines have now the ability to globally localize themselves thanks to the intro-

duction of Global Navigation Satellite Systems (GNSS), where the United States’ Global

Positioning System (GPS) is an example of GNSS. A GNSS is great to make earth level

localization, it uses satellites to localize the device. Together with other sensors such as

compass, a machine can estimate its position and orientation. However, their accuracy

is not as good as human-level localization system in most cases. Since, such systems can

be easily affected by external factors, it makes them inaccurate for localization purposes

either in urban or indoor scenarios. For example, a GPS system works less accurate if we

are on the street where many cars and buildings surround us. The error of the system

might be as high as 30 meters. Similarly, a compass is effected by external metallic struc-

tures such as cars and it can make even have errors as high as 40◦. Also, a GPS might

1

2 Chapter 1. Introduction

not be available all the time either because of signal denied environments or simply the

GPS is not available. Therefore, other sources of information such as images are used to

improve or make localization possible for more devices.

Image-based localization is a broad topic which has taken attention of different com-

munities e.g. Computer Vision (CV) or Robotics for many years. It has been studied using

different methodologies and technologies. Recent advances, including advances in hard-

ware, enabled researches to develop more convenient methods for localization. These ad-

vances include equipping devices with cameras that provide us with fine details of a scene,

GNSS and variety of sensors e.g. Lidars, compasses or accelerometers. CV, Robotics and

Machine Learning (ML) researchers have been developing more efficient and effective al-

gorithms to make devices smarter. Localization techniques started to take more and more

attention with the introduction of new sensors and ease of access to them with devices

such as our smartphones or tablets that are used in daily life today.

The advances in smart devices together with new research studies have resulted in a

wide range of applications in many different fields e.g. logistics, gaming or sports. In 20th

century, these applications were considered as science fiction, however; nowadays we are

living in this era which was once considered as fiction because of level of autonomy that

(a) (b)

(c)

Figure 1.1: Illustration of image-based camera localization. (a) the user captures an input
image. (b) Once the pose of the camera is estimated, it is possible for example to overlay
a 3D model of the environment with the input image. (c) The estimated camera pose is
shown in red in a 2D map of the environment.

1.1. Problem Statement 3

machines have been reached.

In this thesis, we explore the existing methods for image-based localization and propose

novel methods to improve upon them. Our approaches make use of object classes that are

commonly seen in urban areas to make localization. We leverage the object classes such

as buildings in different frameworks to localize a camera that is used to capture an image

in urban city environments.

1.1 Problem Statement

Localization, very generally, is a term used for the process of making something e.g. an

object, a robot, a satellite, a GSM transmitter, a camera local or estimate its position to

a particular place. For example, the problem of estimating the position and orientation

of a camera into a global or local coordinates is referred as localization. In this thesis,

image-based localization or image-based camera localization techniques where the device

is equipped with a camera are considered.

Camera registration or camera localization where the task is registering the camera

which relates to knowing the accurate position and the orientation of the camera in a

relative coordinate system. The coordinate system could be either relative to a map of a

known environment or the whole world.

The term ‘camera re-localization’ is also frequently seen in the context of image-based

localization. Camera re-localization refers to the cases where an approximate estimate

of the device’s position and orientation or both is known but the task is to re-localize

the device to have a better pose estimate. Camera re-localization is usually called when

estimate of the camera pose is known with a GPS.

Another term commonly used in the context of image-based localization is geolocaliza-

tion which is mostly referred for computing only the position, not the orientation, of the

camera. Therefore, in the rest of the thesis, image-based geolocalization will be referred as

a subset of the image-based localization task where only the position is estimated. Plenty

of previous studies address the problem as a geolocalization problem, however, some appli-

cations like Augmented Reality (AR) require the full pose to be known accurately instead

of only the position. The ultimate goal for localization is thus to estimate all degrees of

freedom (DoF) that defines a pose. Therefore, this thesis proposes methods to make an

estimate of full 6 DoF pose estimation of the camera.

A complete localization of a camera requires to estimate both position and orientation.

In the three dimensional world, both position and orientation require three dimensions to

be fully defined. Thus, a pose has six degrees of freedom (6 DoF). The 6 DoF pose

represents the movements of the camera and these movements in 3D space are defined as

follows:

4 Chapter 1. Introduction

(a) (b)

(c)

Figure 1.2: Illustration of a coarse pose estimate and an accurate pose estimate. With
the help of sensors such as GPS, we can have an initial pose estimate of the camera and
use it with the 3D model (c) to overlay the model on the input image. However, the
projection of the 3D buildings does not match with the buildings in the image since the
coarse estimate of the pose is not accurate (a). By estimating the camera pose accurately,
we can successfully overlay the 3D buildings with the buildings in the image.

• Translation t, moving the camera along the three axes X, Y and Z.

• tx, moving up and down along the x axis is called heaving.

• ty, moving forwards and backwards along the y axis is called surging.

• tz, moving left and right along the z axis is called swaying.

• Orientation R, rotating the camera in order to face a different axis.

• Rx(γ), counterclockwise rotation between x axis is called roll.

• Ry(β), counterclockwise rotation about y axis is called pitch.

• Rz(α), counterclockwise rotation between z axis is called yaw.

1.2. Applications 5

1.2 Applications

As recent challenges and benchmarks such as [16, 69] show, dealing with urban scenarios

is of increasing interest. These challenges show that localization of a camera is necessary

for different fields such as CV and Robotics. Even though the accuracy of GPS sensors is

sufficient for navigation purposes where the task is directing a user to reach from point A

to point B, the GPS information is not accurate enough for many other tasks.

Figure 1.3: An example of Augmented Reality (AR) for navigation purposes. AR is getting
more attention with the recent advances in accurate camera pose estimation.

Today, cars have been given the ability to drive themselves. Knowing the accurate pose

is crucial for a car to drive autonomously. This has been possible by getting help from

many sensors such as inertial measurement unit (IMU), GPS, compass, Light Detection

and Ranging (LIDAR) and cameras. However, autonomous driving in the areas like city

centers are still challenging due to dynamic factors. It has been essential for the car to know

about its environment. The cameras on a car displays high value information by letting

the car see the real world to accurately localize itself. One of the keys to success here has

been with the successful vision based approaches. An AR system focuses on combining real

and virtual objects. The system provides the user with interactive information from the

combination of the real world and the virtual world created by inserting virtual objects.

The inserted information should visually align with the real world. In this context, correct

visual alignment means accurate registration of the real and the virtual objects. To this

end, image-based localization has been key to solve the problem.

6 Chapter 1. Introduction

Figure 1.4: A self-driving car uses cameras or information from other sources such as Lidar
to make an understanding of its environments and localize itself.

Accurate localization is also essential for robots or autonomous devices. Depending

on the task the robot is designed for, in most of the cases it is important for the robot to

know its accurate pose to achieve the task. Even if indoor localization techniques are out

of scope of this thesis, it is worth to mention that localization techniques are applied even

on cleaning robots such as iRobot Roomba 9801.

1.3 Challenges

The localization problem occurs in both outdoor and indoor environments. However, re-

quirements and challenges for each task are different. In this thesis, we focus on localization

in urban environments.

When we consider a generic application for image-based localization, most of the users

have access to a smart device such as a smartphone or tablet. However, even if smartphones

are equipped with cameras that provide us with relevant information from the scenes, the

field-of-view (FoV) of these cameras usually restricted around 60◦. The narrow FoV angle

of the cameras simply restricts us to get more information about the neighborhood for

accurate localization. Panoramic images would be an option to overcome narrow FoV

problem, however; most of the devices cannot capture panoramic images. Therefore,

panoramic images are not easy to access in practice.

As smart devices are usually equipped with Global Positioning System (GPS), for the

1http://www.irobot.at/

1.3. Challenges 7

outdoor localization task, a device searching for a route from point A to point B could

be navigated by using GPS. However, GPS signals are easily affected by many artifacts

e.g. long buildings that block GPS signals, metallic structures and cars passing by. For

the indoor scenario GPS signal is usually completely blocked by the building, which are

called GPS denied environments. Thus, dominant indoor localization methods work from

cellular signals, WiFi signals or Bluetooth connectivity. For such methods, the origins of

the WiFi access points or Bluetooth beacons should be known for accurate localization.

However, this requires to maintain a large number of connection points for the signal

transmitters. Therefore, GPS signals or signals from other transmitters are usually not

accurate or limited for accurate localization and thus, image-based localization techniques

have been developed in order to improve the localization estimates.

When we localize ourselves as humans, we mostly rely on visual cues to define and find

our location. We make observations about our neighborhood e.g. man-made structures

around us, distinctive buildings, traffic signs, street signs, door signs or logos. Combination

of all these visual cues helps us to localize ourselves. This is one of the clues why image-

based localization is necessary in the machinery level. However, defining such distinctive

features that defines the scene and separates it from the other scenes is not an easy task.

There has been many studies on discriminative feature descriptors [53, 88, 97] for many

years. However, unless the data includes such discriminative features such as different

building façades or logos, it has been a difficult problem to distinguish such man-made

structures due to the similarity of them.

Since there has been a drastic increase in the usage of smart devices, the number

of images uploaded on the World Wide Web (WWW) has been increased exponentially.

The amount of geo-tagged data find on the web is massive. Therefore, another challenge

in geolocalization is leveraging large scale geo-referenced image datasets and query pro-

cessing to localize the query image against large scale pre-registered datasets. Another

challenge of pre-registered data collections is that being coarsely tagged. Datasets are

usually tagged with only their geographical locations. Therefore, using such collections

has limited applications when orientation information is needed as well. It is also hard to

maintain such collections to be up to-date.

Detailed 3D models of the environment represent valuable information such as texture

for localization. 3D models can be provided with the help of sensors such as laser scanners

or with the 3D reconstruction methods using multiple-view of the environment, for example

from pre-registered image collections. However, similar to pre-registered images, detailed

3D models are also hard to maintain since the updating the models are costly.

A general problem in computer vision is also valid for image-based localization. Images

contain unwanted effects such as blurring, image artifacts, lens distortions or lightning

exposures. It is necessary to overcome such artifacts.

Last but not least in urban scenes consists of dynamic objects that cause occlusions

e.g. cars, bikes and pedestrians. For example, cars usually occludes horizontal lines of the

buildings and they dynamically move in and out from our scene.

8 Chapter 1. Introduction

1.4 Approaches

Localization of a camera is a well known problem in the community. In this section, we

discuss how they have been used in the community for accurate pose estimation. We

first describe how Machine Learning (ML) approaches such as regression and classification

applies in the context of the localization. Then, we describe the gist of some methods based

on what kind of information model they use. For example, while some approaches use

large-scale pre-registered image collections with Content Based Image Retrieval (CBIR)

techniques, some other approaches use more complex inputs such as 3D models or 2D

models of the environment.

Models in ML are mainly divided into two categories based on how prediction is done.

First approach is classification based prediction models. In image-based localization, clas-

sification based approaches approximate a mapping function f from input image to discrete

output variables. Simple example of discrete outputs would be geo-tags for image-based

localization. Second predictive modeling is called regression based prediction modeling.

Regression based approaches approximates a mapping function f from input images to a

continuous output. In our case, continuous output would be the pose matrix itself.

In the literature of image-based localization, both classification and regression based

prediction models are studied. In the rest of the section, general approaches for image-

based localization without classifying them as classification or regression based approaches

is discussed because both machine learning models can be applied in the approaches de-

scribed below.

The gist of a well studied approach to image-based geolocalization is using a set of

geo-registered images to localize the query image in a CBIR framework. This results in

collecting and maintaining large set of geo-referenced image databases to be used to collect

visual cues for the scenes of interest. The basic idea to use geo-referenced databases for

image-based geolocalization tasks constructs the gist of image-based localization where

a query image is identified with the best matching image in the database. Position of

the returned image is used as the position estimate. However, this only gives a position

for the image since, orientation information is usually not kept in such databases. An-

other challenge here is that since the number of images in the collection is so large, the

search would be very inefficient. Therefore, CBIR [5, 32, 33, 60, 64, 76, 93, 95] methods

have been developed to make the searches more efficient with different visual cues and

efficient data structures like k-d trees are used to make the search more efficient. Visual

cues include defining different kind of feature descriptors such as Scale Invariant Feature

Transform (SIFT) [53], Learned Invariant Feature Transform (LIFT) [97], BRIEF [10] or

DAISY [88]. It is still worth to mention these descriptors even if nowadays the hand-

crafted descriptors have been started to replace with descriptors that are learned with

training Neural Networks in end-to-end fashion. A descriptor should be invariant to many

factors to be effective e.g. . scale, rotation, translation, noise, illumination, blur. How-

ever, localization methods based on image matching with geo-referenced databases are

1.4. Approaches 9

not very practical, since many images need to be collected and registered in the collection.

Even collections such as Google Street View2 are rather sparsely sampled and exhibit only

specific illumination and season conditions, making image matching a challenging task.

Even though use of ground-level images dominates the literature, some approaches [51,

64] make use aerial images. However, the problem with the aerial images is not being as

widely available as the ground-level images.

On the other hand, some other approaches combine information from different modal-

ities. While registered image collections are frequently used for geolocalization some other

studies approach to the problem using detailed 3D models or cadastral maps. 3D models

help methods to have a better understanding of the environment. These models usually

give us detailed information and nice feature points to make a correspondence matching

between the model and the image. However, acquiring such models are quite cumbersome

as large geo-referenced image collections. Examples of methods approaching image-based

localization with 3D structures includes Structure-from-Motion (Sfm) methods [35, 49, 71–

73, 81]. Sfm is the problem of recovering the 3D structure of the scene and the camera

motion from a set of images and it is mostly used in outdoor environments. In Sfm, camera

pose is estimated by repeated operations of expensive bundle adjustment (BA) [89] which

estimates correspondences between features extracted from the 2D image and features

associated with the 3D model. SfM systems are used for learning the 3D structure of

the scene, on the other hand Simultaneous Localization and Mapping (SLAM) [30, 41, 57]

systems can be referred as a broader term for localization that usually brings information

from multiple modalities together. SLAM is concerned with the problem of building a map

of an unknown environment with the device while at the same time it uses the built map to

localize the device. A SLAM system can work in real-time on ordered sequences of images

from a fixed camera set-up, whereas Sfm can work on a larger scale with uncalibrated

cameras and unordered sequences of images.

In general, all of these geo-tagged image collection approaches and approaches that

require detailed 3D models do not scale very well. For both approaches, collection and

maintenance of datasets are quite cumbersome and need to be updated quite often. To

avoid this problem and the time consuming generation of scene image databases or detailed

3D models, some approaches are built upon low level maps such as untextured 3D models,

2.5D models 3 or simple 2D models. Low level maps are easy to maintain comparing to

large scale image datasets or detailed 3D point clouds. From a practical point of view,

we want to totally avoid the creation of databases on our own to be more flexible, by not

being limited by sparsely sampled areas.

2https://www.google.com/streetview/
3https://www.openstreetmap.org

10 Chapter 1. Introduction

1.5 Contributions

In this thesis we focus on camera localization in urban environments. Instead of relying

on geo-tagged image collections or detailed 3D models, this thesis makes use of broadly

available untextured 2.5D maps together with an initial camera pose estimate that can

be estimated with the help of frequently available sensors such as GPS, compass and

accelerometer to attack the absolute camera localization problem. Initial estimate found

with the help of sensors are usually erroneous due to external factors. As illustrated in

Figure 1.2, the pose estimate from the sensors do not let us align a simple 3D model with

the image. This shows that the localization of the camera using only the sensors are not

enough to make accurate camera localization which is crucial for some applications as

discussed in Section 1.2.

On contrary to many other methods using pre-registered images or detailed 3D models,

we consider a more practical scenario and we use untextured 2.5D models of the urban

environment to localize the images. Given a pose estimate, we leverage information from

the buildings in the input images and the 2.5D map of the environment. We achieve this

using advanced segmentation methods to exploit discriminative features from the buildings

such as façades, edges, corners and façade surface normals.

Learning an accurate segmentation model requires a large amount of training data

and manual annotation of the data is costly. We want exploit features such building edges

however, the literature does not provide us with a dataset that we can exploit edges of the

buildings with a segmentation method. Therefore, we later show how to make use of a 3D

tracking algorithm together with the 2.5D maps to easily annotate many images that are

required to train an accurate segmentation model.

In order to find the correct pose, we propose different type of algorithms for camera

localization. We show accurate camera localization is possible by optimizing the camera

pose using the exploited building information and 2.5D maps. We achieve this by evalu-

ating the log-likelihood of the segmented image and the renderings of the 2.5D maps. Our

optimization is based on a random pose sampling strategy applied around the initial pose

estimate given by the sensors.

Later, we explore the use of the exploited image information and the 2.5D maps in a

learning-based localization framework. Given a sensor pose estimate, we achieve this by

learning to converge an accurate pose estimate in an iterative framework. We use semantic

segmentation of the image and renderings of the 2.5D map and . However, robustly aligning

the input image and the map remains challenging: The initial pose from the sensors can be

far away from the correct pose, and direct comparisons between the semantic segmentation

of the image and the rendering of the model is getting difficult. Therefore, our contribution

is a robust method to optimize the camera pose and to estimate a good alignment between

the image and the corresponding map. As gradient methods cannot be applied, using the

semantic segmentation and a rendering of the map as input, we train two deep networks,

one for the translation and one for the rotation, predicting directions that will improve

1.5. Contributions 11

the current estimate for the pose. By invoking these networks multiple times, we can

iteratively improve the estimate of the pose. However, if the initial error is very large,

it is not possible to predict a reliable direction. We then run our algorithm from poses

sampled around the sensor pose and select the best one. The efficiency and robustness

of our approach is demonstrated on a complex real world scenario, where even though

starting from a sub-optimal initializations, finally, the correct poses can be estimated.

Finally, we propose a method that combines the reliability of advanced image segmen-

tation methods with the efficiency and accuracy of geometric pose estimation methods. We

achieve this by extracting high-level features from the input image by using the segmenta-

tion model. We can then compute the camera pose from matches between these high-level

image features and their equivalents in the 2.5D map. To do this robustly, we consider

minimal solvers to compute camera poses from minimal sets of correspondences. To this

end, we propose two well established minimal solvers to compute the camera pose with

the extracted high-level features. Our proposed method can make efficient accurate pose

estimations because we rely on geometric pose estimation with robust high-level features

and efficient minimal solvers.

12 Chapter 1. Introduction

1.5.1 List of Publications

The contributions of this thesis led to the following peer-reviewed publications:

1. Semantic Segmentation for 3D Localization in Urban Environments

Anil Armagan, Martin Hirzer and Vincent Lepetit

In: Proc. of Joint Urban Remote Sensing Event (JURSE)

March 2017, Dubai, UAE

(Received the best paper award, accepted for oral presentation)

2. 3D Localization in Urban Environments from Single Images

Anil Armagan, Martin Hirzer, Peter M. Roth and Vincent Lepetit

In: Proc. of Workshop of the Austrian Association for Pattern Recognition

(OAGM/AAPR)

May 2017, Vienna, Austria

(Accepted for oral presentation)

3. Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization

Anil Armagan, Martin Hirzer, Peter M. Roth and Vincent Lepetit

In: Proc. of Conference on Computer Vision and Pattern Recognition (CVPR)

July 2017, Honolulu, Hawaii, USA

(Accepted for poster presentation)

4. Accurate Camera Registration in Urban Environments Using High-Level Feature

Matching

Anil Armagan, Martin Hirzer, Peter M. Roth and Vincent Lepetit

In: Proc. of British Machine Vision Conference (BMVC)

September 2017, London, UK

(Accepted for spotlight presentation)

1.6. Outline 13

1.6 Outline

In the rest of the thesis, first, a comprehensive review of the literature and the background

information is given in Chapter 2. More specifically, some background information about a

powerful ML tool called Neural Networks, recent advances in image segmentation, minimal

solvers will be given and then localization methods which are categorized by the type of

information used by each method are discussed.

Urban environments are mostly occupied by buildings. We use advances in semantic

segmentation to extract features that are informative for camera localization purposes.

More specifically, we consider buildings as an important cue for urban camera localization

problem and leverage the advances in semantic image segmentation for extracting features

from the buildings in the input images. We, therefore, first show how to use advances in

image segmentation to extract such useful features in Chapter 3. However, training a good

semantic segmentation model comes with the cost of data collection. We later explain in

the same chapter how to efficiently acquire training data with 2.5D maps to train the

model. Finally, in Chapter 3 concludes by proposing a method for localization using the

extracted information with the segmentation model together with the 2.5D maps to make

accurate camera localization. We show that extracted features are discriminative enough

to make accurate localization.

Further, in Chapter 4, this thesis improves the usage of 2.5D maps and semantic

segmentation of input images by using them in a learning based localization method. In

this chapter, we show how to train CNNs to learn to refine a pose estimate in a classification

framework by comparing 3D renderings of the 2.5D maps and semantic segmentation of

the input image. We later use the trained CNNs to iteratively update initial pose estimate

until an accurate pose is found.

Chapter 5 proposes a method that combines the reliability of recent image segmentation

methods with the efficiency and accuracy of geometric pose estimation methods. More

exactly, our method explores high-level features of the buildings with the efficient and

accurate minimal solvers.

Finally, Chapter 6 concludes the thesis by giving an overview and discussion about

lessons learned by combining information from untextured 2.5D maps and exploiting se-

mantic and high-level features of the buildings in the input images.

2
Related Work

Contents

2.1 Background Methods . 15

2.2 Image-based Visual Localization 32

This section presents background information about camera pose estimation literature.

Section 2.1 discusses some background methods which are required to understand the

visual pose estimation methods which are discussed in Section 2.2.

2.1 Background Methods

In this section, background needed for a better understanding of visual localization meth-

ods are described.

2.1.1 Neural Networks

This section presents the theoretical background about a powerful machine learning tool

called Neural Networks (NNs) and it’s variants. First, ideas behind NN is introduced and

NNs with more complex structure called Deep Neural Networks (DNNs) are discussed.

Variants of DNNs such as CNNs, RNNs, LSTMs and Siamese Networks will be discussed

in the later sections of this chapter. Then, training of NNs in Section 2.1.1.5 and regu-

larization of NNs in Section 2.1.1.6 is discussed. Finally, this section will be concluded

in Section 2.1.1.7 with the introduction of some of the well known architectures that are

used DNNs.

2.1.1.1 Artificial Neural Networks (ANN)

Neural Networks (NNs) or Artificial Neural Networks (ANNs) are set of algorithms that

are developed with inspiration from the way animal’s biological nervous systems work to

15

16 Chapter 2. Related Work

process information. NNs and especially, Deep Neural Networks (DNNs), which will be

explained later, have been very popular in the last decade since computation power of

computers increased enough and researchers had more understanding of them especially

in terms of regularization of a NN (see Section 2.1.1.6) to back-up this powerful structures.

Simplest unit of a NN is called a neuron which is used to process the information. An

example of a neuron is given in Figure 2.2. A neuron represents a non-linear function

which is parametrized with its weight w and a bias b. The incoming information is taken

as an input and processed by w and b. Then, an activation function σ such as sigmoid,

hyperbolic tangent (tanh), rectified linear unit (relu) is applied on the result to remove

linearity. Examples of activation functions σ are given in Figure 2.1. A neuron can

fire depending on if computed result exceeds a threshold T or not. Please note that

the activation function is not necessary to define a network but it is usually required for

effectiveness of the network.

A network may contain from a few to millions of neurons. A group of neurons can be

arranged into a layer l. Each of these neurons might be densely connected to nodes in the

previous input layer l to get the input data. Today’s neural networks are organized into

layers of nodes and they process the data mostly by moving it through a single direction

which is called feed-forwarding the information or its input. Feed-forwarding the data

through a neuron means that the neuron is taking the input data from all its connections

and multiplies them with w and adds the resulting products together. Finally, the b is

added optionally and activation function σ can be applied. Then, the resulting value is

given as an output of the neuron. More formally, a neuron with N input values represents

a nonlinear function g : RN → R with its parameters θ which are the learned parameters

w and b. Eq. 2.1 gives more intuition on how a neuron works for a given input x where

x ∈ R
N dimensions.

g(x) = σ

(

N
∑

n=1

wnxn + b

)

(2.1)

(a) Rectified Linear Unit
(ReLU)

(b) Sigmoid (c) Hyperbolic Tangent (tanh)

Figure 2.1: Activation functions that are commonly used in neural networks.

2.1. Background Methods 17

If the network is a combination of multiple neurons in a layer l, then each of these

neurons feed-forwards its input and the outputs of each neuron are combined and fed as

input to a neuron in the next layer. A weight matrix W l is constructed from the weights

w of each neuron as well as a bias vector bl for a layer l. Then, a layer function f l with

input x can be written as in Eq. 2.2 [28].

f l(x) = σl(W lx+ bl) (2.2)

A network can be constructed with L consecutive layers. The number of neurons in

each layer determines number of units in each layer and the number of layers determines the

depth of the network. This is where the term Deep Neural Networks (DNNs) is defined. If

the number of information processing layers, except the input and the output layers [28],

in a network is more than one, then the network is called a deep network. For a deep

network of L consecutive layers, each layer li is fed its input from the previous layer li−1.

Therefore, we can define a deep network with L layers as a function fL with combination

each layer as in Eq. 2.3. Input is defined with x and parameters θ is a combination of

each layer parameters θli .

fL(x; θ) = fL−1(fL−2(. . . f1(x))) (2.3)

fL maps a K dimensional input x to a P dimensional output, fL : RK → R
P . The

output of the last layer in the network is equivalent to the output of whole network and

therefore; the last layer is called output layer. We can also define an input layer which

just passes the network input to the first layer. The rest of the layers between an input

layer and an output layer are called hidden layers. An example of a network with two

hidden layers is given in Fig. 2.3.

Figure 2.2: Representation of a single neuron. N dimensional input X fed to the neuron
and neuron outputs g(x). The neuron multiplies X with its weights W and adds bias
on the result of multiplication. Then, activation function σ applied on output y of the
neuron.

18 Chapter 2. Related Work

Figure 2.3: A regular 3 layer network with 2 hidden layers and an output layer. Please
note that input layer is not considered as a layer when counting the number of layers for
a network since there is no computation done in that layer.

2.1.1.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a special family of ANNs. CNNs has been

investigated in 1980’s for classification [28]. They have been very popular for variety

of tasks from image-based location classification [94] to object detection [66] in the last

decade.

CNNs are similar to ordinary NNs with fully-connected hidden layers defined in Sec-

tion 2.1.1.1. Differences come from the term convolution which is a mathematical operation

on two functions to produce a third function, for which the two functions are a filter and

an image for CNNs. A simple example of convolution operation is shown in Fig. 2.4. As

ordinary NNs they consist of learned weights and biases. Each neuron in a convolutional

layer applies convolution operations with learned weights or filters on the 2D input image,

sums the biases and optionally an activation function is applied on the output. A CNN

may consist of multiple layers as regular networks to transform a volume of activations to

another layer through a differentiable function.

Main advantage of CNNs over standard fully connected NNs is CNNs consider spatial

structure of the images. This makes them behave near by pixels differently than far away

pixels and this is set by size of receptive fields of CNN layers. Considering local spatial

structure makes them a powerful tool for many tasks e.g. . image classification and object

detection by defining less number of parameters comparing to a fully connected layer and

therefore; enabling us to create deeper networks with many layers with less training time

compared to training of fully connected networks.

Considering a fully connected network which takes an RGB image of size 28 × 28

(width × height) as an input would have 28 × 28 × 3 = 2352 neurons in a single hidden

layer. This many parameters seem to be manageable, however; when the input image

size is larger and we add more number of layers into the architecture, then the number of

parameters increases a lot. Networks tend to memorize training samples instead of learning

2.1. Background Methods 19

a general representation from training data when the number of parameters is too much

and the number of training samples are limited. This problem is called overfitting [28].

CNNs take advantage of images’ spatial dimensions and introduce new properties such as

size of local receptive fields, feature pooling and weight sharing among different layers into

the architecture to decrease the number of learned parameters.

A CNN is usually build upon three type of layers, convolutional layers, pooling layers

and fully-connected layers. Fully-connected layers are discussed in Section 2.1.1.1 with the

name hidden layers where each neuron in this layer will be connected to all the neurons

in the previous layer.

Convolutional layers are where the convolutional operation is taking place with

learned 2D spatial filters. Depth of each filter is same with the depth of input to that

layer. Filters are convolved with the 2D input locally by sliding them through whole input.

Size of the sliding is called stride. As the filters are slided through the inputs, the network

starts to produce a 2D activation map which corresponds to the responses of that filter at

every spatial position. Therefore, if the filter size is 5×5 the network does not need to learn

weights as big as the input size but only learning 25× depth parameters would be enough

for that layer. If the input is an RGB image with the depth would be 3. Since these filters

applied locally, the spatial extent of this connectivity is called local receptive field and

receptive field of a layer is same as the size of the filters for that layer. These filters are

applied locally, however; applying many of them results in non-linear filters that become

increasingly global. Therefore; CNNs are able to produce low level representations of the

input in the lower layers but more high level representations in the later convolutional

layers.

Pooling layers perform down-sampling along spatial dimensions of its inputs. Most

commonly used pooling operations are max-pooling and average-pooling. For example, we

can define a 2 × 2 max pooling operator that takes the values of every 2 × 2 region in

a sliding window fashion and keeps the maximum value among the 4 values. A pooling

(a) Input
(b) Filter with size
3× 3

(c) Output

Figure 2.4: An example of a convolution operation showed on an input of depth one. A
filter of size 3 × 3 applied on an input image of size 3 × 3 at every pixel of the image by
sliding the filter. A valid convolution operation results in an output of same size of the
input.

20 Chapter 2. Related Work

Figure 2.5: A convolutional layer with three filters. Layer’s neurons are arranged in three
dimensions and an output with depth three is produced because of the number of neurons
in the layer. In this example, the red input layer holds the image, so its width and height
would be the dimensions of the image.

layer of filter size 2× 2 is applied on an output of convolutional layer with size 32× 32, to

reduce the size to 16× 16 and this would reduce the size of input to the next layer, hence,

the number of parameters to learn.

Another advantage of CNNs is their parameter sharing [28] ability. Parameter sharing

comes with a useful assumption that if a feature is useful to compute at a spatial position

(x1, y1), then it should also be useful to compute another position (x2, y2) [28]. With this

assumption in hand, we can reduce the number of parameters by sharing the weights and

biases of the neurons along the same depth channel of the input. This could simply be

used to avoid overfitting and reduce the training time.

Some of the well-known CNN architectures are VGG [79] and GoogLeNet [82]. VGG-

16 and VGG-19 are deep networks with 16 and 19 layers, respectively. Both VGG-16 and

GoogLeNet with inception module will be discussed in Section 2.1.1.7.

Figure 2.6: A simple CNN architecture is given for a classification task. Network takes an
input image of size (w × h × d) and feeds it through two convolutional layers, a pooling
layer followed by two fully-connected layers.

2.1. Background Methods 21

2.1.1.3 Fully Convolutional Networks (FCNs)

Standard NN architectures have fully connected layers where each neuron is connected to

neurons in the previous layer where as a Fully Convolutional Network (FCN) consist of

layers where all learnable layers consist of convolutions. So FCNs do not have any fully

connected layer. FCNs are applied on different tasks from detection [17] to segmenta-

tion [52]. To my knowledge, Matan et al [55] was first to propose such an architecture

while extending GoogLeNet [46] architecture called to recognize strings of digits because

the original architecture was designed to have single dimensional input strings.

There are several advantages of FCNs compared to standard CNNs. Since CNNs are

using fully connected layers, these layers computes a nonlinear function as explained in

Section 2.1.1.1. However, an FCN completely consist of convolutional layers and this

makes them compute a nonlinear filter. The advantage of this is being able to operate

on any input sizes and producing output of corresponding spatial dimensions while the

learned filters are slided through the input.

Another advantage of FCNs is having significantly overlapping receptive fields because

there are no hidden layers. This simply makes computation and backpropagation more

efficient and also reduces the number of parameters to learn since the hidden layers require

much more parameters to learn than the convolutional layers.

Not having fully connected layers do not disable FCNs to make use of pre-trained

architectures like VGG-162.1.1.7 with fully connected layers. One can simply replace

neurons in fully connected layers with 1×1 convolutions and use the learned weights from

pre-trained fully connected layers. Fig. 2.7 shows an example of this conversion from fully

connected layers to fully convolutional layers.

Figure 2.7: A classification network can produce a heatmap by transforming fully con-
nected layers into convolution layers. (Figure is taken from [52].)

Fully connected layers lose most of the spatial information in the image since all neurons

in that layer is connected to all layers in the previous layer. However, FCNs are good to

preserve the spatial information since they are fully convolutional. Also since FCNs are

fully convolutional, they are able to perform on any input size. Therefore, these features

22 Chapter 2. Related Work

of FCNs make them quite useful for segmentation task. Long et al [52] uses pre-trained

CNN [79] and converts them to an FCN with replacing pre-trained fully connected layers by

1×1 convolutions. Since CNN architectures like VGG-16[79] uses pooling layers to reduce

the number of parameters the spatial dimension of the output of convolutional layers is

reduced. However, segmentations tasks requires to assign a class label for each pixel in

the image. Reduction of spatial dimensions because of pooling layers is handled with

introducing upsampling deconvolutional layers where a backward convolution operation

is applied. Another improvement on the results come from introducing skip layers [42].

Since there are multiple pooling operations applied in VGG-16 architecture the spatial

information is already lost because of the previous pooling layers. Therefore, skip-layers

are introduced by passing the information from previous pooling layers to the last layers.

2.1.1.4 Siamese Networks

Siamese neural networks is a class of NN architectures that has two or more identical

subnetworks. First siamese architecture is proposed by Bromley and LeCun in 1993 [8] for

signature verification, see Fig. 2.8. Identical two networks means that they share exactly

same parameters and backpropagation is mirrored for all subnetworks. Siamese networks

accepts inputs of different types but after feed-forward step they are joined by an energy

function at the top.

Siamese architectures mostly used for finding similarity or a relationship between two

images in Computer Vision community. Advantage of such architecture like a Siamese

Network is having less parameters since weights are shared across twins.

2.1.1.5 Training of Deep Networks

The procedure used to carry out the learning process in a NN is called training. After de-

ciding the layers and structure of a network, it should be trained on learnable parameters.

There are three main learning types in Machine Learning, supervised, weakly supervised

and unsupervised learning. In this section, training of neural networks with supervised

learning will be focused.

In supervised learning, a general approach is to divide our data into two sets, a training

set and a validation set. The training set is used to determine learnable parameters θ for

network’s performance and the validation set is used to validate our network on examples

which the network did not see before during the training. Each data sample x is labeled

with ground truth information y and these pairs are shown to the network either one by

one (batch size equals to one) or having batches of multiple samples. Each time a batch

is fed to the network, a loss is calculated by comparing the network outputs and y. Then,

the network updates θ depending on the magnitude of the loss. A network completes an

epoch of the training when it sees all training data once and the training may take even

hundreds of epochs depending on the loss function. It is important to use validation sets

during the training to validate that our networks can generalize the information learned

2.1. Background Methods 23

Figure 2.8: First siamese network architecture proposed by Bromley et al [8]. It consists
of two identical networks each has an input images of dimension 8× 200. Figure is taken
from [8].

from training samples. If the loss from training and validation sets does not have a positive

correlation this means that the network overfits on the training set and network will not

perform well on unseen examples. Overfitting in NN will be described in Section 2.1.1.6.

Training of a network depends on many factors to perform well and the rest of this

section will explain some of these factors.

Parameter Initialization. First, all θ should be initialized. There are different types

of initialization of parameters e.g. Random, Xavier [27] or initialization from a distribution

such as Bilinear. The initialization type has an important role in training by effecting how

well the network learns or how long the training takes [27].

Loss Functions. Depending on the task we are trying to solve many different loss

functions has been proposed e.g. mean squared, cross entropy, logarithmic, cosine similar-

ity, hinge. Which loss function to use completely depends on the task and the definition

and use of these functions are far beyond the scope of this thesis.

Optimization Algorithms. The loss function the network computes has to be mini-

mized. The network parameters are updated by using backpropagation [28] algorithm and

there are different optimization algorithms such as Gradient Descent (GD), Stochastic

24 Chapter 2. Related Work

Gradient Descent (SGD), or more advanced ones like RMSProp and ADAM [28]. The

type of the optimization algorithm effects the training by deciding how efficient it will the

global minimum of the function we are trying to minimize.

Learning Rate. Learning rate is to decide how much to update each parameter in

the estimated direction by backpropagation and optimization. Using adaptive learning

rates by decreasing or increasing in certain situations depending on the current loss of the

network has been also useful trick for training.

2.1.1.6 Overfitting Problem in Neural Networks

A model with a large number of free parameters can describe the underlying data very

well. However, such a model can agree well with the data we used to train the model but

this doesn’t mean that it will be a well generalized model for the task that is trained for.

This would mean that the model has enough freedom to represent the data of training

but does not generalize the model to other data rather than the data used for training. In

Machine Learning, such a problem is called overfitting.

One way to reduce overfitting is to increase number of training data to make the model

see more real-world examples. This can be done either by collecting more real data or

with augmentation of the current training data.

Another approach is to use early stopping during training. Early stopping of a training

means that the model has learned as much as it can from the current training data. This

can be decided by observing the losses of training and validation data. Training of the

model is stopped when the loss on the validation data starts to increase while the loss on

the training data is still decreasing.

Overfitting is a general problem if the training set is small and the number of parame-

ters to learn is too much. Therefore, we need regularization techniques. Regularization is

defined as any modification that would reduce the generalization error but not the training

error [28]. Some of the regularization methods are described in the rest of this section.

Weight Decay. Weight decay is one of the most commonly used regularization tech-

nique. It makes the assumption that a model with small weights is simpler to learn than

a network with large weights. Therefore, it tries to penalize large weights by using either

L1 norm or L2 norm. L1 norm penalizes the absolute value of the weights while L2 norm

penalizes the squared value of the weights.

Batch Normalization. Batch normalization (BN) normalizes the output of a previous

layer by subtracting the batch mean and dividing by the batch standard deviation and

introducing two learnable parameters α and β [36]. This is a type of regularization of a

network that increases the stability. It can be interpreted as doing a pre-processing before

a layer but without breaking the differentiability of the overall function that a network

2.1. Background Methods 25

tries to learn. It is usually added after fully connected layers but also adding it after

convolutional layers is an effective regularization.

A problem in Machine Learning algorithm is called Internal Covariate Shift and BN is

applied to reduce the effect of this problem. Internal Covariate Shift refers to the change

in the input distribution in our model between different layers. The parameters of a layer

in a network is affected by the parameters of all previous layers. Therefore; small changes

in the layers affects all the others. This leads to change in the input distribution.

BN reduces Internal Covariate Shift by adding two learnable parameters to each layer.

Normalized output of a layer is multiplied by α and β value is added to the result of

multiplication. Then, the result is fed to the activation layers, if any activation function

is used.

BN leads us to use higher learning rates because it makes sure that internal covariant

shift is reduced and there is no output very high or very low. It allows use of saturating

nonlinearities and reduces the dependence of gradients on the scale of parameters. Since

the initialization of the parameters are very important for a NN, BN also reduces the

importance of parameter initialization.

Dropout. Another effective regularization technique is called Dropout and it is com-

monly assumed as a layer type. This layer randomly deactivates some of the neurons or

another way of saying this is the weights of some of the neurons are set to zero. Then,

output of the remaining neurons are forwarded to the next layer. This simply reduces

the dependency to all neurons in a layer. It is hard to assume all neurons will always

give useful information, therefore; dropout reduces to dependency on all the neurons by

deactivating them with a probability distribution p ∈ (0, 1)[28]. In this way, the neurons

become less sensitive to the other neurons and the model becomes more robust. Dropout

is mostly applied on the fully connected or input layers. Fig. 2.9 shows how dropout is

applied on the inputs to a layer.

Figure 2.9: Visualization of dropout applied between the two hidden layers (blue). It
randomly deactivates some of the neurons, in this case 50% of the neurons in the second
hidden layer is deactivated or weights of those neurons are set to zero.

26 Chapter 2. Related Work

2.1.1.7 Famous Network Architectures

This section mainly discusses two of the well known architectures VGG [79] and

GoogLeNet [82] in DNNs. Both of these architectures have shown to be very successful

for classification problems but with the help of transfer learning the scope of them has

extended to different tasks like semantic segmentation [52] and camera localization [40].

Indeed, both VGG and GoogLeNet is introduced after another famous architecture called

AlexNet [43]. AlexNet will not be discussed in the later section, however, ideas in that

made AlexNet architecture were in the core of many other later architectures. Therefore,

it is worth to mention AlexNet. It is composed of five convolutional layers followed by

three fully connected layers. AlexNet was first to use activation function ReLU for the

non-linearity to decrease the effect of vanishing gradient problem and also it was first to

apply dropout in a deep architecture.

VGG. VGG network design is one of the first works that took attention to receptive

fields of stacked convolutional layers with small kernel sizes such as 3 × 3. There are

two architectures proposed by the Visual Geometry Group (VGG) in Oxford University.

Architectures are called VGG-16 with 16 layers (13 convolutional layers, 2 fully connected

layers and a softmax layer for the output) and VGG-19 with 19 layers (16 convolutional

layers, 2 fully connected layers and a softmax layer for the output) [79]. In this section, I

will focus on VGG-16 architecture. It is also notable that only difference of VGG-19 from

VGG-16 is having three more convolutional layers to have a larger receptive field.

Figure 2.10 shows design of VGG-16 network, it takes input images of shape 224 ×

224 × 3 (width × height × number of channels) and it consists of many stacked 3 × 3

convolutional layers. Advantage of such architecture comes from the receptive field of

such stacked layers with small kernel sizes. These 3 stacked layers with 3× 3 kernels with

stride 1 has same receptive field with a layer with kernel size 7 × 7 but they have less

parameters to learn. Therefore, it is computationally more efficient.

Another advantage of VGG architecture is increased nonlinearity and depth since it

has stacked layers with small kernels compared to replacement of a stack with a layer of a

larger kernel size. This enables the network to learn more complex features with a lower

cost.

Dimension of the inputs to the next convolutional stack is reduced by 2 × 2 max-

pooling layers and then, convolutional layers are followed by three fully connected layers

with sizes 4096, 4096 and 1000, respectively. The last fully connected layer applies a

softmax classifier and it has dimension 1000 since the network is applied on ImageNet [20]

where the number of classes to predict is 1000. An activation function, ReLU, is used

after each convolutional and fully connected layer (except the last fully connected layer).

A disadvantage of VGG architecture is its size, number of parameters. The network

is so dense and it contains around 160M parameters to learn. Even today, many of the

GPUs cannot handle a structure that large.

2.1. Background Methods 27

Figure 2.10: Architecture of VGG-16 network which contains around 160M learnable
parameters. (Figure is taken from [52].)

GoogLeNet. VGG architecture had a great accuracy on ImageNet challenge but an-

other architecture called GoogLeNet [82] is proposed after VGG and GoogLeNet had great

success both in terms of accuracy and efficiency of the model. Szegedy et al [82] proposed

to use a special module which is called as inception module in GoogLeNet. Indeed, this

module is what makes GoogLeNet so special and indeed overall architecture of GoogLeNet

adapts nine of these inception modules.

An inception module is a combination of multiple convolutional layers as well as a

pooling layer applied in parallel. Fig. 2.11 shows how the layers are organized in an

inception module. This module gives the flexibility to the designer not to worry about

which kernel size is to use and if there should be pooling layer or not. Inception module

contains all of them in the same module.

GoogLeNet consists of 22 trainable layers with 9 inception modules. It also contains

multiple output layers. This can be assumed as a protection against vanishing gradi-

ents problem. Since such deep networks vanishing gradients are a common problem and

GoogLeNet approaches this by collecting many outputs if the later layers which are tend

to lose information.

ResNet. As we have seen from GoogleNet architecture, increasing the depth increases

the accuracy together with the carefully designed inception modules. However, increased

depth of the architectures make the model overfit easily before successfully approximating

a generic mapping function H(x).

ResNet architecture first proposed by He et al [34] for image classification tasks. The

gist of the approach relies on the idea of modifying the approximated mapping function

28 Chapter 2. Related Work

Figure 2.11: Architecture of an inception module. Input is processed in four parallel tracks.
In each track convolutional layers with different kernel sizes are used. The important point
to make here is to reduce the number of operations required by convolutional layers with
large kernel sizes Szegedy et al [82] applied convolutional layers with 1×1 kernels, bottleneck
units, before each convolution layer with larger kernels. Bottlenect units reduces the
depth of the input to next layer with larger kernel size to apply less number of operations.
Inception module also removes the designer to worry about the used kernel sizes in a layer
because an inception module simply applies variety of sizes. (Figure is taken from [82].)

H(x) for inputs x to approximate a residual function F (x). So, instead of approximating

H(x) with a stack of non-linear layers by the network, the key is to learn a better defined

function such as F (x) := H(x)−x. These functions encoded in the architecture as residual

blocks. An example of the a residual block can be seen in Figure 2.12.

Figure 2.12: Illustration of a residual learning block. F (x) := H(x) − x is learned using
the residual blocks. (Figure is taken from [34].)

With the advantage of better defined mapping functions, ResNet has shown to go as

deep as 152 layers without the overfitting problem. ResNet achieves better accuracy than

both VGG and GoogleNet architectures while it is computationally more efficient than

2.1. Background Methods 29

(a) Input image (b) Segmented image

Figure 2.13: Semantic segmentation example. Each pixel in the (a) input image is assigned
a label for one of the classes e.g. motorbike, driver or background in (b) the segmented
image. (Images are taken from PASCAL VOC2012 dataset [23].)

VGG even if the network is much deeper.

2.1.2 Semantic Image Segmentation

Semantic segmentation of images plays a crucial role for scene understanding in our cam-

era localization approaches and it is also a very active research area in CV. Semantic

segmentation is understanding of the images at pixel level by assigning each pixel in the

image an object class label. Figure 2.13 shows an example of a perfectly segmented input

image into three classes, motorbike, driver and background.

Deep Learning (DL) based approaches gained popularity in the last decade and CNNs

has shown to have great success on segmentation tasks. One of the first approaches with

DL was to classify each pixel based on image patches in a classification framework. This

is because CNNs were used with hidden layers and they require the input to be fixed size.

Long et al [52] showed how to make use of CNNs to make dense predictions without

any hidden layers by replacing the hidden layers with convolutional layers. This approach

has few advantages since without hidden layers, CNNs could process images of any size.

Another advantage is that since there are no fully connected layers the processing can be

done much faster with less memory requirements.

A disadvantage of CNNs for dense image prediction is the use of pooling layers where

the spatial information is mostly lost. Pooling layers are dangerous for segmentation

problem since pooling layers reduces the dimensionality while discarding the localization

information but increasing the field of view of the network. This problem is solved by

proposal of architectures called encoder-decoder and it is also used by [52]. Encoder part

acts like convolutions and pooling layers while reducing the dimension and increasing the

field of view. On the other hand, decoder part tries to decode and recover the spatial

information lost during encoding part. Adding skip connections from the encoder to the

decoder is another trick to help the decoder recover the object details better. Such an

encoder-decoder architecture with skip connections is used by Long et al [52].

An important factor for the segmentation networks as mentioned with pooling layers

30 Chapter 2. Related Work

is the size of receptive field of convolutions. If the receptive field is small, it is hard for

the network to see whole context in the image. Pooling layers increases the receptive field

but reduces the resolution. A solution to this problem is proposed with dilated (atrous)

convolutions [12, 13, 98]. Dilations are used within the kernels of convolutional layers to

increase the receptive field for dense predictions. An advantage of dilated convolutions is

that they do not increase number of parameters.

[98] introduces context modules that make use of dilated convolutions for multi scale

aggregation. [12, 13] uses atrous spatial pyramid pooling (ASPP) to apply dilated con-

volutions with different rates and combine them later on with element-wise summation in

the pooling layer.

VGG [79] architecture showed promising results in image segmentation tasks and used

by [12, 98] but later [13] showed Residual Network (ResNet) [34] architectures performs

better at PASCAL VOC challenge [23].

In this thesis. we use recent advances in image segmentation to use it in a pose estima-

tion framework. We consider urban scenarios where man-made structures are dominant

and especially the structures like buildings dominate the main part of the scene. There-

fore, buildings and its parts such as façades and edges play an important role for our

localization method. Our localization methods use [52] to segment the input images into

our semantic classes, façades and edges of the buildings.

2.1.3 PnP Problem for Pose Estimation

Determining the orientation and position of a fully calibrated perspective camera from n

(n ≥ 3) 3D points and their corresponding 2D coordinates in the image space is known as

the Perspective-n-Point (PnP) problem [31].

A set of N 3D points Xi, i = 1 · · ·N in world coordinate system is projected to the 2D

image coordinate points ui, i = 1 · · ·N with a complete camera projection matrix P as in

Equation 2.4.

ui = PXi (2.4)

P is defined with the camera intrinsic parameters K and it’s extrinsic parameters [R|t]

for camera’s position vector and orientation matrix. Then, P is defined as follows:

P = K[R|t] (2.5)

and where K is defined as in Equation 2.6 with camera’s principal points (x0, y0), skew

parameter s and focal lengths, fx, fy.

K =







fx s x0
0 fy y0
0 0 1






(2.6)

The full camera projection matrix can be estimated by using at least 6 point correspon-

2.1. Background Methods 31

dences. Then, an homogeneous linear system created for 6 points with the Equation 2.4.

Given K, estimating the extrinsics of the camera [R|t] requires to solve a system of

non-linear equations created with 3 correspondences. The minimal case of PnP problem is

P3P problem where n = 3. P3P has been deeply studied in the literature [31]. In practice,

P3P is used together with RANSAC [24] algorithm to remove the outlier correspondences.

P3P considers 3 reference points to solve a system of non-linear equations with 4 solutions

and uses a last point, called as control point, which used to find a unique solution.

Lepetit et al [47] proposes a general solution for n ≥ 4, called efficient PnP (EPnP).

The main idea is to express each reference point as a weighted sum of four virtual control

points and the control points become the unknowns of the system. Then the problem

reduces to estimating the coordinates of these control points in the camera referential.

This is achieved efficiently with a complexity of O(n) by expressing the coordinates as

weighted sum of the eigenvectors matrix and solving quadratic equations to pick the right

weights for the virtual points.

2.1.4 Minimal Solvers

A general approach to solve a geometrical problem is to use all available image features

and solve it using some least squares measure over all features. However, minimal solutions

using only minimum number of point correspondences to solve the problem have proven to

be noise resistant. Using minimal solvers has been used as an efficient and accurate way to

deal with noisy data including outliers. Geometrical problems are frequently attempted to

solved by minimal number of image features. Minimal solvers are applied on wide range of

applications from pose estimation to camera calibration are being addressed with minimal

solvers. A comprehensive list of minimal problems proposed in CV community is kept1.

Minimal solvers typically rely on geometrical image features for hypotheses generation

to find a good fit applying the RANSAC algorithm [24]. RANSAC was introduced to be

used with a P3P [25] algorithm, which is a minimal solver. Since then, many minimal

solvers have been introduced, for example to compute a camera pose from line correspon-

dences [22], register a camera including internal parameters [9, 45], the essential matrix [59]

from point correspondences or relative pose from five points correspondences [59]. Minimal

solvers are getting popular and they are applied on various applications. The problems

typically involve solving a polynomial system.

In this thesis, we introduce two minimal solvers adapted to our application in Chap-

ter 5. Our solvers’ task is to compute a 2D pose (2D translation+rotation). The first

solver computes the 2D pose from 3 edge correspondences and the second solver computes

it from 2 edge correspondences plus a façade’s normal correspondence.

In this chapter, so far, we discussed the background knowledge needed for a better

understanding of the localization methods. In the rest of the chapter, approaches for the

camera localization are presented and some of these methods are discussed in detail. We

1http://cmp.felk.cvut.cz/mini/

32 Chapter 2. Related Work

categorize the approaches in camera localization based on the source of information used

in the gist of the methods.

2.2 Image-based Visual Localization

This section discusses several methods that attack the problem of image-based camera

localization. First, Section 2.2.1 discusses the approaches that use registered images as

their only source of information. Then, other methods that use and combine information

from other modalities such as 3D models are presented in Section 2.2.2.

2.2.1 Localization with Registered Images

This section presents an overview of camera localization methods that are based on ground

level registered images. Methods based on registered images rely on images and they do

not use any other source of information rather than images. More specifically, a large set

of images are collected and they are registered in to a dataset with their geo-location tags

or 6 DoF camera poses.

Camera localization using registered images is one of the well studied branch in this

task. Therefore, it is important to give an overall overview of the image based localization

methods with registered images before going deeper into specific methods. Localization

using registered images can be categorized into three sub-problems based on how the task

is solved, as a Content-Based Image Retrieval (CBIR) problem [5, 32, 33, 60, 64, 76, 93, 95],

2D-3D correspondence matching problem, a classification problem [37, 94], and recently

as a regression problem [40]. These approaches are discussed below.

Image based localization with registered images is mostly studied as an image retrieval

task, more specifically, Content-Based Image Retrieval (CBIR). This task is based on

understanding contents of the images in our database, in our case a database means

registered images with their geographical tags. CBIR retrieves the most similar images

in a set when a new image is queried based on its contents. Content means here all

important cues such as landmarks, street signs, road markings or architectural details

in the image. Defining each image with unique signatures is important for CBIR. A

way to define unique global signatures on the images is extracting global descriptors [32]

from images. Another way is based on local features such defining bags-of-visual-words

(BoVWs) or inverted indices [60, 80]. Local features have been proven to work better than

global descriptors [60, 80] but disadvantage of them is that memory requirements because

the descriptors are larger to store and they are mostly not invariant to natural scenes.

Since natural scenes are lack of nice local features, it is hard to match them against the

registered set.

Instead of using local or global image descriptors like SIFT [53] or [61], CNNs has

been used as great feature extractors. One of the first successful application as a scene

recognition task has been proposed with the SUN database [96] by extracting features with

2.2. Image-based Visual Localization 33

Overfeat [78] CNN network. Extracting image features with CNNs usually outperforms

other local or global descriptors in this task.

When a dense imagery of an environment is available, those images can be used to

construct a 3D model with structure-from-motion [72, 81] methods. Then when an image

is queried a correspondence set is created between the interest points in the image and

3D points in the model. This correspondence set results in Perspective-n-Point (PnP)

problem and a 6 DoF camera pose is found by solving this system [48, 49, 72]. Since some

applications require 6 DoF pose of the camera, the advantage of such methods is that

when a 3D model is available we can come up with 6 DoF camera poses.

Another way to approach camera geo-localization problem is approaching as a classi-

fication task [32, 33, 94]. Approaching a localization system as classification problem is a

trivial task when the coverage of the system is whole world. A good example of such a

system is shown in PlaNet [94] which will be discussed below.

Recently, localization problem is approached as a regression problem by [40]. Regres-

sion task fits into the needs of image localization problem since in regression the number

of possible outputs is infinite. An image could be taken from any where on the world

without discretizing the output space. Therefore, regression task fits the needs of image

localization task very well. PoseNet [40] is a good and, to my knowledge, the first example

of image localization as a regression problem. Some variations of PoseNet has been already

proposed [38, 39, 92].

In the rest of this section three methods based on registered images will be reviewed

in detail. First, a classification based method, (i) PlaNet [94], that uses huge amount of

training data where the coverage is whole world and achieves superhuman level of accuracy

on urban area will be discussed. Then, two regression based image localization methods

will be presented, (ii) PoseNet [40] and its variations which are great examples of transfer

learning will be presented, (iii) CNNs+LSTMs for structured feature correlation.

PlaNet [94] approaches the image localization problem as a classification problem with

a very large set of registered images. PlaNet divides the world surface into geographical

cells and when a new image is queried it tries to assign likelihoods for each cell.

PlaNet trains a CNN with 126M images with Exif geo-locations crawled from the web,

91M for training and 34M for validation. Crawled images has been slightly preprocessed

by removing the images with clip-art, diagrams and other unrelated contents while still

keeping images of pets, food or products where there is almost no clue about location of

those images. Therefore, the training set is pretty noisy. For testing, authors collected

2.3M images by removing test images which are similar to any training image by applying

a near duplicate image detection algorithm.

PlaNet uses Google’s open source S2 geometry library2 to adaptively divide the world

surface into 26263 cells. S2 cells are created by projecting the surfaces of a cube onto

surface of a sphere. Six sides of the cube are subdivided by six quad-trees. Size of the cells

2https://code.google.com/archive/p/s2-geometry-library/

34 Chapter 2. Related Work

are adaptive since PlaNet applies an adaptive subdivision based on the geo-tags of images.

Each quad tree of a cell is descended and cell is subdivided until there is no cell left with

more than 10000 images and cells with less than 50 images are discarded. Therefore, areas

where a photo is very unlikely to be taken are not considered.

Input to the CNN is raw pixel values of the images and the network outputs a one-hot

vector encoding the cell containing geo-tag of the image. Advantage of such classification

approach is since it has likelihoods for the query image belonging to each cell, it can take

advantage of uncertainty about its predictions. The CNN is based on Inception structure

which is described in Section 2.1.1.7 and it has around 100M trainable parameters. Train-

ing of such a large network with such a large data took around 2.5 months with 200 CPU

cores.

The framework uses 2.3M test images and the results claims to have much better

accuracy than another large-scale localization method Im2GPS [32] and methods which

use other feature descriptors. Further, the classification based approach is extended to

take into account temporal dependency of images that are taken approximately within

similar times. For this purpose Weyand et al adopts LSTMs and applied them on photo

albums that are uploaded on Flickr. Performance has significantly improved since some

images that do not depict any visual cue to make inference about their location can be

predicted correctly with the help of other images in the photo album.

PoseNet [40] is a great example of approaching localization problem as a regression

problem. In contrast to other approaches where the output space is discretized, outputs

of regression based approach are not discretized over the space.

PoseNet proposes the first robust regression based localization system that predicts

6 DoF camera pose from single RGB images without any other source of information

like depth. This is achieved by using a 23 layer CNN, more specifically GoogLenet in

Section 2.1.1.7, and training it in regression fashion. Training is started with pre-learned

weights from ImageNet. This is also a good example of transfer learning since in ImageNet

the task is a classification task but PoseNet shows that it can be applied on a different

task as regression.

To train this regressor, SfM methods are used to create a 3D model of the environment.

First, a training set is collected for the environment of localization and images are used

to create a 3D model by using SfM. In this way, training set with 6 DoF poses annotated

for each image is created.

The network outputs a 7 dimensional pose vector, p = [x, q] where x is 3D position (3

dimensions) and q is quaternion representation (4 dimensions) for the 3D orientation of the

camera. Rotation matrices require orthonormalization during training, therefore; quater-

nions are used to represent camera rotation since they are easily mapped to legitimate

rotations by normalization to unit length [40].

During the training, loss function in Eq. 2.7 is minimized using SGD. Such an objec-

tive function as in Equation 2.7 learns position together with orientation. PoseNet claims

that learning position and orientation separately performs worse than learning them to-

2.2. Image-based Visual Localization 35

gether. It is explained as splitting the learning of position and orientation makes them

stop learning each information necessary to factor out the orientation from the position,

or vice versa [40].

loss(I) = ‖x̂− x‖2+β

∥

∥

∥

∥

q̂ −
q

‖q‖

∥

∥

∥

∥

2

(2.7)

β is a scale factor to arrange the loss value between position and orientation equally

because the position error is usually much larger for outdoor scenes. Since PoseNet is

applied on both indoor and outdoor scenes, arranging β value is necessary in learning for

different type of scenes.

PoseNet achieves approximately 2.40m position and 6.76◦ orientation error on large

outdoor scenes. Error rates are decreased by predicting multiple crops from a frame

and averaging their output poses. When applied on indoor scenes, PoseNet achieves

approximately 0.44m and 10.40◦ error rates.

A disadvantage of PoseNet is being specific to the trained environment. This means

that you cannot apply the trained regressor to other unseen environments. However, it

is noted that it is possible to tune the network by providing small set of examples of the

new environment. However, this is not well experimented in the paper.

There had been further improvements on the original PoseNet study. Some of these

improvements will be briefly described in the rest of this section.

Bayesian PoseNet [38], same as in other tasks like classification, taking uncertainty

into account is also important for regression tasks, especially in pose regression. There-

fore, [38] considered uncertainty in PoseNet framework. While the original PoseNet pro-

duces a deterministic output for an input image, Bayesian PoseNet [38] considers that

an ambiguous image could be generated by multiple poses. [38] achieves this making use

of dropout layers (Section 2.1.1.6) in training and also during the evaluation to estimate

uncertainty of the predicted pose. Bayesian networks improves the error rates of original

PoseNet to 1.96m and 6.02◦ for outdoor and 0.47m and 9.81◦ for indoor scenes.

PoseNet with geometric loss functions [39] is an improvement published by the

same authors [39] with the introduction of a new loss function that considers the geometric

constraints in the projection, more specifically mean residuals of point projections.

LSTMs for structured feature correlation [92] uses LSTMs on top of a CNN

architecture for feature reduction that is suitable for localization. PoseNet [40] showed

image-based localization is possible with regression based approaches, however; their re-

sults are still not comparable to other feature point based methods like the state of the

art Active Search [74] method.

A great improvement after PoseNet came through with a combination of CNNs and

LSTMs. Same CNN architecture (GoogLeNet) with the same modifications in PoseNet is

used by [92]. Then, LSTMs are used for structured feature correlation by Walch et al [92].

While PoseNet carefully uses dropout technique to prevent overfitting caused by the high

dimensionality of fully connected (FC) layers, [92] make use of LSTMs on the output of

36 Chapter 2. Related Work

the last FC layer. LSTMs are used to better correlate features of convolutional and FC

layers by reducing dimensionality in a structured way.

Instead of using LSTMs, one could reduce dimensionality of FC layers with some other

methods like principal component analysis (PCA), however; [92] shows LSTMs’ memory

blocks are more effective in this manner.

Dimensionality of last FC layer is 2048 in the architecture and since the feature di-

mension is too long for LSTM to correlate from beginning to the end, Walch et al make

use of 4 LSTM networks and apply them in different directions on the previous output.

Output of last FC is reshaped to a 32×64 matrix and four LSTMs are applied in different

directions, up, down, left and right. Then outputs of these LSTMs are concatenated and

fed to two FC layer to make predictions, one for the position and the other one for the

orientation.

[92] and their results claim that this technique selects features that are more useful for

image localization techniques with an improvement around 30% wrt. PoseNet. However,

even if the results improved a lot wrt. PoseNet, still feature point based methods like

Active Search [74] are better than regression based approach. However, a big drawback

of feature point based methods is they are not able to recover poses from scenes where

repetitive structures are too much or there are a lot textureless objects as showed by

Walsch et al by experimenting on a new large scale indoor dataset.

Experiments show that CNN+LSTM structure achieves better accuracy than the re-

sults of PoseNet because of an efficient dimensionality reduction approach, however; there

is still a margin to close wrt. feature point based localization methods such as Active

Search. Advantage of using method proposed by Walch et al is noteworthy when the

scene includes textureless or repetitive objects.

2.2.2 Localization with Combining Information from Multiple Modali-

ties

In this section, image-based localization methods which make use of the query image

together with other sources of information such as aerial images, orthophoto maps, Digital

Elevation Models (DEMs), LIDAR sensors, cadastral maps or cadastral maps with height

information (2.5D maps) will be discussed. This section first gives a brief introduction to

methods in this domain. Later, it details some of the localization methods.

Aerial images or orthophoto maps are one of the other important input for localization

methods. Even if aerial images could be classified in the previous chapter as pre-registered

images since they provide methods with different source of information they are better to

be discussed in this chapter. Aerial photos are made by using central projection where

they represent the earth’s surface as observed, however; orthophoto maps are created by

orthogonal projection of aerial images and by removing distortions caused by different

heights of objects, earth’s surface or distortions caused by the camera. Aerial images or

orthophoto maps are considered in many studies [50, 51, 91, 95]. Key idea in these works

2.2. Image-based Visual Localization 37

is to make cross view matching between the query image and such maps or aerial images.

For example, [50] uses a database made of triplets of ground images, an orthophoto map

and an attribute map which includes attributes like water, grassland, vegetation to make

cross view matching when an image is queried. [51, 86, 95] uses deep representations to

make cross-view matching. [95] proposed a method where image features are extracted by

a CNN from both ground level and orthophoto maps. Then localization is completed by

finding nearest neighbors from the extracted features. [51] also used CNNs by adopting a

Siamese architecture to make cross view matching from Google Street View3 and tilted

aerial images. Similar to [51], Tian et al [86] also uses Google Street View images but

this method separates each building with an RCNN and apply Siamese architecture on

each building to make the matching with reference aerial images. These studies show that

methods using orthophoto maps or aerial images can be applied both in urban and rural

environments.

Simultaneous Localization and Mapping (SLAM) is also considered as a localization

system where inputs from different modalities such as LIDAR sensors, depth cameras,

stereo images or GPS are usually combined. SLAM considers to construct a map of

the environment while simultaneously localizing the agent. Deep learning based SLAM

systems started to be considered in some recent studies [21, 85]. These methods will not

be discussed further since SLAM systems require much more explanation than scope of

this thesis.

Another source of information frequently used in image geolocalization is Digital Ele-

vation Map (DEM). DEMs are 3D representation of a terrain’s surface. DEMs can be also

called as Digital Terrain Models (DTM) or Digital Surface Models (DSM) and they repre-

sent very informative features of terrains by giving height information. Elevation models

have been key inputs to many of the geolocalization methods [58, 64, 75, 83, 90] but using

them mostly for rural areas like mountains or deserts. One of the standard method to use

DEM for localization was to render horizon lines from the map and to match them with

horizon lines extracted from query image [83]. [58] used a more novel technique to extract

horizon lines in the query image by a Multi Layer Perceptron (MLP) and used local peaks

as feature points to make a correspondence set between the input image and the DEM. A

MLP is a basic neural network where each neuron is made of perceptrons. [75] proposed a

large scale algorithm by considering contours of mountains and geometric constraints like

consistent orientation to localize images of Alps in Switzerland. All previously mentioned

studies used DEMs for rural areas but Ramalingam et al [64] considers localization for

urban canyons (where street is covered by long buildings on bot sides) using an upward

facing omni-skyline image and a DEM but this method was applicable only for streets

dominated by skyscrapers. All these studies can make use of elevation models only if

horizon line is visible.

DEMs have been used for natural environments in previously mentioned studies. Less

3http://www.google.com/streetview/

38 Chapter 2. Related Work

detailed maps like cadastral maps or 2.5D maps which are height augmented cadastral

maps have been more exploited urban areas in [1–4, 6, 11, 14, 19, 56, 65, 84]. Building

outlines are important clues for localization in urban. Baatz et al [6] used panoramic

street-view images and a database of textureless 3D buildings extracted from floor plans

to make urban localization. [6] approaches the problem by applying rectification based on

vanishing points to remove the perspective and reducing the problem to a 2D homothety

problem. Other work [14, 19] also considers panoramic images to make use of their large

field-of-view to make the matching of building fragments easier with a 2D map.

Other methods [4, 56, 65, 84] make use of cadastral maps with height information

such as 2.5D maps. [65] registers an image with respect to a 2.5D model by matching

3D and 2D lines and points. However, in this case a second image, which has already to

be registered, is required to establish the 3D-2D correspondences. Consequently, the first

image of a sequence needs to be manually annotated.

Similarly, [56] establishes line correspondences between the input image and a 2.5D

map of the scene. However, due to insufficient accuracy regarding the image orientation,

additionally, some kind of user interaction is required.

Similar to our approaches presented in this thesis, [84] make use of image segmenta-

tion for localization to find alignment between the 2.5D maps and the input images. [84]

estimates the 3D pose by segmenting the façades in the input image and aligning them to

a 2.5D map by requiring an optimization in the 6D pose space and the authors have to

introduce a swarm-based optimization. The approach relies on a detailed 2.5D model than

the ones used in our approaches and in addition, high resolution panoramas from Google

Street View in order to provide an accurate initial geolocation. The use of panoramic

images also helps the optimization as discussed above. With regular cameras, considering

only the façades is often ambiguous: For example, if a street has only aligned with the

buildings with similar structures, the translation along the direction of the street is not

constrained.

[4] uses the same setting as we approach the camera localization. [4] uses only an

untextured 2.5D map and a pose estimate as reference information. However, [4] relies

heavily on the extraction of straight line segments, in particular to find the reprojections

of the corners of the buildings. This step is specifically fragile, as buildings’ edges do not

necessarily appear as line segments in images, and additionally, also spurious segments

can be extracted without corresponding to the corner of a building.

In the rest of this section, some of the methods in image-based localization will be

detailed. More specifically, first, [51] will be discussed in detail to show how aerial images

and ground level input images are used in a CNN to make cross-view matching. Then,

a more recent approach [86] which exploits many buildings in the query image to make

cross-view matching with dominant sets will be discussed.

Ground to Aerial Cross-View Matching. [51] shows a good example of usage of

Siamese architectures, see Section 2.1.1.4, for making cross-view image matching between

ground level Street View3 images and 45◦ tilted aerial images. Figure 2.14 shows an

2.2. Image-based Visual Localization 39

example of a ground level, an aerial image and aligned image pairs used by [51]. Image

alignment for making pairs of ground and aerial images are done by using publicly available

depth estimates.

[51] creates their dataset of size 78K image pairs by sampling in a region of 15x15

meters from panoramic street-view images by not using more than two cross-view pairs

from each street-view image. This data is used to train a network with a Siamese archi-

tecture, in Fig. 2.15 with a contrastive loss function as Equation 2.8 [29] where x and y

are the input pairs, l ∈ 0, 1 is the label indicating pair is matched pair or not, m > 0 is

the margin for unmatched pairs and D is penalization function based on the Euclidean

distance between learned features for x and y. During testing of their Siamese architecture

k-nearest-neighbor matching is used on the extracted feature descriptors.

L(x, y, l) =
1

2
lD2 +

1

2
(1− l)max(0, (m−D2)) (2.8)

(a) (b)

Figure 2.14: Illustration of camera localization with aerial images [51]. [51] uses a Siamese
architecture to match the ground-level query image with the aerial image collection. (a)
Example of a query image from Google Street View3 and matching aerial image database.
(b) Example of aligned image pairs. (Figures are taken from [51] for illustration purposes.)

.

Lin et al [51] shows extensive performance evaluations of their system by giving pre-

cision/recall curves and comparing the proposed method with other feature descriptors

such as simple CNNs or Histogram Oriented Gradients (HOG) [18].

Cross-View Image Matching with Dominant Sets. Since Siamese architectures

are promising as shown by [51], a recent work by Tian et al [86] also makes use of them.

However, they apply the Siamese network to extract features of each building in the query

image where buildings are extracted by a R-CNN [67] and later they use the extracted

features to create a graph of dominant sets. Fig. 2.14 shows pipeline of their system.

[86] employs Faster R-CNN [67] network to make region proposals for buildings in the

query image. After completing building detection, they search for the matching buildings

in the reference database with known geo-locations. The goal here is to find good feature

representations and as [51], [86] adopts Siamese networks for this purpose with same

contrastive loss function as in Eq. 2.8. Then, K-Nearest-Neighbors of each building are

retrieved based on matching scores from the Siamese network. However, since k-nearest-

40 Chapter 2. Related Work

Figure 2.15: Siamese network architecture is used to train a network for cross-view image
matching. (Figure is taken from [51] for illustration purposes.)

neighbors does not correspond to the correct matches most of the times, Tian et al [86]

makes us of them to form a cluster. This is because of the assumption of near buildings

in a query also have close GPS coordinates. The nearest neighbors of each query building

forms a cluster and from all the selected reference buildings an undirected edge-weighted

graph is created. After constructing the graph, dominant sets algorithm [62, 63] is applied

to find a reference image from each cluster and the final geolocalization prediction is done

by taking the mean GPS coordinates of the selected reference images from each cluster.

For experimenting their method, [86] uses their own collected data around Pittsburg,

Orlando and Manhattan for aerial images and they crawl Google-Street-Map3 for query

images as in [51]. An extension of the method is also applied with the help of street-

view by considering a query image with 4 different views (north, south, east, west). This

extension helps a lot compared to full image matching and building matching.

In the rest of the thesis, we introduce three methods to tackle with the problem of

absolute camera localization in urban environments. Our methods leverages semantic

segmentation of the buildings and their parts from the input images. To this end, Chapter 3

presents how to benefit from advances in semantic segmentation to train a segmentation

model for the buildings and efficiently acquire the training data needed to train the model.

Later, the same chapter presents a localization method that optimizes the likelihood of the

poses by leveraging the learned segmentation model and 2.5D maps. Chapter 4 further

improves the optimization step of our algorithm and explore learning-based methods to

optimize the current pose of the camera in an efficient way by using CNNs to converge

iteratively to the ground truth pose. Finally, in Chapter 5, we exploit high-level features

2.2. Image-based Visual Localization 41

such as 2D building corners and façade surface normals together with efficient minimal

solvers. Our approach bridges the gap between learning-based approaches and geometric

approaches.

3
Camera Localization with Semantic Segmentation and 2.5D

Maps

Contents

3.1 Semantic Image Segmentation for Urban Environments 43

3.2 Data Acquisition for the Semantic Segmentation Model 48

3.3 Combining Semantic Segmentation and 2.5D Maps for 3D

Localization . 55

3.4 Evaluation . 56

3.5 Summary . 59

In this chapter, we discuss how to make use of semantic segmentation methods to ex-

tract discriminative features for accurate camera localization. Thus, we first show how to

train a semantic segmentation model for camera localization using advances in image seg-

mentation methods. Then, we present how to efficiently collect the training data required

to train the segmentation model. Later, we show how to use the learned segmentation

model in a simple but effective framework for localization.

3.1 Semantic Image Segmentation for Urban Environments

Semantic image segmentation has been proven to be useful for quite many tasks in the

community. Pixel-wise segmented images help us in a better scene understanding. In our

case, we leverage semantic segmentation to make inferences about the camera position and

the orientation. In the rest of the thesis, semantically segmented input images and the

output of the segmentation method as input to our different methods e.g. learning-based

or geometrical-based. In this chapter, the semantic segmentation method that we explore

to accurately localize the camera is presented.

Buildings play a crucial role in our scenario since we are interested in localization in

urban environments. Our scenes mostly consists of buildings because of the nature of

43

44 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

urban areas. Therefore, we consider the buildings and their parts such as façades or edges

as crucial cues for our localization frameworks.

(a) Urban scene (b) Rendering of the 2.5D map

Figure 3.1: Building parts define the structure of the scene. We show the structure
depicted by the building in the scene by giving an example of perfect buildings’ part
segmentation of the input image (a) by rendering a model under the ground truth pose of
the camera (b). In this case, parts are façades (blue), vertical building edges (yellow) and
horizontal building edges (red).

Given a color input image, our goal is to learn a semantic segmentation model to

segment building parts. For this purpose, we use a learning model called convolutional

networks (CNNs). However, a drawback of CNNs for dense image prediction is the use

of pooling layers where the spatial information is mostly lost. Pooling layers are danger-

ous for segmentation problem since they reduce the dimensionality while discarding the

localization information but increasing the receptive field of the network.

This problem is attacked with the introduction of architectures called encoder-decoder

and it is also used by [52]. The encoder part acts like convolutions and pooling layers

while reducing the dimension and increasing the receptive field. On the other hand, the

decoder part tries to decode and recover the spatial information lost during the encoding

part. Adding skip connections from the encoder to the decoder is another trick to help

the decoder recover the object details better. An example of such an encoder-decoder

architecture with skip connections is used by Long et al [52] and the architecture can be

seen in Figure 3.2.

An important factor for the segmentation networks is the size of receptive field of

the convolutions. If the receptive field is small, it is hard for the network to see whole

context in the image. Pooling layers increases the receptive field but reduces the resolution.

A solution to this problem is proposed with dilated (atrous) convolutions [12, 13, 98].

Dilations are used within the kernels of convolutional layers to increase the receptive field

for dense predictions. An advantage of dilated convolutions is that they do not increase

number of parameters.

3.1. Semantic Image Segmentation for Urban Environments 45

Figure 3.2: Architecture of the fully convolutional network (FCN) used in Long et al [52].
Input image is fed to the VGG-16 [79] layers (green and purple). Then, upsampling layers
with different stride sizes with skip connections are applied. (Figure is taken from [52])

3.1.1 Exploiting Fully Convolutional Network (FCN) for Building Seg-

mentation and Surface Normal Estimation

We choose one of the well designed off the shelf architectures called fully convolutional

network (FCN) [52] as our segmentation method. Given a color input image I, we train a

FCN [52] to perform semantic segmentation of the input images. FCN applies a series of

convolutional and pooling layers to the input image, followed by deconvolution layers to

produce a segmentation map of the whole image at the original resolution. Other recent

works have a similar architecture and performance [7] and [68].

To our knowledge, FCN [52] is one of the first methods that applied conversion of

hidden layers to fully convolutional layers for semantic segmentation. It also takes advan-

tage from transfer learning and uses pre-trained VGG-16 [79] weights for initialization.

VGG-16 includes fully connected layers which is a restriction for semantic segmentation

task since we want to be fully independent of input image size. FCN handles this by con-

verting fully connected layers of VGG-16 to convolutional layers by reshaping operations.

Therefore, FCN can process input images of any size since the network does not include

any fully connected layers.

FCN feeds forward the input through the network and uses learnable deconvolution

layers to upsample the final prediction of the network. First upsampling layer of FCN

upsamples the prediction with a stride size of 32 since VGG-16 applies five pooling layers

and outputs a prediction that is 1/32 scale of the input image. However, the predictions

done by learned upsampling layer with 32 stride size is very coarse. To be able to give

more fine predictions FCN introduces skip layers to the architecture.

Another advantage of FCN is the use of skip layers to learn more about the context

before decreasing the resolution by many pooling layers. FCN introduces 2 such skip

layers. First one is applied after the 4th pooling layer and the output of 4th pooling layer

is concatenated with the output of last convolution layer. The output of last convolution

layer is also upsampled by a scale of 2 to make the dimensions match for the concatenation

46 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

operation. The resulted output is given to learn a new upsampling layer with stride size of

16 to have the same input size. Another skip layer is introduced to combine information

after 3rd pooling layer, 4th pooling layer and the last convolutional layer. However, since

the scale factor after the 3rd pooling layer is 1/8, FCN uses an upsampling layer with a

stride size of 8 in this case.

(a) (b) (c)

Figure 3.3: Vertical edges are important for camera localization in urban environments.
Each row shows an example of (a) input images and their segmentations into only (b)
façades and both (c) façades and vertical edges. For localization purposes vertical edges
are important for scene understanding.

In our case, we aim at segmenting the façades and the vertical edges at building corners

or between different façades. Vertical edges play a crucial role in our method for localiza-

tion. Figure 3.3 shows the importance of the vertical edges for localization purposes. It is

clear that without the vertical edges we can construct a similar structure with only façade

segmentation, however, this structure created by the semantic segmentation method is not

useful enough to accurately localize the camera. Therefore, we use FCN [52] to segment

input images into façades, vertical edges and horizontal edges. Everything else is referred

to as ’background’. We therefore consider four classes: façade, vertical edge, horizontal

edges and background.

For training, we use a stage-wise procedure as [52], where we start with a coarse

network (FCN-32s) initialized from VGG-16 [79], fine-tune it on our data, and then use

the thus generated model to initialize the weights of a more fine-grained network (FCN-

16s). This process is repeated in order to compute the final segmentation network having

an 8 pixels prediction stride (FCN-8s).

The output of the trained segmentation method for a given color image I is a set of

probability maps having the same resolution as I, one for each of our classes:

S(I) = {Pfacade, Pvertical edge, Phorizontal edge, Pbackground} . (3.1)

3.1. Semantic Image Segmentation for Urban Environments 47

(a) (b) (c) (d) (e) (f)

Figure 3.4: Examples of outputs for the two FCNs. First, input images (a) are vertically
rectified (b) to feed as an input to our FCNs. Our FCNs are trained using the ground
truth segmented images (c) and the surface normals (d). Given the input image, the first
FCN outputs the buildings’ part predictions (e) and the second FCN predicts the façades’
surface normals (f) for each façade pixel in the image.

3.1.1.1 Using FCN for Façades’ Normal Estimation

We further make use of FCN to learn more geometrical features from the buildings. These

features are used in our approach in Chapter 5 to exploit high-level features. More specif-

48 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

ically, we train a second FCN to predict the buildings’ orientations. We achieve this by

encoding the 1D façades’ surface normals N(Iinput) using the registered training images

and training another FCN by slightly modifying the last layer for regressing the surface

normals.

At run-time, the FCN gives us a normal estimate for each pixel of the input image in

the form of an angle in the range [−90◦; +90◦]. The surface normals are discretized over

the color space with a linear transformation to represent the normal of a pixel in RGB

color space where each predicted normal n for each pixel is transformed to color space

with (n+ 1)× 0.5× 255.

We show the outputs of the new trained FCN for façades’ normals and previously

trained FCN for semantic segmentation of the buildings’ parts in Figure 3.4. Please note

that, learned representation for the façade normals will be only used for our approach in

Chapter 5.

3.1.1.2 Rectification of Input Images

Vertical edges of the buildings do not appear vertical in the images due to orientation

around the gravity vector. We observed that rectifying input images vertically to make

the vertical edges appear vertical in the image coordinate system makes the FCN converge

slightly faster. Furthermore, this step is important for our approach in Chapter 5 where

we exploit building corner information and to extract accurately we need straight edges

in the images. Figure 3.4 shows examples of the rectified input images.

In practice, we use the orientation of the device with respect to the gravity vector as

given by the accelerometer. These two vectors are typically accurate enough in practice.

Then, the input images are warped using these vectors. For the rectification of the training

images, we already have a ground truth pose from the manual registration of the first frame

and therefore, we can use the vertical orientation to rectify the input images.

3.2 Data Acquisition for the Semantic Segmentation Model

In the previous chapter, we explained how to train the semantic segmentation model for

the buildings’ parts if we have enough number of annotated training images. In this

chapter, we discuss how to acquire annotated data for buildings’ parts. More specifically,

we want to acquire pixel-wise annotations for the following semantic classes: building

façades, buildings’ vertical and horizontal edges.

3.2.1 Manual Annotation of the Buildings’ Parts

We first, collect a small set of images and attempt to manually annotate our image set for

the corresponding object classes. However, annotating even a couple of hundred images

3.2. Data Acquisition for the Semantic Segmentation Model 49

is costly. We use LabelMe1 to annotate each image for our semantic classes. An example

of an annotated image via LabelMe annotation toolbox is shown in Figure 3.5.

Figure 3.5: Manual pixel-wise image annotation. Each building’s part in the image is
annotated by drawing polygons via LabelMe [70]. The annotation for the corresponding
classes in many images is required to train the networks. However, manual annotation of
many images that are required to train the FCN is costly.

Manual annotation of an image usually takes around a couple minutes to ten minutes.

Deep-learning segmentation methods require a large number of training images to gen-

eralize well. Therefore, we need to collect large number of images if we want to have a

decent segmentation model. This process is quite costly in terms of time by considering

the number of images we need to annotate and the time to annotate each image. Another,

disadvantage of the manual annotation of the training images is inconsistency between the

annotations due to different annotators or pixels that are missed to be annotated during

the process. An example of wrong annotations for the vertical edge pixels and façade

pixels are shown in red and blue circles, respectively in Figure 3.6.

3.2.2 Consistent and Fast Annotation of Buildings’ Parts

Since manual annotation of building’ parts is costly, we show how to collect training

data more efficiently. Rather than collecting a single image for each scene, we collect

video sequences to represent a scene. More formally, we record sequence of frames while

translating and rotating the camera. We want to annotate each frame in an efficient

manner without too much supervision as in the manual annotation of each pixel. We

achieve this by using simple untextured 2.5D models and a key-point-based 3D tracking

system.

1http://labelme2.csail.mit.edu

50 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

Figure 3.6: Consistent annotations for the training data is important. Manual annotations
heavily depend on the annotator. The annotations might include false positives or missing
annotations, e.g. false positive sky pixels which are annotated as façades or missed vertical
edge pixel annotations.

3.2.2.1 2.5D OpenStreetMap Models

Accurate geographical data is quite valuable for many applications. OpenStreetMap

(OSM) is a project to create such a crowd-sourced editable map of the world. The key

term for the OSM is crowd-sourcing which encourages the OSM volunteers worldwide to

contribute through the collection of geographical data.

Accurate geographical mapping has many usages from autonomous navigation systems

to city planning or even in level of country management. Such data has been collected

over the years with the help of GIS or scanning systems. However, as soon the coverage

of the mapping increases accuracy of the data is most likely to be reduced. Since the

human-made structures are rapidly changing in the city scale areas.

OSM contributes to the community by freely releasing their data with an open content

license and by constantly updating the data. OSM community succeeds to have updated

data with the help of crowd-sourced volunteers who can update the maps and add interest

points as their wish.

The growth at the number of GPS enabled satellite navigation devices, such as iOS

or Android devices, helps volunteers to contribute to the community. The volunteers do

the mapping by using GPS traces from the devices and their experiences by overlaying

their GPS traces with the bird-eye area maps and setting the required attributes such as

buildings and their locations.

OSM consists of more than a 1 million contributors2. As it has been shown by Ciepluch

et al [15] not all the annotators contributes to the data on the same level. Both in terms

2http://wiki.openstreetmap.org/wiki/Stats

3.2. Data Acquisition for the Semantic Segmentation Model 51

Figure 3.7: Example of building outlines from an OSM. We use light 2.5D models from
OSM where the building outlines and their heights are defined. 2.5D maps has no color or
texture information. Therefore, they are easy to maintain and use within fast rendering
pipelines.

of amount and quality. The problem of having many non-commercialized annotators from

different level of annotation experiences reduces the quality of data by having inconsistent

or wrong annotations. Therefore, some studies have been conducted [26, 54, 77] to evaluate

the quality of the OSM data. These studies claims that the quality of the OSM data is

still far from a mapping data collected with sensing devices. However, over the years

the gap between the quality of commercialized mapping dataset and the OSM dataset is

closing [77].

OSM models provide us with rough information about the buildings in the urban,

e.g. height of the buildings and 2D coordinates of the buildings’ corners in the image

or more detailed information like the roof shapes. However, the details might not be

available for all the buildings depending on the annotations. We are interested in the

OSM models which let us use the buildings’ height information and 2D corner positions

in real world. These models represent the buildings without any texture or color. These

models are simple but sufficient enough to represent 3D information, therefore, they are

called as 2.5D maps. We convert the 2.5D models to 3D models by elevating the buildings

according to the 2D corner positions and the heights.

3.2.2.2 Key-Point-Based 3D Tracking

Given the initial pose p̃ of the camera for the first frame and 3D modelM of the environ-

ment, we can track the poses for the rest of the frames by using a 3D tracking framework.

Please note that the limitations of the 3D tracking system is not in our focus here. We

52 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

(a) (b)

(c)

(d)

Figure 3.8: Manually registering the first frame into the 2.5D map. Initial pose p̃ (a)
found by registering the first frame (b) of the sequence into the 2.5D map (c) by aligning
the rendering (d) of the 2.5D map with the first frame.

want to use the 3D tracking system as a tool only to track the poses for the rest of the

frames. For this purpose, we adapt the 3D tracking system proposed by Arth et al [4].

3D trackers need models M to track, we gather such models from OpenStreetMap3

(OSM). First, we create simple 3D models from the 2.5D maps. These models are not

very detailed but sufficient for tracking. Then, for each sequence, we initialize the pose p̃

for the first frame manually, and the tracker estimates the poses for the remaining frames.

This allows us to label façades and their vertical edges very efficiently. Since there is a

chance that 3D tracking system might fail to track the poses we apply semi-supervision

during tracking and re-initialize the tracking from the frame where the tracking failed to

accurately find the pose.

3.2.2.3 Training Dataset for the Semantic Segmentation Method

We recorded 95 video sequences using a smart device (an Apple iPhone 6s) with an average

length of about 10 seconds and acquired the corresponding 2.5D maps from OSM. The

first frame of the each sequence is used to manually register into the corresponding 2.5D

map. Using the 3D tracker described above, we end up with a ground truth pose for

each frame in the sequence. In order to ensure an accurate labeling, in particular for the

vertical edges, we exploit our model rendering pipeline: We only keep frames in which the

reprojection of the 3D model is well aligned with the real image, and remove those frames

that suffer from tracking errors or drift. The frames with small relative displacement

compared to previous frames are also removed to have a balanced set of images. In this

3https://www.openstreetmap.org

3.2. Data Acquisition for the Semantic Segmentation Model 53

Registration of the first frame

Image sequence

3D tracking system

Ground truth masks

Figure 3.9: Efficiently labeling images for training data generation. We manually register
the first frames of several image sequences into the 2.5D models. Then we use a key-point
based 3D tracker to track the initial pose over the sequences. Given the tracked poses
from the 3D tracker we can easily generate renderings of the models under the poses. This
gives us the labels for the façades and their edges for all the frames.

way, we obtain a training set of around 12000 images with minimal manual effort, except

for the registration of the 95 initial frames and our dataset also provides the registered

poses. We further augment our dataset with horizontal mirroring of the images.

3.2.2.4 Test Dataset for Camera Localization

To evaluate our methods, we use the extended dataset of [4]. This dataset is made of 40

images captured with an Apple iPad Air providing an orientation and location estimate

that we use as a pose prior p̃. The images are taken in urban and suburban environments

of Graz, Austria. The images were registered from manual correspondences to get ground-

truth pose to calculate relative errors for the orientation and the position. Orientation

error between the estimated orientation and the orientation of the ground-truth pose is

calculated as sum of squared angular differences for all axes. Position error is calculated

similarly to the orientation error. Mean orientation error of the sensors over all images

varies from 0.25◦ to 49◦ with an average of 11.3◦ and the location error from 0.25m to

23m with an average of 13.4m. Standard deviations of the orientation and the position

sensor errors are 9.97◦ and 5.73m, respectively.

54 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

Figure 3.10: Sample frames from our data collection. Each row shows the samples from
sequences of frames that is recorded for each scene. Our dataset consists of 95 such
frame sequences recorded while changing the orientation and the translation of the cam-
era. From these sequences, we end up with 11000 images in our dataset. Each of these
frames are registered into the world coordinate system by using the tracker described in
Section 3.2.2.2.

3.3. Combining Semantic Segmentation and 2.5D Maps for 3D Localization 55

3.3 Combining Semantic Segmentation and 2.5D Maps for

3D Localization

(a) (b)

(c) (d)

Figure 3.11: Overview of our approach: Given an input image (a), we segment the façades
and their vertical edges (b). We sample poses around the pose provided by the sensors
(c), and keep the one that aligns the 2.5D map and the segmentation (d).

We have information from two different modalities, pixel values and 2.5D model of

the environment. Figure 3.12 shows an example from both of the sources. We need to

construct a relation between two sources to reach our goal of accurate localization.

2.5D models give us specific information about structures of the buildings, buildings’

corner locations, façades’ heights, etc. We can visualize this information by rendering the

model under some pose. Figure 3.1 gives an example for rendering of the model under

the ground truth pose for the given input image by coloring façades, vertical edges and

horizontal edges of the buildings. If the same information can be extracted from the input

image we could construct the first step of our algorithm. We use the semantic segmentation

method described previously in this chapter to semantically segment the input images to

help us optimize the pose.

Given a color input image I, we train a fully convolutional network (FCN) [52] to

perform a semantic segmentation. FCN applies a series of convolutional and pooling layers

to the input image, followed by deconvolution layers to produce a segmentation map of

the whole image at the original resolution. Other recent works have a similar architecture

56 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

?
(a) Urban scene (b) 2.5D map

Figure 3.12: Examples of available inputs to our method. Our method uses RGB input
images and a 2.5D model of the environment that’s acquired given a sensor pose estimate.
Our goal is to make accurate localization of the camera using exploited information from
different modalities such as images and 2.5D maps. The problem is to construct the
relation between the input image and the 2.5D map.

and performance [7] and [68]. Please note that the segmentation model in this chapter is

trained on a smaller set of our dataset collected and it does not use horizontal edges.

We use the probability maps S(I) to geo-localize an input color image I, starting from

an initial estimate p̃ of the pose provided by the sensors of the device, and a 2.5D map of

the surrounding. In practice, p̃ can be far away from the correct pose, but it still gives us

a coarse estimate of the correct pose. We then look for the pose around p̃ with the largest

log-likelihood given the input image:

p̂ = argmax
p

L(p) , (3.2)

where L(p) is the log-likelihood:

L(p) =
∑

x

logPc(p,x)(x) . (3.3)

The sum runs over all image locations x; c(p,x) is the class at location x when ren-

dering the model under pose p, and Pc(x) is the probability for class c at location x

where Pc is one of the probability maps predicted by the semantic segmentation step in

Equation (3.1).

As the log-likelihood function in Equation (3.3) is not differentiable and may have

many local maximums, we sample poses around the sensor pose p̃ on a regular grid, and

keep the one with the largest log-likelihood.

3.4 Evaluation

We evaluated our approach on the test dataset described in Section 3.2.2.4, which contains

images taken by an Apple iPad Air in urban and suburban environments of Graz, Austria.

3.4. Evaluation 57

(a) (b) (c) (d)

Figure 3.13: Illustration of similarity between the semantic meaning we depict from the
input image and the semantic meaning from the renderings of the model under the ground
truth pose. (a) represents the input source, (b) segmentation represented in color and (c)
& (d) shows the probability maps for façades and vertical edges. Please note that in this
section we do not use the horizontal edges to show the reliability of vertical edges and
façade segmentations on the localization task.

The segmentation model is trained for the classes Pfacade, Pvertical edge, Pbackground.

The sensor positioning errors of the dataset range from about 0.4 m to about 16.5 m,

with an average error of about 8 m. The rotational errors of the gyroscopes are small,

however, the orientation error around the up direction, given by the compass, can be as

large as 30◦. We sample the location in a squared region of 20 m×20 m with a step size

of one meter in each direction. We also sample the rotation of the camera around the up

direction every 3◦ over a range of [−30◦; +30◦] centered on the orientation provided by the

compass. At the end this step, our sampling space consists of 8400 poses to be evaluated.

Figure 3.14 shows qualitative results obtained with our method and a failure case due

to a segmentation error. We quantitatively evaluated our method for both position and

orientation errors. Our method decreases the mean error to 4.5 m; 56% of the images

have an error below 2 m, and 78% below 5 m. Our method performs well on decreasing

the orientation errors as well: After applying our method, 62% of the images have an

orientation error below 2◦, 75% are below 5◦ and the mean orientation error decreases to

4.3◦.

Table 3.1 gives the time spent by the significant steps of our method. Note that the

input image is only segmented once and this segmentation is used for each pose evaluation.

The overall time depends on the number of poses evaluated. This number is a meta-

parameter of our method: Increasing it will improve the accuracy of the final pose estimate,

but the computation time will also increase linearly.

58 Chapter 3. Camera Localization with Semantic Segmentation and 2.5D Maps

x (east)

y
(n

or
th

)

x (east)

y
(n

or
th

)

x (east)

y
(n

or
th

)

x (east)

y
(n

or
th

)

x (east)

y
(n

or
th

)

x (east)

y
(n

or
th

)

x (east)

y (
no

rth
)

x (east)

y (
no

rth
)

x (east)

y (
no

rth
)

x (east)

y
(n

or
th

)

x (east)

y
(n

or
th

)

(a) (b) (c) (d) (e) (f)

Figure 3.14: Visual comparison of poses. Each row shows the results for a test image. The
last row shows a failure case. (a) Test image, (b) segmented image using our network (red:
façade, green: vertical edges, blue: background), (c) rendering of the 2.5D map using the
sensor pose, (d) rendering using the best pose found with our method, (e) rendering using
the ground truth pose, (f) the different camera poses shown on a map (blue: sensor pose,
green: pose found with our method, red: ground truth pose). The last row shows that
the segmentation fails to find one of the edges, resulting in an incorrect evaluation of the
model-image alignment quality.

3.5. Summary 59

Step Computation Time per Frame (ms)

Semantic segmentation 120
Rendering 5

Log-Likelihood 10
Total 135

Table 3.1: Computation time for each step of our method.

3.5 Summary

In this chapter, we described an approach for image-based localization using the semantic

segmentation of the input images where we optimize the pose likelihood based on a uniform

pose sampling strategy.

We use the segmentation method in [52] to train our model to segment façades, vertical

edges and horizontal edges. The segmentation allows us to accurately evaluate the align-

ments using a simple 2.5D model of the surroundings with the image. We later, showed

how to collect the training data necessary to train the segmentation model efficiently by

combining key-point based 3D tracking systems and 2.5D models of the environment.

Further, we exploit the 2.5D maps together with the semantic segmentation of the

input image to evaluate quality of a pose by calculating the log-likelihood of the alignment

between the renderings of the model and the input image. Our results show that the

semantic information we exploit from the buildings are representative enough to describe

a pose.

Our approach makes accurate pose estimations with an error range of a few meters

and a couple of degrees, even though the model is not textured and lacks many details

and might have some errors. Our approach is general and could exploit other classes such

as windows or roofs if available. However, in the wild sensor errors might be high and

in this case, our approach needs to evaluate many samples to accurately find the best

alignment. Instead of relying on the uniform sampling strategy to optimize the pose, in

the next chapter, we propose a method to optimize the pose in a more efficient way by

using learning-based strategies.

4
Learning to Refine a Pose Estimate

Contents

4.1 Learning to Predict a Direction for Pose Update 62

4.2 Pose Estimation Algorithm . 64

4.3 Evaluation . 65

4.4 Summary . 69

Previously, we showed how to train the semantic segmentation model and use it for

image-based camera localization. We achieved this by evaluating likelihoods of poses

that are uniformly sampled around the sensor’s pose estimate p̃. Our approach is easily

tunable for accurately recovering the large sensor errors with more samples from a larger

pose space around p̃. However, this strategy makes the approach inefficient when tuned

for recovering large p̃ errors. Thus, in this chapter, we explore optimization of the pose

in a learning-based framework. More specifically, we design an iterative learning-based

framework where our goal is to update the camera pose in each iteration to converge to

the ground truth pose. We achieve this by training Deep Networks to predict the best

direction to improve a pose estimate, given a semantic segmentation of the input image

and a rendering of the buildings from this estimate. We then iteratively apply this CNN

until converging to a good pose.

We follow the same setting as our previous approach in Chapterr̃efchap:chap00. We

consider an input image Iinput and a sensor pose estimate p̃ is given and corresponding

2.5D map is acquired freely from OSM. Then, our goal is to geolocalize a camera in

an urban outdoor scene, starting from the provided pose estimate p̃ in a learning-based

framework. More specifically, we propose an approach to refine a camera pose starting

from a coarse pose estimate in an iterative fashion.

61

62 Chapter 4. Learning to Refine a Pose Estimate

Figure 4.1: Overview of our approach for learning to refine a pose estimate. We trained
two CNNs to refine the pose for the position and orientation errors in an iterative fashion.
We use the probability maps predicted by FCN and a sensor pose estimate as inputs to
our approach. Then, our CNNs takes the renderings of the 2.5D map under the current
pose and the probability maps from the FCN to converge to a better pose and outputs a
direction to update the pose at each step. The magnitude of the update is found by a line
search algorithm. Our approach is applied iteratively and the pose estimate is updated at
each step.

4.1 Learning to Predict a Direction for Pose Update

The initial sensor pose p̃ gives us a coarse estimate of the pose. In practice, the angles

with respect to the gravity are well defined via the sensors, giving us two angles of the

camera orientation, namely the roll and pitch. As we are using a hand held device, we can

also assume a fixed camera height (we use 1.6 m in practice). Thus, only three degrees-

of-freedom (along the ground plane) are remaining, two for the location and one for the

orientation. However, as these estimates can be very far away from the ground truth,

correcting them is challenging.

To deal with this problem, we train two networks to predict directions to improve the

pose estimates. The first network predicts a direction for the location. We initially tried

to predict a 2D vector pointing to the correct location. This, however, did not succeed,

as this problem was too difficult to learn. In fact, the length of the vector would depend

on the distances to the buildings, which are lost at least to some extent because of the

perspective projection.

Instead, we relax the task and solve a simpler classification problem: We discretize

the directions along the ground plane into 8 possible directions, defined in the camera

coordinate system. Then, given the semantic segmentation of the image and a rendering

of the 2.5D map from the current estimate, we train a network CNNt to predict the

direction that improves the estimated location. We also add a class indicating that the

location is already correct and should not be changed. The network CNNt thus returns a

4.1. Learning to Predict a Direction for Pose Update 63

Figure 4.2: Example of our pose update step taken by our model for translation correction.
Our method iteratively updates the pose both for translation and orientation correction
until the networks are not confident with their predictions. Then the network outputs a
prediction not to move.

9-dimensional vector:

dt = CNNt(RF, RHE, RVE, RBG, SF, SHE, SVE, SBG) , (4.1)

where SF, SHE, SVE, SBG are the probability maps computed by the semantic seg-

mentation for the input image Iinput for the classes façade, horizontal edge, vertical edge,

and background, respectively. RF, RHE, RVE, RBG are binary maps for the same classes,

created by rendering the 2.5D map for the current pose estimate. Examples of these

probability and binary maps are shown in Figure 4.3. The direction corresponding to the

largest value in the output dt is the direction predicted by the network.

In addition, we train a second network CNNo to estimate an update for the orientation:

do = CNNo(RF, RHE, RVE, RBG, SF, SHE, SVE, SBG) , (4.2)

where the three values of do indicate if it is best to rotate the camera to the right, to

the left, or do not rotate at all.

We use the same architecture for both networks, CNNt and CNNo. Each pair made of

a probability map and a rendering for a class is fed to the network along a separate stream.

Each stream consists of 2 convolutional layers with 64 and 128 filters, respectively. The

sizes of the filters are 5×5 and 3×3. The outputs from the streams are concatenated and

fed to fully connected layers: We use three fully connected layers with 1024, 512 and 128

units. The last layer implements a linear logistic regressor. We optimize both networks

using the RMSprob [87] algorithm.

How these two networks are applied for pose estimation is described in Section 4.2 in

more detail. Applying two networks solving separated problems has two main advantages:

(1) We do not need to balance between translation and orientation. (2) The resulting

optimization problem is easier and can be also solved on computationally less powerful

64 Chapter 4. Learning to Refine a Pose Estimate

devices.

(a) (b) (c) (d) (e)

Figure 4.3: Illustrative example of the inputs to our localization networks: (a) Input image
(top) and its segmentation (bottom). (b)–(e): Probability maps SF, SHE, SVE, SBG (top
row) and the binary masks RF, RHE, RVE, RBG (bottom row).

4.2 Pose Estimation Algorithm

Starting from the initial estimate p̃, we iteratively apply CNNt and CNNo and update the

current pose after each iteration. In practice, p̃ can be far away from the correct pose.

Moreover, the networks CNNt and CNNo introduced above are able to predict a good

direction in practice, but do not provide a magnitude.

We therefore use a line search strategy to decide the magnitude of the update. To

evaluate the quality of a pose as in [4], we use the maximum log-likelihood:

sp =
∑

c∈{F,HE,VE,BG}

∑

i∈Rc

logSi
c , (4.3)

where Si
c is the probability at location i for class c from the semantic segmentation, and

{i ∈ Rc} is the set of locations that are set to 1 in the rendered binary mask Rc.

Given one direction by one of the two networks, we evaluate several poses along this

direction, and keep the one that maximizes the log-likelihood in Equation (4.3). We then

switch to the other network. These steps are iterated, and we stop when the two networks

predict not to move any more. The overall procedure is summarized in Algorithm 1.

4.3. Evaluation 65

Algorithm 1

procedure OptimizePose(Iinput, p̃,M)
S = (SF, SVE, SHE, SBG)← FCN(Iinput)
p← p̃
repeat

R = (RF, RVE, RHE, RBG)← render(p,M)
dt ← argmaxiCNNt(S,R)[i]
if dt 6= ’do not move’ then

p← lineSearcht(p, dt, S,M)
end if
do ← argmaxiCNNo(S,R)[i]
if do 6= ’do not move’ then

p← lineSearcho(p, do, S,M)
end if

until dt = ’do not move’ and do = ’do not move’
end procedure

procedure lineSearcht(p, d, S,M)
steps← fixed set of step sizes
for stepj in steps do

pj ← updatePose(p, d, stepj)
(RF, RVE, RHE, RBG)← render(pj ,M)
scorej =

∑

c∈{F,HE,VE,BG}

∑

i∈Rc
logSi

c

end for
j ← argmaxj scorej
return pj

end procedure

Illustrative examples showing the progress over time from the initial sensor pose to the

finally obtained pose are given in Figure 4.4.

4.3 Evaluation

To demonstrate the benefits of our approach, we first give an overview of the used bench-

mark and training data and then give results for artificial and real world scenarios.

4.3.1 Training and Evaluation Data

For training of these deep networks we used 50000 samples virtually generated from 95

images with known ground truth poses (see Chapter 3) and computed the semantic seg-

mentation for each image. To generate these samples, we added random noise on the

ground truth poses, sampled from a uniform distribution: We sample the location noise

in the interval [−10m; +10m] and the rotation noise in the interval [−5◦; +5◦]. If the dis-

66 Chapter 4. Learning to Refine a Pose Estimate

Figure 4.4: Visualization of iteration steps taken by our algorithm for several scenes.
Starting from the initial pose (first column) our method keeps iterating until it reaches
the final pose (last column).

tance between the ground truth pose and the random pose was smaller than a threshold

the desired output was set to the ’do not move’ class; otherwise, we set it to the discretized

direction closest to the direction between the ground truth and the random pose.

Similar to our method presented in the previous chapter, our approach tested on the

dataset described in Section 3.2.

Converging from a Close Initial Estimate Figure 4.5 shows several examples of

applying our algorithm for an initial pose that is within a radius of 5m from the ground

truth location, and an orientation in the range of [−5◦; +5◦].

Converging from an Estimate Provided by Real Sensors Real sensors can provide

measurements with very large errors, in the order of 25 meters and 50 degrees. This makes

convergence hard, since comparing the rendering from such a noisy pose and the input

image cannot provide meaningful information for a pose update. In such a case, our

strategy is to sparsely sample initial poses around the pose predicted by the sensors. We

then run our iterative algorithm from each of these initial poses and keep the best final

pose according to the log-likelihood. The initial poses are sampled uniformly for each

15m within a radius of 30m from the sensor’s position and for each 10◦ in the range of

4.3. Evaluation 67

(a) (b) (c) (d)

Figure 4.5: Converging from a close initial estimate. (a) Test image with the ground
truth pose overlaid, (b) segmented image, (c) noisy pose rendering used to initialize our
algorithm, (d) pose found with our method.

68 Chapter 4. Learning to Refine a Pose Estimate

−30◦; +30◦ from the sensor’s yaw angle. Therefore, uniform sampling gives us 175 initial

poses to apply our localization networks and we apply four distances in our line search

evaluation.

Figure 4.6 shows examples of sensor poses and our finally estimated poses. Starting

from the sensor data, our method decreases the average orientation error from 11.3◦ to

3.2◦. At the same time, the positioning error decreases from 13.4m to 3.1m. Figure 4.7

shows the orientation and the position errors for each image for both, real sensor poses

and poses obtained by our method.

(a) (b) (c) (d) (e)

Figure 4.6: Converging from an estimate provided by real sensors. (a) Test image with the
ground truth pose overlayed, (b) segmented image, (c) real sensor pose, (d) pose where
the optimization started the search to find the best estimated pose, (e) final pose found
by our method.

4.4. Summary 69

Figure 4.7: Position errors for sensor poses and poses obtained by our method.

Figure 4.8: Orientation errors for sensor poses and poses obtained by our method.

4.4 Summary

In this chapter, we showed that it is possible to learn to predict good directions to refine

the poses to a more accurate pose. We believe that such an approach is general: It is

useful when it is not possible to differentiate an objective function as it is the case for our

problem with the image likelihood, or when it is not clear which objective function should

be optimized to reach a desired goal.

Another advantage of our approach is that the training set can be augmented very

easily, by generating estimates around real data: In our case, we could easily sample poses

around the sensor poses, but this sampling strategy will also work for other problems.

We show that our networks can efficiently correct the pose estimates where the error

is relatively small. In practice, we use the uniform pose sampling strategy to accurately

correct the sensor poses that have large errors. Each sampled pose is used to start our

optimization for pose corrections. To correct the translation and orientation we train two

different networks. We use these networks to iteratively update the pose until we find a

good alignment with the semantic segmentation and the rendering of the 2.5D map under

the updated pose.

70 Chapter 4. Learning to Refine a Pose Estimate

Our experiments showed that due to the large sensor errors, sparse pose sampling

strategy can be applied to iteratively apply our CNNs starting from each sampled pose.

This strategy helped us to recover large errors and not converge through similar buildings

due to similar structures. However, for practical reasons, we want to avoid large number

of iterations. To this end, the next chapter focuses on direct pose estimation rather than

iterative. We achieve this by defining robust geometrical high-level features for camera

localization in urban environments together with robust minimal solvers to make direct

estimations. Our upcoming approach bridges the gap between the learning-based and

geometric approaches.

5
High-Level Feature Matching for Camera Registration

Contents

5.1 Method Overview . 73

5.2 Extracting High-Level Features from the Input Image 74

5.3 Minimal Solvers . 76

5.4 Evaluating Hypotheses . 79

5.5 Evaluation . 80

5.6 Summary . 83

In Chapter 3, we showed how to exploit semantic segmentation of buildings and use

them to make localization by evaluating the log-posteriors of uniformly sampled poses

around the sensors’ estimate. Further, we improved our approach using a learning-based

framework in Chapter 4 to align simple untextured 2.5D maps of the environment with

the input image. However, the convergence of this method can become slow since it uses

uniform pose sampling strategy to recover sensor poses that have large errors. Similarly,

our first approach stands on a uniform sampling of the pose space. Therefore, when the

sensor error is large the previous proposed needs to be tuned to cover a large pose space

and this makes them less efficient.

In this chapter, we propose a method that combines the reliability of recent advanced

image segmentation methods with the efficiency and accuracy of geometric pose estimation

methods. More exactly, we use Deep Learning-based segmentation [7, 52, 68] to extract

the buildings’ edges as in the previous chapters and in addition also their façades’ normals.

We can then compute the camera pose from matches between these image features and

their equivalents in the 2.5D map. To do this robustly, we consider minimal solvers [24,

25, 44, 45] to compute camera poses from minimal sets of correspondences. Approaches

based on minimal solvers were introduced to work on image features including feature

points to compute geometric data such as the essential matrix between two images or a

71

72 Chapter 5. High-Level Feature Matching for Camera Registration

3D pose between an object model and an image. They are typically accurate, fast, and

very robust, since they can be used in a RANSAC [24] loop.

Here we show that we can use this strategy with high-level features extracted using

very recent methods to compute the camera pose. We introduce two minimal solvers

adapted to our application: computing a 2D pose (2D translation + rotation) from 3 edge

correspondences or from 2 edge correspondences plus a façade’s normal correspondence.

Note that we use a 2D projection model and as in Chapter 4, we can then compute a 3D

pose from these 2D poses and information from the sensors. In practice, using 3 edges

tends to be more accurate than using 2 edges and a normal, but it is also more likely

that only 2 edges are visible rather than 3. We therefore use both minimal solvers in a

RANSAC loop and keep the camera pose that provides the best likelihood computed as

in [4]. Our experiments show that this is faster and more accurate than our approaches

proposed in Chapter 3 and Chapter 4.

Systems for absolute pose estimation needs to be dynamic and reliably operate on

unseen scenes. The 2.5D maps provides us the corners of the buildings it is possible

to make correspondences with corners in the map and corners in the image if detected.

However, it is not always easy to detect buildings’ corners in the images due to narrow

field-of-view, natural structure of the buildings or objects occluding the buildings. Vertical

edges of a building is more likely to be visible in the image than the corners of the building.

Therefore, we do not use 2D-3D corner correspondences but we use 1D-2D correspondences

between horizontal positions of the vertical edges appear in the image and the 2D corners

in the 2.5D map. Sensors provide accurate information for the orientation of the camera

wrt. gravity (2 DoF) and we find fixing the camera altitude (a DoF) is a safe assumption

when hand-held devices or autonomous driving scenarios are considered. We can estimate

a full pose in 2D with 3 point correspondences since the problem is reduced to estimating

only 3DoF. However, having 3 edges as a minimal solution is not a practical assumption.

Therefore, we also approach the problem by estimating 2D rotation from a correspondence

between façade normal in 2.5D model and an estimated façade normal from the image.

Then, 2D translation can be estimated from two 1D-2D point correspondences. To find

the correspondences from the image, we adopt recent advances in Deep Learning [7, 52, 68]

to segment the image and estimate façade normals from the image.

In the remainder of this chapter, we first give an overview of our method in the next

section, then Section 5.1 describes how we extract high-level features such as 2D building

corners and façade normals. Later in Section 5.3 and how to use minimal solvers to finally

estimate the camera pose. Then, we compare our method on the same test set used in

Chapter3 and Chapter4 and, finally, we discuss our findings.

5.1. Method Overview 73

…

…

(a) (b) (c) (d) (e)

Figure 5.1: Overview of our approach: Input image (a, top) is rectified w.r.t plumb
line (a, bottom). From the rectified input image, we extract façades and buildings’ edges
segmentation (b, top) and façades’ normals (b, bottom). From the segmentation, we detect
the buildings’ corners and façades in the image (c, top), which are matched with corners
and façades in the 2.5D map (c, bottom). From these matches, we generate possible pose
hypotheses (d) using minimal solvers, and keep the pose which is most consistent with the
segmentation and the normals (e).

5.1 Method Overview

Our input is a color input image Iinput of an urban area, a prior on the camera pose, and a

2.5D map of the surrounding buildings. In practice, this prior can come from the sensors

such as compass and GPS of the device that captured the image. Our goal is then to find

an accurate estimate of the camera pose.

We propose a method that uses high level feature correspondences that can be con-

structed between Iinput and a 2.5D map M of the surrounding. Unfortunately, these

models come without a texture but the advantage of them is they clearly define the struc-

ture of the scene by providing information about outline and height of the buildings.

Bottom and top corners of the buildings in the image could be matched with the

corners of the buildings in theM. However, parts of the buildings that are visible in the

Iinput varies a lot depending on the camera itself, the camera pose, occlusion, size and

structure of the buildings. Corners of the buildings might be completely invisible or only

few might be visible in the image. It is not always possible to create a correspondence set

between corners of the buildings in Iinput and M in 3D, therefore we are using edges of

the buildings instead of corners. Since there is no guarantee that buildings should be fully

visible from top to down we are approaching the problem in 2D.

We want to estimate yaw angle θ, translation in x axis tx and in y axis ty. We can

find the pose with three point correspondences but three correspondences might not be

visible all together. We constraint the problem with having two edges and a façade visible

in the Iinput. If we could estimate the normal direction of the façades in Iinput, then we

could easily estimate the rotation by matching the normals in Iinput and M. Then, two

edges can be used to solve for translation in two axes with a known rotation. We propose

74 Chapter 5. High-Level Feature Matching for Camera Registration

two minimal problems. First, the problem is constrained with a facade and two edges.

Please note that, we need neither the façades nor the edges to be fully visible. Secondly,

we make correspondences from three edges. Even if two edges and normal of a façade is

enough to estimate a pose, it is desirable to use larger point sets to reduce redundancy to

noise. We find it useful to estimate the pose by using three edge correspondences in case

of visibility and availability of the edges.

The rest of the chapter first describes how we extract high-level information from

Iinput in order to match Iinput with the 2.5D map. We use simple methods to extract the

buildings’ corners and normals using semantic segmentation. More sophisticated methods

could be developed, however, these methods were sufficient to show the effectiveness of

our general approach. We then explain how to compute a camera pose from a minimal

set of correspondences using minimal solvers and, finally, how we use these solvers in a

RANSAC loop to robustly estimate the camera pose.

5.2 Extracting High-Level Features from the Input Image

We first vertically rectify the input images Iinput, as previously in Section 3.1.1.2, to make

the vertical edges appear as vertical in the input images. We then apply the FCN [52] (see

Section 3.1) for semantic segmentation to obtain probability maps SF, SVE, SHE, SBG,

for the façades, vertical and horizontal edges, and background (sky and ground plane),

respectively.

Extracting the Buildings’ corners Our minimal solvers rely on the coordinates along

the image horizontal axis of the buildings’ corners. We obtain these coordinates from

SVE, the probability map for vertical edges. As shown in Figure 5.2, we first compute an

accumulator AVE for each column of SVE:

AVE[u] =

H
∑

v=1

SVE[u, v] , (5.1)

where H is the number of rows of the probability map and SVE[u, v] is the probability of

image location [u, v]⊤ to be on a vertical edge. We then obtain the coordinates of potential

corners by extracting the local extrema of AVE after Gaussian smoothing. This gives us

a set of column indices U = {u(i)}i=1..Nu
that are likely to contain buildings’ corners.

Extracting the Façades’ Normals Our second minimal solver also relies on the

façades’ normals. To estimate the façades’ normals N(Iinput), we use the FCN trained

and described in Chapter 3. At run-time, this gives us a normal estimate in the form of

an angle in the range [−90◦; +90◦] for each pixel of the input image.

As shown in Figure 5.3, we also identify the façades in the input image as intervals

along the image horizontal axis between two consecutive possible u(i) and u(i+1), extracted

5.2. Extracting High-Level Features from the Input Image 75

(a) (b) (c)

(d) (e)

Figure 5.2: Extracting building corners and façades. (a) The input image after rectifi-
cation; (b) probability map SVE for the vertical edges and (c) histogram of vertical edge
probabilities and its local extrema (red) we use as the locations for the buildings’ corner;
(e) found corners (in green) and defined façades (in blue) shown over the rectified input
image.

(a) (b)

(c) (d)

Figure 5.3: Extracting façade normal orientations. (a) Corners and façades extracted
as shown in Figure 5.2, (b) surface normal estimation for the rectified input image, (c)
orientation histograms for each façade, (d) final orientations assigned to each façade.

76 Chapter 5. High-Level Feature Matching for Camera Registration

as explained previously in this section. We also consider the interval between the first

column on the left of the image and the first detected corner u(1) and the interval between

the last detected corner u(Nu) and the last column W on the right of the image. To

summarize, the extracted façades are therefore denoted f (0) = [1;u(1)], f (i) = [u(i);u(i+1)]

for i ∈ [1..(Nu − 1)], and f (Nu) = [u(Nu);W]. We denote by F the set {f (i)}i=0..Nu
.

For each façade f (i) i ∈ [0;Nu], we estimate its normal using a method inspired by

the SIFT descriptor to compute a dominant gradient orientation [53]: We quantize the

normal angles into bins, and each pixel between columns u(i) and u(i+1) votes for the bin

corresponding to its predicted normal. The votes are weighted by the probability of the

pixel to lie on a façade, as predicted in SF. We finally take the normal orientation n(i) for

façade f (i) as the orientation corresponding to the bin with the largest score.

Figure 5.4: Surface normal estimation examples of building façades. Color space repre-
senting the surface normals is discretized for visualization.

5.3 Minimal Solvers

We consider two minimal solvers to compute the camera pose. These minimal solvers are

relatively simple because we consider high-level features that can be extracted and match

from the image and the 2.5D map.

5.3. Minimal Solvers 77

5.3.1 Using Three Corner Correspondences

Let us consider three correspondences between buildings’ corners extracted from the image

and buildings’ corners extracted from the 2.5D map:

u1 ↔ [x1, y1]
⊤ , u2 ↔ [x2, y2]

⊤ , u3 ↔ [x3, y3]
⊤ ,

where ui ∈ U and [xi, yi]
⊤ lie on the ground plane. We want to estimate the 2D loca-

tion [tx, ty]
⊤ of the camera on the ground plane and its orientation θ. Let us denote by

P(t, θ;m) the projection of a 2D point m on a column of the rectified image:

K =

[

fu u0
0 1

]

, (5.2)

Rθ =

[

cos θ − sin θ

sin θ cos θ

]

(5.3)

P(t, θ;m) =
(K(Rθm+ t))0
(K(Rθm+ t))1

, (5.4)

where K is the intrinsic parameters for the rectified image for the horizontal axis,

Rθ is a 2D rotation matrix, and (.)0 and (.)1 denote the first and second coordinates

of a vector, respectively. From the 3 correspondences, we get three equations of form

ui = P([tx, ty]
⊤, θ; [xi, yi]

⊤) with i = 1, 2, 3. Introducing c = cos θ and s = sin θ, we

can transform these 3 equations into 3 linear equations and one quadratic equation since

c2 + s2 = 1. After applying Gauss-Jordan elimination to the 3 linear equations, we get:







. . . .

0 . . .

0 0 . .

















tx
ty
c

s











= b . (5.5)

The last equation has the form ac + bs = d. We can then replace c in c2 + s2 = 1 by

c = (−bs+ d)/a, and solve for s. Once we know s, we can easily compute c, then tx and

ty. Since there are two possible values for s, this gives two possible camera poses, but the

one that is in the opposite direction of p̃ can be discarded. For readers who is interested

in more details about our solvers can find more details in Appendix A.1.

5.3.2 Using Two Corner Correspondences and One Façade Correspon-

dence

Let us now consider two correspondences between buildings’ corners extracted from the

image and buildings’ corners extracted from the 2.5D map and one correspondence between

78 Chapter 5. High-Level Feature Matching for Camera Registration

a façade extracted from the image and a façade extracted from the 2.5D map:

u1 ↔ [x1, y1]
⊤ , u2 ↔ [x2, y2]

⊤ , f ↔ F ,

where f ∈ F and F is a façade in the 2.5D map. For the following derivations none of the

extremities of F has to be visible in the image, which makes this solver interesting when

only two edges are visible. Unfortunately, this solver tends to be less accurate than the

previous one because of noise in the normal estimation.

θ is the angle between n(f), the normal of the façade observed in the image as explained

in Section 5.2, and n(F), the normal of the façade in the 2.5D map model. It can thus be

computed as the following:

θ = arccos(n(f) · n(F)) . (5.6)

Once θ is known, it is easy to compute tx and ty by solving a system of two linear equations.

5.3.3 Creating Pose Hypotheses

At test time, we do not know the correct correspondences between the input image and the

2.5D map. We therefore need to consider all possible correspondence hypotheses between

the features extracted from the image and the buildings in the surrounding of the pose

provided by the sensors. For example, the exhaustive set of correspondences for the three

corner solver has the size NuNV(Nu − 1)(NV − 1)(Nu − 2)(NV − 2)/3!, where Nu is the

number of corners extracted from the image and NV is the number of corners in the 2.5D

map; typical values for Nu and NV are 4 and 100 respectively.

We, however, do not have to consider all hypotheses from the exhaustive set, since the

corners, and the façade in the case of the second solver, need to be visible to estimate a

possible solution. We therefore pre-process the 2.5D map and create for each corner V a

list LV containing all corners that can be visible simultaneously. At run-time, we create a

list W of potentially visible corners given the pose prior provided by the sensors, made of

the corners that are in or close to the field of view of this pose prior.

The possible hypotheses we need to consider can therefore be written as u1 ↔ V1,

u2 ↔ V2, u3 ↔ V3, with (u1, u2, u3) ∈ U3 and u1 6= u2, u1 6= u3, u2 6= u3, and

V1 ∈ W, V2 ∈ W ∩ LV1
, V3 ∈ W ∩ LV1

∩ LV2
.

These constraints on V1, V2, V3 allow us to consider only of 1.5% the hypotheses in the

exhaustive set on average in our experiments. The same approach can of course be used

for the second minimal solver by considering a list, for each corner, of the façades that

can be visible simultaneously.

Moreover, some poses computed by the solvers are clearly erroneous because they are

very far for the prior pose. We therefore discard them without evaluating them. This step

allows us to finally consider only 0.03% of the hypotheses in the exhaustive set on average

5.4. Evaluating Hypotheses 79

in our experiments. To select the best hypothesis among the remaining ones, we rely on

their log-posterior, as explained below.

The methods presented in Section 5.3.2 and Section 5.3.1 can be applied if the correct

correspondence of the vertical edges and the normals between Iinput and M are given.

However, we don’t know the correct correspondences in practice and we; therefore create

a hypotheses space H to represent all possible correspondences. H is used in a RANSAC

loop to estimate an accurate pose. The hypotheses space we construct should consider

both methods presented in Section 5.3 but please note that, hypotheses that use three

edges can be used only for the images where we detect at least three vertical edges.

We are searching for the possible number of selections of 2 edges and a façade normal

from the image and also from the map. We constraint the possible normal selections

to reduce the hypotheses space. A normal from the image could only be selected if the

normal’s façade uses one of the selected vertical edges. Same is applicable for the selection

of façade normals from the map. Let n be the number of vertical edge positions in Iinput
as detected in Section 3.1 and m be the number of visible vertices in 2.5D map.

Then, n!
2!(n−2)!nFI

m!
(m−2)!nFM

hypotheses can be constructed by considering the 2 edges

and a normal selection where nFI
is the number of possible normal selections for the

current pair of vertical edges nFM
is the possible normal selections for the current pair of

vertices. For the selection of three edges, n!
3!(n−3)!

m!
(m−3)! number of pairs could be selected.

All created hypotheses are combined to estimate a p as in Section 5.3 and evaluate the

estimation in the next session.

5.4 Evaluating Hypotheses

Our methods use the log-likelihood of the image segmentation S(Iinput) given the pose to

evaluate the quality of the pose, considering the four classes defined in Section 5.2. Here,

we also want to consider the façades’ normals N(Iinput) to obtain a better evaluation. We

also take into account the pose prior provided by the sensors: Some images are potentially

ambiguous, such as in the last row in Figure 5.8, where several buildings of similar lengths

are aligned with each other. Thus, only from the image segmentation, it is not possible

to decide which building the camera is facing. In such case, we would like to keep among

the possible camera poses the one that is closest to the pose prior. We therefore look for

the pose p that maximizes pose posterior:

P (p | Iinput) = P (p | S(Iinput), N(Iinput)) ∝ P (S(Iinput), N(Iinput) | p)P (p) . (5.7)

Taking the pixels to be independent given a pose, we have

P (S(Iinput), N(input) | p) =
∏

x

P (S(Iinput)[x] | p)P (N(input)[x] | p) ,

80 Chapter 5. High-Level Feature Matching for Camera Registration

where x takes all the possible pixel location values in the image. Let’s consider RF,

RHE, RVE, RBG, the binary maps for the classes façade, horizontal edge, vertical edge,

and background which are created by rendering the 2.5D map under the pose p, and

RN the rendering of the façade normals. We assume that P (N(Iinput)[x] | p) follows a

Gaussian distribution centered on RN [x] if x lies on a façade according to the rendering

(i.e. x ∈ RF). If x /∈ RF, the normal estimation does not provide a reliable estimate as it

was trained only for façades and we use a constant value for P (N(Iinput)[x] | p). We also

consider that P (p) follows an isotropic Gaussian distribution centered on p̃. Taking the

logarithm of Equation (5.7), we obtain the log-posterior:

sp =
∑

c∈{F,HE,VE,BG}

∑

x∈Rc

logSc[x]− λN

∑

x∈RF

(N(Iinput)[x]−RF[x])
2 − λp‖p− p̃‖22 (5.8)

plus terms that do not depend on p, where λN and λp are constant we manually tune to

match the noise in the normal prediction and the pose prediction from the sensors. We

finally keep the pose estimate provided by the minimal sensors described in Section 5.3 on

the hypotheses generated as explained in Section 5.3.3 that maximizes this log-posterior.

From this 2D pose estimate, we obtain a 3D pose by using the angles w.r.t. gravity from

the sensors and fixing the altitude of the camera to 1.6m as in the previous chapter.

5.5 Evaluation

For our experiments, we use the same training and testing data as described in Section 3.2.

In this section, we compare our quantitative results and the number of posterior evaluations

with those obtained by our previous methods. We use the same error metric as in previous

chapters (see Section 3.4) to measure the pose error. We take the L2 distance of the

estimated position and orientation to the ground truth position and the orientation.

Figure 5.5: Location errors for the poses from the sensors, the poses obtained by our
method presented in Chapter 4, and the poses obtained by our method.

5.5. Evaluation 81

Figure 5.6: Orientation errors for the poses from the sensors, the poses obtained by our
method presented in Chapter 4, and the poses obtained by our method.

Mean Orientation Error (◦) Mean Position Error (m)

Sensor pose - p̃ 11.3 13.4
Chapter 3 - Armagan et al [1] 4.3 4.5
Chapter 4 - Armagan et al [3] 3.2 3.1
Chapter 5 - Armagan et al [2] 2.5 2.1

Table 5.1: Mean position and orientation errors of the poses found by our methods and
sensors. Errors are wrt. the ground truth positions and orientations.

Accuracy. Figure 5.5 and Figure 5.6 compare orientation and the position estimates

provided by the sensors, estimated by our methods in Chapter 3 and Chapter 4, and

recovered by our current method. We apply the method on 40 test images. Our method

decreases the average location error from 13.4m to 2.1m± 2.05 and the orientation error

from 11.3◦ to 2.51◦±1.8, which is significantly better than the one obtained by the previous

learning-based approach: 3.1m± 2.62 for the location error and 3.2◦± 3, which represents

a 30% improvement. Figure 5.8 shows some qualitative results.

Computation times. The exhaustive number of possible matches in our approach can

potentially become very large: For example, it is equal to 4 million if Nu the number of

corners in the image is 4 and NV , the number of corners in the 2.5D map is 100 in the case

of the first solver. However, our heuristics that are described in Section 5.3.3 keeps 59722

hypotheses which we run the solvers for. The solvers are very fast as they require only

10µs for each hypothesis: Running the solvers therefore takes about 0.6s. Out of these

59722 poses, we obtain on average 1255 poses that are close enough to the pose prior to be

evaluated using the log-posterior of Equation 5.8. This 1255 pose evaluations should be

compared to the 6000 pose evaluations that we need to perform on average in Chapter 4.

This gives a speedup factor of about 4 for our approach.

82 Chapter 5. High-Level Feature Matching for Camera Registration

Additionally to show efficiency of our method, we plot the number of posterior evalu-

ations needs to be considered by the algorithm to find the final pose estimate. Numbers

for all 40 test images are summarized in Figure 5.7. This number is often very small, but

can become large for the most complex scenes depending on the number of vertices found

in the map for the sensors’ position and orientation.

Figure 5.7: Number of posterior pose evaluations done by our methods. Our method
based on high-level feature matching (green) needs less posterior evaluations compared
our learning-based method (blue). Our method presented in this chapter requires less
posterior evaluations than our method in Chapter 4. Please note that, the method in
Chapter 4 uses sparse pose sampling strategy to start the optimization to be able to make
accurate estimations when the sensor error is large. More specifically, it samples 175
poses and evaluate four different update magnitudes in the line search algorithm. Our
method presented in Chapter 3 uses a dense pose sampling strategy and samples 8400
poses. Therefore, the number of posterior evaluations remains constant for all images for
our approach in Chapter 3.

5.6. Summary 83

5.6 Summary

In this chapter, we presented an approach for camera registration where we combine the

reliability of high-level feature extraction and the efficiency of well established minimal

solvers.

The high-level features of buildings are exploited using semantic segmentation and the

normal estimation models following the same architecture in [52]. The proposed approach

introduces two accurate and efficient minimal solvers that estimates 2D camera pose by

combining the high-level features, 2D building corners and a façade normal, estimated

from the input image and similar features extracted from the 2.5D map to create a large

hypothesis space. Our efficient solvers solve these hypotheses accurately and efficiently

because they are simple and they use reliable high-level features. We discard the poses

that are invalid (that lies inside a building) or far from the pose prior of the sensors.

Remaining pose solutions are evaluated using the semantic information of the buildings

together with the normal estimations and renderings of the 2.5D map to make posterior

pose evaluations.

Urban scenes tend to have similar shaped buildings next to each other. Therefore, to

prevent our method having false positive that are very similar to true positives, here we

rely on the sensors and we give higher weights to the pose scores that are closer to the

sensors’ positions.

Our evaluations show both quantitatively and qualitatively this method is more ac-

curate and efficient compared to the methods in the previous chapters. We believe that

this is a very general and promising direction for future research, where other high-level

features are simultaneously extracted from images, matched, and used to compute a pose

with novel minimal solvers.

84 Chapter 5. High-Level Feature Matching for Camera Registration

(a) (b) (c) (d) (e)

Figure 5.8: Some poses obtained using our method. (a) Input image, (b) segmentation,
(c) normals, (d) rendering of the map from the pose estimated with our method, and (e)
2.5D maps with blue: ground truth pose, red: sensor pose, and green: the pose obtained
with our method. The poses for the two first examples were found by the first minimal
solver, the poses for the two last examples by the second mininal solver. More qualitative
results are provided in appendix section.

5.6. Summary 85

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Figure 5.9: Intermediate results for Scene #25. Best solution was found using 3 corner
correspondences.

86 Chapter 5. High-Level Feature Matching for Camera Registration

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Figure 5.10: Intermediate results for Scene #4. Best solution was found using 2 corner
correspondences and one façade normal.

6
Conclusion & Discussion

In this thesis, we proposed different strategies to tackle the problem of camera localization.

Camera localization has a large context since accurate camera pose estimation is essential

for recent popular applications such as AR or Autonomous Driving. We focus on one of

the generic problems in this context where we build on image-based camera localization in

urban environments. Our strategies follow a common setting where a single image and an

initial pose estimate of the camera is available. Using the given estimate from the sensors

such as a GPS, we focused on absolute camera localization problem.

The literature in image-based localization is mostly dominated by the methods based

on pre-registered image collections. However, these method don’t scale very well since

most of the time the image set is not up-to-date or costly to do so. On the other hand,

some approaches use inputs from multiple modalities like detailed 3D models of the en-

vironment. Similar to pre-registered images, detailed models of the environments are

costly to maintain. In this thesis, we proposed methods exploring the use of semantic and

geometrical features with the state-of-the-art segmentation methods in different frame-

works. Compared to other camera localization approaches that dominate the literature,

we achieve this with the help of 2.5D maps that are freely acquired from OpenStreetMap

(OSM) and easy to maintain. The advantage of OSM maps is being simple therefore, they

are easy to update and being crowd sourced with millions of volunteers. Therefore, the

OSM maps stays widely available and up-to-date with the help of the volunteer annotators.

This makes our approaches more practical and robust to changes.

We focused on urban environments where the area is mostly covered with buildings that

prevents the sensors to make accurate estimations together with the other factors. Our

approaches make use of the information exploited from the buildings. More specifically,

we extract the façades, vertical edges, horizontal edges, corners and the façades’ normal

estimations. We use these features because they are robust and reliable in the urban.

Relying on the robust and commonly available features is necessary to make accurate

camera localization. In Chapter 3, we showed how to train state-of-the-art segmentation

models to exploit such features to use in our localization approaches. Since the pixel-wise

87

88 Chapter 6. Conclusion & Discussion

acquisition of the training data to train such models is costly, in Section 3.2, we showed

how to efficiently collect the data using 2.5D models and the 3D trackers.

Later, Chapter 3 presented an approach to show how to use the exploited information

for localization purposes. Our proposed method searches for the best alignment between

the semantic information from images and the semantic information acquired from the

renderings of the 2.5D maps. Our localization framework remains simple but efficient

enough to show such semantic information from the buildings are reliable features to make

accurate localization. However, our method densely samples the pose space to search for

the best alignment and this makes it inefficient when the algorithm is tuned to recover for

large sensor errors.

In Chapter 4, we explored a learning-based strategy to align the semantic segmentation

of the input images with the renderings of the 2.5D map. To achieve this, we model to

learn a pose update direction that makes the renderings of the maps align better with the

segmentations of the image. In practice, we use two such pose updaters to correct the

errors for translation and the orientation errors. We found separating the update model

for orientation and position made our algorithm converge faster. To be robust to larger

sensor errors, we introduced sparse pose space sampling. We showed that this method is

more accurate and more efficient than dense the dense sampling of the pose space. We

believe such an approach is useful when the objective function is not differentiable or it is

not clear which objective function should be optimized to reach a desired goal. Another

possible direction is to extend our approach to work on image sequences instead of single

images. We believe then LSTMs can be explored to learn a pose update direction together

with the update magnitude.

In Chapter 5, we explored a more traditional technique using minimal solvers. In

contrast to traditional approaches relying on the low level features, we make use of more

robust high-level features with semantic and geometrical information. More specifically,

we extract building corners and façade normal orientations from input images and 2.5D

maps. These features are later used to combine with minimal solvers. We proposed two

well established minimal solvers. The first one uses three building corner correspondences

and the second one uses two corner correspondences and a façade normal correspondence

between the image the map. Since, in practice, finding two building edges is a more relaxed

problem we find the second solver useful for our problem. Our experiments showed that

using both solvers made our system more accurate and reliable for some scenes. Moreover,

this method is more accurate and efficient than our previous proposed methods and more

robust to large sensor errors. The strength of our approach is relying on robust high-level

features and efficient minimal solvers. Also our feature space consists of both semantic and

geometrical features and this let’s us introduce a more complex posterior function using

the façade normals and the building corners. Our proposed method can work more efficient

with a more complex hypothesis discarding strategy to reduce the hypothesis space. We

believe building edges have more to contribute for imaged-based camera localization in

urban environments. For example, a possible research direction is exploiting subclasses

89

Figure 6.1: Renderings of the convex, concave and flat vertical edges of the 2.5D map
under the ground truth pose are overlayed on the input image. We show an example
of the different vertical edge types such as convex (orange), concave (magenta) and flat
(green) that can be further exploited for urban camera localization.

of buildings’ vertical edges. We can consider vertical edges appear as 3 different types in

general such as convex, concave and flat edges. Exploring more semantic and geometric

features by using convex and concave edge structures of the buildings as illustrated in

Figure 6.1 is a promising direction as well as exploring the appearance order of the edges.

For example, probability of having 3 arbitrary edges with convex, flat and flat types is

much higher than having concave, convex and convex edges. This idea can be used to

increase the accuracy and reduce the hypothesis space of our approach presented in the

last chapter. In practice, it is important to have efficient algorithms and therefore, we

believe exploiting untextured simple maps with more high-level features such as edge

types is a good direction for image-based localization.

A
Appendix

In the following, we provide additional results and information for our approach mentioned

in Chapter 5. We first give, in Appendix A.1, more details about the projection formulas

that our minimal solvers use. We illustrate the whole process by showing intermediate

steps and results for 38 additional images in Appendix A.2. Please note that our test set

consists of 40 images in total and 2 of the results are showed in Section 5.5.

A.1 Minimal Solvers

In Chapter 5, we introduced two minimal solvers. The first one uses three 1D building

corner form the image and three 2D model corners. The second one uses a façade surface

orientation around the yaw axis and two corner correspondences. Here we detail the

minimal solvers by detailing the solved equation system.

A 2D point set Ui = [Xi, Yi]
T , i = 1 · N with N points is projected into 1D points

ui, i = 1 ·N as follows:

ui = K(RUi + t) (A.1)

whereK is the 2D camera intrinsics matrix with focal length αu and principal point u0 (see

Equation A.2), R is the 2D rotation matrix (see Equation A.3) and t is the 2D translation

vector of the camera (see Equation A.4).

K =

[

αu u0
0 1

]

(A.2)

R =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

(A.3)

t =

[

tx
ty

]

(A.4)

91

92 Chapter A. Appendix

Expanding the Equation A.1, we can write the projection formula for the points ui as

follows:

ui = u0 + αu
cos(θ)Xi − sin(θ)Yi + tx
sin(θ)Xi + cos(θ)Yi + ty

(A.5)

To simplify the problem, Equation A.5 can be written as:

Aicos(θ) +Bisin(θ) + Citx +Dity + Ei = 0 (A.6)

where E is a constant and:

Ai = (u0 − ui)Yi + αuXi,

Bi = (u0 − ui)Xi − αuYi,

Ci = αu

Di = u0 − ui

We are using three 1D reference points u1, u2, u3 and their correspondences

(X1, Y1), (X2, Y2), (X3, Y3) from the model. These points are used to create system of

equations by using the Equation A.6 as follows:

A1cos(θ) +B1sin(θ) + C1tx +D1ty + E1 = 0,

A2cos(θ) +B2sin(θ) + C2tx +D2ty + E2 = 0, (A.7)

A3cos(θ) +B3sin(θ) + C3tx +D3ty + E3 = 0,

Introducing c = cos(θ) and s = sin(θ), we can transform these 3 equations into 3

linear equations and one quadratic equation since c2 + s2 = 1. We apply Gauss-Jordan

elimination to the 3 equations and get the following linear equation system:







. . . .

0 . . .

0 0 . .

















tx
ty
c

s











= b . (A.8)

The last equation has the form s = (−A′c + E′)/B′ (see Equation A.11). Then, we

can use the s to replace within the equation c2 + s2 = 1 as in Equation A.12 to solve the

system and find 2 solutions for c. One solution is in the opposite direction of compass

orientation. We keep the solution that is in the same direction with compass. After solving

the Equation A.12 for s and the Equation A.11 for c, we solve the Equation A.10 and the

Equation A.9 to solve for ty and tx, respectively. In the rest of the Appendix, we give the

full equations after applying the Gauss-Jordan elimination.

A.1. Minimal Solvers 93

c ∗ (αu ∗ x1 + u0 ∗ y1 − u1 ∗ y1)+

αu ∗ tx+

s ∗ (−αu ∗ y1 + u0 ∗ x1 − u1 ∗ x1)+ (A.9)

ty ∗ (u0 − u1) = 0 ,

c ∗ (−αu ∗ x1 + αu ∗ x2 − u0 ∗ y1 + u0 ∗ y2 + u1 ∗ y1 − u2 ∗ y2)+

s ∗ (αu ∗ y1 − αu ∗ y2 − u0 ∗ x1 + u0 ∗ x2 + u1 ∗ x1 − u2 ∗ x2)+ (A.10)

ty ∗ (u1 − u2) = 0 ,

c ∗ (−αu ∗ u1 ∗ x2 + αu ∗ u1 ∗ x3 + αu ∗ u2 ∗ x1 − αu ∗ u2 ∗ x3

− αu ∗ u3 ∗ x1 + αu ∗ u3 ∗ x2 − u0 ∗ u1 ∗ y2 + u0 ∗ u1 ∗ y3+

u0 ∗ u2 ∗ y1 − u0 ∗ u2 ∗ y3 − u0 ∗ u3 ∗ y1 + u0 ∗ u3 ∗ y2−

u1 ∗ u2 ∗ y1 + u1 ∗ u2 ∗ y2 + u1 ∗ u3 ∗ y1 − u1 ∗ u3 ∗ y3−

u2 ∗ u3 ∗ y2 + u2 ∗ u3 ∗ y3)+

s ∗ (αu ∗ u1 ∗ y2 − αu ∗ u1 ∗ y3 − αu ∗ u2 ∗ y1 + αu ∗ u2 ∗ y3+ (A.11)

αu ∗ u3 ∗ y1 − αu ∗ u3 ∗ y2 − u0 ∗ u1 ∗ x2 + u0 ∗ u1 ∗ x3+

u0 ∗ u2 ∗ x1 − u0 ∗ u2 ∗ x3 − u0 ∗ u3 ∗ x1 + u0 ∗ u3 ∗ x2−

u1 ∗ u2 ∗ x1 + u1 ∗ u2 ∗ x2 + u1 ∗ u3 ∗ x1 − u1 ∗ u3 ∗ x3

u2 ∗ u3 ∗ x2 + u2 ∗ u3 ∗ x3) = 0 ,

s2 + s2 ∗ (αu ∗ u1 ∗ y2 − αu ∗ u1 ∗ y3 − αu ∗ u2 ∗ y1+

αu ∗ u2 ∗ y3 + αu ∗ u3 ∗ y1 − αu ∗ u3 ∗ y2 − u0 ∗ u1 ∗ x2+

u0 ∗ u1 ∗ x3 + u0 ∗ u2 ∗ x1 − u0 ∗ u2 ∗ x3 − u0 ∗ u3 ∗ x1+

u0 ∗ u3 ∗ x2 − u1 ∗ u2 ∗ x1 + u1 ∗ u2 ∗ x2 + u1 ∗ u3 ∗ x1−

u1 ∗ u3 ∗ x3 − u2 ∗ u3 ∗ x2 + u2 ∗ u3 ∗ x3)
2/

(−αu ∗ u1 ∗ x2 + αu ∗ u1 ∗ x3 + αu ∗ u2 ∗ x1 − αu ∗ u2 ∗ x3− (A.12)

αu ∗ u3 ∗ x1 + αu ∗ u3 ∗ x2 − u0 ∗ u1 ∗ y2 + u0 ∗ u1 ∗ y3+

u0 ∗ u2 ∗ y1 − u0 ∗ u2 ∗ y3 − u0 ∗ u3 ∗ y1 + u0 ∗ u3 ∗ y2−

u1 ∗ u2 ∗ y1 + u1 ∗ u2 ∗ y2 + u1 ∗ u3 ∗ y1 − u1 ∗ u3 ∗ y3−

u2 ∗ u3 ∗ y2 + u2 ∗ u3 ∗ y3)
2 = 1 ,

94 Chapter A. Appendix

A.2 Intermediate Results

In this section, we show the intermediate results on our test set found by our method in

Chapter 5.

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #1 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 95

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #2 - Best solution was found using 2 corner correspondences and one façade normal.

96 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #3 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 97

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #5 - Best solution was found using 2 corner correspondences and one façade normal.

98 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #6 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 99

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #7 - Best solution was found using 2 corner correspondences and one façade normal.

100 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #8 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 101

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #9 - Best solution was found using 3 corner correspondences.

102 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #10 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 103

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #11 - Best solution was found using 3 corner correspondences.

104 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #12 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 105

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #13 - Best solution was found using 2 corner correspondences and one façade normal.

106 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #14 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 107

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #15 - Best solution was found using 3 corner correspondences.

108 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #16 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 109

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #17 - Best solution was found using 2 corner correspondences and one façade normal.

110 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #18 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 111

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #19 - Best solution was found using 2 corner correspondences and one façade normal.

112 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #20 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 113

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #21 - Best solution was found using 3 corner correspondences.

114 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #22 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 115

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #23 - Best solution was found using 3 corner correspondences.

116 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #24 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 117

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #26 - Best solution was found using 2 corner correspondences and one façade normal.

118 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #27 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 119

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #28 - Best solution was found using 3 corner correspondences.

120 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #29 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 121

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #30 - Best solution was found using 3 corner correspondences.

122 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #31 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 123

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #32 - Best solution was found using 3 corner correspondences.

124 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #33 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 125

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #34 - Best solution was found using 2 corner correspondences and one façade normal.

126 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #35 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 127

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #36 - Best solution was found using 2 corner correspondences and one façade normal.

128 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #37 - Best solution was found using 2 corner correspondences and one façade normal.

A.2. Intermediate Results 129

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #38 - Best solution was found using 2 corner correspondences and one façade normal.

130 Chapter A. Appendix

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #39 - Best solution was found using 3 corner correspondences.

A.2. Intermediate Results 131

(a) Input image. (b) Rectified input image. (c) Segmentation Result
(blue: , green: vertical edge,
red: horizontal edge

(d) Probability maps (facade,
vertical edge, horizontal edge,
background).

(e) Vertical edge histogram. (f) Facade normal estimation.

(g) Orientation histograms
for detected facades.

(h) Found corners (green)
and defined facades (blue)
shown over the rectified input
image.

(i) Model reprojection using
ground truth pose.

(j) Model reprojection using
sensors estimation.

(k) Model reprojection using
our method’s estimate.

(l) Map (blue:ground truth,
red:sensors, green:our
method).

Scene #40 - Best solution was found using 3 corner correspondences.

BIBLIOGRAPHY 133

Bibliography

[1] Armagan, A., Hirzer, M., and Lepetit, V. (2017a). Semantic segmentation for 3D

localization in urban environments. In Joint Urban Remote Sensing Event. (page 38,

81)

[2] Armagan, A., Hirzer, M., Roth, P. M., and Lepetit, V. (2017b). Accurate camera

registration in urban environments using high-level feature matching. In British Machine

Vision Conference. (page 81)

[3] Armagan, A., Hirzer, M., Roth, P. M., and Lepetit, V. (2017c). Learning to align

semantic segmentation and 2.5D maps for geolocalization. In Conference on Computer

Vision and Pattern Recognition. (page 81)

[4] Arth, C., Pirchheim, C., Ventura, J., Schmalstieg, D., and Lepetit, V. (2015). Instant

outdoor localization and slam initialization from 2.5d maps. In International Symposium

on Mixed and Augmented Reality. (page 38, 52, 53, 64, 72)

[5] Avrithis, Y., Kalantidis, Y., Tolias, G., and Spyrou, E. (2010). Retrieving landmark

and non-landmark images from community photo collections. In Association for Com-

puting Machinery Multimedia Conference. (page 8, 32)

[6] Baatz, G., Köser, K., Chen, D., Grzeszczuk, R., and Pollefeys, M. (2010). Handling

urban location recognition as a 2D homothetic problem. In European Conference on

Computer Vision. (page 38)

[7] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2015). SegNet: A deep convolutional

encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.

(page 45, 56, 71, 72)

[8] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature verifi-

cation using a ”Siamese” time delay neural network. In Advances in Neural Information

Processing Systems. (page 22, 23)

[9] Bujnak, M., Kukelova, Z., and Pajdla, T. (2008). A general solution to the p4p problem

for camera with unknown focal length. In Conference on Computer Vision and Pattern

Recognition. (page 31)

[10] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary robust

independent elementary features. In European Conference on Computer Vision. (page 8)

[11] Cham, T., Ciptadi, A., Tan, W., Pham, M., and Chia, L. (2010). Estimating camera

pose from a single urban ground-view omnidirectional image and a 2D building outline

map. In Conference on Computer Vision and Pattern Recognition. (page 38)

134

[12] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2015).

Semantic image segmentation with deep convolutional nets and fully connected CRFs.

In International Conference for Learning Representations. (page 30, 44)

[13] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2016).

DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected CRFs. arXiv preprint arXiv:1606.00915. (page 30, 44)

[14] Chu, H., Gallagher, A., and Chen, T. (2014). GPS refinement and camera orientation

estimation from a single image and a 2D map. In Conference on Computer Vision and

Pattern Recognition Workshops. (page 38)

[15] Ciepluch, B., Mooney, P., Jacob, R., and Winstanley, A. (2011). Sketches of generic

framework for quality assessmenft of volunteered geographical data. In IEEE Geoscience

and Remote Sensing Society. (page 50)

[16] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke,

U., Roth, S., and Schiele, B. (2016). The Cityscapes dataset for semantic urban scene

understanding. In Conference on Computer Vision and Pattern Recognition. (page 5)

[17] Dai, J., Li, Y., He, K., and Sun, J. (2016). R-FCN: Object detection via region-based

fully convolutional networks. In Advances in Neural Information Processing Systems.

(page 21)

[18] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.

In Conference on Computer Vision and Pattern Recognition. (page 39)

[19] David, P. and Ho, S. (2011). Orientation descriptors for localization in urban envi-

ronments. In International Conference on Intelligent Robots and Systems. (page 38)

[20] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009). ImageNet: A

large-scale hierarchical image database. In Conference on Computer Vision and Pattern

Recognition. (page 26)

[21] DeTone, D., Malisiewicz, T., and Rabinovich, A. (2017). Toward geometric deep

SLAM. arXiv preprint arXiv:1707.07410. (page 37)

[22] Dhome, M., Richetin, M., Lapreste, J.-T., and Rives, G. (1989). Determination of the

attitude of 3d objects from a single perspective view. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 11(12):1265–1278. (page 31)

[23] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010).

The pascal visual object classes (voc) challenge. International Journal of Computer

Vision, 88(2):303–338. (page 29, 30)

BIBLIOGRAPHY 135

[24] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. Com-

munications of the Association for Computing Machinery, 24(6):381–395. (page 31, 71,

72)

[25] Gao, X.-S., Hou, X.-R., Tang, J., and Cheng, H.-F. (2003). Complete solution classifi-

cation for the perspective-three-point problem. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(8):930–943. (page 31, 71)

[26] Girres, J. F. and Touya, G. (2010). Quality assessment of the French OpenStreetMap

dataset. Transactions in Geographic Information Systems, 14(4):435–459. (page 51)

[27] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. In International Conference on Artificial Intelligence and

Statistics. (page 23)

[28] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT press

Cambridge. (page 17, 18, 19, 20, 23, 24, 25)

[29] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning

an invariant mapping. In Conference on Computer Vision and Pattern Recognition.

(page 39)

[30] Hakeem, A., Vezzani, R., Shah, M., and Cucchiara, R. (2006). Estimating geospatial

trajectory of a moving camera. In International Conference on Pattern Recognition.

(page 9)

[31] Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.

Cambridge University Press. (page 30, 31)

[32] Hays, J. and Efros, A. (2008). IM2GPS: estimating geographic information from a

single image. In Conference on Computer Vision and Pattern Recognition. (page 8, 32,

33, 34)

[33] Hays, J. and Efros, A. (2015). Large-scale image geolocalization. In Multimodal

Location Estimation of Videos and Images. Springer. (page 8, 32, 33)

[34] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Conference on Computer Vision and Pattern Recognition. (page 27, 28,

30)

[35] Heinly, J., Schonberger, J. L., Dunn, E., and Frahm, J. M. (2015). Reconstructing the

world* in six days *(as captured by the yahoo 100 million image dataset). In Conference

on Computer Vision and Pattern Recognition. (page 9)

136

[36] Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning. (page 24)

[37] Kalogerakis, E., Vesselova, O., Hays, J., Efros, A., and Hertzmann, A. (2009). Im-

age sequence geolocation with human travel priors. In International Conference on

Computer Vision. (page 32)

[38] Kendall, A. and Cipolla, R. (2016). Modelling uncertainty in deep learning for camera

relocalization. In International Conference on Robotics and Automation. (page 33, 35)

[39] Kendall, A. and Cipolla, R. (2017). Geometric loss functions for camera pose regres-

sion with deep learning. In Conference on Computer Vision and Pattern Recognition.

(page 33, 35)

[40] Kendall, A., Grimes, M., and Cipolla, R. (2015). PoseNet: A convolutional network

for real-time 6-DOF camera relocalization. In International Conference on Computer

Vision. (page 26, 32, 33, 34, 35)

[41] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR

workspaces. In International Symposium on Mixed and Augmented Reality. (page 9)

[42] Koenderink, J. J. and van Doorn, A. J. (1987). Representation of local geometry in

the visual system. Biological Cybernetics, 55(6):367–375. (page 22)

[43] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems. (page 26)

[44] Kukelova, Z., Bujnak, M., and Pajdla, T. (2008). Automatic generator of minimal

problem solvers. In European Conference on Computer Vision. (page 71)

[45] Kukelova, Z., Bujnak, M., and Pajdla, T. (2013). Real-time solution to the abso-

lute pose problem with unknown radial distortion and focal length. In International

Conference on Computer Vision. (page 31, 71)

[46] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1(4):541–551. (page 21)

[47] Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). EPnP: An accurate O(n) solution

to the PnP problem. International Journal of Computer Vision, 81(2):155. (page 31)

[48] Li, Y., Snavely, N., Huttenlocher, D., and Fua, P. (2012). Worldwide pose estimation

using 3D point clouds. In European Conference on Computer Vision. (page 33)

BIBLIOGRAPHY 137

[49] Li, Y., Snavely, N., and Huttenlocher, D. P. (2010). Location recognition using

prioritized feature matching. In European Conference on Computer Vision. (page 9,

33)

[50] Lin, T. Y., Belongie, S., and Hays, J. (2013). Cross-view image geolocalization. In

Conference on Computer Vision and Pattern Recognition. (page 36, 37)

[51] Lin, T. Y., Cui, Y., Belongie, S., and Hays, J. (2015). Learning deep representations

for ground-to-aerial geolocalization. In Conference on Computer Vision and Pattern

Recognition. (page 9, 36, 37, 38, 39, 40)

[52] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In Conference on Computer Vision and Pattern Recognition.

(page 21, 22, 26, 27, 29, 30, 44, 45, 46, 55, 59, 71, 72, 74, 83)

[53] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91–110. (page 7, 8, 32, 76)

[54] Ludwig, I., Voss, A., and Krause-Traudes, M. (2011). A comparison of the street

networks of Navteq and OSM in Germany. In Advancing Geoinformation Science for a

Changing World, volume 1, pages 65–84. Springer. (page 51)

[55] Matan, O., Burges, C. J., LeCun, Y., and Denker, J. S. (1992). Multi-digit recog-

nition using a space displacement neural network. In Advances in Neural Information

Processing Systems. (page 21)

[56] Meierhold, N. and Schmich, A. (2009). Referencing of images to laser scanner data

using linear features extracted from digital images and range images. International

Society for Photogrammetry and Remote Sensing, 38(3/W8):164–170. (page 38)

[57] Middelberg, S., Sattler, T., Untzelmann, O., and Kobbelt, L. (2014). Scalable 6-DOF

localization on mobile devices. In European Conference on Computer Vision. (page 9)

[58] Naval Jr, P. C., Mukunoki, M., Minoh, M., and Ikeda, K. (1997). Estimating camera

position and orientation from geographical map and mountain image. In 38th Research

Meeting of the Pattern Sensing Group, Society of Instrument and Control Engineers.

(page 37)

[59] Nister, D. (2004). An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–770. (page 31)

[60] Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In

Conference on Computer Vision and Pattern Recognition. (page 8, 32)

[61] Oliva, A. and Torralba, A. (2006). Building the gist of a scene: the role of global

image features in recognition. Progress in Brain Research, 155:23–36. (page 32)

138

[62] Pavan, M. and Pelillo, M. (2003). A new graph-theoretic approach to clustering and

segmentation. In Conference on Computer Vision and Pattern Recognition. (page 40)

[63] Pavan, M. and Pelillo, M. (2007). Dominant sets and pairwise clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(1):167–172. (page 40)

[64] Ramalingam, S., Bouaziz, S., Sturm, P., and Brand, M. (2010). SKYLINE2GPS:

Localization in urban canyons using omni-skylines. In International Conference on

Intelligent Robots and Systems. (page 8, 9, 32, 37)

[65] Ramalingam, S., Bouaziz, S., and Sturm, P. F. (2011). Pose estimation using both

points and lines for geo-localization. In International Conference on Robotics and Au-

tomation. (page 38)

[66] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In Conference on Computer Vision and Pattern

Recognition. (page 18)

[67] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time

object detection with region proposal networks. In Advances in Neural Information

Processing Systems. (page 39)

[68] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks

for biomedical image segmentation. In Conference on Medical Image Computing and

Computer Assisted Intervention. (page 45, 56, 71, 72)

[69] Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. (2016). The SYN-

THIA Dataset: A large collection of synthetic images for semantic segmentation of

urban scenes. In Conference on Computer Vision and Pattern Recognition. (page 5)

[70] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). LabelMe: a

database and web-based tool for image annotation. International Journal of Computer

Vision, 77:157–173. (page 49)

[71] Sattler, T., Havlena, M., Radenovic, F., Schindler, K., and Pollefeys, M. (2015).

Hyperpoints and fine vocabularies for large-scale location recognition. In International

Conference on Computer Vision. (page 9)

[72] Sattler, T., Leibe, B., and Kobbelt, L. (2011). Fast image-based localization using

direct 2D-to-3D matching. In International Conference on Computer Vision. (page 33)

[73] Sattler, T., Leibe, B., and Kobbelt, L. (2012). Improving image-based localization by

active correspondence search. In European Conference on Computer Vision. (page 9)

[74] Sattler, T., Leibe, B., and Kobbelt, L. (2017). Efficient & effective prioritized match-

ing for large-scale image-based localization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(9):1744–1756. (page 35, 36)

BIBLIOGRAPHY 139

[75] Saurer, O., Baatz, G., Köser, K., Pollefeys, M., et al. (2016). Image based geo-

localization in the alps. International Journal of Computer Vision, 116(3):213–225.

(page 37)

[76] Schindler, G., Brown, M. A., and Szeliski, R. (2007). City-scale location recognition.

In Conference on Computer Vision and Pattern Recognition. (page 8, 32)

[77] Sehra, S. S., Singh, J., and Rai, H. S. (2014). A systematic study of OpenStreetMap

data quality assessment. In International Conference on Information Technology: New

Generations, pages 377–381. (page 51)

[78] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013).

Overfeat: Integrated recognition, localization and detection using convolutional net-

works. arXiv preprint arXiv:1312.6229. (page 33)

[79] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556. (page 20, 22, 26, 30, 45,

46)

[80] Sivic, J. and Zisserman, A. (2003). Video Google: A text retrieval approach to object

matching in videos. In International Conference on Computer Vision. (page 32)

[81] Svarm, L., Enqvist, O., Oskarsson, M., and Kahl, F. (2014). Accurate localization and

pose estimation for large 3D models. In Conference on Computer Vision and Pattern

Recognition. (page 9, 33)

[82] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Conference

on Computer Vision and Pattern Recognition. (page 20, 26, 27, 28)

[83] Talluri, R. and Aggarwal, J. K. (1993). Image map correspondence for mobile robot

self-location using computer graphics. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 15(6):597–601. (page 37)

[84] Taneja, A., Ballan, L., and Pollefeys, M. (2012). Registration of spherical panoramic

images with cadastral 3d models. In 3D Imaging, Modeling, Processing, Visualization

and Transmission. (page 38)

[85] Tateno, K., Tombari, F., Laina, I., and Navab, N. (2017). Cnn-slam: Real-time dense

monocular SLAM with learned depth prediction. arXiv preprint arXiv:1704.03489.

(page 37)

[86] Tian, Y., Chen, C., and Shah, M. (2017). Cross-view image matching for geo-

localization in urban environments. arXiv preprint arXiv:1703.07815. (page 37, 38,

39, 40)

140

[87] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-Rmsprop: Divide the gradient by

a running average of its recent magnitude. Coursera: Neural Networks for Machine

Learning. (page 63)

[88] Tola, E., Lepetit, V., and Fua, P. (2010). Daisy: An efficient dense descriptor ap-

plied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(5):815–830. (page 7, 8)

[89] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999). Bundle

adjustment - a modern synthesis. In International Workshop on Vision algorithms.

(page 9)

[90] Tzeng, E., Zhai, A., Clements, M., Townshend, R., and Zakhor, A. (2013). User-

driven geolocation of untagged desert imagery using digital elevation models. In Con-

ference on Computer Vision and Pattern Recognition Workshops. (page 37)

[91] Viswanathan, A., Pires, B. R., and Huber, D. (2014). Vision based robot localization

by ground to satellite matching in GPS-denied situations. In International Conference

on Intelligent Robots and Systems. (page 36)

[92] Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., and Cremers, D.

(2017). Image-based localization using LSTMs for structured feature correlation. In

International Conference on Computer Vision. (page 33, 35, 36)

[93] Wang, J., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., and Wu,

Y. (2014). Learning fine-grained image similarity with deep ranking. arXiv preprint

arXiv:1404.4661. (page 8, 32)

[94] Weyand, T., Kostrikov, I., and Philbin, J. (2016). PlaNet-photo geolocation with

convolutional neural networks. In European Conference on Computer Vision. (page 18,

32, 33)

[95] Workman, S., Souvenir, R., and Jacobs, N. (2015). Wide-area image geolocalization

with aerial reference imagery. In International Conference on Computer Vision. (page 8,

32, 36, 37)

[96] Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva, A. (2016). Sun Database:

Exploring a large collection of scene categories. International Journal of Computer

Vision, 119(1):3–22. (page 32)

[97] Yi, K., Trulls, E., Lepetit, V., and Fua, P. (2016). LIFT: Learned invariant feature

transform. In European Conference on Computer Vision. (page 7, 8)

[98] Yu, F. and Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions.

arXiv preprint arXiv:1511.07122. (page 30, 44)

	Introduction
	Problem Statement
	Applications
	Challenges
	Approaches
	Contributions
	List of Publications

	Outline

	Related Work
	Background Methods
	Neural Networks
	Artificial Neural Networks (ANN)
	Convolutional Neural Networks (CNNs)
	Fully Convolutional Networks (FCNs)
	Siamese Networks
	Training of Deep Networks
	Overfitting Problem in Neural Networks
	Famous Network Architectures

	Semantic Image Segmentation
	PnP Problem for Pose Estimation
	Minimal Solvers

	Image-based Visual Localization
	Localization with Registered Images
	Localization with Combining Information from Multiple Modalities

	Camera Localization with Semantic Segmentation and 2.5D Maps
	Semantic Image Segmentation for Urban Environments
	Exploiting Fully Convolutional Network (FCN) for Building Segmentation and Surface Normal Estimation
	Using FCN for Façades' Normal Estimation
	Rectification of Input Images

	Data Acquisition for the Semantic Segmentation Model
	Manual Annotation of the Buildings' Parts
	Consistent and Fast Annotation of Buildings' Parts
	2.5D OpenStreetMap Models
	Key-Point-Based 3D Tracking
	Training Dataset for the Semantic Segmentation Method
	Test Dataset for Camera Localization

	Combining Semantic Segmentation and 2.5D Maps for 3D Localization
	Evaluation
	Summary

	Learning to Refine a Pose Estimate
	Learning to Predict a Direction for Pose Update
	Pose Estimation Algorithm
	Evaluation
	Training and Evaluation Data

	Summary

	High-Level Feature Matching for Camera Registration
	Method Overview
	Extracting High-Level Features from the Input Image
	Minimal Solvers
	Using Three Corner Correspondences
	Using Two Corner Correspondences and One Façade Correspondence
	Creating Pose Hypotheses

	Evaluating Hypotheses
	Evaluation
	Summary

	Conclusion & Discussion
	Appendix
	Minimal Solvers
	Intermediate Results

	Bibliography

