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Abstract

The Murl Engine is a native cross-platform application framework designed for
platform-independent development of games and multimedia-rich applications. Such
frameworks ideally support a vast variety of shading languages to grant programmers
as much flexibility as possible. The aim of this work is to design and implement an
application that enables the Murl Engine to handle various input and output shading
languages. This application utilizes the Vulkan shading language SPIR-V (Standard
Portable Intermediate Representation) as an intermediate representation for shader
translation. The Murl Engine has a strong focus on performance and provides a tool
for offline optimization of GLSL (OpenGL Shading Language) shaders. Therefore,
this thesis introduces basic offline optimizations for SPIR-V modules, such as dead
code elimination , inline expansion and copy propagation. The performance of these
optimized SPIR-V shaders is evaluated with respect to their frame rates and byte
sizes.

Keywords: Murl Engine, shader translation, SPIR-V, Vulkan, compiler optimiza-
tion
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Kurzfassung

Die Murl Engine ist ein plattformunabhängiges Framework, speziell entworfen für
die Entwicklung von Spielen und multimedia Anwendungen. Solche Frameworks un-
terstützen, im besten Fall, so viele verschiedene Shader-Sprachen wie möglich, um
Entwicklern maximale Flexibilität zu gewähren. Das Ziel dieser Arbeit ist der Ent-
wurf und die Implementierung einer Anwendung, die es der Murl Engine ermöglicht
verschiedene Shader-Sprachen, sowohl als Eingangssprachen als auch als Ausgangs-
sprachen zu handhaben. Diese Anwendung verwendet die native Vulkan Shader-
Sprache SPIR-V (Standard Portable Intermediate Representation) um eine Sprache,
in eine andere, zu übersetzen. Die Murl Engine wurde für höchste Performance ent-
worfen und bietet auch offline Optimierungen für GLSL (OpenGL Shading Langua-
ge) Shader an. Aus diesem Grund wurden auch im Zuge dieser Arbeit verschiedene
Optimierungen für SPIR-V Module implementiert. Zu diesen zählen unter ande-
rem dead code elimination, inline expansion und copy propagation. Die optimierten
SPIR-V Shader wurden hinsichtlich ihrer Frameraten und Dateigrößen evaluiert.

Schlagwörter: Murl Engine, Shaderübersetzung, SPIR-V, Vulkan, Compileropti-
mierung
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Chapter 1

Introduction

Until today the mobile market is still growing rapidly. With the increasing process-
ing power of mobile devices, people demand high standards for their multimedia
applications. Developers of such applications have to face enormous challenges in
terms of development time, resources, maintenance, tools and deployment. As there
are various different platforms to target, like iOS, Windows Mobile or Android,
developers need to use many different vendor-specific Software Development Kits
(SDKs) to create their applications, even the programming languages vary. To work
around these problems, the most popular approach is to use a common code base,
written in a single programming language and use a cross-platform framework to
create native applications for the targeted platforms. During this work, an applica-
tion was designed and implemented to enhance the Murl Engine, a cross-platform
framework to develop games and multimedia-rich applications [43]. This application
is meant to improve the Murl Engine in terms of flexibility and support for different
shading languages.

1.1 Murl Engine

The Murl Engine is a lightweight native C++ cross-platform multimedia framework,
created and maintained by Spraylight GmbH [44]. As already mentioned above it
was designed for the development of games and multimedia applications, with a
strong focus on flexibility and performance. It allows fast and easy development of
applications for Android, iOS, macOS, Windows and Linux as show in figure 1.1.

1



1.1. Murl Engine 2

Figure 1.1: The Murl Engine as a cross-plaftorm framework.

Although running on desktop and mobile systems, the Murl Engine is primarily
optimized for mobile platforms. Figure 1.2 displays how the Murl framework is
structured.

Figure 1.2: Structure of the Murl Engine framework.
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As illustrated in Figure 1.2 the code of an application is split into three main
parts, the user code, the framework code and the platform code. These three parts
combined result in the the native application for the specific platform. While the
Murl Engine provides the framework code and the platform code, the user code has
to be written by the developer. The framework code was developed completely
in C/C++, while the platform code can either be C/C++, Objective C or Java,
depending on the targeted platform. The Murl Engine supports C++ and/or Lua
user code for application development. As a cross-platform multimedia framework,
the Murl Engine also has to support multiple shading languages fitting the targeted
platforms and the graphics APIs (Application Programming Interfaces) in use. A
windows system using DirectX needs shaders written in HLSL (High Level Shading
Language [30]), while a Linux system is dependent on OpenGL and GLSL (OpenGL
Shading Language [19]) shaders. Figure 1.3 shows the typical workflow used by the
Murl framework, when dealing with shaders. The Murl Engine provides an interface
to write GLSL shader code directly within the framework, this user written shader is
optimized by an open source tool called GLSL Optimizer, which was created by Aras
Pranckevičius [38][39]. The optimized code is then converted to HLSL if needed.

Figure 1.3: Shader compilation in the Murl Engine.

While this works well in terms of performance, it lacks flexibility of supported
languages. If a user wants to user another shading language, like HLSL, the Murl
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Engine would need to provide and maintain a different optimization tool to achieve
optimized shader code. The goal of this thesis is to provide a tool used by the Murl
framework to solve this issue. To be independent of the input and output languages,
an intermediate language is needed.

Figure 1.4: Shader cross-compilation using SPIR-V as an intermediate language.

Whatever input language is used, it will be converted to the intermediate repre-
sentation, then optimized and finally converted back to to output language desired.
This is visualized in Figure 1.4, where SPIR-V (Standard Portable Intermediate
Representation [21]), which is described in more detail in Section 2.3.4, is used as an
intermediate language. Since SPIR-V was designed to be a portable intermediate
representation, it fits the needs perfectly. Additionally, as Vulkan is considered the
successor of OpenGL and SPIR-V being the native shading language for Vulkan, the
Murl Engine will be ready for Vulkan. This approach has the advantage, that while
supporting all languages that can be converted to SPIR-V, the optimization is also
a lot easier to maintain, as only the SPIR-V code needs to be optimized. The ap-
plication created during this work, will be part of the Murl Engine as a third-party
application.



Chapter 2

Related Work

This chapter covers the most important fundamentals for understanding this thesis.
Section 2.1 gives an overview of how programmable shading evolved. Afterwards,
section 2.2 deals with the graphics pipeline and its stages, followed by some back-
ground to different shading languages in section 2.3. The most relevant compiler
optimizations for this thesis are discussed in section 2.4.

2.1 History of Programmable Shading

The need for programmable shading was recognized early on. It was Robert L.
Cook who introduced shade trees in 1984 [7]. He saw that shaders based on fixed
models are not sufficient for more complex shading tasks and suggested a flexible
tree-structured shading model. He further developed his idea and proposed a new
rendering architecture in 1987 [8]. This apporach was picked up by Hanrahan and
Lawson who introduced one of the first shading languages [13], which later came to
be known as the RenderMan Shading Language [1][45]. Even today RenderMan is
used for creating visual effects and animations for film productions. Since graphics
processing units (GPUs) did not support programmable shading, multi-pass render-
ing was widley used [34]. The first graphics card to support programmable vertex
shaders was the GeForce 3, developed by NVIDIA in 2001 [25]. However, shader
programs were very limited in functionality and length back then. They did not
allow any branching and had to be written in an assembler-like language. From
that point GPUs and also the graphics application program interfaces (APIs), Di-
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2.2. Shader Stages 6

rectX and OpenGL, improved rapidly. Soon new, higher level, shading languages
were needed due to the high complexity of the shaders. With DirectX 9.0 Microsoft
and NVIDIA introduced their High Level Shading Language (HLSL [30]) and the
cross-platform language Central Graphics (Cg [28]). In parallel, the OpenGL Ar-
chitecture Review Board (OpenGL ARB) also developed a c-like shading language
for their API, called OpenGL Shading Language (GLSL [40]). At this point these
high level languages allowed for programming vertex shaders and fragment shaders
(or pixel shaders) only. Later on in 2007 shader programming evolved further with
the introduction of geometry shaders and Shader Model 4.0 [5]. As a result the
fixed-function graphics pipeline was now only used to support older graphics cards
and the the programmable shader pipeline became standard. With Direct3D 11 and
OpenGL 4.0 tessellation shaders and compute shaders were added to the rendering
pipeline [46][48] which leads to the modern programmable graphics pipeline shown
in Figure 2.1.

Vertex Data Vertex Shader
Tessellation

Control
Shader

Tessellator
Tesselation
Evaluation

Shader

Geometry
ShaderRasterizerFragment

ShaderFramebuffer

Figure 2.1: The programmable graphics pipeline, as used in OpenGL. The green blocks
represent the input and output data. The blue blocks show the programmable stages,
while the orange blocks are fixed stages.

2.2 Shader Stages

This section describes the shader stages in modern graphics pipelines. Each shader
type is explained in more detail, along with examples of typical use-cases. Starting
with vertex shaders in section 2.2.1, this section further follows the graphics pipeline
to tessellation shaders in section 2.2.2 and geometry shaders in section 2.2.3. Frag-
ment shaders and compute shaders are also covered in sections 2.2.4 and 2.2.5.
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2.2.1 Vertex Shader

As seen in Figure 2.1 the vertex shader is the first stage in the graphics pipeline.
When talking about vertices in computer graphics, a vertex can be seen as the corner
of a triangle where two edges meet. Thus every triangle consists of three vertices and
multiple triangles form a mesh to represent 3D objects. Such vertices can be defined
by various attributes, like their position, color or texture information. A vertex
shader will be invoked exactly once per vertex and can do mathematical operations
on these vertex attributes. The simplest implementation of a vertex shader would
just transforms the position of a vertex from world space to screen space, but there
is no limit to the visual effects that can be created. A programmer could use vertex
shaders to do per vertex lighting or do complex deformations of surfaces, hence
creating water wave effects or lens effects. Figure 2.2 shows an example of a vertex
shader used for displacement mapping.

Figure 2.2: Benefits of displacement mapping using vertex texturing [35].

2.2.2 Tessellation Shader

Tessellation shaders operate on sets of vertices, called patches. In general the task
of a tessellation shader is to subdivide these patches into smaller, more refined,
primitives according to a mathematical function. As a result tessellation creates
more vertices with all needed data, like position, color or texture coordinates. This
enables programmers to add more details to polygons in real time. As an easy
example a cube could be tessellated to a sphere depending on the distance to the
camera. As shown in Figure 2.1 tessellation is split into two shader stages. The first
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stage is the tessellation control shader (TCS) stage, also called hull shader stage in
Direct3D. A tessellation control shader defines the size of the patches and decides the
amount of tessellation each patch gets. It has to ensure that shared edges of patches
use the same level of tessellation, to prevent holes in the resulting meshes. After the
TCS stage the patches are passed to the tessellator, who actually generates the new
primitives. The second shader stage is the tessellation evaluation shader (TES) stage
also called Domain Shaders for the Direct3D equivalent. The tessellation evaluation
shader takes the patches it got from the TCS stage and calculates the new vertex
positions, colors or texture coordinates. While a tessellation control shader can use
a default implementation for size of patches and hence is optional, a tessellation
evaluation shader is always required to do tessellation. Figure 2.3 compares the
rendering of a dragon with and without tessellation.

Figure 2.3: Rendering without (left) and with (right) hardware tessellation [32].

2.2.3 Geometry Shader

The geometry shader stage is logically placed between vertex shader stage, or tes-
sellation shader stage if used, and the fragment shader stage. Geometry shaders
can process primitive types as input and generate one or more primitives as output.



2.2. Shader Stages 9

These types can be points, lines or triangles. While input and output types do
not have to match, a single geometry shader can only output one type of primitive
but multiple instances of it. When geometry shaders were introduced, they were
also used to implement some crude forms of tessellation, but the performance was
far from satisfactory, leading to separate shader stages for tessellation as described
above. More natural applications of geometry shaders are layered renderings or
the creation of shadow volumes. Geometry shaders excel at tasks where the same
primitives have to be displayed multiple times.

Figure 2.4: Shadow volume generation of complex meshes with a geometry shader.
The same scene rendered form different distances [31].

2.2.4 Fragment Shader

After the primitives pass the geometry shader stage clipping and rasterization opera-
tions are performed in the rasterization stage. All primitives are traversed and their
values get interpolated according to their type. If we think of triangles as a primitive
type, the vertices get interpolated across the area of the triangles. The next stage
is the fragment shader stage, also known as pixel shaders when using DirectX and
HLSL. While the term pixel shader is probably easier to associate with the graphical
output of the shader, fragment shader is the more accurate term since it does not
directly manipulate pixel colors, but describes how the data of a fragment is used
to modify the values of a pixel. While tessellation and geometry shader stages are
optional, the vertex shader stage and the fragment shader stage are not. This is the
reason why the inputs of fragment shaders often match the outputs of vertex shaders
in terms of variables. A fragment shader has one defined output, which is the color
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of the processed fragment, but it can still be used to manipulate other data like the
generated depth values of the fragments. The graphical effects fragment shaders
can produce are almost unlimited, some of the most common use-cases are lighting
calculations, shadow creation or bump mapping. Also post-processing effects like
blurring or distortion can easily be achieved by using fragment shaders.

Figure 2.5: This figure shows a scene with and without a motion blur effect, created
by generating a velocity map in a fragment shader [31].

2.2.5 Compute Shader

As opposed to the other shaders mentioned above, compute shaders are not tied to
the rendering pipeline. This is why compute shaders are not shown in the pipeline
in Figure 2.1. Compute shaders are mainly used for general-purpose computing
tasks on graphics processing units (GPGPU tasks). Although the calculated values
can be used to support rendering tasks, compute shaders can process arbitrary
information [14]. When heavy computational task can be parallelized, those task
can be calculated efficiently on graphics cards, this is exactly what compute shaders
are designed for.

2.3 Shading Languages

This section briefly covers the most common shading languages used today. The two
most common languages, the OpenGL Shading Language (GLSL) in section 2.3.1
and the High Level Shading Language (HLSL) in section 2.3.2 are discussed first.
Followed by a quick look at the Metal Shading Language (MSL) in section 2.3.3. As
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the Standard Portable Intermediate Representation (SPIR) is most important for
understanding this thesis, section 2.3.4 describes SPIR and also the Vulkan version
SPIR-V in more detail.

2.3.1 OpenGL Shading Language (GLSL)

As stated in 2.1 the OpenGL Shading Language, as we know it, was introduced by
the OpenGL Architecture Review Board (OpenGL ARB) in 2004 [19]. In Fall of
2006, the control of OpenGL and therby the control of GLSL was transferd to the
Khronos Group. GLSL was designed to be a cross-platform language, therefore it
runs on every platform supporting the OpenGL API, like Linux, macOS or Windows.
For mobile platforms the OpenGL ES Shading Language (OpenGL for Embedded
Systems [16]) is available, also known as GLSL ES or ESSL, which supports a
great subset of GLSL. Since GLSL is a C-like language it contains the operators
known from C or C++ with the exception of pointers, also branching and user
defined functions are supported. Due to the architecture of GPUs, recursion is not
supported [40].

2.3.2 High Level Shading Language (HLSL)

The High Level Shading Language (HLSL [30]) was released by Microsoft alongside
Direct3D 9, the graphical subset of DirectX 9, in 2002. Like GLSL it is a C-like
language to create programmable shaders. Unlike GLSL, HLSL supports Windows
platforms only, including Windows Mobile and XBox systems. This may sound
restricting at first, but not having to deal with compability concerns enables HLSL
and also Direct3D to evolve much quicker than GLSL.

2.3.3 Metal Shading Language (MSL)

The Metal Shading Language (MSL [2]) is a shading language designed for the use
with Apple’s Metal API. Metal was introduced by Apple in 2014 and is a graphics
API for creating apps specifically for the Apple platforms macOS, iOS and tvOS.
The Metal Shading Language is a C++ based shading language with great support
for general-purpose data-parallel computations.
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2.3.4 Standard Portable Intermediate Representation
(SPIR)

The Standard Portable Intermediate Representation (SPIR [21]) is developed and
maintained by the Khronos Group and was originally designed as a mapping from
their OpenCL standard to the LLVM [26] intermediate representation. With respect
to the Vulkan API, meant to be the successor of OpenGL, SPIR has evolved to a
true cross-API with native support for kernel and shader features and now goes
with the name SPIR-V. SPIR-V was fully defined by the Khronos Group and is
meant to be a simple binary intermediate representation for graphical shaders and
compute kernels. It is designed to map very easily to other shading languages, like
GLSL or HLSL. With SPIR-V the first steps of compilation and reflection, as well as
some optimizations, can be done offline. A SPIR-V binary follows the static single
assignment form (SSA form [3]) and is basically a stream of assembler-like opcodes
(operation codes). Hence, a unique id (identifier) is assigned to each instruction in
the SPIR-V binary. This enables compilers to easily optimize it, but as SPIR-V
is a binary format it is not human-readable. Example 2, taken from the SPIR-V
specification document [21], tries to display how SPIR-V would look in readable
form. The shown shader is the equivalent to the corresponding fragment shader
depicted in example 1. A SPIR-V module is a linear stream of words following
a well defined layout. As seen in example 2, every binary begins with a Magic
number, this number can be used as pleased. However, a useful application would
be to identify the endianness that is applied for conversion when the module is
stored as a stream of bytes in a file. The Version variable defines the SPIR-V
version, for this thesis Version 1.0.0 was always used. The Generator definition
gives information about what tool was used to create the SPIR-V binary. In the
example below the Bound specifies the maximum id used in the shader. It has to
be guaranteed that every id is between 0 and Bound. Ideally Bound should be as
small as possible to have densely packed ids near 0. This is also the reason why a
remap id pass was introduced as part of this thesis, this will be explained in more
detail in later chapters. After the Schema setting which is just reserved for now and
can bet set to 0, the instruction stream is starting. The first instructions define
shader capabilities, memory models, executation modes and the entry point of the
shader. The instructions have to be in the exact same order as shown in example 2.
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After this general information, all debug information is defined. Debug information
contains source extensions, variable names and member names of structs. The debug
information is followed by an Annotations section. Annotations provide information
about type decorations, such as array strides or memory offsets when dealing with
arrays. Also precision identifiers or interpolation qualifiers are defined here. SPIR-
V defines all types, variables and constants directly after the Annotations section.
After this definition, the actual shader code starts. In SPIR-V every function starts
with an OpFunction opcode and ends with an OpFunctionEnd opcode. Inside this
function the opcodes are grouped into blocks, where each block starts with OpLabel
and ends with a branch instruction. Branch instructions define the control flow and
can either be OpBranch, OpBranchConditional (if), OpSwitch (switch), OpKill
(termination), OpReturn (function return), OpReturnValue (function return value)
or OpUnreachable.
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Example 1 The GLSL fragment shader, corresponding to the SPIR-V shader in
example 2, as shown in the SPIR-V specification.

1: #version 450

2: in vec4 color1;
3: in vec4 multiplier;
4: noperspective in vec4 color2;
5: out vec4 color;

6: struct S {
7: bool b;
8: vec4 v[5];
9: int i;

10: };

11: uniform blockName {
12: S s;
13: bool cond;

14: void main()
15: {
16: vec4 scale = vec4(1.0, 1.0, 2.0, 1.0);

17: if (cond)
18: color = color1 + s.v[2];
19: else
20: color = sqrt(color2) ∗ scale;

21: for (int i = 0; i < 4; ++ i)
22: color ∗= multiplier;
23: }
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Example 2 SPIR-V binary example in human-readable form, as shown in the
SPIR-V specification.

; Magic : 0x07230203 (SPIR-V)
; V ersion : 0x00010000 (Version: 1.0.0)
; Generator : 0x00080001 (Khronos Glslang Reference Front End; 1)
; Bound : 63
; Schema : 0

OpCapability Shader
%1 = OpExtInstImport ′′GLSL.std.450′′

OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 ′′main′′ %31 %33 %42 %57
OpExecutionMode %4 OriginLowerLeft

; Debug information

OpSource GLSL 450
OpName %4 ′′main′′

OpName %9 ′′scale′′

OpName %17 ′′S ′′

OpMemberName %17 0 ′′b′′

OpMemberName %17 1 ′′v′′

OpMemberName %17 2 ′′i′′

OpName %18 ′′blockName′′

OpMemberName %18 0 ′′s′′

OpMemberName %18 1 ′′cond′′

OpName %20 ′′′′

OpName %31 ′′color′′

OpName %33 ′′color1′′

OpName %42 ′′color2′′

OpName %48 ′′i′′

OpName %57 ′′multiplier′′

; Annotations (non− debug)

OpDecorate %15 ArrayStride 16
OpMemberDecorate %17 0 Offset 0
OpMemberDecorate %17 1 Offset 16
OpMemberDecorate %17 2 Offset 96
OpMemberDecorate %18 0 Offset 0
OpMemberDecorate %18 1 Offset 112
OpDecorate %18 Block
OpDecorate %20 DescriptorSet 0
OpDecorate %42 NoPerspective
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Example 2 SPIR-V binary example in human-readable form continued.
; All types, variables, and constants

%2 = OpTypeVoid
%3 = OpTypeFunction %2 . void()
%6 = OpTypeFloat 32 . 32-bit float
%7 = OpTypeVector %6 4 . vec4
%8 = OpTypePointer Function %7 . function-local vec4*

%10 = OpConstant %6 1
%11 = OpConstant %6 2
%12 = OpConstantComposite %7 %10 %10 %11 %10 . vec4(1,1,2,1)
%13 = OpTypeInt 32 0
%14 = OpConstant %13 5
%15 = OpTypeArray %7 %14
%16 = OpTypeInt 32 1
%17 = OpTypeStruct %13 %15 %16
%18 = OpTypeStruct %17 %13
%19 = OpTypePointer Uniform %18
%20 = OpVariable %19 Uniform
%21 = OpConstant %16 1
%22 = OpTypePointer Uniform %13
%25 = OpTypeBool
%26 = OpConstant %13 0
%30 = OpTypePointer Output %7
%31 = OpVariable %30 Output
%32 = OpTypePointer Input %7
%33 = OpVariable %32 Input
%35 = OpConstant %16 0
%36 = OpConstant %16 2
%37 = OpTypePointer Uniform %7
%42 = OpVariable %32 Input
%47 = OpTypePointer Function %16
%55 = OpConstant %16 4
%57 = OpVariable %32 Input

; All functions

%4 = OpFunction %2 None %3 . main()
%5 = OpLabel
%9 = OpVariable %8 Function

%48 = OpVariable %47 Function
OpStore %9 %12

%23 = OpAccessChain %22 %20 %21 . location of cond
%24 = OpLoad %13 %23 . load 32-bit int from cond
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Example 2 SPIR-V binary example in human-readable form continued.
%27 = OpINotEqual %25 %24 %26 . convert to bool

OpSelectionMerge %29 None . structured if
OpBranchConditional %27 %28 %41 . if cond

%28 = OpLabel . then
%34 = OpLoad %7 %33
%38 = OpAccessChain %37 %20 %35 %21 %26 . s.v[2]
%39 = OpLoad %7 %38
%40 = OpFAdd %7 %34 %39

OpStore %31 %40
OpBranch %29

%41 = OpLabel . else
%43 = OpLoad %7 %42
%44 = OpExtInst %7 %1 Sqrt %43
%45 = OpLoad %7 %9
%46 = OpFMul %7 %44 %45

OpStore %31 %46
OpBranch %29

%29 = OpLabel . endif
OpStore %48 %35
OpBranch %49

%49 = OpLabel
OpLoopMerge %51 %52 None . structured loop
OpBranch %53

%53 = OpLabel
%54 = OpLoad %16 %48
%56 = OpSLessThan %25 %54 %55 . i<4?

OpBranchConditional %56 %50 %51 . body or break
%50 = OpLabel . body
%58 = OpLoad %7 %57
%59 = OpLoad %7 %31
%60 = OpFMul %7 %59 %58

OpStore %31 %60
OpBranch %52

%52 = OpLabel . continue target
%61 = OpLoad %16 %48
%62 = OpIAdd %16 %61 %21 . ++i

OpStore %48 %62
OpBranch %49 . loop back

%51 = OpLabel . loop merge point
OpReturn
OpFunctionEnd
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2.4 Compiler Optimization

This section discusses some basic compiler optimizations relevant to this thesis. The
principals and ideas of these optimizations are pointed out using concrete examples.
Dead code elimination in section 2.4.1 and inline expansion in section 2.4.2 will be
explained in the beginning, whereas constant propagation and copy propagation will
be focused afterwards in sections 2.4.3 and 2.4.4.

2.4.1 Dead Code Elimination

Dead code elimination (DCE) is a very popular compiler optimization and is usually
performed on the intermediate representation of source code, which typically is
in static single assignment form (SSA form) [42]. Dead code elimination aims to
identify and and remove code instructions, whose execution have no impact on the
result of a program. This includes instructions that are never reached or variables
that are never used. Also blocks of branches, which can be evaluated at compile time,
can be considered dead if they will not be part of the control flow. Dead code is not
always connected to bad programming it can also be the result of various operations,
like other optimization passes or intermediate compilation steps. Considering unused
functions and variables dead code elimination can greatly reduce the code size,
which itself can lead to better performance of the program due to lower memory
consumption and better cache usage [4]. Example 3 shows some types of dead code.
Assuming entry point of the program is the main procedure, the variable y declared
in line 6 can be considered dead, because it is never used in the rest of the program.
Sometimes conditions can be evaluated during compile time and when taking a look
at the if-else construct in the main procedure, it is obvious that the else block will
never be executed and thus it can also be considered dead. Since the program in
Example 3 will return in line 8 the code in line 12,13 and 14 will not be reached,
as a consequence the procedure INCREMENT will never be called and also rendered
dead.
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Example 3 Different types of dead code.
1: procedure Increment(x) . Dead function
2: return x + 1
3: end procedure

4: procedure main
5: x = 1
6: y = 2 . Dead variable
7: if True then
8: return x
9: else

10: return 0 . Dead Block
11: end if
12: z = 3 . Unreachable code
13: Increment(z) . Unreachable code
14: return 0 . Unreachable code
15: end procedure

2.4.2 Inline Expansion

In principle the inline expansion optimization is quite simple, it replaces a function
call with the body of the called function. The basic idea is to get rid of the overhead
a function call is producing. This includes various things like pushing the calls
arguments onto the stack and evaluate them or saving live values to registers to
actually perform the jump to the function. When returning from a function to the
calling function return values need to be copied leading to allocation and deallocation
overheads. Inline expansion is a trade-off between faster execution times and code
size. Considering functions with a lot of instructions, inlining them multiple times
can considerably bloat the code leading to worse performance. On the other hand
inlining functions with only a few instructions can significantly boost performance.
Deciding which functions can be effectively inlined is a non-trivial task and some
functions cannot be inlined at all [6]. Modern compilers enable programmers to hint
at functions that should be inlined with an INLINE keyword, but as it is only a
hint it is up to the compiler to decide in the end. Example 4 shows a simple code
fragment where inline expansion can be used effectively, it compares the code before
and after inline expansion.
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Example 4 A code example before and after inline expansion.
Before inline expansion:

1: procedure multiply(a, b) . Function to inline
2: return a ∗ b
3: end procedure

4: procedure main
5: x = 1
6: y = 2
7: z = 3
8: result = 0
9: if x ≤ y then

10: result = multiply(x,z) . Call to inline
11: else
12: result = multiply(y,z) . Call to inline
13: end if
14: return result
15: end procedure

After inline expansion:
1: procedure main
2: x = 1
3: y = 2
4: z = 3
5: result = 0
6: if x ≤ y then
7: result = x ∗ z . Inlined version of multiply
8: else
9: result = y ∗ z . Inlined version of multiply

10: end if
11: return result
12: end procedure



2.4. Compiler Optimization 21

2.4.3 Constant Propagation

The constant propagation optimization is often combined with the constant folding
optimization. When doing constant folding, the compiler simply replaces every
calculation done with constant values only, with the result of this calculation. This
leads to less instructions that need to be processed. Constant propagation is related
to constant folding, but deals with constant values assigned to variables. If a variable
holds a constant value, constant propagation replaces all uses of that variable with
the constant value it has assigned [42]. Leading to greatly simplified code, constant
propagation is often followed by dead code elimination to clean up unused variables
and instructions afterwards. Constant propagation and also constant folding can
be performed on various data types, depending on the compiler even string literals
can be propagated and folded [33]. Example 5 shows how constant propagation and
constant folding can be applied in multiple passes. After propagating the constants
x and y, dead code elimination can be used to reduce the the code even further.

Example 5 A code example before and after constant propagation.
Before constant propagation:

1: procedure main
2: const x = 10
3: const y = 20 + 18 ∗ x
4: return 30− 2 ∗ x + y/4
5: end procedure

After propagation of x:
1: procedure main
2: const x = 10
3: const y = 20 + 18 ∗ 10 . Constant folding reduces this to y = 200
4: return 30− 2 ∗ 10 + y/4
5: end procedure

After propagation of y:
1: procedure main
2: const x = 10
3: const y = 200
4: return 30− 2 ∗ 10 + 200/4 . Constant folding reduces this to result = 60
5: end procedure
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2.4.4 Copy Propagation

The goal of copy propagation is to reduce the number of direct assignments in the
source code. Direct assignments are instructions that copy a value from one variable
to another and have a form similar to x = y. Sometimes such statements can be
eliminated completely and thus reduce code size and the number of variables used
[33]. As with constant propagation, this optimization is often followed by dead code
elimination for cleanup. In Example 6 the reduction of code, due to the propagation
of x can be observed.

Example 6 A code example before and after copy propagation.
Before copy propagation:

1: procedure main
2: x = randomvalue()
3: y = x . Direct assignment
4: z = y ∗ 100
5: return z
6: end procedure

After copy propagation:
1: procedure main
2: x = randomvalue()
3: z = x ∗ 100
4: return z
5: end procedure



Chapter 3

SPIR-V Tools

This chapter describes the most important tools available when working with SPIR-
V binary shaders. Since SPIR-V is still a young format there are not many alter-
natives published yet. The sections 3.1, 3.2 and 3.3 cover the official open source
tools published by the Khronos Group, while the sections 3.4 and 3.5 deal with third
party applications. Section 3.6 addresses SMOL-V, which focuses on optimizing the
binary size of SPIR-V modules.

3.1 GLSL Reference Compiler

The GLSL Reference Compiler, also know as just glslang, is the official reference
compiler front-end for the OpenGL and also OpenGL ES shading languages [17][18].
It is published under the BSD (Berkeley Software Distribution) license and is main-
tained by the Khronos Group. The glslang project consists of serveral components.
First a GLSL/ESSL front-end, which can validate and translate GLSL into an ab-
stract syntax tree (AST). The second component is an HLSL front-end to translate
HLSL into the same AST. At the time of writing this thesis, this component, in
contrast to the GLSL front-end, is far from feature complete and can be considered
experimental. The next component is a SPIR-V back-end to convert the created
AST to SPIR-V. The GLSL Reference Compiler also provides a validation tool for
SPIR-V, to always check the created SPIR-V shader against the current specification
of the language. Since SPIR-V is a pure binary language, and thus is not directly
readable by programmers, debugging a SPIR-V binary is hard to do. Glslang pro-
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vides an option to print a readable form of the SPIR-V binary shader, to simplify
such tasks. Example 8 shows a simple shader, written in ESSL, which just calcu-
lates a vertex position. This shader was then converted to SPIR-V using glslang.
The human-readable output is displayed in Exmaple 7. As already mentioned in
Section 2.3.4, a SPIR-V binary follows the SSA form. In Example 7 the numbers on
the left side represent the unique identifiers of each instruction, while on the right
side the opcodes of the instructions are displayed. In SPIR-V the built-in variable
gl Position is part of the gl PerVertex struct, this is the reason why gl Position
is not found in the SPIR-V representation.

Example 7 Simple Vertex Shader in readable SPIR-V, converted by glslang.
2 : TypeVoid . Start of variable declarations
3 : TypeFunction 2
6 : TypeFloat 32
7 : TypeVector 6(float) 4
8(gl PerVertex): TypeStruct 7(fvec4) 6(float)
9 : TypePointer Output 8(gl PerVertex)
10 : 9(ptr) Variable Output
11 : TypeInt 32 1
12 : 11(int) Constant 0
13 : TypeMatrix 7(fvec4) 4
14(UBO): TypeStruct 13
15 : TypePointer Uniform 14(UBO)
16 : 15(ptr) Variable Uniform
17 : TypePointer Uniform 13
20 : TypePointer Input 7(fvec4)
21(aVertex): 20(ptr) Variable Input
24 : TypePointer Output 7(fvec4)

4(main): 2 Function None 3 . Start of main function
5 : Label
18 : 17(ptr) AccessChain 16 12
19 : 13 Load 18
22 : 7(fvec4) Load 21(aVertex)
23 : 7(fvec4) MatrixTimesVector 19 22
25 : 24(ptr) AccessChain 10 12

Store 25 23
Return
FunctionEnd
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Example 8 Simple Vertex Shader in ESSL, before conversion with glslang.
1: layout(std140) uniform UBO
2: {
3: uniform mat4 uMV P ;
4: }

5: in vec4 aV ertex;

6: void main()
7: {
8: gl Position = uMV P ∗ aV ertex;
9: }

3.2 SPIRV-Cross

While glslang can create SPIR-V code from high level shading languages, SPIRV-
Cross can be seen as the direct counterpart to it. The purpose of SPIRV-Cross is to
translate from the intermediate language back to various high level languages. It is
also maintained by the Khronos Group and can cross-compile SPIR-V into GLSL,
MSL, HLSL and even debuggable C++ [20]. SPIRV-Cross has a strong focus on
creating well formatted and readable outputs, ideally the created code looks like
it was written by hand. The translation to GLSL is already pretty far developed
and can be considered mostly feature complete. In contrast to GLSL the support
for HLSL, MSL and C++ is limited at the time of writing this thesis. While the
translation to those languages does work for simple shaders, the output is far from
being as clean and efficient as the GLSL output. As this tool can be used to cross-
compile between high level shading languages, for example when a HLSL shader
was translated to SPIR-V and is now translated to GLSL by SPIRV-Cross, one has
to consider that to target language probably lacks native support for some features
used in the origin language. SPIRV-Cross tries to provide tools, like reflection APIs,
to handle these scenarios in a robust way and keep the manual actions required to
maintain compatibility to a minimum. SPIRV-Cross runs on Linux, macOS and
Windows.
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3.3 SPIR-V Tools

The SPIR-V Tools project, is actually a collection of library functions helping to
process SPIR-V binaries. It consists of an assembler, a disassembler, a binary module
parser, a validator and an optimizer for SPIR-V [22]. Similar to the tools mentioned
above, the Khronos Groups maintains this project. The assembler in SPIR-V Tools
is able to output a SPIR-V binary from an assembly language text, while also doing
basic syntax checking. As for all the library functions in this project, there is a
standalone command line tool that wraps around the assembler library function, for
easier usage. SPIR-V Tools also provides a file to enable syntax highlighting for the
SPIR-V assembly language, which can be created by the disassembler, when using
the Vim editor. This project comes with a validator library function, which checks
the validation rules described in the SPIR-V specification and is supposed to be
used to double-check SPIR-V binaries after modifying them. Additionally SPIR-V
Tools can also export a visualization of the control flow graph of a SPIR-V binary,
using the graph visualization software GraphViz and thus the DOT format [12].
Example 9 shows a main function of a GLSL shader and Example 10 displays the
corresponding SPIR-V binary in human-readable form. Figure 3.1 illustrates the
control flow graph SPIRV-Tools printed from the SPIR-V binary using GraphViz.
The optimizer provided by the SPIR-V Tools project, is still under development.
At the time of writing, the optimizer supports only a few basic optimization passes.
Most of the passes are dealing with constants or specialized constants, like folding,
freezing, unifying these constants. Also dead constants and debug information can
be removed. In terms of dead code elimination, SPIR-V Tools only checks if the
resulting value (and the unique id) of an instruction is used. If it is used again in
the instruction is kept, otherwise it will be removed. This approach only covers a
small part of dead code elimination as explained in section 2.4.1.

3.4 Krafix

Krafix is used in a ultra-portable, high performance and open source multimedia
framework called Kha, developed by KTX Software [23]. It wraps around the GLSL
Reference Compiler and provides tools to translate the SPIR-V binary to multiple
other languages. While it does not do any optimizations, it is able to compile
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Example 9 The GLSL shader corresponding to the control flow graph in 3.1..
1: void main()
2: {
3: int x = 30
4: if (x < 15)
5: {
6: gl Position = vec4(1.0);
7: }
8: else
9: {

10: gl Position = vec4(0.0);
11: }
12: gl Position+ = vec4(1.0);
13: }

Example 10 The SPIR-V shader corresponding to the control flow graph in 3.1.
4(main): 2 Function None 3 . Start of main function
5 : Label
8(x): 7(ptr) Variable Function

Store 8(x) 9
10 : 6(int) Load 8 . x = 30
13 : 12(bool) SLessThan 10 11

SelectionMerge 15 None
BranchConditional 13 14 26 . if(x < 15)

14 : Label
25 : 24(ptr) AccessChain 20 21

Store 25 23
Branch 15

26 : Label . else
29 : 24(ptr) AccessChain 20 21

Store 29 28
Branch 15

15 : Label
30 : 24(ptr) AccessChain 20 21

Store 25 23
33 : 24(ptr) AccessChain 20 21
31 : 17(fvec4) Load 30
32 : 17(fvec4) FAdd 31 23

Store 33 32
Return
FunctionEnd
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Figure 3.1: Control flow graph example using SPIR-V Tools and GraphViz.

SPIR-V to GLSL, HLSL, MSL and even the Adobe Graphics Assembly Language
(AGAL) [24]. The SPIR-V to HLSL conversion, is implemented in two ways. The
first approach uses its own implementation and the second one makes use of the
SPIRV-Cross framework. This is because Robert Konrad, who developed Krafix, is
also working on the SPIR-V to HLSL conversion for SPIRV-Cross. Thus SPIRV-
Cross actually uses ported code from Krafix for its HLSL part.

3.5 ShaderC

ShaderC is a collection of tools, libraries and tests for shader compilation. It is owned
by Google, but it is not an official Google product, although parts the ShaderC code
are shipped wit the Android NDK (Native Development Kit) [11]. ShaderC wraps
around the GLSL Reference Compiler and SPIR-V Tools. It provides a command
line compiler with GCC- and CLang-like usage for compiling GLSL and HLSL to
SPIR-V. It also provides a library which can do the same. It is designed to be an
API where new functionality can easily be added and backwards compatibility is
guaranteed. The ShaderC compiler extends the functionality of GLSL by enabling
the GL GOOGLE include directive, allowing shaders to conveniently use #include
statements.
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3.6 SMOL-V

SMOL-V aims to reduce the binary file size of a SPIR-V shader. It was created
by Aras Pranckevičius, who also developed the GLSL Optimizer used by the Murl
Engine [36][37]. Since SPIR-V is a verbose language in SSA form, its binary file
size is several times large than the binaries of other shading languages. SMOL-V
allows encoding and decoding of SPIR-V binaries without changing their behavior.
It optimizes the usage of the unique identifiers, resulting from the SSA form, in a
way that identifiers which are used more frequently will have lower numbers. SMOL-
V also swaps values of the opcodes SPIR-V provides, dependent on how often they
are used on average. While an OpDecoration opcode will be used multiple times
in each SPIR-V module, OpMemoryModel will only be used once. To lower the file
size it makes sense to swap such opcodes and save a few bits. After optimizing
the occurrences of the opcodes, SMOL-V applies a varint encoding (variable-length
integer encoding [41]). This encodes integers in a way, that lower numbers can also
be stored using less memory. Every number below the value of 128 only takes one
byte, while numbers below 16384 take two bytes and so on. With these techniques
SMOL-V is able to compress the binary file size a SPIR-V binary to 35% of its
original size.



Chapter 4

Design & Implementation

This chapter discusses the design and implementation of the application created
during this work, further referred to as SPIR-V Wrapper, in detail. Section 4.1
explains the general design and setup of the application. Afterwards this chapter
will elucidate the definition of the interface provided to the Murl Engine for trans-
lating and optimizing shading languages. This is followed by a break down of the
algorithms used to create the optimizations developed during this work in section
4.2.

4.1 SPIR-V Wrapper

As already mentioned in section 1.1 and displayed in figure 1.4 this application aims
to translate GLSL or HLSL to SPIR-V, then perform optimizations on the SPIR-V
binary and finally translate the binary back to GLSL or HLSL. While the SPIR-
V binary itself can be directly used as a shader when using the Vulkan API, the
result after the backwards translation to GLSL or HLSL is what will be used by
the Murl Engine for now. Chapter 3 discussed most of the tools currently available
to developers when working with SPIR-V binaries and since those tools will most
likely be maintained and supported in the future, it makes sense to use them for
the purpose of this application. This approach wraps around the functionalities
of the GLSL Reference Compiler for converting high level languages to SPIR-V,
SPIRV-Tools to perform optimization and validation and SPIR-V Cross to translate
the optimized SPIR-V binary back to another high level language. This setup is
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illustrated in figure 4.1.

GLSL Refer-
ence Compiler SPIR-V Tools SPIRV-Cross

SPIR-V Wrapper

GLSL,
HLSL SPIR-V optimized

SPIR-V
GLSL,
HLSL

Figure 4.1: The basic setup of the SPIR-V Wrapper application. Provided with a
GLSL or HLSL input shader, the wrapper uses glslang as a front-end, SPIR-V Tools for
optimization and SPIRV-Cross as a back-end.

With this approach the front-end and the back-end of the application are already
well defined, since they are officially supported by the Khronos Group. However, the
Murl Engine strongly emphasizes performance and unfortunately the SPIR-V Tools
framework can only perform a few minor optimizations on SPIR-V binaries. When
providing a high performance cross-platform multimedia framework and especially
a game engine, one usually wants to ship the engine with a library of shaders.
Such shaders are often shipped as so called uber-shaders, which implement a lot of
different functionalities and let the users enable or disable them on demand. If these
uber-shaders perform well, strongly depends on how well compilers handle basic
optimizations, like dead code elimination or function inlining. The mobile market
is flooded with different devices and hence various compilers. To be less reliant
on their implementation the Murl Engine is using the GLSL Optimizer to do some
offline optimizations before the shader code gets fed to the compiler. To not lose
this performance gain, the SPIR-V Wrapper also needs to do similar optimizations
on the SPIR-V binary. This is why multiple optimization passes were added to the
SPIR-V Tools framework during this work. The added optimization passes include
further dead code elimination, inline expansion, copy propagation and id remapping
and are described in detail in section 4.2. Figure 4.2 shows the optimization passes
already implemented by SPIR-V Tools and the passes added during this work.

The SPIR-V Wrapper application, is meant to be integrated to the Murl Engine
as a third-party tool. To ease up integration into the build systems, SPIR-V Wrapper
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• Eliminate Dead Constants
Pass

• Fold Specialized Constants
Pass

• Freeze Specialized Constants
Pass
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• Unify Constants Pass

• Eliminate Dead Code
Pass

• Inline Functions Pass

• Copy Propagation Pass

• Remap Ids Pass
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SPIRV-Tools

+

Figure 4.2: This figure shows the optimization passes provided by the SPIR-V Tools
framework and the passes that were added during this work.

can be used directly from the command-line as a standalone application, this is
explained in 4.1.1. It also provides a simple and easy to use C-interface which is
further described in section 4.1.2.

4.1.1 Command Line Usage

As already mentioned above, SPIR-V Wrapper can be used from the command line.
This section, shows which command line arguments are supported and describes
their usage. From the command line the application can be executed with the
following command:

SPIRV-Wrapper [option]... [file]...

Here file represents an input file, like a vertex shader or a fragment shader that
shall be converted. One has to be careful that the file has the correct file ending, since
the GLSL Reference Compiler relies on correct file endings to detect the shader type.
The supported file endings for the corresponding shader stages are listed below.
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Shader stage File ending
Vertex Shader .vert
Tessellation Control Shader .tesc
Tessellation Evaluation Shader .tese
Geometry Shader .geom
Fragment Shader .frag
Compute Shader .comp

Table 4.1: This table shows the supported shader stages and their corresponding file
endings, as used by the SPIR-V Wrapper.

Without any further arguments defined, besides the input file, SPIR-V Wrapper
will try to convert the provided input shader to SPIR-V, but it will not produce
any output. To control what actually happens with the converted shader, SPIR-V
Wrapper can be called with the arguments shown in table 4.2. The options --glsl
and --hlsl specify, if the input shader shall be converted to GLSL or HLSL. With
--spv set, the SPIR-V binary is stored separately in a .spv file. In case this is
combined with -o SPIR-V Wrapper will also output the optimized SPIR-V binary
file with opt added to it’s filename. The human-readable version seen in section 3.1
and section 3.3 can be created with the -h option, this will also extend the filename
of the SPIR-V binary by readable. The entry point option is only used if the input
shader is written in HLSL. Since GLSL shaders always start with a main function,
this is the default value, but HLSL shaders can have custom entry points, which
need to be specified if used. With the provided option --watchpoint the user can
inject a watchpoint at a specific position in the source code. This is done by stating
the line and the column where the watchpoint should be inserted, e.g. 3:2. The
first number defines the row and the second number defines the column in the input
file. Watchpoints are explained in more detail in section 4.3.

4.1.2 Interface Definition

SPIR-V Wrapper provides a C++-interface and a C-interface, for backwards
compatibility with other C frameworks. The C-interface is visualized in figure
4.3. When using the interface, constructWrapper() has to be called first
to create a SpvwHandle to work with. This handle has to be destroyed with
destructWrapper() when it is no longer needed, to clean up memory.
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Option Description
-h Output human-readable form of SPIR-V to file
-o Enable optimizations
--glsl Specify GLSL output file
--hlsl Specify HLSL output file
--spv Specify SPIR-V binary output file
--entrypoint Specify shader entry point, default is main
--watchpoint Specify watchpoint position

Table 4.2: This table shows which command line arguments are handled by the SPIR-V
Wrapper application.

The typical workflow when using SPIR-V Wrapper is to call convertToSpv()
followed by optimizeSpv() and afterwards either use convertToGLSL() or
convertToHLSL(). As the name suggests, convertToSpv() converts the shader
code defined by sourceFile to a SPIR-V binary, which is the optimized calling
optimizeSpv(). The optimization passes that should be applied need to be passed
using the optPasses array. The optPasses array is allowed to contain multiple
instances of the the same optimization pass to support multi-pass optimizations.
SPIR-V Wrapper will run the optimization passes in the exact same order they
are defined in this array. The different types of passes available are listed in table
4.3. The two methods convertToGLSL() and convertToHLSL() can then further
be used to convert the SPIR-V binary back to the high level language desired.
SPIR-V Wrapper automatically detects shader types, version numbers and profiles.

OptPassTypes
OptPassTypeNone
OptPassTypeStripDebugInfo
OptPassTypeUnifyConstant
OptPassTypeFoldSpecConstantOpAndComposite
OptPassTypeEliminateDeadConstant
OptPassTypeEliminateDeadCode
OptPassTypeInlineFunctions
OptPassTypeCopyPropagation
OptPassTypeRemapIds

Table 4.3: This table lists optimization passes supported by SPIR-V Wrapper.
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C-Interface

�interface�
SpvwIWrapper

constructWrapper() : SpvwHandle
destructWrapper(handle : SpvwHandle) : void

convertToSpv(handle : const SpvwHandle,
sourceFile : const char*,
destinationFile : const char*,
sourceEntryPoint : const char*,
outputSpv : bool,
outputReadableSpv : bool,
watchPointLine : int,
watchPointColumn : int) : bool

optimizeSpv(handle : const SpvwHandle,
optPasses : OptPassType[],
numberOfOptPasses : uint,
destinationFile : const char*,
outputSpv : bool,
outputReadableSpv: bool) : bool

convertToGLSL(handle : const SpvwHandle, destinationFile : const char*) : bool
convertToHLSL(handle : const SpvwHandle, destinationFile : const char*) : bool

Figure 4.3: The C-interface provided by the SPIR-V Wrapper application.

4.2 SPIR-V Optimization

This section describes the used algorithms and the implementation of the optimiza-
tion passes used to extend the SPIR-V Tools framework in detail. To keep the
conflicts with future updates of SPIR-V Tools to a minimum, the passes added
during this work mostly add functionality, without changing the existing code in
SPIR-V Tools project.
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4.2.1 Dead Code Elimination Pass

As dead code elimination is one of the most important optimizations, this is the
first one this thesis will cover. The dead code elimination pass introduced with the
SPIR-V Wrapper uses a mark and sweep approach. The idea is to split the dead
code elimination pass into two major parts, the first part will parse through all
the instructions and tries to identify unused or never executed code blocks. Those
blocks will be marked as dead and will be removed in the sweep part which fol-
lows afterwards [47]. While the SPIR-V Tools project already provides methods to
analyze instructions and also groups the instructions into blocks according to the
SPIR-V specification, the information about how the blocks are related to each other
in regard of the control flow is missing. To make up for this, the algorithm used
during this work parses through the instructions and the blocks. For each block
it remembers the parent block, all the child blocks, as well as the merge instruc-
tions and branch instructions used in the block. To conveniently access this data
a helper class was introduced, called BasicBlockInfo, this is explained further in
section 4.2.5.1. After gathering the information about parent and child relations,
the dead code elimination pass tries to evaluate conditional branch statements like
if-else constructs, switch instructions and loop conditions. If any condition can be
evaluated to true or false during compile time, the dead code elimination pass can
mark the block that will never be executed, along with all its children recursively.
After stepping through all the conditions, the algorithm can move on to the sweep
part and eliminate these blocks. When removing the uncalled blocks, it is crucial to
make sure that the control flow of the SPIR-V binary is still valid according to the
specification. As an example, if the else clause of an if-else construct is removed, the
if instruction can be removed entirely, since there is no longer a branch needed. Also
the branch instruction of the remaining block may needs to be corrected. While this
is straightforward for simple branches, complexity is much higher for switch instruc-
tions and loops. The algorithm used during this work only removes loops if the loop
condition will never be met. For switch instructions there are multiple scenarios to
consider. A switch instruction is usually followed by multiple cases which have to
be evaluated, if the dead code elimination pass is able to evaluate which case will
be used, the entire switch can usually be marked as dead and only the one case is
kept. There are exceptions though, like when there is no break statement used in a
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case, the following case also needs to be kept alive. When the removal of the dead
blocks is done and all branches and merge constructs are corrected to ensure valid
control flow, the dead code elimination pass looks for single instructions that are
unused and can also be removed. This often happens as a result of removing entire
code blocks as described. SPIR-V Wrapper first checks for local variables that are
no longer needed, also considering SPIR-V access chain instructions, representing
calls to arrays or structs. Since SPIR-V binaries follow the static single assignment
form, every instruction results in a unique result id, this allows easy checking if
an instruction’s result is used later in the code or not. The dead code elimination
pass removes every instruction that has a result id that is never used in any other
instruction. An exception for this are function calls, these are handled separately,
since functions will most likely have side effects, even if their return value is not
further used. The algorithm used during this work, considers function calls as dead,
if the function does not write to any global variable and it does not manipulate
variables passed to it using the out or inout qualifier. Also the return value of the
function, if there is one, must not be used. If these conditions match, the algorithm
removes the function call and also the complete function along with its definition,
if this was the only call to that function. The dead code elimination pass further
checks for unnecessary store instructions. This addresses multiple subsequent stores
to the same variable, where the first store gets overridden by the second one. With
all these instructions removed, the SPIR-V binary can now contain empty code
blocks and unused decorations, these are cleaned up at the end of the pass. Figure
4.4 shows the control flow of the dead code elimination pass as implemented in the
SPIR-V Wrapper application and figure 4.5 provides an overview of the dead code
elimination pass class.
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Dead Code Elimination Pass starts

initializeBlockInfos()

markRemovableBlocks()

sweepDeadBlocks()

correctBranches()

eliminateUnusedLocalAccessChains()
eliminateUnusedLocalVariables()
eliminateUnusedInstructions()

eliminateUnusedFunctions()
eliminateUnusedStores()

changes

no changes

eliminateEmptyBlocks()

eliminateUnusedNamesAndDecorations()

Dead Code Elimination Pass ends

Figure 4.4: This figure shows the basic control flow of the dead code elimation pass,
implemented during this work.
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Optimization Passes

DeadCodeEliminationPass

private:
mModule : ModulePtr
mDefUseMgr : DefUseMgrPtr
mBlockInfos : BasicBlockInfoMap
mBlocksToRemove : Vector<uint>

public:
Process(module : ModulePtr) : Status

private:
initializeBlockInfos() : void
identifyRemoveableBlocks() : void
eliminateDeadBlocks() : bool
correctBranches() : bool
eliminateUnusedLocalVariables() : bool
eliminateUnusedLocalAccessChains() : bool
eliminateUnusedInstructions() : bool
eliminateUnusedFunctions() : bool
eliminateUnusedStores() : bool
eliminateUnusedBlocks() : bool
eliminateUnusedNamesAndDecorations() : bool

evaluateConditionalBranch(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : void
evaluateSwitch(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : void

correctConditionalBranch(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : bool
correctSwitch(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : bool
correctBranch(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : bool

handleMergeInstruction(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : void
handleBranchInstruction(blockInfo : BasicBlockInfoPtr, inst : InstructionPtr) : void

getParentBlock(childBlock : InstructionPtr) : InstructionPtr
getBasicBlockToAddInstruction(blockInfo : BasicBlockInfoPtr) : BasicBlockInfoPtr
isPartOfLoopMergeInstruction(instructionId : uint, ignoreContinue : bool) : bool
isPartOfSelectionMergeInstruction(instructionId : uint) : bool
isInsideALoop(blockInfo : BasicBlockInfoPtr) : bool

isUniqueBranchInstruction(branchInst : InstructionPtr) : bool
markBlockAndChildren(blockInfo : BasicBlockInfoPtr) : void
isBlockEmpty(labelInst : InstructionPtr) : bool
isDeadInst(inst : InstructionPtr) : bool

Figure 4.5: Dead code elimination pass class.
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4.2.2 Inline Functions Pass

The next optimization pass that was implemented, is the inline functions pass.
The aim of this pass is to remove the overhead of function calls by replacing every
function call with the actual body of the called function. As Hwu et. al. [29]
state, the order in which the function calls are inlined is crucial. A different inlining
order also results in different outcomes and choosing the right order can reduce the
instructions that need to be copied significantly. With this in mind, the algorithm
used in the SPIR-V Wrapper first needs to build a call tree to know which functions
get called from which function. As with the dead code elimination pass, the inline
function pass needs this additional information on top of the data provided by the
SPIR-V Tools framework, to build this graph. Hence, there was also a helper class
introduced called FunctionInfo which is explained in more detail in section 4.2.5.2.
After parsing through the shader code and initializing the call tree, the algorithm
needs to select which function to inline first. As suggested by Hwu et. al. [29] the
algorithm starts inlining the leafs of the call tree and works its way up to the root
function. The algorithm created during this work takes a chosen function, identifies
all function call instructions used by it and copies the instructions of the called
function to the calling function. For all the local variables in the called function,
as well as the function parameters and the return value, the algorithm creates a
local variable in the calling function. These local variables are mapped to the actual
function call, this guarantees that multiple calls to the same function can be handled.
The body of the called function is then copied instruction by instruction, replacing
the used variables with the newly created ones. After doing this for all the function
calls in the shader, there should only be the main function left with no function
calls. The inline functions pass then cleans up the now obsolete function definitions.
Figure 4.6 shows the control flow of the inline functions pass as implemented in the
SPIR-V Wrapper and figure 4.7 provides an overview of the inline functions pass
class.
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Inline Functions Pass starts
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Figure 4.6: This figure shows the basic control flow of the inline function pass.



4.2. SPIR-V Optimization 42

Optimization Passes

InlineFunctionsPass

private:
mModule : ModulePtr
mDefUseMgr : DefUseMgrPtr
mFunctionInfos : FunctionInfoMap
mFunctionToIdMap : Map<FunctionPtr, int>
mResultIdOffset : uint

public:
Process(module : ModulePtr) : Status

private:
initializeFunctionInfos() : void
getNextFunctionToInline() : FunctionPtr
inlineFunction(function : FunctionPtr) : bool
createInlinedFunction(function : FunctionPtr,

functionLabel : InstructionPtr,
callResultIdToFunctionId : Map<uint, uint>,
callResultIdToParams : Map<uint, Vector<uint>>,
functionIdToReturnInst : Map<uint, InstructionPtr>,
functionIdToFunctionTypeId : Map<uint,uint>,
functionIdToLocalVars : Map<uint, Vector<InstructionPtr>>,
functionIdToParams : Map<uint, Vector<InstructionPtr>> ) : bool

cleanUpFunctions() : bool
getNextFreeResultId() : uint
getFunctionInfo(function : FunctionPtr) : FunctionInfoPtr
getFunctionInfo(functionId : uint) : FunctionInfoPtr
printInliningStatus() : void
killFunction(function : FunctionPtr) : void

createFunctionVariableAndType(typeId : uint) : InstructionPtr
copyLocalVarInstruction(inst : InstructionPtr,

oldToNewIds : Map<uint, uint>) : InstructionPtr
copyInstructionAndOperands(inst : InstructionPtr,

oldToNewIds : Map<uint, uint>) : InstructionPtr
copyFunctionBody(blocks : Vector<BasicBlockPtr>,

calledFunction : FunctionPtr,
callingFunction : FunctionPtr,
calledFunctionTypeId : uint,
functionReturnVar : InstructionPtr,
functionCallResultId : uint,
oldToNewIds : Map<uint, uint>) : void

Figure 4.7: Inline functions pass class.
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4.2.3 Copy Propagation Pass

As already mentioned in section 2.4.4 the goal of the copy propagation optimization
is to reduce the number of direct assignments, to prevent unnecessary copying of
variables. Direct assignments in most languages have a form similar to x = y. These
direct assignments need to be identified first. In SPIR-V a direct assignment consists
of two instructions, OpLoad to load a value from memory, in this case y, followed by
OpStore to another variable, in this case x. While OpLoad always has to occur before
OpStore, other instructions may be called before the actual execution of OpStore.
The copy propagation pass needs to check if y does not get manipulated in any way
before OpStore is called. If y was not manipulated it is indeed a direct assignment,
the copy propagation pass can use the result from OpLoad, y, and replace all uses
of x with it. The algorithm used during this work, replaces all uses of x but stops
the replacement if one of the following conditions is met. If another OpStore is
found which sets x to a new value or if an OpFunctionCall is detected, which uses
x as a parameter. This is needed since x could eventually be modified in the called
function. Another condition to break out of replacement is the start of a new SPIR-
V block, indicated by OpLabel, here the algorithm also has to stop replacement
to prevent any errors considering the scope of the variable. The copy propagation
pass also considers calls to structs and arrays. These calls are using OpAccessChain
instructions in SPIR-V. While the idea for replacing calls to OpAccessChain remains
the same as with regular OpStore instructions, we need to check if the whole struct or
array does not get modified to replace it safely. The copy propagation pass does not
remove the actual OpStore or OpAccessChain instructions, instead it just replaces
the used unique result identifiers. This means it is usually a good idea to run another
dead code elimination pass when the copy propagation pass has finished. The dead
code elimination pass will then detect the now unused OpStore and remove it along
with the variable definition. Figure 4.8 shows the control flow of the implemented
copy propagation pass and figure 4.9 provides an overview of the copy propagation
pass class.
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Figure 4.8: This figure shows the basic control flow of the copy propagation pass.

4.2.4 Remap Ids Pass

According to the SPIR-V specification, the unique identifiers of the instructions in
the SPIR-V binary should be kept as low as possible. When instructions are removed
from the binary with any optimization pass, it will most likely happen that not all
potential unique identifiers are used. As an example, if with have a SPIR-V binary
where the unique identifiers reach from 1 to 50 and we remove the instructions 44
and 45, it would make sense to remap the identifiers to the range of 1 to 48. This is
also important after an inline function pass was executed. The inline function pass
copies entire function bodies, hence it needs to acquire new unique identifiers for
each copied instruction. As a result the identifiers can grow large quickly if a lot
of functions are inlined. The remap ids pass makes sure there are no gaps between
unique identifiers to guarantee the minimal possible range. The algorithm used to
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Optimization Passes

CopyPropagationPass

private:
mModule : ModulePtr
mDefUseMgr : DefUseMgrPtr
mCopyInstructions : InstructionQueue

public:
Process(module : ModulePtr) : Status

private:
identifyCopyInstructions() : void
replaceVariables() : bool

Figure 4.9: Copy propagation pass class.

implement the remap ids pass is rather simple. It parses through all the instructions
in the SPIR-V binary and remembers all used unique identifiers. As a next step, it
creates a list of all unused identifiers from 1 to the highest unique identifier found. It
then steps through all the used identifiers, checking if there is any unused identifier
with a lower value. If there is a lower one, the used identifier is replaced with this
lower value and the overridden identifier is added to the list of free identifiers. These
steps are done for all used identifiers, resulting in the lowest possible range of unique
identifiers. Figure 4.10 shows the control flow of the remap ids pass and figure 4.11
provides an overview of the remap ids pass class.
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Figure 4.10: This figure shows the basic control flow of the remap ids pass.
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Optimization Passes

RemapIdsPass

private:
mModule : ModulePtr
mDefUseMgr : DefUseMgrPtr

public:
Process(module : ModulePtr) : Status

private:
bool remapIds() : bool
copyInstructionAndOperands(inst : InstructionPtr,

oldToNewIds Map<uint, uint>) : InstructionPtr

Figure 4.11: Remap Ids pass class.

4.2.5 Helper Classes

As discussed in section 4.2.1 and section 4.2.2 some additional helper classes were
needed while parsing SPIR-V instructions. The basic block info class was used to
store information about parent and child relationships of blocks during the dead code
elimination pass. The function info class was mainly used for the inline functions
pass and allows to navigate through the function call graph. The pass utils class was
used in all the optimization passes and provides methods which simplify accessing
SPIR-V instructions and their operands.

4.2.5.1 Basic Block Info Class

Figure 4.12 displays an overview of the basic block info class. This class keeps track
of the relationship between SPIR-V basic blocks. In SPIR-V a basic block always
starts with an OpLabel instruction and ends with a branch instruction. The basic
block info stores these instructions along with the merge instruction, if the branch
instruction was a conditional branch. Furthermore the basic block info class holds
information about the parent block, which is the block branching into the current
basic block. All the child blocks the current block directly branches into are saved
likewise. There can be multiple child blocks in case of OpSwitch instructions or
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OpBranchConditional instructions, but there is only one parent block at all times.
The basic block info class uses the OpLabel instruction of the parent or child to
identify it. Since the dead code elimination pass needs to step through basic blocks
and mark them dead or alive, the basic block info also keeps a mIsDead flag to keep
track of this information.
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Helper Classes

BasicBlockInfo

private:
mIsDead : bool
mNeedsCleanup : bool
mLabel : InstructionPtr
mParentBlock : InstructionPtr
mMergeInstruction : InstructionPtr
mBranchInstruction : InstructionPtr
mChildBlocks : InstructionVector

private:
getChildBlockById(blockId : uint) : InstructionPtr

public:
BasicBlockInfo(label : InstructionPtr, parentBlock : InstructionPtr)
getBlock() : InstructionPtr
setParentBlock(parentBlock : InstructionPtr) : void
getParentBlock() : InstructionPtr
getParentBlockId() : uint

setMergeInstruction(mergeInstruction : InstructionPtr) : void
getMergeInstruction() : InstructionPtr
hasMergeInstruction() : bool

setBranchInstruction(branchInstruction : InstructionPtr) : void
getBranchInstruction() : InstructionPtr
hasBranchInstruction() : bool

addChildBlock(childBlock : InstructionPtr) : void
removeChildBlock(childBlock : InstructionPtr) : void
removeChildBlockById(blockId : uint) : void
getNumberOfChildBlocks() : uint
getChildBlockByIndex(index : uint) : InstructionPtr
hasChildBlock(childBlock : InstructionPtr) : bool
hasChildBlock(blockId : uint) : bool

markBlockDead() : void
isBlockDead() : bool
markBlockAlive() : void
isBlockAlive() : bool
markForCleanup() : void
needsCleanup() : bool

Figure 4.12: The basic block info class.
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4.2.5.2 Function Info Class

As the name suggests the function info class provides additional information about
the functions defined in the SPIR-V binary. It holds a list of all the functions that call
the current function and also all the functions called by the current function itself.
The inline functions pass makes heavy use of this function info class, when deciding
which function is the next one to inline. The function info class also provides a
mIsInlined flag, so functions can be marked as inlined by the inline functions pass.
Figure 4.13 provides an overview of the function info class.

Helper Classes

FunctionInfo

private:
mIsInlined : bool
mFunction : FunctionPtr
mCallingFunctions : FunctionVector
mCalledFunctions : FunctionVector

public:
FunctionInfo(function : FunctionPtr)
getFunction() : FunctionPtr const

addCallingFunction(callingFunction : FunctionPtr) : void
getCallingFunctionByIndex(index : uint) : FunctionPtr
getNumberOfCallingFunctions() : uint

addCalledFunction(calledFunction : FunctionPtr) : void
getCalledFunctionByIndex(index : uint) : FunctionPtr
getNumberOfCalledFunctions() : uint

isInlined() : bool
SetInlined() : void

Figure 4.13: The function info class.

4.2.5.3 Pass Utils Class

As opposed to the basic block info class and the function info class, the pass utils
class is not designed to support one specific optimization pass. Instead the pass
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utils class provides various static methods to simplify working with instructions
and their operands. Especially accessing and comparing operands of instructions
becomes much more readable when using this class. The pass utils class also
provides two methods for printing debug information to the debug console,
DebugPrintInstruction and DebugPrintModule. DebugPrintInstruction
prints the written name of the instruction along with all its operands, while
DebugPrintModule steps through the entire SPIR-V module and prints out every
instruction found. Figure 4.14 provides an overview of the pass utils class.

Helper Classes

PassUtils

public:
DebugPrintInstruction(text : string, inst : InstructionRef) : static void
DebugPrintModule(module : ModulePtr) : static void

GetOperandId(inst : InstructionRef, num : uint) : static uint
GetFirstInOperandId(inst : InstructionRef) : static uint
GetSecondInOperandId(inst : InstructionRef) : static uint
GetThirdInOperandId(inst : InstructionRef) : static uint
GetInOperandId(inst : InstructionRef, num : uint) : static uint

CompareFirstInOperandIds(left inst : InstructionRef,
right inst : InstructionRef) : static bool

CompareInOperandIds(left inst : InstructionRef, left num : uint,
right inst : InstructionRef, right num : uint) : static bool

Figure 4.14: The pass utils class.
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4.3 Watchpoints

Debugging shader code is hard task to do, independent of the shading language used.
When a programmer writes a new fragment shader and he ends up having an error
somewhere in the shader code, the output of the shader will most likely be some
random colors or there is no output at all. The usual steps the programmer takes to
find the error are going through every line of shader code and set the shader output
color to intermediate values of the shader to check the intermediate results. This
is time consuming and inconvenient. As the Murl Engine also provides a graphical
interface for developers, a possibility to automate this debugging procedure of shader
code would be of great use. For this reason watchpoints for GLSL fragment shaders
were introduced during this work. The idea is to let programmers define a line
and a column in their shader via the graphical interface of the Murl Engine, the
intermediate value of the variable at the specific line and column is stored and
displayed as debug output somewhere within the graphical interface. The SPIR-V
Wrapper application implements the first steps of this approach. As seen in table
4.2 the interface of the SPIR-V Wrapper allows users to set the line and column of
a watchpoint.

Example 11 GLSL fragment shader before watchpoint injection.
1: out vec4 gl FragColor;
2: void main()
3: {
4: vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
5: vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
6: gl FragColor = red + green;
7: }

SPIR-V Wrapper will inject the shader with a global variable defined as out vec4
watchPoint. While compiling the shader to the abstract syntax tree (AST) using the
GLSL Reference Compiler, SPIR-V Wrapper detects the variable located at the line
and column set by the programmer and adds an assignment from this variable to the
newly created vec4 watchPoint. SPIR-V Wrapper can only watch float, vec2, vec3
and vec4 type variables and will return an error if the variable is of any other type. If
the watched variable is of type float, SPIR-V Wrapper uses swizzles to save the value,
resulting in an assignment like watchPoint.x = watchedFloatVariable. The same
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applies for vec2 and vec3 type variables. Examples 11 and 12 show a GLSL fragment
shader before and after watchpoint injection. The watchPoint variable will always
be initialized with vec4(1.0). To implement the watchpoint system, the grammer
of the GLSL Reference compiler was changed in a way, that after every initialization
of a variable, every assignment to a variable and after every post increment or post
decrement statement there could theoretically be a watchpoint inserted. This work
does not further process the the watchPoint variable. As already mentioned the
graphical interface of the Murl Engine is meant to read the watchPoint variable
and visually present its values in the future.

Example 12 Example 11 with watchpoint inserted at line 5 and column 5.
1: out vec4 watchPoint;
2: out vec4 gl FragColor;
3: void main()
4: {
5: vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
6: vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
7: watchPoint = vec4(1.0);
8: watchPoint = green;
9: gl FragColor = red + green;

10: }



Chapter 5

Results

This chapter describes the test environment used to measure the performance of
SPIR-V shaders and brings SPIR-V shaders with and without optimizations face to
face. Section 5.1 briefly explains how the test environment was set up and which
tools were used, while section 5.2 showcases the shaders used for testing. Subse-
quently sections 5.3 and 5.4 evaluate the results of the optimizations implemented
during this work.

5.1 Test Environment

As stated in chapter 4 the SPIR-V Wrapper, created during this work, does multiple
conversion steps. First the a shader is converted to SPIR-V, then it gets optimized
and after that it will be converted back to GLSL or HLSL again. When trying to
measure the performance of a shader this setup makes it difficult to exactly pin down
where performance was gained or lost. For instance, it could be possible that the
back-end conversion done by SPIR-V Cross is not optimal and thus some previously
done optimizations lose their effect. Following this thought, it makes more sense to
compare the SPIR-V binaries before and after optimization directly. As SPIR-V is
the native shading language for the Vulkan API, a Vulkan rendering pipeline was
needed. For this work a program called Vulkan Shader Evaluator was created from
scratch. The Vulkan Shader Evaluator is using VulkanSDK 1.0.68.0 [27] as well as
GLFW 3.2.1 [10] for window creation. All testing was done on Windows 10 running
a Nvidia Geforce GTX 760 with the newest drivers available. The Vulkan Shader
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Evaluator renders all output to a window of size 1024x768. While this setup enables
SPIR-V shaders to be compared visually it still does not allow in depth comparison
of the shaders performance. To actually measure the frame rate (frames per second)
of the rendered output, another tool called PresentMon was needed. PresentMon
is small command line tool which tracks the performance of a rendering process by
measuring the micro seconds between presenting images for a specific amount of
time. For this evaluation PresentMon 1.3.0 was used [9].

5.2 Test Cases

To compare the SPIR-V binaries a set of 20 shaders was gathered for testing, further
referenced as Ex01-Ex20. All of these shaders are publicly available on the Shadertoy
website [15]. The full list of shaders can be found in the appendix A of this thesis.
As the shaders available on Shadertoy are mostly fragment shaders, all test cases
are using the same vertex shader which is shown in example 13. The Vulkan Shader
Evaluator creates a window sized rectangle and passes its vertex data to the vertex
shader. Afterwards the vertex shader just transforms coordinates from world space
to screen space and passes all needed data on to the fragment shader. The fragment
shaders then procedurally generates outputs as shown in 5.1. The performance
of each shader was measured over the duration of 120 seconds starting from the
first frame rendered. Afterwards the average frame rate was calculated. To have
a reference value all shaders were first rendered without any optimization passes
applied. As a second step, the shaders were optimized by the SPIR-V Wrapper
using the optimization passes as shown in table 5.1. The optimizations were applied
in this exact order and the measurement was repeated. As a second parameter the
byte size of the SPIR-V binary code was examined before and after optimization.
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Pass
Number Optimization Pass Type

1 OptPassTypeEliminateDeadCode
2 OptPassTypeUnifyConstant
3 OptPassTypeStripDebugInfo
4 OptPassTypeFoldSpecConstantOpAndComposite
5 OptPassTypeEliminateDeadConstant
6 OptPassTypeEliminateDeadCode
7 OptPassTypeCopyPropagation
8 OptPassTypeEliminateDeadCode
9 OptPassTypeRemapIds

Table 5.1: This table shows the order of the optimization passes applied for evaluation.

Example 13 The vertex shader used by the Vulkan Shader Evaluator.
1: #version 450
2: #extension GL ARB separate shader objects : enable

3: layout(binding = 0) uniform UniformBufferObject {
4: mat4 model;
5: mat4 view;
6: mat4 proj;
7: } ubo;

8: layout(binding = 2) uniform ShaderToyGlobals {
9: vec3 resolution;

10: float time;
11: } shaderToyGlobals;

12: layout(location = 0) in vec2 inPosition;
13: layout(location = 1) in vec3 inColor;
14: layout(location = 2) in vec2 inTexCoord;

15: layout(location = 0) out vec3 fragColor;
16: layout(location = 1) out vec2 fragTexCoord;

17: out gl PerV ertex {
18: vec4 gl Position;
19: };

20: void main() {
21: gl Position = ubo.proj ∗ ubo.view ∗ ubo.model ∗ vec4(inPosition, 0.0, 1.0);
22: fragColor = inColor;
23: fragTexCoord.x = inTexCoord.x ∗ shaderToyGlobals.resolution.x;
24: fragTexCoord.y = inTexCoord.y ∗ shaderToyGlobals.resolution.y;
25: }
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Figure 5.1: Output of test shaders Ex01(left) and Ex19(right) used for evaluation.

5.3 Evaluation of Frame Rates

Figure 5.2, 5.3 and 5.4 are visualizing the results of the measurements described
in the previous sections. While the blue bars represent the frame rate of the non-
optimized SPIR-V binary shader, the green bars are showing the optimized versions.
It is easy to see that the differences in in terms of frame rate are not very distinct,
however the optimized versions gain a slight edge over their non-optimized counter-
parts. The biggest differential appears at Ex18, with about 0.75 frames per second
which visually does not make a difference. This result however is not very surprising.
Since state of the art compilers are already very good at optimizing code the results
are expected to be very similar. On an older compiler the results would probably be
a very different. Considering that the Murl Engine has its focus on mobile applica-
tions, one has to be aware that the amount of different compilers in mobile devices
is enormous. Many devices rely on poor compilers, hence the SPIR-V optimizations
are helping to reduce the dependency on the implementation of those compilers.
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Figure 5.2: Comparison of frame rates of non-optimized and optimized SPIR-V shaders
for test shaders Ex01, Ex02, Ex03, Ex04, Ex08, Ex09, Ex10 and Ex11.
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Figure 5.3: Comparison of frame rates of non-optimized and optimized SPIR-V shaders
for test shaders Ex12, Ex13, Ex15, Ex16, Ex17, Ex18, Ex19 and Ex20.
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Figure 5.4: Comparison of frame rates of non-optimized and optimized SPIR-V shaders
for test shaders Ex05, Ex06, Ex07 and Ex14.

5.4 Evaluation of Binary Sizes

Figure 5.5, 5.6 and 5.7 are comparing the byte size of the binary SPIR-V modules.
Since the optimization passes implemented during this work, remove many unused
instructions the byte size of the optimized binary is expected to be lower. The blue
bars in the figure are representing the original byte size, while the orange bars are
showing the optimized version. It is evident from the charts, that byte size of the
optimized SPIR-V is reduced significantly. For the test shaders used during this
work the minimal difference in size occurs in Ex07, being 4.18%, and the maximal
difference appears in Ex12, with a 20.88% smaller than the original size. On average
using SPIR-V Wrapper leads to a reduction in file size of 11.1%. This can further
lead to increased performance when many different shaders need to be loaded and
unloaded in real time. While not being a problem on desktop systems, mobile
developers are usually struggling to keep the size of their applications as low as
possible, consequently every byte counts. This is also the reason the inline functions
pass was not used during evaluation. As examples showed, blindly inline expanding
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all functions lead to code bloating, resulting in huge binary byte sizes and overall
worse performance. However, the inline function pass is still of great use to the
Murl Engine, since it reduces a shader to just a single main function. As the Murl
Engine internally splits variable definitions and function implementations of shaders
the optimization makes this separation easier.
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Figure 5.5: Comparison of binary sizes of non-optimized and optimized SPIR-V shaders
for test shaders Ex01, Ex02, Ex03, Ex04, Ex05, Ex09, Ex10 and Ex11.
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Figure 5.6: Comparison of binary sizes of non-optimized and optimized SPIR-V shaders
for test shaders Ex12, Ex13, Ex14, Ex15, Ex17, Ex18, Ex19 and Ex20.
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Figure 5.7: Comparison of binary sizes of non-optimized and optimized SPIR-V shaders
for test shaders Ex06, Ex07, Ex08 and Ex16.



Chapter 6

Conclusion

This work has shown the development of a third party enhancement for the cross-
platform multimedia framework Murl Engine. This thesis shows how the Murl
Engine can be more flexible in terms of supported shader languages, by using the
native Vulkan shader language SPIR-V as an intermediate representation. Currently
available tools for working with SPIR-V shaders were examined and three of them
where combined to perform translations between various shader languages. A setup
was introduced using the GLSL Reference Compiler as a front-end, the SPIR-V Tools
project for optimization and validation and the SPIRV-Cross framework for back-
end conversion. It was found the SPIR-V Tools project was lacking optimization
options in comparison to the GLSL Optimizer used by the Murl Engine. Therefore
multiple optimization passes, including dead code elimination, inline expansion, copy
propagation and id remapping were added to the SPIR-V Tools framework.These
optimization passes were evaluated using a Vulkan test environment, running the
SPIR-V shaders directly and comparing them to their non-optimized counterparts.
As expected the performance gain in terms of frame rates was just minor. However,
dependency on the implementation of the used compilers was minimized due to
offline optimization. The evaluation also pointed out that the byte size of the binary
SPIR-V modules was significantly reduced by applying offline optimization. After
optimizing 20 different SPIR-V fragment shaders, the reduction in byte size averaged
at 11.1% which can be considered a great success.
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List of Test Shaders

Output Description

Example 01 (Ex01):

Seascape by Alexander Alekseev aka TDM

https://www.shadertoy.com/view/Ms2SD1

Example 02 (Ex02):

Kirby Jump by fizzer

https://www.shadertoy.com/view/lt2fD3

Example 03 (Ex03):

The Drive Home by Martijn Steinrucken aka Big-
Wings

https://www.shadertoy.com/view/MdfBRX
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Output Description

Example 04 (Ex04):

Raymarching - Primitives by Inigo Quilez aka iq

https://www.shadertoy.com/view/Xds3zN

Example 05 (Ex05):

Simple Cylinder Ray Tracer by Hazel Quantock
aka TekF

https://www.shadertoy.com/view/Md3cWj

Example 06 (Ex06):

Wolfenstein 3D by Reinder Nijhoff aka reinder

https://www.shadertoy.com/view/4sfGWX

Example 07 (Ex07):

[SIG15] Mario World 1-1 by Krzysztof Narkowicz
aka knarkowicz

https://www.shadertoy.com/view/XtlSD7

Example 08 (Ex08):

Planet Shadertoy by Reinder Nijhoff aka reinder

https://www.shadertoy.com/view/4tjGRh

Example 09 (Ex09):

Auroras by nimitz

https://www.shadertoy.com/view/XtGGRt

https://www.shadertoy.com/view/Xds3zN
https://www.shadertoy.com/view/Md3cWj
https://www.shadertoy.com/view/4sfGWX
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Output Description

Example 10 (Ex10):

Flame by XT95

https://www.shadertoy.com/view/MdX3zr

Example 11 (Ex11):

Mike by Inigo Quilez aka iq

https://www.shadertoy.com/view/MsXGWr

Example 12 (Ex12):

Luminescence by Martijn Steinrucken aka Big-
Wings

https://www.shadertoy.com/view/4sXBRn

Example 13 (Ex13):

Bouncy boi on the run by stellabialek

https://www.shadertoy.com/view/XscyRs

Example 14 (Ex14):

Warping - procedural 2 by Inigo Quilez aka iq

https://www.shadertoy.com/view/lsl3RH

Example 15 (Ex15):

Radial Blur 2k18 by Przemyslaw Zaworski aka
PrzemyslawZaworski

https://www.shadertoy.com/view/MtjfRd

https://www.shadertoy.com/view/MdX3zr
https://www.shadertoy.com/view/MsXGWr
https://www.shadertoy.com/view/4sXBRn
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Output Description

Example 16 (Ex16):

Simple Greeble - Split4 by Jerome Liard aka black-
jero

https://www.shadertoy.com/view/4tXcRl

Example 17 (Ex17):

Cloud Ten by nimitz

https://www.shadertoy.com/view/XtS3DD

Example 18 (Ex18):

Generators by Kali

https://www.shadertoy.com/view/Xtf3Rn

Example 19 (Ex19):

Pegasus Galaxy by Frank Hugenroth by franken-
burgh

https://www.shadertoy.com/view/lty3Rt

Example 20 (Ex20):

Ray Marching Experiment no 76 by Stephane
Cuillerdier aka aiekick

https://www.shadertoy.com/view/4stcRr

https://www.shadertoy.com/view/4tXcRl
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