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Abstract

The development of methods and algorithms for the detection and retrieval of activities in

videos has been investigated intensively in recent years. A clear narrowing and annotation

of activities is often controversial and in consequence of the large amount of data difficult to

be carried out manually. The resultant ambiguities in terms of spatial, temporal and class-

specific assignment of data to activities make a robust training of methods for classification

or detection difficult. This thesis deals with different forms of ambiguities in the context

of activities, and describes methods for more robust automatic assignment of video areas

to activity labels. Learned temporal coherence is exploited for improved classification

and detection of activities in videos. Furthermore, the thesis deals with the development

of algorithms for the automatic determination of contextually prominent regions, as the

basis for activity detection. The developed methods are applied in many different ways,

evaluated against reference approaches and discussed with regard to future developments

in the field of activity recognition.
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Kurzfassung

Die Entwicklung von Methoden und Algorithmen zur Erkennung und Detektion von

Aktivitäten in Videos wurde in den letzten Jahren intensiv vorangetrieben. Eine ein-

deutige Eingrenzung und Annotierung von Aktivitäten ist dabei oft schwierig und auf-

grund der großen Datenmenge nicht manuell durchführbar. Die daraus resultierenden

Mehrdeutigkeiten in Bezug auf räumlich, zeitliche und klassenspezifische Zuordnung von

Daten zu Aktivitäten erschweren ein robustes Training von Methoden zur Klassifikation

oder Detektion. Die vorliegende Dissertation behandelt unterschiedliche Formen von

Mehrdeutigkeiten im Kontext von Aktivitäten, und beschreibt Methoden zur robusten

automatischen Zuordnung von Videobereichen zu Aktivitätsbezeichnungen und der Aus-

nutzung gelernter zeitlicher Zusammenhänge für verbesserte Klassifikation und Detektion

von Aktivitäten in Videos. Des Weiteren behandelt die vorliegende Arbeit die Entwicklung

von Algorithmen zur automatischen Bestimmung von kontextuell herausragenden Regio-

nen, als Basis für Aktivitätsdetektion. Die entwickelten Methoden werden in vielfältigen

Evaluierungen mit Referenzansätzen verglichen und in Hinblick auf die zukünftige En-

twicklung im Bereich Aktivitätserkennung diskutiert.
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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
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1
Introduction

Understanding human behavior is a key technology for future seamless connection between

users and IT infrastructure. The full variability of possible human activities cannot be

captured with sensors not including visual information. Therefore, activity related research

has gained much interest in the computer vision community within recent years. Computer

vision based activity recognition is a very diverse topic, concerning both the various fields

of application and scenarios as well as manifold kinds of problem statements and input

representations. Nowadays, we see activity or action recognition in various context and

temporal extent. Ranging from temporally delimited actions (raise left arm), to simple

concatenations of motion primitives (bend down and up) or temporal repetitions of actions

(running, waving) up to more complex chronology of activities (cooking a certain meal).

The meaning of an action can change by context information of objects (picking up box)

or other surrounding actions (standing vs. queuing up). We can create a vast amount of

scenarios and challenges with the above named points.

Compared to related fields within computer vision like, e.g., facial gesture recognition

or object detection, activity recognition is less definite and divided into several sub-fields.

Nevertheless, it is one of the fastest growing topics with a variety of possible industrial ap-

plications from user interaction via gestures and significant motions for controlling human

computer interfaces, to automatic content analysis in social media and TV broadcasts.

Therefore, the research underlying to this thesis has seen many twists and turns as well

as influences over the years.

Depending on the application and context, various kinds of activity related examples

have been proposed over the years. This vast variety of approaches, modalities and datasets

usually require individual preparation and annotation guidelines, depending on how the

term activity is understood in a specific case. Coming from the area of tracking and sports

game analysis, the focus of this thesis is human centered activity recognition as a sequence

of detecting a person of interest or player, tracking them over time for building a temporal

cue and finally recognizing what he or she is doing at a certain point of this temporal

interval. Let us call this person of interest performing actions an ”actor”, for the remainder

1
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of this section. This actor centered approach rises several issues from which the research

topics in this thesis have been derived from. Putting the actor in the focus seems to be

logically, but a majority of activity recognition related work is in fact performing solely

video classification without paying attention on foreground and background separation.

One may argue that background and context defines the meaning of a motion sequence and

is therefore a vital part of the activity. But related research has shown that algorithms

are often biased by specific background features due to a lack of diversity in training

and test data. Focusing on the actor(s) gets especially important if background becomes

misleading or no global activity label is valid for a complete designated video. Furthermore,

background can become negligible when it comes to activity recognition in surveillance

and sports games analysis, where grass is always green, a pitch looks always the same or

parking facilities give no further contextual information. Focusing on the actor implies a

variety of challenges, which form the basic motivations of this thesis. But, what defines

an activity, and when can we speak of weak annotated?

Let us define the root cause of this challenge, which is rather simple: we do not have

enough information about the activities. Missing information leads to ambiguities, as an

activity is defined by the three main questions: who, when and what? We can speak of

weak annotation in the absence of at least one of this three needed points. Staying in the

field of actor centered activities the question raises, how to get the information that we

need to describe these three inputs? The first one defines the spatial parameters given as

the position, image annotation or segmentation of an actor or group of actors. The sec-

ond question concerns the temporal parameters, the information about begin, ending and

maybe maximum of activity intensity. The last one defines the activity itself by a given

activity class, group or label. Now let us recap what happens if one of these three con-

straining parameters is missing. In such circumstances we speak of an ambiguous labeled

activity, meaning at least one parameter is open and has to be found by optimization. In

other words, when we speak of weakly labeled data it is the opposite of fully labeled or

fully supervised data, where all three constrains are given. Related to this three constrains,

ambiguities can have the following reasons:

Missing spatial information lacks the description concerning spatial extent of an

activity, defined by the actor(s) or objects of interaction. Annotation may be more complex

compared to objects as it often varies over time. With solely given global activity class

labels on video level, spatial (and temporal) annotation is missing at all.

Missing temporal information is mostly related to missing definition of the activity

climax. Furthermore, unconstrained videos which are not directly limited to begin and end

of one specific activity, but instead contain unrelated content before and after a certain

activity of interest, fall into this category. Such uncertainties hamper training and make

activity localization in videos an attractive research area.
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Missing label information often comes with concurrent activities or interactions. As

soon as several actors perform their motions in parallel simple general object detectors

or proposals are only helpful for separating background motion. The task of learning the

correct activity class associated to those proposals becomes really challenging.

In this thesis we have focused on approaches for tackling this ambiguities, and to allow

for training from such weakly labeled data, missing one of the three constraining param-

eters of who, when and what. The results of this research are grouped into three related

chapters of this thesis.

Starting with chapter 3, temporal relations of features and motions during activities

are examined. As a result, two individual tasks are formulated. First, temporal feature

weighting to support individual emphases of motion and appearance based information,

for generating more discriminative activity representation. This approach tackles the

temporal ambiguity and, in contrast to previous related approaches, allows for non-global

feature weighting. Second, a concept for exploiting activity motion learned from train-

ing data is proposed, which supports unsupervised adaption of activity detectors to new

datasets and background conditions. Instead of solving spatial ambiguities by manual an-

notation a forward-backward motion consistency based regularization is applied, showing

much better predicting results compared to optical flow propagation.

Chapter 4 tackles the ambiguities of missing label association in the case of contempo-

rary performed actions in parallel, or without clear begin and ending of activities within a

video. Automatically finding the object of interest within a set of images is a widespread

problem in computer vision, typically referred to as ”multiple-instance-learning” or ”non-

negative-data-mining”. This task becomes more challenging when multiple different labels

are possible per image or video. Such concurrent activities occur in several fields of applica-

tion for activity recognition, e.g., sports, surveillance or human computer interaction. To

avoid annotation effort, a ranking by pair-wise code-books training is developed, showing

superior performance on multi-label ambiguity tasks.

Finally chapter 5 exploits the concept of saliency for finding activity related areas

in videos, therefore tackling spatial and temporal ambiguities. Without adding any la-

beling information, the circumstance that activities form salient areas within the video

volume, can be exploited to find activity relevant areas. Recent research has emphasized

the need for analyzing salient information in videos to minimize dataset bias or to su-

pervise weakly labeled training of activity detectors. Furthermore, we can find outcomes

in related literature which emphasize success of weighting object motion information for

activity classification. In contrast to previous approaches, the proposed saliency estima-

tion method does not rely on training information given by either eye-gaze or annotation

data, but rather propose a fully unsupervised algorithm to find salient regions within

videos or images. Based on that, a novel video saliency detection method is presented,

to support human activity recognition and weakly supervised training of activity detec-

tion algorithms. In general, the Gestalt principle of figure-ground segregation is enforced
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for both appearance and motion cues. Evaluations against state-of-the-art approaches on

several datasets, including different challenging activity recognition problems for saliency

algorithms, demonstrate favorable performance for activity detection and recognition.

The above mentioned research related chapters overlap concerning datasets, features,

representation and learning approaches. Nevertheless, they address individual problems

and different goals and can therefore be interpreted as individual projects. Thus individ-

ually selected related work and experimental evaluations are given at the beginning and

end of each chapter, respectively. In addition, chapter 2 defines the common basis, by

presenting the evolution of activity recognition during the time of the research underlying

to this thesis. Furthermore, it highlights and reviews prominent state-of-the-art in activity

related feature description, not mentioned in the individual research chapters.



2
Datasets, Problems and Solution:

An Overview on Related Work

2.1 Evolution of Activity Recognition Benchmarks

The field of activity recognition has changed drastically over time, and evolution of datasets

gives some insight how the field has changed. Changes may be driven by defining new

demands and goals, by new approaches and insights making existing benchmarks obsolete

or by new computational methods, which allows for processing more data in more detail

and less time. The following summary gives an overview of datasets popular in the past, or

recently applied for benchmarks in top-level publications, without claiming completeness.

Within their survey paper from 2012, Chaquet et al. [28] already mentioned 68 activity

related datasets. A more recent survey by Zhang et al. [192], covering solely the field of

activity recognition form RGD-D data, mentions another 39 popular benchmarks. And

reviewing recent conference publications gives a list of approximately 38 different datasets,

mainly published after 2012. Therefore, the tremendous amount of existing datasets and

benchmarks makes it hard to cover the whole field. Nevertheless, we try to describe

the evolution within the field of vision based activity recognition and highlighting main

developments and pitfalls. For further details we would like to refer to the following

survey papers: [4, 28, 88, 123, 175, 192, 195], and the given references within the following

sections for more details about specific datasets, approaches and results.

2.1.1 Human Centered Activity Recognition

In the early stages of vision-based activity recognition, research was focused on object-

centered single-person activities. Within the seminal work by Bobick and Davis [16] in

2001, the authors proposed so called motion energy images (MEI) and motion history

images (MHI). The term ”motion” in this case was estimated by aggregating foreground

segmentation over time into either binarized (MEI) of weighted (MHI) representations,

see Figure 2.1. Although their approach was solely applicable within static scenes with

5
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limited background variability, they already fused different view-points and created a real-

time application for interaction of multiple users with a virtual avatar. This research has

engaged the community until recently and has resulted in a lot of datasets like Weizmann

[57] and KTH [142], which are still part of experimental evaluation in recent publications.

Figure 2.1: Examples for early activity descriptors MEI and MHI as described in [16].

One of the first really widespread activity benchmarks was the Weizmann dataset,

recorded in 2005 by Blank et al. [12], which originally contained 81 low resolution videos

(180× 144) of nine subjects performing nine different actions: running, jumping in place,

bending, waving with one hand, jumping jack, jumping sideways, jumping forward, walk-

ing, and waving with two hands. Subsequently, a tenth action, jumping on one leg (skip),

was added [57]. The applied approach was based on space-time shape volumes and as-

sumed convenient foreground segmentation. The videos were recorded on homogenous

background with static cameras. Despite the fact that the release dates back several

years, evaluations on this dataset were done until recently, e.g., [194]. A less well known

subset has been later proposed under the name Weizmann-Robustness1, with cluttered

backgrounds and high irregularities within the performed activities, see Figure 3.9.

In 2004 the KTH dataset was proposed by Schüldt et al. [142], consisting of 600 videos

(160 × 120), with 25 persons performing six human action in four different scenarios:

outdoors (s1 ), outdoors with scale variation (s2 ), outdoors with different clothes (s3 ), and

indoors (s4 ). This work proposed the detection of space-time interest points (STIP) as

features for activity description followed by a classification with support vectors machines

(SVM) for the first time, a pipeline that is still applied in the field of activity recognition

until now.
1http://www.wisdom.weizmann.ac.il/vision/VideoAnalysis/Demos/SpaceTimeActions/DB/robust-

deform.zip
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Figure 2.2: Activity exemplars of Weizmann (top-row) and related videos from CMU-crowded
with background noise (bottom-row).

Activities in Weizmann and KTH are mainly repetitive, meaning no specific start or

end time needs to be defined. Furthermore, they are carried out on homogenous back-

grounds and without disturbing background motions or other concurrent activities. Nev-

ertheless, they are still under the top cited dataset within the area of activity recognition.

Much more challenging artifacts were introduced with the CMU-crowded published by

Ke et al. [84] in 2007 and MSR-activity datasets (I) and (II) proposed by Yuan et al. [187]

and Cao et al. [24], respectively. Their videos include the same activities as Weizmann and

KTH, but with more challenging background and the additional task of activity detection

rather than just classifying the video. CMU crowded consists of approximately 20 minutes

of low resolution videos (160 × 120 pixel), captured by hand-held cameras. Therefore,

extracting features from this video quality is challenging. Furthermore, strong background

noise and motion (pedestrian and traffic) complicate the action detection. Similar to the

Weizmann dataset, annotated activities are ”bend”, ”wave” and ”jumping-jack”. For that

reason, the dataset was often applied for showing transfer learning capabilities.

Similar to that, the MSR action datasets contains three activities from the KTH set,

namely ”clapping”’, ”waving” and ”boxing” within an urban environment or indoor scenes.

The videos were taken with a static camera, minimizing motion artifacts compared to

CMU-crowded, with 320× 240 resolution. Overall 70 videos were collected in both MSR

sets, with the indention of training on KTH data and solely testing the detection capabili-

ties on MSR videos. All threes sets were designed for detection rather than recognition as

several activities could appear within on video (especially within MSR), and background

activities and motion would be too ambiguous.

Further surveillance related datasets can be found in the literature. From indoor
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Figure 2.3: Activity exemplars of KTH (top-row) and related videos from MSR with background
noise (bottom-row). Image taken from [24].

scenarios, like the CAVIAR2 project (Context Aware Vision using Image-based Active

Recognition) started in 2003, to outdoor scenarios like the BEHAVE interactions test case

scenarios by [15], different perspectives on human interactions in UT-interaction [139] and

elevated positions or drones in UT-Tower. More recent benchmarks and results can be

found on the VIRAT3 [119] data and most recent the MERL Shopping dataset by Singh

et al. [150].

A complete new problem formulation was proposed in the dataset collected by Xu et

al. [179], named the A2D dataset and benchmark for action recognition and segmentation

with multiple classes of actors. The authors define the problem of actor-action tuples,

with 7 different actor classes and 9 different actions possible, see Figure 2.4 for examples.

The dataset also provides with pixel-wise actor and action annotation and one third of the

videos contains more than one actor or action, which triggers the task of weakly labeled

activity recognition, e.g., [181].

2.1.2 Video Classification

Over the years, the focus of activity recognition has changed from detecting activities in

surveillance-like videos, to general video recognition based on TV broadcast or YouTube

video collections. While activity detection was one of the main goals in above mentioned

surveillance related datasets, still a quite challenging task in real world scenarios, the

number of actions was limited to daily motions and interaction with other humans or

objects. Over time, the focus of research shifted more towards video classification with

larger numbers of different action classes.

One dataset defining this new kind of activity recognition problem, was the UCF-

2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
3http://www.viratdata.org/
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Figure 2.4: A2D dataset for actor-action recognition. The actor concept is extended to moving
animals and objects on pixel level, while multiple actors doing different actions may be present.
Image taken from [179].

Figure 2.5: Activity exemplars of UCF sports dataset with bounding-box annotation from [133].

sports dataset by Rodriguez et al. [133] in 2008. UCF Sports is a collection of low-quality

television broadcasts, containing around 150 videos of various sports. This data set de-

picts challenging scenarios including camera motion, cluttered backgrounds, and non-rigid

object deformations. Furthermore, it provides ground truth bounding box annotations for

all activities, namely ”diving”, ”golf”, ”swinging-side”, ”kicking”, ”lifting”, ”horse back

riding”, ”running”, ”skating”, ”swing-bench”, ”walking”. Originally evaluated solely for

recognition tasks, in a leave-one-out cross validation scheme, authors mentioned the strong

intra-class similarity of several actions within the dataset. As a results, recognition re-

sults were more related on a designated background rather than the activity itself. As

a consequence, authors proposed different evaluation concepts as 5-fold cross validation

or predefined train-test splits. Later, action detection was done too on the UCF-sports

dataset. A detailed analysis and overview of published results on the UCF-Sports dataset

is given by Soomro and Zamir in [154].

Sports videos in general became an important topic for action datasets. Beside the al-

ready mentioned UCF-Sports, the OlympicSports dataset was proposed in 2010 by Niebles
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Figure 2.6: Video frames from Olympic Sports dataset with superimposed spatial-temporal
interest point detections. Images taken from [116].

et al. [116]. It contains 50 videos from 16 different sports, see Figure2.6. Originally only

activity labels per video were given, and the dataset was applied for evaluating recognition

results on video level.

The CRCV4 (Center for Research in Computer Vision) and University of Central Cali-

fornia (UCF) generated several action datasets over time, with growing complexity. Subse-

quent to the UCF-sports action set, UCF11 containing already 11 activities from YouTube

videos was published. Videos are organized in 25 groups, where videos in one group may

share similar backgrounds and features, since the videos in a group may be obtained from

one single video. Splitting training and testing on such groups should give less classification

bias to activity related backgrounds. A further extension of this dataset named UCF50,

related to the increased number of 50 action categories was published by Reddy and Shah

[131]. The video collection was increased a third time named UCF101 [155], containing 101

action categories, additionally divided into five types, namely human-object interaction,

body-motion only, human-human interaction, playing musical instruments and sports, see

Figure 2.7. UCF101 was the basis for the first THUMOS challenge on activity recognition

in untrimmed videos in 2013. Besides recognition on video level, additional ground-truth

annotation is given for evaluating activity detection too.

At the same time the authors of [91] published the HMDB515 (human motion data

base containing 51 action categories). As a novelty to previous datasets, HMBD51 contains

additionally meta labels describing the properties of each video. Such meta information

contains information about visible body parts (head, upper, lower, full-body), the camera

motion (static or motion), camera view (front, back, left, right), number of people involved

in the action (one , two, three) and the video quality (good, medium, ok). The authors also

proposed a stabilized version with compensated or removed camera motion via RANSAC

based stabilization. With a tremendous amount of labeling effort, the authors of [75] gen-

erated the JHMDB516 (joint-annotated HMDB), containing 21 action classes of JHMDB

with ground truth labeling of 15 body joints and body segmentation and motion, as so

called puppet-mask and puppet-flow. This work tried to evaluate the influence of fore-

4http://crcv.ucf.edu/data/index.php
5http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
6http://jhmdb.is.tue.mpg.de
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Figure 2.7: Action classes and categories of the UCF101 dataset. Colored frames depict different
categories: Human-Object Interaction, Body-Motion Only, Human-Human Interaction, Playing
Musical Instruments and Sports. Image taken from [155].

ground knowledge on action recognition and to bridge the gap between MOCAP (motion

capturing) datasets, captured under controlled environmental settings, and video based

action recognition. The findings in [75] suggested that motion based action recognition

benefits from knowledge of foreground related optical flow, and that pose-based features

outperforms classical low level appearance and motion features. Another interesting find-

ing was that superior optical-flow benchmark algorithms does not lead to better action

recognition results.
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Figure 2.8: Examples from JHMDB videos. Top original video from HMDB dataset. Second row
showing the puppet flow, computed from the manually annotated puppet masks in the third row.
Bottom depicts positions of annotated body joints. Images taken from [75].

The THUMOS7 challenge has influenced research in the area of action recognition

over several years. Starting with the UCF-101 dataset in 2013, the challenge has extended

the video summary piecewise in 2014 and 2015. While previous datasets consisted of

trimmed videos, were the activities is present the whole video, THUMOS challenges in

2014 and 2015 allows trimmed videos, based on UCF-101, for training only and validation

and test data consisting solely of untrimmed videos. In addition, a background set is

introduced containing guaranteed non of the 101 actions, needed for training the capability

of temporal action detection in untrimmed videos. Furthermore, bounding box annotations

are given for 24 selected actions. The THUMOS13 challenge already organized video

based classification for all 101 classes and detection performance on selected 20 classes.

Interestingly no action detection submissions had been made in 2013, compared to 16

teams submitting to the classification challenge. This fact shows the complexity of action

detection compared to global video classification. In 2014, the number teams competing

in action detection increased already to 3 compared to 11 classification teams, while in

2015 again only 1 team submitted detection results compared to again 11 competitors on

classifications.

Two more outstanding datasets, with respect to their video content or defined tasks,

are the Hollywood and ASLAN datasets. Hollywood and Hollywood2 [107] consist solely

of Hollywood movie sequences, containing 12 action categories and 10 scene categories.

Kliper-Gross et al. [88] proposed the Action Similarity Labeling (ASLAN) challenge, a

binary pair-matching task to decide if two videos belong to the same action category or

7http://www.thumos.info/results.html
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not.

Most recent datasets and related benchmarks have again increased the amount of data

and action classes significantly. The Sports-1M database published by Karpathy et al. [83]

contains already an amazing number of 1.133.158 video URLs which have been annotated

automatically with 487 sports labels using the YouTube Topics API. One year later Jiang

et al. [78] proposed the Fudan-Columbia Video Dataset (FCVID), containing 91, 223 Web

videos annotated manually according to 239 categories which are organized in a hierarchy

of 11 high-level groups. In contrast to Sports-1M, FCVID dataset contains categories over

a vast range of daily living scenarios.

Current state-of-the-art action recognition and detection benchmarks are the Activ-

ityNet8 challenge and the YouTube8m9. ActivityNet data was first release by Caba et

al. [44] in 2015 in smaller version (1.2 release 10−2015, 100 action classes and 10k videos).

ActivityNet challenge started in 2016 within a CVPR-Workshop. Around 20k videos dis-

tributed among 200 activity categories, distributed among training, validation and testing

in 50%, 25%, and 25% respectively (ActivityNet 1.3 relesase 03−2016). In addition, the

organizers pe-computed features for global video representation, namely ImageNetShuffle-

CNN, Motion Boundary Histogram and frame-wise features C3D : Generic Features for

Video Analysis. Overall 22 video classification results were submitted, with the winning

categories already applying fine-tuned neural networks, and 6 teams tackling the temporal

action detection task in untrimmed videos. Methods based on provided feature cannot

be found not under the top 3 for classification, while the winning approach for detection

was as well based on fine-tuned neural networks. In 2017, the ActivityNet benchmark

added more additional challenges and datasets. First, the ”Trimmed Action Recognition”

on Kinetics10 human action video dataset (approximately 300, 000 video clips, and covers

400 human action classes with at least 400 video clips for each action class. Each clip

lasts around 10s and is labeled with a single class. Second, the ”Temporal Action Propos-

als” challenge based on ActivityNet, and finally the ”Dense-Captioning Events in Videos”

challenge based on ActivityNet Captions dataset.

The currently largest activity dataset is the YouTube8m11, proposed by [2] in 2016,

an recently bench-marked within a CVPR 2017 workshop. The YouTube8m contains the

incredible number of more than 8 million videos (given as weblinks) with labels from a

diverse vocabulary of 4716 visual entities, with an average of 3.4 labels per video. Labels

are generated automatically given as ”Knowledge Graph” entities. As this tremendous

amount of data would be unfeasible to be handled for most researchers, the team released

precomputed features based on publicly available TensorFlow inception network [1] trained

on ImageNet [71]. Nevertheless, the total size frame-level features is 1.71 Terabytes and

total size of the video-level features is still 31 Gigabytes.

8http://activity-net.org/
9https://research.google.com/youtube8m/

10https://deepmind.com/research/open-source/open-source-datasets/kinetics/
11https://research.google.com/youtube8m/index.html
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In comparison to general video classification datasets, the number of available multi-

camera activity recognition datasets is fairly limited. The IXmas [174] dataset was cap-

tured under controlled laboratory conditions, while the VIRAD dataset [119] mainly

contains simple person-car interaction. Updated recently by [115] the Multicamera Hu-

man Action Video (MuHAVi) [151] contains several everyday activities, but again in a

total controlled laboratory environment.

Recently, triggered by the availability of cheap cameras for ego-centric perspective

videos, a new field of activity recognition research has emerged. Therefore, ego-centric

activity recognition [86] and novelty detection in daily activities [5] became of great interest

to the research community. The Georgia Tech Egocentric Activity Datasets with different

version from 2011 [46] to 2015 [100] can be seen as the most active one in this area.

2.1.3 Human Interaction Recognition

The previously-mentioned datasets and related approaches are focused on single activities

performed by individuals. Further research aims to classify interactions between individ-

uals, between individuals and objects or between individuals and groups. Datasets such

as VideoWeb [37] or UT-Interaction [139] provide more or less constrained data for such

interactions and also introduce concurrent activities. The Collective Activity Dataset [32]

focuses less on interaction but more on group activities, where the classification of individ-

ual activities is supported by similar activities in a local spatial-temporal context. Very

recently, a new data set for large-scale group activity recognition has been proposed by [8],

where the authors are aiming to solve such a large problem by combining individual and

group activities in a top-down / bottom-up hierarchical approach. Less controlled but

still scripted interaction scenes have been captured for the already mentioned BEHAVE

dataset by [15]. With the rise of KinectTMsensors first interaction datasets appears for that

kind of sensor too, like the SBU-Kinect interaction database in 2012 by Kiwon etal. [188],

a set containing two person interaction classification under controlled laboratory condi-

tions with KinectTM-based RGB-D data. Kong etal. [89] published a benchmark with

8 different interaction in outdoor scenarios with various background within 400 videos.

Very recently, a sports related dataset has been proposed to show the benefits of aggre-

gating individual actions into group activity recognition on volleyball scenes by Ibrahim

et al. [68].

2.1.4 Activities in Temporal Context

The recognition of daily routines and activities in, e.g., kitchen or living room generated

an alternative branch of activity recognition research. Benchmarks like the ICPR 2012

Kitchen Scene Context based Gesture Recognition dataset (KSCGR12) or the MPII Fine-

grained Kitchen Activity Dataset by [134] with 65 cooking activities ( see Figure 2.9) define

12http://www.murase.m.is.nagoya-u.ac.jp/KSCGR
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a separate research field.

Figure 2.9: Example of typical kitchen dataset scenario with overlayed pose-estimation results.
Images taken from [134].

The University of Dundee ”50 Salads” by Stein and McKenna [156], contains 3 high-

level annotations like ”cut and mix ingredients”, ”prepare dressing” and ”serve salad”,

and 17 low-level annotations. The authors supply video, depth and accelerometer data of

devices attached to a knife, a mixing spoon, a small spoon, a peeler, a glass, an oil bottle,

and a pepper dispenser.

The recently published Charades database [149] generated a completely new milestone

in this area of daily living activity benchmarks. Instead of downloading YouTube videos

or capturing videos under laboratory conditions, the authors used Amazon Mechanical

Turk (AMT). In a three stage process AMT workers generated scripts, produced the

corresponding video and finally the annotation. The Charades dataset contains over 9000

videos, with temporally annotated intervals for 157 action classes and labels for 46 objects.

Besides activity recognition, automatic scripting generation for video description is an

additional goal of the benchmark.

2.1.5 Alternative Sensors

The introduction of the Microsoft KinectTMhas pushed this field into an application area

within consumer electronics, and has also triggered further research on this very con-

strained topic of RGB-D indoor data, see the review paper by Zhang et al. [192] for

state-or-the-art summary of existing methods and datasets. In general, the task of rec-

ognizing and detecting human centered activities in indoor scenes has drifted towards

RGB-D data. Existing solutions like KinectTM, stereo-cameras, MOCAP (motion captur-

ing) systems or different type of wearable sensors offers the possibilities to capture human
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pose information in a much more detailed resolution as compared to standard YouTube

videos. On the other hand, capturing the data has to be done during training and testing

with comparable settings and hardware. Nevertheless, such approaches safeguard their

surplus value in constrained indoor or gesture control scenarios, but as mentioned before

in 2.1.2, bridging the gap between video and MOCAP could deliver superior approaches

in the future( see, e.g., results in [75]).

Figure 2.10: Comparison of sensor based motion capture (images with reflecting markers visible)
and KinectTMdepth data (false-color visualization). Images taken from [118].

Before affordable sensors changed the scene, requiring MOCAP data was an com-

plex and expensive task, requiring special hardware and setups( see Figure 2.10). First

datasets like HDM05 [111] already contained 70 classes with up to 50 repetitions, captured

with retro-reflective markers and 12 special cameras, where annotating the ground-truth

could quite a challenge [112]. With the release of the KinectTMsensor and the active

support of research teams working with it, large group of new datasets appear, e.g., MSR-

Action3D [98], MSRC-12 [50], MSR-DailyActivity-3D [169], UTKinect [178] or Florence-

3D [143]. These datasets vary in number activtiy classes, repetition or number of actors,

but all focus on indoor activity recognition. Targeting on computer games, the authors of

the G3D-Gaming [13] created a dataset capturing persons playing KinectTMgames, later

updated for two person examples in G3Di [14]. An interesting compilation of scenarios

was collected for the ICPR-HARL 2012 competition by the authors of [177], summarized

in the LIRIS human activities dataset.

A very impressive fusion of different sensors is available with the Berkeley Multimodal

Human Action Database (MHAD) [118], see Figure 2.11. The authors simultaneously cap-

tured synchronized MOCAP data, stereo cameras, several KinectTMsensors, accelerators

and microphone recordings, as depicted in Figure 2.11.

While specialized depth sensors may simplify several vision tasks like detection and

pose estimation, robustness to various view-points is still a challenging problem. Within

the last years several dataset tackling this issue have been published and triggered further
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Figure 2.11: Different sensors applied in the MHAD dataset of [118].

research as the ROSE NTU RGB-D [144], the Northwestern-UCLA Multiview Action3D

by [170] dataset with 3 different Kinect view-points for cross-view evaluations or the

UWA3D Multiview Activity [126] and UWA3D Multiview Activity II [125] datasets.

2.2 Features for Activity Recognition

Feature description has always been inspired by the more prominent image classification

and object detection research. Nevertheless, representative description of activities relies

on some additional specific constrains on time and motion, not necessary for vanilla image

classification tasks. In the following, the most important approaches are revised to give

an overview of the related work.

2.2.1 Interest-Point Detection for Activity Recognition

Detecting points of interest has a long tradition in computer vision. The basic idea is

based on detecting textured regions, meaning area in images with many edges, corners

and structure. Homogenous and plain regions does not allow for re-identification due

to ambiguities, while corners and boundaries emphasize structural breaks and retriev-

able points. Within videos, such structural breaks do not only appear in the spatial 2D

image coordinates but also in the temporal domain. Therefore, we are speaking of spatio-

temporal interest points or STIP in general. The purpose of STIP detections is on one

hand the highlighting of moving parts of a video, therefore likely to be part of an activity,
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and on the other to minimize the computational effort of densely processing the whole

video space. In the following we would like to highlight three very prominent version of

STIP detectors, namely Harris3D by Laptev [94], Cuboid-Detector [38] by Dollar et al.and

V-Fast by Yu et al. [186].

Harris3D as proposed by Latepv et al. [94], is an extension of the Harris corner detec-

tor [61] in the time domain. Derivatives on input Image It are done for all three dimensions

(x,y,t), see Equ. 2.1 after Gaussian smoothing with g(x, y, t;σ2, τ2) , where σ and τ repre-

sents independent spatial and temporal variance, respectively. The 3× 3 second moment

matrix U is build following Equ. 2.2, where ’∗’ is the convolution operator and Lx, Ly
and Lt are the scale space derivatives of the video volume I(x, y, t). The variance values

for calculating U differ from calculating the derivatives by a constant s. The Harris3D

interest point detector is capable of operating on different scales via parametrization.

Lx = ∂x
(
g(·;σ2, τ2) ∗ I

)
Ly = ∂y

(
g(·;σ2, τ2) ∗ I

)
Lt = ∂t

(
g(·;σ2, τ2) ∗ I

) (2.1)

U = g(·; s σ2, s τ2) ∗

 L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (2.2)

An spatio-temporal interest point is detected at locations with high intensity variations

in all three dimensions, resulting in three large eigenvalues of U . These eigenvalues are

evaluated as in Equ. 2.3, where the parameter k specifies how much the three eigenvalues

are allowed to differ from each other. After applying a non-maxima suppression strategy

on H locations with values above a certain threshold indicate interest points.

H = det (U)− k trace3(U) (2.3)

Cuboid detector as presented by Dollar et al. [38] evaluates the response function R as

depicted in Equ. 2.4 generated by a 2D Gaussian filter g(x, y;σ2) in the spatial domain and

two 1D Gabor filters hev(t; τ, ω) and hod(t; τ, ω) on the temporal domain. Final key-point

detection is performed via non-maxima suppression on R. Different spatial and temporal

scales can be evaluated by varying σ and τ , while ω is usually set to 4/τ . The Cuboid

detector reacts very sensitive to periodic motions and in general generates more STIP

detections compared to Haris3D.

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2

hev(t; τ, ω) = − cos(2πtω)e−t
2/τ2

hod(t; τ, ω) = − sin(2πtω)e−t
2/τ2

(2.4)
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V-Fast or Video-FAST detector by Yu et al. [186] extends the idea of the 2D Features

from Accelerated Segment Test (FAST) [135] detector to the spatio-temporal domain. In

contrast to previous detectors it is not based on convolution, but defines pixel comparison

tests called segment test applied on each voxel in video volume I(x, y, t). The test uses

three Bresenham circles centered at (xC , yC , tC), each having a radius of three voxels and

a circumference of 16 voxels, as shown in Figure 2.12.

Figure 2.12: Illustration of the XY, XT and YT plane Bresenham circles used for the segment
test of V-Fast STIP detector. Image taken from [186].

The center voxel I(xC , yC , tC) is compared with the surrounding voxels on the Bresen-

ham circles I(xB, yB, tB). Following Equ. 2.5, a voxel is salient if n contiguous surrounding

voxel are brighter or darker by an factor defined by threshold th. Finally, a non-maxima

suppression step is filtering out local detections. V-Fast can process different spatial and

temporal scales by changing video resolution and sub-sampling temporal frames.

I(xB, yB, tB) ≤ I(xC , yC , tC)− th (darker)

I(xC , yC , tC)− th < I(xB, yB, tB) < I(xC , yC , tC) + th (similar)

I(xC , yC , tC) + th ≤ I(xB, yB, tB) (brighter)

(2.5)

2.2.2 Motion Estimation for Activity Recognition

Spatio-temporal interest points highlights moving regions of interest, but do not describe

motion in any sense. But motion estimation and description defines a vital part of activities

in videos. Given two consecutive image frames It and It+1, the motion field ωt = (ut, vt)

defines the displacement of all pixels from t to t+ 1. The motion field with its horizontal

ut and vertical vt components can be either found by optimization or matching. Several

approaches have been developed over time and can be roughly divided into sparse and

dense motion estimation ones. Dense optical flow methods adds an regularization term
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Figure 2.13: Visualization of different STIP detections indicated by red squares (no scaling is
visualized) on UT-Interaction video dataset. From left to right: Harris3D, Cuboid and V-FAST
interest point detectors. In general Cuboid detector generates more responses, often along edges,
while Harris3D and V-Fast focus more on moving corners.

which allows for estimating u and v for pixel without texture or going into occlusion in

frame t+1, based on neighboring pixels. Example visualizations of optical flow by [45], [63]

and [176] are shown in Figure 2.14. With increasing regularization capabilities resulting

flow fields get smoother and less noisy. Nevertheless, experimental results by [167] and [75]

demonstrated that optical methods superior on specific benchmarks, e.g., Middlebury13

must not necessarily be the best choice for activity recognition.

Figure 2.14: Comparing different algorithms for optical flow estimation on two sequential image
frames. Bottom row from left to right: Farnebäck [45], Horn and Schunck [63] and Werlberger et
al.[176].

In contrast to dense computation by regularization sparse motion estimation is com-

13http://vision.middlebury.edu/flow/
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puted locally, either in the surrounding neighborhood like in KLT [105] or based on key-

point matching between frames as proposed by [158]. Both approaches extend the motion

estimation to trajectories over several frames. Therefore, generating more long-term infor-

mation compared to motion estimation between only two consecutive frames. As a draw-

back, sparse local motion estimations may be easily confused by sudden motion changes,

see Figure 2.15. Furthermore, previous experiments by [168] have shown the superior

performance of dense sampled features over spare key-point detections. As consequence,

Wang et al. [167] developed the concept of improved dense trajectories, a combination of

trajectory tracking based on dense optical flow (see Figure 2.15).

Figure 2.15: Sparse long-term motion estimation by various trajectory generating methods.
Image taken from [167].

2.2.3 Feature Description for Appearance and Motion

Given key-point detections or dense sampled positions generated by, e.g., dense trajectories

we need a discriminative features representation. Within all approaches proposed over the

years HOG (histogram of gradients) descriptor [35] for appearance and HOF (histogram

of optical flow) [95] as well as MBH (motion boundary histogram) [36] representation for

motion have become standard. As they form the common feature basis of the following

chapters, we summarize the main concepts.

HOG As first step in the HOG calculation, we have to estimate the gradients gx(x, y)

and gy(x, y). For each position (x, y) the image It is filtered by 1-dimensional masks

[−1, 0, 1] in x and y direction [35]. Then, we calculate the magnitude m(x, y) and the

signed orientation ΘS(x, y):
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m(x, y) =
√
gx(x, y)2 + gy(x, y)2 (2.6)

ΘS(x, y) = tan−1 (gy(x, y)/gx(x, y)) . (2.7)

To avoid problems due to intensity changes and to make the descriptor more robust, we

transform the signed orientation ΘS into an unsigned orientation:

ΘU (x, y) =

{
ΘS(x, y) + π θS(x, y) < 0

ΘS(x, y) otherwise .
(2.8)

To estimate the HOG descriptor, we divide the image It into non-overlapping cells. For

each cell, the orientations ΘU are quantized into 8 bins and weighted by their magnitude

m (see Figure 2.7).

Figure 2.16: Aggregation of oriented magnitude information into neighboring HOG histogram
bins. Images taken from [113].

Groups of 2×2 cells are combined in overlapping blocks and the histogram of each cell

is normalized using the L2-norm of the block. The final descriptor is built by concatenation

of all normalized blocks (see Figure 2.17).

Working in video volumes, the HOG computation can be extended by aggregation over

the volume and definition of several spatio-temporal partitions as described by [95]. A

further extension to the 3D domain was proposed by Kläser et al. [87].

HOF In contrast to HOG, which is estimated from one frame only, HOF describes the

motion between two consecutive frames. Based on a dense optical flow field, as depicted
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Figure 2.17: Forming HOG feature vectors by concatenation of gradient histograms per block.
Images taken from [113].

in Figure 2.14, given It, It+1, the optical flow describes the shift from frame t to t+1 with

the disparity ωt, where ut(x, y) and vt(x, y) denote the disparity components in x and y

direction at location (x, y). We then compute the HOF descriptor similar as described

above by applying Equ. (2.7) and (2.8). However, the gradients gx(x, y) and gy(x, y)

are replaced by the disparity components ut(x, y) and vtx(x, y). Moreover, to capture

different motion directions for same poses, we use the signed orientation ΘS and quantize

the orientation into 9 bins (one additional for accounting zero motion).

MBH As dense optical flow represents the complete motion between two consecutive

frames, the motion origin may be related to background or camera motion too. This can

confuse activity recognition approaches or lead to bias towards learning specific camera

motions instead of the activities themselves. Dalal et al. [36] proposed the MBH, by

computing the derivatives on the horizontal ut and vertical vt flow-field separately. This

gradient of the optical flow removes constant camera motion while information about

borders and disruptions in flow-field is kept. MBH are more robust to camera motion than

optical flow, and thus more discriminative for action recognition. Figure 2.18 summarizes

the underlying information for HOG, HOF and MBH.
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Figure 2.18: Input modalities for different features. Give two consecutive images (left), we
generate dense optical flow for HOF and gradients for HOG (middle), while derivatives of the
optical flow form the basis of horizontal and vertical MBH (right). Images taken from [167].
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3
Temporal Information for Improved Activity

Classification and Detection

Activities are, in general, defined by the chronology and temporal relation between spe-

cific events or characteristic motion. Often, such information is either not represented

in the description and classification of activities, or not exploited during training of re-

lated classifiers and detectors. In this chapter, we aim at integrating temporal and spa-

tial information and relations as the principal idea for improving classification results,

and allowing unsupervised retraining of detectors for adaption to new backgrounds and

surroundings. Especially the absence of negative or background training data can be a

limiting factor. With the proposed exploitation of temporal and spatial relations within

activities, training of detectors from small training sets and adaption to new scenarios

can be supported. Furthermore, improved classification performance can be achieved by

local temporal weighting determined by temporal relations between various feature cues.

Two different approaches for discrete and continuous representation of temporal relations

are presented, namely prototype based hierarchical structures and augmented canonical

component analysis. Both showing improved performance compared to related approaches

and reveal new application areas for adaptive activity recognition systems.
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Chapter 3. Temporal Information for Improved Activity

Classification and Detection

3.1 Introduction and Related Work

Human activity classification combines several fundamental vision problems such as de-

tection, tracking and recognition. In contrast to global activity classification on video

level, this typically requires a linking of consecutive action detections or, during an online

procedure, the tracking of activity detections over time. Within this chapter, two related

problems are tackled. First, the need for learning temporal displacement relationships for

supporting robust activity detection training. And second, the incorporation of temporal

information into classification, assuming that individual activity detections are already

linked.

3.1.1 Spatial Temporal Relations for Training

Accurate and correct detections are often considered as given or combined with off-the-

shelf-trackers, without integrating knowledge about activity behavior over time. With the

growing interest in human activity recognition in computer vision, a variety of approaches

have been proposed introducing new features, representations, or classification methods.

For the problem of activity classification in videos, global representations are a com-

mon choice [90, 168]. Different spatio-temporal interest points (STIP) and descriptors

were evaluated in [168]; the relationship between spatial and temporal STIPs was addi-

tionally used in [90]. This applies for early datasets with homogeneous backgrounds and

single moving objects like in [57] as well as for recently collected datasets like in[133],

showing a larger variety of the activities. The problem even gets harder if additionally to

classification also detection is considered. This is of relevance if, e.g., several simultaneous

activities, background motion or high inner class variability of backgrounds have to be

considered. Previous methods either assumed given tracks from background subtraction

or general tracking approaches like [22, 102] just analyzed activities per track or per frames

detections as [85, 182]. For linking the latter one in an online manner applying particle

filter is a favored choice, see [102, 182]. Recently an offline linking method via graph-based

representation has been proposed by [85]. But in general, all these approaches do not take

into account the prior knowledge about the correlation of motion and specific activities.

This chapter presents a novel strategy for learning activity specific motion models by

feature-to-temporal-displacement relationships. A new method based on an augmented

version of canonical correlation analysis (AuCCA) is proposed for linking high-dimensional

features to activity-specific spatial displacements over time. This continuous and discrim-

inative approach is compared to other well established methods in the field of activity

recognition and detection, namely k-means hierarchies [117] and Hough forests [53]. In

particular,a improved activity detection by incorporating temporal forward and backward

mappings for regularization of detections is presented. Second, a particle filter frame-

work is extended by using activity-specific motion proposals, allowing for reducing the

search space drastically. To show these improvements, detailed evaluations on several
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benchmark datasets are performed, clearly showing the advantages of the activity-specific

motion models.

The main contributions concerning activity motion estimation of this chapter are:

• an efficient classification and voting framework via AuCCA,

• correction of activity detections via consistency checks and

• particle filter tracking with activity specific motion proposals.

3.1.2 Prototype based Activity Recognition

Besides the correlation of extracted features to motion behavior, another important source

of information is the relation of features over time. Prototype-based classification methods

became popular for activity recognition, as temporal relation information is coded easily

within prototype sequences. However, such methods, even showing competitive classifica-

tion results, are often limited due to too simple and thus insufficient representations and

require a long-term analysis. To compensate these problems, in the following, we present

and an efficient prototype-based representation based on sophisticated features, allowing

for a single-frame activity recognition as well as sequential information exploitation.

Thus, a variety of approaches have been proposed introducing new features, representa-

tions or classification methods. Since actions can be described as chronological sequences,

special attention has been paid on how to incorporate temporal information. In general,

this can be realized either by keeping a very strict spatial-temporal relation on the features

(e.g., by spatio-temporal volumes [12, 84] or descriptors [38, 141, 142]) or on the repre-

sentation level [102, 162]. For such approaches the classification is typically performed on

single-frame basis and the analysis of longer sequences is based on a simply majority vot-

ing or on averaging over multiple frames. If spatial-temporal consistency is totally ignored

[173] only whole sequences can be analyzed. One effective way for directly describing

temporal information, that showed great success in the past, is the usage of prototypes,

e.g., [41, 102, 162, 173].

In general, prototype-based learning methods can be described by a prototype space

X = {x1, . . . , xn}, which is defined as a set of representative samples xj describing the

data (prototypes), and a distance function ρ [41]. In particular, for action recognition

the data is split into a smaller set of reference templates referred to as prototypes [102],

key-poses [173] or pose-primitives [162].

Weiland and Boyer [173] used foreground segmentation to create a set of silhouette

exemplars, so called key-poses, using a forward selection process. The final action de-

scription is achieved by comparing the occurrence frequency of key-poses in a video. Al-

though they presented excellent results, they completely neglected the temporal ordering

of prototypes within a sequence and showed only recognition results on complete videos.

Similarly, Elgammal et. al. [41] modeled an action as a sequence of silhouette prototypes
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using an hidden markov model (HMM) for incorporating temporal constrains and being

more robust to small deviations. To incorporate temporal context in a prototype-based

representation, Thurau and Hlavac [162] introduced n-grams models. They define sub-

sequences of n frames and describe the transitions between prototypes by n-dimensional

histograms. However, the required number of samples to fill the n-dimensional histograms

is high and the temporal ordering is very strict. Furthermore, the representation of n-

grams is getting difficult if n > 3. Experimentally, they showed state-of-the-art results on

sequences with lengths of around 30 frames. Since shape information clearly gives only

limited information on single-frame basis Linet al. [102] proposed to create prototypes in

a joined shape-motion space using binary foreground silhouettes for shape and flow fea-

tures as introduced in [40]. The prototypes are trained and represented efficiently using

hierarchical k-means, leading to real-time evaluation performance. Finally, the temporal

information is incorporated using Dynamic Time Warping (DTW). Although DTW is a

powerful method for aligning temporal sequences, as a drawback it only compares one

sequence to another and cannot handle transitions between different actions. Again only

results on sequence level are shown.

Even though showing competitive recognition results, existing prototype-based action

recognition methods are limited due to a required long-term analysis (i.e., on a whole

sequence) and mainly rely on accurate segmentations – at least for learning the shape

prototypes (e.g., [102, 162, 173]). In practice, however, perfect segmentations are often not

available and short and fast actions such as in sports analysis should be recognized. Hence,

the goal for human action recognition should be to robustly classify on a short sequence

length. Schindler and van Gool [141] showed that if a more sophisticated representation is

used human action recognition can also be performed from very short sequences (snippets).

They use motion and appearance information in parallel, where both are processed in

similar pipelines using scale and orientation filters. The thus obtained features are then

learned by using a Support Vector Machine. Their approach showed impressive results,

reaching state-of-the-art results even though only short sequences of 5−7 frames are used.

Hence, in addition to the correlation approach already motivated in 3.1.1, a further goal

of this chapter is to introduce an efficient action recognition approach working on short-

frame level that takes advantage of prototype-based representations such as fast evaluation,

multi-class capability and sequential information gain. In particular, several feature cues

are processed in parallel (two for appearance and two for motion) and hierarchical k-means

tree [117] are trained, where the obtained leaf nodes represent the prototypes. To increase

the classification power, a temporal weighting scheme for the co-occurrences of prototypes

between different feature cues is learned.

Thus, in contrast to existing methods (e.g., [69, 141]), which typically use global

weighting strategies (i.e., the same weights are applied for all data) the reliability weights

of individual features are continuously estimated for each specific point in time. Hence,

in contrast to existing methods using different cues , the proposed approach does not

estimate global weights, which allows us to temporally adapt the importance of the used
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feature cues. Moreover, even using temporal context we can still run a frame-wise classifi-

cation! The approach is demonstrated on standard benchmark datasets showing excellent

classification results. In particular, a detailed study on the applied features, the hierarchi-

cal tree representation, and the influence of temporal weighting as well as a competitive

evaluation to comparable state-of-the-art methods are shown.

The reminder of the chapter is organized as follows. First, in Section 3.2 let us in-

troduce the new action recognition approach consisting of an efficient prototype-based

representation and a temporal feature weighting scheme (TPFW). Next, within 3.3 we

first define the problem of learning combined classification and temporal displacement vot-

ing. The proposed AuCCA approach is presented, and the idea of temporal displacement

voting is shown to be incorporated into other standard learning frameworks for compar-

ison. The section further depicts the detection and tracking framework and shows how

to incorporate the learned temporal motion models. Experimental results are shown in

Section 3.4, where competitive results for activity classification using weighted prototypes

are presented, and the advantages of learned motion models for unsupervised detection

correction and tracking vs. random-walk models or optical flow based motion models are

evaluated. Finally, Section 3.5 summarizes the proposed approaches and gives an out-

look on how to incorporate AuCCA into other hierarchical concepts for temporal activity

detection and linking.

3.2 Temporal Relations for Weighted Classification

In the following, the temporal prototype-based feature weighting approach (TPFW) for

action recognition, as illustrated in Fig. 3.1, is defined. To gain different kind of informa-

tion, we apply four feature cues in parallel, two for appearance (Section 3.2.1) and two

for motion (Section 3.2.2). For these cues we independently train hierarchical k-means

trees [117], which provide several benefits such as very efficient frame-to-prototype match-

ing and an inherent multi-class classification capability (Section 3.2.3). To incorporate

temporal information, we further estimate temporal weights for the different feature cues.

In particular, from temporal co-occurrences of prototypes we learn a temporal reliability

measure providing an adaptive weight prior for the evaluation step (Section 3.2.4). In this

way during evaluation at a specific point in time the most valuable representations get

higher temporal weights increasing the overall classification power (Section 3.2.5).

3.2.1 Appearance Features

In contrast to existing prototype-based action recognition methods, which mainly use

segmentation results to represent the data, we apply four more sophisticated feature cues

in parallel, two describing the appearance and two describing the motion, respectively. In

particular, for appearance these are the Histogram of Gradients (HOG) descriptor [35] and

the Locally Binary Patterns (LBP) descriptor [120]. HOG estimates a robust local shape
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Figure 3.1: Prototype-based action recognition: For each feature cue f a hierarchical k-means
tree T f is estimated, where the leaf nodes of T f are treated as prototypes ϕ. In addition, to allow
for a prototype-based classification, for each prototype ϕ the probabilities p(c|ϕ) are estimated,
where c is the corresponding action class.

description using a histogram binning over the gradient orientation a local normalization

whereas LBPs, originally introduced for texture description, are valuable due to invariance

to monotonic gray level changes and robustness to noise. Thus, both have shown to be

very valuable for human detection as well as for action recognition. To describe the motion

information, we adapted both methods to describe a motion field obtained from an optical

flow estimation: Histogram of Flow (HOF) and Locally Binary Flow Patterns (LBFP).

In the following, we give the details on these descriptors given the image It ∈ Rm×n at

time t.

HOG descriptor is applied as described in Section 2.2.3. We apply the standard config-

uration of 8 orientation bins, using unsigned gradient orientation. Groups of 2×2 cells are

combined in overlapping blocks and the histogram of each cell is normalized using the L2-

norm of the block. The final descriptor is built by concatenation of all normalized blocks.

For speed issues we avoid the tri-linear interpolation, but instead distribute weights over

neighboring bins as depicted in Figure 2.7.

LBP An LBP pattern p is constructed by binarization of intensity differences between

a center pixel and a number of n sampling points with radius r. The pattern p is assigned

1 if the intensity of a sampling point has a higher intensity than the center pixel and 0

otherwise. The final pattern is formed by the 0 − −1 transitions of the sampling points
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in a given rotation order. To avoid ambiguities due to rotation and noise we restrict the

number of allowed 0 − −1 transitions to a maximum u, hence, defining uniform patterns

LBP un,r. For our final description we build LBP 4
8,1 pattern histograms for each cell and

sum up the nonuniform patterns to one bin (see [120] for more details). To finally estimate

the LBP descriptors, similar to [171], we keep the cell-based splitting of the HOGs and

extract pattern histograms as described before for each cell.

3.2.2 Motion Features

Figure 3.2: Optical flow visualization with related consecutive video frames from UCF-sports
dataset[133].

HOF As described in Section 2.2.3 we compute the HOF descriptor similar to the HOG

computation. Moreover, to capture different motion directions for same poses, we use the

signed orientation ΘS and quantize the orientation into 9 bins. The other parameters such

as cell/block combination are the same as described above for HOG.

LBFP Motivated by the relation between HOG and HOF we directly apply LBPs on

optical flow as well. Integrating direction information into LBP descriptors is quite difficult

since due to noise in the dense optical flow field the orientation information is sometimes

misleading. However, LBPs are known to be robust against such clutter, also appearing

in texture, and therefore they are a considerable choice for an additional complementary

flow feature. In particular, we keep the cell structure of the appearance LBP and compute

the LBFP histograms on the flow magnitude m(x, y), which is computed using Eq. (2.6)

from dy(x, y), dx(x, y). Although the description is slightly simpler compared to HOF, it

is more robust in presence of noise. In general, the same parametrization as for LBP is

used. Please note that LBFP are not related to Local Trinity Patterns [184], which are

computed on video volumes.
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3.2.3 Learning a Prototype-based Representation

Two main issues have to be considered with respect to a prototype-based representation

after having the feature descriptions discussed in Section 3.2.1 and 3.2.2. First, how to

select a representative set of prototypes. Second, if the number of prototypes is increasing,

simple nearest neighbor matching gets infeasible and a more efficient method is required.

In particular, we solve both problems by applying a hierarchical k-means clustering, which

is also known as Vocabulary Tree [117].

Given the training set S, we first perform a k-means clustering on all training samples s.

According to the cluster indices, the data S is then split into subsets (branches of the

vocabulary tree), and each subset is clustered again using k-means clustering. This process

is repeated recursively until no samples are left in a branch of the tree or if the maximum

depth is reached. The thus obtained leaf nodes of the tree are then treated as prototypes

ϕ. Hence, only two parameters are required: the split number k and a maximum hierarchy

depth L, allowing to generate a maximum number of kL prototypes. During evaluation, a

test sample is matched to a prototype by traversing down the tree, using depth-first-search,

until it reaches a leaf node.

As illustrated in Fig. 3.1, we independently build a vocabulary tree T f for each feature

cue f . Thus, for each cue f we obtain prototypes ϕfj , i.e., the leaf nodes of tree T f ,

from which we can build the prototype sets Φf =
{
ϕf1 , . . . , ϕ

f
N

}
. To enable a multi-

class classification (i.e., one class per action), we have to estimate the class probability

distribution p(c|ϕ) for all prototypes ϕ. Let Sc ⊂ S be the set of all samples belonging to

class c and Sϕ,c ⊂ Sc be the set of all samples belonging to class c matching the prototype

ϕ. Then the probability that a sample s matching the prototype ϕ belongs to class c can

be estimated as p(c|ϕ) =
|Sϕ,c|
|Sc| . If no samples from class c reached the prototype ϕ, i.e.,

|Sϕ,c| = 0, the probability is set to p(c|ϕ) = 0.

Illustrative thus obtained classification results are shown in Fig. 3.3. The first row gives

a color-coded view of different actions, whereas in the second row (a) the corresponding

prototypes and (b) the correct classifications are visualized. It can be seen that for cor-

rect classifications over time different prototypes are matched, leading to representative

prototype sequences. This clearly shows that the variety in the data can be handled well

by using our prototype-based description.

3.2.4 Learning Temporal Weights

However, from Fig. 3.3(b) it also can be recognized that the classification results for the

single cues are very weak. Hence, the goal would be to combine these results to improve the

classification results. The naive approach to fuse the results from different information cues

would be to use majority voting or to estimate a mean over all decisions. Such approaches,

however, totally neglect the information provided by temporal constraints. Thus, in the

following we introduce a more sophisticated information fusion strategy based on temporal
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Figure 3.3: Single cue prototype-based classification: (a) sequences (color-coded prototype num-
bers) of matched prototypes for each feature cue and (b) classification results, where red indicates
a correct classification (second row). The actions (first row) are color-coded in the range 1 − 10,
respectively.

weighting. The main idea is to exploit the knowledge which cues provided reliable results

during training to assign temporal adaptive weights to the feature cues during evaluation.

Given the prototype sets Φf the key idea is to estimate the reliability of a feature

cue for the prototype transitions ϕfi → ϕfj . This is similar to prototype frequencies or

transition statistics as used in [162, 173], which, however, require long sequences to get

sufficient data to estimate the discriminative votes. Instead, we consider these transitions

only in a short time frame introducing temporal bags, which is illustrated in Fig. 3.4(a).

A temporal bag1 bti,m is defined as set of m prototypes ϕj , which followed the prototype

ϕi at time t: bti,m =
{
ϕt+1, . . . , ϕt+m

}
. Once all bags bti,m were estimated (i.e., for each

occurrence of ϕi) these are combined to a global bag Bi =
{
b1i,m, . . . , b

T
i,m

}
, where T is the

number of temporal bags bti,m. Then from Bi we can estimate the temporal co-occurrences

of ϕi and ϕj . In particular, we calculate a co-occurrence matrix C, where ci,j integrates

all cases within Bi where a prototype ϕi was followed by ϕj : ci,j =
∑T

t=1 |ϕj ∈ bti,m|.
Having estimated the co-occurrence matrix C, we now can compute a temporal reliability

measure wi,j . Let ni,j be the number of samples that were classified correctly by prototype

ϕj ∈ Bi, then we set the reliability weight to wi,j =
ni,j

ci,j
.

This is illustrated in Fig. 3.4(a). The bag Bi contains 7 instances of ϕh and 8 instances

of ϕj . While prototype ϕj classified all 8 frames correctly, ϕh provided the correct class

for only two samples. Thus, yielding reliability weights of wi,h = 2/7 and wi,j = 1. If this

procedure is repeated for all prototypes in all feature cues this finally yields to four co-

occurrence matrices Cf and four reliability matrices Wf , which can then be used during

the test stage as illustrated in Fig. 3.4(b).

1Since these calculations are performed for each cue f , in the following for reasons of readability we
skip the superfix f in the notation.
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(a) (b)

Figure 3.4: Temporal weighting for feature cues: (a) during training the weights wi,j for temporal
co-occurrences of prototypes ϕi and ϕj of a feature cue are estimated; (b) during evaluation these
weights are used to temporally change the importance of that features cue.

3.2.5 Recognition Using Temporal Weights

Once we have estimated the hierarchical trees T f and the prototype reliability matrices

Wf as introduced in Sections 3.2.3 and 3.2.4, we can perform action recognition using the

following classification problem:

p(c|t) =
4∑

f=1

wft p
(
c|ϕft

)
, (3.1)

where wft is the weight of the feature cue f and ϕft the identified prototype for cue f

at time t. The crucial step now is to estimate the weights wft , which is illustrated in

Fig. 3.4(b).

For that purpose, we use the information given by the past, i.e., the identified proto-

types per cue, to estimate temporal weights. In particular, considering a temporal bag of

size m we estimate the prototype transitions ϕfi → ϕfj , where i = t − m, . . . , t − 1 and

j = t. Based on these selections using the reliability matrices Wf we can estimate the m

corresponding weights wi,j . Finally, the weight wtt is estimated by averaging the m weights

wi,j over the temporal bag.

This recognition process is demonstrated in Fig. 3.5, where the first row illustrates

three actions, the second row the identified prototypes, and the last row the corresponding

weights. It clearly can be seen that the same action is characterized by different prototypes

and also that the weights are changing over time.
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Figure 3.5: On-line adapted feature weights obtained from our temporal reliability measure:
color-coded actions (first row), matched prototypes of each feature cue (second row), and estimated
weights (third row).

3.3 Temporal Relations for Robust Detection

The temporal prototype-based feature weighting approach (TPFW) described so far as-

sumes detection which are linked over time. Learning this spatio-temporal linking between

consecutive points of an activity is the focus of this section. In the following we deter-

mine three approaches that can be adopted for that purpose. We start with our proposed

AuCCA to exploit the correlation between the feature vectors and the displacement vec-

tors, and additionally extend k-means already explained in 3.2 and RF to learn displace-

ment values for comparison. Canonical Correlation Analysis (CCA) additionally allows for

maximizing the correlation between input feature vectors, class labels and displacement

vectors. Hierarchical K-means [117] is an unsupervised generative method not exploiting

class labels during training; however, class labels and displacement values can be stored

according to the obtained clusters. In contrast, Random Forest (RF) use a discriminative

splitting function and can also be extended to train according to displacement values [53].

First of all, we describe the general idea of learning motion models via temporal dis-

placements. To allow for combined activity detection/classification we describe an action

by a d-dimensional feature vector xi ∈ IRd in a temporal context. Thus, in addition to

the corresponding class labels yi ∈ {1, 2, ..., c} also the temporal offsets for the activity

center within in t+ τ frames are given: di
τ ∈ IR2. Thus, during training we have a prior

knowledge on the object’s movement within τ frames.
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3.3.1 Augmented Canonical Correlation Analysis

In general, the goal of CCA is to find pairs of directions that maximize the correlation

between two random variables [65]. Formally, given two mean normalized random variables

x and d, CCA is defined as the problem of finding a set of two basis vectors wx and wd

such that the correlation between the projections x′ = W>
x x and d′ = W>

d d is maximized.

These are obtained by maximizing the correlation coefficient

ρ =
w>x Cxdwd

w>x Cxxwxw>d Cddwd
, (3.2)

where Cxx and Cdd are the within-class covariance matrices and Cxd is the between-class

covariance. The projections onto wx and wd, i.e., x′ and d′ are called canonical factors.

In our case, we build on a more efficient and numerical more stable formulation building

on an SVD decomposition [109].

Assuming that all input features in X ∈ IRd×n and the corresponding displacement

values in D ∈ IR2×n are given, we can project the training data onto their canonical

correlation coefficients: X′ = W>
x X with X′ ∈ IR2×n. We estimate a linear mapping F

from the canonical correlation coefficients to the corresponding D using the least square

solution of F = DX′>. This yields a very efficient representation as only Wx ∈ IR2×d

and F ∈ IR2×2 have to be stored for later evaluations. During testing we estimate the

displacements for a given sample vector x̂ by projection onto the canonical space by

x̂′ = Wxx̂ and mapping d̂ = Fx̂′.

As the dimensionality of the canonical correlation coefficients is limited by the smaller

dimensionality of the correlated training sets in X and D too much discriminative informa-

tion could be lost due to reduced dimensionality. To overcome this problem, Kernel-CCA

could be used, which, however, would be computationally much more expensive. Instead,

we exploit the additional information given by a multi-class problem and augment the

displacement values in each di with a binary label vector yi with yi(j) = 1 for the cor-

rect class and 0 otherwise. The incorporated class information strengthens the correlation

between points and the higher dimensional correlation space allows for better represen-

tation of the mapping from feature to offset space. Moreover, we get a classifier for free.

Fig. 3.6 depicts the distribution of temporal offsets over all activities in the UCF sports

dataset. Coefficients of standard CCA shows directly the distribution in d = 2 dimen-

sional space before multiplying with F. The d = (c + 2) dimensional coefficients of the

AuCCA are visualized using a metric multidimensional down-scaling to a dimensionality

of 2 using Matlab function mdscale.m. Due to the high dimensionality of the coefficient

space, spatial offsets cannot been seen directly, but the class specific grouping of AuCCA

is demonstrated. Results for displacement vectors can be seen in Figure 3.7.
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(a)

(b)

(c)

Figure 3.6: Effects of correlating motion information augmented with class labels. a) Original
displacement values for UCF sports dataset, color-coded for individual actions. b) Standard 2-
dimensional CCA coefficients solely based on motion. c) Coefficients of AuCCA show nicely the
separated classes. See text for more detail.
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3.3.2 Hierarchical K-means Clustering for Temporal Voting

The key idea of hierarchical k-means clustering, also known as Vocabulary Tree [117],

is to recursively split the training data via k-means clustering. This process is repeated

recursively until no samples are left in a branch of the hierarchy or the maximum depth

L is reached. For each of the thus obtained cluster centers ϕ (i.e., leaf nodes) we can then

estimate a class probability distribution p(c|ϕ).

To learn actions specific motion models, we additionally store temporal displacement

vectors of each training sample in the leaf node ϕ. Therefore, each leaf contains an

set of displacement estimation. During evaluation, a test sample is traversed down the

tree, using depth-first-search, until it reaches a leaf node. Hence, for each sample we

get the class probabilities and the temporal displacement values stored in the leaf node.

For simplicity we average the displacement values and report the mean values for dx, dy.

Certainly one could think about weighting the offset values by the class probabilities or

reporting per class displacements, but this has not shown any significant performance gain

in our experiments.

An important factor for good generalization and robustness is the use of k-means

ensembles, i.e., we split the training set randomly into T subsets and train T individual

k-means hierarchies. Similar to the idea of Random Forests [20, 53], this avoids overfitting

on the training data and shows better generalization capabilities. During evaluation, a test

sample is traversing down all hierarchies and the results of all reached leaves are averaged.

3.3.3 Random Forests for Temporal Voting

Hierarchical k-means clustering can be adopted for the intended task by additionally stor-

ing the displacement vectors in the leaves nodes. However, the discriminative information

given by the class labels is ignored. To exploit this information, Random Forests can

be used. In general, a forest consists of an ensemble of T binary decision trees, which

are constructed recursively starting from the root node. For each node, binary tests are

computed to split the data X into subsets going to the left or the right branch [19].

wTxi + b

{
≥ 0, left branch Xl

< 0, right branch Xr ;
(3.3)

with w ∈ 1× d being a vector where nf < d values are randomly chosen within the range

of [−1, 1], while remaining entries are zero. The bias value b is obtained randomly as well.

Two prominent ways to build a Random Forest are to maximize the information gain

∆E [19, 20, 53] or in addition to minimize the displacement uncertainty U (as proposed

for the Hough Forest [53]).

∆E = −
∑
i:[l,r]

|Xi|
|X|

E(X) , U =
∑
i:[l,r]

|Xi|
|X|

∑
j∈Xi

(dj − d̄i) , (3.4)
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where |.| denotes the number of samples, respectively, E(X) is the entropy of set X, and

d̄i is the mean displacement vector in Xi.

Maximizing the information gain is equivalent to minimizing the class-label uncer-

tainty. In the second case, samples with similar displacements are grouped together. The

decision whether the class-label or displacement uncertainty should be minimized is se-

lected randomly during training. In our case the displacements are not given in the spatial

domain, but instead depicts the motion within the next frames. For evaluation, a test sam-

ple is traversing each tree and results of all reached leaves are averaged. Thus, in contrast

to the previous mentioned k-means we have a supervised and discriminative discretization

of our feature space.

3.3.4 Detection Correction with Forward-Backward Consistency Regu-

larization

This section delineates how the proposed activity-specific motion models learned with

AuCCA may be exploited for task specific detection and tracking. The concept of forward-

backward mapping is known from key-point tracking or optical flow estimation. Estimating

the forward displacement of an small and local image patch t→ t+ 1, should deliver the

same result as tracking backward t + 1 → t. Section 3.3 formalized how temporal voting

information can be learned for complete object patches, where we are not limited to t+ 1

displacements but can train arbitrary mapping for τ and even −τ frames.

Now we exploit this knowledge to filter false-positive detections by applying AuCCA

displacement mapping for positive detections at t making forward mapping of τ frames,

run the detector at those proposed positions at t + τ and map backward positive detec-

tions with AuCCA learned for −τ displacements. To show robustness and generalization

capabilities, results from tracking on Weizmann robust data are shown in Fig. 3.7. Green

and red points visualize positive detections for t and t+ τ respectively, and colored lines

temporal votings in τ = 5 frames. We can see a accurate voting to the objects center in

+τ frames, and how false positive detections are marginalized out by missing backward

mappings. We derive a conservative learning framework from this observation, for unsu-

pervised mining of new positive and negative samples. We are regularizing over the spatial

and temporal neighborhood of positive detections. Detections with no forward-backward

consistent detection in their local neighborhood are defined as new negative samples. De-

tections with a majority of consistent neighbors are defined as new positives while others

are seen as neutral and not used for updating the detector, see Fig. 3.18.

3.3.5 Integrating Intelligent Motion Models

Particle filtering for tracking [9] provides a probabilistic framework, which maintains mul-

tiple hypotheses of the current object state and has proven to yield impressively robust

tracking results. The probability distribution of the hidden target state st of the tracked

object at time step t is estimated using a set of NP weighted particles St = {sit, wit} with
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Figure 3.7: Left: Positive detections in frame t with AuCCA forward displacement vectors for
t + τ . Right: Detector evaluation of proposed positions at t + τ and backward displacements
for positive detections with consistent backward mapping. Green and red bounding boxes show
ground-truth for time t and t+ τ , respectively.

i = 1...NP at time-step t, and associated measurements zit. Each particle xit simulates the

real hidden state of the object, using the dynamic model p(sit|sit−1) and the observation

likelihood p(zit|sit). The object state is approximated by a weighted average over this fi-

nite set of particles. To avoid degeneration of the particle set, re-sampling of particles is

necessary according to their particle weights wit ≈ p(zit|sit), see [9] for more detail.

The most important parameters are the number of particles NP and the choice of the

dynamic model p(sit|sit−1). The better the motion model the less particles are needed and

a small re-sampling rate would indicate a good fit. In addition, the efficiency is increased,

as the runtime is linear according to the number of particles. Classical choices for the

dynamic model are a random walk, e.g., used for activity tracking in [102], where motion

is modeled by Gaussian noise sit−1 + N (0, σt). Obviously this is very inefficient as no

information about current object motion is incorporated, but a general choice if nothing

about the objects behavior is known. A slightly advanced version would be a constant

velocity model, where in addition to Gaussian noise (u, v) as velocity at t − 1 are added

to move particles to st [182].

None of the previous mentioned approaches incorporates the circumstance, that during

tracking of activities prior knowledge about activity specific motion is given. In addition,

the particle filter approach is perfectly suited for incorporation an individual motion model

per sit−1. Given the learning frameworks presented in Section 3.3, we can directly integrate

their temporal displacement proposals into the motion model. For each particle state

sit−1, describing a potential position, we can extract a feature vector xit−1. Evaluate

this feature with the proposed AuCCA model yields a displacement suggestions d̂i, and

if needed together with estimated class labels ŷi. The transition to sit is modeled by

d̂i+N (0, σd), where in case σd << σt and is mainly needed for diffusing particle positions

after re-sampling. Experiments show a evaluation and comparison to optical flow based

and random-walk motion models for displacements proposed over several frames.
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3.4 Experiments

The following section we give a detailed analysis of the temporal prototype feature weight-

ing (TPFW) and the augmented canonical correlation analysis (AUCCA and compare

to related approaches, considering own previous publications and state-of-the-art results

at the time of publications underlying to this chapter.

The selected datasets where trend-setting during the time the experiments where per-

formed, namely the Weizmann and the KTH human action dataset for the TPFW, and

additionally the UCF sports dataset for the AUCCA. The capabilities of training and

testing between different datasets with variable background structure was tested using the

Weizmann robust dataset.

3.4.1 Benchmark datasets

Weizmann human action dataset [12] is a publicly available dataset, that originally

contains 81 low resolution videos (180 × 144) of nine subjects performing nine different

actions: running, jumping in place, bending, waving with one hand, jumping jack, jumping

sideways, jumping forward, walking, and waving with two hands. Subsequently, a tenth

action, jumping on one leg (skip), was added [57]. Illustrative examples for each of these

actions are shown in Figure 3.8.

Figure 3.8: Examples from the Weizmann human activity dataset.

Alternatively, the Weizmann-Robustness dataset2, a less well known dataset with clut-

tered backgrounds and high irregularities within the performed activities, see Figure 3.9.

This dataset will be applied to analyze capabilities of the proposed AUCCA approach for

transferring activity detectors to new environments.

KTH human action dataset, originally created by [142], consists of 600 videos (160×
120), with 25 persons performing six human action in four different scenarios: outdoors

(s1 ), outdoors with scale variation (s2 ), outdoors with different clothes (s3 ), and indoors

(s4 ). Illustrative examples for each of these actions are shown in Figure 3.10.

2http://www.wisdom.weizmann.ac.il/vision/VideoAnalysis/Demos/SpaceTimeActions/DB/robust-
deform.zip
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Figure 3.9: Examples from the Weizmann ”robust” activity dataset.

Figure 3.10: Examples from the KTH activity dataset.

UCF sports dataset is a collection of low-quality television broadcasts, containing 150

videos of various sports. This dataset depicts challenging scenarios including camera mo-

tion, cluttered backgrounds, and non-rigid object deformations. Furthermore, it provides

ground truth bounding box annotations for all activities. Therefore, it is highly applicable

to evaluate motion estimation and activity tracking.

Figure 3.11: Examples from the UCF sports activity dataset.

In the first part of the experiments the advantage of a flexible feature weighting over

time in comparison to other weighting schemes is proven. Results on short and long-term

sequences perform favorable in comparison to state-of-the-art and own previous publica-

tions. The second part discusses the possibilities of learning motion vectors, and compares

to basic methods for motion propagation like optical flow. As an application example the

learned motion models are applied for adopting detectors to new scenes and backgrounds.

3.4.2 Analysis of Prototype-based Learning

In the following, the prototype-based action recognition approach TPFW is evaluated,

where several experiments on publicly available action recognition benchmark datasets,
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i.e. Weizmann and KTH are performed. First a detailed analysis of prototype-based

action recognition is given and shows that temporal information can be useful to improve

the classification results. Next, a comparison against own previous research [136] on

learning global weights for features is done, showing the advantage of learning weights per

prototypes. Finally, a detailed comparison to published state-of-the-art action recognition

approaches is given. In both cases, the given results were obtained by a leave-one-out

cross-evaluation [141, 162] (i.e. we used all but one individuals for training and evaluated

the learned model for the missing one).

First of all, a detailed analysis of the TPFW action recognition approach is carried

out, by analyzing the influence of the parameters to the hierarchical k-means tree and the

bag size for the temporal weighting. For that purpose, several experiments varying these

parameters on the Weizmann dataset are performed. The corresponding results are given

in Fig. 3.12.

Three main trends can be recognized. First, increasing the temporal bag size, which

was varied between 3 and 9 increases the classification accuracy. However, using a bag

size greater than 5 has only little influence on the classification performance. The bag

size defines the temporal memory of prototypes, meaning the influence, importance or

discriminative information of successive prototype sequences. If longer sequence lengths

are analyzed the ambiguities may be stronger than the additionally gained information.

Further, the datasets often contains repetitive activities where individual motion patterns

are only a few frames long and no additional discriminative information can be gathered

by adding more frames. Nevertheless the results show that TPFW is capable and flexible

enough to adopt to different demands. Furthermore, TPFW can describe longer sequences

than, e.g., the n-gram approach by [162] and therefore leading to better results, as dis-

cussed in section 3.4.4, and still more flexible than global weighting approaches as [136],

described in section3.4.3.

Second, increasing the number of prototypes (using different tree parameters, i.e., split

criteria and depth) increases the classification power. However, if the number of possible

prototypes gets too large, i.e., too many leaf nodes are weakly populated, the classification

power is decreased. Experiments show that the optimum number is around 28 for the

tested datasets. While splitting the training data into more prototypes may be beneficial

for getting discriminative hierarchies, it is contradictory for the statistical information

of prototype sequences. Fortunately, this effect can be handled during training by using

validation data and iteratively grow the hierarchies and train the temporal weights.

Third, it can be seen that using the proposed weighting scheme the single cue classi-

fication results as well as a naive combination can clearly be outperformed. In addition,

Fig. 3.12(b) shows that averaging the single cue classification results over the temporal

bags almost reaches the classification result if the whole sequences are analyzed.

Next, a comparison of different evaluation strategies for TPFW is done in detail for the

Weizmann as well as for the KTH dataset. In addition, we show results of the underlying

features (on single frame basis) without using the temporal weighting:
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Figure 3.12: Classification results on the Weizmann dataset with different numbers of prototypes
by varying parameters for hierarchical k-means tree and temporal bags: (a) single frame results
and (b) bag averaged results.

1. TPFW:

(a) Single frame evaluation
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(b) Averaging the single frame results over temporal bags

(c) Analyzing the whole sequence (using a majority voting)

2. Feature combination:

(a) Analyzing the best single feature cue

(b) Naive feature combination (majority voting)

Based on the results shown in Fig. 3.12 for the remaining experiments we set the bag

size to 5 and used a binary split criterion. The thus obtained results are summarized in

Table 3.1 for the Weizmann dataset and in Table 3.2 for the KTH dataset.

TPFW
single bag all best comb.
frame average video feature features #proto.

28 92.4% 94.5% 97.8% 60.1% 84.6% 122

212 92.4% 94.2% 100.0% 70.2% 89.9% 614

Table 3.1: Overview of recognition results on the Weizmann-10 dataset using 2-means clustering
on a maximal depth of 8 and 12, respectively. TPFW is able to perform nearly equally and
compensate the weak representation, even with a strong variation of the hierarchies, while the
underlying features are improving significantly with larger prototype sets.

From Table 3.1 the benefits of the proposed method clearly visible. In fact, considering

a tree-size of 28 the best single feature cue provides a classification result of approximative

60%. If the four cues are naively combined the overall classification result can improve to

85%. In contrast, using the proposed temporal weighting (with a bag size of 5 frames) an

improvement of the classification rate by 7%, by further averaging over the bag even 9%,

can be obtained. If the whole sequence is analyzed, we finally get a correct classification

rate of 98%, which can further be improved to 100% if the tree depth is increased.

The same trend can be recognized for the KTH dataset in Table 3.2, where we split

the results for the four sub-sets. In particular, there is a significant improvement using

the proposed method compared to the best single feature cue and the naive combination.

However, as can be seen, the single frame classification result is less improved by averaging

over the temporal bag. This can be explained by the difference between KTH and Weiz-

mann datasets, where the former contains solely repetitive activities with high frequency,

in which case the temporal context is less informative. But if the whole sequences are

analyzed, still a considerable improvement can be recognized.

3.4.3 Evaluation of global feature weighting

During research previous to the results within this chapter, the effect of learning global

weights for different features, depending on the activities, has been analyzed and published

together with several colleagues in [136]. Following previous action recognition methods,
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TPFW
single bag all best comb.
frame average video feature features #proto.

s1 92.7% 92.7% 97.3% 69.4% 90.1% 113

s2 89.1% 90.6% 94.7% 59.0% 82.0% 118

s3 93.4% 94.5% 98.7% 71.0% 88.0% 116

s4 91.6% 91.7% 98.7% 63.0% 91.9% 109

Table 3.2: Overview of recognition results on KTH dataset using 2-means clustering on a maximal
depth of 8. TPFW clearly outperforms the pure feature based results.

which applied different cues such as motion and appearance (e.g., [69, 141]) and also

explored the importance of weighting these different cues, we enhanced those ideas and

analyzed the possibilities of learning global weights per individual activity. Their results

showed that selecting the weights in the range 0.4−0.6 provide the best results, where only

a global weighting was considered. However, considering different weights for different

actions might be meaningful. For instance an action like “running” may benefit more

from motion compared to an action like “waving with one hand”, where shape is ore

beneficial. For that purpose, given specific actions, we applied Multi-Kernel-Learning

(MKL) to estimate the optimal weights for the different information cues. Thus, in the

following a summary of the outcomes in Roth et al. [136] is given, with a detailed evaluation

on the importance and the influence of weighting for action recognition.

3.4.3.1 Multi Kernel Learning

Based on Multiple Kernel Learning (MKL) [93, 129, 153] a method to combine data from

multiple information sources, the main idea is to create a weighted linear combination

of the kernels obtained from each information source. Moreover, in Rakotomamonjy et

al. [129] it was shown that by using multiple kernels instead of one a more effective decision

function can be obtained. In particular, given two feature vectors x and x′, the kernel

K(x,x′) can be considered a convex combination of M basis kernels Kj(x,x
′):

K(x,x′) =
M∑
j=1

djKj(x,x
′), (3.5)

where dj ≥ 0 are the weights of the kernels Kj and
∑M

j=1 dj = 1. Thus, the decision

function g(x) of an SVM with multiple kernels can be represented as

g(x) =

N∑
i=1

αiyiK(xi,x)− b

=
N∑
i=1

αiyi

M∑
j=1

djKj(xi,x
′)− b,

(3.6)
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where xi are the training samples and yi ∈ {−1,+1} are the corresponding class labels.

Hence, when training an MKL model the goal is to learn both, the coefficients αi and the

weights dm, in parallel.

3.4.3.2 Results on Global Feature Weighting with MKL

Within the experiments in [136] we analyzed the importance of each information source

for the classification task considering the MKL weights, which were estimated for linear

kernels using the MKL method introduced in [129]. Having only two cues, the convex

combination of the basis kernels in Eq. (3.5) can be simplified to

K(x,x′) = dmotKmot(x,x
′) + dappKapp(x,x

′) , (3.7)

where the subscripts mot and app indicate the motion and the appearance components,

respectively. The thus obtained results obtained for the standard Weizmann and KTH

benchmark datasets described in Section 3.4.1. The advantage of applying non-negative

matrix factorization (NMF) has already been shown within an earlier publication [159].

Results in [136] are based on those findings, therefore results for 10 and 100 NMF ba-

sis vectors are illustrated in Figure 3.13 and Figure 3.14, respectively. A more detailed

description on NMF is given in chapter 4 of this thesis.

(a) (b)

Figure 3.13: MKL weights using linear kernels for the Weizmann (a) and the KTH (b) dataset
for an NMF representation of 10 modes. As the representation with 10 basis vectors only is
not sufficient, feature weights play an important role. Static activities get more bias towards
appearance and shape, while dynamic activities favour the motion features.

These results clearly show that the different cues have different importance for differ-

ent data; especially, if the representation size is quite small (see Figure 3.13). However,

they also show that increasing the representation size (such that sufficient classification

results can be obtained) the importance of weights is decreasing (see Figure 3.14). If the

representation size is further increased, all weights are reaching approx. 0.5. Here, one
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(a) (b)

Figure 3.14: MKL weights using linear kernels for the Weizmann (a) and the KTH (b) dataset
for an NMF representation of 100 modes. Where there is still a small difference in weighting
between static and dynamic activities in both datasets, it is getting less significant with more a
discriminative representation using more basis vectors.

should remember the representation size of 600 prototypes for the TPFW experiments.

Moreover, for those actions where the classifications “fail” the weights are very similar

and can thus not help to increase the classification power! Again, our results within [136]

showed that global weighting of features has limitations. In contrast we will see in the

following comparison to state of the art the advantage of local temporal weightings of

TPFW.

3.4.4 Comparison of TPFW to the State-of-the-Art

Finally, a comparative study of TPFW approach compared to state-of-the-art action recog-

nition methods on the Weizmann and the KTH dataset is performed. Since different

authors used different versions of the Weizmann dataset, i.e., 9 vs. 10 actions, we split

the Weizmann experiment into two parts. In particular, we compared our approach to

Schindler & van Gool [141] and to Thurau & Hlaváč [162], which are most similar to our

method – also providing an analysis on short frame basis – and to recent methods reported

the highest classification results. The thus obtained results are given in Tables 3.3–3.4.

The best classification results when analyzing the whole sequence are set boldface, respec-

tively.

It can be seen from Table 3.3 that TPFW obtains competitive results on short frame

basis and also when analyzing the whole sequence. In fact, it can be seen that one obtains

comparable results to Schindler & v. Gool and that TPFW clearly can outperforms the

approach of Thurau & Hlaváč on short frame basis. Moreover, when analyzing the whole

sequence for both data sets we obtain classification results of 100%. Finally, the same

experiments are carried out for the KTH dataset, showing the results in Table 3.4. Again,

it can be seen that TPFW obtains competitive results on short frame basis as well as
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method rec.-rate #frames

proposed 94.9% 1/5
100.0% all

Roth et al. [136] 97.0% 2

Schindler [141] 93.5% 1/2
& v. Gool 96.6% 3/3

99.6% 10/10

Blank et al. [12] 99.6% all

Jhuang et al. [76] 98.8% all

(a) Weizmann-09

method rec.-rate #frames

TPFW 92.4% 1/5
94.2% 5/5

100.0% all

Roth et al. [136] 94.2% 2

Thurau 70.4% 1
& Hlaváč [162] 94.4% 30/30

Gorelick et al. [57] 98.0% all

Lin et al. [102] 100.0% all

Fathi & Mori [47] 100.0% all

(b) Weizmann-10

Table 3.3: Recognition rates and number of frames used for different approaches reported for the
Weizmann dataset. The best results are shown in bold-face, respectively.

when analyzing the whole sequence, even (significantly) outperforming most state-of-the-

art methods an all four data sets. In particular, also on this dataset TPFW outperforms

the approach of Schindler & van Gool on short frame basis and yield the best overall

performance for the full sequence analysis!

In summary, we see that in comparison to related approaches also exploiting temporal

relations or feature weighting, TPFW performs favorable. This supports the original idea

of this work that local temporal weighting and relations between individual prototypes are

beneficial and that TPFW is capable of exploiting this information to generate superior

results.

3.4.5 Learning Spatio-Temporal Relations with AUCCA

The above discussed TPFW approach assumes already annotated training data to create

prototype representation and temporal weighting functions. Generating this annotation
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s1 s2 s3 s4 average # frames

TPFW 92.7% 89.1% 86.1% 91.3% 89.8% 1/5
92.6% 90.6% 94.5% 91.7% 92.4% 5/5
97.3% 94.7% 98.7% 98.7% 97.4% all

Roth et al. 88.1% 84.1% - 88.4% - 2

Schindler & 90.9% 78.1% 88.5% 92.2% 87.4% 1/2
v. Gool [141] 93.0% 81.1% 92.1% 96.7% 90.2% 7/7

Lin et al. [102] 98.8% 94.0% 94.8% 95.5% 95.8% all (NN)
97.5% 86.2% 91.1% 90.3% 91.3% all (proto.)

Yao and Zhu[183] 90.1% 84.5% 86.1% 91.3% 88.0% all

Jhuang et al. [76] 96.0% 87.2% 91.7% 95.7% 92.7% all

Table 3.4: Recognition rates and number of required frames for different approaches reported for
the KTH dataset. The best results are shown in bold-face, respectively.

can be an expensive task and may be repeated if the dataset if enlarged by new activity,

repetitions, backgrounds or environments. Further, for many applications the focus lies

more on detection, tracking and linking of activities. The proposed AUCCA method

presented in Section 3.3 tackles exactly this problem of learning correct spatio-temporal

motion predictions. Within the the following experimental section an evaluation on the

two main fields of application is done: first, verification of motion prediction accuracy

and comparison to alternative approaches and second supporting adoption of activity

classification and detection to a new dataset.

We use Weizmann3 dataset [57] and UCF-Sports4 [133] for evaluation of the AUCCA

framework. Both datasets allow for object centered recognition and contain activities

with different or alternating motion directions. Please note that we do not tend towards

breaking recognition scores. Especially for the UCF-Sports dataset global representations

on video level show superior results [168], while such results may be somehow misleading.

The activity defining the label of a video may only occupy a fraction of the video volume.

Therefore, global representations are influenced more by the global motion and small

background inner class variability of this dataset, than by the activity itself. They may

fulfill their task in solving the dataset, but within this work the focus of interest lies

on exploiting the objects motion related its current activity, and in generating detection

”tracklets” throughout videos. We compensate for global camera motion to estimate the

real objects motion for training and testing. Otherwise the object centered camera motion

gives a too strong prior to evaluate for displacement estimation. Note that for tracking

our proposed motion estimation could be combined with global motion in the same way

is shown in [182].

3http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
4http://server.cs.ucf.edu/ vision/data.html

Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()




3.4. Experiments 51

3.4.6 Complexity Analysis

We start with a general evaluation of the compared motion estimation models, namely the

AuCCA, Random Forest(RF) and the k-means hierarchies (Kmeans). We chose classical

features for describing the activities by using HoG and HoF features for Weizmann, and in

addition bag-of-words histograms describing the spatio-temporal interest points in a local

surrounding of the objects for UCF-Sports. To emphasize the efficient representation using

AuCCA, we compare training and evaluation time of a cross validation run on UCF-sports.

On average training AuCCA takes 33.3sec respectively. In comparison on the same PC and

the same training set RF, with 5 trees of maximum depth 10, trains 1400sec and Kmeans,

5 hierarchies with k = 4 and maximum depth 5, even trains 4044sec. Evaluation takes

0.23sec for AuCCA, 9sec for RF and 20sec for Kmeans. Concerning efficiency, AUCCA

is a light-weight and efficient approach, fast in training and evaluation. In contrast to the

evaluated competitors no complex structure has to stored and loaded for evaluation.

3.4.7 Comparison of Motion Estimation and Particle Behavior

One motivation for AUCCA was to estimate spatio-temporal displacements from high-

dimensional feature description within training data, and to show that this is superior

compared to random sampling or optical flow driven motion models. First, the capabilities

of the individual methods proposed in Section 3.3 are analyzed and compared to optical

flow based displacement estimations. Average results for Weizmann and UCF are shown

in Figure 3.15 and Figure 3.17.

Different displacements were trained, from τ = 1, ..., 5 frames, and compared to optical

flow with a constant velocity assumption, meaning that current flow at time t is propagated

linear by multiplying with τ . We group together results for static activities like wave and

bend for Weizmann and golf and lifting, and show individual results for the dynamic

activities. When evaluating the prediction for different temporal ranges; e.g., τ = 1 − 5

as in Figure 3.16, one can clearly see that optical flow is not a good choice for predicting

object motions from current activity detections over several frames. The results of all

evaluated methods are in the same range with minor deviations only, but in relation

to the complexity and runtime of the methods evaluated before, AUCCA is the most

efficient one. The spatial resolution of all compared methods is limited with the cell-size

of the underlying descriptors. Therefore, this cell-size factor is visualized for comparison

in Figure 3.15 and Figure 3.16.

Evaluating the applicability of the activity linking particle filter approach discussed in

Section 3.3.5, we compared our activity specific displacements learned with AuCCA and a

random walk model. We made two tracking runs on UCF sports, once with random walk

motion model for a particle filter (see Section 3.3.5), and the other with AuCCA motion

propositions per particle. To allow for fair comparison, the underlying detector was the

same for both tracking runs. This guarantees that particle weights are not influenced by

a better representation, solely using the displacement values of the AuCCA and not the
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a)

b)

Figure 3.15: Results of object motion estimation for τ = 3 frames on the Weizmann dataset
for different methods (AUCCA, RF, kMeans): a) HOG features only, therefore solely appearance
information is used to estimate motion. b) Additionally HoF features increase the estimation
accuracy especially for non-smooth motions like ”skip”, ”side” and ”jump”. Propagation of optical-
flow estimation is not effective, except static and solely vertical motions like ”pjump” and ”jack”.

Figure 3.16: Results of object motion estimation for different τ . For temporal displacements
longer than 2 frame, optical flow is not applicable anymore.
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Figure 3.17: Results of object motion estimation for τ = 3 frames on the UCF sports dataset.
We see a wider distribution of optical-flow predictions in contrast to the learned predictions.

classification results nor the coefficient values. We made two tests with random walk (RW),

first with set of NP = 100 particles and σt = 50 and second with NP = 100 σt = 200. The

AuCCA particle filter used only NP = 30 and σt = 25 to noise resampled particles. The

average errors to target position for testing on diving, riding, run and swing-side where

15.86pix for the AuCCA, 12.64pix for RW100 and 7.83pix for RW200. This shows that

our proposed voting scheme is accurate enough and allows for significant smaller particle

sets. Nevertheless, the performance is sufficient but not superior compared to the more

simple random-walk particle filter approach. The outcome of our investigation was that

the videos within the UCF dataset are mostly centered around the object, and therefore

the main tracking is already done by the camera man.

3.4.8 Unsupervised Adaption via Forward-Backward Regularization

Considering the results in Section 3.4.6 and Section 3.4.7, AUCCA is capable of performing

the motion prediction task with the same accuracy as more heavy competitors within less

time and lower resources. Besides the above discussed issue of motion prediction for

tracking, another important application is the support of training activity detectors or

adopt them to new dataset or background modalities. We tested our forward-backward

consistency regularization, motivated in Section 3.3.4, within the task of unsupervised

scene adaption of an activity detector. We trained a walking detector (SVM with linear

kernel) using solely positive and negative samples from the Weizmann dataset, and in

addition the motion prediction as depicted in the above sections. In contrast to tracking,

two predictions were trained independently for temporal forward and backward prediction.

For testing the adaption capabilities, the Weizmann-Robustness dataset5, a less well

5http://www.wisdom.weizmann.ac.il/vision/VideoAnalysis/Demos/SpaceTimeActions/DB/robust-
deform.zip
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known dataset with cluttered backgrounds and high irregularities within actions, see Fig-

ure 3.19 and Figure 3.9, offers a perfect set to test for robustness of our proposed approach.

In Figure 3.18 we compare the performance of the originally trained detector (base-

line) with the results of forward-backward consistency checked detections (AuCCA reg-

ularized), which shows a clear reduction of false positives. The poor performance of the

baseline classifier is induced by the lack of meaningful background samples during training.

Consistency checks within the forward-backward consistency checks allow for automatic

generation of new positive and especially negative training samples, which are incorporated

into a update of the detector via boot-strapping, leading to further enhanced detection

results (retrained). Results in Figure 3.19 show the capability of AuCCA for mining new

training samples by exploiting activity specific motions.

Figure 3.18: Left: Results of unsupervised activity detector training using AuCCA for-
ward/backward mapping (τ = 5). Right: Examples of positive(green), neutral(yellow) and neg-
ative (red) updates generated by the forward-backward regularization based on AUCCA motion
predictions. The high amount of detections on background depicts the accuracy of the baseline
detector.

3.5 Discussion of Results

Temporal relations are a vital source of information for many activity related tasks. At

the time of the underlying publications for this chapter, related approaches were focused

mainly on two subsequent frames to create motion features, or on the creation of global

classifiers of complete activity videos. In addition, fully supervised training data was

assumed as standard.
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Figure 3.19: Several examples for sorting out wrong detections by forward and backward prop-
agation with the proposed AUCCA method. Left column depicts the original detections within
frame τ , with detections and estimated forward voting as colored points and lines. Green and red
bounding boxes annotate the related ground truth for τ and τ + 3, respectively. Middle column
contains detection evaluation results on positions given by the voting lines from the left column in
frame τ + 3. Only valid detections again have a backward voting pointing to the estimated posi-
tion in frame τ . Final validated detections in frame τ are visualized in the right column. Green
bounding boxes depict new positive and red ones are handled as negative training samples for the
next boot strapping round. Yellow samples are neglected for further training as they are assumed
to be too uncertain to be added as new training data.
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In contrast to those assumptions, the importance and advantages of observing local

time windows in the context of their neighboring video frames has been shown within this

chapter on two examples. First, the temporal prototype feature weighting (TPFW) and

second the augmented canonical correlation analysis (AUCCA).

TPFW allows for learning the relations between different feature cues and their specific

weighting for different temporal segments of an activity. This is realized with a prototype

learning approach independently for each feature cues, followed by a probabilistic weight-

ing scheme, were each prototype predicts the upcoming likelihood of all feature cues for

following video frames. Experimental results show the advantage of TPFW compared to

own previous publications and related state-of-the-art approaches. Even the comparison

to feature cue learning mechanisms like MKL is favorable for TPFW.

AUCCA on the other hand, is a lightweight and efficient method to learn and predict

classification and motion specific data in a combined way. The proposed AuCCA allows for

unsupervised mining new training samples and post-processing of false positive detections

by exploiting activity specific motions. Integrated into a particle filter framework the

number of required particles can be drastically reduced, while still showing competitive

results.

Although both methods have been discussed separately within this chapter, they share

more than the underlying idea of exploiting temporal knowledge for better activity recog-

nition and detection. A sequential or iterative combination of AUCCA for detection and

regularization of activity sequences which would be input to TPFW would be obvious

extension. Further, the intermediate representation found by AUCCA may be a vital

information and pre-processing step before classification. The coefficients learned with

AUCCA are much lower dimensional compared to the original one used within this paper,

and optimize already for a representation of different classes within the coefficient space.

To merge prototype based representation within hierarchies and AUCCA for feature repre-

sentation and prediction of augmented data would have been logical extensions of the work

presented in this chapter. Within literature one can find at least two examples of applying

this idea for successful classification tasks, like the work by Donoser and Schmalstieg [39]

and Rainforth and Wood within their Canonical Correlation Forests [128]. Within both

publications CCA is applied as a pre-processing step to generate more natural feature

representation using the CCA coefficients before training the classifier. In [128] this idea

is extended to the Random Forest Framework by generating coefficient within each node

of the trees.

Beside my papers which form the basis to this chapter [136, 159–161] , further outcome

of this developments has found their way into the master thesis of Markus Murschitz [113],

and Georg Waltner [165], who both were able to publish their findings on online activity

classification for video games [114] and analysis of sports videos [166].
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4
Learning and Detecting Activities from

Ambiguously Labeled Data

The previous chapter analyzed the possibilities of substituting missing label information by

temporal knowledge of activity motions. A lack of annotation information and background

knowledge has been compensated by transferring activity detectors and learned motion

patterns, for robust detection and retraining in new environments. Once enough data and

labeling information is given, training efficient activity classifiers is solely dependent on the

complexity and intra-class variability of the underlying activity videos. But all approaches

discussed within the previous chapter assumed some kind of full supervision, according

localization and labels of activities in videos. Training gets much more complex if such

labeling is only given on a global basis, e.g., no bounding-box annotation of activities

is given, or labeling information is even ambiguous, meaning more than one activity are

happening simultaneously. In contrast, data annotation is a time consuming task and

therefore, especially for all computer vision tasks within space and time domain, difficult

to manage. This motivated the research presented within this chapter which focuses on

training activity descriptors from ambiguous labeled data and tackling the task of solely

global video descriptions and simultaneously executed activities.
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4.1 Motivation

Many successful approaches are inspired by object detection and recognition methods,

which are adapted into the spatio-temporal domain. Therefore, we have to deal with a

large amount of data, which also increases the labeling effort. Moreover, as illustrated in

Figure 4.1, the annotation of activities suffers from multiple problems as simple bounding-

box descriptions may be too loose, non-rigid activities might change the required extent of

the bounding box over time and thus often also incoherent background information is cap-

tured. If multiple activities may occur simultaneously, a global representation is insufficient

and ambiguous, therefore leading to multi-instance multi-label problems when attempting

to learn without supervision. But one would be interested in learning a compact, task

specific and discriminative representation, which would be beneficial when dealing with

large amount of data. But training of discriminative code-books is challenging when no

distinct labels are available. Learning sparse code-books serving as compact and efficient

mid-level representation has recently gained much attention for activity recognition. This

is in particular beneficial if additionally label information is provided, and discriminative

code-books can be generated. As already discussed within the experimental section Chap-

ter 3, trained compact and low dimensional representation by basis vectors may generate

comparable results in relation to high dimensional feature vectors. However, we are facing

two main problems: First, providing labels for the data is not only very time consum-

ing (especially, for large datasets) but also very complicated for the given task due to

strongly articulated, prolonged and non-rigid activities. Second, existing discriminative

sparse coding approaches are not robust in case of label noise or ambiguously labeled data

(e.g., background motion or multiple parallel activities). In this chapter, both problems

are tackled in parallel, by proposing a new sparse coding framework allowing for learning

activities from ambiguous and global labels. This is realized by training pair-wise ex-

cluding code-books for class specific weighted representations. Such pair-wise comparison

are exploited to iteratively decrease the ambiguity of labels. The proposed approach is

capable of relabeling ambiguous samples and to create sparse discriminative representa-

tions jointly in an iterative adaptive manner. Within a bagging approach the term of

pair-wise excluding sets is defined, where weighted sparse code-books are trained for each

pair-wise label ambiguity separately within a bagging framework. Samples within a bag

are encoded by those code-books, trained on independent out-of-bag data. Experimen-

tal results will show how to robustly relabel samples by ranking the coefficients of that

encoding. As we build on ranking by pair-wise code-books trained with a soft-weighted

non-negative matrix [96] factorization we denote our approach PR-SNMF. In addition

we adopt discriminative sparse coding approaches, like JNMF [59] and LC K-SVD [6],

to handle ambiguous labeled data. Within the experimental evaluation, we demonstrate

the generality of our approach for diverse labeling problems with emphasis on activity

recognition and detection. We evaluate our PR-SNMF approach on different ambiguous

label problems and compare to related encoding (JNMF, LC-KSVD) and machine learning
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approaches like DA-Mil [55] and negative data mining [152].

skate
wave 1left_a / up

legs / closed

<boxing, neutral> <handshake, kick>

Figure 4.1: Different examples for activity annotation. Top row depicts an examples for coarse
spatial bounding-box (left) and detailed body-parts annotation (right). Bottom row shows typical
ambiguities if only global class labels are given for multiple activities within a video.

4.2 Related Approaches for Learning from Weakly Labeled

Data

Solving the ambiguities of weakly labeled data for activity recognition was up to now

strongly related to learn correct positions of activities versus the background noise, given

a global temporal annotation on activities within a certain time slot [66, 92, 95, 146, 152].

This binary classification problem has often been interpreted as a multiple instance learn-

ing (MIL) problem, structuring the data into positive and negative bags, where positive

bags must contain at least one positive instance, and there are not further restrictions for

the negative bags. Hence, the global annotation information can be used to label those

bags [66, 92, 146, 152]. Similarly, subtitle information was taken as weak label information

in [17, 95].
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Even though in this way the labeling effort can be drastically reduced, the correct

selection of instances per bag is still a critical problem. To alleviate this problem, often

general pedestrian detectors are applied [66, 152]. However, such approaches are failing

if we have to deal with strong deformations or interactions, which are wrongly classified

as non-person regions. Furthermore, general pedestrian detectors often generate many

additional detections in crowded scenes, and therefore create additional ambiguities if not

handled separately, e.g., by considering the amount of spatio-temporal key-points with the

detection [152].

A more general approach is to use of a generic objectness detector [7] for generating

instances for positive bags. But such approaches tend to favor highly textured or salient

regions, which need not necessarily to be the activity regions as can be seen in [146].

Another variant is the separate training of a generic detector for specific datasets [52, 92],

but this can be interpreted as additional indirect annotation information. [130, 185]

train with a small amount of spatio-temporal labeled data and an additional larger set of

ambiguous data. The problem of relabeling multiple concurrent activities per video has

not been tackled by the above mentioned approaches.

Concerning feature representation, the above mentioned activity recognition methods

build on highly engineered but generic spatio-temporal key-point detectors and descrip-

tors. Without deprecating the importance of those developments, the strong variety of

parametrization for individual parts of the feature pipeline for distinct datasets shows that

there must be a better way of learning features for representation.

Ren and Ramanan [132] have shown that for object detection a learned sparse rep-

resentation of local patches, aggregated into a histogram of sparse coefficients, can be

much more expressive than HOG-based features. Also earlier works in activity recogni-

tion have demonstrated the beneficial behavior of sparse codes for supervised annotated

data [25, 70, 136, 162, 193]. In particular [25, 162] show that the label likelihood of

samples can be estimated from encoding coefficients, when distinct training labels are

given. Learning discriminative code-books for classification of activities was limited to

fully supervised data, like in [79, 124]. Nevertheless, all approaches showed the superior

performance of a trained discriminative sparse code-book description compared to generic

features representation. In a different domain Chen et al. [29] have learned discriminative

sparse code-books for learning from ambiguously labeled data while creating a more ex-

pressive dictionary for classification. Concurrent possible active labels are problem known

to learning faces from weakly labeled data like TV series [33]. Those approaches for

learning from ambiguous labeled data are closely related to our approach

4.3 Learning from Ambiguous Labels

When learning a discriminative code-book or classifier, typically a sample xi ∈ IRd is

associated with a distinct label yi. However, as illustrated in Fig. 4.2, a sample can also

be assigned multiple labels l ∈ {1, . . . , L}, which can be represented by a vector yi. In the
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following, V = {xi,yi}Ni=1 refers to a multi-label dataset, with data matrix X ∈ IRd×N

and label matrix Y ∈ IRL×N . In our case, each column yi in Y is treated as a vector of

label probabilities with yi(l) ∈ [0, 1] and
∑

l yi(l) = 1. The goal is to estimate the correct

labels for individual samples xi while simultaneously creating a discriminative code-book

for efficient representation of the data.

In the following, the generative and discriminative code-book learning via Non-negative

Matrix Factorization (NMF) is reviewed for completeness. Following that, a new SoftNMF

(SNMF) is proposed in Section 4.4.1, which allows incorporating label probability weights

when building a sparse code-book. Then, in Section 4.4.2 and 4.4.6 the Pairwise Compar-

ison Ranking (PR) is motivated with respect to SNMF representations and describe an

iterative training scheme, finally yielding discriminative codes and providing the correct

labels within T iterative updates of Y.

4.3.1 Dictionary Learning with Non-negative Matrix Factorization

To create a mid-level representation for learning from ambiguous data, basic ideas from

non-negative matrix factorization (NMF) are adopted for two reasons. First, many rep-

resentations fulfill the non-negativity constraint and, second, the strictly additive combi-

nation allows for direct combination of individual bases. In general, let X ∈ IRd×N be a

non-negative matrix, then the goal of NMF is to find a non-negative code-book matrix

D ∈ IRd×K with K dictionary elements and an encoding matrix H ∈ IRK×N that approx-

imate the original data by X ≈ DH. Therefore, we consider the optimization problem,

min ‖X−DH‖2F s.t. D,H ≥ 0 , (4.1)

where ||.||F denotes the Frobenius norm. Since there exists no closed-form solution, the

matrices D and H have to be estimated in an iterative way. Using a gradient formulation,

one gets an iterative solution for the optimization problem in Eq. (4.1) by the multiplicative

update rules [96]:

H← H ◦
[
D>X

][
D>DH

] D← D ◦
[
XH>

][
DHH>

] , (4.2)

where ◦ denotes the Hadamard product and [.]/[.] an element-wise division. In the follow-

ing, this this formulation will be referred to as Non-negative Matrix Factorization (NMF).

To encode a new sample xi during an evaluation, D is kept fixed and only the encoding

step H in Eq. 4.2 is iterated.

4.4 Incorporating Label Information

The original NMF formulation cannot include information given by the label matrix Y.

However, due to the strictly additive combination of weights, it allows for direct combi-
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nation of individual code-book matrices for a joint representation. Therefore, a straight

forward way to incorporate label information is to hard select only samples Xl ⊂ X with

yi(l) > 0 or arg maxk∈L yi(k) = l. In this way, one can create L individual dictionaries Dl

for each class and afterwards combine them again to one code-book D = [D1, . . . ,DL]. In

the following, we will refer this approach to as ClassNMF. This process, however, leads to

indistinct bases when strongly ambiguous labeled sets are given, where no distinct label

information and class membership is given.

4.4.1 Soft Decision Non-negative Matrix Factorization

Although the above introduced ClassNMF approach incorporates discriminative informa-

tion, it relies on a rather hard selection of training samples. Especially within an ambigu-

ously labeled dataset, samples are either neglected or fully incorporated independent from

their label probability.

Hence, this hard selection of training samples is replaced by a soft Non-negative Matrix

Factorization (SNMF) formulation, taking into account the sample specific class proba-

bility yi(l). This is realized by introducing the priority matrix Pl ∈ IRd×Nl , where each

column in Pl is equal to the label confidence yi(l), ∀xi ∈ Xl. Hence, one can re-formulate

the optimization problem in Eq. (4.1) to minimize

‖Xl −DlHl‖2Pl
=
∑
ij

[Pl ◦ (Xl −DlHl) ◦ (Xl −DlHl)]ij , (4.3)

where || · ||Pl
denotes the weighted Euclidean norm defined by the weights in Pl. Thus,

one gets the following multiplicative update rules:

Hl←Hl ◦
[
D>l (Pl ◦Xl)

][
D>l (Pl ◦ (DlHl))

] Dl←Dl ◦
[
(Pl ◦Xl) H>l

][
(Pl ◦ (DlHl)) H>l

] . (4.4)

In this way, training samples are incorporated to each class-specific code-book accord-

ing to their individual label confidence. Thus, a possible error induced by a hard selection

of samples is minimized. Similar as for Eq. (4.2) it can be shown that the weighted Eu-

clidean distance is non-increasing under these update rules. For the mathematical proof

we would refer the reader to the PhD thesis of N.-D. Ho [62]. Finally, the thus ob-

tained class-specific code-books are combined to a joint global code-book concatenation:

D = [D1, . . . ,DL]. To encode a new sample xi during evaluation, keeping D fixed and

only the encoding step H in Eq. (4.2) is iterated.
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4.4.2 Building Pairwise Ranking Sets for Solving Ambiguous Label In-

formation

Even though the weighting SNMF approach introduced in Section 4.4.1 provides much

better representations, the goal would be to generate code-books with high label purity

per code-book vector, i.e., each vector should only be directly related to one specific label

(see [124]). Although we strengthen the label-to-code-book relations with our SNMF

formulation, the challenging problem remains to estimate the influence of a single code-

book vector d for a distinct label l. Applying a weighted update scheme, samples from

different labels are still intermingled and not directly related to specific coefficients in H,

caused by the ambiguity of the training data. To decrease the ambiguity, an iterative

procedure is proposed in the following, where in each iteration the ambiguous samples are

ranked according to their reconstruction by pairwise-label-excluding code-books, instead

of label specific code books.

4.4.3 Out-of-Bag Training

To avoid a bias, the iterative label updates is performed in a bagging procedure. We split

the training set V into B non overlapping bags, where Vb ⊂ V denotes the evaluation

bag and V̂b the corresponding out-of-bag training set V̂b ⊂
{
V\Vb

}
. Within each Vb

we analyze all pairwise label ambiguities, while samples from V̂b are the basis to create a

discriminative code-book to relabel Yb.
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Figure 4.2: Visualization of one training iteration PR-SNMF for relabeling ambiguous data in a
three class problem (blue,green,red), for one bag. 1) Create pairwise-exclude sets for all pairwise

ambiguities, e.g., bag 5, from remaining data in V̂, and train dictionaries by SNMF. 2) Encode
samples in Vb by a joined code-book and relabel Yb using weighted coefficient sums, indicated by
label priorities of individual code-books.
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4.4.4 Pairwise Ranking with Excluding Code-Books

To cope with the ambiguously labeled samples, we adopt the idea of pairwise ranking for

comparison (PR), e.g., [67]. As ranking ambiguously labeled samples cannot be learned

using other samples sharing/including the same labels, the main idea of PR is to run

pairwise excluding comparisons of labels. Within the context of discriminative code-book

learning this can be realized as follows.

For each pair-wise label ambiguity 〈i, j〉 in Vb, we build excluding code-books from

samples X̂〈i,¬j〉 and X̂〈j,¬i〉 from of V̂b, where 〈i,¬j〉 denotes samples labeled with y(i) > 0

and y(j) = 0 (i.e., excluding samples labeled with class j), while all other labels are

neglected. In this way, we can generate a maximum of L(L− 1) pairwise excluding code-

books if all labels L occur in combination with each other within a bag.

For each combination 〈i,¬j〉 in Vb we then compute D〈i,¬j〉 from samples X̂〈i,¬j〉 using

the weighted NMF updates defined in Eq. (4.4), with the corresponding priority matrix

Pi, describing the label confidences of samples in X̂〈i,¬j〉 being from class i given by Ŷ.

Now we exploit the strictly additive combination of coefficients in NMF mentioned in

Section 4.3.1, for encoding all elements Xb by a combined code-book. Let L̃ be the set of

possible labels for Vb, we get η = s(s− 1) pairwise exclusion sets with s = |L̃|. Therefore,

we create a joint dictionary for encoding samples in Xb:

Db =
[
D〈L̃(1),¬L̃(2)〉, ...,D〈L̃(s),¬L̃(s−1)〉

]
. (4.5)

Encoding Xb with Db using the update rules in Eq. (4.2), we obtain Hb, with hbi an

η ·K-dimensional column vector, where K is the number of dictionary elements per D〈i,¬j〉.

The NMF update rule allows selecting bases from all subsets created beforehand, knowing

which specific label was involved in creating the corresponding bases. As all NMF code-

book vectors are normalized, the value of each coefficient in hbi is directly proportional to

the influence of a code-element for the reconstruction of xi. Next, we define how to rank

labels from the obtained hbi and update yi.

4.4.5 Label Ranking by Encoding Coefficients

As discussed above, the coefficients hbi are directly related to their importance for recon-

structing xi. In other words, if many coefficients correspond to a certain code-book set

D〈i,¬j〉, xi has a smaller reconstruction error if built from samples labeled with i but cer-

tainly not with j (see Figure 4.2). As we know which coding vectors in Db are constructed

with priority to a certain label, we can derive a ranking for labels in L̃b according to

selected coefficient sums by

r
(
yi(l)|xi,Hb, Il

)
=

∑
k∈Il hbi(k)∑η·K
k=1 hbi(k)

, (4.6)
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where Il indicates all entries in hbi built with priority Pl for label l, during training the

individual bases for Db (see Figure 4.2 for a visualization). In particular, r(yi(n),xi) �
r(yi(m),x) denotes that label n is more likely for xi than label m, as the normalized

coefficient sum is higher, see [162].

4.4.6 Update Labels According to Encoding Coefficient

Assuming that all r (yi(l)|xi) sum up to 1, we can interpret r(yi(l)|xi) as an approximation

of the likelihood p(xi|l) of xi being from a certain class, and perform a Bayesian update

step:

yt+1
i (l) ≈ p(xi|l)pi(l)∑

l∈L
p(xi|l)pi(l)

, (4.7)

where pi(l) denotes the prior given by yi(l) at iteration t, e.g., the original labeling in-

formation when starting at t = 0. After performing the pair-wise ranking and re-labeling

steps for all B bags, we obtain a new label matrix Y. This alternating procedure of code-

book generation and out-of-bag re-labeling is iteratively repeated during training until a

maximum of T iterations is reached, or the average label difference of Yt −Yt−1 is be-

low a predefined threshold. Solving these previous steps for each sample individually is

infeasible for large scale data. Our approach is scalable in that respect, as we form bags

and create necessary PR only according to pairwise labels within the bag (see Figure 4.2),

and share Db for encoding and relabeling individual xi. Thus, our approach scales with

the number of pair-wise exclusion sets η per bag, see 4.4.4. However, since the degree

of ambiguity (number of labels per samples) is in general relatively small, this can be

easily compensated as the bagging allows effective parallelization. This leads to favorable

run-times compared to other approaches, as will be shown in the experiments.

4.5 Comparison to Related Approaches

Besides the classical NMF variants developed within this chapter, let us compare to other

discriminative sparse coding approaches, namely JNMF [43] and LC-KSVD [79]. As they

are originally formulated to train from supervised data we adopt them to handle and work

with ambiguously labeled training data as described in the following.

4.5.1 Joint Non-negative Matrix Factorization

To enforce the discrimination between different code-book entries and to leverage the su-

pervised information (i.e. labels), several attempts of coupling feature and label space

have been proposed ([59, 103]), summing up in a Joint Non-negative Matrix Factoriza-

tion (JNMF). Learning a fully shared space among feature and auxiliary binary label

information:
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min
D,H,Q

(1− γ) ‖X−DH‖22 + (γ)
∥∥Y−WH

∥∥2

2
s.t. D,H,W ≥ 0 , (4.8)

where Y ∈ IRL×N denotes a hard selected binary label indicator matrix, e.g., by thresh-

olding Y, and W ∈ IRL×K the labeling code-book. The encoding H is jointly optimized

for both input spaces, therefore JNMF is also denoted a multiview learning approach. As

stated by [43], this adaptation could lead to descends into local minima. Thus, the joined

factorization step is performed individually for all L classes, similar to SNMF in Section

3.2. The extension of the iterative updates in Section 4.3.1 are straight forward and can

be found, e.g., in [43].

4.5.2 Label Consistent K-SVD

The original K-SVD algorithm [6] is an iterative approach to minimize the reconstruction

error for X in Eq. (4.9) and learns a reconstructive dictionary for sparse representations

of the input features. Γ is the sparsity constraint factor, defining maximum number

of non-zero code coefficients per sample. The orthogonal matching pursuit algorithm

(OMP) [163] is an efficient way for solving the coding of new test samples, given a trained

dictionary. Jiang et al. [79] extended the optimization in Eq. (4.9) by a label consistency

(LC-KSVD01) and an additional classification error (LC-KSVD02) term for enforcing

discriminative solutions, weighted by α and β respectively:

min
D,H,A,W

‖X−DH‖22 + α ‖Q−AH‖22 + β
∥∥Y−WH

∥∥2

2
s.t.∀i, ‖hi‖0 ≤ Γ (4.9)

In the original formulation in [79], the label consistency is defined in Q ∈ IRK×N ,

a binary coding matrix describing where dictionary item and samples share the same

label. It enforces the signals from one class to be represented by similar sparse codes, i.e.

dictionary entries.

4.5.3 Extensions for Ambiguous Labels

During our evaluations we found that, as for the ClassNMF, the hard indication via

a binary indicator matrix is not beneficial for ambiguously labeled data. We therefore

implemented and adopt the JNMF by replacing the binary information in Y by the cor-

responding label confidences given by Y, denoted JNMF-soft within the experiments. For

LC-KSVD we replace the hard binary selection by setting Q(k, i) = p(j|xi), if dictionary

item k and sample xi are supposed to share label j. As the dictionary is initialized from

small independent dictionaries per class the coding in Q can be directly estimated from the

label information in Y. The labeling information in Y is directly optimized in Eq. (4.9).

Again we adopt this part by using Y, the real valued label confidences, directly instead
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of binary class information. We directly adopted the LC-KSVD code1 provided by the

authors of [79], denoted LC-KSVD-soft in the reminder of this paper. For a more detailed

explanation how to build Q and to initialize D, A and W we would like to refer the reader

to [79]. For a fair comparison, both methods (JNMF, LC-KSVD) are trained in the same

scheme of iteratively updating Y and also Q after each training iteration.

4.6 Experiments

The purpose of the experiments is twofold. First, to demonstrate the benefits of the

proposed PR-NMF algorithm when learning from ambiguously annotated samples, which

is demonstrated for two totally different tasks within Section 4.6.1. On the one hand, a

novel training sets with controlled ambiguity building on the famous Weizmann dataset

is generated. On the other hand, a balanced subset of the famos Labeled Faces in the

Wild data set, namely FIW(10b) [33], to demonstrate robust re-labeling of ambiguous

labeled samples. Those experiments shall evaluate all steps proposed in Section 4.4 and

vindicate the improvements from NFM, to SNMF and PR-SNMF. In addition, a fair

comparison to related state-of-the-art can be performed, and the proposed improvements

within Section 4.5 can be evaluated.

Second, in Section 4.6.2 we present joint activity localization and recognition results

for the the UT-Interaction dataset [139], being the first to learn such models without

any geometric annotation information. In fact, compared to the state-of-the-art we get

competitive results, even though only very loose labels (i.e. , on video level) have been

used. Such experiments shall verify the applicability of PR-SNMF for localizing multiple

parallel performed activities in videos, and the meaningfulness of the generated SNMF

dictionaries as representation for activity classification.

4.6.1 Robust Re-Labeling of Ambiguous Training Data

A profound evaluation of algorithm parameters and comparison to state-of-the-art meth-

ods is done using two datasets with controllable ambiguity. Following the experimental

setups in [33] and [29], the label confidence after training and testing for different levels

of ambiguity is evaluated. In fact, the variations of the parameters q (the number of ad-

ditional labels per sample) and ε (the degree of ambiguity – the maximum probability of

an extra label co-occurring with the true label) are evaluated.

For a fair comparison of all evaluated approaches iteratively re-label the training data,

and test errors are computed with identical classifier, namely linear regression classifiers

for Weizmann and minimum per-class reconstruction errors for FIW(10b). The code-book

size per class is set to K = 10 for all methods in the ambiguous Weizmann dataset, and to

K = 20 for FIW(10b) respectively. The number of training-update iterations T is set to

1http://www.umiacs.umd.edu/ zhuolin/projectlcksvd.html
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5, while the number of internal iterations for code-book generation, e.g., updates in NMF

Eq. (4.2) and (4.4) and for K-SVD Eq. (4.9), is set to 50 for all methods.

4.6.1.1 Results on Ambiguous Weizmann dataset

The Weizmann dataset consists of 10 single person activities repeated by 9 different ac-

tors. A more detailed description is given within the previous chapters 2 and 3. For our

purpose, let us create ambiguous labeled training data by combining up to 5 activities

simultaneously in one video, i.e. , q = 4 (see Figure 4.3 or 4.4).

Figure 4.3: Example of a ambiguous training bag generated for the ambiguous Weizmann dataset
experiments, with different label cardinality (LC).

The combination of activities is chosen at random, meaning ε is set to 0, and each

combined video with concurrent labels is forming a bag within the PR-SNMF approach.

The higher q, the smaller is the number of bags, as activities are randomly selected without

replacement. Assuming that detections are given, the corresponding patches are repre-

sented using HoG/HoF features (similar to [70, 162] or [136]). To demonstrate the benefits

of the proposed PR-SNMF approach, we show two comparisons. First, we compare the

PR-SNMF and its evolutionary approaches (NMF, SNMF) to different encoding methods

and adaptions discussed in 4.5. Optimal parameters for JNMF (γ = 0.5) and LC-KSVD

(α = β = 0.1 and Γ = 30) where found empirically and are in the range of recommenda-

tions from literature. Second, a comparison to related Multiple Instance Learning (MIL)

approaches is given.

Exemplary labeling matrix for an training run with q = 4 is depicted in Figure 4.4.

As activity videos are grouped together, subsequent samples share the same labeling in-

formation, but due to the random combination the matrix is rather noisy. Average label
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confidence show the low initial confidence, except for some longer videos with unique labels

at the beginning or end of longer sequences, see also Figure 4.3 for explanation.

Figure 4.4: Exemplary initial labeling information Y of our ambiguous Weizmann dataset for
q = 4. The average number of labels per training sample, also known as Label Cardinality (LC),
is 3.85.

Running the pair-wise ranking NMF without weighting clearly optimizes the label

distribution (high diagonal values in Figure 4.5), but still with several outliers and overall

low confidence for the expected labels. The average label certainty of the diagonal elements

is clearly lower compared with the PR-SNMF results in Figure 4.6.

Figure 4.5: Resulting confidence matrix for training data in 4.4 after 2 iterations when applying
pair-wise comparison with standard NMF code-books (PR-NMF) without weighting

The overall label statistics for all cross-validation runs is depicted in Figure 4.7. Fig-

ure 4.7a depicts the average label confidence, meaning the probability of the correct label

after training, for different levels of ambiguity. These are more expressive than pure train-

ing errors in terms of correct classification rates given for completeness in Fig. 4.7b. As

expected, the generative approach (NMF) and binary selecting discriminative approaches
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Figure 4.6: Resulting confidence matrix for training data in 4.4 after 2 iterations using the
proposed PR-SNMF approach.

(classNMF, JNMF, LC-KSVD) have a strongly decreasing performance for higher degrees

of ambiguity. Overall the label purity for KSVD versions is lower, while the training error

it self seems not to be affected by that.

The benefit of the proposed soft-selection and the adaptations to state-of-the-art al-

gorithms described in this chapter (SNMF, JNMF-soft, LC-KSVD-soft) is clearly visible,

especially for KSVD and the training errors. The great improvement for LC-KSVD arise

from the missing capability to adopt the label confidences as the optimization is chained

to reconstruct the binary label information in Q and Y, see Section 4.5 for more de-

tails. The overall training error of LC-KSVD is comparable, only the confidence of the

predicted correct labels is low. Clearly, PR-SNMF compensates an increased ambiguity

better than all other methods, followed by the modified LC-KSVD-soft versions. Concern-

ing the progress of relabeling during the training iterations all approaches show similar

behavior as depicted in Figure 4.8.

When training a discriminative code-book from ambiguous data, the desired results

after the relabeling training process are high dictionary purity (the maximum label proba-

bility per dictionary item) Figure 4.9a and compactness (low similarity of dictionary items

estimated by DTD) Figure 4.9b. More compact and distinct labeled code-books should

lead to better classification results, as depicted in Figure 4.10. Interestingly, all NMF

variants create more compact and distinct code-books, compared to K-SVD (see Fig. 4.9)

In addition, let us compare the proposed approaches to two Multiple Instance Learning

(MIL) approaches, which can be adopted to our multi-label problem by forming several

binary one-vs-all tasks. First, to a recently proposed negative-data-mining MIL (NM-

MIL) framework [152], second, to a deterministic annealing Support Vector Machine

(DA-SVM) [55], from a publicly available machine learning toolbox2, which performs

well on classical MIL benchmarks. Both approaches are trained directly on concatenated

2http://people.kyb.tuebingen.mpg.de/pgehler/mil/mil.html
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Figure 4.7: a) Average label confidences for correct classes after training with different lev-
els of ambiguity and b) classification error on the training data of ambiguous Weizmann setup.
The proposed PR-SNMF compensated higher ambiguity during training better than all compared
approaches.

HoG/HoF features, while our baseline is a linear SVM, trained with a 200− dimensional
code-book (20 per class), created with NMF/SNMF after PR-SNMF for solving the am-

biguity, on top of the HoG/HoF features.

As first result we found that these approaches are strongly affected by the used bag

size, and do not compare favorable if only trained on large bags as the proposed PR-

SNMF. Therefore, an adaption has to be made by changing the bag-size such that they

contain only data of 5 consecutive frames – typically, several hundred bags per training

– significantly improving their results, which, however, are still far below the PR-SNMF

approach.

Table 4.1 summarizes recognition results of PR-SNMF, compared to NM-MIL and

DA-SVM, over different ambiguity levels q. Although having smaller dimensionality, the

benefit of a task specific and discriminative representation is clear, compared to the un-

derlying HoG/HoF features. PR-SNMF approach scales with a higher degree of ambiguity

during training, as more pair-wise comparisons per bag are generated and the information

from all labels may be used, compared to the binary one-vs-all setup in NM-MIL and

DA-SVM. In addition, this shows the difficulty of our ambiguous Weizmann experiment,

and that joint learning of discriminative codes and relabeling is very beneficial.

4.6.1.2 Results on Labeled Faces in the Wild dataset

Besides human activities, facial expressions are an related approach. Next, let us evaluate

the re-labeling capabilities of our proposed PR-SNMP using an artificial dataset building

on the well known and widely used Labeled Faces in the Wild dataset. This should also
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Figure 4.8: Behavior of the label confidences during the iterative training steps on ambiguous
Weizmann setup. Proposed PR-SNMF and adopted JNMF and LC-KSVD soft-versions make
significant progress in the first two iterations.

Rec. rate / frame [%]

q = 1 2 3

SNMF 01 89.77± 2.1 89.1± 2.2 87.5± 2.9
SNMF 05 88.8± 3.4 89.2± 2.5 87.7± 2.5

NMF 01 87.5± 3.6 86.1± 3.3 84.4± 4.8
NMF 05 86.08± 3.7 87.1± 3.8 85.7± 1.9

NM-MIL [152] 71.1± 6.7 68.1± 9.6 -
DA-SVM [55] 44.0± 2.24 37.5± 5.4 -

Table 4.1: Results of experiments on per frame classification for different levels of ambiguity
within our tests on Weizmann dataset. The overall video classification results are between 95%
and 99%, depending on the ambiguity of the training set.

demonstrate that the capability of PR-SNMF is quite general and not limited to activity

recognition. In particular, the FIW(10b) dataset is used, consisting of the first 50 images

of the 10 most frequent subsets of the FIW dataset.

Following the experimental setup in [33], to compare to their results (mean, naive,

model one) and in addtion to [29] (DLHD, DLSD) to the PR-SNMF approach, using the

same features as input for all approaches, namely histogram equalized images as input.

In particular, the dataset contains cropped faces which are additionally to the true label

augmented with a varying number of q additional ambiguous labels. In contrast to the
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Figure 4.9: a) Average purity of dictionary items after with different levels of ambiguity. With
more ambiguous labels q initialized, results of less adoptive values break down, while adoptive ones
can compensate for this ambiguity. b) Histogram of dictionary compactness when training with
ambiguous Weizmann with q = 4, visualized as a histogram. Lower values mean less correlation
between dictionary vectors. As the classical NMF does not allow for sharing labels, the dictio-
nary compactness is outstanding, but on cost of worse dictionary purity and classification results.
Overall NMF dictionaries are more compact compared to SVD approaches.

ambiguous Weizmann setup beforehand, the ambiguity between labels is not random but

correlated (ε ∈ [0.1, 1] with q = 1). The proportion p of ambiguous labeled samples is

always 1 (all samples have q additional labels). Thankfully, the authors of [29] provided

the result curves of the compared methods.

The results of evaluation against corresponding results, obtained by the authors of

[29, 33] are illustrated in Fig. 4.13. It can be seen that our method compares favorable to

state-of-the-art or even outperforms [29] if the number of ambiguous labels per sample is

increasing. In fact, our approach scales with the complexity of the ambiguity, i.e. , more

pairwise exclusions 〈i,¬j〉 are created if more labels are active per sample. This leads,

if required, to a higher-dimensional and a more discriminative representation, providing

more distinct labels as a result. For smaller values of q the results are comparable to the

state-of-the-art, while all methods are going to fail if q is getting too large (see Fig. 4.13a).

The same behavior can be observed for correlated label ambiguities within the ε evaluation

in Fig. 4.13b. Please note that no distinct parameters for generating the code-books used

in [29] are mentioned in their paper.

4.6.2 Localizing Activities in Weakly Labeled Videos

Finally, we demonstrate our approach for localization activities within weakly, ambiguously

labeled data. We start our training from global labels per video frame, defining which
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Figure 4.10: Average test errors on ambiguous Weizmann setup.

Figure 4.11: Labeled faces in the wild.

activities are currently active. The only additional information given is the average size

of a person for defining the scale σ. In contrast to previous works [92, 146, 152], we do

not rely on any pre-trained detector. Instead, we apply a simple motion compensation to

handle camera jitter and sample features densely from moving areas, with a patch size

of σ
4 . Every local patch i is described by HoG/HoF features [95], mapping texture and

motion information of two consecutive frames, which form Xi.

4.6.3 Learning Activity Descriptors from Videos

The above described PR-SNMF relabeling approach can be applied in general to all pos-

sible applications on learning from ambiguously labeled data (see Section 4.6.1). Now we

describe the general processing cue for detecting local spatio-temporal activity annotations

from global temporal labels. Finally, we show how obtained detections are described by a

feature vector based on weighted SNMF bases and the histogram of sparse weighted codes

(HSWC).
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Figure 4.12: Results on FIW(10b) dataset by relabeling training data with strong correlated
ambiguity (q = 1, ε = 0.95).
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Figure 4.13: Experiments on FIW(10b) dataset. a) Average labeling error rates versus the
number of extra labels per sample. b) Average test error rates versus the degree of ambiguity ε
while q = 1. Although rather simple, PR-SNMF outperforms the more specialized approaches.

4.6.3.1 Initializing local Label Confidences

Each local patch gets assigned the corresponding global label information yi. In addition,

and different to previous work, we define an additional neutral label. This is not only

important for collecting samples generated by background motion, but also for parts of

activities that are shared between activities and therefore are not discriminative. Fig-

ure 4.14 (top row) depicts the initial probabilities for salient samples within the selected

global annotations. After 3 iterations of our PRS algorithm presented in Section 4.3 we
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obtain new labels for each sample (again color coded shown in Figure 4.14 (middle row)).

Discriminative patches clearly define activity related parts, while background or ambigu-

ous motion is suppressed. After local smoothing we obtain vote maps for each active label,

shown for active activities in Figure 4.14 (bottom), used for non-maxima-suppression to

obtain the final detections passed to the next training stage (shown in green).

4.6.3.2 Histograms of Weighted Sparse Codes

Previous work on activity recognition has adopted NMF for replacing the underlying

feature representation of HoG and HoF by NMF coefficient vectors [70, 136, 162]. In

general, the whole patch containing an object of interest was described by such a coefficient

feature vector. Similarly, in [132] small local images patches are described by their sparse

coefficients and an object is described with a histogram of those sparse codes. For both

setups an improvements compared to working with the underlying raw gradient and motion

features can be obtained, as the sparse coding is specifically learned for the task.

After performing T iterative updates as described in Section 4.4.2, we obtain our fi-

nal set of training detections (Figure 4.14 (middle)). The first difference to the above

mentioned approaches is that we create again a concatenated representation of weighted

bases from labeled samples in training set X. All samples in Xl with yi(l) = arg max
l
y(l)

and within a training detection for y(l) are taken to create Dl using Eq. (4.4). Their

corresponding label confidence for l are the priority weighting in Pl. Running these steps

for all L possible classes we obtain a d× (L · b) dimensional basis matrix Dc through con-

catenation, where b is the number bases per Dl. Projecting a sample xi onto Dc, we get

an L · b dimensional representation. Again high values in hc(j) denote the importance for

the basis j in Dc for the reconstruction of xi. Following [132] we build the final descriptor

by aggregating the coefficients of patches within a training detection into a histogram of

sparse codes. We perform a simple version of a pyramidal histogram approach, where a de-

tection with given temporal extend τ is additionally divided into four slightly overlapping

sub-volumes, to represent spatial and temporal relations within activities.

4.6.3.3 Activity Localization on the UT-Interaction Dataset

Originally introduced by Ryoo and Aggarwal [139], the UT-interaction data set3 contains

multiple interacting persons, individual pedestrians and multiple activities executed simul-

taneously, and is divided into two sets #01 and #02, with 10 videos each. The dataset de-

scribes six realistic human interactions including shaking hands, pointing, hugging, push-

ing, kicking and punching. The strong intra-class similarity and the non-repetitive nature

of the activities make the recognition task very complex. In contrast to other activity

datasets, the UT-Interaction videos contain several activities in parallel and vast majority

of neutral phases without any significant activity, but nevertheless humans in motion. The

3http://cvrc.ece.utexas.edu/SDHA2010/Human Interaction.html
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simultaneous interactions are clearly a multi-label problem, if one wants to avoid labeling

exact spatio-temporal positions for training.

Figure 4.14: Visualization of the learning process on UT-interaction dataset. Each column
represents an independent annotation. Top: Initial label probability is uniform over all patches
(aggregated over time). Middle: Confidences of patches corresponding to the global activity label
after PR-SNMF updates, with final estimated local spatio-temporal annotation (green) generated
from vote maps (bottom row) and ground-truth annotations (magenta) for comparison. Last
column: Missed annotation due to spatial overlapping background motion.

Figure 4.14 (top row) depicts the initial probabilities for salient samples within the

selected global annotations. After 3 iterations of our PR-SNMF algorithm we obtain new

labels for each sample (again color coded shown in Figure 4.14 (middle row)). Discrimina-

tive patches clearly define activity related parts, while background or ambiguous motion

is suppressed. After local smoothing we obtain vote maps for each active label, shown for

active activities in Figure 4.14 (bottom), used for non-maxima suppression to obtain the

final detections passed to the next training stage (shown in green). It has to be mentioned

that we do not limit our approach to return only one detection per active label. Therefore,

several instances of the same activity per frame may be detected. From this final detec-

tions we learn our discriminative features by forming 20 bases per activity which leads

to a final 140 dimensional feature (6 activities plus one neutral label) per sampled patch.

The final descriptor for learning a linear SVM in a one-vs-all setup is a 700 dimensional

pyramidal histogram of the PR-SNMF coefficient within the detected positions (σ pixel)

and temporal extent of τ = 40 frames.

Evaluation is done on cropped sequences for comparing recognition results to state-

of-art. As reported by others, we evaluate using a 10-fold cross-validation per set, always

keeping one video for testing. Comparisons to related approaches are shown in Table 4.2.

Although we train our proposed approach without any spatial prior, we compare favorable

or equal to other histogram based approaches like [139, 186] or even approaches with

stronger spatial and temporal relation descriptors like [21, 54]. Approaches with part-
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based annotations like [130] or Hough voting [185, 186] yield superior results, however,

with a significantly higher annotation effort. We want to highlight at this point that our

approach could also serve as an initial step before learning stronger descriptors with higher

flexibility for spatial-temporal relations.

method anno Set 01 Set 02

proposed weak 80.0% 75.2%

[186] bb 66.67% -
[139] full 70.6% -
[138] bb 85.0% -

[21] full 78.9% -
[54] bb 65% - 79% -

[186] +RF bb 83.33% -

[185]
weak 75.0% -
bb 93.3% 91.7%

[130] full 93.3% -

Table 4.2: Comparison of UT-interaction recognition results with related work. The anno column
depicts the level of supervision, where weak stays for global temporal labels, bb denotes bounding
box annotations and full describes additional annotations/segmentations of sub-parts or atomic
actions for training.

4.7 Discussion of Results

Learning detectors or classifiers without clearly labeled data is a challenging task. Within

this chapter a novel method for learning from ambiguous labeled activity was presented.

This PR-SNMF approach was evaluated and compared on various challenging tasks, and

in addition several related state-of-the-art methods have been adopted to get further un-

derstandings. By building code-books from pair-wise excluding sets within a bagging

framework, we are able to solve the ambiguity of samples, while in addition finding dis-

criminative samples per activity.

The pair-wise comparison within PR-SNMF scales better with the degree of ambigu-

ity, therefore showing better results compared to related approaches when the level of

ambiguity increases. These samples can be exploited to find spatio-temporal annotations

in the context of learning from ambiguous global temporal labels. The proposed learn-

ing approach is not limited to the task of activity recognition and has demonstrated its

performance on diverse applications. As shown, PR-SNMF could also serve as an initial

annotation step for other activity recognition methods by providing spatio-temporal anno-

tations or discriminative features, which bears good prospects for further enhancements.

One major outcome of the studies was the influence of background samples or neu-

tral activities, not related to a specific activity and shared over the majority of activities.

Simple motion estimation and compensation for global motion showed to be not discrim-
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inative enough to be applied as a pre-selection process for generating training samples.

Those findings let to the ideas of applying so called saliency estimation to activity videos,

for weighting prospective areas and samples. Unsupervised activity detection by saliency

estimation is developed within chapter 5.

Besides the work described within this chapter, my studies on non-negative matrix

factorization for activity recognition found their way into several publications [136, 159].

In addition, together with my colleague Mahdi Jampour, we extended the approaches

to facial gesture estimation under various poses and successfully published the following

conference papers and journals [73, 74].
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5
Unsupervised Activity Detection by Encoding based Saliency

In previous chapters, the presented methods have been based on different degrees of su-

pervision during training, either by given ground truth annotations or knowledge about

activity presence or absence in videos. In this chapter, the circumstance that activities

form salient areas within the video volume is exploited to find activity relevant areas.

Therefore, a novel video saliency detection method is presented, to support human activ-

ity recognition and weakly supervised training of activity detection algorithms. Recent

research has emphasized the need for analyzing salient information in videos to minimize

dataset bias or to supervise weakly labeled training of activity detectors. In contrast to

previous methods the proposed method does not rely on training information given by

either eye-gaze or annotation data, but propose a fully unsupervised algorithm to find

salient regions within videos. In general, the Gestalt principle of figure-ground segrega-

tion is enforced for both appearance and motion cues. The introduced encoding approach

allows for efficient computation of saliency by approximating joint feature distributions.

Evaluations of the approach on several datasets, including challenging scenarios with clut-

tered background and camera motion, as well as salient object detection in images are

performed within the experimental part. Overall, the encoding-based saliency estimation

demonstrates favorable performance compared to state-of-the-art methods in estimating

both ground truth eye-gaze, activity annotations and improved classification and detection

scores.
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5.1 Motivation

Estimating saliency maps or predicting human gaze in images or videos recently attracted

much research interest. In particular, by selecting interesting information based on saliency

maps irrelevant image or video regions can be filtered. Thus, saliency estimation is a valu-

able pre-processing step for a large domain of applications, including activity recognition,

object detection and recognition, image compression, and video summarization. Especially

activity recognition, and in particular activity localization can be subject to variations of

positions, viewpoint change, size and therefore hard to train by few examples or rules.

This leads to a higher annotation effort compared to classical object detection methods.

Moreover, the majority of videos contain background information which may lead biased

classifiers when based on global video descriptors.

Salient regions contain per definition important information which in general is con-

trasted with its arbitrary surrounding. For example searching the web for the tag ”horse

riding” returns images and videos which all share the same specific appearance (someone

on a horse) and specific motion (riding), within whatever context or background. There-

fore, the region containing the horse is the eponymous region, and in general the horse

should be at least part of the most salient region.

As a consequence of evolution, the human visual system has evolved towards an eclec-

tic system, capable to recognize and analyze complex scenes in a fraction of a second.

Therefore, much effort in computer vision research has been put on predicting human

eye-gaze. Capturing fixation points and saccadic movements via eye-tracking [110, 127]

allows for creating training data and analyzing spatial and temporal attention shifts. It

is well known that humans are attracted by motion [80] or other human subjects, respec-

tively their faces [82] if the resolution is good enough. Furthermore, human saliency maps

are sparse and change if content is analyzed per image or embedded within a video [164].

Besides the drawback that a sufficient number of individuals have to observe the same

image or video to obtain expressive saliency maps, above mentioned human preferences

may even be misleading for general salient object detection tasks.

Thus, the defined goal of this chapter is to find eponymous and therefore salient video

or image regions for guiding activity classification and detection, rather than predicting

human eye-gaze. In contrast to estimating human gaze, these salient regions are not

required to overlap with human fixation points but must identify the eponymous regions

including the activity of interest. Within the proposed saliency estimation method, we

enforce the Gestalt principle of figure-ground segregation, i.e. visually surrounded regions

are more likely to be perceived as distinct objects. In contrast to previous approaches

which globally enforce objects to be segregated from the image border,e.g., [191], no such

assumption is enforced. Instead it finds visually segregated regions by a local search over

several scales.

The contributions of this chapter are as follows. An encoding method is proposed

for approximating the joint distribution of feature channels (color or motion) based on
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Figure 5.1: Encoding image content (from left to right): Input image. Occupancy distribution of
bins within color cube. Only a small number of 33 bins contains 95% of the pixels. Occupied bins
o, initial and final encoding vectors E within the color cube. Encoded image by assigning closest
of 30 encoding vectors per pixel.

analyzing the image or video content, respectively. This efficient representation allows

to scan images on several scales, estimating foreground distributions locally instead of

relying on global statistics only. Finally, a measurement of salience quality is proposed

that allows for dynamically weighting and combining the results of different maps, e.g.,

appearance and motion. Evaluating the proposed encoding based saliency estimation

(EBS) on challenging activity videos and salient object detection tasks, benchmarking

against a variety of state-of-the-art video and image saliency methods shows the superior

performance of the proposed methods.

5.2 Related Work

Bottom-up vision based saliency has started with fixation prediction [72], and training

models to estimate the eye fixation behavior of humans, either based on local patch or

pixel information is still of interest today [164]. In contrast to using fixation maps as

ground truth, [104] proposed a large dataset with bounding-box annotations of salient

objects. By segmenting relevant objects within 1k images of this dataset [3], and later 10k

images [31] elaborated the salient object detection task, see [18] for a review. Grouping

image saliency approaches one sees methods working on local contrast [60, 104] or global

statistics [3, 30, 31, 97]. Recently, segmentation based approaches [172, 180, 191] have

emerged which often impose an object-center prior, i.e. the object must be segregated

from image borders, mainly motivated by data-sets such as [3].

In contrast to salient object detection, video saliency or finding salient objects in videos

is a rather unexplored field. Global motion saliency methods are based on analyzing

spectral statistics of frequencies [58], the Fourier spectrum within a video [34] or color

and motion statistics [190]. Local contrast between feature distributions is measured

by [127], where independence between feature channels is assumed for simplifying the

computations. In addition, motion information is described rather weak by magnitudes

which causes problems with optical flow artifacts and global camera motion. Most recent,

[64] developed an video saliency approach on evaluating the number of bits taken by an

compression algorithm, like, e.g., H.264/AVC coding standard, followed by a MRF step
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for smoothing the block structure results according to image regions. The authors of [137]

learned the transition between saliency maps of consecutive frames by detecting candidate

regions created from analyzing motion magnitude, image saliency by [60], and high level

cues like face detectors. Their combination of bottom up and top-down information has

been applied mainly for eye-gaze prediction on specific datasets like, e.g., DIEM [110].

[194] over-segment the input video into color-coherent regions, and use several low level

features for computing the feature contrast between regions. They show interesting results

by sub-sampling salient parts from high-frame-rate videos and simple activity sequences.

As a drawback they impose several priors in their feature computation, such as foreground

estimation or center prior, which do not hold in more challenging videos with moving

cameras, cluttered backgrounds, and low image quality.

Two different trends to incorporate have came up in the literature within the context of

activity recognition and detection. Video classification is still the most common variant in

activity classification. In fact, the volume of a video directly related to an activity is rather

small. Previous research [92] has shown that this could bias the classification towards

learning rather the activity related background than the activity itself, by global statistical

models. Such approaches profit from unbalanced or too homogenous datasets. Finding

activity related regions before creating video signature vectors, creates more robust and

dataset independent representations and classifications. Recently, [157] motivated video

saliency for foreground estimation to support cross dataset activity recognition and de-

crease the influence of background information. They adopted the image saliency method

by [60] and aggregated color and motion gradients, followed by 3D MRF smoothing. Their

research showed both an increase in classification accuracy and robustness of the represen-

tation when evaluated between different datasets containing the same activities. In [10],

the authors computed three different saliency maps for key-point detection based corner-

ness value, and color information as well as motion magnitude with the method of [127].

During training a ranking of those salieny maps is learned, allowing for selecting the most

representative saliency cue for each activity individually. Most recent [48] published a

saliency weighted creation of feature vectors, similar to [10], but instead of optical flow

applied directional motion energy for measuring video saliency followed by a super-pixel

regularization. The second direction follows the idea of classifying videos solely by de-

tected activity regions or volumes, respectively. This should avoid any background bias,

also results by [146] showed that for some unbalanced datasets background regions could

be learned as the most discriminative ones, and allows for classifying several activities hap-

pens within an video simultaneously. Within [108], the authors captured eye-gaze tracking

data for the UCF Sports activity recognition dataset and showed that spatio-temporal key-

point detections differ from human fixations. Later, [145] utilized this human gaze data

for weakly supervised training of an activity detector and saliency predictor. Although

applying eye-gaze tracking information should not be termed un- or weak-supervised, as

it rather takes a lot human interaction to create such data, their research creates valuable

insights.
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Figure 5.2: Overview of the proposed approach (from left to right): Input data for appearance
and motion. Individual data dependent encoding for each feature cue. Estimation of local saliency
on several scales by foreground and surrounding patches. L∞ normalized saliency maps Φi and
weighted combination according to reliability of individual saliency maps.

Summarizing the bottom-up video saliency methods one may see adaptions from visual

saliency methods, that incorporate motion information by rather simple means like mag-

nitude or gradient values. In contrast, in the proposed approach the joint distribution of

appearance or motion features is modeled, which yields favorable performance. Moreover,

our approach requires neither training data nor human eye-gaze ground truth as opposed

to pre-trained methods, such as [137, 145].

5.3 Encoding Based Saliency

In the following, the individual steps of the proposed encoding based saliency (EBS)

described and adaption for image and video saliency methods are discussed.

5.3.1 A Bayesian Saliency Formulation

Following the Gestalt principle for figure-ground segregation, we are searching for sur-

rounded regions as they are more likely to be perceived as salient areas [121]. In other

words, we analyze the contrast between the distribution of an image region (e.g., rectangle)

with its surrounding border. Similar to [106, 127], we first define a Bayesian salience mea-

surement. To distinguish salient foreground pixels x ∈ F from surrounding background

pixels, lets employ a histogram based Bayes classifier on the input image I. Therefore, let

HΩ(b) denote the b-th bin of the non-normalized histogram H computed over the region

Ω ∈ I. Furthermore, let bx denote the bin b assigned to the color components of I(x).

Given a rectangular object region F and its surrounding region S (see Figure 5.2), we
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apply Bayes rule to obtain the foreground likelihood at location x as

P (x∈F|F, S, bx) ≈ P (bx|x∈F )P (x∈F )∑
Ω∈{F,S}

P (bx|x∈Ω)P (x∈Ω)
. (5.1)

In particular, we estimate the likelihood terms directly from color histograms,

i.e. P (bx|x∈F ) ≈ HF (bx)/|F | and P (bx|x∈S) ≈ HS(bx)/|S|, where | · | denotes

the cardinality. Furthermore, the prior probability can be approximated as

P (x∈F ) ≈ |F |/(|F |+ |S|). Then, Eq. (5.1) simplifies to

P (x∈F|F, S, bx)=

{
HF (bx)

HF (bx)+HS(bx) if I(x)∈I(F∪S)

0.5 otherwise,
(5.2)

where unseen pixel values are assigned the maximum entropy prior of 0.5. This discrimi-

native model already allows to distinguish foreground and background pixels locally. How-

ever, modeling the joint distribution of color values, represented by 10 bins per channel,

within a histogram based representation as described above, would lead to 103 dimensional

features for solely describing color information. Assuming independence between channels

as in [127] would simplify the problem to 3×10 dimensions and allow for efficient structures

(e.g., integral histograms), but information is lost. Therefore, an efficient approximation

by lower dimensional joint distributions using encoding vectors is proposed.

5.3.2 Estimating Joint Distributions via Encoding

Analyzing the content of image or video frames yields in general an exponential distribution

of occupied bins as shown in Figure 5.1. The majority of image content is represented by

a small number of occupied bins within a 10 × 10 × 10 color cube representing the joint

distribution, namely 33 bins account for 95% of the data in this example, while overall only

150 of 1000 possible bins are occupied (blue dots). Taking only the bins covering for 95%

(red dots) has two major weaknesses. First, their spatial distribution is not efficiently

covering all occupied volume within the color cube, leading to approximation artifacts.

And second, the threshold for 95% may increase the number of taken bins to more than

80 as stated in [30], limiting the applicability for efficient sliding window computations.

Instead, let us represent the image content by a fixed number of encoding vectors. Let

O ∈ Ro×d represent all occupied bins and E ∈ RNe×d the set of Ne encoding vectors where

Ne ≤ |O|. We initialize E with the Ne most occupied bins (i.e. red dots in Figure 5.1)

and perform kmeans clustering to optimize for the spatial distribution of encoding vectors

as

arg min
E

Ne∑
i=1

∑
o∈E(i)

‖o− ei‖2 , (5.3)
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Figure 5.3: EBS encoding results for a color image belonging to activity horse riding of the
UCF Sports dataset. Input image is depicted top left, while top rows shows per pixel weights for
encoding vectors representing background regions (warm colors indicate high weights). Obviously
a small amount of encoding vectors is sufficient to represent the complete background. Bottom
row contains encoding weights for activity related encoding vectors.

where E(i) denotes the set of bins o clustered to the encoding vector ei. The number

of encoding vectors is set to the number of occupied bins covering 95% image pixels if

this number is smaller than a maximum Ne. The final encoding vectors E, visualized

with green dots, and the resulting encoded image with Ne = 30 are shown in Figure 5.1.

Homogenous regions are encoded by a small number of codes, while detailed structures are

preserved. Please note that the final encoding vectors are not required to correspond to

bins in the color cube. For further relaxing the hard binning decisions of color histograms,

a weighted encoding over the nearest encoding vectors of each element in O is performed.

When creating the integral histogram structure H (for simplicity we use the same notation

as for histograms in Section 5.3.1), the entry for the k-th bin at pixel position x is computed

by

H (x, k) =


1− ‖o(x)−ek‖2∑
j∈N (o(x),E)

‖o(x)−ej‖2
if k ∈ N (o(x),E)

0 otherwise,

(5.4)

where H ∈ Rh×w×Ne and o(x) defines the occupied bin I(x) belongs to. The set of j

encoding vectors nearest to o(x) is given by N (o(x),E).

Compared to other saliency approaches based on segmenting or clustering images, our

overall process is very efficient as number and dimensionality of vectors in O is relatively

small (in general around 200 occupied bins have to be considered) compared to pixels per

image (above 200k), and converges in a fraction of a second. In addition, all operations

for mapping I(x) to H(x) can be efficiently performed using lookup-tables. The result of

such soft-encoded histogram structures is visualized in Figure 5.2. Next, we discuss how

to enforce the Gestalt principle of figure-ground segregation on local and global scales.
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5.3.3 Saliency Map Computation

Once the integral histogram structure of encoding vectors is created as described above,

one can efficiently compute the local foreground saliency likelihood Φ for each pixel by

applying Equ. 5.2 in a sliding window over the image. Therefore, the inner region F of

size [σi × σi] is surrounded by the [2σi × 2σi] region S. Then, the following processing

steps are performed on each scale σi.

First, the algorithm iterates over the image with a step size of σi
4 to ensure that

the foreground likelihood for each pixel is estimated against different local neighboring

constellations. Within each calculation, the foreground likelihood values of all pixels inside

F are set. The final likelihood value for Φi(x) is obtained as the maximum value over all

neighborhood constellations. Second, following our original motivation by Gestalt theory,

the foreground map for scale i should contain highlighted areas for salient regions of size

σi or smaller. In contrast, a region significantly larger than σi would have likelihood

values Φi(x) ≤ 0.5 for x ∈ F . Therefore, this figure-ground segregation can be easily

controlled after computing the foreground likelihood map by applying a box filter of size

[σi×σi], and setting Φi(x) to zero if the average foreground likelihood Φ̄i(x) ≤ 0.5. Finally,

local foreground maps Φi(x) are filtered by a Gaussian with kernel width σi
4 . The local

foreground maps of individual scales are linearly combined to one local foreground saliency

map ΦL, which is L∞ normalized.

Besides these locally computed foreground maps, global estimation of salient parts can

offer valuable information. In particular, empirically observations showed that videos or

images with global camera motion or homogenous background regions benefit from such

global information. For computing the global foreground likelihood map ΦG, we set S to

the image border (typically 10–20% of the image dimensions) and F is the non-overlapping

center part of the image. The resulting foreground saliency map ΦG is Gaussian filtered

and L∞ normalized.

5.3.4 Processing of Motion Information

Studying related approaches for video saliency, the incorporation of optical flow infor-

mation is in general treated with less care than appearance information. Measurements

like pure flow magnitude [127, 137], motion gradients [157] or simple attributes like veloc-

ity, acceleration or average motion [194] are treated independently respectively without

motion orientation information. However, considering the pseudo-color optical flow repre-

sentation in Figure 5.2, one can directly observe that magnitude or simple attributes are

prone to fail as large global camera motion is present, and motion gradients will create a

noisy response. On the other hand, we observe a very discriminative visual representation

of the scene context, which motivated us to have a closer look on the creation of such

pseudo-color representations for optical flow. Following [140], the motion components for

horizontal and vertical directions given in U(x) and V (x) are mapped to a color wheel

representing the transitions and relations between the psychological primaries red, yellow,
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Figure 5.4: Creation of saliency maps within different scales for exemplar image from Figure 5.1.
Top row: saliency map created with specific size of foreground and surrounding window. Mid-
dle: Saliency map after enforcing local Gestalt constrains by computing fill ratio as described in
Section 5.3.3. Bottom: Final Gaussian smoothed saliency maps.

green, and blue. The color wheel, also known as Munsell color system, arranges colors

such that opposite colors (at opposite ends of the spectrum, e.g., red and blue) are most

distant to each other on the wheel. Similar to that, we want to represent opposite motion

directions most distant to each other.

Therefore, the approach represented in Sections 5.3.2 and 5.3.3 is directly applied on

the pseudo-color motion representation. For that let us compute the magnitude M(x) and

orientation Θ(x) of Û(x) and V̂ (x), which are the optical flow components normalized by

the maximum magnitude of the corresponding frame. The orientation Θ(x) defines the hue

value in the color wheel, while saturation is controlled by M(x). Applying precomputed

color wheel look-up tables, one can directly generate a three dimensional pseudo-color

image taken as input for our motion saliency pipeline. Similar to the appearance likelihood

maps ΦAL and ΦAG this yields the motion-based local ΦML and global ΦMG likelihood

maps. Although relatively simple, experimental evaluations show the beneficial behavior

of this motion representation compared to related approaches discussed at the beginning

of this section.
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Figure 5.5: EBS encoding results for optical flow corresponding to the image within Figure 5.3.
Flow field is depicted top left, while top rows shows per pixel weights for encoding vectors rep-
resenting background motion (warm colors indicate higher weights). Obviously the majority is
assigned to one encoding vector, which is sufficient to represent the camera motion. Bottom row
contains encoding weights for object motion. This example nicely illustrates how EBS scales on
more complex regions within a image.

5.3.5 Adaptive Saliency Combination

Given the above described steps, up to four foreground maps are generated for local and

global estimation of appearance (i.e. ΦAL and ΦAG) and motion (i.e. ΦML and ΦMG)

saliency. Combining these in a proper way can compensate for failures of individual maps.

Previous works either directly merged cues [157] or performed coarse global measurements

like pseudo-invariance [190] without incorporating the spatial distribution of maps. In con-

trast, the uncertainty within our individual saliency maps is approximated by computing

weighted covariance matrices of each map. A weighted covariance for saliency map Φj is

given as

Σj=


∑

x,y∈I
Φj(x,y)(x̄−µ̄x)∑
x,y∈I

Φj(x,y)

∑
x,y∈I

Φj(x,y)(x̄−µ̄x)(ȳ−µ̄y)∑
x,y∈I

Φj(x,y)∑
x,y∈I

Φj(x,y)(x̄−µ̄x)(ȳ−µ̄y)∑
x,y∈I

Φj(x,y)

∑
x,y∈I

Φj(x,y)(ȳ−µ̄y)∑
x,y∈I

Φj(x,y)

 , (5.5)

where x̄, ȳ denote normalized image coordinates to avoid bias for rectangular images and

µ̄x, µ̄y are the corresponding mean coordinates. Taking Σu as the baseline covariance of an

unweighted uniform distribution, the reliability or weighting score for map j is computed

as

ωj = 1− det (Σj)

det (Σu)
where

∑
j
ωj = 1. (5.6)

Then, the final saliency map can be directly obtained by Φ =
∑

j ωjΦj . In the follow-
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ing, we denote our encoding based saliency approach EBS for linear combination of local

saliency maps. In contrast, EBSL uses the proposed weighted combination of solely local

and EBSG the weighted combination of all available (local & global) likelihood maps.

5.3.6 Saliency based Segmentation

While the general saliency approach presented above creates a per-pixel saliency sore, it

may be required to segment objects from the background. In addition, precise salience

predictions score higher on evaluations with segmented ground truth objects. Previous

approaches have incorporated separated segmentation approaches like Mean-shift [51] or

super-pixels [48], for propagating high saliency values within local connected segments.

An advantage of the proposed encoding based saliency method lies in the indirect over-

segmentation of the image, without defining any parameters on average segment size and

such adopting nicely to the image content.

Taking a closer look on Figure 5.3, we can see larger regions for background regions,

while foreground regions consist of several smaller, and therefore detail preserving, seg-

ments in different encoding layers. Each encoding layer describes the per pixel weights

for a specific encoding vector. After computing the EBSG saliency values per pixel, as

described in previous sections, we compute connected components in each encoding layer,

to define segments. Moreover, each segment has a weight according to the significance

the corresponding encoding vector contributes to the representation of this, while each

pixel may be part of j different regions in j encoding layers, see Section 5.3.2 for more

details. For each connected component in each layer we analyze the saliency values of the

underlying pixels, and propagate high saliency values within components while suppress-

ing components with low saliency values. Finally, the region based saliency values of each

layer are again combined into one final EBSGR saliency map. Exemplar results and a

comparison between EBSG and EBSGR can be seen in Figures 5.21 and 5.22.

5.4 Experiments

In the following, various experiments are performed for both video saliency and object

saliency tasks. First, the favorable performance of our approach for challenging video

saliency tasks using the Weizmann [57], UCF Sports [133] and Olympic Sports [116] activ-

ity datasets is demonstrated. Second, a comparison of EBS to related saliency approaches

and evaluation of the influence of parameter settings is performed, analyzing the effect of

prior image information as discussed in [99], on the widely used ASD [3] and MSRA10k [31]

salient object segmentation datasets.

As ground truth annotations are given in different formats (i.e. coarse bounding

boxes, detailed binary segmentation or eye-fixation maps), we apply the following metrics

correspondingly. If ground truth segmentation is available, we compute precision/recall

values as well as the area under curve (AUC) by varying thresholds to binarize saliency
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maps, and measure the overlap with the ground truth segmentation. For experiments

where solely bounding box annotations are available we add spanning bounding boxes

to the binarized saliency maps before computing the scores denoted AUC-box ( please

see Section 5.4.1 for more details). For given eye-gaze ground truth data we measure

the exactness of the saliency maps by computing the normalized cross correlation (NCC).

For all benchmark comparisons we use code or precomputed results published by the

corresponding authors, except for [157] which we reimplemented according to the paper

(without 3D MRF smoothing which could be optionally applied to all methods).

5.4.1 Evaluation Metrics

Within the experimental section several metrics are applied to compare different saliency

detection methods. As ground truth annotations are given in different formats i.e. coarse

bounding boxes, detailed binary segmentation or eye-fixation maps, we apply the follow-

ing metrics correspondingly. If ground truth segmentation is available, we compute preci-

sion/recall values as well as the area under curve (AUC) by varying thresholds to obtain

binarized saliency maps and measure the overlap with the ground truth segmentation. For

experiments where solely bounding box annotations are available we add spanning bound-

ing boxes to the binarized saliency map before computing the scores (denoted AUC-box,

see Figure 5.6). For given eye-gaze ground truth data we measure the exactness of the

saliency maps by computing the normalized cross correlation (NCC).

AUC For evaluation on segmented object ground truth, we compute true-positives (TP),

false-positives (FP), true-negatives (TN) and false-negatives (FN) for each threshold image

(see Figure 5.6, second row). The TP is the number of pixels with saliency values greater

than a threshold and overlapping with the ground truth annotation. In contrast, FN are

all pixels within the groundtruth region < threshold. By varying this threshold one can

compute recall-precision curves by

precision =
TP

TP + FP
(5.7)

and

recall =
TP

TP + FN
. (5.8)

The area under this recall precision curve is denoted as AUC. Examples in Figure 5.6

show, that although the saliency maps of different algorithms align nicely with the ob-

ject, the bounding box annotation causes many false-negatives, see [18] for details and

discussion. Therefore, we defined AUC-Box as an additional metric as follows.

AUC-Box Filling the binary saliency maps with spanning bounding boxes before com-

puting TP, FP, TN and FN compensates for coarse annotation (see Figure 5.6, third row).
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We denote this measure AUC-box within the following sections. Given both scores for the

UCF sports dataset, the reader may extract additional information about performance

and robustness of methods.

NCC If non-binary ground truth information is given, as in form of eye-gaze tracking

data, we apply normalized cross correlation as a measurement of performance. Eye-gaze

data is generally given as a set of sparse local points of fixations or saccadic motions.

As defined by the collectors of the data [108], we apply Gaussian blur for each gaze

measurement to compensate measurement errors and create smooth eye fixation ground

truth maps.

Figure 5.6: Comparison of AUC and AUC-box computation. Left column shows the ground
truth bounding box annotation. Top row depicts results from individual saliency detection methods
(f.l.t.r) EBSG, [157] and [127]. Second row shows true-positives (TP) pixels for different thresholds.
Especially non-segmentation results like in column three [157] have many false-negatives (FN),
due to the coarse bounding box annotation, and hence low recall and AUC values. Applying
spanning bounding-boxes around sub-segments, as shown in row three, compensates for the coarse
segmentation, allowing for a fairer comparison.

5.4.2 Saliency for Activity Localization in Videos

Recent research emphasized the benefits of video saliency for two main tasks within ac-

tivity recognition, namely weakly supervised training of activity detectors [145, 146], and

saliency weighted descriptors for superior video classification results [48, 157]. Both fields

of application depend on robustly highlighted foreground regions, marking the activity

related areas. Therefore, the proposed EBS method is evaluated on different activity

recognition dataset with varying characteristics, with the goal of estimating the human

ground truth activity annotations. In addition, comparison against a variety of state-of-

the-art saliency methods, ground-truth eye-gaze data [108] and generic object detectors [7]

allows a critical evaluation about advantages and drawbacks of such approaches.

Weizmann. We follow the recent evaluation of image and video saliency methods

by [194] on the Weizmann activity dataset [57] and compare our proposed EBS method
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to the top-performing methods [77, 127, 194] of that study. The dataset contains videos

of ten activities performed by 9 actors captured with object-centered static cameras in

front of a homogenous background, as further described in Chapter 2. This simplifies the

video saliency estimation to a foreground estimation problem. In fact, results in [194]

have shown the superior performance of solely color-based methods, while video saliency

approaches (which include motion information) performed worse. Figure 5.7 shows this

bias of the evaluation strategy. Although our weighted saliency approach (EBSG) yields

visually plausible results for the hand waving activity, the segmentation ground truth

prefers fully segmented objects. In particular, considering purely local activity (e.g.,

hand waving), the motion-based saliency focuses on such active regions, which results in

reduced performance scores on the binary ground truth masks, which cover the whole

person. However, our solely color-based approach EBS(color) shows competitive results

in comparison to the top-performing methods. As a result of this experiments, the

following evaluations focus on more realistic videos and separately evaluate the influence

of camera and background motions in comparison to static scenes.
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Figure 5.7: Results for video saliency on the Weizmann dataset. (a) Top row: appearance,
motion, and ground truth segmentation information. Bottom row: saliency results for taking
color, motion or combining both cues by our proposed weighting scheme within our EBS method.
Average recall precision curves are shown in (b). Our EBS method taking solely color information
performs favorable, as full body segmentation ground truth does not favor activity related motion
information.

UCF Sports dataset. Recent evaluation of video saliency methods by [194] on the

Weizmann activity dataset [57] has shown the surprisingly well performance of solely

color-based methods. For completeness, we compared against them in the previous exper-

iment but based on our findings, as depicted within Figure 5.7, we further evaluate on a

more selective activity dataset, namely the UCF Sports dataset [133]. UCF Sports is a col-

lection of low-quality television broadcasts, containing 150 videos of various sports. This

dataset depicts challenging scenarios including camera motion, cluttered backgrounds, and
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non-rigid object deformations. Furthermore, it provides ground truth bounding box anno-

tations for all activities. In addition, [108] captured eye-gaze data from 16 subjects, which

allows to compare saliency results with these human attention maps given as probability

density functions (see Figure 5.18). This makes the dataset well suited for benchmarking

our EBS approach with other video saliency methods. For comparison, we apply all top

performing methods from [194] and additionally evaluate [157]. Furthermore, we use the

objectness detector of [7], as previously applied for weakly supervised training of activity

detectors on UCF Sports within [146]. The objectness detector [7] is trained on the PAS-

CAL object detection benchmark dataset. We follow their parametrization and take the

top 100 boxes returned by the objectness detector to create a max-normalized saliency

map per frame. For completeness, we quote NCC scores from [145] for supervised eye-

gaze estimation trained and evaluated via cross-validation on UCF Sports. Please note

that all other saliency methods, state-of-the-art and the proposed EBS variants, are fully

unsupervised and require no training.

For a distinct evaluation we split the videos into two sets, namely static and dynamic,

where the first contains activities with less severe background clutter or camera motion

like golfing, kicking, lifting, swinging, and walking. The second set consists of activities

with strong camera motion, clutter, and deformable objects, such as diving, horse-riding,

skating, swing on bar, and running. As can be seen from the resulting recall/precision

curves in Figure 5.8, all methods perform better on the static videos than on the dynamic

ones visualized in Figure 5.9. The most significant performance decrease between static

and dynamic videos can be observed for [194] which is the top-performing methods on the

simpler Weizmann dataset experiments. On the contrary, our EBS versions show almost

no degradation when switching from simpler static to more complex dynamic scenes.

Furthermore, one may notice a larger gap between using solely local saliency information

with EBSL and incorporating additional global information within EBSG on the dynamic

videos. This can be explained by our optical flow representation which acts as a kind of

global motion compensation when computing the global motion saliency. In particular,

our optial-flow processing performs favorably compared to [127, 157, 194] which rely on

simple motion magnitude values. Overall, all compared methods benefit from the box

prior when evaluating recall and precision, as it compensates for coarse annotations and

supports sparse saliency maps as generated by [157, 194].

Olympic Sport dataset. For additional experiments on further videos with more

diverse and severe backgrounds and camera motions, results on the Olympic Sports

dataset [116] were performed. Activities within videos of the test set were annotated

manually with bounding box information, as shown in Figure 5.20. The top performing

algorithms from experiments above were evaluated against the proposed EBSG method.

The parameter settings stayed unchanged from the UCF Sports experiments. Results are

summarized within Figure 5.11. Although, the Olympic dataset has been quoted as more

challenging compared to UCF Sports, surprisingly the work of [7], working without motion
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Figure 5.8: Average recall-precision plots of various saliency methods on static videos within the
UCF-sports dataset. Results over static videos with (a) or without (b) box prior. See text for
further discussion.

information, performs on par or better compared with more recent video saliency methods

like, e.g., [127] or [157]. The proposed EBSG again performs superior and within a similar

performance range as for the UCF Sports evaluation given in Figure 5.10.

A closer look within a detailed per activity evaluation, depicted in Table 5.1 reveals

more insights into the dataset. The objectness detector by [7] score well on activities

recorded within frontal viewpoints of upright standing persons performing an activity.

Originally trained, e.g., on the PASCAL Visual Object Challenge dataset [42], human

and man-made shaped structure score high within the algorithm. Furthermore, it re-

turns bounding box hypotheses, which can be seen as an inherently box-prior described

in Section 5.4.1. As a drawback, the objectness detector is often distracted by rectan-

gular background structures highly contrasted with their local surrounding. The video

saliency methods have severe problems with jittered optical flow [127], or highly textured

backgrounds [157], as depicted in Figure 5.20.

In summary one may draw the following conclusions: The proposed EBSG performs

better or on a par, compared to a variety of different image or video saliency methods

for the task of activity localization in videos. Especially the robustness to noisy and

jittered optical flow fields as well as cluttered backgrounds leads to more stable and robust

results throughout all evaluated datasets. In addition, evaluations showed that pre-trained

detectors do not fulfill the requirements and may produce incorrect hypotheses for entire

activity classes. In the following, a comparison to eye-gaze ground truth gives further
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Figure 5.9: Average recall-precision plots of various saliency methods on dynamic videos within
the UCF-sports dataset. Results over dynamic videos (a), (b). The dynamic subset contains much
more challenging videos including moving cameras, cluttered background and non-rigid object
deformations during actions. See text for further discussion.

insights how useful automatic video saliency is for weak supervised activity tasks.

5.4.3 Eye-gaze Prediction

One of the most notable points within the experiments within Section 5.4.2 is to see

that human eye-gaze does not perform superior when evaluated against bounding box

annotations, especially considering the simpler static videos. After having a closer look

on the visual results it can be seen that human fixations are focused on faces if the image

resolution is sufficiently high and the image context is less demanding as in Figure 5.18

and 5.19. On the other hand, for low resolution videos or rapidly changing actions the

fixations are distributed over the whole person (see Figure 5.19). This also reflects the

findings of [82], but questioning the general applicability of human eye-gaze as supervision

for training activity detectors such as [145].

Table 5.2 summarizes the mean AUC and NCC results over all UCF Sports videos

also shown in Figure 5.10. As can be seen, our EBSG methods performs favorably com-

pared to other video saliency methods and on par with previously proposed supervised

methods trained and tested on UCF Sports. The importance of individual cues within

the EBS pipeline is depicted in Table 5.3. DJS depicts the results for directly modeling

the joint distribution of color and motion channels for saliency estimation, as described
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Figure 5.10: Average recall-precision plots of various saliency methods over all videos within
the UCF-sports dataset. Results over all videos with (a) or without box-prior (b). The proposed
EBSG method even creates higher precision values compared to results of the human eye-gaze
ground truth.

in Section 5.3.1. As this incorporates a 1000 dimensional histogram when working with

10 bins per color channel, we cannot perform optimizations like integral histograms as

described in Section 5.3.2, therefore leading to inferior run-times, while our MATLAB

implementation of EBS is comparable to other bench-marked methods and still has po-

tential for optimization. The difference between DJS and EBS is the loss of encoding up

to several hundred color values per image with 30 or less encoding vectors. But this loss

can be captured by our adaptive weighting of individual local saliency cues within EBSL

and additional global saliency measures in EBSG.

5.4.4 Improved Activity Classification by Saliency Weighted Features

Besides the positive performance on general activity localization evaluated so far, the open

question is if and how saliency maps can be applied to increase activity classification and

support training of activity detectors. Especially detector training needs a huge effort of

labeling time and, as been shown by [10] and [157], video classification can benefit from

separating foreground and background information or weighting features by the underlying

saliency values. To evaluate the performance gain in both cases, we perform experiments

on the UCF Sports dataset following a train-test split similar to [92]. The data is split

into non- overlapping train and test sets and a 3-fold cross validation is performed. This
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Figure 5.11: Average recall-precision plots of various saliency methods over all videos within
the Olympic dataset. Results over all videos with (a) or without (b) bounding box prior for
evaluation. The pre-trained objectness detector by Alexe et al. [7] performs surprisingly well (see
text for further discussion).

has been shown to be more expressive than a classical leave-one-out test [92].

(a)

 

 

positive

negative

(b)

Figure 5.12: Left: Classical grid sampling for feature extraction in the video classification ex-
periment. According to bounding box annotations, green marks represents locations of positive
training samples for the detector training experiment and red marks negatives, respectively. Right:
Sampling additional features on high salient positions for the classification tasks, and positive and
negative detector training samples according to underlying saliency information.

Classification Results Following the global bag-of-words (bow) approach, features are

sampled in a fix grid as depicted in Figure 5.12a. For evaluating the benefit of saliency
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AUC-box AUC
EBSG [7] [127] [157] EBSG [7] [127] [157]

basketball layup 0.72 0.36 0.38 0.58 0.66 0.36 0.28 0.41
bowling 0.65 0.48 0.51 0.45 0.58 0.48 0.46 0.35

clean and jerk 0.81 0.83 0.67 0.60 0.73 0.81 0.61 0.49
discus throw 0.68 0.41 0.41 0.50 0.57 0.42 0.34 0.37

diving platform 10m 0.49 0.21 0.20 0.26 0.44 0.26 0.17 0.19
diving springboard 3m 0.41 0.05 0.16 0.28 0.36 0.06 0.12 0.20

hammer throw 0.79 0.68 0.56 0.65 0.66 0.63 0.43 0.44
high jump 0.66 0.40 0.38 0.43 0.60 0.42 0.29 0.34

javelin throw 0.82 0.47 0.45 0.57 0.73 0.48 0.37 0.42
long jump 0.78 0.43 0.30 0.47 0.69 0.43 0.23 0.36
pole vault 0.65 0.30 0.31 0.38 0.57 0.31 0.26 0.29

shot put 0.66 0.60 0.48 0.55 0.57 0.62 0.38 0.41
snatch 0.78 0.72 0.61 0.63 0.68 0.70 0.55 0.52

tennis serve 0.70 0.57 0.45 0.39 0.56 0.57 0.31 0.28
triple jump 0.74 0.38 0.36 0.47 0.66 0.38 0.27 0.36

vault 0.71 0.38 0.38 0.49 0.63 0.40 0.28 0.37

Table 5.1: Detailed AUC-box scores per activity classes for different saliency methods on Olympic
dataset. The objectness detector results by [7] performs well on static videos with frontal view-
points. In addition, bounding box hypotheses, which can be seen as an inherently box-prior
described in Section 5.4.1, allows higher recall scores for same precision values within the AUC
evaluation.

Eye-gaze [77] [7] [157] [194] [127] EBSG [145] [108]

AUC 0.61 0.44 0.52 0.48 0.47 0.43 0.66 − −
AUC-box 0.77 0.51 0.52 0.65 0.61 0.54 0.73 − −
NCC 1.00 0.36 0.33 0.33 0.37 0.32 0.47 0.36* 0.46*

Table 5.2: Average AUC, AUC-box and NCC scores over all UCF Sports videos and comparison
to state-of-the-art saliency estimation methods.* NCC scores for supervised methods trained on
UCF sports published by [145]. EBSG methods performs favorable on both activity localization
AUC scores and eye-gaze estimation NCC scores.

information for activity detection, an evaluation against human ground-truth annotation is

performed. In the first setup we train according to bounding box information as shown in

Figure 5.12a. Within the saliency training, the decision for positive and negative training

samples is solely defined by the underlying saliency values. Again, positive training patches

are densely sampled from highly salient regions, while negative patches are taken from

patches with low saliency values. From the visualizations in Figure 5.12b one may recognize

various benefits of saliency based sampling. According to the inaccurate bounding box

annotation background patches may be trained as foreground, and in adaptation it allows

for data dependent denser sampling. We extract HoG and HoF features and create a code-

book of size 200 using fisher vectors [122]. The encoding is learned from 100k randomly
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DJS EBS EBSL EBSG

AUC 0.64 0.58 0.60 0.66
AUC-box 0.73 0.68 0.70 0.73
NCC 0.43 0.47 0.45 0.47

Table 5.3: Average AUC, AUC-box and NCC scores of different EBS version on UCF Sports
dataset.

selected samples. Based on those generated features, we train one-vs-all linear support

vector machines using LIBSVM [27].

Overall classification performance gained an increase between 3−5%, depending on the

activity. The improvement was not as high expected compared to the numbers proposed in

related literature, but may be mainly influenced by different feature descriptor and tuning

parameters. Such optimization have not been performed in more detail within this work,

nevertheless cleaner activity localizations during training by the proposed EBS methods

should influence related approaches in a positive way, especially in the case of activity

detection.

5.4.5 Salient Object Detection in Images

Although comparison on activity data-sets within this chapter is comprehensive, a variety

of saliency approaches exist for the domain of image segmentation. As this task is most

similar to localizing activities in videos is salient object detection in still images, addi-

tional experiments are performed evaluating especially the influence of center-priors on

the algorithms and the robustness of the generated saliency maps to non-centered objects.

Both tasks, image and video saliency detections, have the goal of finding eponymous

regions in the data. Although the focus of this work is on saliency estimation for activ-

ity videos, EBS can easily be applied to standard image saliency tasks by switching off

the motion components. In addition, image saliency datasets contain per-pixel segmen-

tation ground truth annotations for a more detailed evaluation of the proposed methods.

Moreover, it shows the robustness of the proposed EBS methods and allows for additional

comparisons and evaluations.

Many models and data-sets have been proposed in the image domain (see, e.g., [18, 23]

for a review). In particular, we use the ASD dataset [3], which comprises 1000 images from

the MSRA saliency dataset with ground truth segmentation masks an has been widely used

within the community. We benchmark against recent state-of-the-art approaches, such as

FT [3], HFT [97], BMS [191], Hsal [180], GSGD & GSSP [172], and RC & HC [30].

Recently, the authors of [30] have published an improved version within 10k ground truth

segmented MSRA saliency images named MSRA10k [31]. Results of state-of-the-art image

saliency methods published in [31] are available online1.

1http://mmcheng.net/msra10k/
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Within all experiments we applied 7 local scales between σi =

[ 1
10 , . . . ,

1
2 ] min (width, height) of each individual test image. Post-processing

at each scale level is performed as described in Section 5.3.3. We fixed the number of bins

per color channel to 10 and the maximum number of encoding vectors Ne to 40 within all

experiments, as the average number of encoding vectors chosen by EBS lies below 30 for

both RGB and CIE Lab (see Section 5.3.2). Finally, we evaluate the influence of taking

RGB or CIE Lab color spaces. Further, we evaluate the benefit of joint modeling feature

channel probabilities within our EBS compared to saliency estimation with independent

color channel probabilities as previously done by, e.g., [127, 190]. Figure 5.13a shows

that the increase of the number of maximally available encoding bins Ne from 30 to 60

does not increase results because, as mentioned above, the number of encoding vectors

is set the number of occupied bins responsible for 95% if this number is smaller than

maximum Ne.

Results does not show considerable differences between EBSG using RGB or Lab color

channels. But we see a strong improvement from applying our methods on distributions

following the independents assumption between channels, similar to [127] denoted as (in-

dependent Rgb,Lab), to our approximated joint distributions in EBSG.
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Figure 5.13: Evaluation of ESB parameter settings.(a) Importance of modeling the joint distri-
bution of color channels within EBSG, instead of the independence assumption as previously done
by, e.g., [127]. (b) Evaluating different parameter settings shows the robustness of our proposed
approaches.

A comparison with the state-of-the-art in salient object segmentation is shown in Fig-

ure 5.14. EBSG performs better or equal than approaches without explicit segmentation

steps, i.e. [3, 30, 97] in Figure 5.14a. The top-performers on the other hand, shown in

Figure 5.14b enforce segmentation consistent results [180] or pose additional assumptions,
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Figure 5.14: Comparison of EBSG to state-of-the-art in salient object detection on the ASD
dataset.(a) Evaluation against methods without segmentation or image center prior. (b) Methods
applying pre- or post-segmentation or assuming salient regions to be centered within the image.

e.g., the object must not be connected to the image border [172, 191]. Both constraints are

particularly beneficial for the ASD dataset, but questioned by the recent analysis in [99].

Therefore, we evaluate the impact of the latter object-center prior by cropping the ASD

dataset images such that salient objects are touching the borders. As discussed previously

in [99], salient object data-sets are biased towards centered objects without connection

to the image border. All methods, performing favorable compared to our proposed EBS

methods, exploit this circumstance. To evaluate robustness of methods if this assumption

is violated, and to compare our EBSG against top performing BMS [191], we created two

data-sets by cropping images of the ASD dataset such that salient objects are located

near the borders. Two cropping levels are tested: First, salient objects touch the closest

image border and second, intersect the closest border by 5 pixels as shown in Figure 5.17.

Depicted in Figure 5.16, the robustness of BMS decreases drastically while EBSG stays

almost constant within the first test and decreases slightly for severe out of center objects.

Additional visual comparisons can be found in Figures 5.21 and 5.22.

5.5 Discussion of Results

A novel encoding based saliency detection method (EBS) inspired by Gestalt theory has

been proposed within this chapter. Analyzing the image or video context respectively, we

create encoding vectors to approximate the joint distribution of feature channels. This

Reference:

 ()


Reference:

 ()


Reference:

 ()




104 Chapter 5. Unsupervised Activity Detection by Encoding based Saliency

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

RC

CB

HC

FT

EBSG

EBSGR

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

EBSGR

EBSG

(b)

Figure 5.15: (a) Comparison of EBSG to state-of-the-art in salient object detection on the
MSRA10k dataset. (b) Evaluating different parameter settings shows the robustness of our pro-
posed approach (see text for more details).

low-dimensional representation allows for efficiently estimating local saliency scores. The

advantage of approximating the joint distribution against previous approaches assuming

independence between feature channels has been shown within the experiments. Implic-

itly enforcing figure-ground segregation on individual scales allows us to preserve salient

regions of various sizes. In addition, the robust reliability measurement allows for dynam-

ically merging individual saliency maps, leading to excellent results on challenging video

sequences with cluttered background and camera motion, as well as salient object detec-

tion in images. Besides those positive findings, results of the evaluations questioning the

applicability of pre-trained general object detectors for initialization of learning tasks like,

e.g., activity detection. Furthermore, the connection between eye-gaze driven supervision

of learning tasks is challenged, due to the huge effort of generating meaningful saliency

maps and the human focus on specific landmarks like faces, which are in general not ac-

tivity specific. In general, evaluations on image saliency datasets showed the robustness of

the proposed EBS approach when compared to state-of-the-art methods, especially on im-

ages with off-centered objects. This underlines that the presented encoding based saliency

work flow is less dependent on prior assumptions than related approaches, and therefore

reveals a wide range of application fields.

Overall, the experiments in this chapter encourage further utilization of the proposed

EBS saliency method for achieving goals like weakly supervised activity detection training

or improved representations for activity classifications. We believe that further statistical
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Figure 5.16: Results for off-centered object tests on the ASD dataset [3]. Proposed EBSG is
compared against BMS [191] on different levels of off-centered objects, either slightly touching
or intersecting the border. Our EBSG performs favorable against decreasing BMS results and,
compared to results in Figure 5.14, shows nearly no decrease of performance for border touching
objects.

measurements for saliency reliability and incorporation of additional top-down saliency

maps could further augment our approach. Novel research in semantic image segmentation

successfully applied saliency for weakly labeled training, like Oh et al. [81] or Shimoda and

Yanai [147]. New challenges like actor-action recognition like proposed by Xu et al. [179]

could benefit from saliency driven proposals too.

Further open questions for future research may be to incorporate high-level information

as in top-down saliency methods (e.g., face, task specific objects or image and video

context). Moreover, long-term temporal analysis of video context for eye-gaze and saliency

prediction has been totally ignored so far within the literature, and will be needed for real

prediction of human eye-gaze behavior, as it always incorporates the complete spatial and

temporal context of a video.

Reference:

 ()


Reference:

 ()
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Figure 5.17: Example of image center prior for saliency estimation by generating off-centered
objects. Top row shows (f.l.t.r) input image, ground truth, BMS, EBSG and EBSGR results.
Bottom row shows the cropped image with the object touching the image border, but still defining
the visual salient part of the image. Performance of BMS strongly decreases while EBSG still
performs well. As we process region information after computation of the saliency, our EBSGR
segmentation results still marks details of the object.
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Figure 5.18: Examples of video saliency results on UCF sports. Top row: Input images with
ground truth annotations. Second row: Eye-gaze tracking results collected by [108]. From row
three to bottom: Our proposed method (EBS global), objectness detector [7], color saliency[77],
video saliency methods [127] and [194]. See text for detailed discussion.
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Figure 5.19: Additional examples of video saliency results on UCF sports. Top row: Input images
with ground truth annotations. Second row: Eye-gaze tracking results collected by [108]. From
row three to bottom: Our proposed method (EBS global), objectness detector [7], color saliency
[77], video saliency methods [127] and [157]. See text for detailed discussion.
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(a) (b) (c) (d)

Figure 5.20: Examples of video saliency results on Olympic Sports dataset. From top to bottom:
Image with ground truth bounding box, proposed EBSG results, objectness [7], and video saliency
results [127, 157]. Videos with cluttered background or strong camera motion causes errors and
false detections by state-of-the-art methods.
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Figure 5.21: Visual comparison of EBSG and EBSGR with BMS [191] on off-centered examples
objects touching the image border (f.l.t.r): Input image, ground truth, BMS and EBSG. Final
column shows EBSGR using encoding information for over-segmentation and propagating high
saliency values within this segments, which leads to sharper object contours.
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Figure 5.22: Further visual comparison of EBSG and EBSGR with BMS [191] on off-centered
objects touching the image border (f.l.t.r): Input image, ground truth segmentation, BMS, EBSG
and EBSGR.





6
Summary and Outlook

In the following, we summarize the ideas presented in this thesis and how the proposed

approaches and results can be seen related to the potential future evolution of activ-

ity recognition. Several aspects and problem statements concerning ambiguities in the

context of activity recognition have been discussed. Solutions for handling spatial, tem-

poral and label ambiguities have been proposed and compared to related state-of-the-art.

The related findings, besides the present thesis, have found their way into many research

projects, publications and master theses of students. In relation to image classification,

the combination of space and time information in videos does not only add additional

dimensionality to the data, but exponentially increases the complexity and variability

concerning relations and extend of different actors and events over time. Within the the-

sis, this important information of spatial and temporal relations within an activity could

be exploited effectively for generating better classification and detection results.

Learning spatial and temporal relation and linking individual action detections over

time is still an important task. The action tubes approach by Gkioxari and Malik [56]

linked specifically trained detector results without prior motion knowledge. Looking into

related research fields like object tracking, the authors of [189] augmented a CNN feature

vector with motion actions like (left, right, up, down, scale,...), and retrained the network

offline to guide a tracker during online tracking tasks with the predicted motion actions.

To some extend both approaches have overlaps to ideas presented in chapter 3, and depicts

the need for further research in that direction.

Furthermore, the importance of emphasizing the actor(s) within activity videos was

enforced, by a solution for automatically generated saliency maps for marking the action

related areas within videos and images in chapter 5. During the last years there was

a rise of convolution neural networks (CNN) for feature representation, replacing hand

crafted features and processing pipelines of the past. As discussed in [26] by Carreira

and Zisserman, the change from applying image based CNNs to networks trained on

huge video datasets nowadays available, like YouTube1m or Kinetics is the necessary next

step. In addition, incorporation of human detections or focus attention into the action

113
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detection and classification process would be an interesting research direction. Similar

ideas have been already successfully applied by using saliency maps in the area of semantic

segmentation by Oh et al. [81] or Shimoda and Yanai [147] as well as the VideoLSTM

approach [101].

As already discussed in the beginning of this thesis, the amount of videos for activity

recognition benchmarks is drastically increasing. On the one hand this is necessary to avoid

bias like within older datasets, on the other hand processing this amount of information

becomes unfeasible. Such development would imply that researches may have to work

on precomputed features and never analyze or even see the underlying video and its

context. Thus, in addition we will need to develop more compact but still visualisable

representations for activity videos, e.g., similar to the dynamic images proposed by [11].

Still open points are handling unconstrained video for temporal action localization

and the incorporation of temporal and contextual information. Although the research

community made a big enhancement applying CNNs for representation, connecting spatial

and temporal context will be necessary to get more insight into the complex structures of

understanding activity. Recently, interesting concept for representing temporal ordering

within activity videos have been proposed by Sigurdsson et al. [148] as a fully-connected

temporal CRF model on top of a two-stream networks. Other approaches describe the

temporal evolution by ranking methods like Fernando et al. [49] or with an approximate

rank pooling CNN layer [11] by Bilen and colleagues named dynamic images.

We will see a further fragmentation of video related activity recognition and human

centered action recognition based on depth and wearable sensors. Data modalities and fea-

ture description as well as applications diver too much between those two areas, although

they both contains activity recognition as their principal goal. Hence, activity recognition

will stay one of the uprising fields in the currently extreme popular and dynamic field of

computer vision.



A
List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this thesis strongly related publi-

cations are listed with the respective abstracts in chronological order, otherwise only cited

by title and authors.

A.1 2017

Spatiotemporal Saliency Estimation by Spectral Foreground Detection

Caglar Aytekin, Horst Possegger, Thomas Mauthner, Serkan Kiranyaz, Horst Bischof and

Moncef Gabbouj

IEEE Transactions on Multimedia , vol.PP, no.99, pp.1-1, 2017

(preprint)

Abstract: We present a novel approach for spatio-temporal saliency detection by opti-

mizing a unified criterion of color contrast, motion contrast, appearance and background

cues. To this end, we first abstract the video by temporal super-pixels. Second, we pro-

pose a novel graph structure exploiting the saliency cues to assign the edge weights. The

salient segments are then extracted by applying a spectral foreground detection method,

Quantum Cuts, on this graph. We evaluate our approach on several public data sets for

video saliency and activity localization to demonstrate the favorable performance of the

proposed Video Quantum Cuts (VQCUT) compared to the state-of-the-art.

Pose-specific non-linear mappings in feature space towards multiview fa-

cial expression recognition

Mahdi Jampour, Vincent Lepetit, Thomas Mauthner and Horst Bischof

Image and Vision Computing, Volume 58, Pages 38− 46, 2017
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Abstract: We introduce a novel approach to recognizing facial expressions over a large

range of head poses. Like previous approaches, we map the features extracted from the

input image to the corresponding features of the face with the same facial expression but

seen in a frontal view. This allows us to collect all training data into a common referential

and therefore benefit from more data to learn to recognize the expressions. However, by

contrast with such previous work, our mapping depends on the pose of the input image:

We first estimate the pose of the head in the input image, and then apply the mapping

specifically learned for this pose. The features after mapping are therefore much more

reliable for recognition purposes. In addition, we introduce a non-linear form for the

mapping of the features, and we show that it is robust to occasional mistakes made by

the pose estimation stage. We evaluate our approach with extensive experiments on two

protocols of the BU3DFE and Multi-PIE data sets, and show that it outperforms the

state-of-the-art on both data-sets.

A.2 2015

Encoding based saliency detection for videos and images

Thomas Mauthner, Horst Possegger, Georg Waltner and Horst Bischof

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015

Abstract: We present a novel video saliency detection method to support human ac-

tivity recognition and weakly supervised training of activity detection algorithms. Recent

research has emphasized the need for analyzing salient information in videos to minimize

data-set bias or to supervise weakly labeled training of activity detectors. In contrast

to previous methods we do not rely on training information given by either eye-gaze or

annotation data, but propose a fully unsupervised algorithm to find salient regions within

videos. In general, we enforce the Gestalt principle of figure-ground segregation for both

appearance and motion cues. We introduce an encoding approach that allows for efficient

computation of saliency by approximating joint feature distributions. We evaluate our

approach on several data-sets, including challenging scenarios with cluttered background

and camera motion, as well as salient object detection in images. Overall, we demonstrate

favorable performance compared to state-of-the-art methods in estimating both ground-

truth eye-gaze and activity annotations.
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In defense of color-based model-free tracking

Horst Possegger, Thomas Mauthner and Horst Bischof

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015

Pairwise linear regression: An efficient and fast multi-view facial expres-

sion recognition

Mahdi Jampour, Thomas Mauthner and Horst Bischof

In: Proceedings of IEEE International Conference and Workshops on Automatic Face

and Gesture Recognition (FG), 2015

Abstract: Multi-view facial expression recognition (MFER) is an active research topic

in facial analysis. In fact, not only the accuracy but also time complexity is desirable

for real applications. In this paper, we introduce a new fast and robust approach for

recognizing facial expressions in arbitrary views. Our approach relies on learning linear

regressions between pairs of non-frontal and frontal sets to virtually compensate occluded

facial parts. We learn linear regression for projecting from non-frontal to frontal views.

Such approximated frontal training features are applied for training view specific facial

expression classifiers. We propose a number of different variants of our approach, in-

cluding sparse encoding and ridge-regression for feature representation. While classical

pose specific methods strongly depend on the quality of the pose estimation step, our

approaches maintain their superior behavior even under severe pose noise. We evaluate

on both BU3DFE and Multi-PIE data-sets and outperform the state-of-the-art in classifi-

cation accuracy, even with a simple pose specific baseline method, while being extremely

robust to feature noise and erroneous viewpoint estimation with our pairwise regression

approaches.

Multi-view Facial Expressions Recognition using Local Linear Regression

of Sparse Codes

Mahdi Jampour, Thomas Mauthner and Horst Bischof

In: Proceedings of Computer Vision Winter Workshop (CVWW), 2015

Abstract: We introduce a linear regression-based projection for multi-view facial expres-

sions recognition (MFER) based on sparse features. While facial expression recognition

(FER) approaches have become popular in frontal or near to frontal views, few papers

demonstrate their results on arbitrary views of facial expressions. Our model relies on
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a new method for multi-view facial expression recognition, where we encode appearance-

based facial features using sparse codes and learn projections from non- frontal to frontal

views using linear regression projection. We then reconstruct facial features from the

projected sparse codes using a common global dictionary. Finally, the reconstructed fea-

tures are used for facial expression recognition. Our regression of sparse codes approach

outperforms the state-of-the- art results on both protocols of BU3DFE data set.

A.3 2014

Indoor Activity Detection and Recognition for Automated Sport Games

Analysis

Georg Waltner, Thomas Mauthner and Horst Bischof

In: Proceedings of Austrian Association for Pattern Recognition (OAGM/AAPR)

Workshop, 2014

Abstract: Activity recognition in sport is an attractive field for computer vision re-

search. Game, player and team analysis are of great interest and research topics within

this field emerge with the goal of automated analysis. The very specific underlying rules of

sports can be used as prior knowledge for the recognition task and present a constrained

environment for evaluation. This paper describes recognition of single player activities

in sport with special emphasis on volleyball. Starting from a per-frame player-centered

activity recognition, we incorporate geometry and contextual information via an activ-

ity context descriptor that collects information about all player’s activities over a certain

timespan relative to the investigated player. The benefit of this context information on

single player activity recognition is evaluated on our new real-life data set presenting a

total amount of almost 36k annotated frames containing 7 activity classes within 6 videos

of professional volleyball games. Our incorporation of the contextual information im-

proves the average player-centered classification performance of 77.56% by up to 18.35%

on specific classes, proving that spatio-temporal context is an important clue for activity

recognition.

Improved Sport Activity Recognition using Spatio-temporal Context

Georg Waltner, Thomas Mauthner and Horst Bischof

In: Proceedings of DVS-Conference on Computer Science in Sport (DVS/GSSS), 2014

Abstract: Activity recognition in sport is an attractive field for computer vision re-

search. Game, player and team analysis are of great interest and research topics within

this field emerge with the goal of automated analysis. As the execution of same activities



A.3. 2014 119

differs between players and activities cannot be modeled by local description alone, addi-

tional information is needed. Inspired by the concept of group context ([Choi11], [Lan12],

[Zhu13]), we employ contextual information to support activity recognition. Compared

to other sport activity recognition systems, e.g., proposed by [Bialkowski13], we focus on

single player activities rather than on general team activities.

Occlusion Geodesics for Online Multi-object Tracking

Horst Possegger, Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2014

A novel method for the analysis of sequential actions in team handball

Paul Rudelsdorfer, Norbert Schrapf, Horst Possegger, Thomas Mauthner, Horst Bischof

and Markus Tilp

International Journal of Computer Science in Sport Volume 13, Issue 1, 2014

Abstract: Performance in team sports crucially depends on the knowledge about the

own and the opponents strengths and weaknesses. Since the analysis of single actions

only provides restricted information on the game process, the analysis of sequential ac-

tions is from great importance to understand team tactics. In this paper, we introduce

a novel method to analyze tactical behavior in team sports based on action sequences

of positional data which are subsequently analyzed with artificial neural networks. We

present custom-made software which allows annotating single actions with accurate man-

ual position information. The process of building action sequences with the notational

information of single actions in team handball is described step by step and the accu-

racy of the position determination is evaluated. The evaluation revealed a mean error of

0.16m(±0.17m) for field positions on a handball field. Inter- and intra-rater reliability for

identical camera setups are excellent (ICC=0.92 and 0.95 resp.). However, tests revealed

that position accuracy is depending on camera setup (ICC=0.36). The results of the study

demonstrate the applicability of the described method to gain action sequence data with

accurate position information. The combination with neural networks gives an alternative

approach to T-patterns for the analysis of sport games.
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A.4 2013

Robust Real-Time Tracking of Multiple Objects by Volumetric Mass Den-

sities

Horst Possegger, Sabine Sternig, Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2013

A.5 2012

Unsupervised Calibration of Camera Networks an Virtual PTZ Cameras

Horst Possegger, Matthias Rüther, Sabine Sternig, Thomas Mauthner, Manfred

Klopschitz, Peter Roth and Horst Bischof

In: Proceedings of Computer Vision Winter Workshop (CVWW), 2012

Learn to Move: Activity Specific Motion Models for Tracking by Detec-

tion

Thomas Mauthner, Peter Roth and Horst Bischof

In: Proceedings of European Conference on Computer Vision Workshops and

Demonstrations (ECCVW), 2012

Abstract: In this paper, we focus on human activity detection, which solves detec-

tion, tracking, and recognition jointly. Existing approaches typically use off-the-shelf

approaches for detection and tracking, ignoring naturally given prior knowledge. Hence,

in this work we present a novel strategy for learning activity specific motion models by

feature-to-temporal-displacement relationships. We propose a method based on an aug-

mented version of canonical correlation analysis (AuCCA) for linking high-dimensional

features to activity-specific spatial displacements over time. We compare this continu-

ous and discriminative approach to other well established methods in the field of activity

recognition and detection. In particular, we first improve activity detections by incorpo-

rating temporal forward and backward mappings for regularization of detections. Second,

we extend a particle filter framework by using activity-specific motion proposals, allowing

for drastically reducing the search space. To show these improvements, we run detailed

evaluations on several benchmark data sets, clearly showing the advantages of our activity-

specific motion models.
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Real-time Activity Repetition Detection

Markus Murschitz, Thomas Mauthner, Peter Roth and Horst Bischof

In: Proceedings of Computer Vision Winter Workshop (CVWW), 2012

Abstract: In this work, we address the problem of real-time action recognition from

video streams, in particular exploiting the information given by repetitive actions. Adapt-

ing the SPRING algorithm, a sequential variant of dynamic time warping (DTW), not only

single frames can be classified but also repetitions of actions can be recognized. These

particular benefits are demonstrated for two different publicly available data sets, show-

ing promising results. Moreover, since we apply efficient GPU implementations for visual

features and the classifier, we can ensure real-time capability, even using low cost con-

sumer hardware. Thus, the system can also be applied in practical setups,e.g., for human

computer interaction.

A.6 2011

Multi-camera multi-object tracking by robust hough-based homography

projections

Sabine Sternig, Thomas Mauthner, Arnold Irschara, Peter M. Roth and Horst Bischof

In: Proceedings of IEEE International Workshop on Visual Surveillance, 2011

A.7 2010

Temporal feature weighting for prototype-based action recognition

Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of the Asian Conference on Computer Vision (ACCV), 2010

Abstract: In action recognition recently prototype-based classification methods became

popular. However, such methods, even showing competitive classification results, are of-

ten limited due to too simple and thus insufficient representations and require a long-term

analysis. To compensate these problems we propose to use more sophisticated features

and an efficient prototype-based representation allowing for a single-frame evaluation. In

particular, we apply four feature cues in parallel (two for appearance and two for motion)

and apply a hierarchical k-means tree, where the obtained leaf nodes represent the proto-

types. In addition, to increase the classification power, we introduce a temporal weighting

scheme for the different information cues. Thus, in contrast to existing methods, which
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typically use global weighting strategies (i.e., the same weights are applied for all data)

the weights are estimated separately for a specific point in time. We demonstrate our

approach on standard benchmark data sets showing excellent classification results. In

particular, we give a detailed study on the applied features, the hierarchical tree repre-

sentation, and the influence of temporal weighting as well as a competitive comparison to

existing state-of-the-art methods.

FlowGames

Jakob Santner, Manuel Werlberger, Thomas Mauthner, Paier Wolfgang and Horst Bischof

In: Proceedings of Int. Workshop on Computer Vision for Computer Games (CVCG) in

conjunction with CVPR, 2010

Computer vision-based interfaces to games hold the promise of rich natural interaction and

thus a more realistic gaming experience. Therefore, the video games industry started to

develop and market computer vision-based games recently with great success. Due to lim-

ited computational resources, they employ mostly simple algorithms such as background

subtraction, instead of sophisticated motion estimation or gesture recognition methods.

This not only results in a lack of robustness, but also in very limited interaction possibil-

ities and thus reduced gaming experience. In this paper, we show a couple of concepts to

control video games based on optical flow. We use a state-of-the-art optical flow algorithm

able to be computed densely in real-time on GPUs, which are in fact built-in in nearly

every gaming hardware available. Based on the estimated motion, we develop several

computer games with increasing complexity: Starting with using the flow field as force

acting on moveable objects, we span the spectrum to more sophisticated concepts such as

controlling widgets and action recognition.

Efficient Object Detection Using Orthogonal NMF Descriptor Hierar-

chies

Thomas Mauthner, Stefan Kluckner, Peter Roth and Horst Bischof

In: Proceedings of German Association for Pattern Recognition (DAGM/GCPR), 2010

Abstract: Recently descriptors based on Histograms of Oriented Gradients (HOG) and

Local Binary Patterns (LBP) have shown excellent results in object detection considering

the precision as well as the recall. However, since these descriptors are based on high

dimensional representations such approaches suffer from enormous memory and runtime

requirements. The goal of this paper is to overcome these problems by introducing hier-

archies of orthogonal Non-negative Matrix Factorizations (NMF). In fact, in this way a

lower dimensional feature representation can be obtained without loosing the discrimina-

tive power of the original features. Moreover, the hierarchical structure allows to represent

parts of patches on different scales allowing for a more robust classification. We show the
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effectiveness of our approach for two publicly available data sets and compare it to exist-

ing state-of-the-art methods. In addition, we demonstrate it in context of aerial imagery,

where high dimensional images have to be processed requiring efficient methods.

A.8 2009

Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic

Weighted TV

Markus Unger, Thomas Mauthner, Thomas Pock and Horst Bischof

In: Proceedings of Energy Minimization Methods in Computer Vision and Pattern

Recognition (EMMCVPR), 2009

Semantic Image Classification Using Consistent Regions and Individual

Context

Stefan Kluckner, Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMWC), 2009

Semantic Classification in Aerial Imagery by Integrating Appearance and

Height Information

Stefan Kluckner, Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of Asian Conference on Computer Vision (ACCV), 2009

A Covariance Approximation on Euclidean Space for Visual Tracking

Stefan Kluckner, Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of Austrian Association for Pattern Recognition (AAPR/OAGM)

Workshop, 2009

Efficient Human Action Recognition by Cascaded Linear Classification

Peter M. Roth, Thomas Mauthner, Inayatullah Khan, and Horst Bischof.

In: Proceedings of IEEE Workshop on Video-Oriented Object and Event Classification in

conjunction with ICCV, 2009



124 Chapter A. List of Publications

Abstract: We present a human action recognition system suitable for very short se-

quences. In particular, we estimate Histograms of Oriented Gradients (HOGs) for the

current frame as well as the corresponding dense flow field estimated from two frames.

The thus obtained descriptors are then efficiently represented by the coefficients of a Non-

negative Matrix Factorization (NMF). To further speed up the overall process, we apply

an efficient cascaded Linear Discriminant Analysis (CLDA) classifier. In the experimental

results we show the benefits of the proposed approach on standard benchmark data sets

as well as on more challenging and realistic videos. In addition, since other state-of-the-

art methods apply weighting between different cues, we provide a detailed analysis of the

importance of weighting for action recognition and show that weighting is not necessarily

required for the given task.

Instant Action Recognition

Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of Scandinavian Conference on Image Analysis (SCIA), 2009

Abstract: In this paper, we present an efficient system for action recognition from very

short sequences. For action recognition typically appearance and/or motion information

of an action is analyzed using a large number of frames. This is a limitation if very fast

actions (e.g., in sport analysis) have to be analyzed. To overcome this limitation, we

propose a method that uses a single-frame representation for actions based on appearance

and motion information. In particular, we estimate Histograms of Oriented Gradients

(HOGs) for the current frame as well as for the corresponding dense flow field. The

thus obtained descriptors are efficiently represented by the coefficients of a Non-negative

Matrix Factorization (NMF). Actions are classified using an one-vs-all Support Vector

Machine. Since the flow can be estimated from two frames, in the evaluation stage only

two consecutive frames are required for the action analysis. Both, the optical flow as

well as the HOGs, can be computed very efficiently. In the experiments, we compare the

proposed approach to state-of-the-art methods and show that it yields competitive results.

In addition, we demonstrate action recognition for real-world beach volleyball sequences.

Action Recognition from a Small Number of Frames

Thomas Mauthner, Peter M. Roth and Horst Bischof

In: Proceedings of Computer Vision Winter Workshop (CVWW), 2009

Abstract: In this paper, we present an efficient system for action recognition from very

short sequences. For action recognition typically appearance and/or motion information

of an action is analyzed using a large number of frames, which is often not sufficient, if very
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fast actions (e.g., in sport analysis) have to be analyzed. To overcome this limitation, we

propose a method that uses a single-frame representation for actions based on appearance

and on motion information. In particular, we estimate Histograms of Oriented Gradients

(HOGs) for the current sample as well as for a flow field. The thus obtained descriptors

are then efficiently represented by the coefficients of a Non-negative Matrix Factorization

(NMF). Actions are classified using an one-vs-all Support Vector Machine. Since the flow

can be estimated

Evaluation of visual position estimation in beach volleyball

Christina Koch, Thomas Mauthner , Markus Tilp and Norbert Schrapf

International Journal of Performance Analysis in Sport, Volume 9, Issue 3, 2009

Abstract: Position determination of game analysts is often performed by subjective vi-

sual estimation. The aim of this study was to evaluate human position estimations for

setting actions in beach volleyball. Subjects were asked to assign the athlete’s position to

one of five cells representing the court. Position estimations from seven beach volleyball

experts and seven non-experts were compared with results of video metrology also pre-

sented in this paper. A mean error-quote of 41% indicates that the perception of humans

assessing athlete’s position is very inaccurate. While beach volleyball experience did not

influence the ability for position estimation, the accuracy was dependent on the distance

from the camera. The obtained results should be taken into account by coaches and scien-

tist, who deduct their strategy on such analysis. If it is not possible to get exact position

information with technical systems, we recommend close-up views and adequate cell size

to improve validity of results.

A.9 2008

A Probabilistic Approach for Tracking Fibers

Michael Donoser, Thomas Mauthner and Horst Bischof

In: Proceedings of International Conference on Pattern Recognition (ICPR), 2008

Robust Tracking of Spatial Related Components

Thomas Mauthner, Michael Donoser and Horst Bischof

In: Proceedings of International Conference on Pattern Recognition (ICPR), 2008
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A.10 2007

A Robust Multiple Object Tracking for Sport Applications

Thomas Mauthner and Horst Bischof

In: Proceedings of Austrian Association for Pattern Recognition (AAPR/OAGM)

Workshop, 2007

Visual Tracking of Athletes in Beach Volleyball Using a Single Camera

Thomas Mauthner, Christina Koch, Markus Tilp and Horst Bischof

International Journal of Computer Science in Sport, Volume 6, Edition 2, 2007
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Frequency-tuned salient region detection. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, 2009. (page 83, 91, 101, 102, 105)

[4] J. K. Aggarwal and Michel S. Ryoo. Human activity analysis: A review. ACM

Computing Surveys, 43(3):16:1–16:43, 2011. (page 5)

[5] Omid Aghazadeh, Josephine Sullivan, and Stefan Carlsson. Novelty detection from

an ego-centric perspective. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2011. (page 14)

[6] M. Aharon, M. Elad, and A. Bruckstein. K -SVD: An algorithm for designing

overcomplete dictionaries for sparse representation. Signal Processing, IEEE Trans-

actions on, 54(11):4311–4322, Nov 2006. (page 58, 66)

[7] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What is an object? In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, 2010. (page 60, 93, 95,

96, 99, 100, 107, 108, 109)

[8] Mohamed R. Amer, Dan Xie, Mingtian Zhao, Sinisa Todorovic, and Song-Chun Zhu.

Cost-sensitive top-down/bottom-up inference for multiscale activity recognition. In

Proc. European Conf. on Computer Vision. Springer, 2012. (page 14)

[9] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters

for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal

Processing, 50(2):174–188, 2002. (page 39, 40)

[10] Nicolas Ballas, Yi Yang, Zhen-Zhong Lan, Bertrand Delezoide, Francoise Preteux,

and Alexander Hauptmann. Space-time robust representation for action recognition.

In Proc. IEEE Intern. Conf. on Computer Vision, December 2013. (page 84, 98)



128

[11] Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and Stephen

Gould. Dynamic image networks for action recognition. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, 2016. (page 114)

[12] Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen Basri. Actions

as space-time shapes. In Proc. IEEE Intern. Conf. on Computer Vision, 2005.

(page 6, 27, 41, 49)

[13] V. Bloom, D. Makris, and V. Argyriou. G3D: A gaming action dataset and real

time action recognition evaluation framework. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition Workshops, 2012. (page 16)

[14] Victoria Bloom, Vasileios Argyriou, and Dimitrios Makris. Hierarchical transfer

learning for online recognition of compound actions. Computer Vision and Image

Understanding, 144(C):62–72, March 2016. (page 16)

[15] S. J. Blunsden and Robert Fisher. The behave video dataset: ground truthed video

for multi-person. In Proc. British Machine Vision Conf., 2010. (page 8, 14)

[16] Aaron F. Bobick and James W. Davis. The recognition of human movement using

temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 23:257 – 267, 2001. (page 5, 6)

[17] P. Bojanowski, F. Bach, I. Laptev, J. Ponce, C. Schmid, and J. Sivic. Finding

actors and actions in movies. In Proc. IEEE Intern. Conf. on Computer Vision,

2013. (page 59)

[18] Ali Borji, DickyN. Sihite, and Laurent Itti. Salient object detection: A benchmark.

In Proc. European Conf. on Computer Vision, 2012. (page 83, 92, 101)

[19] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Image classification using

random forests and ferns. In Proc. IEEE Intern. Conf. on Computer Vision, 2007.

(page 38)

[20] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001. (page 38)

[21] William Brendel and Sinisa Todorovic. Learning spatiotemporal graphs of human

activities. In Proc. IEEE Intern. Conf. on Computer Vision, 2011. (page 77, 78)

[22] Xavier P. Burgos-Artizzu, Piotr Dollar, Dayu Lin, David J. Anderson, and Pietro

Perona. Social behaviour recognition in continuous video. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, 2012. (page 26)

[23] Zoya Bylinskii, Tilke Judd, Frédo Durand, Aude Oliva, and Antonio Torralba. MIT

saliency benchmark. http://saliency.mit.edu/, 2015. (page 101)



BIBLIOGRAPHY 129

[24] Liangliang Cao, Zicheng Liu, and T.S. Huang. Cross-dataset action detection. In

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2010. (page xix, 7,

8)

[25] Yu Cao, Daniel Barrett, Andrei Barbu, Siddharth Narayanaswamy, Aaron Michaux

Haonan Yu and, Yuewei Lin, Sven Dickinson, and Jeffrey Mark Siskinda

nd Song Wang. Recognize human activities from partially observed videos. In

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2013. (page 60)

[26] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model

and the kinetics dataset. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, July 2017. (page 113)

[27] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011. (page 101)

[28] Jose M. Chaquet, Enrique J. Carmona, and Antonio Fernández-Caballero. A survey

of video datasets for human action and activity recognition. Computer Vision and

Image Understanding, 117(6):633 – 659, 2013. (page 5)

[29] Yi-Chen Chen, Vishal Patel, Jaishanker Pillai, Rama Chellappa, and P. Jonathan

Phillips. Dictionary learning from ambiguously labeled data. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, 2013. (page 60, 67, 72, 73)

[30] Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. S. Torr, and Shi-Min Hu.

Global contrast based salient region detection. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, 2011. (page 83, 86, 101, 102)

[31] Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. S. Torr, and Shi-Min

Hu. Global contrast based salient region detection. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 37(3):569–582, 2015. (page 83, 91, 101)

[32] Wongun Choi, Khuram Shahid, and Silvio Savarese. What are they doing? : Col-

lective activity classification using spatio-temporal relationship among people. In

Proc. IEEE International Workshop on Visual Surveillance, 2009. (page 14)

[33] T. Cour, B. Sapp, and B. Taskar. Learning from partial labels. Journal of Machine

Learning Research(JMLR), 12:1225–1261, 2011. (page 60, 67, 72, 73)

[34] Xinyi Cui, Qingshan Liu, and Dimitris Metaxas. Temporal spectral residual: Fast

motion saliency detection. In Proc. of ACM International Conference on Multimedia,

2009. (page 83)



130

[35] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2005. (page 21,

29)

[36] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using oriented

histograms of flow and appearance. In Proc. European Conf. on Computer Vision,

2006. (page 21, 23)

[37] Giovanni Denina, Bir Bhanu, HoangThanh Nguyen, Chong Ding, Ahmed Kamal,

Chinya Ravishankar, Amit Roy-Chowdhury, Allen Ivers, and Brenda Varda. Vide-

oweb dataset for multi-camera activities and non-verbal communication. In Dis-

tributed Video Sensor Networks, pages 335–347. Springer London, 2011. (page 14)

[38] Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior

recognition via sparse spatio-temporal features. In Proc. PETS Workshop, 2005.

(page 18, 27)

[39] Michael Donoser and Dieter Schmalstieg. Discriminative feature-to-point matching

in image-based localization. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition. IEEE, 2014. (page 56)

[40] Alexei A. Efros, Alexander C. Berg, Greg Mori, and Jitendra Malik. Recogniz-

ing action at a distance. In Proc. IEEE Intern. Conf. on Computer Vision, 2003.

(page 28)

[41] A. Elgammal, V. Shet, Y. Yacoob, and L. S. Davis. Learning dynamics for exemplar-

based gesture recognition. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2003. (page 27)

[42] M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool. The PAS-

CAL Visual Object Classes Challenge 2006 (VOC2006) Results. http://www.pascal-

network.org/challenges/VOC/voc2006/results.pdf, 2006. (page 96)

[43] Abdalrahman Eweiwi, Muhammad Shahzad Cheema, and Christian Bauckhage. Dis-

criminative joint non-negative matrix factorization for human action classification.

In Proc. German Conference on Pattern Recognition, 2013. (page 65, 66)

[44] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles.

Activitynet: A large-scale video benchmark for human activity understanding. In

Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2015. (page 13)
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