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Abstract

Chronic wound healing disorders are a serious cost factor in the healthcare system world-

wide. Beside professional medical treatment, the active cooperation of the affected pa-

tients is essential for an optimal healing process. In order to make the patients aware of

their direct influence onto wound healing and to increase the compliance there was the

need to develop an image based software tool that is able to simulate possible evolutions

of a chronic wound depending on personal life circumstances and make them visually

experience-able.

In this environment, the present work focuses on image-based wound analysis and

wound synthesis and thus makes the essential contribution to the simulation tool developed

in the SimuWound research project. Based on a careful selection and evaluation of suitable

descriptors for wound description, wounds were dissected into individual tissue types in

order to generate synthetic tissue layers using patch based methods. Deploying derived

filters from appropriate masks, new synthetic but still realistic wounds were generated.

The development of a reliable detection algorithm for reference markers for scale and

colour calibration was also an important contribution. Furthermore, various methods for

image-based segmentation of affected body parts, smooth and difficult to define wound

borders but also of fistulas within a wound have been developed and successfully tested.

Finally, the work outlines a method to generate simulations for wound healing and wound

deterioration using the proposed layer concept and a suitable parameter based model.

The developed simulation software has already been successfully tested in the clinical

environment. It also has the potential for the use in mobile devices or as a valuable tool in

the training of prospective physicians and nursing staff in the clinical and private sectors.

Keywords. wound image analysis, wound synthesis, wound development simulation,

image completion, segmentation
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Kurzzusammenfassung

Chronische Wundheilungsstörungen sind weltweit ein ernstzunehmender Kostenfaktor im

Gesundheitssystem. Für einen optimalen Heilungsverlauf ist neben professioneller medi-

zinischer Behandlung die aktive Mitarbeit der Betroffenen unerlässlich. Um den Patienten

ihren direkten Einfluss auf die Wundheilung bewusst zu machen und sie zur Mitarbeit zu

motivieren, bestand die Notwendigkeit eine bildbasierte Software zu entwickeln, die im

Stande ist, mögliche Verläufe einer chronischen Wunde in Abhängigkeit von persönlichen

Lebensumständen zu simulieren und visuell erfahrbar zu machen. Die vorliegende Arbeit

hat in diesem Umfeld den Fokus auf bildbasierter Wundanalyse und Wundsynthese und

leistet somit den wesentlichen Beitrag für das im Forschungsprojekt SimuWound ent-

wickelte Simulationstool.

Basierend auf einer sorgfältigen Auswahl und Evaluierung geeigneter Deskriptoren zur

Wundbeschreibung, konnten Wunden in einzelne Gewebstypen zerlegt werden, um daraus

mit patchbasierten image completion Methoden synthetische Gewebslayer zu erzeugen.

Mithilfe geeigneter Masken und daraus abgeleiteten Filtern wurden so neue synthetische,

aber dennoch realitätsnahe Wunden generiert. Ein wesentlicher Beitrag war auch die

Entwicklung eines zuverlässigen Detektionsalgorithmus für Referenzmarker zur Maßstabs-

und Farbkalibration. Des Weiteren wurden verschiedene Methoden zur bildbasierten Seg-

mentierung von betroffenen Körperteilen, von weich verlaufenden, schwer abzugrenzenden

Wundrändern, aber auch von Fisteln innerhalb einer Wunde entwickelt und erfolgreich

getestet. Zum Abschluss skizziert die Arbeit eine Methode um mithilfe des vorgestellten

Layerkonzepts und einem geeigneten Parametermodell Simulationen für die Wundheilung

und Wundverschlechterung zu erzeugen.

Die entwickelte Simulationssoftware wurde bereits erfolgreich im klinischen Umfeld

getestet. Sie hat auch das Potenzial für den Einsatz in mobilen Geräten oder als wertvolles

Werkzeug bei der Ausbildung von angehenden Ärztinnen und Ärzten sowie Pflegepersonal

im klinischen und niedergelassenen Bereich.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Chronic wounds are a protracted disease causing substantial health care costs world-wide.

Currently, in German-speaking countries alone, several million people suffer from chronic

wound healing disturbances. The medical condition is mainly caused by diabetes, periph-

eral arterial occlusive disease, chronic venous disorder, decubitus wounds or postoperative

healing disorders.

Besides professional medical treatment, optimal wound healing presupposes an active

involvement of the patient. According to wound experts an active participation may

notably decrease the treatment period and thus, directly relieve patient and physician

as well as ease the burden on the health budget. However, affected people are often

discouraged and dejected due to the long-lasting course of their disease. Despite medical

care, many chronic wounds take several months, sometimes even more than a year, to heal

completely. Unfortunately patients are often not aware that a therapeutic success strongly

depends on their active cooperation and compliance. In order to sharpen the patient’s

1



2 Chapter 1. Introduction

awareness of their influence onto wound healing there was the need to develop an image

analysis and synthesis software tool to simulate possible evolutions of a chronic wound

and make them visually experienceable. The simulations should encourage patients to

actively participate in therapy but also demonstrate the consequences of non-cooperation

in a dissuasive manner.

1.2 Goals

As already pointed out, the aim of the simulation tool is to predict possible wound de-

velopment scenarios based on the actual state. The developed algorithms deployed in

the tool had to consider personal influence factors like for example smoking, diabetes or

overweight, allowing the simulation of different scenarios. To increase the effect and im-

pression, the patient should not be confronted with an arbitrary wound simulation, but

with the simulation of the development of his own wound on his own body part. Further-

more, to emphasize the urgency, not only healing had to be predicted and visualized but

possible deterioration – in case of an untreated wound – as well. Finally, the tool should,

inter alia, be ready for the use within doctor-patient conversations and thus be easy and

intuitively to use. Therefore, the effort for a physician to create a wound simulation should

be limited to the generation of an image depicting the affected body part and a Graphical

User Interface (GUI) based annotation including wound contour, diagnosis and personal

circumstances.

As the quality of the wound course simulation strongly depends on the available wound

data for analysis and training, detractions regarding the simulation accuracy/quality are

tolerated. Therefore, deviations from a de facto wound development are not critical as

long as the visualisation of the wound evolution looks reasonably realistic. An additional

restriction affects the simulation of wound deterioration. As all patients were treated in

the hospital, there is usually no training data available for deterioration of a wound. For

this reason the deterioration process shall basically be simulated in the same manner like

healing but in the opposite direction and temporally much faster. A final point concerns

calculation time. There is no need for a real-time application, so processing speed is no

issue.
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1.3 Scope of Work

The development of the simulation tool was subject to project SimuWound at JOAN-

NEUM RESEARCH. Substantial parts of the work are covered in the current thesis.

Figure 1.1 provides a retrospective overview of the main technical tasks that had to be

solved within the scope of the project. Blue labelled tasks were developed by the author.

Yellow tasks were solved within the project team and green labelled assignments were

dedicated to other team members than the author.

Wound Analysis Wound Synthesis Wound Course Simulation

Standardised Image Acquisition

Develop Marker Segmentation

Investigate Wound Descriptors

Develop Synthetic Sulcus

Develop Image Completion Algorithm

Develop Sulcus Detector

Develop Wound Tissue Classifier 

Investigate Promising Wound Features

Develop Wound Phase Classifier

Consensually Classify Wounds Into Phases

Develop Body Part Segmentation

Develop Tissue Layer Concept

Build Tissue Patch Database

Develop Wound Tissue Synthesis

Develop Wound Border Region Segmentation

Develop Marker Detector

Develop Simulation Chain

Develop Inflammation Effect

Develop Swell Effect

Develop Simulation GUI

Develop Wound Growing/Shrinking

Develop Shading Effect

Develop Sulcus Evolution

Develop Annotation GUI Select Proper Image Acquisition Equipment

Develop Colour Normalisation Develop Colour Marker

Capture Training Images Annotate Training Images

Figure 1.1: Main technical tasks of project. The blue ones are part of this thesis.
The yellow ones were solved together within the project team and
green ones were dedicated to other team members than the author.

The major contribution of the thesis may be summarized as the analysis and descrip-

tion of visual attributes of a chronic wound with respect to a related diagnosis and the

generation of synthetic wounds (based on the extracted features). In addition, the devel-

opment of an algorithm that alters the wound parameters in order to simulate different

wound evolutions depending on given personal circumstances was outlined.

To allow image based analysis and evaluation of different wound evolutions, standard-

ised data acquired in a hospital is made available. These data comprise images of chronic

wounds and its borders delineated by a physician. Furthermore, related information about

present diagnosis as well as wound course affecting personal circumstances are provided.
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In order to reduce the complexity of the assignment, the scope of this work was limited

to three diagnoses, and by virtue of being restricted to 2D data, the location of the wound

to be examined was restricted to more or less planar areas of the body. So the regions of

the body intended for wound simulations comprise – depending on the particular diagnosis

– thigh, shank, ankle, sole of the foot and bridge of the foot. The relevant diagnoses are

introduced in following section 1.4 and include diabetic foot syndrome, peripheral artery

occlusive disease and venous leg ulcer.

Note that some parts of this thesis were already presented in [52]. The focus of that

paper was on the newly introduced image completion technique optimised for the simu-

lation of wound development. Since three authors were involved, it has to be mentioned

that the assignment of tasks described in Figure 1.1 applies without restriction for the

paper as well.

1.4 Diagnoses

In the following, three chronic diseases that have to be considered within the scope of the

thesis, are described in short. In order to give the reader a first impression, also related

wound images are provided.

1.4.1 Diabetic Foot Syndrome

Diabetes mellitus is a global medical problem. The most recent estimates of the Inter-

national Diabetes Federation (IDF) in [23] indicate that 8.3% of adults, i.e. 387 million

people, suffer from diabetes, and the number of people with the disease is expected to

rise beyond 592 million over the next two decades. Furthermore, about 175 million of

cases are currently undiagnosed. Accordingly, every second diabetic is unaware of her

or his illness and gets into serious health complications without knowing it. One of the

most feared secondary diseases of diabetes mellitus is Diabetic Foot Syndrome (DFS),

colloquially also referred to as diabetic foot. According to [23] a diabetic foot is defined

as ”a foot that exhibits any pathology that results directly from diabetes or complication

of diabetes”. In [24], the International Working Group on the Diabetic Foot defines the

disease as the presence of ”Infection, ulceration or destruction of deep tissues of the foot

associated with neuropathy and/or peripheral arterial disease in the lower extremity of

people with diabetes”.

The major reasons for diabetic foot syndrome are nerve damages caused by a persistent
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high blood glucose level due to untreated or poorly regulated diabetes and/or leg artery

obstructions (see also section 1.4.2). The disease often begins with a small lesion caused

for example by a pinching shoe. Insensitive or limitedly sensitive to pain, the patient often

does not notice the wound and the disease proceeds. If not treated in time, DFS quite

often leads to gangrene (necrosis) and lower limb amputation. [34]

Figure 1.2 shows some example wounds of DFS.

Figure 1.2: Wound examples of diabetic foot diseases.

1.4.2 Peripheral Artery Occlusive Disease

Peripheral Artery Occlusive Disease (PAOD), Peripheral Artery Disease (PAD) and Pe-

ripheral Vascular Disease (PVD) are different names for the narrowing and obstruction of

arteries that supply blood to the limps. The disease is mainly caused by atherosclerosis.

In most cases legs are affected. As the major risk factor for PAOD is smoking – many
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content substances of tobacco harm vessels – the disease is colloquially also referred to

as smoker’s leg. Other important factors that contribute to the development of PAOD

are diabetes mellitus, hypertension (high blood pressure), a persistently high cholesterol

level and hyperhomocysteinemia (abnormally high level of homocysteine in the blood).

An obstructed blood flow potentially results in a painful leg, ulcers as well as wounds that

do not or merely poorly heal. In the worst case there occur necroses which frequently lead

to the need for amputation of the affected foot or leg. [3, 4]

Figure 1.3 shows some example wounds of PAOD.

Figure 1.3: Wound examples of peripheral artery occlusive diseases.

1.4.3 Venous Leg Ulcer

Venous leg ulcer, also referred to as Ulcus Cruris Venosum (UCV), is a mostly open, often

painful, chronic wound on the leg or foot. Whereas PAOD concerns arteries disturbing the

supply of limb cells with oxygen and nutrient, UCV affects leg veins and thus the drainage

of the lower extremity. Veins have the essential task of transporting de-oxygenated blood

and metabolic waste collected from cells back to the heart. Larger veins posses valves



1.5. Outline 7

enabling the transport of blood in one direction and against gravity. Due to insufficient

valves, caused for example by an inflammation or a venous thrombosis, the deep veins of a

leg and connected superficial venous capillaries are exposed to unduly increased pressure.

In further consequence capillaries are damaged and leak, which lead to the development

of ulcers in surrounding tissues or to a poorly healing wound in case of traumatic events.

Venous leg ulcers usually arise on the inside of the lower shank above the ankle. [17]

Figure 1.4 provides some examples of venous leg ulcers.

Figure 1.4: Wound examples of venous leg ulcers.

1.5 Outline

The remainder of the thesis is structured as follows. In section 2 standard image based

wound management tools in the health care sector are outlined and an overview of current

image completion techniques is given. In section 3 requirements placed on an image

acquisition system for wound imaging at a hospital in general and the deployed imaging

set up in particular are explained. Furthermore, used reference markers for the sake of
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scale and colour normalisation as well as the newly developed marker detection procedure

are presented in that section.

As the developed wound course simulation tool presents the main contribution of this

thesis, the next chapters are dedicated to its primary function blocks: wound analysis

(section 4), wound synthesis (section 5) and wound development (section 6). Accordingly,

section 4 describes a wound and its structure in general. Furthermore, several image based

features are tested for its suitability in wound analysis and, as a result, proper features for

wound development stage and tissue classification are presented. Section 5 describes the

generation of a synthetic wound as well as deployed visual effects and section 6 explains

the actual wound evolution algorithm and presents some simulation results for considered

diseases. Finally, section 7 draws a conclusion, discusses the limitations of the current

approach and suggests areas of future research.



Chapter 2

Related Work

The documentation of therapeutic and nursing measures on patients is regulated by law

in many countries. This also applies to the therapy and treatment of chronic wounds.

In addition to legislative aspects, a good documentation of the performed therapeutic

measures and the wound development is also essential in the sense of a continuous im-

provement process in the context of quality management of a clinic or health care facility.

The documentation of a chronic wound and its development in the course of therapy is

often difficult or inadequately possible in written form. Therefore, it is obvious to aug-

ment the written description of a chronic wound by appropriate image data. Hence, there

exists a wealth of work and even products employing image processing in the wound care

context. Many of them focus on the documentation and assessment of wounds during the

period of treatment.

Akestes [2] and Jalomed [25], for example, have developed computerised wound man-

agement solutions that, in addition to patient data management, wound anamnesis, ther-

apy suggestion and other features, also enables image-based documentation of a wound

including the possibility of a rudimentary measurement of the wound size by interactively

drawing a polygon around the wound area(s). Scale calibration is accomplished by man-

ually defining a known distance on a ruler placed in the image. Wild et al. [60] took

it one step further and developed a wound documentation tool deploying a wound tissue

classification based on colour information. Focussing on e-learning, [48, 49] describe a tool

for browsing through a wound image database and allowing inter alia interactive analysis

of wounds, their segmentation and classification. In order to circumvent limitations of

standard 2D wound imaging, 3D-based approaches allowing wound depth measurement

were investigated and related products were brought to the market in the last few years,

9
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like the new mobile product of EKARE [15]. Considering the invisible spectrum of light,

there exist wound imaging tools, like that of Kent Imaging [27] presented in [31], deploying

Near Infrared Spectroscopy (NIRS) for measuring the oxygenation of the wound region

which allows conclusions about the expected wound healing.

To the best of the author’s knowledge, there exists no software tool predicting and

simulating possible wound developments in form of a video sequence by machine vision

methods together with diagnostic data. So the approach of automatic feature extraction

and associated training algorithms for image based wound syntheses and simulation of

possible wound development is completely new, apart from the already mentioned pre-

publication of parts of this work with focus on the newly introduced image completion

technique optimised for the simulation of wound development [52].

As also stated in [52], learning methods for the estimation of appearances were only

considered at single moments, that is, in a statistical context [6, 28, 33, 56]. Existing

simulations, for example virtual assisting systems in wound surgery [53], refer to optimum

primary care only, not handling defects in wound healing with long-term treatments.

For emphasizing the importance of an uniform data acquisition the work of Lange [32]

has to be mentioned. In his doctoral thesis, he analyses the advantages and pitfalls of

digital photography in the field of wound management and the minimal requirements to

ensure stable image-acquisition. Furthermore, Lange explains and evaluates parameters

affecting the depth of field as well as the influence of the illumination onto the image

quality. Also differences in compression due to the use of different cameras are examined

and the suitability of different rulers for wound size measurements is investigated. These

evaluations strengthen the need for using a fixed camera setup as well as a target for

radiometric and geometric calibration for a reliable training data collection.

The focus of this literature review was on existing work in the context of image based

wound analysis, synthesis and simulation of wound evolution. More relevant literature on

various computer-vision based methods used in this thesis is referenced in the respective

sections.



Chapter 3

Image Acquisition and Marker

Detection

Contents

3.1 Image Acquisition System . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Marker Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Image Acquisition System

3.1.1 Requirements

Colour image based assessment of wounds places several demands on an image acquisition

system.

One aspect refers to scale. In order to determine the real size of a wound in a post

processing step, it is necessary to place a proper reference object of known dimension in

the scene. For the reference object a standard paper strip in our case comprising a 20 x

20 mm square can be used. The paper strip is referred to as marker within the rest of

this thesis. To keep measurement errors small, it is crucial to place the marker close to

the wound and in the plane of the wound as good as possible. In addition to this, the

medical staff taking wound images has to be instructed to maintain a more or less constant

distance of an arm’s length between camera and marker located near to the wound. In

this way the scale variation in the set of acquired images can be kept small.

Another aspect concerns illumination. As wound images have to be comparable with

respect to brightness and colour, a proper source of light is needed during image acqui-

11
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sition. A good light source minimizes the influence of varying ambient light and ensures

uniform and reproducible illumination of the object of interest. As many chronic wounds

are wet, there often occur distracting reflections in the image. In order do reduce such

effects, polarising filters should be deployed.

Last but not least, the image acquisition system should be applicable in a hospital

environment. Therefore, all involved equipment surfaces require to be resistant to disin-

fectant agents and the system should be robust, flexible and easily operable by physicians.

In order to gain reproducible results, settings should be fixed and protected against acci-

dental misalignment. It turned out to be helpful to provide a short guideline containing

instructions and relevant camera settings to the image acquisition staff at the hospital.

3.1.2 Camera Setup

Following setup has been used for wound image acquisition at the hospital: A digital reflex

camera, Sony α 33 (SLT-A33), presented the centrepiece of the system. It was equipped

with a standard 18-55 mm camera lens. The camera offers a good price-performance ratio

and meets the requirements described in the previous Section 3.1.1. In order to achieve

comparable results, the camera was operated using fixed settings according to Table 3.1.

Detailed information regarding camera settings and the meaning of related acronyms can

be taken from the user manual [54].

Parameter Setting
Modus S
ISO 1600
Shutter Speed 1/100
Image Quality Fine
Drive Mode Single Shot
Metering Mode Spot
Flash Mode WL
Autofocus AF-A
AF Area Wide
Flash Compensation ±0
White Balance 5600
DRO Auto
Creative Style Std
Flash control Pre-Flash TTL

(flash must be open)

Table 3.1: Camera settings used during image acquisition in hospital.

Based on the good experience gained in earlier projects, a camera mounted ring flash

light was deployed for uniform scene illumination. The ring flash light (Metz mecablitz 15
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MS-1) was used together with a bounce diffuser included in the delivery. The flash was

controlled wirelessly using the camera’s built-in flash operated in Through the Lens (TTL)

pre-flash mode, whereas the camera’s internal flash acted as master and the ring flash as

slave. To suppress the influence of the master flash during light metering, it was occluded

by an infra-red pass filter bracket. The remaining infra-red part of the master flash was

sufficient for controlling the slave. In order to reduce reflections, two opposing circular

polarising filters (Hoya Pro1 Digital 58 mm) were used — one mounted onto the ring flash,

the other placed in front of the camera lens. In some cases slight reflections remained which

presented no problem. They were even helpful in subsequent wound analysis steps when

extracting discriminant features, which will be discussed in more detail in Section 4.4.

Figure 3.1 depicts the deployed equipment at the hospital.

(a) Sony α 33 (SLT-A33), digital reflex camera; c© www.davidemuci.it

(b) Metz mecablitz 15
MS-1, ring flash light;
c© Metz

(c) Metz infra-red
pass filter clip;
c© digitfoto.de

(d) Hoya Pro1 Dig-
ital 58 mm, circu-
lar polarising filter;
c© amazon.de

Figure 3.1: Equipment deployed for wound imaging at the hospital.
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To further improve the comparability of brightness and colour impression of different

pictures, an additional colour normalisation step was conducted. Reference colour pat-

terns necessary for normalisation were brought into the scene by augmenting the marker

with colour fields. Note that the colour marker design and the development of colour

normalisation procedure itself were not part of this thesis, but was developed based on the

work of [16] and [58]. During image acquisition the camera was held by the doctor, which

was more convenient than using a bulky tripod. Figure 3.2 shows the image acquisition

setup.

Figure 3.2: During image acquisition the patient lies on an examination table.
The physician places the marker near the wound using one hand and
outstretched arm. The other hand operates the camera.

3.1.3 Description of Different Marker Types

Within the scope of project SimuWound, a marker comprising a reference square and

additional reference colour fields was developed (as already mentioned in Section 3.1.1).

As the first marker version was improved in several steps, four different types have been

deployed during image acquisition in the hospital. These versions are referred to as marker

type 1 to 4 in the context of marker detection. Types 1, 2, and 3 were printed onto

photographic paper in small quantity using a standard laser printer. For reasons of hygiene,

a fresh marker was used each time a patient was examined by the doctor which led to a

high demand for markers. So final marker type 4 was professionally produced in a large

quantity in a printing plant, with the positive secondary effect of smaller inter-sample
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colour differences and better colour fastness over a long period of time. Nevertheless all

markers were stored protected from light.

To increase the amount of images for analyses, older wound photos showing conven-

tional makers (four different types), were considered by the author, too. Since these

markers (collectively referred to as marker type 0) merely offer a reference square and pro-

vide no colour information, they were used for investigating wound evolution and metric

aspects only. Figure 3.3 shows the deployed marker types.

Suprasorb® Für jede Wunde der richtige Wundverband

Name

Geb. Datum Datum Verbandwechsel

1 2 3 4 5 6 7 8 9 10 11 12 13 14
cm

Inch

1 2 3 4 5

(a) Marker type 0 c© Lohmann & Rauscher

1 2 3 4 5 6 7 8 9 10 11
mm

cm

Nr.

Datum
www.3m-medizin.at

(b) Marker type 0 c© 3M

(c) Marker type 1 (d) Marker type 2

(e) Marker type 3 (f) Marker type 4

Figure 3.3: Overview of deployed marker types. a, b: Two type 0 examples -
standard markers merely offering a reference square and a measuring
scale used in daily hospital routine; c-f: Marker type 1-4 exhibiting
additional colour fields for the sake of colour normalisation.
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3.2 Marker Detection

3.2.1 Detection Approach

When solving computer vision problems based on colour images, it is often advisable to

investigate different channels of several colour spaces. Selecting a proper channel (or a

combination of channels) may help to reduce the complexity of a task. For example, when

detecting specific patterns or objects, some channels provide better contrast than others.

Following this approach, several colour spaces including Red-Green-Blue colour model

(RGB), Hue-Saturation-Value colour model (HSV), L*a*b as well as CIE 1931 XYZ color

space (XYZ) were analysed regarding its suitability for marker detection. The R plane of

RGB colour space showed great promise for the detection task, since it provided the best

contrast values for all marker types introduced in Section 3.1.3.

As all marker types share a blue or black reference square, the author focussed on this

common element in the first step of marker detection. To solve this task, three approaches

were short listed. Finding the square with the aid of Hough transformation [18] was one,

deploying Maximally Stable Extremal Regions (MSER) detection [36] was another and

using template matching [9] was the third approach. The first mentioned method left

a lot to be desired when applied to different marker types. Due to many ambiguities

in Hough space, the detection of the correct four marker square corner points proved

to be cumbersome and unreliable. On the contrary, MSER detection attempts delivered

promising results over a big set of test images. For a short explanation of MSER detection

the interested reader is referred to section 3.2.2. In consideration of the good outcome, the

work on the MSER approach has been proceeded. Hough transformation and template

matching were no longer pursued.

As described in section 3.2.2, MSER+ detection delivers a set of regions that are

surrounded by a dark(er) border. Applied on wound images, the white marker square

framed by its continuous black or dark blue border is most likely part of that region set.

In order to extract the desired marker square from the set several selection steps have

to be conducted. To start with, all regions that touch the image border are discarded

since marker square as well as colour fields have to be fully visible in the image. For

all remaining regions, properties are calculated. These properties include Area (the size

of a region in pixels), FilledArea (the size of a region when its wholes are filled), Solidity

(value specifying the proportion of the pixels in the convex hull that are also in the region),

MajorAxisLength (value specifying the length in pixels of the major axis of the ellipse that
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has the same normalized second central moments as the region), MinorAxisLength (same

as MajorAxisLength but for the minor ellipse axis) and BoundingBox (a vector defining

the smallest rectangle containing the region).1 Based on the calculated properties, a region

has to fulfil six criteria (see inequations 3.1) to be regarded as a marker square. Note that

ImageSize stands for the number of pixels the input image consists of. All threshold values

in these criteria have been determined exhaustively in several tests.

Area/ImageSize > 0.001

Area/ImageSize < 0.2

FilledArea > 1600

(MajorAxisLength−MinorAxisLength)/MajorAxisLength > 0.2

(FilledArea−Area)/F illedArea < 0.02

Solidity > 0.96

(3.1)

If no or more than one marker square candidates are found, MSER detection routine is

run again using a different stability parameter. All in all, the detection procedure may take

up to three loops. Note that there exists a special case: if more marker square candidates

remain, the biggest one in size will be selected when all other regions are smaller than

20 % of its size. This covers the situation when the marker square together with some

(smaller) colour fields remain in the detected region set. Figures 3.4(a)-(d) depict some

intermediate steps of the detection procedure.

Once a proper candidate is found for the square, its four corner points are determined.

This is done by applying Harris corner algorithm [18, 20] to the binary mask of the detected

marker square mask, which leads to a Harris corner measure matrix, represented by a grey

value image. If we now determine the location of the four highest local maxima in that

image using non-maxima suppression, we will have found the exact location of the marker

corners. The result can be seen in Figure 3.4(e). Exact corner points are necessary, since

they define the area of the square. The ratio of this area and a known reference marker

size, in turn, defines the scale of the image, which subsequently allows the calculation of

the real wound size in a photo.

Given the reference geometry, the corner points also build the basis for determining the

1The numerical computing environment MATLABR© [37] provides a method that calculates these and
other properties out of the box. For more information, see the Image Processing ToolboxR© documentation
[55, function ’regionprops’].
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(a) Original RGB wound
input image.

(b) R channel of wound in-
put image.

(c) Detected MSERs in R
channel.

(d) Detected marker
square.

(e) Corner measure and
detected corner points lo-
cated at extrema.
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(i) Extracted colour fields
for colour normalisation
procedure.

Figure 3.4: Intermediate steps of marker detection procedure.

colour field locations on the marker. As there exist different marker types offering colour

fields at different locations as described in Section 3.1.3, the detector has to identify the

marker type before. A simple and effective way to accomplish this task is introducing line

profiles. For each line profile a standard deviation σi is calculated. If all four standard

deviations are low the marker is of type zero, which means that no colour fields are avail-

able. If just one σ value is high, marker type 1 is existent. In case that two neighbouring

line profiles exhibit a higher standard deviation than the remaining two profiles, and if
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there is no gap between marker square and colour fields (determined via a short extra

line profile), marker type 2 will be present. Otherwise type 3 or 4 are manifest. The

distinction between type 3 and 4 is made by comparing their colour field bars because

one bar is flipped. Figures 3.4(g)-(h) show the line profiles and its traces based on a

marker type 4 example. Given the detected corner points and the marker type dependent

reference geometry, the colour field centre positions of the marker can be obtained based

on projective transformation. The 2D-homography was calculated with the aid of Direct

Linear Transformation (DLT) according to [21].

The calculated colour field centre position results can be seen in Figure 3.4(h). Addi-

tionally, Figure 3.4(i) shows patches extracted from all centre positions (left column sides)

as well as their median values (right column sides) which were used in subsequent colour

normalisation steps. Finally, the state flow diagram in Figure 3.5 summarises the main

steps of the complete marker detection procedure.

3.2.2 Maximally Stable Extremal Regions (MSER)

Originally introduced to solve wide-baseline stereo problems, MSER is not only qualified

for finding reliable region based correspondences in two images, but also for detecting

bright or dark bordered regions in many other applications.

Basically, MSER detection works on the topology of intensity value images. The values

are best interpreted as height information. Accordingly, dark values represent lower and

bright values higher terrain. After the complete flooding of the fictive grey value scene and

the subsequent successive lowering of the water level (via thresholding), at some point,

islands representing local grey value maxima will appear and grow. When observed from

a bird’s-eye perspective, the cross Section of an island at each discrete threshold level is

referred to as extremal region in the context of MSER detection. With the aid of a so

called component tree, extremal regions and their size are tracked during stepwise lowering

the threshold value. Of course, regions will merge during this procedure until the whole

image is absorbed. In the end, those regions were considered as extremal and maximally

stable, that fulfil a defined stability criteria over a certain range of threshold levels. In

simplified terms, those regions were picked that, more or less, kept their size during several

threshold steps.

In that way, the algorithm is able to detect bright regions surrounded by a dark border

or vice versa, if the input image is initially inverted. First mentioned method is referred

to as MSER+, the second is defined as MSER-.
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Load RGB image

Extract R channel

Discard regions touching image border

Calculate properties for remaining regions

Calculate criteria based on properties

Discard regions that miss critera

number of regions = 0 ?

Maximum number of 
iterations reached?

Detect MSERs

yes

Start

2nd largest filled region 
< 

0.2 x largest region?

   no

Calculate 1st and 2nd derivatives on region mask

Calculate corner measure based on derivatives

Detect 4 topmost extrema in corner measure 
using non maximum suppression

Bring detected corner points in convex 
clockwise order

Determine marker type and orientation of 
marker via analysis of line profiles

Determine pos. of colour fields via homography

Marker type > 0 ?
no

Extract patch from each color field

Determine median rgb values for colour field

Load marker specific reference geometry

Terminate

Return gathered marker info

   yes

   no

Determine parameter sets for MSER detection

Select (next) parameter set

no
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No marker square found

number of regions = 1 ?
yes

   no

Figure 3.5: State flow diagram of marker detection procedure.



3.2. Marker Detection 21

3.2.3 Performance Evaluation

The detector was designed and trained based on a small set of images. The next step is to

prove that it performs on other wound images as well. Therefore, a validation experiment

covering the generalisation aspect shall be set up. The test set for the experiment should

comprise all available wound images: photos depicting markers with colour fields (type

1-4) captured during the project and also older images of various resolutions showing

basic markers of type 0. The latter were taken with various cameras, differing from that

described in section 3.1.2. Due to different image resolutions ranging from 640 x 680

to 4592 x 3056 pixels, the detector’s ability to deal with scale variations can be tested

inherently, too. Finally, also wound images comprising no markers (referred to as class

’none’) should be part of the test set. Table 3.2 provides information about the composition

of the image set deployed for performance evaluation. Note that all images are labelled

by their ground truth based on six classes: marker type ’0’, ’1’, ’2’, ’3’, ’4’ and ’none’.

none 0 1 2 3 4 Total

93 136 62 100 193 105 689

Marker type

Sample images

Table 3.2: Image set for detector evaluation. The set consists of wound images
comprising marker classes ’0’ to ’4’ as well as images showing no
marker which were referred to class ’none’.

What else should be covered by the experiment? As explained in section 3.2.1, the

detector has to fulfil three main tasks: detecting the marker square in the image in order to

determine the proper image scale is the first, identifying the right marker type presents the

second, and locating possible colour fields for the sake of colour normalisation is the third

task. So, when verifying the detector’s performance, these tasks should be evaluated as

well. Verification of the detected marker square and marker class is trivial, it can be done

by comparing the results with a ground truth. There remains the evaluation of detected

colour field positions. This can be accomplished by investigating extracted colour patches

in a chart. Each chart column consists of 24 colour fields. In that way wrongly detected

colour field positions lead to noticeable pattern differences, which are easy to count with

the naked eye. In that way, cumbersome determination of colour field centre ground truth

for several hundred images are prevented.

The outcome of the evaluation can be seen in Table 3.3 and Table 3.4. The former

provides information about the detection rates of each marker class, the latter shows the

related confusion matrix. If all marker types were detected properly, the matrix would
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none 0 1 2 3 4 Total

97,8% 94,1% 98,4% 99,0% 96,9% 90,5% 95,9%Detection rate

Marker type

Table 3.3: Marker detection rates for each marker class (type 0 to 4) as well as
for images without markers (class ’none’).

none 0 1 2 3 4

none 91 2 - - - -

0 8 128 - - - -

1 1 - 61 - - -

2 1 - - 99 - -

3 5 - - 1 187 -

4 9 - - 1 0 95

Detected Class (Marker Type)
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Table 3.4: Confusion matrix indicating the detector’s ability of recognising the
correct marker type. Class ’none’ means that there is no marker in
the image.

only possess entries in the diagonal. Hence, off-diagonal entries indicate misdetections.

What we can see is that the overall detection rate is 95.9 %. So, the detector works, by

and large, quite well. Nevertheless there occur some detection errors in the first column of

the confusion matrix, which means that in these cases a marker is present in the image but

was not detected. A closer look at these particular images reveals the reasons for most of

the misdetections: image blur and reflections. Normally, the deployed polarisers suppress

such reflections. Unfortunately, it cannot be precisely reproduced what happened here.

Since all affected images were taken more or less in the same period of time it is probable

that some camera/filter settings were wrongly adjusted. In two other cases the marker

square detection was disturbed by a date/time overlay in the image. Since the overlays

merely occur in an older image series, it presents no problem. Figure 3.6 shows examples

of images that led to misdetections.

Finally, a colour field patch chart example generated during the evaluation experiment

is depicted in Figure 3.7. The chart presents the results of 50 detected markers. Altogether,

442 colour field based markers were tested in this way resulting in 9 such charts. An

evaluation of the charts showed a detection rate of more than 97%.
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(a) Blurred image (b) Reflections (c) Date/time overlay

Figure 3.6: Examples of wrongly classified marker types.
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Figure 3.7: Evaluation of colour field localisation. The numbers above the chart
represent the image Identifier (ID), those on the left and right indicate
the colour field index.
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4.1 Wound Description

A wound can be described in many ways. First of all the location of the wound can be

globally specified with respect to the body using common anatomic terms. Beside the

global topology the local structure of the wound can be described as well. The structure

consists of a wound bed or wound base denoting the harmed skin region, a periwound

region representing the transitional area to healthy skin and a wound border delimiting

these two regions. The wound border constitutes the region where new epithelium devel-

ops. Epithelial tissue forms the outermost layer (epidermis) of the skin. In most cases

the wound bed excretes some serous drainage called exudate, which can also be consid-

ered when describing a wound. Figure 4.1 depicts the local topology using the example

of a wound caused by PAOD. Note the reddened periwound skin which is indicating an

inflammation.

25
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wound bed

wound border

periwound

exudate

Figure 4.1: Local topology of a wound. The white hatched region represents
the wound bed (wound base) surrounded by a blue dashed line - the
wound border, whereas the black hatched area labels the periwound
region. The redness indicates an inflammation. Blue drops indicate
exudate excreted by the wound bed.

4.2 Dividing a Wound Evolution into Phases

A first attempt for the planned wound evolution simulation introduced was based on the

idea that a wound passes several stages of disease during its healing or worsening process.

There exist various classification schemes for wounds used in daily clinical practice. Un-

fortunately non of them are directly usable for automated image based processing with

focus on wound simulation. For this reason the project team tried to manually classify

the wound evolution process with respect to the particular disease into five stages. Phase

zero represents more or less intact skin and phase four a fairly advanced stage of disease.

Due to ethical considerations the team has refrained from introducing an additional phase

including died off limbs exhibiting extensive necrosis ready for amputation.

So, in a first step, all pictures of a disease that were already available at the beginning

of the project and which were taken from several patients, were brought into a temporal

order with respect to the wound evolution on a flip chart. In a second step, observed visual

classification criteria were qualitatively analysed and the images were manually classified

into one of five stages together with a physician. This task was not trivial and provided
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for ample discussions since there exist a great variety of different wounds resulting in a

high intra class variability. Even our experts were not always in agreement. Figure 4.2

shows the final classification result based on the example of UCV.

Figure 4.2: Flip chart of UCV wound images brought in a temporal order and
grouped into four disease stages. Note that there is a fifth stage,
healthy skin, which is not depicted here.

4.3 Features for Wound Description

After classifying all wound images into phases of wound evolution, we inspected the images

once more and tried to find features for describing the wound. The most promising fea-

tures from an image processing based point of view were short-listed in intense discussion

with and agreement by physicians. Criteria not usable for image processing, such as the

amount/nature of the exudate or smell, were disregarded. Table 4.1, 4.2 and 4.3 sum-

marize the selected features with respect to disease and stage. For each wound evolution

phase an example wound image is provided in the tables as well. Note that there exists a

fifth stage (P0), healthy skin, which is not depicted here.
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Phase 1 Phase 2 Phase 3 Phase 4

Size/growth * average growing average growing average growing
little growing; quite constant size; 

grows into deeper tissue layers

Texture * quite homogenous granulation patterns
small cavity in wound center;  

granulation  pattern
 ragged

Colour * pink-red red
red with dark regions in center of 

wound (small cavity)

red and yellow; extensive dark 

regions in the center of wound

Shape compact, convex compact, convex compact, convex compact, convex

small bright border mostly distinct whitish border mostly distinct whitish border mostly distinct whitish border

normal, without findings normal, without findings
swollen; 

in some cases slightly reddened

noticeably swollen; 

in some cases slightly reddened

Diabetic Foot Syndrome (DFS)

W
o

u
n

d
 b

e
d

Wound border

Periwound

Example image

Table 4.1: Classification of DFS wounds into phases and description of visual
distinctive characteristics. *-marked features were considered for au-
tomatically image based phase classification.

Phase 1 Phase 2 Phase 3 Phase 4

Size/growth * average growing above average growing
little growing; quite constant size; 

grows into deeper tissue layers

little growing; quite constant size; 

grows into deeper tissue layers

Texture * quite homogenous granulation patterns
subregions visible; fibrin patterns; 

slight granulation patterns

marbled; fibrin patterns, slight 

granulation patterns and necrosis 

pattern

Colour *
largely pink-red; small yellow 

percentage (fibrin)

red (flesh-coloured); slighly covered 

by fibrin (yellow)

mostly covered with fibrin (yellow); 

slight red percentage

mostly covered with fibrin and sanies 

(yellow); brown/black components 

(necrosis); small red percentage

Shape compact, somtimes  slightly oblong compact, somtimes  slightly oblong compact, somtimes  slightly oblong compact, somtimes  slightly oblong

relatively sharp border; dark red if 

inflammed

relatively sharp border; dark red if 

inflammed

relatively sharp border; dark red if 

inflammed

relatively sharp border; dark red if 

inflammed

normal, without findings slighty swollen
slightly swollen; in some cases 

slightly reddened

swollen; in some cases slightly 

reddened
Periwound

Peripheral Artery Occlusive Disease (PAOD)

Example image

W
o

u
n

d
 b

e
d

Wound border

Table 4.2: Classification of PAOD wounds into phases and description of visual
distinctive characteristics. *-marked features were considered for au-
tomatically image based phase classification.
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Phase 1 Phase 2 Phase 3 Phase 4

Size/growth * average growing above average growing above average growing slower growing

Texture * quite homogenous
granulation patterns and fibrin pattern 

depending on wound

granulation patterns and fibrin pattern 

depending on wound

granulation patterns and fibrin pattern 

depending on wound

Colour *
largely pink-red; small yellow 

percentage (fibrin)

red (flesh-coloured); partly covered 

by fibrin (yellow)

mostly covered with fibrin (yellow); 

small red percentage

mostly covered with fibrin (yellow); 

small red percentage

Shape
one or more distinct wounds of 

various shape

one or more distinct wounds of 

various shape; wounds slighly merge

sub wounds slighly merge; epithelial 

islands surrounded by wound tissue

sub wounds grow together; structure 

covering large body part areas

small bright border mostly distinct whitish border mostly distinct whitish border mostly distinct whitish border

normal, without findings normal, without findings
swollen; 

in some cases slightly reddened

noticeably swollen; 

in some cases slightly reddened
Periwound

Wound border

Venous Ulcer (UCV)

Example image

W
o

u
n

d
 b

e
d

Table 4.3: Classification of UCV wounds into phases and description of visual
distinctive characteristics. *-marked features were considered for au-
tomatically image based phase classification.

4.4 Image Based Descriptors for Wounds

In a next step, it was the author’s task to find suitable wound descriptors for the short-

listed wound features. To recapitulate, these have been wound size, texture and colour.

4.4.1 Wound Size

Finding a descriptor for the wound size is a straight forward issue. Since the wound border

is already available in the form of an interactively drawn polygon by experts, its enclosed

area can be easily determined. As the calculated area is in pixels, it has to be converted

to square millimetres by means of the detected reference marker square of known size.

4.4.2 Texture

There exist various methods for describing texture. The following subsections short-lists

some promising ones for our application: Local Binary Patterns (LBP), furthermore a local

variance measure often used together with LBP, a fast and easy to calculate Binary Robust

Independent Elementary Features (BRIEF) descriptor. The colour aspect is covered in

Section 4.4.3.
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4.4.2.1 Local Binary Patterns (LBP)

The LBP descriptor is used to describe texture and has become very popular in recent

years. It was originally introduced in [41]. Applied to an image, LBP provide a statistic

of existing micro patterns in a texture. It is an excellent measure of the spatial structure

of local image texture. The main advantage of this descriptor is its grey-scale invariance

and hence also the invariance against (global) illumination variations. Figure 4.3 explains

the functional principle of the basic LBP descriptor.
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Figure 4.3: Principle of basic local binary patterns according to [46]. a) Local
pixel neighbourhood. b) Thresholded neighbourhood. c) Binomial
weights. d) Resulting LBP number of current texture unit.

According to [46], the neighbourhood of a pixel (see Figure 4.3a) is thresholded using the

value of the centre pixel. The values of the pixels in the thresholded neighbourhood (4.3b)

are multiplied by their corresponding binomial weights (4.3c). The resulting products are

depicted in Figure 4.3d. Finally, the values of the eight pixels are summed to obtain the

LBP number (134) of this texture unit. The statistical distribution of all LBP numbers

of a region of interest characterises its texture.

Various extensions have been introduced for the basic LBP. [46] for example presents

a rotation invariant version and [42] addresses additional multi resolution. In [43] the

authors found a way to reduce the big number of different patterns to a few new significant

ones, called ”uniform” LBP which work well for certain applications. Since then, LBP

have been used in a variety of applications ranging from face recognition [1] to paper

currency recognition [19]. The survey of Pietikäinen and Zhao [47] gives a good overview

of developments regarding LBP over the past twenty years.

Because of its versatility, the author decided to give the LBP approach a try to de-

scribe wound texture. The tested variants were uniform multi-resolution rotation invariant

patterns referred to as LBP riu2
P,R [43], which seemed promising for our application. As it

turned out, after completion of our works on SimuWound, also other authors [39] have

successfully deployed LBP to describe wounds.
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4.4.2.2 Local Variance Measure

The simple binary greater-or-equal grey value comparison of each pixel with its neighbours

is the reason for the grey-scale invariance of LBP. However, this advantage inherently

entails the disadvantage that the descriptor is insensitive to local contrast. For this reason,

LBP are often used in conjunction with a local contrast measure, which is referred to as

VAR in the literature (see for example [46]), and has thus established itself as a complement

descriptor to LBP. The descriptor merely computes the variance over all neighbouring

pixels. VAR is invariant to grey-scale shifts, but not to any monotonic transformation like

LBP. A good way to combine LBP and VAR is to build a joint histogram. Parallel to the

development of new LBP types described above, VAR has been further developed as well,

so there exist several types in the meantime. Within the scope of this thesis the uniform

rotation invariant V ARP,R descriptor was used for describing wound patches as well as its

joint distribution together with LBP riu2
P,R referred to as LBP riu2

P,R /V ARP,R (see [43]). The

multi-resolution approach has been discarded because of its costly calculation.

4.4.2.3 Binary Robust Independent Elementary Features (BRIEF)

Another interesting descriptor is BRIEF [11]. In the true sense, a general-purpose feature

point descriptor rather than a typical texture descriptor, BRIEF could still be of interest

for describing macro texture structures in wounds, meaningfully supplementing the micro-

structure-based LBP. The BRIEF descriptor uses bit strings of arbitrary length for the

description of the image features, which according to its inventors are very discriminative,

even with a short length. The working mechanism behind BRIEF is quite simple. Given

a set of point pairs of arbitrary size and arbitrary distribution in the euclidean space, a

binary intensity comparison is performed on an image for each point pair of the set. The

results of the comparison tests are stored in a binary vector – the BRIEF descriptor. To

speed up matching, the Hamming distance instead of the common computational expensive

L2 norm can be used to compare the descriptor similarity. As a result, BRIEF is very fast

both to build and to match. Per se, BRIEF is not scale invariant and rotation invariant

although it tolerates small amounts of rotation. Scale invariance is no issue in our case of

application since a scale normalisation is used in a preprocessing step. In [10] Calonder

et al. have found a workaround to deal with rotation for database matches. A variation

of this method, deploying four 90◦ rotated versions of the descriptor, is used within this

thesis to classify wound patches and match them against a database.
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4.4.3 Colour

To describe the colour of a wound and its different tissues, the author follows a com-

mon and simple approach and uses colour histograms [18]. Their main disadvantage, the

susceptibility to image-capturing-related colour differences, can be minimized by a colour

normalisation step we use in SimuWound and which was already mentioned in Chapter

3.1. For our case of application histograms in RGB and HSV space were tested.

4.5 Automatic Wound Classification

A wound undergoes a similar process during its healing or deterioration with respect to the

underlying diagnosis. This process was divided into different phases for each diagnosis by

the project partners as described in Section 4.2. In order to determine the entry point into

the later-to-be-calculated wound course simulation, it is necessary to classify the wound

image into such a phase in advance.

4.5.1 Cluster Analysis Based on Wound Descriptors

Based on the commonly agreed characteristics for describing a chronic wound (see Section

4.2) and the resulting image-based descriptors elaborated in Chapter 4.4, a team colleague

carried out a cluster analysis [44]. The analysis should clarify whether the descriptors

allow direct mapping of a wound image to a defined phase. Due to the fact that the

most images were available for DFS at the time, the cluster analysis was performed on

these data. Unfortunately, the analysis revealed that the amount of available data (85

wound images at that time, mostly data from single phases and not from complete wound

courses) did not result in clustering in any of the feature spaces that would be suitable for

classification. As an alternative to clustering, the most reliable results would probably be

provided by a decision tree [8]. Based on these findings and the fact that not much more

data would be available from the other diagnoses as well as the expert’s know-how, the

team decided to develop a decision tree approach for wound classification.

4.5.2 Decision Tree Based on Wound Descriptors

In order to decrease the likelihood of over-fitting on the existing data, good performing

decision trees were sought, that are as simple as possible and posses little ramification.

The implemented decision trees fulfils this requirement and work by and large well. In

most tested cases (> 81%) the correct class was detected. In the final version of the wound
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simulation application, the detected wound progression phase is displayed as a suggestion

and can be overruled by the physician if necessary. This ensures that a possibly incorrect

classification does not lead to an undesirable simulation result. Figure 4.4 shows the

decision tree pseudo code for PAOD, DFS and UCV. The used wound descriptors for

developed decision trees have been the total wound size, the proportion of fibrin and

necrotic tissue and, in case of DFS the existence of a cavity.

   Case PAOD 

       

      If nNecPer > 0.03 AND (nNecPer + nFibPer) > 0.5 

         nPhase = 4; 

      Otherwise If nFibPer > 0.3 

         nPhase = 3; 

      Otherwise If nTotalPix > 10000 

         nPhase = 2; 

      Otherwise 

         nPhase = 1; 

   End 

 

   Case UCV 

       

      If nTotalPix <= 10000 

         nPhase = 1; 

      Otherwise If nTotalPix <= 50000 

         nPhase = 2; 

      Otherwise If nTotalPix <= 100000 

         nPhase = 3; 

      Otherwise If 

         nPhase = 4; 

   End 

    

   Case DFS 

       

      If Sulcus exists AND nTotalPix > 5500 

         nPhase = 4; 

      Otherwise If nTotalPix > 5500 

         nPhase = 3; 

      Otherwise If nTotalPix > 1450 

         nPhase = 2; 

      Otherwise 

         nPhase = 1; 

   End 

 

 

 

Remarks: 

 

nTotalPix ...  Total wound size in pixel  

(75x75 pixel correspond to 10x10 mm) 

nFibPer ...  Relative proportion of fibrin in wound 

nNecPer ...  Relative proportion of nectotic tissue  

in wound 

 

Figure 4.4: Simple decision tree for classifying a wound into a phase of disease.
Each diagnosis has its own tree.

4.6 Finding Similar Patches

For the wound synthesis planned in SimuWound (see Chapter 5) it was necessary to

artificially create missing wound tissue or to replace existing gaps by means of suitable

methods. The finally implemented method here is patch-based and requires, if there are

no proper patches in the wound, suitable substitute patches. For this purpose, a database

with wound patches from a variety of wound images was set up – strictly speaking, three

databases, one for each disease.

4.6.1 Wound Tissue Patch Database

The patches used for the databases were taken from strictly inside a wound. There has

been no overlap between patches. Furthermore, each patch database entry was provided

with meta information such as the original image a patch stems from, the assigned tissue

class and its scale factor derived form the marker square. In the next step, for each patch



34 Chapter 4. Wound Analysis

various descriptors, introduced in Section 4.4, were calculated and added to the database.

To summarize it these have been:

• Colour histograms based on RGB and HSV containing 16 bins for each channel [18]

• Uniform rotation invariant LBP riu2
8,1 and LBP riu2

16,2 [43]

• Local variance measure V AR8,1 and V AR16,2 [43]

• Joint distribution descriptor LBP riu2
8,1 / V AR8,1 and LBP riu2

16,2 / V AR16,2 [43]

• BRIEF-1024 (inherently including all possible shorter lengths) based on sample point

distribution GII augmented to four rotated versions for 0◦, 90◦, 180◦ and 270◦ [11],[10]

The size of the patches in the database plays a crucial role in mentioned image-based

tissue synthesis. On the one hand, too big patches lead, as experiments have shown, to

coarse and ’clumsy’ results. On the other hand, too small patches, in turn, may end up

in unnatural, tessellated, repeating patterns. Furthermore, a too small patch size can

lead to a low significance of some descriptors. For example, LBP or colour histograms

are based, as the latter already reveals in its name, on histograms and sparse histograms

are generally less discriminative. The conducted experimental tests reviewed by experts

showed the best performance with a patch size of 25x25 pixels.

4.6.2 Matching Reference Patches Against a Database

In order to match a patch against the database a proper distance measure is necessary.

For BRIEF the fast to match Hamming distance was used as suggested in [11]. And for

the other descriptors three different distance measures were tested: the sum of absolute

differences, the sum of squared differences, and histogram intersection [38].

As stated in a preliminary test, the sum of absolute differences and histogram inter-

section measure performed roughly equally well. The sum of squared differences delivered

slightly worse matches in the context of similarity. So, the author has chosen the sum of

absolute differences for as a distance measure. Based on the mentioned preliminary test,

three of the existing descriptors in the database were short-listed. First, the combined

LBP riu2
16,2 / V AR16,2 descriptor, which performed better than its individual parts and

better than the (8,1)-version. Second, the RGB colour histogram, which outperformed

the HSV version and third, BRIEF-256. The longer 512 and 1024 versions proved to be

overkill. They brought no detectable improvement over the BRIEF-256 version.
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In a further step the remaining descriptors were tested by matching 50 randomly

chosen reference patches against the database. The best five hits for each patch and each

short-listed descriptor were reviewed and consensually evaluated together in the project

team. In order to accomplish this task as efficiently as possible, it was necessary to prepare

the representation of the results in advance in a meaningful way. So the five matching

results for each reference patch and each short-listed descriptor were represented as three

rows each consisting of five blocks side by side. Let us go over that with an example of

representative granulation patch matching results depicted in Figure 4.5.

Figure 4.5: Matching result using a little textured granulation patch from PAOD
database. 1st row: best five matches for BRIEF-256 descriptor; 2nd

row: best five matches for LBP riu2
16,2 /V AR16,2 descriptor; 3rd row best

five matches for RGB colour histogram.
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The first row represents the best five BRIEF-256 matches, the second row the best five

LBP riu2
16,2 /V AR16,2 based matches and the last row the best five matches for RGB colour

histogram descriptor. A match is represented by a block consisting of 3x2 fields. The left

three fields belong to the reference patch and the three on the right belong to the patch

found in the database. The upper two fields show the respective original RGB patch,

the two fields in the middle the associated grey value version and the lower two fields

show a contrast enhanced version of the grey value patch, in order to better recognize and

evaluate any existing textures and structures. Finally, the displayed text on top of each

block reveals the ID of each patch and some information about its origin. The displayed

value below each block represents the respective matching distance, the Hamming distance

for BRIEF-based matches and the sum of squared differences for the others.

As we can see, the BRIEF-256 descriptor provides matches that are different in

brightness and colour, and the texture in the 3rd and 4th match is also very different.

LBP riu2
16,2 /V AR16,2 performs better. A good indication of this is the origin of the patches.

Four out of five patches stem from the same image as the reference patch. Merely the 4th

hit differs in colour. The RGB colour histogram descriptor also provides nice matches

in terms of visual similarity. Again, two matches come from the same picture as the

reference patch. All in all, LBP riu2
16,2 /V AR16,2 and RGB colour histogram score well in

this example.

Now let us examine another matching result, this time for a fibrin reference patch (see

Figure 4.6). At a first glance we can see that BRIEF-256 and LBP riu2
16,2 /V AR16,2 provide

unsuitable matches because of huge colour differences. The RGB colour histogram descrip-

tor performs better, though there are noticeable texture differences for some matches.

Finally let us investigate a matching result of a highly textured reference patch (see

Figure 4.7). The patch shows wet granulation tissue of a PAOD wound. Here we can

see at first glance that BRIEF-256 is overwhelmed with the task. LBP riu2
16,2 /V AR16,2 and

RGB colour histogram provide some useful hits, although LBP riu2
16,2 /V AR16,2 fails twice in

terms of colour and the RGB colour histogram mostly fails in terms of texture.

After analysing the matching results for all 50 reference patches in the team, we got

a similar picture as after examining the three provided examples. First, the BRIEF de-

scriptor may work well in other tasks, but it is not the descriptor of choice for our case

of application. Second, LBP riu2
16,2 /V AR16,2 provides good results regarding texture simi-

larity, but fails in many cases regarding colour. And finally, the RGB colour histogram

provides exactly opposite results: it works well in terms of colour similarity, but fails
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Figure 4.6: Matching result using a fibrin reference patch from PAOD database.
1st row: best five matches for BRIEF-128 descriptor; 2nd row: best
five matches for LBP riu2

16,2 /V AR16,2 descriptor; 3rd row best five
matches for RGB colour histogram.

to match similar texture. Now the question arises whether LBP riu2
16,2 /V AR16,2 and RGB

colour histogram should be combined. To answer this question, the author has tested

the concatenated descriptors for all 50 reference patches as well. For the result see Fig-

ure 4.8. Note, that for the sake of comparison the same example reference patches were

used. We can see, that the combined LBP riu2
16,2 /V AR16,2/RGB-colour-histogram descrip-

tor does a good job and therefore was deployed for finding similar patches in synthetic

tissue completion described in Chapter 5.3.
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Figure 4.7: Matching result using a highly textured reference patch from PAOD
database. 1st row: best five matches for BRIEF-128 descriptor; 2nd

row: best five matches for LBP riu2
16,2 /V AR16,2 descriptor; 3rd row best

five matches for RGB colour histogram.

4.7 Classification of Wound Regions into Tissue Classes

As already pointed out in [52] a wound physiologically consists of different tissue types

depending on the stadium of disease. These main types are epithelising, granulation,

fibrous and necrotic tissue. For the wound synthesis described in Chapter 5, a separation

of the individual tissue types is needed, which is most easily accomplished by colour. The

different wound tissues are distinguishable. According to our medical expert and to [45]
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Figure 4.8: Matching result of three already tested reference patches from PAOD
database, but this time a combined descriptor of RGB colour his-
togram and LBP riu2

16,2 /V AR16,2 was used.

epithelising tissue possesses, for example, pink shades, granulation tissue has red shades,

fibrous tissue is yellow and sometimes slightly green- or blue-tinted if special bacteria like

pseudomonas are involved and necrotic tissue is normally black sometimes brown or grey

but mostly dark coloured. Nevertheless, the colour based approach entails some potential

sources of error. Fresh blood for instance looks like granulating tissue and dried blood has a

similar dark appearance to necrotic tissue. Therefore, and to avoid other misclassification

due to wound dressings and ointments, it is necessary to clean the wound before taking

an image. Furthermore some wounds especially those of DFS sometimes exhibit cavities,
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which indicates an advanced stage of disease, also may be confused with necrotic tissue.

To circumvent this problem the cavities have to be detected separately and the affected

wound subregions have to be excluded from the colour segmentation. Since conventional

region growing methods have failed in the detection of cavities, the author focused on

another attempt based on Statistical Region Merging (SRM).

4.7.1 Statistical Region Merging (SRM)

SRM, introduced in [40], is an image segmentation method based on region growing and

merging. The underlying model of image generation implicitly makes the assumption that

observed colour variations inside a regions should reasonably be smaller than between re-

gions. According to its inventors, SRM is also able to separate regions with high variability,

which is the case for many textures like grass, or in our case, speckled skin or wounds and

avoids producing holey segmentations – a drawback of many other region-merging tech-

niques. SRM is very robust against noise corruption and is able to cope with occlusions.

Running the algorithm does not require much parameter tuning, the control of a single

statistical complexity parameter Q makes it possible to adjust the segmentation scale, the

coarseness of the segmentation and the statistical complexity in a simple manner. The

higher Q the finer the segmentation and the more regions the final segmentation result

will consist of, and vice versa.

4.7.2 Segmentation of Cavities Inside a Wound

After investigating different colour spaces like RGB, HSV,  L*a*b* and others the author

selected the R panel of the RGB image (see Figure 4.9(a) and (b)). The R plane provided

the best compromise between high cavity contrast and low interference of other tissue

types. In a next step the SRM algorithm was applied to the image Section comprising the

wound (see Figure 4.9(c)). For the statistical complexity parameter Q a value of 29 was

used. This value performed best in several tests. In a final step, areas with lower intensity

values than their neighbours were identified by iterative local minimum region detection. If

such a minimum region fulfils certain size ratio and standard deviation criteria it is merged

to the set of detected cavity regions. Figure 4.9(d) and (e) show the intermediate detection

results. The final cavity detection result is depicted in Figure 4.9(f). The potential cavity

regions outside the wound are ignored. Figure 4.10 shows some more detection results for

different DFS wounds. Note that the chequered pattern in the wounds of column 2 and 3

is not of physiological origin. It stems from the used dressing material.
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(a) Section of original RGB
image containing wound.

(b) R plane of same image
section.

(c) Segmentation result of
SRM on R plane.

(d) Detected cavity regions
(red) after first iteration.

(e) Detected cavity regions
(red) after second (and in
this case last) iteration.

(f) Final segmentation re-
sult. Cavity regions out-
side the wound are ignored.

Figure 4.9: Intermediate steps of cavity detection procedure.

The cavity detection algorithm was tested on all available DFS wounds. Table 4.4

shows the results. As we can see, the detection works reliably. The sensitivity of the

detection is at 82% and its specificity is at 100% for the tested images. However, the

author is well aware that for an extended evaluation of the detector more than just 84

sample images would be necessary. Unfortunately this was not possible due to the limited

data available.
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Ground truth

No cavities 

detected 2 73

9 0
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Table 4.4: Results of cavity detection for the tested DFS images.
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Figure 4.10: Some more cavity detection results. The upper row shows the wound
Section of the RGB input image. The lower row shows the respective
cavity segmentation result.

4.7.3 Colour Based Segmentation

After the cavities are segmented, we can start with the actual wound tissue segmentation.

Wild et al. [60] have already successfully detected different tissue types in wounds based

on colour information in their developed wound documentation software. Unfortunately,

they do not reveal in their work how they did it. Anyway, after renewed examination of

different colour spaces, this time with a focus on the wound tissue segmentation task, the

RGB space was found to be suitable.

Based on good experience in other projects and the similarity to current problem, the

author decided to test a Support Vector Machine (SVM) [12] to solve the classification

task. The SVM was trained on about 600 RGB samples from different tissues in 50 colour

normalised wound images using a radial basis function kernel and based on leave-one-

out cross evaluation according to the proposed procedure in [22]. Figure 4.11 shows the

distribution of wound tissue training data in RGB space.

In a final step the trained model has been tested on 25 images not used during the

training. The segmentation result was reviewed by wound experts and found to be good

and valid. An example segmentation can be seen in Figure 4.12. The left image shows a

colour normalised test input image and the right image the resulting segmentation.
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Figure 4.11: Distribution of wound tissue training data in RGB space.

(a) Section of colour normalised RGB input
image containing wound.

(b) SVM based colour segmentation result.

Figure 4.12: Example result of SVM based colour segmentation in RGB space.
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5.1 Skin Segmentation

To achieve a realistic appearance of an artificially created wound in an image, first of

all, it is necessary to ensure that the wound does not grow beyond the affected body

part. Therefore, a skin segmentation step is essential. In order to spare the physician the

tedious manual segmentation of the body part, it was necessary to develop an automatic

segmentation that fits into the overall wound synthesis/simulation process.

The study of Saxen and Al-Hamadi [50] gives a good state of the art overview about

colour based skin detectors and their performance. The work distinguishes between three

general methods: model-based, threshold-based, and region related ones. Based on the

study and the fact that colleagues have already made first good experience with it, the

author’s selection was the promising model-based approach from [26]. A new second

approach, which falls into the region growing class, was also developed as contribution

within this thesis. Both methods were evaluated for their suitability for actual application

45
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in a straight forward manner. Details on this and a comparison of the results can be found

in Table 5.1 at the end of this section.

5.1.1 Model Based Skin Detector

Jones and Rehg [26] introduced a Gaussian mixture model for skin and non-skin classes

from a huge labelled pixel dataset, with the intent to detect naked people in images. Their

classifier relies on colour information and operates directly on pixels.

In order to test the performance of this Gaussian mixture model and its possible

suitability for our application, an appropriate framework was built. Figure 5.1 describes

the skin detection framework step by step. Applied on a wound image (see Figure 5.1(a)),

the detector delivers a skin probability map (see Figure 5.1(b)) and a no-skin (background)

probability map (see Figure 5.1(c)), both according to Jones and Rehg. The brighter a

pixel, the higher the probability for the presence of respective class. The next step is

binarisation of both maps using proper threshold levels. In conducted tests, a value of

2.5 10−7 for the skin class and a value of 2 10−6 for the background have been found to be

adequate. Figure 5.1(d) depicts the binary results of the skin map and Figure 5.1(e) that

of the background map. At this point we can clear all pixels in the skin mask, that are

set in the background mask, which results in an adjusted skin mask (Figure 5.1(f)). As

we have additional skin knowledge from wound annotation in the form of a wound mask

– a wound is always part of the skin – we merge the adjusted skin and the wound mask

obtaining a new intermediate skin mask (see Figure 5.1(g)). This mask yet has many

micro and macro holes. Morphological closing (see Figure 5.1(h)) and filling of (false)

background regions surrounded by skin pixels close most of the holes (see Figure 5.1(i)).

As we can see, there are some small skin artefacts left. We can get rid of them by selecting

only the region containing the known wound area (see Figure 5.1(j)). A final smoothing

step by means of Gaussian filtering and consecutive binarisation at threshold value 0.5

generates the final skin mask depicted in Figure 5.1(k). The last Figure 5.1(l) shows the

skin segmentation result in the original image.

The described skin segmentation procedure has been tested in two experiments. The

first using 107 original wound images and the second using the colour normalised version

of the images. Although the detector gives surprisingly good results in many cases (see

Figures 5.1(l) and 5.2(a)), it is sometimes over-challenged, mainly due to the applied

fixed threshold when generating the skin mask from the probability map. This effect, for

example, can be observed in Figure 5.2(b), where the detector responds to shadows cast
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(a) Colour normalised in-
put wound image

(b) Skin probability map (c) Background (no-skin)
probability map

(d) Binarised skin proba-
bility map

(e) Binarised background
(no-skin) probability map

(f) Skin mask without de-
tected no-skin pixels

(g) Merged skin and wound
mask

(h) Morphologically closed
skin mask

(i) Skin mask with filled
gaps

(j) Skin mask consisting
only of that region contain-
ing the wound.

(k) Smoothed skin mask (l) Input image with skin
segmentation result

Figure 5.1: Intermediate steps of a skin detection framework deploying a Gaus-
sian mixture colour model presented by [26].
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by a foot or in Figure 5.2(c) due to the pale skin in the foot region. Nonetheless, many

non-perfect segmentation results are suitable for further use as long as they are correct in

the wound region. Detailed performance results can be found in Table 5.1.

(a) Good skin detection re-
sult (above) and related skin
probability mask (below).

(b) Poor skin detection re-
sult (above) and the related
skin probability mask (be-
low). The detector wrongly
responds to shadows cast by
a foot.

(c) Borderline skin detection
result (above) and related
skin probability mask (be-
low).

Figure 5.2: Some skin detection results on wound images produced by a frame-
work deploying a Gaussian mixture model [26].

5.1.2 Region Growing Based Skin Detector

Since SRM behaved well for the segmentation of cavities inside a wound as described in

Chapter 4.7.1, the method was also applied for skin segmentation. As already explained

there exists only one parameter Q for controlling the coarseness of the segmentation and

the statistical complexity of SRM. To find a proper value the SRM algorithm was applied to

107 colour and size normalised wound images using different Q values and the segmentation

results were investigated. Figure 5.3 shows the outcome of this approach illustrated on

one example wound image.

On the one hand, the statistical complexity Q should be chosen high enough so that

the related segmentation is fine enough that no region includes skin and background pixels.

When looking at Figure 5.3, we can see that this is the case for Q levels ≥ 2.55. On the
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Figure 5.3: Results of SRM segmentation applied to a wound image using dif-
ferent statistical complexity parameters Q starting from high values
to smaller ones. The upper left image shows the colour and scale
normalised input image.

other hand, the segmentation should be as coarse as possible for the sake of complexity

reduction. Q levels > 27 end up in too fine segmentations. After screening all SRM

segmentation results the author regarded a Q level of 26 for a good compromise for skin

segmentation in our case of application.

The next step in obtaining a final skin mask is the assignment of the correct class (fore-

ground/skin or background/no-skin) to each segmented region and merging it according

to its class affiliation. In order to automate this procedure by designing and applying a

proper model we need a reliable ground truth. Therefore, 1032 SRM regions stemming

from 53 training wound images were labelled interactively using a specially created GUI.

Figure 5.4 shows the distribution of all labelled regions in RGB space, with red dots in-

dicating skin and blue dots representing background regions. As we can see, skin and

background class samples occupy more or less disjoint regions in the RGB space, which

means that there exists a good chance of separating the two regions. The HSV space

was also examined, but did not provide better clusters. Region separation in RGB space
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can be done in different ways. Three methods were implemented and investigated: manu-

ally adjusted constraints (thresholds and colour ratios), a SVM [12] and the already used

Gaussian mixture model approach described in Section 5.1.1, but this time applied to

regions instead of pixels. Figure 5.5 shows some SRM segmentation examples using SVM

as classifier.

Figure 5.4: Distribution of skin and background training data in RGB space.

Figure 5.5: Exemplary skin detection results produced by SRM and using a
SVM as classifier. The images have been colour normalised in a
pre-processing step.

Of course, in order to make a statement about the performance, a few examples are not

enough, so all three methods were tested in two experiments in the same way as described
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in Section 5.1.1. For detailed performance results, see Table 5.1 in the next Section 5.1.3

which also explains the test criteria.

5.1.3 Performance Evaluation

The next step is to find a good method to evaluate the performance of the discussed

detectors. One common way would be to provide all test images with a ground truth by

labelling pixels of skin regions as foreground and those of non-skin regions as background

and then calculate the percentage of correctly and incorrectly detected pixels for each

class. Unfortunately, this method would merely be conditionally suitable for evaluating

the ability for our application. Since we use the detector to find out the boundary of the

body part in the image to prevent a simulated wound from growing over skin areas into

the background, misclassified pixels somewhere near the edge of the image are usually

less tragic than pixels close to the wound. Also, for example, misclassified isolated pixels

are usually less disruptive than connected ones. Another problem lies in the definition

of the mentioned ground truth itself. How should we deal with images containing skin

far behind the focal plane, because, for example, the face or the arm of a patient is also

photographed? This is especially true for DFS patients whose sole need to be photographed

(see for example Figure 1.2). Should such regions be part of the ground truth? If so, and

the detector fails to detect such fuzzy and mostly dark regions, it receives a bad sensitivity

score. In the opposite case its specificity rating would be bad.

For these reasons, the author decided to review each segmentation result and to evalu-

ate it qualitatively with respect to the suitability for our application. The assigned ratings

were ’Very good ’, ’Suitable’ and ’Not suitable’. Figure 5.6 shows reference segmentation

samples for each rating. Furthermore, Table 5.1 gives a performance summary of the

tested detectors in absolute numbers and the two charts in Figure 5.7 show the detector

performances in percentage. The upper chart refers to original wound images and the

lower chart to their colour normalised versions.

Taking a look at these results, it can be seen that the region based SRM methods

outperform the pixel based Gaussian Mixture Model (GMM) approach and SRM in com-

bination with SVM classification produces the best results of all tested methods. Further-

more, it can be observed that SVM classification provides similarly good results on test

and training data, which is an indication that the model is well trained and that there

is no over-fitting. Finally, it can be observed that the colour normalisation preprocessing

step generally increases the skin segmentation performance. Based on these findings, we
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(a) Skin segmentation exam-
ples rated as ’Very Good ’.

(b) Skin segmentation exam-
ples rated as ’Suitable’.

(c) Skin segmentation exam-
ples rated as ’Not suitable’.

Figure 5.6: Reference examples for skin segmentation performance rating.
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Table 5.1: Performance comparison of different skin segmentation methods.

decided in the project team to deploy the SRM-SVM method in our application.

One more note to conclusion. To further improve the segmentation results, the proce-

dural instruction of wound image capturing has been amended so that extremities should

only be photographed against a homogeneous background such as a bed sheet.
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Skin detection performance evaluation on original images

Skin detection performance evaluation on colour normalised images

Figure 5.7: Performance comparison of different skin segmentation methods
based on original images (above) and colour normalised ones (below).

5.2 Tissue Layer Concept

As we have learned in Section 4.7, a wound consists mainly of four tissue types and is

surrounded by intact skin. Current wound synthesis concept also considers these tissue

types.

5.2.1 Layer Stack

Each tissue type is represented by a dedicated layer and the layers are stacked one over

another. The basis layer represents intact skin. The next higher layer contains granulation

tissue and, strictly speaking, also epithelial tissue. Then a fibrin tissue layer is added and

the upper most layer refers to necrosis. The whole stack can be seen in Figure 5.8. The

procedure of generating the skin layer is described in Section 5.4 and that for the other

layers in Section 5.3.
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Skin layer 

Granulation  
layer 

Fibrin layer 

Necrosis layer 

Figure 5.8: Stack of tissue layers for wound synthesis. [52]

Before we can start the wound synthesis using the tissue layers, we need to introduce

tissue masks. One mask for each layer. The masks have the same size as the tissue layer

and control the region of the dedicated tissue type. Mask entries near or equal zero block

the layer, higher values up to 1 make the layer visible. The generated wound is essentially a

linear combination of the layers and the mask entries represent the coefficients. In addition

to the tissue masks, there exists a mask defining the region of the marker and one for the

body part region which is important for limiting the extent of a growing wound in the

image. In the case of DFS diagnosis, two more masks are needed. The first is associated

to the wound border region, which differs from PAOD and UCV by a more or less wide

bright, usually whitish/yellowish area and therefore has to be treated separately. The

second mask is dedicated to possible cavities in the wound that as well must be treated

separately.

5.2.2 Tissue Layer Masks

Let us take a closer look at the creation of the mentioned masks. The skin mask directly

relies on the results provided by the skin segmentation procedure already introduced in

Section 5.1.2. The three masks for granulation/epithelial tissue, fibrin and necrosis tissue

are generated using the colour based tissue segmentation procedure described in Section

4.7.3. Before being used, the respective mask is subjected to morphologically operations

and gauss filtering to make it more compact and smooth. The next mask to be explained

is the marker mask. It is necessary to prevent a wound during its deterioration process

from growing into the marker. The mask does not have to be calculated extra, it is a
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by-product of the MSER based marker detection described in Section 3.2. An example

of such a marker mask is depicted in Figure 3.4(c). It is represented by the cyan region.

Of course, the holes have to be filled before its usage. Let us move on to the next mask,

the wound border region mask used for the synthesis of DFS wounds. Its generation is

described in detail in Section 5.5.2. Remains the cavity mask which is used to remove

a cavity during healing simulation. The mask is gathered using the the cavity detection

procedure explained in Section 4.7.2.

5.2.3 Creating a Synthetic Wound

Now that all layers and masks have been explained, we can turn to the actual wound

synthesis according to [52]. Figure 5.9 shows the procedure based on PAOD step by step.

To start with, for each tissue type a suitable pre-calculated texture was taken from a

database. Before a texture is used, it is fused with the respective tissue already present

in the wound (granulation, fibrin or necrosis tissue) by means of blending. Since in most

cases the impression of brightness of the synthetic texture does not match that of the

existing tissue, a brightness adjustment in the range of -20% to +15% is conducted. In

a next step the different layers were merged one by one, beginning with the granulation

layer (see Figure 5.9(a)), then fibrin layer (see Figure 5.9(b)) and finally the necrosis layer

(see Figure 5.9(c)). The fusion was done by means of blending using the specific tissue

related masks described in 5.2.2. After adding a synthetic wound border by darkening the

wound edges (see Figure 5.9(d)) an additional shading filter mask was applied to attenuate

wound regions close to the contour of the body. The shading filter mask was generated

by morphological erosion of the skin mask followed by a Gaussian filtering. This causes a

realistic 3D-like effect of the wound and prevents the wound from protruding the affected

body part (see Figure 5.9(e)). Finally, the generated wound tissue is merged with the skin

layer (see Figure 5.9(f)). The original wound (before colour normalisation) can be seen in

Figure 5.9(g) and the final result of the wound synthesis at an advanced stage of disease is

presented in Figure 5.9(h). In addition to the described synthesis there were more effects

implemented to increase the realistic visual impression of the created wound. These are

described in the context of wound development simulation in Section 6.2.
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Figure 5.9: Creating a synthetic wound: (a-e) Stepwise fusion of tissue layers, (f) skin
layer after removing the original wound via image completion, (g) original wound image,
(h) final synthesis result in an advanced stage of disease. [52]

5.3 Generating Synthetic Wound Tissue

To generate a tissue layer for the use in wound synthesis described in Section 5.2 a large

patch from a suitable image containing the respective tissue type is extracted. Based on

that patch, a large texture of size 1024x768 is generated for the specific tissue type using

example-based texture synthesis and blending following ideas of [14, 30, 59]. If there is no

proper reference patch found (the matching distance is beyond a limit), which is mostly

the case if the available amount of existing seed-texture is insufficient, similar patches

from the patch database described in 4.6 were used for texture synthesis. Since these

methods are time consuming several such textures for different tissue types have already

been pre-calculated and stored for further use. The simulation software uses these textures

at runtime. The lowest layer, the skin layer, is generated in a different way. The next

Section 5.4 describes the procedure.

5.4 Completion of Wound Areas with Healthy Skin

The final result of a wound healing process is intact skin. When synthetically creating

intact skin we have to find a way to remove the wound and its border (region) and re-

place the missing image parts properly by intact skin – preferably without big noticeable

artefacts. As the author has already addressed this problem as part of his thesis in [52],
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only a summary of the method is described here. The interested reader is referred to the

mentioned paper for more information like details about the algorithm or performance

comparisons with other papers.

In order to receive satisfying image completion results without wound border artefacts,

it is necessary to completely remove the wound and its directly adjacent tissue, which

mostly differs from intact skin in colour and texture. Removing the wound is a straight

forward issue, since the wound mask is given. In case of DFS also a wound border region

mask is needed for that purpose. The mask is created by wound border region detection,

which we will see in Section 5.5.2. To remove even the last remnants of regions affected

by the wound the given masks are morphologically dilated by a disk-shaped structuring

element.

Remains the actual skin completion part. The implemented algorithm is based on

circular patch based image completion. It works according to the steps depicted in Figure

5.10.

  

    

1 

2 

3 

Figure 5.10: Concept of image completion technique: (a) section of original imag; (b)
clockwise filling order; rectangles show locations where a patch is fitted; the orange dash-
dotted line represents the path of actual iteration; the white solid line represents the
contour along which the image is cropped after each iteration; (c) shows blending step;
(d) result after two iterations; (e) remaining gaps after last iteration, filled using the same
blending technique as for the other patches; the rectangles depicts the matching window;
(e) final result. [52]
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To start with, Figure 5.10(a) shows an image section containing the wound, in par-

ticular case one caused by PAOD. After removing the region affected by the wound, a

contour path (orange dash-dotted line) is calculated in a way, that all patches of a given

size that are located on the path with respect to their centre pixel overlap by around 30%

of its area with surrounded skin (see Figure 5.10(b)). The overlapping region is matched

with skin region in a search space in a grid-like manner based on cross-correlation. During

experiments we recognised that the best fitting patches were located nearby the wound

(presumed that the wound border is removed as described). Therefore a search mask

allowing us to limit and optimise the search space, was introduced. Of course, all non

skin regions were excluded from the search space, too. After a proper patch is found, it is

merged to the output image, accordingly to Figure 5.10(c), whereas the upper left patch

depicts the rectangular site of the image to be filled (superimposed by a seam mask), and

the upper right patch shows the best matching patch (superimposed by the inverted seam

mask). Adding these two patches results in a final patch (depicted underneath the two

patches) that can be directly inserted into the output image. The white solid line repre-

sents the contour along which the image is cropped after each circular iteration. Figure

5.10(d) shows the intermediate result of the procedure after the second circular iteration.

The remaining gaps after the last iteration as depicted in Figure 5.10(e) are handled using

the same patch matching and blending steps as described before. The final result is de-

picted in 5.10f. The image completion method has been applied to various wound images

and the results have been reviewed within the team and by a physician. Figure 5.11 shows

some results of wound image completion, each line representing another example. The

proposed method works well on more or less planar regions and when wounds are cleaned

before the image is taken (see first and second row or Figure 5.11) otherwise it may produce

sub-optimal results like that shown in the third row of Figure 5.11. The image completion

method was accepted for the use in the final application by the consortium.

5.5 DFS Wound Border Treatment

In our images, the wound border region of DFS differs significantly from that of UCV and

PAOD as already stated in 5.2.1. Most DFS wounds consist of a bright, white to yellowish

region of varying width (see Figure 1.2). Such a border region is caused by partially soaked

callused skin. If this region would not be taken into account in the synthetic replacement

of the wound with healthy skin, unrealistic artefacts would be the result. For this reason,

it has to be detected and removed before conducting wound synthesis operations.
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a b c d

e f g h

i j k l

Figure 5.11: Results of wound image completion based on three example. a,e,i) show the
original images. b,f,j) depict the image completion results. c,g,k) show the relevant section
of original image; d,h,l) show the same section with completed skin.

In the course of the search for a suitable method for segmenting this wound border

region two interesting methods were short-listed and tested for their fitness in our ap-

plication. The first was Interactive Total Variation Based Image Segmentation (TVSeg)

introduced by Unger et al. in [57]. The interactive tool provided promising segmentation

results based on sample images with smooth transitions between object and background.

The second method was SRM, as it has provided excellent segmentation results on wound

images so far (see sections 4.7.2 and 5.1.2).

5.5.1 Wound Border Region Segmentation Using TVSeg

According to their authors TVSeg [57] is based on a binary labelling into foreground and

background using fast Total Variation minimisation of the Geodesic Active Contour energy

with local constraints. In an optional second step TVSeg performs alpha-matting along

the border of the binary segmentation.

As TVSeg inherently relies on the edge image derived from the input image, different

edge related parameters affecting the final segmentation result have been exhaustively

tested to achieve the best segmentation result for our use case. The edge scale value for
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example controls the general influence of edges onto the segmentation result, whereas the

edge power value controls the influence of the edge strength. If high, only strong edges

influence the segmentation. Furthermore, the calculated edge images have been slightly

smoothed in an edge preserving de-noising preprocessing step for better segmentation

results. Let us now examine the results produced by the TVSeg when applied to our DFS

images. Figure 5.12 and Figure 5.13 show the segmentation result of two different DFS

input images. The left column of each figure shows the interactive segmentation results of

the wound border region using standard constraints, the column in the middle using mixed

constraints and the right column shows the results based on hard constraints offered by

different brushes in the TVSeg GUI. The interactively drawn pink/orange brush strokes

indicate foreground and the blue ones denote background constraints. The upper and

lower rows differ in the used edge image related segmentation parameters. The specific

values used are displayed in each result image.

Contour Smoothing: 0,02

Edge Pow. : 0,55

Contour Smoothing: 0,02

Edge Pow. : 0,55

Contour Smoothing: 0,02

Edge Pow. : 0,35

(a) Wound border Segmenta-
tion example using standard
constraints.

Contour Smoothing: 0,02

Edge pow. : 0,55

Contour Smoothing: 0,02

Edge Pow. : 0,35

(b) Wound border Segmen-
tation example using mixed
constraints.

Contour Smoothing: 0,02

Edge pow. : 0,55

Contour Smoothing: 0,02

Edge Pow. : 0,35

(c) Wound border Segmenta-
tion example using hard con-
straints.

Figure 5.12: Examples of wound border region segmentation based on interactive
TVSeg [57] using different parameters for edge detection. Interac-
tively drawn pink/orange brush strokes indicate foreground and the
blue ones background constraints.

Unfortunately, none of the tested parameters provided convincing segmentation re-

sults. Although several start regions for the foreground and background were defined

interactively, no coherent or complete segmentation of the wound border region could be
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Contour Smoothing: 0,02

Edge Pow.: 0,55

Contour Smoothing: 0,8

Edge Pow.: 0,55

(a) Wound border segmenta-
tion examples using standard
constraints.

Contour Smoothing: 0,02

Edge Pow.: 0,55

Contour Smoothing: 0,8

Edge Pow. : 0,55

(b) Wound border segmen-
tation examples using mixed
constraints.

Contour Smoothing: 0,02

Edge Pow.: 0,55

Contour Smoothing: 0,8

Edge Pow.: 0,55

(c) Wound border segmen-
tation examples using hard
constraints.

Figure 5.13: Examples of wound border region segmentation based on interactive TVSeg
[57] using different parameters for edge detection. Interactively drawn pink/orange brush
strokes indicate foreground and the blue ones background constraints.

achieved. Also, an attempt, not shown in the two figures, of segmenting the wound border

region together with the wound itself, brought no improvements. TVSeg is a powerful tool

for segmenting objects from a background, of which the author was able to convince him-

self by means of several tests on non-wound images, but it is not right tool for separating

the wound border region in our case of application.

5.5.2 Wound Border Region Segmentation Using SRM

Let us go through the second short-listed segmentation method based on SRM. In a first

step a binary wound border region mask Mmin was created by dilating the given wound

mask of a DFS input image using a disk shaped structuring element of radius rmin. This

mask represents the minimum boundary region for a DFS wound. In a second step the

SRM algorithm was applied to the colour normalised input image, using a statistical

complexity parameter Q = 29, which provided the best trade-off between low complexity

and a fine segmentation. In the next step those segmented regions were selected, that
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adjoin the wound border but do not exceed a specified maximum normal distance dmax

from that border. This region set builds the binary wound border mask Mseg. In a last

step the final wound border mask is generated Mseg = OR(Mmin,Mseg). If necessary Mseg

is cropped by the skin mask developed in Section 5.1.2. We have tested the method using

all available DFS wounds and reviewed the results together with a physician and found

the segmentation procedure suitable for our application. Figure 5.14 shows some results.

a b c

d e f

Figure 5.14: Examples of wound border region segmentation based on SRM [40].

5.5.3 Creation of DFS Wound Border

We have seen that we can detect the wound border environment of DFS. Because the

DFS wound border region is many times more complex than that of PAOD and UCV,

the wound deterioration simulation is not an easy task. Many attempts concerning this

matter have failed. For this reason, the team decided in intensive discussions to extract

reference wound border regions from all available images and store them in a database for

access when needed. A wound edge region taken from the database is then adapted to

the target wound contour by simple Euclidean transformations and merged as uppermost

layer to the wound in a blending step using a proper wound border region mask. After

reviewing the results in the team together with a wound expert, the method was approved.
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5.6 Wound Cavity Synthesis

As already mentioned, the clinical picture of DFS also includes cavities that may occur at

a more advanced stage of the disease and are an indication of the destruction of deeper

tissue layers. We have seen in 4.7.2 how a cavity is detected in order to exclude it from

the colour based tissue segmentation. In case of wound deterioration, these cavities must

be artificially created.

In close consultation with the physician different approaches were tested. The best

tested approach to create an artificial cavity, that came very close to a real one, was based

on the euclidean distance transformation [18]. The transformation was applied on the

wound contour mask in order to generate an attenuation filter. Directly applied to the

wound the filter generates a nice cavity effect. The severity of generated cavity can be

controlled by merely one blending parameter αintensity. The approach was tested using

all available DFS images. The results have been reviewed together with a physician and

found suitable. Figure 5.15 shows two examples of synthetically generated cavities using

αint = 0.5. The left column depicts the original wound image. The column in the middle

shows the synthetic cavity and the right column depicts the relevant zoomed image section.

(a) Original DFS wound im-
ages.

(b) Synthetically generated
cavity.

(c) Zoomed image sections
containing synthetic cavity.

Figure 5.15: Examples of synthetically generated cavities in DFS wounds.
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Wound Development Simulation
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6.1 Available Image Data

Before we devote ourselves to the wound development simulation, let us take a look at the

available image data gathered until the end of project SimuWound. Table 6.1 provides

information about available images of DFS in general and to assigned wound phases in

particular. Furthermore, the table distinguishes between images without markers, those

with a pure geometric marker and those containing a colour marker. As one can see, there

exist quite many images in total, but very few to cover a complete wound development of a

patient. In addition to this unpleasant aspect, there exist relatively few images containing

a marker that allows sizing and colour normalisation of the wound. If we look at the data

for PAOD in Table 6.2 and for UCV in Table 6.3, a similar picture emerges, although for

the latter diagnosis the data situation looks a little better.

6.2 Wound Development Simulation Chain

Due to the poor data situation, it was necessary to refrain from deploying data-intensive

machine-learning based techniques such as for example deep learning [35, 51] when generat-
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Phase 1 Phase 2 Phase 3 Phase 4 Total Phase 1 Phase 2 Phase 3 Phase 4 Total

Patient 01 01 Dig. II ped. dext. 3 x x x 3 x x x 3

Patient 02 02 Plant. dext. 5 x x 4 x x 4

Patient 03 03 Hall. phal. dist. plant. dext. 3 x x 3 x x 3

Patient 04 04 Pes lat. dext 1 x 1 x 1

Patient 05 05 Hall. phal. dist. plant. sin. 2 x 2 x 2

Patient 06 06 Plant. dext. 1 x 1 -

Patient 07 07 Hall. phal. dist. plant. dext. 5 x x x x 5 x x x x 5

08 Plant. sin. 10 x x x 9 x x x 9

09 Plant. dext. 1 x 1 x 1

Patient 09 10 Plant. dext. 4 x 2 x 2

Patient 10 11 Plant. sin. 4 x 4 x 4

Patient 11 12 Plant. dext. 10 x x x 8 x x x 7

Patient 12 14 Plant. sin. 6 x x 5 x x 5

Patient 13 15 Dig. I/II ped. dors. dext. 2 x 2 x 2

Patient 14 16 Plant. dext. 5 x x x 5 x x x 5

Patient 15 17 Plant. dext. 14 x x x 4 -

Patient 16 18 Plant. dext. 7 x x x 6 x x x 5

Patient 17 19 Plant. dext. 4 x x 4 x x 4

Patient 18 20 Plant. sin. 2 x 2 x 2

Patient 19 21 Dors. dext. 6 x x x 6 x x x 6

Patient 20 22 Dors. dext. 5 x x 5 x x 5

00 - 27 x x x 22 x x x 22

Total 127 104 97

100 82 75Total attributable to patients

Patient 08

Not attributable

Patient ID
Wound

ID
Localisation

Total 

Images

Images containing marker Images containing colour marker

Table 6.1: Available image data for diagnosis DFS.

Phase 1 Phase 2 Phase 3 Phase 4 Total Phase 1 Phase 2 Phase 3 Phase 4 Total

01 Crus. fib. sin. 5 x x x 5 x x x 4

02 Crus. tib. sin. 3 x x 3 x x 3

Patient 02 03 Crus. tib.post.sin. 4 x x 4 x x 3

Patient 03 04 Calc. med. dext. 13 x x x x 10 -

Patient 04 05 Crus. sin./dext.? 1 x 1 x 1

06 Crus. fib. sin. 22 x x x 18 x x 9

07 Pes. dors. sin. 29 x x 22 x x 9

Patient 06 08 Hall. med.dext. 13 x 4 -

09 Mall. lat. dext. 7 x x 5 x 1

10 Mall. lat. sin. 9 x x 5 x 1

11 Mall. med. dext. 8 x x x 6 x x 2

12 Mall. med. sin. 9 x x 6 x 1

Patient 08 13 Crus. fib. dext. 7 x x 7 x x 7

14 Mall. tib. sen. 7 x 5 x 5

15 Mall. tib. dext. 6 x 5 x 5

Patient 10 16 Mall. fib. dext. 6 x x x 6 x x 4

Patient 11 17 Crus. tib. dext. 4 x x 4 x x 4

Patient 12 18 Crus. fib. dext. 10 x x x 10 x x x 10

00 - 34 x x x x 24 x x x x 24

Total 197 150 93

163 126 69Total attributable to patients

Patient ID
Wound

ID
Localisation

Total 

Images

Images containing marker Images containing colour marker

Patient 09

Not attributable

Patient 01

Patient 05

Patient 07

Table 6.2: Available image data for diagnosis PAOD.

ing a suitable wound simulation model. The finally implemented model for the simulation

of wounds is based on the evaluation of a few existing wound developments with regard to

wound size and tissue type proportions, furthermore, on the work of [61] addressing heal-

ing times concerning DFS based on a study, and mainly on the experience of our physician,

a certified wound manager. The model parameters are stored in a structure and can be

easily adjusted as new specifications or new (more) ground-thruth data is available or a

need for adjustment arises on part of physicians.

As already explained in Section 5.2 a synthetic wound is essentially generated by
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Phase 1 Phase 2 Phase 3 Phase 4 Total Phase 1 Phase 2 Phase 3 Phase 4 Total

Patient 01 01 Mall. tib. sin. 7 x x 7 x x 7

02 Crus. fib. sin. 2 x 1 -

03 Crus. tib. sin. 45 x x 28 x 2

04 Mall. fib. sin. 1 x 1 x 1

05 Mall. tib. sin. 1 x 1 x 1

06 Mall. fib. dext 1 x 1 x 1

07 Mall. fib. sin. 1 x 1 x 1

08 Mall. tib. sin. 5 x x 5 x x 5

Patient 05 09 Mall. ? 1 x 1 x 1

Patient 06 10 Mall. tib. dext. 5 x x x 5 x x x 5

Patient 07 11 Crus. fib.dext. 10 x x 7 x 1

Patient 08 12 Crus. fib.sin. 5 x x 5 x x 3

Patient 09 13 Mall. tib. sin. 5 x x 5 x x 5

14 Crus. fib.sin. 5 x x 5 x x 4

15 Crus. tib. dext 2 x 2 x 2

16 Crus. tib. sin. 2 x 2 x 2

Patient 11 17 Crus. fib. dext. 4 x x x 4 x x 3

Patient 12 18 Crus. fib. sin. 1 x 1 x 1

Patient 13 19 Crus. dext. 10 x x x x 10 x x 2

Patient 14 20 Mall. tib. sin. 7 x x 7 x x 7

21 Crus. tib. sin. 17 x x x x 16 x x x x 12

22 Crus. tib. dext. 8 x x x 8 x x x 7

Patient 16 23 Crus. tib.sin. 14 x x 14 x x 14

24 Mall. fib. sin. 8 x x x 8 x x x 8

25 Mall. tib. sin. 5 x x 5 x x 4

26 Mall. fib. dext. 3 x 3 x 3

Patient 18 27 Mall. med. sin. 9 x x 8 -

Patient 19 28 Crus. tib. dext 2 x 2 x 2

Patient 20 29 Crus. fib.sin. 19 x x x x 14 -

Patient 21 30 Crus. tib.sin. 1 x 1 x 1

Patient 22 31 Mall. fib. dext. 1 x 1 -

00 - 51 x x x x 48 x x x x 48

Total 258 227 153

207 179 105Total attributable to patients

Patient ID
Wound

ID
Localisation

Total 

Images

Images containing marker Images containing colour marker

Patient 02

Patient 03

Patient 04

Not attributable

Patient 10

Patient 15

Patient 17

Table 6.3: Available image data for diagnosis UCV.

blending different synthetic tissue layers. Each tissue layer is associated with a filtered

mask that is altered by a combination of scaling steps, morphological operations, and

threshold methods to simulate wound healing or deterioration according to the mentioned

model parameter structure. Parameters that are necessary for wound cavity synthesis in

case of DFS and additional effect parameters for inflammation and swelling are also part

of the structure.

Inflammations were simulated by filtering a wound mask using a huge Gaussian kernel.

The so generated filter mask was applied to the skin layer mainly strengthen the red RGB

channel. Note that this operation was only applied to the surrounding skin and not to

the wound itself. The inflammation effect can be observed in the wound deterioration

simulation for UCV shown in Figure 6.6 and for those of DFS in Figure 6.4. Finally,

the swelling of the foot of a DFS-affected patient was simulated using a distortion field

generated by Thin Plate Spline (TPS) [7] according to specifications of a physician. Figure

6.4 shows the swelling as a concomitant effect of wound deterioration in DFS. Both effects

have been tested on various images and found to be realistic by physicians.

In all simulation steps great importance was placed on randomness. Thus, for most

parameters concerning wound growth and healing, small Gaussian noise with a defined
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variance was added. This procedure ensures that one and the same input image with the

same given personal circumstances lead to similar but not identical simulations.

The necessary preprocessing steps for the wound evolution simulation chain are ex-

plained in a state flow diagram shown in Figure 6.1 and the actual wound evolution

simulation process itself is explained in a second state flow diagram depicted in Figure

6.2. The two state flow diagrams combine all marker and wound related analysis, synthesis

and simulation steps that were presented in this thesis so far. So there all threads come

together.

Load wound original image

Normalise image scale

Normalise image colours

Decompose wound based on colours

Determine marker region

Marker detection

Start

Determine pahse of wound development

Replace wound and wound border by
healthy skin (image completion)

Terminate

Load information from swf-file

Separate body part from background

Calculate effect parameters

DFS?

Detect sulcus

Segment bright wound border region

Calculate wound geometry

   yes

no

Figure 6.1: State flow diagram of image preprocessing.
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Determine influence of life circumstances 

on wound evolution simulation

Determine frame parameters for simulation

Load simulation based settings

Generate synthetic granulation, fibrin 

andnecrosis tissue textures

Generate fractal masks for wound

and tissue borders

UCV | PAOD ?

Image preprocessing

no

Start

   yes

Update masks

Apply inflammation effect *

Generate wound

Apply shading effect

Determine calender week

Save simulation frame

Terminate

Generate centered masks for wound 

and wound border region

DFS?

   yes

no

Determine number of simulation steps

Calculate effect parameters

DFS?

Apply sulcus effect *

Generate bright wound border region

Apply swell effect *

End of simulation

reached ?

   yes

   yes

no

no

*)  just in case of untreated wounds (worsening)

Figure 6.2: State flow diagram of simulation process.
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6.3 Simulation Results

Finally, some wound development simulations are presented here. Figure 6.3 shows wound

healing for DFS and Figure 6.4 shows the wound deterioration for DFS. Note the additional

swelling and inflammation effect. As one can see it forms a cavity starting in Figure 6.4(d).

Figure 6.3: Simulation of healing for DFS. a) Original image of DFS at begin of treatment.,
b-f) predicted stages of disease with a time delay of five days between each stage.

Figure 6.4: Simulation of deterioration for DFS. a) Original image of DFS wound at an
early stage, b-f) predicted stages of disease with a time delay of one week between each
stage, if not treated.
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Finally Figure 6.5 presents a healing simulation for UCV and Figure 6.6 synthetic

deterioration. Since the simulation path of PAOD is similar to that of UCV, the figure is

omitted here.

Figure 6.5: Simulation of healing for UCV. a) Original image of leg ulcer at begin of
treatment, b-f) predicted healing with a time delay of one week between each stage.

Figure 6.6: Simulation of deterioration for UCV. a) Original image of leg ulcer at an early
stage, b-f) predicted stages of disease with a time delay of two weeks between each stage.





Chapter 7

Conclusion and Outlook

7.1 Summary of Contribution

The main contributions of this thesis have been the analysis and description of visual

attributes of a chronic wound with respect to a related diagnosis and the generation of

synthetic wounds based on the extracted features. Furthermore, a possible way to simulate

different wound evolutions depending on given personal circumstances was outlined. The

outcome of this work was a substantial contribution to the successful development of a

wound simulation tool within the research project SimuWound, which was approved for

everyday clinical use.

In more detail, chapter 1 addressed the actual healthcare situation concerning chronic

wounds and described the reasons for the development of the wound simulation tool and

formulated the clear goal of patient motivation to actively participate in the therapy in

order to accelerate the healing process and drastically reduce healthcare costs. After

defining the scope of work a short description of the covered diagnoses DFS, PAOD and

UCV was given.

Chapter 2 provided an overview of existing work in the field of image based wound

analysis and wound development prediction.

Chapter 3 presented a well chosen, reliable and easy to use image acquisition system

that enables the capturing of high quality wound images. Furthermore, a carefully devel-

oped detection algorithm for different size and colour reference markers, achieving high

detection rates in conducted evaluation experiments was introduced.

Chapter 4 addressed the analysis of wounds. The consensually classification of wounds

into phases of a disease within the project team as well as definition of wound features
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relevant for image processing were explained. Moreover, the derivation of promising state

of the art wound descriptors from the defined features was presented in detail. Based on

the descriptors a decision tree method for automated wound phase classification that even

works with few image training data was developed and evaluated. A suitable method for

finding similar wound patches in a database for later use in wound synthesis were analysed

and exhaustively tested by the author as well. In addition, methods for detecting cavities

in a wound were implemented and evaluated and finally, a suitable approach of segmenting

a wound into several tissues was presented.

Chapter 5 tackled wound synthesis. In order to solve the skin segmentation task in

wound images, an existing approach and a newly developed one were tested and evaluated

in detail. Furthermore, a new layer concept for generating a synthetic wound was pre-

sented and all necessary techniques and steps were explained in detail. These included a

newly developed image completion method optimised for wounds, adapting existing tex-

ture synthesis methods for wound tissue layer generation and a newly developed method

for wound border region detection in case of DFS. Finally, a newly method for the gener-

ation of synthetic but realistic looking wound cavities was presented.

Chapter 6 was about wound evolution simulation. Starting with, an overview of avail-

able image data in the project was given and the simulation of healing and worsening of

wounds was described. Moreover, some additional effects addressing inflammation and

swelling were introduced and detailed flow chart diagrams explaining the work-flow of the

developed wound simulation tool were given. Finally, some simulation results for different

diagnoses regarding healing and worsening were presented.

7.2 Conclusion, Discussion and Outlook

The wound simulation tool and the deployed methods presented in this thesis worked well

and proved to be applicable for daily clinical routine. The tests showed that even non-

expert users (clinical personal) upon a short training session can use the system and first

results showed the acceptance by patients. The simulation tool also has the potential for

the use in mobile devices or as valuable tool in the training of prospective physicians and

other persons involved in wound care in the clinical but also in the private sector.

Nevertheless, there are still possibilities to further enhance the system, respectively the

appearance of simulated wounds to motivate patients even more in active wound treatment.

For example, the applied methods for the analysis of wound parameters and their use in
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wound simulation could partly be replaced by powerful deep learning approaches [35,

51]. However, the actual bad data situation already mentioned in the work does not

permit such data-intensive methods at the moment. But the wound analysis and synthesis

developed in this work have the potential to provide suitable data for training of deep

learning methods. There is also room for improvement in the automation of manual

wound border segmentation, to relieve the physician. Automated approaches for wound

border segmentation already exist (see for example [15, 49]). Whether these approaches are

capable to deal with the great variability in all presented chronic wounds due to different

wound margins but not least because of the high variability of wound border regions

and surrounding skin is open. Automated skin detection could also be predestined for

deep learning methods just mentioned. With sufficient data, the perceivable variability

in manual wound segmentation observed during the project between individual skilled

personnel could be addressed with these methods, too.

As already described in the introduction to this work, the presented method of

wound analysis and synthesis is limited to more or less planar skin areas due to the

two-dimensional nature of a wound image. The use of a 3D camera system like that of

EKARE [15] and appropriate adaptation of the algorithms to the three-dimensional

conditions would considerably expand the field of application of the presented simulation

tool. In addition to the planar skin areas then finer limbs such as fingers or toes could be

taken into account or wounds that have manifested around a limb. The visual impression

of a wound simulation, which is important for increasing compliance, could, according to

the author, be significantly improved by 3D methods. Also the depth of the wound, which

is a parameter used to assess the severity of an injured skin area, can be determined to a

certain extent by 3D methods, as also evidenced by EKARE. This is not possible with

2D methods or only insufficiently and indirectly using workarounds (see cavity detection

in chapter 4.7.2). The depth parameter could provide a valuable contribution to the

improvement of wound classification and thus also to wound simulation.

The set of wound parameters used for the wound analysis can be extended even further.

This work deals exclusively with RGB colour images in the visible light spectrum. The use

of thermal imaging or multi-spectral cameras can provide valuable insights into processes

beneath the visible wound surface. Inflammatory reactions in the wound or differently

perfused wound areas are detectable in the near infra-red spectrum (see [27] and [31])

and thus can provide interesting additional information regarding the disease state. This

information could be used to improve the presented wound analysis methods. Furthermore,



76 Chapter 7. Conclusion and Outlook

there is a possibility to enhance the simulation tool concerning the covered diagnoses which

were limited to DFS, PAOD and UCV in project SimuWound and in this thesis. An

extension to pressure ulcers, burn wounds and other diseases associated with skin injuries

would significantly expand the range of application of the simulation tool.

The outlined improvement potential can serve as the basis for planned further develop-

ments of the simulation tool. In any case, a major focus of future work will have to be

on the generation of more training image data. The actual positive effect of the wound

simulation tool on the motivation of the patient and the shortening of treatment duration

will probably only be assessed in a long-term study with extensive statistical evaluations.



Appendix A

List of Publications

My work at JOANNEUM RESEARCH led to the following peer-reviewed publication: 

 

Image Completion Optimised for Realistic Simulations of Wound Development 

 

Michael Schneeberger, Martina Uray and Heinz Mayer 

In: Pattern Recognition. Proceedings of Joint DAGM and OAGM Symposium 

Lecture Notes in Computer Science, volume 7476 

August 2012, Graz, Austria 

Springer, Berlin Heidelberg 

pages 448–457. 
 

Abstract: Treatment costs for chronic wound healing disturbances have a strong impact 

on the health care system. In order to motivate patients and thus reduce treatment times 

there was the need to visualize possible wound developments based on the current 

situation of the affected body part. Known disease patterns were used to build a model for 

simulating the healing as well as the worsening process. The key point for the construction 

of possible wound stages was the creation of a nicely fitting texture including all 

representative tissue types. Since wounds are mostly circularly shaped, as first step of the 

healing an image completion based on radial texture synthesis of small patches from the 

healthy tissue surrounding the wound was developed. The radial information of the wound 

border was used to optimize the overlap between individual patches. In a similar way 

complete layers of all other appearing tissue types were constructed and superimposed 

using masks representing trained possible appearances. Results show that the developed 

texture synthesis together with the trained knowledge is perfectly suited to construct 

realistic wound images for different stages of the disease. 
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