
Thomas Gruber, BSc.

A Robot Framework Library for
Automated GUI Testing using the

Ranorex API

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Softwareentwicklung-Wirtschaft

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl-Ing. Dr.techn. Eugen Brenner

Institute of Technical Informatics
Head: Univ.-Prof. Dipl-Inform.Dr.sc.ETH. Kay Uwe Römer

Graz, October 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

The Robot Framework is an open-source test automation framework for
keyword-driven acceptance testing that builds upon a simple, text-based
syntax for defining test cases. It uses external libraries for providing actual
test functionality. This thesis describes the RanorexLibrary and its imple-
mentation, a library that provides the capabilities of the Ranorex API to
the Robot Framework. The proprietary tool Ranorex enables the tester to
automate graphical user interfaces for desktop, web, and mobile applica-
tions by abstracting the underlying user interface technology completely.
The end product is a way of writing Robot tests that have the same look
and feel independent of the underlying technology and provide a clean
interface to any GUI. Without the RanorexLibrary, each UI technology had
its own library in the Robot Framework with its own keywords that were
completely incompatible (if the technology is supported at all). A technical
challenge to overcome in this thesis was the fact that Robot is built as a
Python script, but Ranorex is a set of .NET libraries, so IronPython was
used as intermediate layer to make them work together.

v

Contents

Abstract v

1 Introduction 1
1.1 The Issue to Solve . 1

1.2 The Aim of the RanorexLibrary 3

1.3 Methodology . 4

1.4 Content of this Thesis . 5

2 Already-Existing Integrations 7
2.1 ranorex-robot-library . 7

2.2 robotframework-RanorexLibrary 7

3 Terminology 9
3.1 Software Testing . 9

3.1.1 The Testing Pyramid . 10

3.2 Agile Software Development 10

3.2.1 Test-driven Development 11

3.3 Test Automation . 12

3.4 Graphical User Interface Testing 12

3.5 Keyword-driven Testing . 13

3.6 Acceptance Testing . 14

4 The Frameworks in Use 15
4.1 Robot Framework . 15

4.1.1 History of the Robot Framework 16

4.1.2 Technical Detail . 16

4.1.3 The Robot Syntax . 19

4.2 Ranorex . 20

4.2.1 The Product Ranorex . 21

vii

Contents

4.2.2 The Three Layers of Ranorex 23

4.2.3 Object Recognition . 26

4.2.4 The RanoreXPath . 30

4.3 IronPython . 32

4.3.1 What is IronPython? . 32

4.4 Example Integration: SeleniumLibrary 34

5 Requirements for the Integration 39
5.1 Licensing . 39

5.2 The Ranorex Repository . 40

5.2.1 General Workflow . 41

5.2.2 Rationale for not Implementing the Repository Func-
tionality . 41

5.3 Desktop Testing . 42

5.4 Web Testing - Advantages over the SeleniumLibrary 43

5.5 Mobile Testing . 44

6 Implementation Detail 45
6.1 General Details . 45

6.2 Keywords . 46

7 Setup and Tutorial 51
7.1 Setting Everything up . 51

7.2 Best Practices . 54

7.2.1 Modularization . 54

7.2.2 Page Object Pattern . 55

7.2.3 Robust Identifiers . 56

7.2.4 Data-driven Testing . 57

7.3 A Small Example . 57

7.4 Documentation . 64

8 Conclusion 65

Bibliography 67

viii

List of Figures

3.1 The Testing Pyramid . 11

4.1 Architecture of the Robot Framework 17

4.2 Robot Example Code . 20

4.3 An example of a Ranorex API call 24

4.4 A Ranorex repository . 25

4.5 A Ranorex test suite . 26

4.6 A Ranorex report . 27

4.7 RanoreXPath identifying a UI element 30

4.8 The IronPython infrastructure 33

7.1 Test scenario of the sample . 59

7.2 A Robot test report . 62

7.3 A Robot test log . 63

ix

1 Introduction

Like all good books, and possibly a few bad ones, this one starts
with an introduction.

This is how IronPython in Action ([1]), an awesome book about the IronPython
language/framework, starts its introduction, and I have decided to do the
same, since IronPython provides the connection that is necessary to make
the project that the RanorexLibrary is possible in the first place.

This introduction will cover a few basic questions about this thesis. The
most important questions being “What is the RanorexLibrary?”, “Who
needs this RanorexLibrary?”, and “How can the RanorexLibrary be used to
automatically test Graphical User Interfaces?”. The introduction will present
the problem that needs to be solved and also how the RanorexLibrary can
fill this gap.

1.1 The Issue to Solve

There are many test automation solutions and frameworks on the market,
starting from open source tools and ranging to expensive Enterprise all-in-
one solutions. When establishing test automation for a project, the question
of which tool to use is maybe one of the most important questions to answer
in this process, especially since this decision often creates a vendor lock-in
and changing to another tool very often means to rebuild the whole test
automation infrastructure from scratch.

1

1 Introduction

Depending on the exact automation requirements, different licenses are dom-
inant: Unit testing frameworks are very often open source tools.1 Frame-
works for Graphical User Interface testing on the other hand are often
complex proprietary tools2 that often come with sophisticated additional
functionality like test case management or reporting.

Ranorex (presented in more detail in section 4.2) is a GUI test automation
tool that offers advanced object recognition across many technologies. It
abstracts the underlying UI technology and makes a test for a Java Swing
application look exactly the same as a test for a WPF application. Within
Ranorex, a click action abstracts the underlying control and always is just a
click, which makes the Ranorex core technology very flexible and powerful.
However, Ranorex is a proprietary tool and offers many features, most of
them not well-portable to other platforms or frameworks. Another drawback
is that Ranorex was never implemented with the idea to create a keyword-
driven test framework, thus it lacks many of the features that are standard
in this area.

On the other hand, there is the Robot Test Automation Framework (ex-
plained in more detail in section 4.1), an open source, keyword-driven test
automation tool that builds upon Python. It works cross-platform, is inter-
preted instead of compiled, and is easily extensible through small scripts
and libraries. Its strength is a very simple, text-based notation that builds
upon keywords. Every possible action is modeled by a keyword, and it
is easy to create new keywords from other, more basic keywords. It uses
external libraries for defining the semantics of a keyword. And although
there are a few libraries that enable Robot to perform GUI testing, they
mostly focus on one specific technology (like Java Swing) and lack the
overall power of Ranorex.

What both these tools have in common is their approach of making test
automation easier to use for non-developers. Both don’t require coding skills,
and abstract actions as atomic modules (keywords in Robot and actions in
Ranorex). Both can create more complex actions from basic actions (higher

1Wikipedia lists hundreds of them, and most use an open source license: https:
//en.wikipedia.org/wiki/List of unit testing frameworks

2Overview over GUI testing tools in the Wikipedia: https://en.wikipedia.org/wik
i/Comparison of GUI testing tools

2

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/Comparison_of_GUI_testing_tools
https://en.wikipedia.org/wiki/Comparison_of_GUI_testing_tools

1.2 The Aim of the RanorexLibrary

order keywords in Robot and modules and module groups in Ranorex) and
both use similarly stuctured test suites.

However, there is currently no well-maintained and powerful integration of
the Ranorex API into the Robot Framework. This integration would enable
a tester to use keywords within the Robot Framework that trigger Ranorex
GUI tests. Currently, for doing UI testing, a Robot user has to choose the
correct library (e.g. the SeleniumLibrary for web testing or the SwingLibrary
for Java Swing applications), if there is a library for this technology in the
first place. Automating a GUI independent of its underlying technology
is currently not possible. A clear benefit of the RanorexLibrary would be
to only have one single notation for all technologies, meaning it is not
necessary to learn another library for another technology, and to make
end-to-end testing simple and natural. In Ranorex, adding a file to a net
drive on the desktop and validating its existance on the corresponding web
application or a mobile app is seamless, while without Ranorex it would be
hard and require many different libraries’ keyword sets.3

1.2 The Aim of the RanorexLibrary

The goal of this thesis is to analyze the options to integrate the Ranorex
functionality into the Robot Framework, and then to implement such a
solution that should have the name “RanorexLibrary”.

First, basic questions have to be answered, like: “Is such an integration
possible in the first place?” and “How could this integration look from a
technological standpoint?”. Since Ranorex builds upon .NET and Robot is
based on Python, they do not seem to be the perfect match for each other.
Thus, first a proof of concept has to be established, only then can the real
functionality be implemented into specific keywords.

3Is it ”Run Application” or ”Start Application” or ”Start Program”? When using
different libraries, the same functionality may be offered by different keywords, and this
could make a Robot test hard to write and maintain, and very unlogical. Clicking an
element could require the keyword ”Click” in one line, but the keyword ”Click Element” in
the next. Although it is possible to unify those keywords by using higher order keywords,
this still has to be done by the end users themselves, and it is not an elegant solution.

3

1 Introduction

Ranorex offers many features apart from just object recognition. Another
question to answer is, how many of these features can (and should) be
translated to Robot. While the Ranorex repository might seem like it could
be integrated well and easily4, the Ranorex report should probably not be
integrated as Robot provides its own independent report format.

Testing web applications is one area where Robot is very strong due to
an integration of the Selenium framework, which in itself is the standard
web automation framework and is supported by all major browsers today.
The RanorexLibrary will also provide web testing capabilities, but when
testing only web applications within Robot, the SeleniumLibrary might be
the better solution as it doesn’t require Ranorex licenses. For mobile app
testing, the situation is similar. With Appium, there is a strong and open
source solution to do so. The RanorexLibrary should support both web and
mobile app testing in addition to desktop testing to really provide the full
benefit of the Ranorex core.

The RanorexLibrary should be used in real applications, and to enable end
users to incorporate Ranorex into their test project, it is necessary to have a
good documentation, guidance and tutorials. Thus, writing these materials
is also considered part of the RanorexLibrary, as the library itself would not
be useful without this extra content.

1.3 Methodology

This thesis has two destict parts: One is the RanorexLibrary itself (containing
the actual code itself, documentation, tutorials etc.) and the other one is the
theory part that is represented by this text.

The practical part, represented by the RanorexLibrary, is a small software
project. It is written as a Python script and hosted on GitHub. This Python
script slots into the Robot Framework infrastructure at the library position
as presented in section 4.1.2. It uses IronPython functionality and can
only be run using the IronPython environment. Calls to the Ranorex API

4In the end it turned out that this was a wrong assumption, as explained in section
5.2.2.

4

1.4 Content of this Thesis

are therefore native and don’t require any type conversions or specific
prerequisites.

The theory part should put the RanorexLibrary into the correct perspective
within the test automation scope and describe its functionality. Much of
the presented information is based on resources from the Internet (GitHub
project Pages, official web resources of projects or companies, etc.) or sci-
entific material like journal articles and books. The former are usually
referenced by giving the corresponding URLs in a footnote, while the latter
are referenced in IEEE style.

1.4 Content of this Thesis

This section provides a short overview over the thesis. It should enable the
reader to quickly find specific information.

Chapter 2 gives a short introduction to other, already-existing integrations
of the Ranorex API into the Robot Framework. It also contains a discussion
about why these integrations don’t fulfill the full requirements set and why
this thesis still makes sense, even though other integrations exist.

Chapter 3 is a more theoretical part that describes all the important terms
related to software testing and test automation that build the foundation for
this thesis. There, for all these terms there is a definition of how these terms
are used within this thesis in order to build a common ground between
author and reader.

Chapter 4 describes all the frameworks that are used in the RanorexLi-
brary. It contains a detailed overview over Ranorex, the Robot Framework
and IronPython, as well as a sample integration that uses Selenium in-
stead of Ranorex in order to see how a similar, already-existing integration
works.

5

1 Introduction

Chapter 5 lists the requirements for the RanorexLibrary’s implementation.
It lists what the goals and acceptance criteria are, and what should be
possible when using the RanorexLibrary.

Chapter 6 gives implementation detail for the RanorexLibrary. It is a loose
documentation for how the Library works internally and also lists the
important keyword sets and how they are implemented, making extending
this list easy.

Chapter 7 gives all the information that is needed to set up a working test
suite using the RanorexLibrary. It describes all the necessary steps to set up
the environment, and also gives a small example solution. This chapter also
contains a small set of best practices that immensely help when creating
robust and maintainable tests using the RanorexLibrary.

6

2 Already-Existing Integrations

There already are a few existing solutions that integrate the Ranorex API
into the Robot Framework. Their existance, however, does not mean that
the underlying problem has already been fully solved. All of these already-
existing integrations have some problems that make them insufficient to
meet the requirements.

2.1 ranorex-robot-library

This project (hosted on Google Code1) was started in May 2013. It is linked
from a Ranorex Forum entry2 and was started by a Ranorex community
member. However, the project hasn’t been updated lately, and links to the
downloads on the Google Code project page lead to 401-errors. The Google
Code project itself has been shut down in early 2016

3, and the source code
of this library can’t be downloaded from there anymore. Therefore, this
integration can be considered dead and inaccessable.

2.2 robotframework-RanorexLibrary

This project is much more mature than the afore-mentioned one and
very similar to the RanorexLibrary presented in this thesis. The project

1The project page can be found here: https://code.google.com/archive/p/ranore
x-robot-library/

2Forum entry can be found here: https://www.ranorex.com/forum/ranorex-integr
ation-with-robot-framework-t1952.html#p20493

3According to Google itself, there is only an archive available: https://code.google.
com/archive

7

https://code.google.com/archive/p/ranorex-robot-library/
https://code.google.com/archive/p/ranorex-robot-library/
https://www.ranorex.com/forum/ranorex-integration-with-robot-framework-t1952.html#p20493
https://www.ranorex.com/forum/ranorex-integration-with-robot-framework-t1952.html#p20493
https://code.google.com/archive
https://code.google.com/archive

2 Already-Existing Integrations

is hosted on GitHub4. It is published using the MIT license. Its main file,
rxconnector.py, has a similar structure to how it is solved in the RanorexLi-
brary created in this thesis, however, the selection of implemented keywords
is different (and doesn’t reflect the Ranorex actions well): it doesn’t imple-
ment all keyword parameters that Ranorex could support, and it works on
the element-level within the Ranorex API, while the RanorexLibrary from
this thesis works directly with Unkown-adapters5. Using adapters instead
of elements has a few advantages: It is easier and more elegant, and it
eliminates complexity overall. Using the adapter also puts the keywords
closer to actual Ranorex API functions. Additionally, the two contributors
to this project have both not been active on GitHub for the last years, and
the last commit to the project dates from Jan 19th 2015, making the whole
project only active for little more than half a year.

4Project can be found here: https://github.com/alans09/robotframework-Ranore
xLibrary

5Ranorex internally also uses the Unkown-adapter for performance reasons.

8

https://github.com/alans09/robotframework-RanorexLibrary
https://github.com/alans09/robotframework-RanorexLibrary

3 Terminology

This chapter aims to identify the place that the RobotLibrary occupies within
the software test environment. The Robot Library is an acceptance testing
framework, as explained in on the Robot Test Framework homepage1, as
well as used as a test-driven development tool. The approach that the Robot
Framework takes is keyword-driven testing.

Ranorex2 is a proprietary tool for Graphical User Interface (GUI) test au-
tomation. It supports testing on desktop, web and mobile platforms and is
based on the Microsoft .NET framework.

All these terms that are relevant for the RanorexLibrary within the software
testing scope are explained in more detail in this chapter.

3.1 Software Testing

What is the definition of software testing that this thesis builds upon? And
which imiplications does this definition have for the RanorexLibrary? The
definition, found in [2], that this thesis sticks to, is the following:

Testing is the process of executing a program with the intent of
finding errors.

This definition has a few interesting implications: First, in order to test an
application, it is necessary to execute it. This distinguishes testing from
other code quality processes like static analysis. The combination of this
need and the typically longer execution times of GUI tests lead to a probably

1Link to the official Robot web presence: http://robotframework.org
2Official Ranorex web page: https://www.ranorex.com

9

http://robotframework.org
https://www.ranorex.com

3 Terminology

surprising fact: GUI test automation takes by large magnitudes longer than
unit tests or integration tests, and the execution time can go up into the
range of days for larger applications.

Additionally, since testing has the goal of ”finding errors”, it is also crucial
to have good tests that tend to find errors if something breaks for a next
release of the system under test. In [2], the authors suggest to call a test
successful if it finds an error, and unsuccessful if it fails to do so. In regression
testing, this seems to shift slightly, however.

3.1.1 The Testing Pyramid

The testing pyramid (as shown in figure 3.1 on page 11) is a common concept
in agile software development. It puts the different testing strategies into a
common concept by aligning them on a triangle. On the bottom, there are
the tests that should make up the main part of the testing efforts as they are
cheap and fast in execution. On the top there should only be a few tests as
they tend to be expensive and have a longer runtime.

Typically, on the bottom there are unit tests. They are often written by the
developers themselves together with the actual code (white box testing). The
middle step is sometimes split further, but most of the time it is referred to
as integration tests. On this layer, the framework is tested in an input/output-
manner (black box testing). On the top, there are the end-to-end tests, often
also called UI tests or acceptance tests. These are tests that often actually
mimic the user interactions with the application, often by clicking buttons,
typing on the keyboard etc.

3.2 Agile Software Development

Agile software development is not a strict concept, but an anti-thesis to the
waterfall model. There are many definitions of what agile means exactly.
However, all the definitions are built upon the Agile Manifesto3.

3The Manifesto consists of only 12 guiding rules, but still defines a widely-used software
development process. The rules can be found all over the internet, for example in [3].

10

3.2 Agile Software Development

Figure 3.1: This image shows the testing pyramid as it is found in many sources about test
automation. The middle layer is often divided even further, and the top layer
sometimes has the name Acceptance Testing instead of (G)UI Testing.

The guiding idea behind agile is to put people into the center of the devel-
opment process, not the process itself. Agile means to satisfy the customer
needs quickly and early. It means to give developers the freedom and the
power of decision to make many small, good iterations that increasingly
satisfy the customer needs.

One common effect of agile development is that release cycles get shorter
and that the releases themselves are smaller. This, in turn, means that testing
becomes more critical in time. If the application still has to be tested for
every release, test automation becomes increasingly important.

3.2.1 Test-driven Development

A very common approach in agile software development is test-driven
development, a strategy where tests get written before the actual code that
implements it. [4] gives a more detailed definition and introduction to the

11

3 Terminology

topic, however, the guiding principle is to write a test first, then run the
test (at this point it must fail since there is no actual code that implements
the tested functionality, which in itself is a test for the test already), then to
implement the actual code and finally to run the test again—and now that
test should not report any error anymore.

Test-driven development is possible on every layer of the testing pyramid,
most commonly used in unit testing, but also possible in UI testing, espe-
cially in combination with UI mockups. UI departments often create small
UI applications that don’t have any functionality yet, but already use the
finished UI structure. Creating a test in this application before implementing
the functionality can already be an acceptance test (see section 3.6 for more
information).

3.3 Test Automation

Finding a definition for the term Test Automation is surprisingly difficult.
A papaer making a literature review about this topic ([5]) fails to do so,
and the ISTQB syllabus for the test automation engineer also loses no word
about what test automation actually is. There seems to be the common
knowledge that automated tests (in contrast to manual tests) are tests that
are not run by a human, but by a system that is first trained or programmed
by a tester.

Test automation is about defining a test in a way and within a framework,
that the testing goal can be reached without human intervention. Both Robot
and Ranorex identify themselves as test automation tools, and both fulfill
these criteria: Test logic can be defined within their syntax and the tests can
then be run by those systems without human supervision.

3.4 Graphical User Interface Testing

According to [6], a ”GUI takes events (mouse clicks, selections, typing in
textfields) as input from users, and then changes the state of its widgets”.

12

3.5 Keyword-driven Testing

There are many ways how an application can interact with the user: com-
mand line interfaces, audio interfaces etc. However, GUIs have developed
to be a main way in consumer applications as they are perfectly suited for
being shown on a screen.

To functionally test a user interface, it is necessary to interact with it in
the standard interface that this GUI understands: usually mouse clicks and
keybard inputs (and increasingly important via touches on a touch screen).
If the GUI reacts in the specified way, the test can be considered ”green”,
while it should be ”red” if the GUI does not react in the specified way.

3.5 Keyword-driven Testing

Pekka Laukkanen developed the foundation of the Robot Framework in [7].
There, the author constructed a language from scratch that had to fulfill
specific requirements. Within that thesis, keyword-driven testing is defined
as an extension to data-driven testing. In a first step, data is abstracted and
moved away from the test itself. Most of the time, this data is given in an
external file having its own format, often in a tabular form.

In the second step, not only data is moved away from the test itself, but also
directives telling what to do. This adds another layer of abstraction between
how a test step is implemented and what test step should happen. This layer
of abstraction is built from keywords that move the technical detail away
from the tester. Thus, a test automation engineer shoult be able to use simple
directives (keywords) to construct tests without having to worry about the
technical detail of how this keyword is interpreted.

A keyword’s interpretation (or implementation) can be moved away from
the test automation engineer and could then be constructed and maintained
by a developer. Most importantly, a change to the system under test does
not require the test script to be changed, just the underlying keyword imple-
mentation, which makes more sense for higher level testing like acceptance
testing.

13

3 Terminology

3.6 Acceptance Testing

According to [8], acceptance testing is the act of assessing software with
respect to requirements. Therefore, acceptance testing is the top level of the
testing hierarchy (unit tests being on the other end). These tests are often
constructed by the end user and not the developer or quality assurance
team themselves. In the V-model of software development, the requirements
are often depicted as the first step in the development process, and they
are directly linked to acceptance tests. Acceptance tests have to be black-
box tests since the internal system state is not relevant for the end user.
Consequently, the end user has to interact with a system via an interface,
often a graphical user interface. Therefore, acceptance testing is often done
on the GUI level (although other approaches are possible, for example for
APIs).

The Robot Framework describes itself as an acceptance test framework, and
its implementation fulfills the requirements for an acceptance testing tool. It
abstracts the actual test functionality away from the user (maybe even the
customer) and offers them a clear and formal interface to the software by
providing keywords, while this software doesn’t even have to exist at this
point yet.

14

4 The Frameworks in Use

This chapter deals with all the frameworks and applications that are used
in the RanorexLibrary. Since the RanorexLibrary is an integration of the
Ranorex API into the Robot Framework, these two external frameworks are
presented. Robot allows external libraries to be used within its syntax; the
RanorexLibrary is such a library.

Since Ranorex is strictly based on the .NET framework itself, and the Robot
Framework builds upon Python directly, the obvious choice to make them
work together is IronPython, a Python implementation in the .NET frame-
work that allows the developer to use .dll files compiled in the .NET frame-
work to be imported into Python applications.

Since the RanorexLibrary is a standard library for the Robot Framework, this
chapter also takes a look at another example library that does something
similar: The SeleniumLibrary. The SeleniumLibrary integrates Selenium
functionality into the Robot Framework in order to enable the tester to
access and automate web pages directly in the Robot syntax.

4.1 Robot Framework

Robot Framework is a generic test automation framework for ac-
ceptance testing and acceptance test-driven development (ATDD).
It has easy-to-use tabular test data syntax and it utilizes the
keyword-driven testing approach. Its testing capabilities can be
extended by test libraries implemented either with Python or

15

4 The Frameworks in Use

Java, and users can create new higher-level keywords from ex-
isting ones using the same syntax that is used for creating test
cases.1

The main source for this section about the Robot Framework is the intro-
duction book [9], the official web page of the Robot project at [10], as well
as resources that are linked from this site, for example the documentation
or different libraries.

4.1.1 History of the Robot Framework

The earliest roots of the Robot Framework go back to [7], a Master’s thesis
dating to the year 2006 by Pekka Klärck (Pekka Laukkanen at the time of
writing of his Thesis). In this thesis, the author developed the first concepts
to his keyword-driven testing approach that are still the foundation for
today’s version of the Robot Framework.

In 2008, the author released his framework as open source project under
the name Robot Framework, as stated on the author’s homepage [11]. Today,
the framework is available under the Apache License 2.02 and hosted on
GitHub3. After being founded by the Nokia Networks4 in its earlier days,
Robot Framework today is fostered, developed and taken care of by the
Robot Framework Foundation5, a consortium of 23 companies that sponsor
the whole infrastructure of the project.

4.1.2 Technical Detail

According to the official documentation6, the Robot Framework consists
of different layers. Figure 4.1 on page 17 shows this architecture as a flow

1Taken from http://robotframework.org
2Apache License: http://www.apache.org/licenses/LICENSE-2.0.html
3GitHub project page: https://github.com/robotframework/robotframework
4Nokia Networks web page: https://networks.nokia.com
5List of companies in this foundation: http://robotframework.org/foundation/
6Robot Framework documentation: http://robotframework.org/robotframework/

latest/RobotFrameworkUserGuide.html

16

http://robotframework.org
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/robotframework/robotframework
https://networks.nokia.com
http://robotframework.org/foundation/
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html

4.1 Robot Framework

Figure 4.1: The architecture of the Robot Framework. Image drawn using the example of a
similar image from the Robot user guide: http://robotframework.org/robot
framework/latest/images/architecture.png.

chart, starting from the top layer of abstraction down to the actual system
under test.

Test Data At the top there is the Test Data layer. Here, the tester provides
input data to the Robot engine in form of data structured in the Robot test
data syntax (that will be explained in section 4.1.3 on page 19). This data
can be presented in files with one of the file extensions .html, .xhtml, .htm,
.tsv, .txt, .rst or .robot. The data is given in a table-like format with different
columns representing different settings. The plain text format has evolved
to be the standard, and all examples will therefore be given using the plain
text syntax.

Robot Framework The next layer is the Robot Framework itself. This layer
is the bridge between the test data and the external libraries. It takes the
input files and interprets and executes them. Robot itself internally is a
set of Python scripts that can either run using plain Python7, Jython8 or

7Weg page of the Python project: https://www.python.org
8Web page of the Jython project: http://www.jython.org

17

http://robotframework.org/robotframework/latest/images/architecture.png
http://robotframework.org/robotframework/latest/images/architecture.png
https://www.python.org
http://www.jython.org

4 The Frameworks in Use

IronPython9. This layer also takes care of things like reporting and logging.
The unit the Robot Frameworks works on is the keyword, although Robot
itself does not know the semantics of any keyword.

Test Libraries Robot itself provides the syntax, but actual keywords and
their semantics are provided by external libraries. Those libraries are imple-
mented either in Python or Java. Their main purpose is to provide a link
to testing tools or the SUT itself by implementing keywords. The Robot
Framework already has a few libraries that come as standard, for example
the BuiltIn10 library that provides basic keywords like Should Be Equal,
Log or Run Keyword If, giving an interface for simple assertions, logging
and conditional keyword execution. Other libraries that come as standard
are OperatingSystem to access OS functionality, String to perform basic
actions on strings and Process for running processes.

Test Tools Sometimes the test libraries themselves do not provide the
actual testing functionality. Instead they only act as middleware between
the Robot Framework and an external testing tool. The popular framework
Selenium11 for example provides the functionality to test web applications,
the SeleniumLibrary (explained in section 4.4 on page 34) acts as a wrapper
around it that provides keywords to the Robot Framework that can then be
used within the Robot syntax. The RanorexLibrary itself is another example
of a library that just links the Robot Framework to an external testing tool:
Ranorex.

System under Test The tests performed by the Robot Framework are
normally performed on an actual application under test. This application
might be anything like an API, a library or a graphical user interface. If
the whole technology stack works as expected, a keyword used in a Robot
input file triggers an action in the SUT, thus automating it.

9Web page of the IronPython project: http://ironpython.net
10Documentation of the BuiltIn library: http://robotframework.org/robotframewor

k/latest/libraries/BuiltIn.html
11Web page of the Selenium project: https://www.seleniumhq.org

18

http://ironpython.net
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://www.seleniumhq.org

4.1 Robot Framework

4.1.3 The Robot Syntax

This section describes the Robot syntax. It is based on the official documen-
tation12 and illustrates the syntax with practical examples. Figure 4.2 on
page 20 shows a small piece of example code.

File Formats and Directory Structure Test cases are created in a test case
file that itself is automatically a test suite. Test suites can be nested into
directories; a directory containing several test case files itself is a test suite
containing test suites. A test suite directory itself can also contain other
test suite directories, making a tree-like hierarchical structure of test suites
possible. Test suite directories can have initialization files. In addition, there
are resource files that define variables and user-defined keywords. The
Robot Framework supports several file formats like HTML, TSV, plain text
or reST. Robot can recognize files with one of these file extensions: .html,
.htm, .xhtml, .tsv, .txt, .rst, .rest, and .robot. The examples in this thesis will
always use the .robot extension to distinguish Robot files from all other files
that may occur. Only the plain text format will be explained here, and all
examples will also be given using the plain text format.

General File Overview A Robot file consists of tables. These tables each
have a title, beginning with an asterisk character (*). By convention, most
files use the format *** Settings *** though with three leading and three
trailing asterisks, separated by a space from the table title. There are four
possible table titles: Settings, Variables, Keywords and Test Cases.

Space-/Pipe-separated Format Robot tables consist of rows and columns.
The rows are separated by newlines, the columns by either two or more spaces
or a pipe symbol (|) enclosed by a space on both sides. Both formats can be
mixed, as long as one line stays consistent. When using the pipe-separated
format, leaving cells empy is simple, but when using the space separated

12Official Documentation of the Robot Framework: http://robotframework.org/rob
otframework/latest/RobotFrameworkUserGuide.html#test-data-syntax

19

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#test-data-syntax
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#test-data-syntax

4 The Frameworks in Use

Figure 4.2: This listing shows some example code in the Robot Framework syntax in space
separated plain text format. This file is a small test suite consisting of two tests.
The screenshot is taken in VS Code with Robot syntax highlighting enabled.

format it is necessary to escape empty cells with either a backslash or the
${EMPTY} variable.

Semantics How these lines are interpreted completely depends on the
keyword that is used. Keywords may take arguments, but those arguments
might be other keywords taking arguments again. To find out what a line
does, it is necessary to know the semantics of the specified keyword. Please
also note the indentation in figure 4.2 as it also has semantic meaning: More
than one space is a table separator. Thus, the keywords themselves start in
the second column, the first column being empty to specify that this line
belongs to the test case above.

4.2 Ranorex

The Ranorex GmbH is the company based in Graz, Austria, that owns
the product with the same name: Ranorex. The Ranorex GmbH as well as

20

4.2 Ranorex

the American subsidiary Ranorex Inc. belong to the Texan Idera Inc. since
2017

13. After being founded in 2007 by a father and a son14, the company
grew rapidly over the next ten years with funding from the EOSS Industries
Holding GmbH15 in Graz. Today, Ranorex counts over 3500 customers in
over 60 countries.

The main sources for the information in this chapter about Ranorex come
from both the official web resources of the company found at [12] and the
personal experience of the author as an employee of the company.

4.2.1 The Product Ranorex

Ranorex is a set of tools that enable its user to automate graphical user
interfaces. The product is mainly geared towards test automation, although
it is also possible to use Ranorex as process automation tool. A full Ranorex
installation comes with several different tools. The two main applications
are Ranorex Studio16 and the Ranorex Spy17.

Ranorex Studio is the main tool for creating test suites and test scripts. In
its center there is the test suite that structures the test modules into a flow
control. Ranorex Studio can be used to create these modules by either using
the recording functionality, where Ranorex records the mouse and keyboard
actions that a user performs, or by constructing tests manually using the
smallest atomic unit that Ranorex Studio knows: the action. An action might
be a mouse click on an element, opening or closing an application, a key
sequence etc.

The Ranorex Spy on the other hand can be used to inspect the graphical user
interface of all currently running applications in order to find identifiers for

13Article about the acquisition: https://www.businesswire.com/news/home/2017102
3005356/en/Idera-Acquires-Ranorex-Doubling-Size-Test-Management

14From the Ranorex Blog: https://www.ranorex.com/blog/celebrating-10-years-
of-ranorex-a-letter-from-our-ceo/

15Web page of the EOSS Holding GmbH: http://www.eoss.at
16User Guide article to Ranorex Studio: https://www.ranorex.com/help/latest/rano

rex-studio-fundamentals/ranorex-studio/introduction/
17User Guide article to Ranorex Spy: https://www.ranorex.com/help/latest/ranore

x-studio-advanced/ranorex-spy/introduction/

21

https://www.businesswire.com/news/home/20171023005356/en/Idera-Acquires-Ranorex-Doubling-Size-Test-Management
https://www.businesswire.com/news/home/20171023005356/en/Idera-Acquires-Ranorex-Doubling-Size-Test-Management
https://www.ranorex.com/blog/celebrating-10-years-of-ranorex-a-letter-from-our-ceo/
https://www.ranorex.com/blog/celebrating-10-years-of-ranorex-a-letter-from-our-ceo/
http://www.eoss.at
https://www.ranorex.com/help/latest/ranorex-studio-fundamentals/ranorex-studio/introduction/
https://www.ranorex.com/help/latest/ranorex-studio-fundamentals/ranorex-studio/introduction/
https://www.ranorex.com/help/latest/ranorex-studio-advanced/ranorex-spy/introduction/
https://www.ranorex.com/help/latest/ranorex-studio-advanced/ranorex-spy/introduction/

4 The Frameworks in Use

the different UI elements. It can either be used to find a RanoreXPath for a
given UI element, or for finding UI elements for a given RanoreXPath.

When working on pure code level, it is not necessary to use Ranorex Studio
at all, since the API can also be accessed directly and Ranorex Studio itself
just uses this API itself, however, using the Ranorex Spy is very important
as this is the only way to find a RanoreXPath quickly and easily.

Ranorex also has some other tools that come with a full installation, like
the Ranorex Recorder or several small helper tools like the Parallel Runner.
Many of those provide important functionality that should also be mapped
in the RanorexLibrary.

Licensing and Pricing

Ranorex is a tool under a proprietary license18. This means that it can’t be
used for free19 (apart from a free trial version for 30 days). This section
explains the licensing and pricing of the Ranorex licenses.

There are two types of licenses: Premium Licenses and Runtime Licenses.
The former are needed to create and maintain tests, whereas the latter
are sufficient for running tests only. The Premium licenses come in two
flavors: Floating and Node Locked. All license types also come as Enterprise
Licenses where the only difference to Premium Licenses is the level of
support—the product is the same for all license types.

Premium Licenses Premium licenses are necessary for everything that
involves creating and maintaining tests. When opening the Ranorex tools
like Ranorex Spy or Ranorex Studio, a Premium license is necessary. The
Node Locked License is cheaper, but it is bound to a physical machine.
There are protection mechanisms in place that prevent this license to be
used on Virtual Machines altogether. The license can only be transferred

18Information on pricing and licensing is based on the information on Ranorex’ official
pricing page: https://www.ranorex.com/prices/

19For trying out the RanorexLibrary for academic purposes, it is sufficient to contact the
Ranorex sales team using sales@ranorex.com in order to get a time-limited trial license.

22

https://www.ranorex.com/prices/
sales@ranorex.com

4.2 Ranorex

from one machine to another every 90 days. It is mainly meant for “an
individual user working on multiple projects on a single physical machine”.
On the other hand there are Floating Licenses. They are installed on a
License Server application within the local network of the license-owning
company. The Ranorex tools can then be installed on as many (physical or
virtual) machines as the Ranorex customer wants. As soon as an application
like the Ranorex Studio is opened, it asks the server for a free license. If a
license is found, the license is blocked and the application opens, if there
is no free license, the end user gets a warning window and can’t open the
application. There always have to be at least as many licenses as users that
want to use Ranorex concurrently.

Runtime Licenses If a Ranorex test is only run, a Runtime License is suffi-
cient. Runtime licenses are always Floating Licenses. They work differently
than Premium Licenses: Ranorex products like Ranorex Studio can’t be
opened with Runtime Licenses. However, if a test run is started, it also re-
quires a valid license. A test might run using a Node Locked license (when
run on the machine where the test is also created, blocking the mouse and
keyboard), a Floating License or a Runtime License. The main difference
with Runtime Licenses is that they are significantly cheaper than Premium
Licenses. It is necessary to have as many free licenses as tests that should
run concurrently.

4.2.2 The Three Layers of Ranorex

From a technical perspective, Ranorex is built in three different layers. The
Ranorex sales team presents this layer structure to potential customers using
[13]. On the lowest layer there is the pure .NET API, the next layer represents
the mapping of real user interface elements to an internal representation
of these elements, the Ranorex repository. And on the top layer, there is
the Ranorex test suite that adds the real testing functionality, provides
modularization, test runs and reporting.

23

4 The Frameworks in Use

Figure 4.3: This is an example of a click performed with the Ranorex API. First, an element
of the adapter-type Unknown is generated using the explicit RanoreXPath, then
its method Click() is called.

Layer 1: The .NET API

This layer consists of the .NET API of Ranorex. It provides most of the
functionality that deals with interacting with user interfaces and their
automation. Typical functions that can be found in this API are functions
like Click() or GetAttributeValue(). This API can be used without the
need of the more advanced Ranorex products like Ranorex Studio. However,
since on this layer the RanoreXPath is used for identifying objects (and the
RanoreXPath can only be found easily using the Ranorex Spy tool), it is still
necessary to access some of the Ranorex tools. The documentation of the
API is publicly available and can be found on the internet.20.

Layer 2: The Ranorex Object Repository

The next layer of Ranorex is the Ranorex repository. The layer represents
an abstraction of the GUI of the system under test. Here, a user interface
element like a button is represented in an internal data structure. Data
objects within this data structure are usually referred to as items. These
items have a name, a RanoreXPath with which the corresponding user
interface element can be addressed and some meta information like a search
timeout.

The main benefit of having this abstraction is that the third layer, the test
suite, uses the repository items as work items. Thus, if the user interface
changes in a new release, only the corresponding repository item needs to
be changed once, independent of how often it is used in the test suite itself.

20Ranorex API documentation: https://www.ranorex.com/Documentation/Ranorex/

24

https://www.ranorex.com/Documentation/Ranorex/

4.2 Ranorex

Figure 4.4: An example repository as displayed by the Ranorex Spy. It consists of root
elements (RxMainFrame and List1000) and regular repository items as well as
of Rooted Folders and Simple Folders to structure the items. All items consist
of a name and a RanoreXPath (plus a few settings).

This makes maintaining the test easier in the long run, and is also at least a
best practise in other automation frameworks that don’t offer a repository
function, as for example explained in [14]. This layer of abstraction decouples
the actual system under test and the test logic. The more complex task—
finding good and robust locators—can therefore be done by other poeple
than creating the test logic.

Layer 3: The Ranorex Test Suite

On the third layer there is the test suite. The test suite itself uses the two
layers below it and organizes it into modules and the modules into a flow
control. On the highest level, there are test cases that run one after another,
each itself consisting of recordings, the recordings in turn consisting of
simple actions. All of these can be organized within a folder structure. On
this level the binding of external data to internal variables happens (data-
driven testing) and higher-level functionality as rerunning or looping test
cases can be implemented.

With the test suites another very important part of testing comes: the
reporting. Based on the test suite structure, Ranorex creates a report file
for a test run. This report gives the tester the information they need by

25

4 The Frameworks in Use

Figure 4.5: This figure shows a Ranorex test suite as it is shown by Ranorex Studio. It
consists of Test Cases, Smart Folders and recording modules.

providing an overview of the whole test run as well as logging for every
action that has happened in the test.

Building upon this layer, there might be another layer: Test (case) management.
This layer is not part of the Ranorex product chain but has to be imple-
mented additionally. Test management provides additional functionality like
dashboards and charts. Test management creates the connection between
several test runs, while Ranorex’ functionality stops as soon as a test run is
finished. Ranorex has a built-in support for a the TestRail21 test management
tool.

4.2.3 Object Recognition

Testing of Graphical User Interfaces is typically a black box testing approach.
There is no knowledge about the internal application structure necessary

21Web page of the TestRail product: www.gurock.com/testrail

26

www.gurock.com/testrail

4.2 Ranorex

Figure 4.6: This figure shows an example Ranorex report file that is generated after each test
run. It shows the success state of every test case and gives tracing information
for every action that Ranorex has performed.

to perform the test. However, since common actions in GUI testing are
interacting with specific UI elements (like buttons or text fields), a GUI
testing tool needs a way to find those elements on the screen in the first
place.

The easiest approach is to always interact with the same screen locations. For
example, performing a click on the same pixel will result in the same inter-
action with the GUI. However, a test conducted in this way has some serious
drawbacks: Changing screen locations, screen scalings, non-maximized ap-
plications etc. lets the test break as the same screen location doesn’t point to
the same UI element anymore. Additionally, every time the layout of the
SUT changes, the test also breaks.

The next-best version is to test with an image-based approach: Clicking on
a screen location that looks like a specific source (like a screenshot) leads to
much better results. However, some of the limitations still remain: chainging,
screen resolutions, changing layout etc. Additionally, some use cases that
require more sophisticated interactions with strings can only be achieved
using OCR (Optical Character Recognition).

A typical appraoch to circumvent all those limitations is to use object based

27

4 The Frameworks in Use

automation. An action in the test will be performed on a specific user inter-
face element, where the challenge is how to find this element on the screen.
A common approach is to do so by using accessibility technologies. In [15],
the authors explain this approach in more detail: Many applications expose
internal user interface information to external tools, mainly to provide ac-
cess for disabled users to this application. Screen readers normally use this
accessibility information.

This approach has developed to be the main approach in industry today as
it mitigates most of the issues of the other methods. Ranorex, too, uses GUI
object recognition based on accessibility information.

Graphical user interfaces are typically organized in a tree-like structure
based on their position in relation to each other. If an element lies within
another element, then it is represented as a child element of this parent
node. A tab page might be a child of a tab page list, and a tab page might
contain children like text elements, buttons or containers that itself might
again contain buttons, checkboxes etc.

There is the XPath notation22 that is typically used to select nodes or node-
sets in an XML document. Since XML-documents have a similar tree-like
structure, this XPath notation is well-suited to also select elements in a GUI.
Ranorex has built its own version of the XPath with very similar syntax and
semantics, the RanoreXPath that will be explained in section 4.2.4 on page
30.

Most of the time, application developters will not develop the UI controls
themselves, but instead rely on GUI frameworks. Those frameworks have
accessibility implemented already in most cases, therefore developers don’t
have to worry about accessibility themselves normally. Famous GUI frame-
works include WinForms23, WPF24, Qt25, Java Swing26, Delphi27, Xamarin28,

22Explanation of the XPath from the W3C web page: https://www.w3schools.com/xm
l/xpath syntax.asp

23WinForms: https://docs.microsoft.com/en-us/dotnet/framework/winforms/
24WPF: https://msdn.microsoft.com/en-us/library/aa663364.aspx
25Qt: https://www.qt.io
26Java Swing: https://docs.oracle.com/javase/tutorial/uiswing/index.html
27Delphi: https://www.embarcadero.com/products/delphi
28Xamarin: https://docs.microsoft.com/en-us/xamarin/

28

https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://docs.microsoft.com/en-us/dotnet/framework/winforms/
https://msdn.microsoft.com/en-us/library/aa663364.aspx
https://www.qt.io
https://docs.oracle.com/javase/tutorial/uiswing/index.html
https://www.embarcadero.com/products/delphi
https://docs.microsoft.com/en-us/xamarin/

4.2 Ranorex

HTML5
29, and many others.

Web Accessibility

The web is inherently built with accessibility already in mind. HTML itself
is a markup language to describe web content, which is exactly what acces-
sibility is about. It separates content from layout. Browsers are implemented
to interpret this semantic meaning behind HTML documents. They, for
example, know that something that is tagged as button should be styled
like a button, should be focusable and clickable. This behavior is already
very near to what object based test automation is about. Still, the better the
HTML is written with accessibility in mind, the easier its automation is30.

The big difference to non-web technologies is that the HTML document
itself is visible, while the internal state of a desktop application isn’t visible
from the outside and has to be read with other means, for example doing
code injection. This means that automating web pages does not need as
complex automation tools as many desktop applications.

For actually automating web pages, the Selenium31 framework has devel-
oped to be the predominant framework. It is open-source and supported by
all major browsers.

HTML is the base for many mobile applications, too, so automating mobile
web application works similar to regular web applications as they build
upon the same technology. On mobile platforms, Appium32 has developed
to be the main open-source automation technology.

29HTML5: https://www.w3schools.com/html/html5 intro.asp
30More information on well-implemented accessibility features, as suggested by the

W3C, can be found here: https://www.w3schools.com/html/html accessibility.asp
31Web page of the Selenium project: https://www.seleniumhq.org
32Web page of the Appium project: http://appium.io

29

https://www.w3schools.com/html/html5_intro.asp
https://www.w3schools.com/html/html_accessibility.asp
https://www.seleniumhq.org
http://appium.io

4 The Frameworks in Use

Figure 4.7: This image shows a RanoreXPath and the corresponding UI element that it
identifies in a small sample application. It also shows the different syntactic
parts of the RanoreXPath. Image taken from the Ranorex user guide with
friendly permission of the Ranorex GmbH.

4.2.4 The RanoreXPath

The introduction into the RanoreXPath notation from the Ranorex user
guide goes like this:

A RanoreXPath expression is primarily used to uniquely identify
UI-elements within a desktop, web, or mobile application. The
syntax draws on the XML description syntax W3C XPath. In
other words, RanoreXPath is a subset of XPath with necessary
selected extensions.

Every UI-element can be described by a unique RanoreXPath
description. RanoreXPath is used to describe, search, identify and
find UI-elements within an application. The tools for creating
and editing RanoreXPath are the path editor and Ranorex Spy,
presented within separate chapters.33

As explained in section 4.2.3 on page 26, a GUI can be seen as a tree structure
of UI elements, similar to an XML tree. Therefore, an XPath-based notation
seems reasonable. A RanoreXPath can be constructed by simply chaining
links of chain elements together. A chain link itself consists of three parts:
Axis, Node and Predicate(s).

33Ranorex User Guide: https://www.ranorex.com/help/latest/ranorex-studio-a
dvanced/ranorexpath/introduction/

30

https://www.ranorex.com/help/latest/ranorex-studio-advanced/ranorexpath/introduction/
https://www.ranorex.com/help/latest/ranorex-studio-advanced/ranorexpath/introduction/

4.2 Ranorex

Axes Axes (singular: Axis) specify the navigation direction within the
UI tree. A slash (/), for example, means that this chain link is a direct
descendant (child) of the parent. A double slash on the other hand means
that the link is a descendant on any layer below the ancestor, etc. There
are other axes, too, that can map more complex relationships, for example
::following-sibling that matches all items on the same layer after the link
before, or the double dot (..) that goes one level up, similar to standard Unix
notation when navigating directories.

Role (Node) The node (in Ranorex typically called role, directly mapping
to the internal adapter-types) specifies the type of element to identify in this
link. A role can be anything that a GUI element represents (like button or
text), or a special identifier like the asterisk (*) that can match any role.

Predicate The predicate is optional and is nested between the brackets [

and]. The predicate can be a simple number that just is an index in the set
of all elements that were found with the path before, but usually it consists
of an attribute/value pair. UI elements often have many attributes with
specific values that can all be used to uniquely identify it and distinguish it
from all other UI elements.

Wildcard operators There are several wildcard operators that make parts
of the path to the leaf element in the tree optional. For example, /* means
any element exactly on tree level further down can be matched, and the
already-explained // matches any descendant of the parent. Usage of the
wildcard operators enables the tester to make shorter and more robust
paths, but they also impact performance as Ranorex has to search in more
branches for the correct item. More information about this trade-off between
robustness and performance can be found in section 7.2.3 on page 56.

31

4 The Frameworks in Use

4.3 IronPython

IronPython is the framework that makes the RanorexLibrary possible in
the first place. It provides the middle layer between Ranorex and the Robot
Framework. A smooth interaction between these two systems seems almost
impossible: .NET is a framework developed and maintained by Microsoft,
aimed at the C# programming language. Its core is the CLR (Common
Language Runtime) that offers things like a just-in-time compiler, memory
management and security features. This world is strongly influenced by
the Windows operating system and streamlined to be used for compiled
desktop applications.

On the other hand, there is Python, an open source, dynamically and
strongly typed programming language that is interpreted instead of com-
piled. It is OS-independent and is completely incompatible with the .NET
world. Since the Robot Framework itself is a Python script, and the Ranorex
API is a set of .NET library files, the only possible way to make them
work would be to use complex language bindings and then inter-process-
communication. Luckily, there is IronPython. IronPython solves (almost) all
the issues that come with having these completely diverse frameworks and
programming paradigms. It enables these two worlds to work together.

This introduction to IronPython is mainly based on [1], the standard intro-
duction book into IronPython.

4.3.1 What is IronPython?

IronPython is an open source implementation of Python for
.NET. It has been developed by Microsoft as part of making the
CLR a better platform for dynamic languages. In the process,
they’ve created a fantastic language and programming environ-
ment.34

IronPython consists of the IronPython engine and some helper tools. The
engine compiles Python code into Intermediate Language (IL) that runs

34From [1]

32

4.3 IronPython

Figure 4.8: This figure shows the IronPython infrastructure. IronPython fills the slot be-
tween Python (language) code and the .NET framework by making it possible
to call both Python labraries and .NET library files.

on the CLR. Additionally, IronPython can be compiled (!) to make binary-
only files. Figure 4.8 shows how the IronPython engine slots into the space
between Python and the .NET framework.

The generated IronPython assemblies are still compiled .NET code and
therefore .NET classes can be accessed without any need for explicit type
conversions. Python in IronPython feels very similar to C# code—and the
other way around.

Listing 4.1 on page 34 shows a very simple example of .NET code running in
an IronPython environment. First, the clr module is imported that handles
all the interaction with .NET assemblies. Using clr, assemblies can be added
with functions like AddReference() or AddReferenceToFileAndPath(). And
the real magic is in the next lines: Classes from the .NET assemblies can
now be imported like any Python module using the import functionality. In
this example, WinForms classes are imported. A small form is created and
run. The output of this small script is a WinForms application that starts on
the Windows desktop. Classes in .NET assemblies behave just like Python

33

4 The Frameworks in Use

>>> import c l r
>>> c l r . AddReference (’ System . Windows . Forms ’)
>>> from System . Windows . Forms import Appl icat ion
>>> from System . Windows . Forms import Form
>>> form = Form ()
>>> form . Text = ’ Hello World ’
>>> Applicat ion . Run(form)

Listing 4.1: This small example (directly taken from [1]) shows how .NET assemblies can be
accessed using the IronPython interpreter. The huge differences in technology,
paradigm and underlying technology are completely transparent.

classes, and can be used like Python classes.

There are some language-specifics that are not so easy to translate to the
other language. For example, the out keyword only exists in C#, but not in
Python. A C# function can have an out parameter which would indicate that
this parameter should be changed in the function, making it similar to a call
by reference. Python doesn’t know this concept, and passing an immutable
object (like a string) to this function couldn’t work. IronPython does handle
this fact in the background, though, by converting the out parameter into
an additional return value—something that C# doesn’t know how to do.

4.4 Example Integration: SeleniumLibrary

To understand how the RanorexLibrary has to look in the end, it can be
beneficial to look into other integrations into the Robot Framework that
already exist and proved to work really well. Maybe the most popular
external library for Robot is the SeleniumLibrary.

Selenium is a test automation framework and standard for web tests. To
make it work, a specific driver has to be installed next to the browser that
runs the automated test.

SeleniumLibrary is a web testing library for Robot Framework
that utilizes the Selenium tool internally. The project is hosted
on GitHub and downloads can be found from PyPI.

34

4.4 Example Integration: SeleniumLibrary

SeleniumLibrary works with Selenium 3. It supports Python 2.7
as well as Python 3.4 or newer. In addition to the normal Python
interpreter, it works also with PyPy and Jython. Unfortunately
Selenium is not currently supported by IronPython and thus this
library does not work with IronPython either.

SeleniumLibrary is based on the old SeleniumLibrary that was
forked to Selenium2Library and then later renamed back to
SeleniumLibrary. See the Versions and History sections below
for more information about different versions and the overall
project history.35

The SeleniumLibrary is a dynamic Robot library that can be installed using
pip. Typical shortcomings of this library are that everything that exists
outside of the document object model (DOM) can’t be automated directly,
but on the other hand it provides a huge amount of web specific keywords.

The most interesting aspect of this integration as a benchmark for the
RanorexLibrary is which keywords it implements. A full keyword docu-
mentation is available on the internet36.

Locators A very interesting question in this comparison is how the Se-
leniumLibrary addresses elements in the UI. This is already the biggest
difference between the RanorexLibrary and the SeleniumLibrary: The Sele-
niumLibrary supports finding elements based on different strategies like id,
XPath or CSS selectors. How elements should be found can be either stated
explicitely by the tester or is determined implicitely. In contrast, Ranorex
does only support one way of finding elements: the RanoreXPath37.

35From https://github.com/robotframework/SeleniumLibrary/blob/master/READ

ME.rst
36SeleniumLibrary Documentation: http://robotframework.org/SeleniumLibrary/S

eleniumLibrary.html
37However, Ranorex does support a shortened syntax for directly finding web elements

by id, which could technically count as another way of addressing elements, although this
happens still within the RanoreXPath syntax.

35

https://github.com/robotframework/SeleniumLibrary/blob/master/README.rst
https://github.com/robotframework/SeleniumLibrary/blob/master/README.rst
http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html

4 The Frameworks in Use

Cookies The SeleniumLibrary provides keywords (like Add Cookie) that
specifically deal with managing cookies. This is very web specific, similar
functionality is not implemented in Ranorex, apart from a ”clear cookies”
option in the Open Browser action.

Clicking Elements In the RanorexLibrary, there is only one keyword for a
normal click action, and it does not matter which type the clicked element
has. On the other hand, the SeleniumLibrary offeres different keywords:
Click Image, Click Button, Click Element, etc. This is one of the main
benefits of Ranorex: It abstracts the underlying technology completely.

WebDriver and Browser There are several keywords that are specific for
testing using Selenium (like creating WebDriver instances) and that deal
with manipulating browser windows in finer detail, like Close Browser,
Close All Browsers, etc.

Validations The SeleniumLibrary builds validations directly in the library,
for example with keywords like Element Attribute Value Should Be or
Element Should Be Disabled. Since validation actions in Ranorex are tied
to a repository item and the repository is not implemented within the Ra-
norexLibrary, validations could only implemented manually directly within
the RanorexLibrary. However, since Robot offers keywords like Should Be

Equal in its BuiltIn library, these validations can be easily done by the
tester themselves by retrieving information from the system under test
manually.

Layout-specific keywords Ranorex tries to ignore an application’s layout,
while the SeleniumLibrary offers easy ways to access it with keywords like
Get Horizontal Position or Get Element Size. All of these contradict the
defining philosophy of Ranorex of being a functional test automation tool.
Thus, similar keywords are not implemented in the RanorexLibrary38.

38These keywords are even strange in Selenium, as Selenium also works object-based.
There are much better tools for checking an application’s layout or appearance than

36

4.4 Example Integration: SeleniumLibrary

Higher order keywords The SeleniumLibrary offers many keywords that
could be considered to be higher level, like List Selection Should Be or
Radio Button Should Not Be Selected. Those are easy to create if needed
using other, more basic keywords. In the RanorexLibrary, these keywords
would not make much sense since Ranorex knows hundreds of different
control types (like Radio Buttons). Providing special keywords for all of
them would bring the number of implemented keywords into the thou-
sands. Instead, Ranorex has a lower-level approach: being able to access any
attribute from any type of control in any UI technology.

Conclusion The SeleniumLibrary offers many more keywords than the
RanorexLibrary, however, many of them are not even necessary in Ranorex
(Textfield Value Should Be, Title Should Be, Table Header Should Be

etc. would all just use the same keyword in the RanorexLibrary), and some
are only geared towards web testing. The RanorexLibrary works on a lower
abstraction layer, and while Selenium aims to mimic user actions, Ranorex
simulates mouse and keyword actions. Thus, the two libraries look a bit
differently in the end, although they do similar things.

Selenium or Ranorex.

37

5 Requirements for the
Integration

This chapter presents the requirements that are in place for the RanorexLi-
brary. It is not meant as a full requirements document, but instead as
a collection of must-haves and nice-to-haves. The implementation of the
RanorexLibrary followed the requirements listed in this chapter.

5.1 Licensing

The RanorexLibrary slots into an environment consisting of several differ-
ent technologies and libraries. The RanorexLibrary is written with all the
restrictions in mind that come with these licenses. End users should also be
aware that all these technologies are published under a license.

Ranorex Ranorex is the only tool with a proprietary license. To be able
to use the RanorexLibrary, a full Ranorex installation and valid Ranorex
licenses are necessary. More information on Ranorex licensing is provided
in chapter 4.2.1 on page 22.

Robot Framework The Robot Framework1 is distributed under the Apache
License Version 2.02. The Robot Framework itself is only used and refer-
enced, but but its source is never changed when using the RanorexLibrary.

1License information on GitHub: https://github.com/robotframework/robotframe
work/blob/master/LICENSE.txt

2Full license text: http://www.apache.org/licenses/LICENSE-2.0

39

https://github.com/robotframework/robotframework/blob/master/LICENSE.txt
https://github.com/robotframework/robotframework/blob/master/LICENSE.txt
http://www.apache.org/licenses/LICENSE-2.0

5 Requirements for the Integration

The end user has to make sure to use the Robot Framework within the
(albeit very few) license restrictions.

IronPython IronPython is also distributed under the Apache License Ver-
sion 2.03. IronPython includes the zlib.net library that uses another license
that allows to use this library within IronPython. IronPython is also just
used as a Python environment and therefore the end user has to make sure
to stay within the license restrictions.

RanorexLibrary The RanorexLibrary itself is licensed using the MIT li-
cense4.

5.2 The Ranorex Repository

One of the first questions to answer when making an integration between
Ranorex and another test automation tool is about the layer to base the
integration on: pure API (layer 1 in Ranorex) or repository (layer 2 in
Ranorex)5.

The repository would provide many advantages by providing another layer
of abstraction. Having the repository, the actual item a keyword would
work on would be the repository item instead of a pure RanoreXPath.
Having the abstraction of a UI element in its own separate place would
make maintenance of the test project much easier as it would provide a
single point of maintenance for all UI changes. If it is not possible to use
the Ranorex repository, the end user would have to use best practices (like
the Page Object Pattern) themselves in order to ensure a maintainable test
design.

3IronPython Licensing information: https://ironpython-test.readthedocs.io/en/
latest/license.html

4License text of the RanorexLibrary: https://github.com/Thomas-Gruber-90/Ranore
xLibrary/blob/master/LICENSE

5More on the layer structure of Ranorex is in chapter 4.2.2 on page 23.

40

https://ironpython-test.readthedocs.io/en/latest/license.html
https://ironpython-test.readthedocs.io/en/latest/license.html
https://github.com/Thomas-Gruber-90/RanorexLibrary/blob/master/LICENSE
https://github.com/Thomas-Gruber-90/RanorexLibrary/blob/master/LICENSE

5.2 The Ranorex Repository

5.2.1 General Workflow

A general worklow when using the Ranorex repository looks like this:

1. Create a repository using the Ranorex Spy.
2. Export the repository as .cs file.
3. Compile the file manually into a .dll library.
4. Tell the RanorexLibrary where to find the repository files.
5. Use repository item names as parameters for keywords instead of

RanoreXPaths.

This means that large parts of this process wouldn’t be handled by the
RanorexLibrary, but by the user. Creating a Ranorex repository using the
Spy is a rather simple process. However, Ranorex does only provide the
exporting functionality into a .cs file, not directly into a .dll library format.
This means that the end users have to know how to compile this file
themselves, most likely using the command line. When using CSC6, the
correct batch file could look like this:

csc / t : l i b r a r y MainPageObject . Repository . cs
/r : ”\ path\ to \Ranorex . Core . d l l ”
/platform : x86

This would also require to specifically telling the compiler where the
Ranorex.Core.dll file is located and for which platform to build. And
every time that repository changes, this process has to be done again. Then,
the file has to be saved to a folder and this folder path would have to be
given as a parameter to the RanorexLibrary.

5.2.2 Rationale for not Implementing the Repository
Functionality

The process of creating a Ranorex repository, then exporting it and com-
piling it manually, is already relatively cumbersome for the end user. In
addition, from the implementation standpoint of the RanorexLibrary, there

6Command line build tool for .NET: https://docs.microsoft.com/en-us/dotnet/cs
harp/language-reference/compiler-options/command-line-building-with-csc-exe

41

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-with-csc-exe
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-with-csc-exe

5 Requirements for the Integration

are additional problems: The namespace of the repository plus the reposi-
tory name itself are both just known at runtime, but the symbols have to
be imported in order to use them. This would, in Python, mean to parse all
files in the repository directory for those names, and then importing them at
runtime dynamically, making them global for all modules. The alternative
would be to force the end user to explicitely give all the namespace and
repository names explicitely. This, again, would make the import of the
RanorexLibrary into a Robot test suite cumbersome as it would not require
just one parameter (the location of the Ranorex library files), but potentially
many.

I have built a small proof of concept that uses the Ranorex repository files,
however, due to all the shortcomings and problems with the solution, I
decided to not include support for the Ranorex repository.

5.3 Desktop Testing

On the one hand, the big strength of Ranorex is desktop testing. Ranorex
supports many of the most common desktop user interface technologies
seamlessly. A mouse click on an element has the same look and feel in
Ranorex, no matter if it is performed on a Java Swing panel or a Delphi
table cell. On the other hand, there are very good solutions specifically for
web testing (Selenium) and mobile testing (Appium). However, none of the
available Robot libraries support more than a single desktop technology at
a time. There are libraries for (for example) Java Swing, but nothing that is
suitable for real end-to-end testing.

As this is the strength of Ranorex, the main goal of the RanorexLibrary is to
also focus strongly on desktop testing. Luckily, desktop testing has fewer of
the typical pitfalls than mobile or web testing.

The main goal of the RanorexLibrary was to transport the low-level func-
tionality of Ranorex to Robot directly and without cutting too much. This
means that all the actions that Ranorex Studio provides should be included
and implemented, and with all possible parameters.

42

5.4 Web Testing - Advantages over the SeleniumLibrary

There are a few exceptions, however: Robot has its own logging, so the Log

action doesn’t make any sense. If a user wants to use Robot, they also want
to use the Robot reporting instead of the Ranorex reporting capabilities. The
Delay action has a similar problem: Robot provides the Sleep keyword in
its BuiltIn library that has the same functionality, so there is no point in
implementing this within the RanorexLibrary.

There are a few keywords that are not yet implemented, that might make
sense and could be added later:

• Invoke Action: Gives flexibility and deep control over UI components,
but is more complex in its usage.
• Screenshot: This Ranorex action always takes a screenshot and puts

it into the Ranorex report. This doesn’t make sense within Robot, so
another screenshot keyword, that can’t use the corresponding Ranorex
version, could be necessary.
• Create Snapshot: A snapshot of a user interface is mostly used to

communicate with the Ranorex support team about issues. It can be
created within Ranorex Spy directly, so this keyword would be mostly
unnecessary.
• Mouse Wheel: Most of the time there are superior ways of navigating a

page as using the mouse wheel is not very robust and contradicts the
main design principles of object based automation.

5.4 Web Testing - Advantages over the
SeleniumLibrary

If a user only wants to do web testing, there already is the SeleniumLibrary
that builds upon Selenium7, the de-facto standard for web testing. Under
the name WebDriver it has also an official recommendation in the W3C8.

However, there are a few challenges that can not be solved with Selenium
(easily) that pose no problem for Ranorex. Not every functionality that

7Homepage of the Selenium project: https://www.seleniumhq.org
8WebDriver Recommendation: https://www.w3.org/TR/webdriver1/

43

https://www.seleniumhq.org
https://www.w3.org/TR/webdriver1/

5 Requirements for the Integration

is important in web testing is a part of the web application itself. For
example, downloading and saving a file from a web page usually opens a
file-save dialog—that is browser-specific. Without using external libraries,
it is not possible to automate this dialog with Selenium, and therefore the
SeleniumLibrary also does not offer this capability. However, since Ranorex
can not only automate the web page itself, but also the browser (as it is just
another desktop application), this scenario is no challenge for Ranorex.

Thus, in some end-to-end testing scenarios, there are things that are possible
with Ranorex where Selenium struggles. This also makes it necessary to
include web testing capabilities in the RanorexLibrary, especially since web
applications become increasingly important, even if they are disguised as
desktop applications (for example in CEF9).

5.5 Mobile Testing

Testing mobile devices is significantly more complex than desktop or web
testing. Many different operating system versions, vastly different hardware,
a fast-paced update cycle, the mixture of native and web apps, a necessary
connection to a test automation system etc., are all factors why mobile
testing proves to be rather complicated.

One of Ranorex’s strenghts is that mobile testing feels very similar to desktop
or web testing. There is the Touch action instead of a Click action, but they
actually even match to each other, and clicking a mobile element instead of
touching would just work within Ranorex.

Adding a device as automation endpoint to a Robot test is surprisingly easy:
The keyword Add Device adds the device to the test runner instance, and
the keyword Run Mobile App starts an app. Automating within this app
then works without any changes to the usual behavior, there are just a few
specific special keywords (like Touch, Double Tap, or Long Touch).

9Project page of the Chromium Embedded Framework: https://bitbucket.org/chro
miumembedded/cef

44

https://bitbucket.org/chromiumembedded/cef
https://bitbucket.org/chromiumembedded/cef

6 Implementation Detail

This chapter gives an overview over the actual implementation of the Ra-
norexLibrary. It will touch both the general aspects like the fact that it is
a Static Robot Library and how the Ranorex assemblies are loaded, but it
will also go into some keywords and explains their internals based on some
representative examples. Since Double Click, Right Click, and Click are
very similar, only their common parts are described.

6.1 General Details

The RanorexLibrary is implemented as a static Robot library as described
in the official Robot documentation1. This means that all keywords are
defined by their corresponding function name in the Python library script.
Ignoring underscores, the function name run Application() becomes the
Robot keyword Run Application. Without switching to a dynamic or hybrid
library, there is no way to change this behavior. Since this is okay and makes
the code easier, I have decided to stick with a static library.

The general setup of the library is placed in a separate file. There, all the
parts that deal with importing Ranorex into the Robot library are listed.
This means that first, clr is imported and then all the necessary references
are added. First, the System.Windows.Forms library is needed, and then all
the needed Ranorex references are added using their absolute path. This
path is given by the user when importing the RanorexLibrary.

In the initialization of the RanorexLibrary object, the Ranorex Resolver
is initialized and the core is set up. These two lines are necessary since

1Definition of a static Robot library: http://robotframework.org/robotframework/
latest/RobotFrameworkUserGuide.html#creating-static-keywords

45

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#creating-static-keywords
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#creating-static-keywords

6 Implementation Detail

Ranorex doesn’t install into the GAC anymore, but still needs to find all
the library files. This is similar to how it is suggested in the official Visual
Studio integration guide2. Without these lines, Ranorex is likely to not work
correctly after version 8.0.

The rest of the library is split between actual keyword implementations
and helper functions. The latter are distinguished from the keywords by a
leading underscore () as these functions are ignored by the Robot engine.

6.2 Keywords

The keywords typically have a simple core functionality that is a direct
Ranorex API call, but they also consist of parameter management. For
example, a parameter that is passed to a keyword function always appears
as string value. In order to have a variable number of arguments, some
of these are optional. However, Robot allows to have ”empty” keyword
argument cells. Those are passed to the RanorexLibrary as empty strings,
so the RanorexLibrary has to reassign the default value to an empty string
parameter.

This section will in most cases only describe the actual core of the keyword
function, not the surrounding parameter management. Additionally, all
keywords implement a small logging function that is also omitted here.

Runing and Closing Applications Starting an application within Ranorex
is usually done using the Host.Local.RunApplication function of the Ra-
norex API and is implemented in the Run Application keyword.

Ranorex . Host . Local . RunApplication (appname , arguments ,
workingDirectory , maxim)

Although it is possible to start an application using a double click on
the icon, and many testers do this, is is not a best practice, because this
would make the test reliant on the Windows desktop layout that the tester

2Example code from the user guide: https://www.ranorex.com/help/latest/interf
aces-connectivity/visual-studio-integration/

46

https://www.ranorex.com/help/latest/interfaces-connectivity/visual-studio-integration/
https://www.ranorex.com/help/latest/interfaces-connectivity/visual-studio-integration/

6.2 Keywords

typically has no control over. Additionally, a Double Click’s purpose is not
as obvious as an explicit Run Application keyword.

Closing an application is similar, however, as parameter the user doesn’t
give the path to the executable anymore, but the RanoreXPath of any UI
control within the application they want to close.

re turn Ranorex . Host . Current . CloseAppl icat ion (ranorexpath ,
intGracePer iod)

Closing a browser and a mobile app works the same as closing a desktop
application, but starting them looks differently. The keyword Start Browser

has another API function, because it takes different parameters (like if the
cache has to be cleared or if the browser should be started in incognito
mode):

Ranorex . Host . Current . OpenBrowser (url , browser , browserArgs ,
s t r t o b o o l (k i l l E x i s t i n g) , s t r t o b o o l (maximized) , s t r t o b o o l (
c learCache) , s t r t o b o o l (incognitoMode) , s t r t o b o o l (
c learCookies))

Starting a mobile application is similar, but it also has its own API function
and keyword, because the endpoint (the device that the app has to run on)
has to be stated explicitely, something that is not necessary for the other
two:

Ranorex . Host . Local . RunMobileApp (endpoint , appname , True)

Click Actions There are several Click keywords that do actions like click-
ing, double clicking, right clicking, mouse down, mouse up, etc. They all
default to a click() helper function (plus, if necessary, a move() function).
The click looks like this:

exec (” Ranorex . Unknown(ranorexpath) . Cl i ck (” + mousebutton + ” ,
” + l o c a t i o n + ” , ” + ” i n t (” + count + ”) , ” + duration +
”) ”)

The move action is sometimes performed before another action and looks
like this:

exec (” Ranorex . Unknown(ranorexpath) . MoveTo(” + l o c a t i o n + ” , ”
+ duration + ”) ”)

47

6 Implementation Detail

Both these keywords have in common that they are called using the exec()

function in Python. This makes it possible to interpret some symbols as
Python code that are passed as string parameters. The other interesting
thing about it is the Unkown adapter. This adapter is Ranorex’ way of saying
”I don’t care what it is, but perform this action on it.” Ranorex uses this
adapter internally for performance reasons, and it also makes the code
rather simple. Without this option, it would be necessary to either create
an Ranorex UI element or to implement the function for all adapter types
separately.

Touch actions for mobile devices (like Touch, Double Tap, etc.) are very
similar to clicks, and internally within Ranorex even default to clicks.

Key actions Key actions in Ranorex are either Key Shortcuts or Key

Sequences. The main difference is that Key Shortcuts are meant to be
executed without a specific UI element as target, therefore the code looks
like this:

Ranorex . Keyboard . Press (sequence)

This has the disadvantage that Ranorex does not know if it has to wait for
something to happen, for example a UI to be fully loaded or a UI element to
be active. Therefore, when using this action, it is often necessary to use an
explicit waiting action to make it work consistently. This keyword is mainly
meant for navigating through the application with function keys, copying
and pasting, etc.

The Key Sequence is similar, but it requires a RanoreXPath and therefore a
UI element to put that key sequence into. It is mostly used to type strings
into text fields, and looks like this:

Ranorex . Unknown(ranorexpath) . PressKeys (value)

This keyword is safer to use as it knows how to wait for the used UI element
to be ready for text insertion.

48

6.2 Keywords

Getting and Setting Values Sometimes it is necessary to get values from
the UI and to also set them. The former is often used for conditional execu-
tion and for validations. The latter enables changing of UI attributes, even if
they are not changable normally. Since the Getter function is overloaded in
the Ranorex API, the RanorexLibrary has to explicitely tell it what version
to call. The Setter function only works on an Element object, therefore this
Element has to be used for setting a value.

re turn Ranorex . Unknown(ranorexpath) . GetAttr ibuteValue [s t r] (
a t t r i b u t e)

Ranorex . Unknown(ranorexpath) . Element . Se tAt t r ibuteValue (
a t t r i b u t e , value)

Waiting for an element Waiting for an element to exist is an important
part of GUI testing. However, Ranorex doesn’t offer the waiting functionality
in a nice way in its API, so this actually has to be implemented manually:

intRanorexpath = Ranorex . Core . RxPath (ranorexpath)
intDurat ion = Ranorex . Duration (i n t (durat ion))
newElement = None

elementFound , newElement = Ranorex . Host . Local . TryFindSingle (
intRanorexpath , intDurat ion)

i f not elementFound :
r a i s e Asser t ionError (’ Element hasn \ ’ t been found within

the s p e c i f i e d timeout of ’ + duration + ’ms : ’ +
ranorexpath)

Waiting for other things (like a state or an element becoming visible) is
more complex and therefore not yet implemented in this version of the
RanorexLibrary.

Here, the Ranorex API does use the out keyword of the C# programming
language. Python does not have a similar language feature, but IronPython
maps this out parameter to a second return value. This feature really shows
the power of IronPython.

49

6 Implementation Detail

Validations Validations belong to the most important part of testing. With-
out asserting a system state, a test would not be a test but a simple flow con-
trol. Unfortunately, a validation within Ranorex requires to have a repository
item. This means that the internal validation functionality of Ranorex can’t
be used at all. The keywords Validate Attribute Equal and Validate

Attribute Not Equal are implemented, but most other validations can be
achieved easily on the Robot keyword level as there are several keywords
for validations. The tester has to get the information they need explicitely,
however, for example using the Get Attribute Value keyword.

The implemented version looks like this:
varToVal = Ranorex . Unknown(ranorexpath) . GetAttr ibuteValue [s t r

] (a t t r i b u t e)
i f not varToVal == value :

r a i s e Asser t ionError (” Elements are not equal . Expected ” +
value + ” , but got ” + varToVal + ” ins tead . ”)

Mobile Keywords When testing mobile applications, most features work
similarly to in desktop applications. Touches are like clicks, key sequences
stay key sequences. Starting mobile apps has its own keyword, and closing
works like in web or desktop applications.

However, before being able to run a test on a mobile device, it is necessary
to connect that device to the Ranorex test. This is done using the Add Device

keyword3.
platform = ”Ranorex . Core . Remoting . RemotePlatform . ” + platform
typeName = ”Ranorex . Core . Remoting . RemoteConnectionType . ” +

typeName
exec (” Ranorex . Core . Remoting . RemoteServiceLocator . S e r v i c e .

AddDevice (\”” + name + ”\” , ” + platform + ” , ” + typeName
+ ” , \”” + address + ”\”) ”)

3Fun fact: Finding and implementing this simple code snippet cost me a lot of sweat
and tears.

50

7 Setup and Tutorial

This chapter explains how to set up the whole infrastructure that is needed
to run Robot tests that use the Ranorex API for automating graphical
user interfaces. There are some prerequisites that have to be fulfilled for
everything to run and several tools have to be installed and configured
correctly.

This chapter also gives a small example plus some tutorial on how to set up
tests, best practices and where to find documentation and help.

7.1 Setting Everything up

Ranorex The first requirement is to have all the Ranorex requirements in
place as listed here on the official Ranorex web page1. Then you also have
to have access to the required Ranorex .dll files in your file system. The
required files are:

• Bootstrapper.dll
• Contracts.dll
• Controls.dll
• Core.dll
• Core.Resolver.dll
• Core.Injection.dll
• Core.WinAPI.dll
• Plugin.Cef.dll
• Plugin.CefHost.dll

1Ranorex’ system requirements: https://www.ranorex.com/help/latest/ranorex-
studio-system-details/system-requirements/

51

https://www.ranorex.com/help/latest/ranorex-studio-system-details/system-requirements/
https://www.ranorex.com/help/latest/ranorex-studio-system-details/system-requirements/

7 Setup and Tutorial

• Plugin.ChromeWeb.dll
• Plugin.FirefoxWeb.dll
• Plugin.Flex.dll
• Plugin.Java.dll
• Plugin.Mobile.dll
• Plugin.Msaa.dll
• Plugin.Office.dll
• Plugin.Qt.dll
• Plugin.RawText.dll
• Plugin.Sap.dll
• Plugin.Uia.dll
• Plugin.Web.dll
• Plugin.WebDriver.dll
• Plugin.Win32.dll
• Plugin.Winforms.dll
• Plugin.WinformsProxy.dll
• Plugin.Wpf.dll
• Plugin.WpfProxy.dll

To actually run a Ranorex test, a valid Ranorex license is also required. For
more information, see section 4.2.1 on page 22.

IronPython The Robot Framework can run on each of plain Python, Jython
or IronPython. Since Ranorex is a .NET API and its library files get imported
into the RanorexLibrary, it is necessary to have an IronPython installation.
First, IronPython has to be downloaded2 and installed. At the time of writ-
ing, the most recent version of IronPython is 2.7.8. As the elementtree mod-
ule that comes with IronPython is broken3 in that version, the elementtree

preview 1.2.7 release also has to be installed4. The elementtree module
can be installed by downloading the source, unzipping it and running ipy

setup.py install on the command prompt in the created directory.

2Download from the official web page: http://ironpython.net
3See https://github.com/IronLanguages/main/issues/968 for more information.
4It can be downloaded from here: http://effbot.org/downloads/#elementtree

52

http://ironpython.net
https://github.com/IronLanguages/main/issues/968
http://effbot.org/downloads/#elementtree

7.1 Setting Everything up

PATH Although not strictly necessary, setting the Path system environ-
ment variable is recommended to make interacting with Robot easier. The
path to the IronPython installation itself has to be added. It is by default
located at C:\ProgramFiles\IronPython2.7. As the Robot scripts are best
installed into C:\ProgramFiles\IronPython2.7\Scripts, it is also best to
add this directory to the Path.

Robot Framework The Robot Framework can be installed using pip. First,
pip has to be activated:

ipy -X:Frames -m ensurepip

Then, the framework can be installed using pip:

ipy -X:Frames -m pip install robotframework

By default, the two scripts robot.py and rebot.py are installed into the
Scripts directory in the IronPython installation directory.

Writing scripts Writing Robot scripts requries nothing more than a text
editor and access to a command line. Many editors and IDEs offer syntax
highlighting and additional functionality for the Robot syntax, like Eclipse,
Emacs, Vim and VS Code. As soon as there is a Robot script file in valid
syntax, it can be executed using

ipy32 -m robot myTest.robot

Instead of ipy, ipy32 has to be used, because the Ranorex .dll files them-
selves are also 32-bit library files. If everything is installed correctly and all
paths are set, the test should now start and execute.

53

C:\Program Files\IronPython 2.7
C:\Program Files\IronPython 2.7\Scripts

7 Setup and Tutorial

7.2 Best Practices

Like all frameworks, the RanorexLibrary can be used effectively and inef-
fectively. How well a test works does not only depend on the tools used,
but mainly on how the tests are created and planned. There are a few best
practices that make a test created with the RanorexLibrary better and thus
should be used in every test scenario.

7.2.1 Modularization

As in every software project, it is always a good idea to encapsulate parts
that occur often into their own reusable modules. A very common example
might be opening and logging in to an application: This might occur in
every single test case or test suite and might consist of several different low
level actions. Instead of putting them into every test case where they are
needed, it is generally better to put them into a module and use that module
instead. If something changes in this set of actions (opening an application
and logging in), then the module has to be only changed once, and not in
every occurence.

Robot provides a very natural way of constructing modules by using higher
order keywords. A keyword itself can consist of a set of other keywords,
and they in turn might also consist of keywords.

For example, the user-generated keyword Start SUT and Login might con-
sist of the two keywords Start SUT and Login. In Robot notation this would
be as simple as this:

*** Keywords ***

Start SUT and Login

Start SUT

Login

The two keywords Start SUT and Login can in turn be also constructed
from lower level keywords.

54

7.2 Best Practices

Splitting the test project into smaller modules gives a single point of mainte-
nance for all parts of the test script, but it also makes tests easier to read and
understand. A complex set of instructions that fill a form might consist of
many Click and Key Sequence keywords, but abstracting this into a module
with the keyword Add Table Entry with the appropriate parameters does
not only provide this single point of maintenance, but also makes the test
readable and easier to understand.

7.2.2 Page Object Pattern

The page object pattern is an important concept that has developed to be a
standard for writing good Selenium tests. It is described in more detail in
[14].

The core idea of the page object pattern is to separate the test logic from
the user interface itself. The idea originates from Selenium, where the page
object pattern splits an action into two different parts: The first part is
to generate a low level action in pure (normally) Java code, for example
proceedToCheckout(). This function internally calls the Selenium API func-
tions that are necessary to proceed to the checkout page, typically by clicking
on a button, although this action can consist of more steps. The second step
then assembles those functions and arranges them to test cases and a test
suite. On this layer, the internals of Selenium and all the technical detail are
transparent.

This pattern gets its name from the fact that these functions that abstract
the functionality are typically bundled together in a Page Object, a file that
contains all the actions of a page in the browser. One such page might be the
front page of the web page, another page might be the shopping cart page.
However, other page objects are also possible and common, for example a
page object for the main menu, one for the main panel, one for the header,
one for the footer etc.

Something similar can be achieved using the Robot Framework and the
RanorexLibrary. In a first step, a functionality has to be defined in a keyword.
For example, in the Windows calculator, clicking the Equals button might
be defined in a keyword:

55

7 Setup and Tutorial

*** Keywords ***

Click Equals Button

Click /winapp[@packagename<’WindowsCalculator’]

//button[@automationid=’equalButton’]

In the actual tests, only this keyword Click Equals Button would be used.
This would abstract the internals of how Ranorex works (for example the
RanoreXPath itself) away from the end user. The tester would not have to
care about how this keyword works internally, they can just use it. This
would also enable a team with different responsibilities to split the work
between them: A technically more interested team member could define
these keywords, optimize RanoreXPath expressions, and provide these
abstract keywords to the testers. These testers then could just use this pre-
defined keyword without having to have any knowledge about Ranorex
whatsoever.

7.2.3 Robust Identifiers

Ranorex identifies all the objects solely using the RanoreXPath that is ex-
plained in more detail in section 4.2.4 on page 30.

Basically, Ranorex creates a unique RanoreXPath itself automatically. How-
ever, there are many ways to tweak and optimize this path that can not
be done automatically, especially if more complex functionality should be
implemented using one path (for example when using variables within a
path expression).

A main principle of the RanoreXPath is that a very general path is very
robust, but slow, and a detailed path is fast, but brittle. For example, the path
/dom[@domain=’distrowatch.org’]//a[@innertext=’Manjaro’] made Ra-
norex look for the element for almost 6 seconds before finding it in a
small test, while the path /dom[@domain=’distrowatch.org’]/body/table
[2]/tbody/tr/td[3]/table[2]/tbody/tr[4]/td[1]/a[@innertext=’Manjar
o’] made Ranorex finish in about 300 ms on the same machine. While the
fist path is significantly slower, it is also more robust against changes in the

56

/dom[@domain='distrowatch.org']//a[@innertext='Manjaro']
/dom[@domain='distrowatch.org']/body/table[2]/tbody/tr/td[3]/table[2]/tbody/tr[4]/td[1]/a[@innertext='Manjaro']
/dom[@domain='distrowatch.org']/body/table[2]/tbody/tr/td[3]/table[2]/tbody/tr[4]/td[1]/a[@innertext='Manjaro']
/dom[@domain='distrowatch.org']/body/table[2]/tbody/tr/td[3]/table[2]/tbody/tr[4]/td[1]/a[@innertext='Manjaro']

7.3 A Small Example

application under test. The second path breaks as soon as the order of any
of the elements in between changes.

Thus, finding a good balance between maintainability and performance is
one of the main tasks of a test automation engineer working with Ranorex.
Ranorex can be configured to favor one over the other automatically, but
what is best for a specific application always depends on the actual detailed
requirements and might differ from path to path.

7.2.4 Data-driven Testing

Most of the time, the test result is not only dependent on the test flow, but
also on input data. This data (for example a user name and a password for
a login action) can be given in a hard-coded way. However, this contradicts
many maintainability ideas. It is better to provide this data from an external
data source to provide a single point of maintenance and to be able to run
the same test case with different data values without having to change the
test case itself.

Ranorex itself would provide data connectors, however, those work on the
test suite layer and therefore have no place to slot into the RanorexLibrary.
Instead, Robot itself provides basic support for data-driven testing. Most
values can be passed to keywords not only in a hard-coded way, but also as
variables. These variables can be set in different ways.5

7.3 A Small Example

In this section, I will present a very small and basic example of how a Robot
test using the RanorexLibrary could look like6. The application under test is

5More information on usage of variables in Robot keywords can be found in the
official documentation: http://robotframework.org/robotframework/latest/RobotFr
ameworkUserGuide.html#variable-files.

6An interesting and—at least for me—surprising fact: I’ve written this example test in
one go without testing it somewhere in between. At the time I tried to run the test for the
first time (after it was finished already) I was prepared to face an error that I had to debug,

57

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#variable-files
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#variable-files

7 Setup and Tutorial

the official Ranorex test application as this can be downloaded easily7 and
provides an interesting set of UI controls.

Test Scenario In this test case, we will try to validate that, after adding
an entry to a small data set, the number of entries correctly counts up to
1. Figure 7.1 on page 59 shows the sample application and the control to
validate. Therefore test consists of the following steps:

• Open the application under test.
• Validate that the application is opened.
• Go to the ”Test Database” table.
• Validate that the number of entries says 0.
• Fill the form with data and add an entry.
• Validate that the number of entries now says 1.
• Delete the entry again.
• Close the Application.

This test is a small, self-contained test that does not require any other tests as
prerequisites and that can happen anywhere in the test suite, which already
is a nice example of modularization: This test in itself is a self-contained
module.

First, we create a file and name it example.robot and add the settings
section:

∗∗∗ S e t t i n g s ∗∗∗
Documentation This i s a sample t e s t case .
Library RanorexLibrary C:\\Program F i l e s (x86) \\Ranorex

8 . 3\\ Bin

The Documentation part is optional. The only really interesting part is that
we add the RanorexLibrary here. We have to tell the RanorexLibrary where
to find the Ranorex library files in our file system, and we have to escape the
backslashes, because Robot would otherwise interpret them incorrectly.

like in every software that I would write normally. But the test worked correctly in the first
go already, without any syntax errors or any other complications. This just showed me
again how easy Robot is to use.

7Link to the test executable file: https://www.ranorex.com/rx-media/rx-user-gui
de/latest/download/RxDemoApp.zip

58

https://www.ranorex.com/rx-media/rx-user-guide/latest/download/RxDemoApp.zip
https://www.ranorex.com/rx-media/rx-user-guide/latest/download/RxDemoApp.zip

7.3 A Small Example

Figure 7.1: This image shows a screenshot of the Ranorex test application. Marked with a
red box is the part of the application that should be validated in the sample test
case.

Next, although not strictly necessary, I added variables that should tell
our tests what the expected values for the validation steps should be. The
example might be a bit too simple for this to make much sense, but on the
other hand it separates the test logic from the test data more.

∗∗∗ Var iab les ∗∗∗
${beforeEntry } 0

${ a f t e r E n t r y } 1

Since we already have the test structure, we can just copy it to a new test
case more or less verbatim.

∗∗∗ Test Cases ∗∗∗
Test Number Of E n t r i e s Counter

[Setup] Run Appl icat ion C:\\ path\\ to \\ t e s t . exe
Val idate Open SUT
Go To Test Database Tab
Val idate Number of E n t r i e s ${beforeEntry }
Add Entry
Val idate Number of E n t r i e s ${ a f t e r E n t r y }
Delete Entry

59

7 Setup and Tutorial

[Teardown] Close SUT

Most of these keywords are not even defined yet, so if we would run the test
now, Robot would complain and throw an error telling us that a keyword
definition was missing. In the next step, we have to define the missing
keywords.

Therefore, we create a new Keywords section. The first keyword to add
is Validate Open SUT. This would not be strictly needed as most other
actions implicitely wait for the SUT to be opened, but let’s add this keyword
nonetheless. We have several options to validate an open application, I opted
for waiting for the Welcome! text label to exist.

∗∗∗ Keywords ∗∗∗
Val idate Open SUT

Wait For /form [@controlname = ’RxMainFrame ’]// t e x t [
@controlname = ’ lblWelcomeMessage ’]

The next keyword, Go To Test Database Tab, is very simple as it only
consists of a single click. However, it still makes sense to abstract the actual
click and the RanoreXPath away from the actual test since Go To Test Database
Tab is much easier to understand for a human reader than a Click on some
element.

Go To Test Database Tab
Cl ick /form [@controlname = ’RxMainFrame ’]// tabpage [

@accessiblename = ’ Test database ’]

The next keyword, Validate Number Of Entries, is very interesting, be-
cause it appears in the test case twice. Therefore, it should take the correct
value as a parameter and compare it to the actual value that it has read from
the GUI. It receives this value of the Text attribute using the Get Attribute

Value keyword and saving this value to a variable. The Should Be Equal

As Strings keywords is defined in the BuiltIn library of Robot, not in the
RanorexLibrary, showing how elegant it is to mix keywords from different
libraries in a single test case.

Val idate Number Of E n t r i e s
[Arguments] ${correctNumber}
${actualNumber} Get A t t r i b u t e Value /form [

@controlname = ’RxMainFrame ’]// t e x t [@controlname = ’
lblNumberOfPersonsNumber ’] Text

60

7.3 A Small Example

Should Be Equal As S t r i n g s ${correctNumber} ${
actualNumber}

The keyword Add Entry is very long as it fills the form with actual data. In
this example, this data is given explicitely, but in a real test environment,
those values would probably been passed as variables.

Add Entry
Key Sequence /form [@controlname = ’RxMainFrame ’]// t e x t [

@accessiblename = ’ F i r s t name ’] John
Key Sequence /form [@controlname = ’RxMainFrame ’]// t e x t [

@accessiblename = ’ Last name ’] Doe
Cl ick /form [@controlname = ’RxMainFrame ’]// button [

@accessiblename = ’Open ’]
Cl ick / l i s t / l i s t i t e m [@text = ’ Sales ’]
Double Cl ick /form [@controlname = ’RxMainFrame ’]// t e x t [

@controlname = ’upDownEdit ’]
Key Sequence /form [@controlname = ’RxMainFrame ’]// t e x t [

@controlname = ’upDownEdit ’] 25

Click /form [@controlname = ’RxMainFrame ’]// radiobutton [
@controlname = ’ rdbMale ’]

Cl ick /form [@controlname = ’RxMainFrame ’]// button [
@controlname = ’ btnAddPerson ’]

To bring the application into a clean state again, it is necessary to delete
the database entry again. This is done using the Delete Entry keyword.
Here, a bit of caution is required. Ranorex by itself suggests this path for
the database entry list item: /form[@controlname=’RxMainFrame’]//listi
tem[@accessiblename=’JohnDoe(male,25)Sales’]. However, RanoreXPath
will only ever work if the exact same data is given, but the keyword Delete

Entry could be used in different test cases with different scenarios. Therefore
it is necessary to change this RanoreXPath manually to find a path that does
actually address what is meant: the first item of this list.

Delete Entry
Cl ick /form [@controlname = ’RxMainFrame ’]// l i s t [

@controlname = ’ l s t P e r s o n L i s t ’] / l i s t / l i s t i t e m [1]
Cl i ck /form [@controlname = ’RxMainFrame ’]// button [

@controlname = ’ btnDeletePerson ’]

And lastly the application has to be closed again in the Close SUT keyword.
This is done using the Close Application keyword:

61

/form[@controlname='RxMainFrame']//listitem[@accessiblename='John Doe (male, 25) Sales']
/form[@controlname='RxMainFrame']//listitem[@accessiblename='John Doe (male, 25) Sales']

7 Setup and Tutorial

Figure 7.2: This screenshot of the Robot test report shows the main information about the
test run. It shows the example test suite that took 29 seconds to complete, and
some additional basic data like the start and end times of the test run. All the
tests (just a single one in this case) are green.

Close SUT
Close Appl icat ion /form [@controlname = ’RxMainFrame ’]

After saving the file it is sufficient to run this test from the command line
using ipy32 -m robot example.robot. Now, Ranorex takes control over
mouse and keyboard and we can watch the mouse cursor moving and key
strokes appearing.

After the test has finished, we are presented with a report and a log file8.
Both come as plain HTML files. A screenshot of the report is shown in
figure 7.2 on page 62, and a screenshot of the log can be found in figure 7.3
on page 63.

8Robot also creates an output.xml file that collects all the output, if we create any.

62

7.3 A Small Example

Figure 7.3: This log shows much more detailed information about the test run. Every single
keyword is listed with documentation, start and end time and additional infor-
mation. If a keyword consists of other keywords, those can also be expanded
and investigated. For debugging Robot tests, the log provides all the interesting
information.

63

7 Setup and Tutorial

7.4 Documentation

The documentation of the RanorexLibrary can be found on the official
GitHub9 project. In order to keep everything in one place, this is the one
resource for the RanorexLibrary. Since this project is supposed to grow and
is subject to change, the documentation will also have to develop together
with the code itself. Thus, including documentation in any other document
doesn’t reflect the dynamic nature of the project.

9Link to the official documentation: https://github.com/Thomas-Gruber-90/Ranore
xLibrary/wiki/Documentation

64

https://github.com/Thomas-Gruber-90/RanorexLibrary/wiki/Documentation
https://github.com/Thomas-Gruber-90/RanorexLibrary/wiki/Documentation

8 Conclusion

This thesis introduced the RanorexLibrary, a library for the Robot Frame-
work that enables the tester to use the powerful object recognition of Ranorex
directly in their Robot tests. This in itself already provides some benefits,
especially since the implemented keywords are all on a low level and can be
easily combined to more complex keywords. For example, clearing a textbox
is not directly implemented in the RanorexLibrary, although this might be a
common use case. To make this action work consistently, all characters in
that textbox should get deleted, making it necessary to select all of them.
This keyword could look like this (in Robot syntax):

Clear Textbox		
	[Arguments]	${ ranorexpath}
	Double Cl ick	${ ranorexpath}
	Key Shortcut	{Delete }

There are many higher level keywords that could be possible and imple-
mented within the RanorexLibrary. However, in this iteration I have focused
on the lower level keywords that are directly mappable to a Ranorex action,
as these actions are sufficient to do most of the important steps in a UI
test.

Since Ranorex is a proprietary tool, the RanorexLibrary will only be interest-
ing for a certain group of testers that either already use Ranorex or already
use Robot and are willing to spend money on getting the Ranorex function-
ality. There are other solutions that can do similar things to Ranorex that are
open-source, however, all these projects only support a single technology. If
the tester wants to create a real end-to-end test that touches several different
technologies, the RanorexLibrary is the only way to make this test easily
maintainable and readable.

65

8 Conclusion

On the other hand, the RanorexLibrary itself is an open-source project. Thus,
its future development can be geared towards fulfilling the needs of its
actual users. Hosting it on GitHub means that the project can stay active as
long as as someone wants to use it.

66

Bibliography

[1] M. Foord and C. Muirhead, IronPython in Action. Greenwich, CT, USA:
Manning Publications Co., 2009, isbn: 1933988339, 9781933988337 (cit.
on pp. 1, 32, 34).

[2] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John
Wiley & Sons, 2012, isbn: 978-1118031964 (cit. on pp. 9, 10).

[3] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al.,
“Manifesto for agile software development,” 2001 (cit. on p. 10).

[4] D. Janzen and H. Saiedian, “Test-driven development concepts, taxon-
omy, and future direction,” Computer, vol. 38, no. 9, pp. 43–50, 2005

(cit. on p. 11).

[5] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, “Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey,” in Proceedings of the 7th International
Workshop on Automation of Software Test, IEEE Press, 2012, pp. 36–42

(cit. on p. 12).

[6] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user in-
terface (gui) testing: Systematic mapping and repository,” Information
and Software Technology, vol. 55, no. 10, pp. 1679–1694, 2013, issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2013.03.004. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584913000669 (cit. on p. 12).

[7] P. Laukkanen, “Data-driven and keyword-driven test automation
frameworks,” Master’s thesis, Helsinki University of Technology,
Helsinki, Feb. 2006 (cit. on pp. 13, 16).

[8] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016, isbn: 978-0-521-88038-1 (cit. on p. 14).

67

https://doi.org/https://doi.org/10.1016/j.infsof.2013.03.004
http://www.sciencedirect.com/science/article/pii/S0950584913000669
http://www.sciencedirect.com/science/article/pii/S0950584913000669

Bibliography

[9] S. Bisht, Robot Framework Test Automation. Birmingham, UK: Packt
Publishing Ltd., 2013, isbn: 978-1-78328-303-3 (cit. on p. 16).

[10] R. F. Foundation. (Aug. 29, 2018). Robot framework, [Online]. Avail-
able: http://robotframework.org (cit. on p. 16).

[11] P. Klärck. (Sep. 6, 2018). Experience, [Online]. Available: http://
eliga.fi/experience.html (cit. on p. 16).

[12] Ranorex. (Sep. 5, 2018). Ranorex, [Online]. Available: https://www.
ranorex.com (cit. on p. 21).

[13] Ranorex sales demo slides, As Sales demo for interested prospects, PDF
can be received from either the Ranorex Sales team or the author.
(cit. on p. 23).

[14] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Improving test
suites maintainability with the page object pattern: An industrial
case study,” in 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops, Mar. 2013, pp. 108–113.
doi: 10.1109/ICSTW.2013.19 (cit. on pp. 25, 55).

[15] M. Grechanik, Q. Xie, and C. Fu, “Creating gui testing tools using
accessibility technologies,” in 2009 International Conference on Software
Testing, Verification, and Validation Workshops, Apr. 2009, pp. 243–250.
doi: 10.1109/ICSTW.2009.31 (cit. on p. 28).

68

http://robotframework.org
http://eliga.fi/experience.html
http://eliga.fi/experience.html
https://www.ranorex.com
https://www.ranorex.com
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1109/ICSTW.2009.31

	Abstract
	Introduction
	The Issue to Solve
	The Aim of the RanorexLibrary
	Methodology
	Content of this Thesis

	Already-Existing Integrations
	ranorex-robot-library
	robotframework-RanorexLibrary

	Terminology
	Software Testing
	The Testing Pyramid

	Agile Software Development
	Test-driven Development

	Test Automation
	Graphical User Interface Testing
	Keyword-driven Testing
	Acceptance Testing

	The Frameworks in Use
	Robot Framework
	History of the Robot Framework
	Technical Detail
	The Robot Syntax

	Ranorex
	The Product Ranorex
	The Three Layers of Ranorex
	Object Recognition
	The RanoreXPath

	IronPython
	What is IronPython?

	Example Integration: SeleniumLibrary

	Requirements for the Integration
	Licensing
	The Ranorex Repository
	General Workflow
	Rationale for not Implementing the Repository Functionality

	Desktop Testing
	Web Testing - Advantages over the SeleniumLibrary
	Mobile Testing

	Implementation Detail
	General Details
	Keywords

	Setup and Tutorial
	Setting Everything up
	Best Practices
	Modularization
	Page Object Pattern
	Robust Identifiers
	Data-driven Testing

	A Small Example
	Documentation

	Conclusion
	Bibliography

