

Dipl.-Ing. Michael Rudolf Henzinger

Faseroptisch unterstützte Messmethoden zur Beobachtung von Gebirgsdeformationen

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Bauingenieurwissenschaften - Geotechnical and Hydraulic Engineering

eingereicht an der

Technischen Universität Graz

Betreuer

O.Univ.-Prof. Dipl-Ing. Dr.mont. Wulf Schubert

Institut für Felsmechanik und Tunnelbau Technische Universität Graz

Zweitbetreuer Andreas Anjan Buyer, B.Sc. M.Sc.

Institut für Felsmechanik und Tunnelbau Technische Universität Graz

Graz, August 2018

Eidesstattliche Erklärung Affidavit

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

Danksagung

An dieser Stelle möchte ich mich rückblickend bei all jenen bedenken, welche mich während meiner Studienzeit sowie bei der Bewältigung der vorliegenden Arbeit begleitet und unterstützt haben.

Bei meinem Betreuer Wulf Schubert möchte ich mich besonders bedanken, da mir dieser mit der Aufgabenstellung in dieser Arbeit nicht nur einen Einblick in neue Fachgebiete ermöglichte, sondern auch eine abwechslungsreiche Ablenkung zur Forschung im maschinellen Tunnelbau bot. Seiner Art mich bei scheinbar ausweglosen Situationen zu ermutigen sowie mit Rat und Tat zur Seite zu stehen verdanke ich weit mehr als nur den erfolgreichen Abschluss dieser Arbeit.

Besonderer Dank gilt auch meinem Zweitbetreuer und guten Freund Andreas Buyer, welcher im Zuge dieser Arbeit nicht nur mit besonderen Stilblüten umgehen musste, sondern auch meine unkoordinierten Abgabemodalitäten über sich ergehen ließ.

Bei all jenen Wegbegleitern, welche an dieser Stelle nicht erwähnt werden können, möchte ich mich für all die schönen Stunden, Bergtouren, Abende und Ausflüge bedanken. Ohne euch/dir wäre mir das Ende meiner Studienzeit unweigerlich schwerer gefallen.

Meinen Eltern muss ich an dieser Stellen den größten Dank aussprechen. Ohne ihre unermüdliche Unterstützung wären all jene Meilensteine welche ich erreicht habe ungreifbar gewesen.

Vielen Dank!

Abstract

Like every civil engineered structure, tunnels are subject to ageing. The reasons for the degrading of the condition are manifold: not fully completed stress redistribution, deterioration in the rock mass quality through long term effects (creeping), weathering or dynamic loads and stresses. All these processes lead to an ongoing deformation of the surrounding bedrock and the lining.

For a continuous monitoring of a tunnel condition, the measurement of the deformation is necessary. Conventional methods are time-consuming and require almost always a shutdown of the tunnel for traffic or operation. Therefore, an inspection is done selectively with large time gaps. A continuous condition assessment becomes hardly possible. At the moment, no robust method for permanent monitoring of tunnels exists.

In the course of this thesis, a novel and innovative measuring methodology has been applied to continuously and extensively measure lining deformations. With a fiber optic measuring method (FOS) many of the mentioned restrictions can be overcome. The measurement results were evaluated, performing laboratory tests and validated in numerical simulations. The suitability of the fiber optic measurement methods under realistic conditions could be confirmed.

Subsequently, FOS were installed in the course of a field test at the Semmering-Base-Tunnel. With the measurement of geodetic measuring points, the applicability of the applied methodology could be verified. By measuring the strain change in two radial positions, the time dependent evolution of the stress distribution along the outer shell was evaluated using the flow rate method.

Numerical simulations, reproducing the deterioration process of the rock mass as well as the support, have been carried out. Thus, the required accuracy for measuring the circumferential strains can be derived. A back analysis of the field test was performed with a 3D simulation to provide information on the load distribution.

Kurzfassung

Wie jedes andere Ingenieurbauwerk sind auch Tunnel einem Alterungsprozess unterworfen. Die Gründe für eine Verschlechterung des Zustandes können vielfältig sein: Nicht abgeschlossene Spannungsumlagerung, Verschlechterung der Gebirgsqualität durch Langzeitbeanspruchung, Verwitterung oder dynamische Beanspruchung. Alle diese Vorgänge führen zu anhaltenden/wieder eintretenden Deformationen von Gebirge bzw. Ausbau, welche wiederum Schäden verursachen und die Betriebssicherheit beeinträchtigen können.

Zur kontinuierlichen Überwachung des Zustandes von Tunneln ist die Messung dieser Deformation notwendig. Dies ist mit herkömmlichen Mitteln aufwändig und erfordert meist eine Tunnelsperre. Daher wird eine Überprüfung nur punktuell und in großen Zeitabständen vorgenommen, wodurch eine laufende Bewertung des Zustandes kaum möglich ist. Eine robuste Methode zur permanenten Überwachung von Tunneln existiert derzeit nicht.

Im Zuge dieser Arbeit wurde eine neuartige und innovative Messmethodik eingesetzt, um Ausbauverformungen kontinuierlich und flächendeckend zu messen. Mit faseroptischen Messverfahren sind viele der erwähnten Einschränkungen lösbar. Die Messergebnisse wurden anhand eines Laborversuchs überprüft und mittels numerischer Simulationen validiert. Hierbei konnte die Eignung der faseroptischen Messmethoden unter realen Bedingungen bestätigt werden.

In weiterer Folge wurden faseroptische Sensoren im Zuge eines Feldversuchs am Semmering-Basistunnel eingebaut. Mit der Messung von geodätischen Messpunkten konnte die Anwendbarkeit der Messmethodik verifiziert werden. Durch die Ermittlung der Dehnungsänderung konnte zudem die zeitliche Entwicklung der Spannungsverteilung entlang der Außenschale mit Hilfe der Fließratenmethode dargestellt werden.

Mittels numerischer Simulationen wurde die Verschlechterung des Gebirges sowie die Verschlechterung des Ausbaus nachgebildet. Hieraus können die erforderlichen Genauigkeiten zur Messung der Umfangsdehnungen abgeleitet werden. Des Weiteren wurde eine Rückrechnung des Feldversuchs mittels 3D Simulation durchgeführt. Diese konnte nach Abstimmung mit den gemessenen Verschiebungsdaten Aufschluss über die Lastverteilung geben.

Inhaltsverzeichnis

1	Ein	leitung	5	1				
	1.1	Stand	der Technik	1				
		1.1.1	Deformationsmessungen im Bauzustand	2				
		1.1.2	Deformationsmessungen im laufenden Betrieb	2				
		1.1.3	Faseroptische Messsysteme	3				
	1.2	Ziele d	ler Arbeit	3				
2	Lab	Laborversuche						
	2.1	Versue	chsaufbau	5				
	2.2	Messir	nstrumentierung	7				
		2.2.1	Messsensorik LKI	8				
		2.2.2	Messsensorik IGMS	8				
		2.2.3	Messsensorik HBM	8				
	2.3	Versue	chsdurchführung	9				
	2.4	Berech	nungsmethodik	10				
		2.4.1	Absenkung	11				
		2.4.2	Dehnungsverteilung	12				
	2.5	Verifiz	tierung	13				
		2.5.1	Durchbiegung	14				
		2.5.2	Dehnung	15				
		2.5.3	Schlussfolgerung	15				
	2.6	Versue	chsergebnisse	18				
	2.7	Bewer	tung der Versuchsergebnisse	24				
3	Felc	lversu	che	25				
	3.1	Geolog	gische Randbedingungen	26				
	3.2	Messir	nstrumentierung	27				
		3.2.1	Messschränke	27				
		3.2.2	Kabelanschlussbox	28				
		3.2.3	Messquerschnitt	29				
		3.2.4	Vortriebsverzögerung	31				

	3.3	Messe	rgebnisse	32
		3.3.1	Verschiebungsmessungen	32
		3.3.2	Dehnungsmessungen	34
			3.3.2.1 Gegenüberstellung der Dehnungen an definierten Positionen	34
			3.3.2.2 Darstellung der Dehnungen am gesamten Querschnitt \ldots	36
	3.4	Auswe	ertung	38
		3.4.1	Krümmung der Spritzbetonschale entlang des Querschnitts	39
		3.4.2	Spannungen in der Außenschale	40
			3.4.2.1 Bewehrung	41
			3.4.2.2 Spritzbeton	41
	3.5	Bewer	tung der Versuchsergebnisse	47
4	Nui	neriscl	he Untersuchungen	48
	4.1	Nume	rische Untersuchungen zum Alterungsprozess	48
		4.1.1	Homogenes Modell	50
			4.1.1.1 Gebirgsverschlechterung	51
			4.1.1.2 Ausbauverschlechterung	52
		4.1.2	Ablösen eines Blockes	52
		4.1.3	Scherversagen	55
	4.2	Nume	rische Untersuchung des Feldversuchs	57
		4.2.1	Modellparameter	58
		4.2.2	Numerisches Modell	60
		4.2.3	Modellverifizierung	62
		4.2.4	Untersuchung des Spannungszustandes	62
	4.3	Bewer	tung der Ergebnisse	65
5	Zus	ammei	nfassung	67
A	nhan	g AP3	- Laborversuche	70
٨	nhar	- ~ \ D 4	Feldwarauche	70
A	man	g AP4		10

Abbildungsverzeichnis

2.1	Querschnitt des Biegeträgers (Abmessungen in cm). \ldots	5
2.2	Statisches System (Abmessungen in cm)	6
2.3	Seitenansicht des Biegeträgers im 4-Punkt-Prüfgerüst. am LKI $\ \ldots\ \ldots\ \ldots$	6
2.4	$Messquerschnitt (IGMS - rot, HBM - blau). . \ . \ . \ . \ . \ . \ . \ . \ . \ $	7
2.5	OptiMet-PKF.	8
2.6	FS62	9
2.7	FS63	9
2.8	Laststufen im Zustand I und II	10
2.9	Verinfachtes statisches System (Abmessungen in cm).	11
2.10	Zweifach gestützter Träger mit gleichmäßig verteilter Last q (Entnommen aus	
	Altenbach (2016))	11
2.11	Zweifach gestützter Träger mit einer Einzellast F (Entnommen aus Altenbach	
	(2016)).	12
2.12	Querschnitt im Zustand I.	13
2.13	Biegemomentverteilung im Zustand I.	14
2.14	Gegenüberstellung der analytischen und gemessenen Durchbiegungsverteilung	
	der Belastungsvorgänge im Zustand I (Kreise stellen die gemessenen Werte	
	dar, durchgezogene Linien die gerechneten Ergebnisse)	14
2.15	Gegenüberstellung der Durchbiegungsverteilung der Entlastungsvorgänge im	
	Zustand I (Kreise stellen die gemessenen Werte dar, durchgezogene Linien die	
	gerechneten Ergebnisse)	15
2.16	Dehnungszustände der jeweiligen Belastungsstufen je Messposition, DD1 (Krei-	
	se stellen die gemessenen Werte jeweils an der Vorder- und Rückseite dar,	
	durchgezogene Linien die gerechneten Ergebnisse).	16
2.17	Dehnungszustände der jeweiligen Entlastungsstufen je Messposition, DD1 (Krei-	
	se stellen die gemessenen Werte jeweils an der Vorder- und Rückseite dar,	
	durchgezogene Linien die gerechneten Ergebnisse).	17
2.18	Gegenüberstellung der analytischen und gemessenen Durchbiegungsinkremente.	18
2.19	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Ex-	
	terne Dehnungsaufnehmer des LKI	19

2.20	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Ex-	
	terne Dehnungsaufnehmer des LKI	1
2.21	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "PKF" der HBM	20
2.22	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "PKF" der HBM	20
2.23	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "embedded" der HBM	2
2.24	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "embedded" der HBM	2
2.25	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "konvergenz" der HBM	2
2.26	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "DMS" der HBM	2
2.27	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "V3" des IGMS	2
2.28	Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Deh-	
	nungssensoren "V9" des IGMS	2
3.1	Baufortschritt von Kalotte, Strosse und Sohle in Bezug auf Messquerschnitt	
	02172	2
3.2	Geologischer Subhorizontalschnitt von Gleis 2 und Querschlag 5 bei MQ 2172	
	(ÖBB-Infrastruktur AG, 2018a).	2
3.3	Geologische Ortsbrustkartierung bei TM 2172,3 (ÖBB-Infrastruktur AG, 2018b).	2
3.4	Messschränke am rechten Ulm.	2
3.5	Kabelanschlussbox zur Verbindung des Messquerschnitts und des Multifaser-	
	kabels	2
3.6	Schematische Schnittdarstellung des Messquerschnitts auf Höhe der Kabelan-	
	schlussbox.	3
3.7	Position der geodätischen Messpunkte sowie der installierten FOS Sensoren im	
	Messquerschnit 2172	3
3.8	Längsschnitt der verbauten Messinstrumentierung.	3
3.9	Gegenüberstellung von Profilverschiebung und Ortsbrustdokum entation $% \mathcal{A} = \mathcal{A} = \mathcal{A}$	3
3.10	Vertikalverschiebung der geodätischen Messpunkte.	3

3.11	Horizontalverschiebung der geodätischen Messpunkte.	33
3.12	Gegenüberstellung der Umfangsdehnungen am linken Kämpfer (negative Deh-	
	nungen deuten auf Stauchung hin)	34
3.13	Gegenüberstellung der Umfangsdehnungen und der Vertikalverschiebung des	
	Firstpunktes (Negative Dehnungen deuten auf Stauchung hin).	35
3.14	Gegenüberstellung der Umfangsdehnungen am rechten Kämpfer (Negative Deh-	
	nungen deuten auf Stauchung hin)	35
3.15	Gegenüberstellung der Umfangsdehnungen an unterschiedlichen Positionen des	
	zusätzlichen Gitterträgers (Negative Dehnungen deuten auf Stauchung hin). $.$	36
3.16	Ausgewählte Zeitpunkte zur Darstellung der Ergebnisse der Umfangsdehnungen.	36
3.17	Entwicklung der Dehnungsverteilung in der Kalotte (durchgezogen – äußere	
	Lage; strichliert – innere Lage; x – Ankerpositionen; negative Dehnungen deu-	
	ten auf Stauchung hin).	37
3.18	Entwicklung der Dehnungsverteilung zwischen den geodätischen Messpunkten	
	der Kalotte (Negative Dehnungen deuten auf Stauchung hin)	38
3.19	Entwicklung der Radialverschiebungen innerhalb eines Abschlages an zwei zur	
	Ortsbrust unterschiedlichen Messquerschnitten (oben: größere Entfernung zur	
	Ortsbrust; unten: geringere Entfernung zur Ortsbrust; SBT 1.1 Gleis 1, MQ	
	2699 und MQ 2700)	39
3.20	Entwicklung der Krümmungsverteilung in der Kalotte (x $-$ Ankerpositionen;	
	negative Werte deuten auf Stauchung der Außenfaser und Dehnung der Innen-	
	faser hin)	40
3.21	Spannungsentwicklung der Bewehrung in der Kalotte.	41
3.22	Gegenüberstellung der zeitabhängige Entwicklung der Druckfestigkeit mit den	
	Laborergebnissen	44
3.23	Darstellung der zeitabhängigen Entwicklung des Elastizitätsmoduls	45
3.24	Entwicklung der Spannungsverteilung im Spritzbeton der Kalotte.	45
3.25	Entwicklung der Spannungsverteilung im Spritzbeton der Kalotte.	46
4.1	Gegenüberstellung der Entwicklung der Umfangsdehnungen bei fortschreiten-	
	der Abminderung der Gebirgsfestigkeiten.	52
4.2	Gegenüberstellung der Entwicklung der Umfangsdehnungen bei fortschreiten-	
	der Abminderunge der Ausbaufestigkeiten	53
4.3	Numerisches Modell mit induziertem Blockversagen.	55

4.4	Numerisches Modell mit induziertem Scherversagen.	57
4.5	Modellabmessungen und Diskretisierung	61
4.6	Vergleich zwischen gemessenen Verschiebungen (blau) und den Ergebnissen	
	der numerischen Simulation (blau)	62
4.7	Gegenüberstellung der gemessenen (durchgezogen) und numerischen (strich-	
	liert) Horizontalverschiebungen in Abhängigkeit des Baufortschritt s	63
4.8	Deviatorische Dehnung für die Berechnungsschritte 21, 27, 39, 55 und 64. $\ .$.	64
4.9	Radialspannungsverlauf im Gebirge in einem Horizontalschnitt in Höhe der	
	Ulmen für die Berechnungsschritte 21, 27, 39, 55 und 64	64
4.10	Tangentialspannungsverlauf an den Ulmen für die Berechnungsschritte 21, 27,	
	39, 55 und 64	65
4.11	Spannungsverläufe im Gebirge in einem Vertikalschnitt in Höhe der Firste und	
	Sohle für die Berechnungsschritte 21, 27, 39, 55 und 64.	66

Tabellenverzeichnis

3.1	Fließratenparameter.	43
3.2	Parameter für die altersabhängige Entwicklung der Druckfestigkeit und des	
	Elastizitätsmoduls.	44
4.1	Gebirgs- und Ausbruchsparameter.	49
4.2	Mechanische Eigenschaften Außenschale	49
4.3	Mechanische Eigenschaften der Innenschale	49
4.4	Mechanische Eigenschaften des Interfaces zwischen Außenschale und Innenschale.	50
4.5	Mechanische Eigenschaften der den Block begrenzenden Trennflächen. \ldots .	54
4.6	Mechanische Eigenschaften der Trennflächen. \ldots \ldots \ldots \ldots \ldots \ldots	56
4.7	Orientierung der Hauptnormalspannungen und der Tunnelachse	58
4.8	Mechanische Eigenschaften des Gebirges	58
4.9	Mechanische Eigenschaften der Trennflächen.	59
4.10	Anker IBO R32-250 "Tieback" (* angenommen).	60
4.11	Außenschale "Reinforced Concrete" (C20/25; AQ 60)	61

1 Einleitung

Schäden, welche an der Auskleidung eines Tunnelbauwerkes eintreten, wie Risse, Abplatzungen oder eine vollständige Zerstörung, sind derzeit erst dann sichtbar, wenn diese bereits eingetreten sind. Eine Sanierung ist in vielen Fällen unumgänglich und zieht einen massiven Eingriff in die Betriebsabwicklung mit sich. Um eine Wartung auf dem Prinzip der "voraussagenden Instandhaltung" zu ermöglichen, ist eine kontinuierliche Überwachung notwendig. Aus diesem Grund wurde 2015 im Rahmen der Initiative zur Verkehrsinfrastrukturforschung (VIF) in Kooperation zwischen dem Bundesministerium für Verkehr, Innovation und Technologie, der ÖBB-Infrastruktur AG und der Asfinag ein Projekt zum Thema "Langfristige Gebirgsdruckentwicklung und Auswirkung auf die Tunnelauskleidung" ins Leben gerufen. Ein Projektziel ist der Einbau und Test von faseroptischen Messsystemen zur Erfassung von Änderungen im Gebirgsdruck. Mit den hierbei gewonnenen Erkenntnissen soll es möglich sein, faseroptische Sensoren in der Innenschale zu verbauen um in weiterer Folge Dauermessungen zur frühzeitigen Erfassung von Schäden durchzuführen.n.

1.1 Stand der Technik

Messungen im Tunnelbau können derzeit grundlegend in zwei Arten unterteilt werden: vortriebsbegleitendes Monitoring im Bauzustand, sowie Kontrollmessungen im Betriebszustand. Bei Letzteren handelt es sich überwiegend um Deformationsmessungen der Außen- und Innenschale. Messmethoden, um den Gebirgsdruck direkt messen zu können, sind zum aktuellen Zeitpunkt kaum vorhanden. Eine Möglichkeit besteht darin, Druckmessdosen einzubauen und zur Fernablesung entsprechend auszustatten. Gemessen werden überwiegend Deformationen.

Faseroptische Messsysteme kommen derzeit nur vereinzelt im Tunnelbau zum Einsatz. Die Vorteile der Faseroptik liegen in der starken Reduktion der Sensormessleitungen, der Unempfindlichkeit gegen elektromagnetische Störung, sowie Bergwassereinflüsse. Entlang einer einzelnen Glasfaser kann sich eine Vielzahl von Sensoren befinden. Die Lichtausbreitung erfolgt entlang der optischen Faser, womit keine direkte Sichtverbindung zwischen den Messstellen erforderlich ist. Mittels faseroptischer Messmethoden ist es möglich, ein Monitoringsystem direkt in die Tunnelauskleidung zu integrieren. Über einen Messquerschnitt verteilte Sensoren könnten Dehnungsveränderungen und Konvergenzen messen. Über Lasten und Kräfte in der Tunnelauskleidung soll auf den Gebirgsdruck geschlossen werden. Durch ein permanentes Monitoring soll eine automatisierte Erfassung und Bewertung von Änderungen des Gebirgsdrucks ohne Betriebsunterbrechung möglich sein.

1.1.1 Deformationsmessungen im Bauzustand

Das systematische und regelmäßige Monitoring sowie die Interpretation der gemessenen Deformationen ist grundlegender Bestandteil der NATM(Rabcewicz et al., 1972; Vavrovsky & Ayaydin, 1988; Schubert & Vavrovsky, 1996). Dabei wird überprüft, ob das angetroffene Systemverhalten im Erwartungsbereich des prognostizierten Systemverhaltens liegt. Weichen die Deformationen bzw. die Beanspruchungen im Ausbau von den zu erwarteten Größenordnungen ab, sind die Kriterien zur Zuordnung der Baumaßnahmen zu überprüfen. Gegebenenfalls sind entsprechende bauliche Maßnahmen zu ergreifen (Austrian Society for Geomechanics, 2014). Die Ergebnisse aus dem Monitoring bieten Grundlage zur Bewertung des Gebirgsverhaltens sowie der Interaktion zwischen Gebirge und Ausbau.

Typischerweise werden optische 3D Messungen an Messquerschnitten im Abstand von 5 bis 20 m durchgeführt. Hierbei wird die Deformation von 3 bis 7 Bireflex-Targets, befestigt in Außenschale, aufgenommen. Das Messintervall wird gemäß den projektspezifischen Anforderungen gewählt und beträgt im Normalfall in Ortsbrustnähe 24 Stunden (Austrian Society for Geomechanics, 2014).

Neben allgemeinen Beobachtungen bietet die Auswertung und Interpretation der 3D-Messungen die Grundlage zur Beurteilung des Systemverhaltens. Diese Methode repräsentiert die Grundlage der Messdateninterpretation. Sie erfasst neben den gebirgsmechanischen Verformungen auch Änderung in der Vortriebsgeschwindigkeit. Des Weiteren können auch Einflüsse des Kalotten-, Strossen- und Sohlenvortriebs sowie den Stützmitteleinbau durch Änderung des Ausbauwiederstandes aufgezeigt werden. Die Zustands- und Trendlinienauswertung bietet eine gute Methode, längere Abschnitte in Tunnellängsrichtung zu überwachen (Austrian Society for Geomechanics, 2014).

1.1.2 Deformationsmessungen im laufenden Betrieb

Deformationsmessungen im Betriebszustand gestalten sich wesentlicher schwieriger als im Bauzustand. Sind keine permanenten Monitoringsysteme integriert, ist eine Kontrolle der Deformationen in der Regel an eine Tunnelsperre oder Sperre einer Spur gekoppelt. Die Intervalle hängen hierbei von der Sensitivität des Bauwerks sowie der Größe der Verformung ab.

Derzeit werden für Deformationsmessungen im Tunnel entweder geotechnische Sensoren (z.B. Stangenextensometer, Schwingsaitensensoren) oder ingenieurgeodätischen Methoden eingesetzt. Geotechnische Sensoren sind üblicherweise elektrische Sensoren, und daher ist die Realisierung von vielen Messstellen nur mit sehr hohem Verkabelungsaufwand möglich. Geodätische Messverfahren beruhen auf Laserscannern oder Totalstationen und benötigen eine direkte Sichtverbindung zwischen dem Instrument und der Zieloberfläche bzw. den Prismen. Dies ist bei Dauermessungen langfristig z.B. aufgrund von Messprismenverschmutzung nur schwer zu realisieren.

Zum aktuellen Zeitpunkt wird eine permanente Überwachung von Tunnelbauwerken durch Deformationsmessungen bzw. Druckmessungen nur vereinzelt mittels Druckmessdosen und anlassbezogen durchgeführt.

1.1.3 Faseroptische Messsysteme

Die Vorteile von faseroptichen Sensoren gegenüber herkömmlichen, zumeist elektrischen oder optischen Systemen liegen vor Allem in der Präzision, dem geringen Verkabelungsaufwand sowie dem geringen Wartungsaufwand (keine verschmutzten Messziele). Des Weiteren können die Sensoren direkt im Beton verlegt werden. Messungen können in diesem Fall ohne Behinderung des laufenden Betriebs durchgeführt werden. Ein weiterer Vorteil liegt am Wegfall von beweglichen Teilen wie bei Schwingsaitensensoren, Druckmessdosen, Inklinometern oder Extensometern. Hierdurch kann ein verschleißfreier Langzeitbetrieb gewährleistet werden.

1.2 Ziele der Arbeit

Im Rahmen des VIF-Projektes "Langfristige Gebirgsdruckentwicklung und Auswirkung auf die Tunnelauskleidung" soll die Anwendbarkeit von faseroptischen Messsystemen in Zusammenarbeit des Institutes für Felsmechanik und Tunnelbau der TU Graz mit HBM¹ und IGMS² getestet und evaluiert werden. Folgende Aufgabenstellungen sind definiert:

¹Hottinger Baldwin Messtechnik GmbH, Lemböckgasse 63/2, 1230 Wien

²Institut für Ingenieurgeodäsie und Messsysteme, Technische Universität Graz, Steyrergasse 30, 8010 Graz

1. Laborversuch

In einem Laborversuch sollen an einem bewehrten Betonträger die faseroptischen Sensoren getestet werden. Hierbei kann durch eine gezielte Lastaufbringung, die Genauigkeit der Messsysteme durch einen direkten Vergleich mit den analytischen Ergebnissen überprüft werden.

2. Feldversuche

Im Zuge eines Tunnelvortriebs sollen die in den Laborversuchen evaluierten Messsysteme in der Außenschale getestet werden. Hier soll ein Vergleich mit herkömmlichen Messmethoden, die Eignung von faseroptischen Sensoren bestätigen, sowie die Robustheit nachgewiesen werden.

3. Numerische Simulation

Um eine Aussage bezüglich der geforderten Messgenauigkeit der Messsysteme treffen zu können, sind numerische Simulationen durchzuführen. Hierbei ist eine zeitabhängige Verschlechterung des Gebirges sowie des Ausbaues mit geeigneten Mitteln abzubilden. In einem zweiten Schritt ist die Situation des Feldversuchs numerisch nachzubilden, um weitere Erkenntnisse über die Belastungsvorgänge zu erhalten.

2 Laborversuche

Im Labor für Konstruktiven Ingenieurbau¹ der Technischen Universität Graz wurde zur Evaluierung der faseroptischen Instrumentierung ein 4-Punkt-Biegeversuch durchgeführt. Gleichzeitig wurde die Robustheit der Messsysteme hinsichtlich des Betoniervorgangs und der äußeren Lastaufbringung getestet. Der Versuch dient zur Überprüfung der Abweichung zwischen analytischen und gemessenen Verformungen, sowie zur Verifikation der Funktionstauglichkeit der in Beton eingebauten Sensorik unter Laborbedingungen. Die Genauigkeit wird durch den Vergleich mit extern angebrachten Sensoren überprüft und nachgewiesen.

2.1 Versuchsaufbau

Die Abmessungen des Biegeträgers sind in Abbildung 2.1 und 2.2 ersichtlich. Die Länge des Biegeträgers wurde entsprechend hoch angesetzt, um um an fünf Positionen die Neigung messen zu können. Aus dieser Randbedingung wurden die restlichen Abmessungen angepasst.

Abbildung 2.1: Querschnitt des Biegeträgers (Abmessungen in cm).

Die Betonsorte C30/37(56) entspricht dem Innenschalenbeton, welcher bei der Tunnelkette St. Kanzian zum Einsatz gekommen ist. Da aufgrund von Inhomogenitäten eine analytische Auswertung erschwert ist, wurde keine dem Außenschalenbeton entsprechende Mischung verwendet. Mit einer durchschnittlichen Würfeldruckfestigkeit von 45,61 MPa (siehe Anhang

¹Labor für konstruktiven Ingenieurbau - LKI, Technische Universität Graz, Inffeldgasse 24, 8010 Graz

5) nach 26 Tagen, einen Tag vor Versuchsbeginn liegt der Wert über der erwarteten Festigkeit gemäß ÖNORM EN 1992-1-1 (2015). Demgegenüber erreicht der mittlere Elastizitätsmodul (23,37 GPa, siehe Anhang 5) lediglich zwei Dritteln des prognostizierten Wertes. Die Unterschätzung des prognostizierten Wertes ist darauf zurückzuführen, dass sich beim Einbringen des Betons in das Schalungsgerüst ein Einschluss von Luftblasen gebildet hat.

Abbildung 2.2: Statisches System (Abmessungen in cm).

Die Bewehrung besteht aus jeweils einem Baustahlgitter AQ 100 in der unteren und oberen Lage. Mit einem Bewehrungsdurchmesser von 1 cm und 8 Einzelsträngen ergibt dies eine Querschnitt von 6.28 cm² in beiden Lagen. Auf Grund der genormten Eigenschaften gemäß ÖNORM B 4707 (2017) der Bewehrungsstahlsorte B 550 ergibt sich eine Streckgrenze von 550 MPa und eine Zugfestigkeit von 620 MPa bei einer Bruchdehnung von 8 %.

Zur Versuchsdurchführung wurde der Biegeträger in einem 4-Säulen-Prüfgerüst, welches eine maximale vertikale Last von 1 MN aufbringen kann, eingehoben (siehe Abbildung 2.3).

Abbildung 2.3: Seitenansicht des Biegeträgers im 4-Punkt-Prüfgerüst. am LKI

Die Lasteinleitung erfolgt hierbei über zwei Positionen in einem Abstand von 2 m. Beide Lasten werden durch die Pressenanordnung simultan auf gleichbleibendem Lastniveau bei konstantem Biegemoment erhöht. Demzufolge ist dieser Bereich bei Vernachlässigung des Eigengewichts querkraftfrei.

2.2 Messinstrumentierung

Seitens der HBM und des IGMS wurden mehrere faseroptische Messsysteme entlang der Biegebewehrungslagen appliziert. Zudem wurden Dehnungsaufnehmer und Dehnmessstreifen auf der Unterseite des Biegeträgers als auch ein Inklinometerrohr auf der unteren Bewehrungslage angebracht. Der repräsentative Messquerschnitt ist in Abbildung 2.4 dargestellt.

Abbildung 2.4: Messquerschnitt (IGMS – rot, HBM – blau).

Zur Vergleichsmessung der Dehnungen und Verifikation des analytisch angenommenen statischen Systems, wurden seitens des LKI Dehnunsgaufnehmer auf Höhe der Biegebewehrung auf der Vorder- und Rückseite des Trägers angebracht. Des Weiteren wurde die Absenkung mit Hilfe von induktiven Wegaufnehmern an der Unterseite des Biegeträgers gemessen. Diese dienen zur weiteren Kontrolle des angenommenen statischen Systems und der analytisch ermittelten Ergebnisse.

2.2.1 Messsensorik LKI

DD1 - Dehnungsaufnehmer auf Prinzip eines Dehnungsmessstreifens mit einem Messbereich von +/- 2,5 mm.

 $\mathbf{WA50}-\mathbf{Induktiver}$ Wegaufnehmer mit einem Messbereich von 0 - 50 mm.

2.2.2 Messsensorik IGMS

V9 – Dehnungskabel mit Glasfaser in Metallrohr und strukturierter Kunststoffhülle.

V3 – Der Kern des V3 Kabels entspricht dem V9 Kabel. Zusätzlich besitzt dieses Kabel ein Drahtgeflecht und eine zweite Kunststoffschicht wodurch es robuster ist.

Temp – Temperatursensorkabel, bei welchem sich die Glasfaser frei in einem Metallrohr bewegen kann.

Temp. Rohr – Dabei handelt es sich um ein Dehnungssensorkabel, welches in einem Kunststoffschlauch geführt ist und daher keine Koppelung von Sensorrohr und Überwachungsobjekt vorliegt.

2.2.3 Messsensorik HBM

OptiMet-PKF – eine Singlemode-Lichleitfaser welche über 13 Fiber Bragg Gitter, mit einem gleichmäßigen Abstand von 60 cm verfügt (Abbildung 2.5). Die Länge des Sensors beträgt 1,5 m, der Durchmesser 0,7 mm. Mit dem zugelassenen Temperaturbereich von -40° bis +140°C beträgt der Messbereich \pm 0,7 %.

Abbildung 2.5: OptiMet-PKF.

FS62 – ein auf einem Fiber Bragg Gitter basierender Dehnungsmessstreifen. Dieser kann entweder mechanisch am zu messenden Objekt (Abbildung 2.6a) oder verschweißt (Abbildung 2.6b) angebracht werden. Der Messbereich beträgt beträgt bei einem Gebrauchstemperaturbereich 0° bis +80°C ± 0,25 %.

Abbildung 2.6: FS62

FS63 – ist ein auf einem Fiber Bragg Gitter basierender Temperatursensor. Dieser kann entweder mechanisch am zu messenden Objekt (Abbildung 2.7a) oder verschweißt (Abbildung 2.7b) angebracht werden. Die Empfindlichkeit beträgt beträgt bei einem Gebrauchstemperaturbereich -20° bis $+80^{\circ}$ C, 33° C/nm %.

Abbildung 2.7: FS63

2.3 Versuchsdurchführung

Die Versuchsdurchführung wurde in zwei Versuchsreihen gegliedert: Am 03.08.2017 erfolgte die Belastung ohne plastische Verformung des Trägers im Zustand I (der Beton ist ungerissen, alle Verformungszustände sind reversibel), am 04.08.2017 erfolgte die Belastung im Zustand II (der Beton ist gerissen, die Dehnungen werden vom Stahl übernommen, wobei sich dieser bis zum Erreichen der Fließgrenze elastisch verhält). Zur Dokumentation zeitlicher Einflüsse und eines möglichen Kriechverhaltens wurde die letzte Laststufe im Zustand I über Nacht gehalten und am Folgetag erneut gemessen.

Die Laststufen sind in Abbildung 2.8 dargestellt. In Zustand I deckte eine kontinuierliche Laststeigerung ein breites Spektrum unterhalb des Rissmoments, sowie zwei Entlastungsschleifen (Laststufe 7, 9 und 11) ab. Die Normalkraft wurde hydraulisch mittels zweier durch den Träger verlaufender Zugstangen aufgebracht. Die Kraftübertragung erfolgte mittels Stahlplatten an den Stirnseiten des Biegeträgers. Die vertikale Laststeuerung erfolgte kraftgesteuert, wodurch ein Absinken der Last während der Messungen ausgeschlossen werden kann.

Durch Wegnahme der Normalkraft (Laststufe 12) kann Zustand II bei Laststufe 14 erreicht werden. Zur Darstellung der plastischen und elastischen Verformungen wurde ein erneuter Entlastungsschritt (Laststufe 16) eingeführt.

Abbildung 2.8: Laststufen im Zustand I und II.

2.4 Berechnungsmethodik

Zur Verifizierung der Messergebnisse wurde die Bemessungsgrundlage der Stahlbetonbemessung gemäß ÖNORM EN 1992-1-1 (2015) herangezogen. Verformungen und Schnittgrößen werden unter Vernachlässigung des Sicherheitskonzeptes ermittelt. Die Vorzeichenkonvention mit positiven Zugkräften und negativen Druckkräften. Die Absenkungen des Trägers sind positiv.

2.4.1 Absenkung

Die Absenkungen wurden mit Hilfe der Biegeliniengleichung für den in Abbildung 2.9 vereinfachten Fall ermittelt. Diese Berechnungsmethodik lässt sich nur auf Zustand I anwenden.

Abbildung 2.9: Verinfachtes statisches System (Abmessungen in cm).

Die Biegelinie, der Verlauf der Durchbiegung entlang eines Biegeträgers, lässt sich durch die Differentialgleichung vierter Ordnung beschreiben:

$$E \cdot I \cdot w^{\prime\prime\prime\prime}(x) = q(x) \tag{2.1}$$

Hierbei entspricht E dem Elastizitätsmodul, I dem Flächenträgheitsmoment, w der Durchbiegung und q dem Querkraftverlauf. Da die Differentialgleichung der Biegelinie linear verläuft, kann die Lösung der Biegelinie durch Superposition mehrerer Lastfälle kombiniert werden.

Die Durchbiegungsverteilung für eine gleichmäßig verteilte Flächenlast ist in Abbildung 2.10 dargestellt. Die entsprechende Formulierung der Durchbiegungsverteilung ist in Gleichung 2.2 beschrieben.

Abbildung 2.10: Zweifach gestützter Träger mit gleichmäßig verteilter Last q (Entnommen aus Altenbach (2016)).

$$w_q(x) = \frac{q}{E \cdot I} \cdot \left(\frac{l^3 \cdot x}{24} - \frac{l \cdot x^3}{12} + \frac{x^4}{24}\right)$$
(2.2)

Die Durchbiegungsverteilung für eine gleichmäßig verteilte Flächenlast ist in Abbildung 2.11 dargestellt. Die entsprechende Formulierung der Durchbiegungsverteilung ist in den Gleichungen 2.3 und 2.4 für den Bereich links und rechts des Kraftangriffs beschrieben. Da es sich um zwei Einzellasten handelt, kann hier ebenfalls superpositioniert werden.

Abbildung 2.11: Zweifach gestützter Träger mit einer Einzellast F (Entnommen aus Altenbach (2016)).

$$w_{F,1}(x) = \frac{F \cdot l^3}{6 \cdot E \cdot I} \cdot \frac{a}{l} \cdot \left(\frac{b}{l}\right)^2 \cdot \frac{x_1}{l} \cdot \left(1 + \frac{l}{b} - \frac{x_1^2}{a \cdot b}\right), \quad x_1 \le a$$
(2.3)

$$w_{F,2}(x) = \frac{F \cdot l^3}{6 \cdot E \cdot I} \cdot \frac{b}{l} \cdot \left(\frac{a}{l}\right)^2 \cdot \frac{x_2}{l} \cdot \left(1 + \frac{l}{a} - \frac{x_2^2}{a \cdot b}\right), \quad x_2 \le b$$
(2.4)

2.4.2 Dehnungsverteilung

Der Ermittlung des Verformungs- und Spannungszustandes im Zustand I wurden folgende Annahmen zugrunde gelegt:

- linear elastisches Verhalten von Beton und Bewehrung
- Dehnungskompatibiltät $\Delta l_{Beton} = \Delta l_{Stahl}$
- Ebenbleiben des Querschnitts
- Konstante Einleitung der Normalkraft über die gesamte Tiefe des Balkens

Zustand I ist nur gültig, solange das Lastniveau unter dem des Rissmomentes bleibt:

$$M_{Riss} = \left(f_{ctm} - \frac{N}{A_{Beton}}\right) \cdot W_{Beton} \tag{2.5}$$

Die Krümmung entlang der Längsachse des Biegeträgers kann mit bekannter Verteilung des Biegemomentes mit folgendem Zusammenhang ermittelt werden:

$$\kappa = \frac{|\epsilon_1| + |\epsilon_2|}{h} = \frac{M}{E} \tag{2.6}$$

Der E-Modul kann auf Grund des vernachlässigbaren Einflusses der Bewehrung dem des Betons gleichgesetzt werden. Somit ist der Dehnungszustand an jedem Punkt in einer beliebigen Dehnungsebene bekannt. Die Spannungsverteilung kann folglich ermittelt werden:

$$\sigma = \frac{M}{W} \tag{2.7}$$

Abbildung 2.12 zeigt das Verhalten des Biegeträgers unter Biegung und Normalkraft im Zustand I.

Abbildung 2.12: Querschnitt im Zustand I.

2.5 Verifizierung

Die aus dem elastischen Belastungsprogramm resultierenden Biegemomente sind in Abbildung 2.13 dargestellt. Diese setzen sich aus Eigengewicht, der Vorspannung und vertikalem Lasteintrag zusammen.

Die gemessenen Durchbiegungen und Dehnungen beruhen auf den Ergebnissen der äußeren Wegaufnehmer des LKI.

Abbildung 2.13: Biegemomentverteilung im Zustand I.

Ein Vergleich mit Zustand II ist nicht bzw. nur bedingt möglich. Die Dehnungsverteilung in Längsrichtung des Biegeträgers ist, neben Biegemoment, auch von der Rissbildung, dem Abstand zum Riss, sowie der Verbundwirkung zwischen Beton und Stahl abhängig.

2.5.1 Durchbiegung

Abbildung 2.14 zeigt die Gegenüberstellung der analytischen mit den gemessenen Durchbiegungen für die Belastungsschritte. Abbildung 2.15 zeigt jene der Entlastungsvorgänge. Auf Grund des Messbeginns bei Laststufe 1 bleibt bei der dargestellten Absenkung das Eigengewicht unberücksichtigt.

Abbildung 2.14: Gegenüberstellung der analytischen und gemessenen Durchbiegungsverteilung der Belastungsvorgänge im Zustand I (Kreise stellen die gemessenen Werte dar, durchgezogene Linien die gerechneten Ergebnisse).

Hier lässt sich eine gute Übereinstimmung der gemessenen mit den analytisch ermittelten

Abbildung 2.15: Gegenüberstellung der Durchbiegungsverteilung der Entlastungsvorgänge im Zustand I (Kreise stellen die gemessenen Werte dar, durchgezogene Linien die gerechneten Ergebnisse).

Durchbiegungen feststellen. Folglich kann geschlossen werden, dass das statische System korrekt angenommen wurde.

2.5.2 Dehnung

Die Dehnungsebenen (x) der auf der Außenseite und entlang der Bewehrungsebenen angebrachten Dehnungsaufnehmer der jeweiligen Querschnitte in Zustand I sind für die Belastungszustände in Abbildung 2.16 und für die Entlastungsvorgänge in Abbildung 2.17 dargestellt. Der Abstand in x Richtung bezieht sich auf die Linke Stirnseite, in y-Richtung auf die Unterseite des Trägers.

2.5.3 Schlussfolgerung

Die Gegenüberstellung der Durchbiegung und der Dehnungszustände zeigt eine gute Übereinstimmung zwischen den analytisch ermittelten und gemessenen Dehnungen und Verformungen auf. Folglich kann die Annahme des statischen Systems und die Anwendbarkeit der ÖNORM EN 1992-1-1 (2015) im Zustand I bestätigt werden.

Abbildung 2.16: Dehnungszustände der jeweiligen Belastungsstufen je Messposition, DD1 (Kreise stellen die gemessenen Werte jeweils an der Vorder- und Rückseite dar, durchgezogene Linien die gerechneten Ergebnisse).

Abbildung 2.17: Dehnungszustände der jeweiligen Entlastungsstufen je Messposition, DD1 (Kreise stellen die gemessenen Werte jeweils an der Vorder- und Rückseite dar, durchgezogene Linien die gerechneten Ergebnisse).

2.6 Versuchsergebnisse

Um eine Aussage zur Übereinstimmung der gemessenen und theoretischen Verformung tätigen zu können, wurden die Verformungs- bzw. Dehnungsinkremente zwischen aufeinanderfolgenden Messungen gegenübergestellt (siehe Gleichung 2.8 und 2.9). Die Abweichungen wurden jeweils als Prozentsatz, bezogen auf den analytischen Verformungs-/Dehnungsbetrag ermittelt.

$$Abweichung = \frac{|\Delta w_{analytisch} - \Delta w_{gemessen}|}{\Delta w_{analytisch}}$$
(2.8)

$$Abweichung = \frac{|\Delta \epsilon_{analytisch} - \Delta \epsilon_{gemessen}|}{\Delta \epsilon_{analytisch}}$$
(2.9)

Abbildung 2.18, 2.19 und 2.20 zeigen die Abweichungen zu den außen angebrachten Messsensoren des LKI. Diese dienen, auf Grund der Verifizierung zwischen analytischen und gemessenen Ergebnisse, als Referenzmuster. Der Abstand in x Richtung bezieht sich auf die linke Stirnseite, in y-Richtung auf die Unterseite des Trägers.

Abbildung 2.18: Gegenüberstellung der analytischen und gemessenen Durchbiegungsinkremente.

In Abbildung 2.21 bis 2.28 ist die Abweichung der jeweiligen Dehnungsebene der faseroptischen Sensoren dargestellt.

Abbildung 2.19: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Externe Dehnungsaufnehmer des LKI.

Abbildung 2.20: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Externe Dehnungsaufnehmer des LKI.

Abbildung 2.21: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "PKF" der HBM.

Abbildung 2.22: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "PKF" der HBM.

Abbildung 2.23: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "embedded" der HBM.

Abbildung 2.24: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "embedded" der HBM..

Abbildung 2.25: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "konvergenz" der HBM.

Abbildung 2.26: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "DMS" der HBM.

Abbildung 2.27: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "V3" des IGMS.

Abbildung 2.28: Gegenüberstellung der analytischen und gemessenen Dehnungsinkremente. Dehnungssensoren "V9" des IGMS.

2.7 Bewertung der Versuchsergebnisse

Im Zustand I (Beton elastisch) sind die Abweichungen mit Ausnahme der Zeitsetzung (Laststufe 9/10 und 12/13) stets unter 5%. Die Dehnungen im Zustand II, ab Laststufe 14, lassen sich bei den individuellen Positionen nicht exakt ermitteln. Zur Gegenüberstellung der Dehnungsinkremente wurde ein ungerissener Zustand analytisch angenommen. Die hierdurch entstehenden Abweichungen zwischen analytischen und gemessenen Werten sind somit erklärbar, jedoch nicht reproduzierbar.

Die Eignung der faseroptischen Messsysteme lässt sich durch die geringen Abweichungen bestätigen. Des Weiteren haben sich die eingesetzten faseroptischen Messsysteme für die Laborversuche als geeignet erwiesen.
3 Feldversuche

Die Funktionalität der Messsensorik wurde anhand von Feldversuchen in einem im Bau befindlichen Tunnel verifiziert. Dies hat den Vorteil, dass unmittelbar nach Einbau Verformungen stattfinden, welche auch mit geodätischen Messungen kontinuierlich erfasst werden. Dies lässt einen direkten Vergleich zwischen den herkömmlichen und den neu entwickelten Messsystemen zu. Vorversuche haben gezeigt, dass der Einbau im laufenden Betrieb und die Messung der unmittelbaren Verformungen möglich ist (Wagner, 2017).

Der Einbau des Messsensorik fand am Semmering Basistunnel Baulos SBT 1.1 – Gleis 2 statt. Hierbei wurde der Messquerschnitt 02172 bei TM 2171,30 mit faseroptischen Messsystemen des IGMS der Technischen Universität Graz und der Firma HBM ausgestattet. Der Einbau in der Kalotte fand am 04.02.2018, in der Strosse und Sohle am 08.02.2018 statt. Der Baufortschritt sowie die Positionierung des Messquerschnitts sind in Abbildung 3.1 dargestellt.

Abbildung 3.1: Baufortschritt von Kalotte, Strosse und Sohle in Bezug auf Messquerschnitt 02172.

Die Dehnungsmessungen sämtlicher installierter Messinstrumente finden kontinuierlich in definierten Zeitabständen statt und können per Fernzugriff ausgelesen werden. Die Messintervalle lassen sich jederzeit anpassen.

3.1 Geologische Randbedingungen

Der Messquerschnitt befindet sich geotektonisch im Oberostalpin im Deckensystem der Grauwackenzone. Genauer betrachtet, innerhalb der Norischen Decke am Übergang zur Veitscher Decke. Lokal wird die Geologie von der Eichberg Seitenverschiebung dominiert. Abbildung 3.2 zeigt den Subhorizontalschnitt von Gleis 2 und die Position des Messquerschnitts (ÖBB-Infrastruktur AG, 2018a).

Abbildung 3.2: Geologischer Subhorizontalschnitt von Gleis 2 und Querschlag 5 bei MQ 2172 (ÖBB-Infrastruktur AG, 2018a).

Abbildung 3.3 zeigt die geologische Orstbrustskizze bei TM 2172,3. In diesem Abschlag wurde der faseroptische Messquerschnitt eingebaut. Das Gebirge in diesem Bereich besteht zum überwiegenden Anteil aus Chloritschiefer mit untergeordneten Phyllitlagen. Aus der Dokumentation (ÖBB-Infrastruktur AG, 2018b) geht hervor, dass das Gebirge an dieser Station stark zerlegt und anisotrop ist. An den zum Teil steil stehenden Trennflächen besteht die Möglichkeit von größeren Ausbrüchen.

Abbildung 3.3: Geologische Ortsbrustkartierung bei TM 2172,3 (ÖBB-Infrastruktur AG, 2018b).

3.2 Messinstrumentierung

Zur kontinuierlichen Messung und dem Schutz der Messinstrumente während des Vortriebs, wurde folgendes Messkonzept erarbeitet:

- Messschränke beinhalten Messgeräte und Aufzeichnungselektronik.
- Kabelanschlussbox Verbindung zwischen Messquerschnitt und Zuleitung der Messschränke.
- Messquerschnitt Messelektronik zur Aufzeichnung der Verformungen.

3.2.1 Messschränke

Die Messschränke beinhalten die Messelektronik des IGMS und der HBM. Diese wurden oberhalb der Versorgungsleitungen der ARGE SBT1.1 im Gleis 2 ca. 100 m hinter dem Messquerschnitt bei TM 2070 montiert.

Die Verformungswerte werden hier zwischengespeichert und können jederzeit mittels Fernzu-

griff ausgelesen werden. Ebenso lässt sich die Messfrequenz jederzeit ferngesteuert entsprechend den Bedingungen anpassen.

Ausgehend von den Messschränken verläuft ein optisches Multifaserkabel an der rechten Ulme von Gleis 2 oberhalb der Versorgungsleitungen in Richtung Ortsbrust. Auf einer Länge von ca. 30 m wurde dieses hinter der Orstbrust eingespritzt, um Beschädigungen durch den Sprengvortrieb zu vermeiden. Die eingebauten Messschränke sowie die Sende- und Empfangsantenne sind in Abbildung 3.4 dargestellt.

Abbildung 3.4: Messschränke am rechten Ulm.

Auf Grund der Sensibilität der Messsensorik seitens des IGMS, wurde dieses nach Abklingen der vortriebsbedingten Verformungen entfernt. Fortlaufende Messungen werden punktuell durchgeführt.

3.2.2 Kabelanschlussbox

Die Kabelanschlussbox (Abbildung 3.5) dient zur Signalübertragung zwischen Messquerschnitt und Multifaserkabel. Diese wird einen Abschlag vor dem Messquerschnitt in der Außenschale am temporären Kalottenfuß eingebracht. Zum Anschluss des Messquerschnitts in der Kalotte, des Messquerschnitts in Strosse und Sohle, sowie des Multifaserkables wurde oberhalb und unterhalb eine XPS Platte mit der Höhe von 0,4 m und 0,3 m eingebaut. Zum Schutz während des Spritzvorganges wurde eine Holzschutzplatte hohlraumseitig an der Kabelanschlussbox befestigt.

Um eine Verkabelung nach Auffahren des Messquerschnittes zu ermöglichen, wurden drei Kabelschutzrohre oberhalb durch den Gitterträger geführt. Nach Einbau der Kabelanschlussbox wurde das Multifaserkabel zu den 100 m entfernten Messschränken verlegt.

(a) Kabelanschlussbox vor dem Einspritzvor- (b) Freigelegte Kabelanschlussbox gang mit Holzplatte abgedeckt.

nach dem Einspritzvorgang.

Abbildung 3.5: Kabelanschlussbox zur Verbindung des Messquerschnitts und des Multifaserkabels.

3.2.3 Messquerschnitt

Der Messquerschnitt 2172 liegt einen Abschlag vor der Kabelanschlussbox. Zur Erfassung der Dehnungen in Umfangsrichtung wurden entsprechende faseroptische Messsensoren angebracht. In Abbildung 3.6 sind die Installationen in einer schematischen Schnittdarstellung durch die rechte Ulme ersichtlich.

Seitens des IGMS wurden jeweils zwei faseroptische Kabelstränge am äußeren und inneren Baustahlgitter in der Kalotte, Strosse und Sohle angebracht. Die doppelte Ausführung dient zur Temperaturkompensation der gemessenen Dehnungen. Hierdurch ist eine annähernd

durchgehende Messung der Umfangsdehnung möglich. Durch die Messung in zwei Lagen lassen sich für die entsprechenden Positionen in Umfangsrichtung der Dehnungszustand des angenommenen Querschnitts an diesen bestimmen.

Seitens der HBM wurde zusätzlich ein Gitterträger (ungespießt) mit faseroptischen Sensoren an sieben Positionen in der Kalotte bestückt. Zudem wurden drei Messkörbe an der Firste, dem rechten und dem linken Kämpfer angebracht. Die Messkörbe wurden am äußeren Baustahlgitter befestigt und messen die Umfangsdehnung an zwei in radialer Richtung unterschiedlichen Positionen.

Abbildung 3.6: Schematische Schnittdarstellung des Messquerschnitts auf Höhe der Kabelanschlussbox.

In weiterer Folge wurden sieben Bireflex-Targets entlang der Kalottenlaibung angebracht. Die Positionen der Messinstrumentierung im Messquerschnitt sind in Abbildung 3.7 dargestellt (1 - geodätische Messpunkte, 2 - durchgehendes faseroptisches Sensorkabel am äußeren Baustahlgitter in der Kalotte [2a - Dehnungskabel, 2b - Temperaturkabel] (IGMS), 3 - durchgehendes faseroptisches Sensorkabel am inneren Baustahlgitter in der Kalotte (IGMS), 4 durchgehendes faseroptisches Sensorkabel am äußeren Baustahlgitter in der Strosse/Sohle (IGMS), 5 - FBG Dehnungsensoren äußere und innere Bewehrungsgitterlage (HBM), 6 -FBG Dehnungssensoren angeschweißt am zusätzlichen Gitterträger (HBM)).

Beim Einbau der inneren Spritzbetonlage in Strosse und Sohle wurde trotz der Sicherungsmaßnahmen die innere Lage der der faseroptischen Messsensoren irreparabel beschädigt. Aus diesem Grund war nur eine vollständige Auswertung für die Kalottenverschiebungen möglich.

Abbildung 3.8 zeigt den Längsschnitt von der Ortsbrust bis zu den Messschränken, welcher die gesamte Messinstrumentierung beinhaltet.

Abbildung 3.7: Position der geodätischen Messpunkte sowie der installierten FOS Sensoren im Messquerschnit 2172.

Abbildung 3.8: Längsschnitt der verbauten Messinstrumentierung.

3.2.4 Vortriebsverzögerung

Folgende Vortriebsverzögerungen wurden bei Einbau der Kabelanschlussbox und dem Messquerschnitt dokumentiert:

Kabelanschlussbox: 60 Minuten

Messquerschnitt Kalotte: 6 Stunden 15 Minuten

Messquerschnitt Strosse: 4 Stunden 10 Minuten

Diese Verzögerungen enthalten reine Stillstandszeiten, bei welchen der Vortrieb komplett unterbrochen wurde, um die Messinstrumentierung einzubauen. Verzögerung auf Grund von schonender Arbeitsweise (z.B.: Verringerung des Spritzbetondurchflusses) konnten nicht erfasst werden. Eine detaillierte Aufstellung der Vortriebsverzögerungen ist im Anhang 5 ersichtlich.

3.3 Messergebnisse

Die faseroptischen Messinstrumente erfassen Dehnungen in Umfangsrichtung an der jeweiligen Position in der Spritzbetonschale. Demgegenüber stehen die 3D Deformationsmessungen von Bireflex-Targets, an welchen die Verschiebung an sieben Positionen in der Kalotte wiedergeben werden kann, was einen unmittelbaren Vergleich der beiden Messsysteme nicht zulässt. Demgegenüber können baubetriebliche Einflüsse, wie der Ausbruch der Strosse/Sohle qualitativ gut gegenübergestellt werden.

3.3.1 Verschiebungsmessungen

Die Auswertung der geodätischen Messungen zeigt ein vom Trennflächengefüge nur geringfügig geprägtes Verformungsverhalten (siehe Abbildung 3.9). Dieses kann geringfügig am rechten Ulm bei Messpunkt 41, 42, 43 und 45 beobachtet werden.

(a) Verschiebungsmessungen im Profilschnitt f
ür
 (b) Geologische Ortsbrustkartierung bei TM
 MQ 2172 (Verformung bei 35 – facher 2172,3 (
ÖBB-Infrastruktur AG, 2018b).
 Überhöhung).

Abbildung 3.9: Gegenüberstellung von Profilverschiebung und Ortsbrustdokumentation.

Bei Betrachtung der vertikalen (Abbildung 3.10) und horizontalen (Abbildung 3.11) Verschie-

bungen, kann festgestellt werden, dass auf der rechten Ulme größere Verformungen als auf der linken Ulme in beiden Darstellungen stattfinden. Diese sind auf die Schieferungsorientierung zurückzuführen. Bei den Vertikalverschiebungen kann, mit Ausnahme des linken Kämpfers (Messpunkt 42), der Einfluss des Strossen/Sohlenvortriebs beobachtet werden. Die Horizontalverschiebungen in den Ulmen zeigen deutlich den Einfluss des Ausbruchs von Strosse und Sohle. Des Weiteren ist festzuhalten, dass der Messgitterträger, welcher nicht in die Strosse verlängert wurde, nur einen unvollkommenen Kraftschluss mit dem Strossen- Sohlausbau hatte.

Abbildung 3.10: Vertikalverschiebung der geodätischen Messpunkte.

Abbildung 3.11: Horizontalverschiebung der geodätischen Messpunkte.

3.3.2 Dehnungsmessungen

Die Nullmessung der Kalotte wurde mit 02.02.2018 21:15:11, nach Beendigung des Einspritzvorganges der zweiten Lage, gewählt. Sämtliche Folgemessungen beziehen sich auf diesen Zeitpunkt. Alle Ergebnisse sind temperaturkompensiert und repräsentieren die Dehnungsentwicklung auf Grund mechanischer Einwirkungen.

3.3.2.1 Gegenüberstellung der Dehnungen an definierten Positionen

Die Gegenüberstellung der gemessenen Umfangsdehnungen ist in den Abbildungen 3.12 bis 3.14 für den linken Kämpfer, die Firste und den rechten Kämpfer dargestellt. Zusätzlich wurde in Abbildung 3.13 die Vertikalverschiebung des Bireflex-Targets an der Firste dargestellt.

Abbildung 3.12: Gegenüberstellung der Umfangsdehnungen am linken Kämpfer (negative Dehnungen deuten auf Stauchung hin).

Bei allen Abbildungen lässt sich die Zunahme der Dehnungen mit fortschreitendem Vortrieb und dem Strossenvortrieb qualitativ feststellen. Zwischen den Dehnungsmessungen des IGMS und der HBM kommt es zu signifikanten Abweichungen. Bei den Messkörben der HBM kann dies auf den zu steif ausgeführten Messaufbau zurückgeführt werden. Bei dem zusätzlich montierten Messgitterträger ist, nach Ausbruch von Strosse und Sohle, eine Abnahme der Stauchung zu erkennen. Dies ist darauf zurückzuführen, dass der Messgitterträger, welcher nicht in die Strosse verlängert wurde, nur einen unvollkommenen Kraftschluss mit dem Stros-

Abbildung 3.13: Gegenüberstellung der Umfangsdehnungen und der Vertikalverschiebung des Firstpunktes (Negative Dehnungen deuten auf Stauchung hin).

Abbildung 3.14: Gegenüberstellung der Umfangsdehnungen am rechten Kämpfer (Negative Dehnungen deuten auf Stauchung hin).

sen/Sohlausbau hatte.

Abbildung 3.15 zeigt die zeitliche Entwicklung der Umfangsdehnung an den unterschiedlichen Positionen am Messgitterträger. Hierbei kann eine Abnahme der Stauchung mit Ausnahme der 13:00 Position unterschiedlich stark festgestellt werden. Dies kann darauf zurückgeführt -500

werden, dass hier die Orientierung der Schieferung die Ulme tangiert und eine Scherverschie-

Abbildung 3.15: Gegenüberstellung der Umfangsdehnungen an unterschiedlichen Positionen des zusätzlichen Gitterträgers (Negative Dehnungen deuten auf Stauchung hin).

3.3.2.2 Darstellung der Dehnungen am gesamten Querschnitt

Zur Darstellung der Dehnungen wurden die in Abbildung 3.16 markierten (vertikale strichlierte Linien) Zeitpunkte nach dem Einbau herangezogen.

Abbildung 3.16: Ausgewählte Zeitpunkte zur Darstellung der Ergebnisse der Umfangsdehnungen.

Die Dehnungen (siehe Abbildung 3.17) wurden rechtwinklig zur Tunnellaibung dargestellt. Umfangsänderungen in Richtung des Hohlraums deuten auf Stauchung, in Richtung des Gebirges auf Extension hin.

FOS Gitterträger 12:00 - HBM FOS Gitterträger 13:00 - HBM

FOS Gitterträger 14:00 - HBM

Abbildung 3.17: Entwicklung der Dehnungsverteilung in der Kalotte (durchgezogen – äußere Lage; strichliert – innere Lage; x – Ankerpositionen; negative Dehnungen deuten auf Stauchung hin).

Beide faseroptischen Messlagen zeigen, wie in Abbildung 3.12 bis 3.14 ersichtlich, eine kontinuierliche Zunahme der Dehnungen mit fortschreitendem Vortrieb. Auf der linken Ulme ist in der inneren Lage eine Unstetigkeit erkennbar, welche nach Ausbruch von Strosse/Sohle auftritt. Ebenso tritt diese unmittelbar in der Nähe eines Ankers auf. Der Sprung im Dehnungsverlauf könnte damit erklärt werden, dass ein Quereisen des inneren Baustahlgitters an der Oberseite des Ankers ansteht. Nach Auffahren von Strosse/Sohle kommt es unterhalb des Ankers kurzfristig zu einer Entlastung. Der Bereich oberhalb wird hingegen zusätzlich gestaucht. Auf der Höhe des Ankers wäre somit ein Sprung in der Dehnungsverteilung messbar.

Die größten Dehnungen in der äußeren Lage treten im First- und Kämpferbereich auf. In der inneren Lage ist die Verteilung der Dehnungen gleichmäßiger, mit Ausnahme der Unstetigkeit an der linken Ulme.

Abbildung 3.18 zeigt die Dehnungsverteilung, welche durch die Längenänderung zwischen den Bireflex-Targets ermittelt wurde. Der Verlauf zwischen den Messpunkten wurde in weitere Folge nichtlinear interpoliert. Es ist darauf hinzuweisen, dass die direkte Verbindung zwischen den Messpunkten von der tatsächlichen Umfangslänge geringfügig abweicht.

Zwischen den faseroptischen und den geodätischen Dehnungsverläufen sind Abweichungen

bis zu 1 ‰ erkennbar. Diese können zum Teil durch die Messabweichung der geodätischen Messungen erklärt werden. Des Weiteren ist der Abstand zwischen eingebauten Zielmarken und faseroptischen Sensoren für die Größe der auftretenden Dehnungen von Bedeutung. Abbildung 3.19 zeigt die Entwicklung der Radialverschiebungen an zwei Messquerschnitten innerhalb eines Abschlags. Es ist zu erkennen, dass der Messquerschnitt näher zur Ortsbrust (unten) höhere Verformungen erfährt als jener der von der Ortsbrust weiter entfernt ist (oben). Da die Bireflex-Targets am Messquerschnitt 2172 näher zur Ortsbrust als die faseroptischen Messsysteme montiert wurden ist diese Abweichung der Messergebnisse nachvollziehbar.

Abbildung 3.18: Entwicklung der Dehnungsverteilung zwischen den geodätischen Messpunkten der Kalotte (Negative Dehnungen deuten auf Stauchung hin).

3.4 Auswertung

Zur Auswertung der jeweiligen Dehnungsebenen werden die Positionen der faseroptischen Messpunkte der inneren Bewehrungslage der Kalotte herangezogen. Um die Dehnungsebebene beschreiben zu können, wird ein linearer Verlauf der Dehnungen zum jeweils nähesten Messpunkt der bergseitigen Bewehrungslage angenommen. Der Abstand der Messpunkte in beiden Messlagen ist konstant. Auf Grund der unterschiedlichen Längen in Umfangsrichtung kann es zu einer leichten Verdrehung der Dehnungsebene kommen. Weiters werden, bedingt durch diese Prozedur, Messpunkte in der bergseitigen Lage übersprungen. Die Spritzbeton-

Abbildung 3.19: Entwicklung der Radialverschiebungen innerhalb eines Abschlages an zwei zur Ortsbrust unterschiedlichen Messquerschnitten (oben: größere Entfernung zur Ortsbrust; unten: geringere Entfernung zur Ortsbrust; SBT 1.1 Gleis 1, MQ 2699 und MQ 2700).

schale wird mit einer konstanten Dicke von 25 cm angenommen. Der innere Hebelarm d_i wird aus dem radialen Abstand zwischen innerer und äußerer Bewehrungslage ermittelt. Hierbei wird angenommen, dass beide Lagen den gleichen Abstand zur Schwerlinie aufweisen und diese sich in der Mitte der Dehnungsebene befindet.

3.4.1 Krümmung der Spritzbetonschale entlang des Querschnitts

Die Krümmung der jeweiligen Dehnungsebene lässt sich mit folgendem Zusammenhang ermitteln.

$$\kappa = \frac{\epsilon_A - \epsilon_I}{d_i} \tag{3.1}$$

mit κ ... Krümmung der Außenschale

 $\epsilon_{A,i}$... Axialdehnung der äußeren Messlage an der Position *i*

- $\epsilon_{I,i}$... Axial dehnung der inneren Messlage an der Position i
- d_i ... Abstand der Messlagen

Abbildung 3.20 zeigt den Verlauf der Krümmungen zu den jeweiligen Messzeitpunkten in Abbildung 3.16. Negative Krümmungen deuten auf eine höhere Stauchung der bergseitigen Bewehrungslage hin.

Bedingt durch die Verbundwirkung sind im Bereich der Anker an der Tunnellaibung geringere

Radialkonvergenzen zu erwarten. Im Bereich von Ankern sollte es somit zu einer positiven Krümmung, zwischen den Ankern zu einer negativen Krümmung kommen. Diese Effekt ist in Abbildung 3.20 zum Teil nachvollziehbar. Es ist anzunehmen, dass bei Ankern, welche eine andere Krümmungscharakteristik aufweisen, die Verbundwirkung zum Gebirge nicht ausreichend gegeben ist.

Abbildung 3.20: Entwicklung der Krümmungsverteilung in der Kalotte (x – Ankerpositionen; negative Werte deuten auf Stauchung der Außenfaser und Dehnung der Innenfaser hin).

3.4.2 Spannungen in der Außenschale

Anhand der Dehnungsebene lassen sich, unter Zuhilfenahme geeigneter Stoffgesetze, die Spannungen getrennt für das Baustahlgitter und den Spritzbeton ermitteln. Hierfür ist die Kenntnis der Dehnungsebene notwendig. Aus diesem Grund kann diese Prozedur nur für Ebenen mit mindestens zwei Dehnungsmessungen vorgenommen werden. Eine Ermittlung mittels einer Dehnungsmessung ist möglich, jedoch muss hier von einer konstanten Dehnungsverteilung ausgegangen werden. Im Folgenden werden für die faseroptischen Messungen nur jene Bereiche ausgewertet, bei welchen die Dehnungsebene durch zwei Messbahnen bestimmt ist. Die Spannungen gelten hierbei für den Bereich der gemessenen Dehnungen.

3.4.2.1 Bewehrung

Die Spannungs-Dehnungsbeziehung von Stahl wurde bis zum Erreichen des Fließmomentes bei 0,275% und 550 MPa elastisch ohne nachfolgende Verfestigung gemäß ÖNORM EN 1992-1-1 (2015) angenommen. Da die faseroptischen Dehnungsmessungen an den Bewehrungsgittern durchgeführt werden, kann diese Dehnung als jeweilige Stahldehnung der äußeren (A) und inneren (I) Lage angenommen werden. Die Stahlspannungen lassen durch die Kenntnis des Elastizitätsmoduls gemäß folgender Beziehung ermitteln:

$$\sigma_{Bewehrung} = E_{Bewehrung} \cdot \frac{\epsilon_A + \epsilon_I}{2} \tag{3.2}$$

Abbildung 3.21 zeigt die Spannungsentwicklung beider Bewehrungslagen, verteilt über die Kalotte. Wie bereits bei der Dehnungsverteilung, kann hier eine Unstetigkeit im Verlauf an der linken Ulme festgestellt werden. Im beobachteten Zeitraum beträgt die maximale Stahlspannung 377 MPa.

Abbildung 3.21: Spannungsentwicklung der Bewehrung in der Kalotte.

3.4.2.2 Spritzbeton

Zur Ermittlungen der Spannungen im Spritzbeton ist neben der Dehnungen auch die Nichtlinearität zu berücksichtigen. Der Unterschied zwischen Beton und Spritzbeton ist der Belastungszeitpunkt und das Betrachtungsintervall. Beton wird im Allgemeinen im abgebunden Zustand belastet. Im Gegensatz dazu ist Spritzbeton unmittelbar nach dem Aufbringen Verformungen ausgesetzt. Die Fließratenmethode wurde adaptiert, um den Anforderungen von Spritzbeton nachzukommen (Rokahr & Lux, 1987; Schubert, 1988).

Die Fließratenmethode basiert auf einer in Zeitintervalle unterteilten Ermittlung der Spannungsund Dehnungsinkremente. Somit sind diese nicht nur abhängig vom Anteil des Schwindens, Kriechens, sowie der elastischen Verformung, sondern auch von der Verformungsgeschichte.

Bei bekannter Dehnungsänderung in einem betrachteten Zeitintervall lässt sich die absolute Axialspannung des Spritzbetons wie folgt vereinfacht beschreiben:

$$\sigma_2 = \frac{\epsilon_2 - \epsilon_1 + \frac{\sigma_1}{E_{cm}(t)} + \epsilon_{d,2} \cdot \left\{ 1 - e^{\left(\frac{-\Delta C(t)}{Q}\right)} \right\} - \Delta \epsilon_{sh}}{\frac{1}{E_{cm}(t)} + \Delta C(t) + C_{d\infty} \cdot \left\{ 1 - e^{\left(\frac{-\Delta C(t)}{Q}\right)} \right\}}$$
(3.3)

mit σ_i ... Axialspannung zum Zeitpunkt i

 $\epsilon_i \qquad \ldots$ Axial
dehnung zum Zeitunkt i

 $E_{cm}(t)$... Altersabhängiger E-Modul zum Zeitunkt i

 $\Delta C(t)$... Altersabhängige Änderung der spezifischen Kriechdehung

 $\epsilon_{d,i}$... Viskoelastische Dehnung zum Zeitpunkt i

 ϵ_{sh} ... Änderung der Schwinddehnung

 $C_{d\infty}$... Grenzwert der umkehrbaren Kriechverformung

Q ... Kriechkonstante

Mit bekannter Spannung zu Zeitpunkt t + 1, lässt sich das Dehnungsinkrement wie folgt ermitteln:

$$\Delta \epsilon_d = (\sigma_2 \cdot C_{d\infty} - \epsilon_{d,1}) \cdot \left\{ 1 - e^{\left(\frac{-\Delta C(t)}{Q}\right)} \right\}$$
(3.4)

Das Inkrement des altersabhängigen Kriechanteils lässt sich wie folgt mit der Kriechkonstante A ermitteln:

$$\Delta C(t) = A \cdot (t_2 - t_1)^{1/3} \tag{3.5}$$

Die Schwinddehnung zum Zeitpunkt i ist mittels Kriechkonstante B und der maximalen reversiblen Kriechdehnung $\epsilon_{sh\infty}$ bestimmbar:

$$\epsilon_{sh} = \epsilon_{sh\infty} \cdot \frac{t}{B+t} \tag{3.6}$$

Zum Aufstellen der dargestellten Gleichungssysteme, sind die Fließratenparameter A, B, Q, C_{∞} und ϵ_{∞} erforderlich. Da diese nur durch Langzeit in-situ Versuche ermittelt werden

können, ist eine Herleitung dieser am aktuellen Vortrieb schwer bzw. nur durch Annahmen von Auslastungsgraden möglich. Die im folgenden herangezogenen Fließparamter (siehe Tabelle 3.1) wurden Radončić & Schubert (2011) entnommen.

Parameter	Einheit	Wert
A	[-]	0,0001
В	[-]	600
Q	[-]	0,0001
C_{∞}	[-]	0,00009
ϵ_{∞}	[-]	$0,\!00125$

Tabelle 3.1: Fließratenparameter.

Um die zeitabhängige Entwicklung des Elastizitätsmoduls von Spritzbeton zu berücksichtigen, wurde der Ansatz von Entfellner (2017) auf Basis der ÖNORM EN 1992-1-1 (2015) herangezogen.

Der altersabhängige Beiwert $\beta_{cc}(t)$, zur Bestimmung der Druckfestigkeit und des Elastizitätsmoduls, ist wie folgt definiert:

$$\beta_{cc}(t) = e^{s \cdot \left[1 - \left(\frac{28}{t}\right)^{\alpha_1}\right]} \tag{3.7}$$

mit $\beta_{cc}(t)$... Altersabhängiger Beiwert des Betons

- s ... Vom Zementtyp abhängiger Beiwert (s = 0, 2 für CEM 52,5)
- t ... Alter des Betons in Tagen
- α_1 ... Exponent der Spritzbetonfestigkeit ($\alpha_1 = 0, 5$)

Hieraus lässt sich die Druckfestigkeit ermitteln:

$$f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm} \tag{3.8}$$

mit $f_{cm}(t)$... Altersabhängige mittlere Betondruckfestigkeit

 f_{cm} ... Mittlere Betondruckfestigkeit nach 28 Tagen)

Der zeitabhängige Elastizitätsmodul von Spritzbeton kann wie folgt ausgedrückt werden:

$$E_{cm}(t) = \frac{f_{cm}(t)}{f_{cm}}^{\alpha_2} \cdot E_{cm} \cdot \alpha_3$$
(3.9)

mit $E_{cm}(t)$... Altersabhängige mittlerer Elastizitätsmodul von Beton

 E_{cm} ... Mittlerer Elastizitätsmodul von Beton nach 28 Tagen

- α_2 ... Exponent für den Elastizitätsmodul von Beton ($\alpha_2 = 0, 3$)
- α_3 ... Faktor für den Elastizitätsmodul von Beton ($\alpha_3 = 1$)

Auf Basis dieser Ansätze wurden die Parameter s, α_1 , α_2 und α_3 entsprechend den Laborergebnissen (VBE Verein für Baustoffprüfung und -entwicklung, 2016, 2018b,a) angepasst. Die altersabhängige Entwicklung der Druckfestigkeit, des Elastizitätsmoduls, sowie der Laborergebnisse ist jeweils in Abbildung 3.22 und 3.23 dargestellt. Die gewählten Parameter sind in Tabelle 3.2 aufgelistet.

Abbildung 3.22: Gegenüberstellung der zeitabhängige Entwicklung der Druckfestigkeit mit den Laborergebnissen.

Tabelle 3.2: Parameter für die altersabhängige Entwicklung der Druckfestigkeit und des Elastizitätsmoduls.

Parameter	Einheit	Wert
\$	[-]	$0,\!4$
α_1	[-]	$0,\!4$
α_2	[-]	$0,\!2$
$lpha_3$	[-]	1,1

Aus der oben erläuterten Vorgehensweise können die Spannungen im Spritzbeton für die in

Abbildung 3.23: Darstellung der zeitabhängigen Entwicklung des Elastizitätsmoduls.

Abbildung 3.16 dargestellten Zeitpunkte ermittelt werden (siehe Abbildung 3.24). Positive Werte deuten auf Druckspannungen hin. Im Gegenzug zu den in der Bewehrungslage ermittelten Spannungen, nehmen diese nach einer abrupten Zunahme auf Grund der Schwindund Kriechdehnungen kontinuierlich ab. Die maximale Spannung von ca. 6 MPa konnte am 19.02.2018 (15 Tage nach Auffahren des Messquerschnitts) am linken Kämpfer errechnet werden.

Abbildung 3.24: Entwicklung der Spannungsverteilung im Spritzbeton der Kalotte.

Abbildung 3.25 zeigt den Spannungsverlauf gemäß der Dehnungsverteilung zwischen den geodätischen Messpunkten. Auch hier ist die maximale Spannung mit einer Größe von ca. 16

MPa am linken Kämpfer erkennbar.

Abbildung 3.25: Entwicklung der Spannungsverteilung im Spritzbeton der Kalotte.

Durch die Abweichung der Dehnungen zwischen geodätischen und faseroptischen Messungen, ist hier ebenso eine Abweichung der Ergebnisse erkennbar. Es wird angenommen, dass die Spannungsverteilung entlang des Abschlag in dieser Bandbreite liegt.

3.5 Bewertung der Versuchsergebnisse

Bei den zum Einsatz gekommenen Messsystemen konnten Umfangsdehnungen erfolgreich mit dem vorgestellten Messkonzept aufgenommen und evaluiert werden. Hierbei haben sich für den Einsatz in der Außenschale vor allem die auf dem Baustahlgitter montierten faseroptischen Kabelstränge als erfolgreiche erwiesen. Mit Hilfe dieser konnten nicht nur die Dehnungen sondern auch die Spannungen der Außenschale ermittelt werden. Vergleiche mit den geodätischen Messungen zeigen abweichende Messergebnisse. Auf Grund des Messfehlers bei den geodätischen Messungen und dem unterschiedlichen Abstand zur Ortsbrust kann hier jedoch keine explizite Aussage über die Vergleichbarkeit der Systeme getroffen werden.

Mit allen Messsystemen konnte qualitativ der Einfluss des Kalotten- bzw Strossen- und Sohlenvortriebs auf die Dehnungsänderung in Umfangsrichtung dargestellt werden. Hinsichtlich der Einsetzbarkeit in der Innenschale zur Messungen von Deformationen auf Grund von Alterungsprozessen in Gebirge und Ausbau erscheinen alle Messsysteme als geeignet.

4 Numerische Untersuchungen

Numerische Untersuchungen mit dem Ziel, Verschiebungen in der Auskleidung nach Fertigstellung des Vortriebs zu erfassen wurden durchgeführt. Durch eine Verschlechterung sowohl des Gebirges, als auch des Ausbaus soll der Alterungsprozess simuliert werden. Dies führt zu einem erneuten Spannungsumlagerungsprozess, wodurch es zu Verformungen der Auskleidung und einer Änderung der Beanspruchung kommt. Weiters soll die erforderliche Präzision des Messsystems ermittelt werden, um zuverlässig kritische Zustände erkennen zu können..

Die Simulationen sollen zur Verfikation der Feldversuche dienen. Hierbei sollen alle verformungsrelevanten Parameter, wie Spannungszustand, Trennflächen, Ausbau und Baufortschritt in das numerische Modell einfließen. Des Weiteren sollen die Ursache und Art der Beanspruchung untersucht werden.

Aus den oben genannten Aufgaben können zwei Arbeitsschritte abgegrenzt werden: Die Untersuchung des Alterungsprozesses, welche in Kapitel 4.1 behandelt wird und die numerische Untersuchung des Feldversuchs in Kapitel 4.2.

4.1 Numerische Untersuchungen zum Alterungsprozess

Die 2D numerischen Simulationen im Rahmen der Simulationen zum Alterungsprozess wurde mit der Finiten Elemente Software RS2 (Rocscience Inc., 2018a) durchgeführt. Das "Mohr-Coulomb" Stoffgesetz wurde hierfür gewählt, da die mechanischen Eigenschaften einfach evaluiert werden können. Die Gebirgsparameter sind in Tabelle 4.1 aufgelistet.

Die Parameter der Außenschale sind in Tabelle 4.2, die der Innenschale in Tabelle 4.3 sowie des Interfaces zwischen Außen- und Innenschale in Tabelle 4.4 gelistet.

Nachfolgende Modelle wurde zur Ermittlung der zeitabhängigen Verschiebungsverläufe herangezogen und erläutert. Bei allen Modellen in der Studie wurde eine kreisförmige äußere Modellbegrenzung mit einem Radius elf mal dem Tunnelradius verwendet.

- Homogenes Modell mit Gebirgs- Ausbaualterung
- Ablösen eines Blockes aus dem Gebirgsverbund

Eigenschaft	Einheit	Wert
Tunnelradius	[m]	4
E-Modul	[MPa]	15.000
Querdehnzahl	[-]	$0,\!25$
Reibungswinkel	[°]	30
Restreibungswinkel	[°]	27
Dilatanzwinkel	[°]	0
Kohäsion	[MPa]	$1,\!2$
Restkohäsion	[MPa]	0
Zugfestigkeit	[MPa]	2
Seitendruckbeiwert	[-]	1

Tabelle 4.1: Gebirgs- und Ausbruchsparameter.

Tabelle 4.2: Mechanische Eigenschaften Außenschale.

Eigenschaft	Einheit	Wert
Dicke	[m]	$0,\!2$
Druckfestigkeit	[MPa]	28
Zugfestigkeit	[MPa]	2,2
E-Modul	[MPa]	15.000
Querdehnzahl	[-]	0,2

Tabelle 4.3: Mechanische Eigenschaften der Innenschale.

Eigenschaft	Einheit	Wert
Dicke	[m]	$0,\!2$
Druckfestigkeit	[MPa]	33
Zugfestigkeit	[MPa]	2,6
E-Modul	[MPa]	31.000
Querdehnzahl	[-]	0,2

Eigenschaft	Einheit	Wert
Normalsteifigkeit	[MPa/m]	100.000
Schersteifigkeit	[MPa/m]	1.000

Tabelle 4.4: Mechanische Eigenschaften des Interfaces zwischen Außenschale und Innenschale.

• Scherversagen entlang eines Trennflächengefüges

Die Radialkonvergenzen bei einem Tunnelvortrieb sind zu einem großen Teil von der Entfernung zur Ortsbrust abhängig. Hieraus ergibt sich neben der Verschiebungsverteilung des Profils in 2D auch eine räumliche Verteilung, abhängig von der räumlichen Distanz des Einbaus vom Spritzbeton zur Ortsbrust. Eine Möglichkeit, diesen Effekt in 2D nachzubilden beinhaltet eine Pausierung der Berechnung vor Erreichen des Gleichgewichts. Durch Reaktionskräfte, welche an den Knotenpunkten der Ausbruchslaibung in Richtung des Gebirges angesetzt werden, kann ein frühzeitiges Gleichgewicht vorgetäuscht werden. Die Größe dieser Reaktionskräfte ist vom Abstand zur Ortsbrust abhängig. Pilgerstorfer (2008) hat ein analytisches Verfahren erarbeitet, welches die Ermittlung der anzusetzenden Knotenkräfte auf Basis der Entfernung des Einbaus der Auskleidung zur Ortsbrust und der Festigkeitsparameter des Gebirges ermöglicht. Mit einem angenommenen Abstand des Einbaus der primären Stützmittel von 2 m zur Ortsbrust ergeben sich Knotenkräfte welche 23 % des Primärspannungszustandes entsprechen.

4.1.1 Homogenes Modell

Zur Erfassung der Verschlechterung der Festigkeitseigenschaften von Gebirge und Ausbau wurde ein homogenes, radialsymmetrisches Modell mit viereckigen und symmetrisch angeordneten, nichtlinearen Elementen erstellt. Dies verhindert netzbedingte Einflüsse und erhöht gleichzeitig die Genauigkeit der Ergebnisse.

In zwei Serien wurden jeweils die Festigkeitsparameter von Gebirge und Ausbau verringert. Folgende Berechnungsschritte wurden durchgeführt:

- 1. Berechnung des Primärspannungszustands.
- 2. Ermittlung des Gleichgewichts 2 m hinter der Ortsbrust bei 23 % des Primärspannungszustands.

- 3. Einbau der Aussenschale und Ermittlung des Gleichgewichtszustandes
- 4. Einbau der Innenschale mit erneuter Gleichgewichtsberechnung (Hierbei ist zu beachten, dass sich das System bereits durch den vorhergehenden Berechnungsschritt im Gleichgewicht befindet).
- 5. Verringerung der Festigkeitsparameter in mehren Schritten.

4.1.1.1 Gebirgsverschlechterung

Um unterschiedliche Auslastungsgrade zu erfassen, wurde der Primärspannungszustand variiert, entsprechend einer Überlagerung von 100 bis 1000m. Hierbei kann eine rein elastische Verformung, eine beginnende Plastifizierung, sowie ein bereits plastifizierter Hohlraumrand vor Einbau der Außenschale abgedeckt werden.

Die Gebirgsparameter wurden nach Einbau der Ausbruchssicherung sowie Erreichen des Gleichgewichtszustandes je Laststufe um jeweils 5 % auf 30 % der Ausgangsfestigkeit verringert. Folgende Berechnungen wurden hierbei durchgeführt.

- 1. 100 m Überlagerung (rein elastische Berechnung)
- 300 m Überlagerung (beginnende Plastifizierung am Hohlraumrand bei 30 % Abminderung der Festigkeitsparameter)
- 3. 500 m Überlagerung (beginnende Plastifizierung am Hohlraumrand bei 15 % Abminderung der Festigkeitsparameter)
- 4. 700 m Überlagerung (rein plastische Berechnung)
- 5. 1000 m Überlagerung (rein plastische Berechnung)

Abbildung 4.1 zeigt die Änderung der Dehnungsdifferenzen in Umfangsrichtung, bezogen auf den Ausgangszustand. Hierbei ist jeweils die obere und untere Verformungsdifferenz in der Innenschale dargestellt. Die Gegenüberstellung der einzelnen Überlagerungen zeigt eine deutliche Zunahme der Dehnungen bei plastischen Verformungen. Bei 100 sowie 300 m Überlagrung, bis zu einer Verschlechterung von 15 % keine nennenswerten Verformungen feststellbar. Bei den Simulationen ab 500 m Überlagerung ist eine Zunahme der Umfangsdehnungsdifferenzen mit zunehmender Überlagerung erkennbar.

Abbildung 4.1: Gegenüberstellung der Entwicklung der Umfangsdehnungen bei fortschreitender Abminderung der Gebirgsfestigkeiten.

4.1.1.2 Ausbauverschlechterung

Bei der Verschlechterung des Ausbaus wurden die Festigkeitsparameter der Außenschale und Innenschale gleichzeitig bis auf 60 % kontinuierlich um jeweils 10% abgemindert. Abbildung 4.2 zeigt die Gegenüberstellung der Dehnungsentwicklung in Umfangsrichtung bei den Überlagerungen 500 m, 700 m und 1000 m. Eine Änderung der Umfangsdehnung ist erkennbar, sobald die Außenschale zu plastifizieren beginnt. Dies tritt bei einer Überlagerung von 500 m nicht, bei 700 m ab einer Ausbauverschlechterung von 50 % und bei 1000 m ab 10 % Abminderung der Ausbaufestigkeit ein. Bei Letzterem beginnt die Innenschale ab 50 % Ausbauverschlechterung zu plastifizieren.

4.1.2 Ablösen eines Blockes

Durch Verschlechterung der Trennflächeneigenschaften, den Aufbau von Kluftwasserdruck, oder dynamische Einwirkung kann sich ein Block aus dem Gebirge lösen und die Auskleidung zusätzlich beanspruchen. In diesem Fall muss ein zusätzlicher Lasteintrag aufgenommen werden. Das hieraus entstehende Verformungsbild soll mit einem entsprechenden Modell aufgezeigt werden. Nachfolgend sind die einzelnen Berechnungsschritte aufgelistet:

1. Berechnung des Primärspannungszustands.

Abbildung 4.2: Gegenüberstellung der Entwicklung der Umfangsdehnungen bei fortschreitender Abminderunge der Ausbaufestigkeiten.

- 2. Ermittlung des Gleichgewichts 2 m hinter der Ortsbrust bei 23 % des Primärspannungszustands.
- 3. Einbau der Außenschale und Ermittlung des Gleichgewichtszustandes
- 4. Einbau der Innenschale mit erneuter Gleichgewichtsberechnung (Hierbei ist zu beachten, dass sich das System bereits durch den vorhergehenden Berechnungsschritt im Gleichgewicht befindet).
- 5. Aktivierung der Trennflächen für Blockversagen.

Die mechanischen Parameter zur Beschreibung der bergseitigen Trennflächen sind in Tabelle 4.5 aufgelistet. Durch die niederen Festigkeitsparameter wird sichergestellt, dass sich der Block an beiden Trennflächen komplett ablöst.

Eigenschaft	Einheit	Wert
Reibungswinkel	[°]	35
Restreibungswinkel	[°]	0
Kohäsion	[MPa]	0
Zugfestigkeit	[MPa]	0
Normalsteifigkeit	[MPa/m]	100.000
Schersteifigkeit	[MPa/m]	10.000

Tabelle 4.5: Mechanische Eigenschaften der den Block begrenzenden Trennflächen.

In Abbildung 4.3a ist das numerische Modell dargestellt. Der Block hat eine Tiefe von 3,6 m und befindet sich im rechten Firstbereich. Die begrenzenden Trennflächen haben einen Öffnungswinkel von 50° .

In Abbildung 4.3b ist die Verteilung der Normalspannung in der Innenschale vor und nach der Blockbildung dargestellt. Da die Innenschale nach Abklingen der Gebirgsverformungen eingebaut wird, ist diese zu Beginn unter Vernachlässigung des Eigengewichts frei von Normalspannung. Nachdem sich der Block auf die Auskleidung gelegt hat, ist eine starke Zunahme der Normalspannung, vor allem im Bereich der Verschneidung zwischen Tunnelprofil und Trennflächen zu erkennen. Die Größe des Blockes ist maßgebend für den Betrag der Normalspannung. Des Weiteren ist anhand des Normalspannungsverlaufs ersichtlich, wo sich der Block auf die Schale gelegt hat.

Abbildung 4.3c und 4.3d zeigt die Radialverschiebungen der Außen- und Innenschale. In beiden Abbildungen ist zu erkennen, dass die Verschiebungen im Bereich der beiden Trennflächenverschneidungen zunehmen und im Bereich des abgelösten Blocks konstant bleiben. Da sich die Radialverschiebungen bei kreisförmigen Ausbruchsprofilen direkt in die Umfangsdehnung umrechnen lässt, sind die qualitativen Verläufe deckungsgleich.

(c) Radialverschiebungen entlang der Außenschale. (d) Radialverschiebungen entlang der Innenschale.

Abbildung 4.3: Numerisches Modell mit induziertem Blockversagen.

4.1.3 Scherversagen

Im Zuge der Gebirgsverschlechterung kann es zur Ausbildung von mechanisch wirksamen Trennflächen kommen, bzw. eine Verschlechterung der Trennflächeneigenschaften zu einem Scherversagen führen. Die hierfür notwendigen Berechnungsschritte sind nachfolgend aufgelistet:

1. Berechnung des Primärspannungszustands.

- Ermittlung des Gleichgewichts 2 m hinter der Ortsbrust bei 23 % des Primär- spannungszustands.
- 3. Einbau der Außenschale und Ermittlung des Gleichgewichtszustandes
- 4. Einbau der Innenschale mit erneuter Gleichgewichtsberechnung (Hierbei ist zu beachten, dass sich das System bereits durch den vorhergehenden Berechnungsschritt im Gleichgewicht befindet).
- 5. Aktivierung des Trennflächensystems.

Die mechanischen Parameter des Trennflächensystems sind in Tabelle 4.6 gelistet.

Eigenschaft	Einheit	Wert
Reibungswinkel	[°]	35
Restreibungswinkel	[°]	0
Kohäsion	[MPa]	0
Zugfestigkeit	[MPa]	0
Normalsteifigkeit	[MPa/m]	100.000
Schersteifigkeit	[MPa/m]	10.000

Tabelle 4.6: Mechanische Eigenschaften der Trennflächen.

Abbildung 4.4a zeigt das numerische Modell. Die Trennflächen fallen unter einem Winkel von 45° zur Horizontalen ein. Der Trennflächenabstand beträgt 1 m.

In Abbildung 4.4b ist der Normalspannungsverlauf der Innenschale vor und nach Ausbildung des Trennflächensystems dargestellt. Wie in Kapitel 4.1.2 erläutert, ist die Innenschale vor Aktivierung der Trennflächen unbelastet. Nach Aktivierung des Trennflächensystems nimmt die Normalspannung deutlich zu. Spannungsspitzen bilden sich am linken Kämpfer und der rechten Sohle. In diesen Bereichen verlaufen die Trennflächen weitgehend parallel zur Ausbruchslaibung. Vor allem am linken Kämpfer kann ein Bereich mit konstantem Spannungsverlauf identifiziert werden.

Abbildungen 4.4c und 4.4d zeigen die Radialkonvergenzen der Außen- und Innenschale. Nach Aktivierung der Trennflächen ist eine Zunahme der Radialverschiebung am gesamten Umfang zu erkennen. Sowohl in der Außen- als auch in der Innenschale können Bereiche mit niedrigeren Radialverschiebungen identifiziert werden. Diese treten dort auf, wo die Trennflächen annähernd parallel zur Ausbruchslaibung verlaufen.

(a) Numerisches Modell.

(b) Normalspannungsverteilung in der Innenschale.

(c) Radialverschiebungen entlang der Außenschale. (d) Radialverschiebungen entlang der Innenschale.

Abbildung 4.4: Numerisches Modell mit induziertem Scherversagen.

4.2 Numerische Untersuchung des Feldversuchs

Der Feldversuch wurde numerisch nachgebildet, um Informationen bezüglich Spannungsumlagerung und Belastungsart zu erhalten. Da hierbei sowohl die anisotrope Gefügesituation als auch ein zur Tunnelachse verdrehter Spannungszustand berücksichtigt werden muss, wurde das Modell in 3D erstellt. Hierfür kommt die Finite Elemente Software RS3 (Rocscience Inc., 2018b) zum Einsatz.

4.2.1 Modellparameter

Die numerisch relevanten Hauptspannungsorientierungen, Gebirgsparameter, sowie Trennflächendaten wurden 3G GRUPPE GEOTECHNIK GRAZ ZT GmbH (2014) entnommen und sind in den Tabellen 4.7 bis 4.9 ersichtlich. Auf Grund der Anisotropie wurde das "Mohr-Coulomb" Stoffgesetz unter Berücksichtigung der Trennflächenorientierungen gewählt. Hierdurch können in den vorgegebenen Orientierungen eigene Festigkeistparameter gewählt werden.

Element	Fallrichtung	Fallwinkel	Gradient (k_0)
	[°]	[°]	[-]
σ_1	000	90	1
σ_2	045	00	$0,\!9$
σ_3	135	00	0,7
Tunnelachse	218	00	

Tabelle 4.7: Orientierung der Hauptnormalspannungen und der Tunnelachse.

Tabelle 4.8: Mechanische Eigenschaften des Gebirges.

Eigenschaft	Einheit	Wert
Überlagerung	[m]	230
E-Modul	[MPa]	2.000
Querdehnzahl	[-]	$0,\!25$
Dichte	$[\mathrm{MN}/\mathrm{m}^3]$	0,027
Reibungswinkel	[°]	22
Restreibungswinkel	[°]	22
Dilatanzwinkel	[°]	0
Kohäsion	[MPa]	$1,\!2$
Restkohäsion	[MPa]	1,2
Zugfestigkeit	[MN]	0

Die Stützmittel wurden gemäß der Ausbaufestlegung (ÖBA SBT1.1, 2018), bestehend aus Außenschale und Ankern, modelliert.

Eigenschaft	Einheit	Trennflächenschar 1	Trennflächenschar 2
Fallrichtung	[°]	353	061
Fallwinkel	[°]	50	70
Dilatanzwinkel	[°]	0	0
Zugfestigkeit	[MPa]	0	0
Reibungswinkel	[°]	22	22
Restreibungswinkel	[°]	22	22
Kohäsion	[MPa]	0	0
Restkohäsion	[MPa]	0	0

Tabelle 4.9: Mechanische Eigenschaften der Trennflächen.

Pro Abschlag wurden 10 IBO Anker R32-250 mit einer Länge von 4 m in radialer Richtung nachgebildet. In RS3 wurde hierfür das "Tieback" Ankermodell verwendet. Dieses erlaubt die Modellierung von vollvermörtelten Ankern. Die numerischen Eingabeparameter sind in Tabelle 4.11 dargestellt. Die Verbundfestigkeit bzw. die Verbundsteifigkeit zwischen Gebirge und dem Anker wird über die elastischen Eigenschaften des Ankermörtels sowie dem Bohrlochund Ankerdurchmesser bestimmt.

Nach Farmer (1975) lässt sich die Verbundsteifigkeit wie folgt ermitteln

$$k_b = \frac{2 \cdot \pi \cdot G}{\ln\left(1 + \frac{2 \cdot t}{D}\right)} \tag{4.1}$$

- mit G ... Schubmodul des Ankermörtels
 - t ... Ringspaltdicke zwischen Bohrloch und Anker
 - D ... Bohrlochdurchmesser

Die Verbundsteifigkeit zwischen Gebirge und Anker kann durch Vernachlässigung der Reibungseinflüsse gemäß St. John & van Dillen (1983) ausgedrückt werden:

$$c_b = \pi \cdot (D + 2 \cdot t) \cdot \tau_I \cdot Q_B \tag{4.2}$$

mit D ... Bohrlochdurchmesser

t ... Ringspaltdicke zwischen Bohrloch und Anker

 τ_I ... Scherfestigkeit des Ankermörtels

 Q_B ... Qualität des Verbunds zwischen Mörtel und Gebirge (1 für perfekten Verbund)

Eigenschaft	Einheit	Wert
Außendurchmesser	[mm]	32
Innendurchmesser	[mm]	20
Nennquerschnitt	$[\mathrm{mm}^2]$	370
Zugfestigkeit	[kN]	250
Restzugfestigkeit	[kN]	0
E-Modul	[MPa]	200 000
Bohrlochdurchmesser	[mm]	48
E-Modul Ankermörtel*	[MPa]	1000
Querdehnzahl Ankermörtel*	[-]	$0,\!2$
Verbundqualität*	[-]	1
Verbundfestigkeit	[MN/m]	$3,\!02$
Verbundsteifigkeit	$[\mathrm{MN/m^2}]$	5125

Tabelle 4.10: Anker IBO R32-250 "Tieback" (* angenommen).

Zur Modellierung der Außenschale wurde das Modell "Reinforced Concrete" verwendet. Dieses berücksichtigt neben dem Spritzbeton selbst auch den Einfluss des Baustahlgitters. Die Außenschale besteht aus Spritzbeton (SpC 20/25) mit einer Dicke von ca. 25 cm sowie zwei Baustahlgitterlagen AQ60 mit einem radialen Abstand von ca. 15 cm. Die Eingabeparameter für die Außenschale sind in Tabelle 4.11 gelistet. Diese wurden gemäß der Ausbaufestlegung (ÖBA SBT1.1, 2018) verwendet. Um die zeitliche Steifigkeitsentwicklung des Spritzbetons zu berücksichtigen, wurde der E-Modul in Abhängigkeit zum Ortsbrustabstand in vier Stufen erhöht.

4.2.2 Numerisches Modell

Das numerische Modell, welches in dieser Studie verwendet wird, ist in Abbildung 4.5 dargestellt. Um die Randeinflüsse gering zu halten, wurden die Abmessungen hoch angesetzt (200 m, 200 m, 178 m). Die Abschläge wurden entsprechend dem Arbeitsablauf vor Ort eingearbeitet. Der Messquerschnitt befindet sich in der Mitte des Modells.
Eigenschaft	Einheit	Wert
Spritzbetondicke	[m]	$0,\!25$
E-Modul (Beton – unmittelbar nach Einbau)	[MPa]	1000
E-Modul (Beton – jung)	[MPa]	5000
E-Modul (Beton - mittel)	[MPa]	10000
$ ext{E-Modul} (ext{Beton} - ext{alt})$	[MPa]	30000
Querdehnzahl (Beton)	[-]	$0,\!2$
Drahtstärke	[mm]	6
Bewehrungsabstand (längs)	[m]	$_{0,1}$
Bewehrungsabstand (quer)	[m]	$0,\!15$
Bewehrungsfläche	$[\mathrm{m}^2/\mathrm{m}]$	$5,65\cdot 10^{-4}$
E-Modul (Stahl)	[MPa]	200.000
Trägheitsmoment	$[m^4/m]$	$3,18 \cdot 10^{-6}$

Tabelle 4.11: Außenschale "Reinforced Concrete" (C20/25; AQ 60).

Abbildung 4.5: Modellabmessungen und Diskretisierung.

4.2.3 Modellverifizierung

Ein Vergleich der Profilverschiebungen zwischen gemessenen und numerisch berechneten Verschiebungen zeigt bei allen Messpunkten (MP 42 wurde erst ab der zweiten Epoche gemessen) eine gute Übereinstimmung (siehe Abbildung 4.6). Durch die leicht unterschiedlichen Positionen zwischen Messspiegel und Knotenpunkt des numerischen Netzes kommt es zu unterschiedlichen Ursprüngen der Verschiebungsmessungen.

Abbildung 4.6: Vergleich zwischen gemessenen Verschiebungen (blau) und den Ergebnissen der numerischen Simulation (blau).

Zudem zeigt auch die Verschiebungsentwicklung, dargestellt in Abbildung 4.7 gute Übereinstimmung. Abweichungen können in den Ulmen beobachtet werden. Eine Anpassung des Seitendruckbeiwertes liefert jedoch keine zufriedenstellende Ergebnisse. Der Grad an Übereinstimmung ist bei einem Vergleich zwischen numerischen und gemessenen Verschiebungen jedoch sehr zufriedenstellend.

4.2.4 Untersuchung des Spannungszustandes

Im Folgenden wird auf die Ergebnisse der numerischen Simulation mittels RS3 eingegangen. Abbildung 4.8 zeigt die Entwicklung des Dehnungsdeviators im Tunnelprofil ab dem Auffahren der Kalotte. Der Dehnungsdeviator stellt den Anteil der Dehnungen dar, welcher vom hydrostatischen Anteil abweicht. Somit spielt dieser eine wesentliche Rolle zur Beschreibung des lokalen Beanspruchungszustandes. Die Maxima des Beanspruchungsgrades bilden

Abbildung 4.7: Gegenüberstellung der gemessenen (durchgezogen) und numerischen (strichliert) Horizontalverschiebungen in Abhängigkeit des Baufortschritts.

sich lokal im Bereich der Kalottenfüße aus. Nach Auffahren der Strosse/Sohle kommt es zu einer weiteren Ausprägung der deviatorischen Dehnungen. Diese sind an der rechten Ulme geringfügig größer als an der rechten Ulme. Dies ist auf das lokale Trennflächengefüge zurückzuführen.

In Abbildung 4.9 ist die Entwicklung der Radialspannung an den Ulmen dargestellt. Die Vortriebsstände entsprechen jenen aus Abbildung 4.8. Zusätzlich wurde der Primärspannungszustand dargestellt. Hierbei ist eine konstante Abnahme der Kontaktspannung zwischen Ausbau und Gebirge bis zu Berechnungsschritt 39 zu erkennen, wobei diese an der rechten Ulme geringfügig kleiner sind, als an der linken Ulme. Im Endzustand pendelt sich der Radialspannungszustand an der Außenseite des Spritzbetons zwischen 0,2 und 0,4 MPa ein.

Abbildung 4.10 zeigt die Entwicklung der Tangentialspannung im Gebirge in einem Horizontalschnitt in Höhe der Ulmen. Hierbei ist die fortschreitende Entwicklung der plastischen Zone zu erkennen. Ab Berechnungsschritt 39 kommt diese in einer Tiefe von 10 m an der rechten Ulme und ca. 12 m an der linken Ulme zu liegen.

In Abbildung 4.11 sind die Verläufe der Radial- und Tangentialspannung an Firste und Sohle dargestellt. Diese zeigen eine deutlich höhere Beanspruchung der Innenschale in der Firste, als in der Sohle. Nach Ausbruch der Sohle ist wiederum eine Zunahme der Spannungen in diesem Bereich erkennbar, was auf den Einbau von Spritzbeton zurückzuführen ist. Hierbei beträgt der radiale Ausbauwiederstand in der Sohle ca. 0,5 MPa und in der Firste ca. 1,5

Abbildung 4.8: Deviatorische Dehnung für die Berechnungsschritte 21, 27, 39, 55 und 64.

Abbildung 4.9: Radialspannungsverlauf im Gebirge in einem Horizontalschnitt in Höhe der Ulmen für die Berechnungsschritte 21, 27, 39, 55 und 64.

MPa.

Abbildung 4.10: Tangentialspannungsverlauf an den Ulmen für die Berechnungsschritte 21, 27, 39, 55 und 64.

4.3 Bewertung der Ergebnisse

Die Auswertung der Simulationen zur Gebirgsverschlechterung am homogenen Modell zeigen eine nichtlineare Zunahme der Umfangsdehnung mit zunehmender Abminderung der Festigkeitsparameter. Wichtigstes Merkmal ist die Plastifizierung des Gebirges. Rein elastische Beanspruchungen erzeugen nur geringe Änderungen in der Umfangsdehnung. Wenn sich bereits vor Einbau der Innenschale eine plastische Zone um den Hohlraum gebildet hat, sind in weiterer Folge mit zunehmender Gebirgsverschlechterung klar zuordenbare Umfangsdehnungen zu erwarten. Dasselbe gilt auch, wenn sich eine plastische Zone während der Gebirgsverschlechterung ausbildet.

Im Zuge der Ausbauverschlechterung konnte gezeigt werden, dass auch diese Dehnungen in Umfangsrichtung verursachen. Um dies numerisch nachzubilden, müssen die Festigkeitsparameter jedoch stark herabgesetzt werden. Die Größe der Dehnungsänderung ist wiederum vom Vorhandensein einer plastischen Zone abhängig. Bei moderaten Überlagerungen ist kaum mit einer Dehnungsänderung zu rechnen.

Block- bzw. Scherversagen zeigen lokal eine deutliche Zunahme der Radialverschiebungen. Das Verschiebungsbld entspricht den aus der Praxis und Literatur bekannten Charakterisitiken. Dieses lässt auf den ausgebildeten Lastfall sowie den Ort bzw. die Orientierung hindeuten.

Der Vergleich der Hohlraumrandverschiebung zeigt, dass sich der Feldversuch gut numerisch

(a) Radialspannung an Firste und Sohle.

(b) Tangentialspannung an Firste und Sohle.

Abbildung 4.11: Spannungsverläufe im Gebirge in einem Vertikalschnitt in Höhe der Firste und Sohle für die Berechnungsschritte 21, 27, 39, 55 und 64.

simulieren lässt. Die Ergebnisse deuten auf einen geringen Auslastungsgrad der Spritzbetonschale hin. Aus den Deviatorndehnungen ist zu entnehmen, dass die stärksten Scherverformungen in den Ulmen im Bereich der Kalottensohle stattfinden. Dies deckt sich mit den dortigen Profilverschiebungen. Hierbei ist jedoch zu beachten, dass die Umfangsdehnungen bei gleichen Profilverschiebungen, bei größeren Ausbruchsradien kleiner sind als an Stellen mit kleineren Ausbruchsradien.

5 Zusammenfassung

Das vorgestellte Messsystem erlaubt eine permanente und zuverlässige Ermittlung der Dehnungen in der Außenschale. Die Laborversuche haben gezeigt, dass die rückgerechneten Dehnungsinkremente mit den gemessenen Ergebnissen gut übereinstimmen. Zudem wurde die Robustheit des Messkonzeptes erfolgreich getestet.

Die Dehnungsverteilung entlang der Außenschale stimmt gut mit der zu erwartenden Verformungscharakteristik des Gebirges überein. Ebenso zeigt ein Vergleich mit den geodätischen Konvergenzmessungen eine qualitativ gute übereinstimmung Die Ergebnisse der Dehnungsmessungen in zwei Ebenen können in weiterer Folge zur Darstellung der Schnittkräfte in der Außenschale herangezogen werden.

Die numerischen Simulationen zeigen bei einer simulierten Verschlechterung des Gebirges bzw. des Ausbaus eine Zunahme der Umfangsdehnung in der Innenschale. Hierbei muss jedoch darauf hingewiesen werden, dass diese lediglich bei Vorhandensein einer plastischen Zone um den Tunnel messbare Größen liefert. Die Verschlechterung des Ausbaus liefert geringere Umfangsdehnungen. Es ist fraglich, ob eine Ausbauverschlechterung im angenommenen Umfang stattfindet.

Die numerische Modellierung des Feldversuchs hat gezeigt, dass die größten Beanspruchungen des Ausbaus in Höhe der Kalottensohle stattfinden. Hier zeigen die Dehnungsmessungen geringere Werte als in anderen Bereichen. Dies ist darauf zurückzuführen, dass die Umfangsdehnung von den Radialkonvergenzen und der Ausbruchskrümmung abhängt. Somit sinkt bei größeren Radien der Betrag der gemessenen Umfangsdehnungen.

Es ist vorgesehen, den gegenständlichen Messquerschnitt langfristig d.h. auch nach Einbau der Innenschale zugänglich zu machen, um Erkenntnisse über das Langzeitverhalten der Sensoren und des Gebirges zu erlangen. Eine weiterführende Evaluierung unterschiedlicher Messprinzipien zur Gebirgsdruckmessung sowie der Situierung (in der Innenschale oder in der Außenschale) ist geplant. Zum Zeitpunkt des Auffahrens großer Störungszonen mit hoher Überlagerung (beispielsweise dem Grassberg-Schlagl-Störungssystem beim Semmering-Basistunnel) sollen auf diese Weise bereits erprobte Messverfahren vorliegen.

Literaturverzeichnis

- 3G GRUPPE GEOTECHNIK GRAZ ZT GmbH (2014). Bericht Geotechnische Baugrundcharakterisierung.
- Altenbach, H. (2016). Holzmann/Meyer/Schumpich Technische Mechanik Festigkeitslehre (12., verbesserte und erweiterte Auflage ed.). Wiesbaden: Springer Vieweg.
- Austrian Society for Geomechanics (2014). Geotechnical Monitoring in Conventional Tunnelling: Handbook. Salzburg.
- Entfellner, M. (2017). Prediction of Displacements and Shotcrete Lining Utilization: Decision strategy for a timely application of ductile support systems in conventional tunnelling. Master Thesis, Graz University of Technology, Graz.
- Farmer, I. W. (1975). Stress distribution along a resin grouted rock anchor. (12), 347–351.
- ÖBA SBT1.1 (2018). Ausbaufestlegung: Tu-Glo-Gl2 / 124.
- ÖBB-Infrastruktur AG (2018a). Baugeologische Vortriebsdokumentation: Tunnelmeter: 2172,3.
- ÖBB-Infrastruktur AG (2018b). Geologische Kurzzeitprognose: VGLO-1 & 2: Subhorizontalschnitt.
- Österreichisches Normungsinstitut (2015). ÖNORM EN 1992-1-1: 2015-02-15: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken.
- Österreichisches Normungsinstitut (2017). ÖNORM B 4707: 2017-06-01: Bewehrungsstahl -Anforderungen, Klassifizierung und Prüfung.
- Pilgerstorfer, T. (2008). Prediction of displacement development using closed form solutions. Master Thesis, Graz University of Technology, Graz.
- Rabcewicz, L. v., Golser, J., & Hackl, E. (1972). Die Bedeutung der Messung im Hohlraumbau, Teil I. Bauingenieur, 47(7), 225–234.
- Radončić, N. & Schubert, W. (2011). Novel method for ductile lining pre-design / Neues Verfahren zur Vorbemessung eines duktilen Ausbaus. Geomechanics and Tunnelling, 4(3), 195–210.

Rocscience Inc. (2018a). RS2 - Rock and Soil 2-dimensional analysis program.

- Rocscience Inc. (2018b). RS3 Rock and Soil 3-dimensional analysis program.
- Rokahr, R. B. & Lux, K. H. (1987). Einfluss des rheologischen Verhalten des Spritzbetons auf den Ausbauwiderstand. *Felsbau*, 5(1).
- Schubert, P. (1988). Beitrag zum rheologischen Verhalten von Spritzbeton. Felsbau, 6(3).
- Schubert, W. & Vavrovsky, G. M. (1996). Die Neue Österreichische Tunnelbaumethode. Österreichische Ingenieur- und Architekten-Zeitschrift (ÖIAZ), 141(7), 311–318.
- St. John, C. M. & van Dillen, D. E. (1983). ROCKBOLTS: A NEW NUMERICAL RE-PRESENTATION AND ITS APPLICATION IN TUNNEL DESIGN. Proceedings -Symposium on Rock Mechanics, 13–25.
- Vavrovsky, G. M. & Ayaydin, N. (1988). Bedeutung der vortriebsorientierten Auswertung geotechnischer Messungen im oberflächennahen Tunnelbau. *Forschung + Praxis*, (32).
- VBE Verein für Baustoffprüfung und -entwicklung (2016). Endprüfbericht: SpC25/30(56)/II/J2/XC4/XF3/RV0,70/GK8/VV180.
- VBE Verein für Baustoffprüfung und -entwicklung (2018a). Prüfbericht Druckfestigkeiten: SPC20/25 (56) II J2 XC4 RV0,70 GK8.
- VBE Verein für Baustoffprüfung und -entwicklung (2018b). Prüfbericht Frühfestigkeiten: SPC20/25 (56) II J2 XC4 RV0,70 GK8.
- Wagner, L. (2017). Concept and realisation of a distributed fibre-optic sensing system for direct and continuous strain measurement in a shotcrete lining. Master Thesis, Graz University of Technology, Graz.

Anhang AP3 - Laborversuche

Labor für Konstruktiven Ingenieurbau

Projekt: Kalibrierbalken Henziger Herstellungsdatum: 07.07.2017 Serie: EModul_150_2017-08-02 Prüfer: Santner Technische Universität Graz

Datum: 02.08.2017 Zeit: 15:50 Uhr

Prüfparameter

Prüfvorschrift:E-Modul Prüfung nach ONR 23303:2010Maschinentyp:MaschineKraftaufnehmer:5000 kNDehnungsaufnehmer:(S4+S5)/Prüfraum:Unterer PrüfraumProbenabmessungen:m = 1 gVersuchsendekriterien:Weg = 200 mm; dF = 50 kN; dF = 15 %

Ergebnis-Tabelle

	OK	Datum	Zeit	Spann_u	Dehn_u	Spann_o	Dehn_o	E	Fmax	s_max
				N/mm ²		N/mm ²		N/mm ²	kN	N/mm ²
1	X	02.08.17	15:15	1,52	0,000167	15,14	0,000756	23153	753,5	42,64
2	X	02.08.17	15:33	1,52	0,000160	15,18	0,000743	23435	736,6	41,79
3	x	02.08.17	15:50	1,53	0,000158	15,16	0,000738	23508	736,1	41,65

	D	h
	mm	mm
1	150,00	297,00
2	149,80	295,00
3	150,00	296,00

Statistik n = 3

	Spann_u	Dehn_u	Spann_o	Dehn_o	Е	Fmax	s_max	D
	N/mm ²		N/mm ²		N/mm ²	kN	N/mm ²	mm
Mittelwert	1,52	0,000162	15,16	0,000745	23366	742,1	42,03	149,93
Standardabweichung	0,00	0,000005	0,02	0,000009	187	9,9	0,53	0,12
Variationskoeff.	0,11	3,105238	0,12	1,248252	1	1,3	1,27	0,08

	h	
	mm	
Mittelwert	296,00	
Standardabweichung	1,00	
Variationskoeff.	0,34	

Labor für Konstruktiven Ingenieurbau

Projekt: Kalibrierbalken Henziger Herstellungsdatum: 7.7.2017 Serie: Würfel150_2017-08-02 Prüfer: Santner Technische Universität Graz

Datum: 02.08.2017 Zeit: 14:50 Uhr

Prüfparameter

Prüfvorschrift:	Druckversuch nach ÖN EN 12390
Maschinentyp:	Maschine
Kraftaufnehmer:	5000 kN
Dehnungsaufnehmer:	(S4+S5)/
Einspannvorrichtung:	keine
Prüfraum:	Unterer Prüfraum
Prüfgeschwindigkeiten:	V0 = 2 mm/min; V1 = 0,6 MPa/s
Versuchsendekriterien:	dF = 20 kN; dF = 15 %

Ergebnis-Tabelle

	OK	Datum	Zeit	Kraft max.	Kraft max. Spannung max a		b
				kN	N/mm ²	mm	mm
1	X	02.08.17	14:39	1009,5	44,72	150,0	150,5
2	x	02.08.17	14:45	1039,8	46,59	148,8	150,0
3	x	02.08.17	14:50	1024,6	45,54	150,0	150,0

Statistik n = 3

	Kraft max. kN	Spannung max N/mm ²	a mm	b mm
Mittelwert	1024,6	45,61	149,6	150,2
Standardabweichung	15,2	0,94	0,7	0,3
Variationskoeff.	1,5	2,05	0,5	0,2

Sortenausdruck

Werk	12	Sc	orte	1.3	Kurzbezeichr	nung	Bezeichnung					
2711 Gr	az	C94D82661		. 1	C30/37 SCC		C30/37(56) E	3S-TL	/ SCC1 [XC3] /	Gewölb	e GK16 C ³ A fre
	an faire		illi sentra Santa	3.1	Betor	daten	n an				L denty	
Betonart		Gruppe	1	Qualitätskontr		Prüfa	üfalter Expositionsklassen					
Eigenschaft	en				Ja		6	SCC1 / Gewölbe, SCC1 [XC3]				(C3)
Fest-KI	Ziel-Fe	est (N/mm²)	Fest-E	Entw	Luftgehalt	(%)	Kons-KI Z		Ziel-Kons	Chlo	rid-KI	Überw-Kl
C 30/37 (56)		44,0	Mitte	el	5,0	- unit	SCC1		650	CI	CI 0,10	
Rohd-Kl	Zielr (H	Zielrohdichte (kg/m ³)		-Art Größtkorn		(mm) Sieblinienbe		nbereich Sieblini		nien-Nr Max-Res		Restwasser (%)
		m	RK	Ĩ.	16	27	A/C	1.2	16-S	C	11.2	0
	N	Verwendung	4	1		1.12		5	Eigensch	aften	s. lordar	in a sit wat
					2019-0012	121445	160 NET 1	21 B (C3A frei, S	SCC1		
Nachbehandlungsdauer (Tage)		Verarbeitba (h)	arkeitszeit M		Min-Zement M (kg/m ³)		-Bindemittel (kg/m ³)	Ma	/lax-W/B Bi		otontemperatur (°C) Iin Max	
		1,7	5		- Angland Angland Par		360					

			So	Ilwerte							
Art	Nummer	Bezeichnung	Hersteller	Sollwert	Eh	Vol (m³)	k-Wert	O-Trocken (kg/m ³)	F (%)	Wasser (kg)	Nass (kg/m ³)
GK	6402076	RK 0/4 Tieber GF85 f5 F1	TIEBER GMBH	68,00	%	0,412		1114	4,80	53,4	1167
GK	6423451	RK 4/16 Schwarzl GC85/20 f1.5 F1	SCHWARZL	32,00	%	0,194		524	1,20	6,3	530
GK	*****	Summe			1	0,606		1638		59.7	1697
BM	10101223	CEM I 42,5 N SR0 HS C ³ A frei	LAFARGE RETZNEI	300,00	kg	0,097		300			300
BM	10101202	Fluamix C Retznei	LAFARGE RETZNEI	150,00	kg	0,056	0.80	150			150
ZM	21907	flow L-05	BAUSTOFFTECHNIK	1,10	%	0,005		4,95	-	3.5	4.95
ZM	41102	air M-01	BAUSTOFFTECHNIK	0,12	%	0,001		0,54		0.5	0.54
WA	999997	Frischwasser	ROHRDORFER TRANSPORTBETON GMBH	190,00	kg	0,186		186		126,2	126

Wasserfür	Bindemittel für	W/B	Rohdichte	Bindemittel	Leimvolumen	Mehlkorngehalt	Mehlk-Feinstsand	Chloridgehalt
W/B (kg/m³)	W/B (kg/m³)		(kg/m³)	(kg/m ³)	(m ³)	(kg/m ³)	(kg/m³)	(%)
190	403	0,47	2279	450	0,325	529	677	

Baustofftechnik GmbH Lagerstraße 1/5 A-2103 Langenzersdorf Tel:...+43 50543 50000 Fak: +43 50543 950000 www.rphrdorfer.at

Prüfstellenleiter

ROHRDORFER TRANSPORTBETON Isportbeton GmbH Lagerstraße 1-5, 2103 Langenzersdorf, Tei, 050543-0 FN 655631 v, Gericht: L0 Korneuburg, UD:-NH: ATU 46495502, www.rohdorfer.at	36 (155) dewolbe, Scon Axcsu ar Scon 1 1 1 2 5 N SRO HS OrlA 12 5 N SRO HS OrlA 12 5 N SRO HS OrlA 12 5 N SRO HS OrlA 2 flow, dynamiQ air CHAFTEN	GEFAHR durch Frischbeton H318 Verursacht schweie Augenschäden. H315 Verursacht Haufreizungen. P205 Schriztranderben / Schriztranderben.	 POG + F933 + P333 + P334 - P310 BEI BERCINIANUK MIT DEN AUDERI: Einige Mindren lang behutsen mit Wasser ausspüler. Einige Mindren lang behutsen mit Wasser ausspüler. Einige Windrahen Komtadinen mah Möglichkeit reiterinen. Withanden Komtadinen Kontadinen and Möglichkeit reiterinen. Verlandsan Komtadinen Sofort Vergritungsninformationszentrale (E.B. (1)/405/43/50 kek Arza minlen. POG2 + P333 + P313 BEI BERÜHHUNG MIT DER HAUT: Mit viel Wasser and Self waschen. PUZ Darf nicht in die Hadro von Knotem gelangen. Mit Frischeiten Auchträfinkte Kleidung. Schuhe, Handschuhe etc. SOFOHT auszehen und Hauf teingent 	am im Werk auflie- die Übernommeter- die Übernommeter- Dennommeter- wurchtrochfer.ah). Infillichen Ein- Infillichen Ein- Infillichen Ein- Uhrzeit, Name in BLOCKSCHRIFT Uhrzeit, Name in BLOCKSCHRIFT
Rohrdorfer Tra	Menge (m) 2, 00 Betonsorten-Nr. 0941082 Festigkeltsk, Kurzbez. 30/3 Expositionsklassen S001 2 Bes. Eigenschaften 03A Fr GK, Konsistenz 16 , 90 Festigkeitsentw, W/B-Wert Mi 1 tue 1 Zusatzstoff F 1 uem 1 Zusatzstoff F 1 uem 1 Zusatzmittel 0978m/1 00 Beton nach E1 0E/NS			Dieser Beton entspricht d genden Betonversteichnis genden Schwerzeichnis ingigt auf Grund der Ihnen nögt auf Grund der Ihnen nögt auf Grund der Ihandas tragungen. tragungen. biehr Baustelie
	se 45 000 78538 Onen Nr. 2 Geliefen Rest 3.00 Geliefen Betonom			eliadung Arkunti Baustelle B ugabe Ankunti Baustelle B eliade Entladung A entrzeug Ankunti Werk
	stells 5439966 10 Graz Inffeldgass freldgasse 24 110 Graz d1 06644267385 2 d der Lieferung m: Bestellt 054527000 054527000			Cheve and the second se
2-2.2.1-07-242 BAUCERT STMK	az an Tr 80 80 80 80 81 81 81 81 81 81 81 81 81 81 81 81 81			ab in tet: 0 700 2 4, Mar fit: 0 700 2 4, Mar fit: 0 700 8 49 fit: 0 700 8
EXEMPLAR EXEMPLAR Intis umseitig	125 Che Universität Gr und Pechungswes Praz Braz 54747 werk 2	u Ken für ihren Auf	ndemengenzusch la	552 GB Varran S enzeichen Fahrmischertahrentn stung des Wasser: werkes für die Wasser: scht, weil trotz Zusatzmit gemäßer Beton-Zusatzsto ücklichen Wunsch Fasem: s (Verwenders) Sonstiges

BAUSTAHLGITTER A, AQ

Preisliste für Werkslieferungen, Ausgabe Juni 2011 Gültig ab 10.06.2011 bis auf Widerruf Kennwerte entsprechen ÖNORM B 4200/ 7 Tafel 1, Gruppe M 550

Туре		Stahlque	erschnitt	Masche	nweite	Drahtstärke		1	Gewicht	Preis/	Preis/ to.
		längs	quer	längsin	quer in	längsin	quer in	kg/ m∸	pro Matte	100m² in€	in€
		cm²/m	cm²/m	mm	mm	mm	mm				
А	60	2,83	0,65	100	300	6,0	5,0	2,73	39,31	382,20	1.400,00
А	70	3,85	0,79	100	300	7,0	5,5	3,64	52,42	491,40	1.350,00
A	82	5,28	1,11	100	300	8,2	6,5	5,02	72,29	677,70	1.350,00
AQ	42	1,39	1,39	100	100	4,2	4,2	2,18	31,39	305,20	1.400,00
AQ	50	1,96	1,96	100	100	5,0	5,0	3,08	44,35	418,88	1.360,00
AQ	55	2,38	2,38	100	100	5,5	5,5	3,74	53,86	503,03	1.345,00
AQ	60	2,83	2,83	100	100	6,0	6,0	4,44	63,94	586,08	1.320,00
AQ	65	3,32	3,32	100	100	6,5	6,5	5,20	74,88	681,20	1.310,00
AQ	70	3,85	3,85	100	100	7,0	7,0	6,04	86,98	779,16	1.290,00
AQ	76	4,54	4,54	100	100	7,6	7,6	7,12	102,53	911,36	1.280,00
AQ	82	5,28	5,28	100	100	8,2	8,2	8,30	119,52	1.062,40	1.280,00
AQ	90	6,36	6,36	100	100	9,0	9,0	9,98	143,71	1.337,32	1.340,00
AQ	100	7,85	7,85	100	100	10,0	10,0	12,34	177,70	1.653,56	1.340,00
Soi	nderl	ypen:				Liefermö	iglichkei	ten auf	Anfrage		
A	50	1,96	0,46	100	300	5,0	4,2	1,90	27,36	281,20	1.480,00
A	76	4,54	0,94	100	300	7,6	6,0	4,30	61,92	627,80	1.460,00
AQ	38	1,13	1,13	100	300	3,8	3,8	1,78	25,63	313,28	1.760,00

Abmessungen:

Länge 6,00m, Breite 2,40m Sonderabmessungen auf Anfrage

Verrechnungspreis:

Preise:

der Verrechnung wird das Normgewicht, theoretische Gewicht, oder der Preis je m² zugrunde gelegt. ab Werk, exkl. MWSt.

Preisänderungen, technische Änderungen, Irrtümer und Druckfehler vorbehalten.

4310 Mauthausen, Gewerbestr. 3 Tel.: +43/7238/30 250, Fax: DW 25 office@betonstahl.at, <u>www.betonstahl.at</u>

Anhang AP4 - Feldversuche

Einbaukonzept Kal	pelanschlussbox 1	(KAB1) ir	n Außenschale
-------------------	-------------------	-----------	---------------

Datailista		Einbauort: Gleis 2 zwischen TM 2169 und TM 2179 (Ein Abschlag vor Messquerschnitt)	Dauar	Paging	Endo	Annariumaan (Drahlana	Vortrichourtenberghung
Deteiligte		Taliykeit	Imin	[hh mm]	[hh mm]	Anmerkungen/Probime	vortriebsunterprechung
AN		¹ Ausbruchsarbeiten des Abschlags vor dem Messquerschnitt mit Überprofil am Einbauort der Kabelanschlussbox KAB 1 (siehe Planunterlagen)		[]	[]		
AN		2 Schuttern					
AN		3 Transport KAB1, 110 m Multifaserkabel, Messelektronik, optische Sensoren (Messquerschnitt) und 9 Personen (4 x HBM, 3 x IGMs, 2 x FMT) TM 2169 bis TM 2179, Gleis 2					
AN		3 Vorspritzen + Ortsbrustsicherung herstellen					
AN		4 Bergseitige Lage Bewehrungsgitter einbauen. Im Bereich Anschlussbox KAB 1 mit Übermaß herstellen und Baustahlgitter ausschneiden. Gitterbogen aufstellen					
AN/HBM/IGMS		5 Einbau (fixieren, verdübeln) der Kabelanschlussbox KAB 1 mit XPS Platte (30 cm unterhalb und 40 cm oberhalb) und Verlegen der Kabelschutzrohre: oben 3 x DN50; 1 x D70; unten 2 x DN50	20 min	07:15	07:35	Station KAB1: 2+171	Ja
AN/HBM/IGMS		6 Durchführen der Kabelschutzrohre durch den Ortsbrustseitigen Baustahlgitterträger zur späteren Verbindung des Messquerschnittes mit der KAB1	15 min	07:35	07:50		Ja
AN/HBM		⁷ Schützen der KAB 1 und der XPS Platten frontseitig mit Holzplatten 1500*600mm damit diese nach dem 2. Einspritzvorgang zugänglich bleibt.	25 min	07:50	08:15		Ja
AN/HBM/IGMS/FMT		8 Verlegung Multifaserkabel, Einbau der Messelektronik (Abseits des Vortriebs)	85 min	14:15	15:00	Am Vormittag wurde die Verrohrung zwischen 10:00 und 10:15 provisorisch hergestellt. Um 13:50 wurde das Kabel eingefädelt und von 14:15 bis 15:00 fertig montiert und gedübelt. (2 Mann AN plus Hebebühne beim Dübeln)	Nein
AN		9 Sicherung des Multifaserkabels in unmittelbarer N\u00e4he zur Ortsbrust bis zu den Versorgungsleitunge mittels Spritzbeton				Die Ersten 33m wurden eingespritzt. Verrohrung mit Vließ bedeckt.	Nein
AN		10 2. Einspritzvorgang		09:00			
AN		11 Markierung der Kabelschutzrohre nach Einspritzvorgang					
AN		12 Ausbruchsarbeiten des Mess-Abschlags		10:35		Abschlag danach Ausfahrt	
AN		13 Schuttern					
AN		14 Vorspritzen + Ortsbrustsicherung herstellen					
		Fortsetzung Einbaukonzept Kalotte					;

Summe Vortriebsunterbrechung: 60 min

Arbeitsgeräte seitens AN:

Transportmöglichkeit für 9 Mitarbeiter (seitens HBM, IGMS und FMT), Messelektronik, Multifaserkabel (110 m) Faseroptische Sensoren zur Ortsbrust

Legende:

Institut für Felsmechanik und Tunnelbau (FMT) Institut für Ingenieurgeodäsie und Messsysteme (IGMS) Hottinger Baldwin Messtechnik (HBM) Auftrafnehmer (AN, Baulos SBT1.1)

Einbaukonzept Messguerschnitt Kalotte

	•		•					
			Einbauort: Gleis 2 zwischen TM 2170 und TM 2180					
Beteiligte			Tätigkeit	Dauer	Beginn	Ende	Anmerkungen/Problme	Vortriebsverzögerung
				[min]	[hh mm]	[hh mm]		
	Fort	setzi	ung Einbaukonzept Kabelanschlussbox 1 (KAB1) in Außenschale					
AN			1 Bergseitige Lage Bewehrungsgitter einbauen + Gitterbogen aufstellen					
AN			2 Antransport der 3 Messgitterträger Segmente					
			3				Verkabelung dauerte länger als	
			Uberwachung des Zusammenbaus des Messgitterträgers. Herstellen der	115 min	12.50	14.45	gedacht. Signal konnte erst nach	Ja
			Steckverbindung.				kurzer Fehlersuche hergestellt	
AN / HBM							werden.	
AN / HBM			4 Messgitterbogen aufstellen und am Bewehrungsgitter fixieren	15 min	14:45	15:00		Ja
IGMS / AN			5 Installation der bergseitigen Lage der Faseroptischen Leitungen					
ICNE (AN			a installation von Strang A (Typ V3) in Omfanrungsrichtung	20 min	15:05	15.05		le.
IGIVIS / AIN			(geradiinig) mittels Kabeloinder an die Bewenrungsmatte	20 11111	15.05	15.25		Ja
IGMS / AN			(geradlinig) mittals Kabelbinder an die Bewehrungsmatte					
HBM / AN			6 Einhau der Messkörbe (Dehnungsaufnehmer 11 Uhr 12 Uhr 1 Uhr)					
			7 Eixierung der Messleitungen am Messgitterträger, verbinden der					
HBM / AN			Messleitungen, bis zur Kabelanschlusshox KAB 1, und anschließen	50 min	16:00	16:50		Ja
AN			8 Steckeisen zur Positionsmarkierung für Systemankerung einbinden					
IGMS			9 Dokumentation der Lage der Kabelstränge mittels 3D Vermessung				Wurde um einen Arbeitschschritt	
IGMS / FMT		1	0 Dokumentation der Lage der Kabelstränge mittels Fotografien	- 30 min	15:30	16:00	vorgezogen	Ja
		1	1 Messtechnische Kontrolle, ob alle Kabelstränge der bergseitigen Lage	05	47.00	47.05		
HBM / IGMS			intakt sind und nicht durch den Einbau beschädigt wurden	35 min	17:00	17:35		Ja
AN		1	2 Erste Lage Spritzbeton aufbringen					
		1	3 Messtechnische Kontrolle ob alle Kabelstränge der bergseitigen Lage					
HBM / IGMS			intakt sind und nicht durch das Einspritzen beschädigt wurden					
FMT		1	4 Dokumentation mittels Fotografien	90 min	17.45	19:15		Nein
HBM / IGMS		1	5 Start der Dauermessung			10.10		
AN		1	6 Steckeisen zur Positionsmarkierung für Systemankerung einbinden					
AN		1	7 Komplette bergseitige Lage der SpB-Schale herstellen					
AN		1	8 Hohlraumseitige Lage Bewehrungsgitter einbauen					
IGMS / AN		1	9 Installation der hohlraumseitigen Lage der Faseroptischen Leitungen	_				
ICAR (AN)			a Installation von Strang A (Typ V3) in Umfangsrichtung (geradlinig)	45	40.45	40.00		1-
IGMS / AN			mittels Kabelbinder an die Bewenrungsmatte	15 min	19:15	19:30		Ja
IGMS / AN			(agradlinia) mittals Kabalbinder an die Rewehrungsmette					
IGMS / AN			Q Dokumentation der Lage der Kabelstränge mittels 3D Vermessung					
IGMS / FMT			21 Dokumentation der Lage der Kabelstränge mittels 50 vermessung	-			Komplikationen: Ein Messstrang	
							hatte bei der messtechnischen	
IGMS		111	Verbinden der Kabelstränge mit dem Zuleitungskabel (Steckverbindung)	75 min	19:30	20:45	Kontrolle eine zu hohe Dämpfung.	Ja
		1 2	23 Messtechnische Kontrolle, ob alle Kabelstränge der hohlraumseitigen				Feniersuche und Benebung dauerte	
IGMS			Lage intakt sind und nicht durch den Einbau beschädigt wurden				ca. 1 h	
AN		2	24 Zweite Lage Spritzbeton für beide Abschläge aufbringen		20:45			
		2	25 Messtechnische Kontrolle, ob alle Kabelstränge der hohlraumseitigen					
IGMS / HBM			Lage intakt sind und nicht durch das Einspritzen beschädigt wurden					
		2	26 Markierung der Lage der Faserkabel mittels Farbspray auf der					
IGMS / AG			hergestellten SpB-Schale					
AG / FMT		12	27 Dokumentation mittels Fotografien					
IGMS / HBM		1 2	28 Weiterführung der Dauermessung					

Arbeitsgeräte seitens AN:

Transportmittel für die Messgitterträger (sensibel!) Hebebühne Summe Vortriebsverzögerung: 6h 15 min

Institut für Felsmechanik und Tunnelbau (FMT) Institut für Ingenieurgeodäsie und Messsysteme (IGMS) Hottinger Baldwin Messtechnik (HBM) Auftragnehmer (AN, Baulos SBT1.1)

Einbaukonzept Messquerschnitt Sohle

			Einbauort: Gleis 2 zwischen TM 2170 und TM 2180 (Bei					
Dete ili ete	_		Ringschluss)	Davias	Dealar	Finds		Mantaiah ay ang Karanya a
Beteingte	-	2		Jauer	[hh mm]	Ende	Anmerkungen/Probime	vormebsverzogerung
AN		3	Aushrushaarhaitan daa Ahaahlaga	[min]	[uu mm]	[nn mm]		
AN	_	1	Ausbruchsarbeiten des Abschlags					
AN		2	Schuttern					
	_	3	bergsenige Lage bewennungsgiller einbauen					
AN / IGIVIS		4	nistaliation der bergseitigen Lage der Faserkaber.				AN verrichtet derweil kleinere	
			a. Installation von Strang A (Typ v3) in Onliangshontung	2E min	04:00	04.25	Arbeiten an den	la
AN / IGIVIS		_	(geradinnig) millers Ka-beibinder an die Bewenrungsmalle	25 11111	04.00	04.25	Arbeiten an den	Ja
AN / IGMS			b. Installation von Strang B (Temperaturkaber) in Omlangsfichtung				versorgungsieltungen	
		5	(geradiinig) millers Kabelonder an die Bewenrungsmalle	20 min	05:20	06:00		
	_	э	Dokumentation der Lage der Kabelstränge mittels 3D vermessung	30 min	05:30	00:00		Ja
	_	_	Dokumentation der Lage der Kabeistränge mittels Fotografien	<u>.</u>	04:00	05.00		1-
IGIVIS / AN	_		Verbinden der Kabelstränge mit dem Zuleitungskabel (Steckverbindung)	90 min	04:00	05:30		Ja
IGMS		6	intestechnische Kontrolle, ob alle Kabelstrange der bergseitigen Lage	30 min	05:30	06:00		Ja
		7	Erste Lage Spritzbeton aufbringen	25 min	06.00	06.25		Nein
		8	Messtechnische Kontrolle, ob alle Kabelstränge der bergseitigen Lage	2311111	00.00	00.25		INCIII
IGMS		Ŭ	intakt sind und nicht durch das Einspritzen beschädigt wurden					
AN		9	Hohlraumseitige Lage Bewehrungsgitter einbauen	10 min	06.25	06:35		Nein
IGMS / AN		10	Messkabel für den Einbau der hohlraumseitigen Lage bereitlegen	10	00.20	00.00		
IGMS / AN		11	Installation der hohlraumseitigen Lage der Faserkahel					
			a Installation von Strang A (Tvp V3) in Umfangsrichtung (geradlinig) mittels					
			Kabelbinder					
IGMS / AN			an die Bewehrungsmatte	15 min	06:35	06:50		Ja
			b. Installation von Strang B (Temperaturkabel) in Umfangsrichtung					
			(geradlinig) mittels					
IGMS / AN			Kabelbinder an die Bewehrungsmatte					
IGMS		12	Dokumentation der Lage der Kabelstränge mittels 3D Vermessung	20 min	08:25	08:45		Ja
FMT / IGMS		15	Dokumentation der Lage der Kabelstränge mittels Fotografien					
		16					Ab 07:50 bis 08:15 Vergießen	
			Verbinden der Kabelstränge mit dem Zuleitungskabel (Steckverbindung)	95 min	06·40	08.12	der Leitungen in KAB1 durch	Ja
IGMS / AN					00.10	00.10	HBM	04
		17	Messtechnische Kontrolle, ob alle Kabelstränge der hohlraumseitigen Lage					
IGMS			intakt sind und nicht durch den Einbau beschädigt wurden					
AN		18	Zweite Lage Spritzbeton aufbringen		l			
FMT / IGMS		19	Dokumentation mittels Fotografien					
IGMS			Weiterführung der Dauermessung					

Arbeitsgeräte seitens AN:

Transportmöglichkeit für 4 Mitarbeiter (seitens IGMS und FMT), Messelektronik Hebebühne

Summe Vortriebsverzögerung: 4h 10min

Legende:

Institut für Felsmechanik und Tunnelbau (FMT) Institut für Ingenieurgeodäsie und Messsysteme (IGMS) Hottinger Baldwin Messtechnik (HBM) Auftragnehmer (AN, Baulos SBT1.1)