
der Druck einwirkt, ist mit dem Zungenschieber verbunden und schließt bei zunehmendem Drucke und zunehmender Tourenzahl, öffnet dagegen bei vermindertem Drucke, entsprechend einer Tourenverringerung.

Versuchsanordnung.

Die Bremsung erfolgte mittels eines Pronyschen Zaumes; derselbe wurde auf dem freien Wellenende der Turbine angebracht. Der Bremshebel drückte auf eine empfindliche Dezimalwage. Die Länge des Hebels wurde vor und nach den Versuchen gemessen; sie betrug im Mittel 1,8 m. Die Belastung der Wage durch das Bremshebelgewicht ermittelte man ebenfalls am Anfang und am Ende der Versuche und führte den Mittelwert in die Rechnung ein.

Die Tourenzahl der Turbine wurde mittels eines Tachometers gemessen, und die Angaben desselben durch einen besonderen Vergleichsversuch mit einem Handtourenzähler auf ihre Richtigkeit geprüft.

Die Wassermessung erfolgte an einem Überfalle mit Seitenkontraktion, welcher im Unterwassergraben eingebaut war. Zur

Messung der Überfallhöhe h diente ein Schwimmer in einer Entfernung von 4 m oberhalb der Überfallkante. Die Maße des Überfalles kontrollierte man unmittelbar vor dem Versuche und sind dieselben aus Fig. 59 zu ersehen. Bezeichnet b die Breite des Überfalles, so lautet die Formel (14 b), S. 15, welche zur Bestimmung der Wassermenge Vangewandt wurde:

$$V = \frac{2}{3} \cdot \mu \cdot b \cdot h \cdot \sqrt{2 g h},$$
vohei für den Koeffizienten $\frac{2}{5} \cdot \mu =$

wobei für den Koeffizienten $\frac{2}{3} \cdot \mu = \mu'$ je nach der Überfallhöhe h die Werte

0,407 bis 0,420 gesetzt wurden 1). Eine besondere Messung ergab, daß das pro Sekunde verbrauchte Kühl- und Schmierwasser für die Bremse 0,0004 cbm, d. h. 0,4 Liter, betrug. Dasselbe kam jeweils von der Überfallwassermenge in Abzug.

Die Gefällsmessung erfolgte, wie dies bei solch hohen Gefällen mit Rohrzuführung üblich ist, mittels Manometers unmittelbar an der Turbine. Dem gemessenen Manometerdruck entspricht jeweils eine bestimmte Wassersäule von der Höhe, um welche der Oberwasserspiegel über der Maßstelle liegt. Allerdings wird hierbei nicht berücksichtigt, daß in der Rohrleitung Druck- bzw. Gefällsverluste durch die Reibung des Wassers während der Bewegung auftreten. Bei Außerachtlassung dieser Verluste, die eigentlich noch im Bereiche der maschinellen Anlage

¹⁾ Vgl. Wassermessung, S. 15 u. 16.

liegen, wird naturgemäß ein kleineres Gefälle berechnet, als es tatsächlich vorhanden ist. Auch sei erwähnt, daß das Gefälle von der Turbine bzw. dem Manometer aus bis zum Unterwasserspiegel bei obiger Messung vernachlässigt wird. Indes spielt dieser Wert gegenüber dem Gesamtgefälle keine große Rolle. — Die Angaben des Manometers wurden durch eine nachträglich vorgenommene Eichung kontrolliert und entsprechend korrigiert.

Was die Reibungsverluste anbelangt, so war schon im Vertrage betreffend Garantieziffern die Bestimmung getroffen, daß die Reibungsverluste infolge des Gewichtes der Bremse, der Schwungräder und des auf der Turbinenwelle sitzenden Generatorankers in Abzug zu bringen seien. Der Berechnung derselben wurde ein Lagerreibungskoeffizient von 0,08 zugrunde gelegt 1). Außerdem wurde die Leergangsarbeit des Generators ohne Erregung der Turbine zugute gerechnet; dieselbe betrug, laut Angabe der Maschinenfabrik Oerlikon, etwa 3200 Watt oder 4,35 PS; sie wurde als konstante Größe betrachtet und jeweils zu obiger Reibungsarbeit addiert.

Versuchsdaten und Ausrechnung derselben.

Zum Gang der Untersuchungen sei noch folgendes bemerkt: Die Bremsungen fanden für sieben verschiedene Leistungen statt und dauerten jeweils wenige Minuten.

Man legte hierbei jeweils ein bestimmtes Gewicht auf die Wage, welches ungefähr der gewünschten Belastung entsprach, und stellte alsdann die Beaufschlagung der Turbine von Hand ein, wobei naturgemäß der Geschwindigkeitsregulator abgestellt war. Sobald die Wage ruhig einspielte, wurden gleichzeitig die Ablesungen am Tachometer und Manometer, etwas später diejenigen am (Überfall-) Schwimmer vorgenommen. Bei jeder Belastung erfolgten mindestens drei derartige Gesamtablesungen, aus welchen die Mittelwerte für die Rechnung zur Verwendung kamen.

Die Zusammenstellung der Beobachtungen gibt nachstehende Tabelle (s. f. S.).

Die Resultate der Rechnung sind gleichfalls in die Tabelle eingetragen. Dieselben ergeben sich an Hand der früher abgeleiteten Formeln in einfacher Weise; für die maximale Belastung ist beispielsweise die Rechnung die folgende:

Die Bremsleistung ist laut Formel (31), S. 53:

$$N_1 = \frac{G \cdot l}{716,2} \cdot n = \frac{62 \cdot 1,8}{716,2} \cdot 718 = 111,82 \text{ PS.}$$

Die Verlustarbeit beträgt $N_r = 4,4074$ PS. Daraus: effektive Leistung $N_e = 116,2274$ PS.

¹⁾ Bezüglich der Berechnungsweise s. S. 52 u. f.