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Abstract

To optimize durability, reliability and efficiency of an automotive wet clutch, the
temperature of the clutch disks is one of the most important variables. In this thesis, a
semi-physical model is developed, that is capable of estimating the disk temperature
online during clutch operation with little computational effort and only a few sensors
available.

The model is based on a detailed theoretical analysis of the physical phenomena
influencing the clutch temperature. Under consideration of a radially grooved friction
layer, the oil flow between the disks is described analytically. From this, phenomena
like the forming of rivulets, the drag torque and finally the convective heat transfer
from the disk to the oil is derived. For the generation and distribution of the friction
heat, simple relations based on physical and empirical relationships are formulated.
To efficiency compute the derived relations in each time step, numerical procedures
are proposed. To obtain an estimate of the temperature and its distribution in radial
and axial direction, the finite difference method is used.

The developed model is validated qualitatively under consideration of empirical,
numerical and analytical results from literature and an analysis of stability. Also,
a quantitative validation with measurement data is conducted. In all considered
scenarios, the model shows good performance and provides a temperature estimation
that is accurate enough for its destined application.
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Zusammenfassung

Um die Lebensdauer, Zuverlässigkeit und Effizienz einer nasslaufenden Lamellenkup-
plung zu optimieren, ist die Temperatur der Kupplungsscheiben einer der wichtigsten
Parameter. In dieser Arbeit wird ein semi-physikalisches Modell entwickelt, das in
der Lage ist, die Scheibentemperatur während des Kupplungsbetriebs mit geringem
Rechenaufwand und nur wenigen verfügbaren Sensoren online zu berechnen.

Das Modell basiert auf einer detaillierten theoretischen Analyse der physikalischen
Phänomene, die die Kupplungstemperatur beeinflussen. Unter Berücksichtigung
eines radial gerillten Reibbelags wird der Ölfluss zwischen den Scheiben analytisch
beschrieben. Daraus ergeben sich Phänomene wie unvollständige Benetzung, das
Schleppmoment und schließlich die konvektive Wärmeübertragung von der Scheibe
auf das Öl. Für die Entstehung und Verteilung der Reibungswärme werden einfache
Beziehungen auf der Basis physikalischer und empirischer Zusammenhänge for-
muliert.
Um die abgeleiteten Beziehungen in jedem Zeitschritt effizient zu berechnen, werden
numerische Verfahren präsentiert. Für die Berechnung der Scheibentemperatur und
ihrer Verteilung in radialer und axialer Richtung wird die Finite-Differenzen-Methode
verwendet.

Das entwickelte Modell wird unter Berücksichtigung empirischer, numerischer und
analytischer Ergebnisse aus der Literatur und einer Stabilitätsanalyse qualitativ vali-
diert. Außerdem wird eine quantitative Validierung mit Messdaten durchgeführt. In
allen betrachteten Szenarien zeigt das Modell eine gute Performance und liefert eine
Temperaturschätzung, die ausreichend genau für die vorgesehene Anwendung ist.
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1 Introduction

1.1 Motivation

Wet multi disk clutches are used in most automated gearboxes. One of the reasons is
the better controllability compared to dry clutches. Also, due to the oil cooling, they
can be constructed more compact and with a higher durability.

These clutches are used in all main categories of geared automated transmissions for
on-road vehicles, namely:

• automated manual transmission (AMT)
• dual clutch transmission (DCT)
• automatic transmission (AT)

The AMT is basically a common manual transmission with hydraulic or electro
mechanical actuators to control the clutch, where often a wet multi disk clutch is used
as a launching clutch.
The DCT consists of two sub-transmissions for odd and even gear sets and a dual
clutch connecting the sub-transmissions with the gearbox input shaft. With the dual
clutch, a gear shift without interruption of tractive power is possible.
In an AT, a torque converter acts as the launching clutch. For higher efficiency, a
lock-up torque converter can lock the pump and turbine of the torque converter
together. Planetary gears connect the torque converter with the output of the AT. The
gear ratio can be switched by changing the power flow in the planetary gears.

Wet multi disk clutches are used for the dual clutch in the DCT, for the lock-up torque
converter or as a launching clutch in the AMT or AT and as switching elements for
the planetary gears in the AT.

The durability of a wet clutch mostly depends on the temperature of the disk surfaces
during operation. Knowledge of this temperature can be used to optimize cooling
and operation of the clutch. This can not only increase the durability, but also lead
to better performance. Knowledge of the disk temperature allows an optimization of
the control strategy towards shorter coupling times to increase efficiency and driving
performance.

1



1 Introduction

1.2 Problem formulation and objectives

To facilitate optimal cooling and operation of the clutch system, the temperature needs
to be known online during operation on the test bench or in the vehicle. For online
simulation, computational resources for the model are very limited and in the vehicle,
only a few sensors are available. Since not only the mean temperature of the disks but
also the maximum temperature on the disk surfaces is of interest, the temperature
needs to be spatially resolved in radial and axial direction.

The objective is to obtain an accurate estimation of the temperature with little compu-
tational effort and little data. The evident solution for this is to combine the accuracy
of physical models with the computational efficiency of empirical approaches to a
semi-physical model that is capable of estimating the temperature profile in radial
direction in every single disk.
Another important aim is the transferability of the model to different clutch systems
and applications. The estimation of temperature shall be accurate in all clutch states
(open, closed, slipping) and in a wide range of conditions (flow rate, rotational speed,
torque, oil properties, ...).

1.3 Overview

In chapter 2, the physical phenomena that are significantly influencing the temperature
of the clutch disks are first investigated from a theoretical point of view. Subsequently,
simplifications and empirical corrections that allow an implementation which meets
the stated objectives are presented. Chapter 3 deals with the parametrisation and vali-
dation of the model with measurement data, and also with the qualitative validation
of consistency and stability. Chapter 4 gives an overview of the presented approaches
and results. Furthermore, an outlook for future work is presented.

2



2 Modelling

Over the years, many studies about the thermal and mechanical behaviour of multi-
disk wet clutches have been conducted. In [1], an extensive CFD (computational
fluid dynamics) model to describe the dynamical behaviour of wet clutches has been
developed. This model is focused on the multi-phase flow before and during clutch
engagement. In [2], a numerical-empirical model to simulate the actuation and friction
behaviour of the clutch system is presented. In [3], extensive experiments on a clutch
to investigate the friction and temperature behaviour and their dependence on the
geometry of the disks, oil flow and other influences have been carried out.

The clutch system considered in this study is schematically illustrated in Figure 2.1. It
consists of a stack of friction and separator disks, which are non-rotatably but axially
displaceably mounted on the shaft and on the casing, respectively. The friction disks
are steel plates with a layer of paper or sinter material, which is radially grooved.
The separator disks are smooth steel plates. Oil is pumped through the shaft and
lubricates the space between the disks. The (typically hydraulic) actuator can enable
clutch engagement by pushing the disks together. The backing holders on both sides
of the disk stack ensure a uniform pressure distribution between the disk surfaces.
Since the casing of a wet clutch varies a lot for different applications, it is not a part of
the model. Its influence is only modelled with an empirical relation.

The measurable boundary conditions are:

• the temperature of the incoming oil Toil,in
• the torque transmitted by the clutch Tq
• the rotational speeds of the friction disk and the separator disk, ω1 and ω2,

respectively
• the oil volume flow rate Q.

In this chapter, the most important physical phenomena influencing the clutch disk
temperature are mathematically described. Furthermore, their significance is estimated
and simplifications are made accordingly. In consideration of the limited computation
resources, solutions for implementing the phenomena are presented. The main effects
and their interaction that will be considered are shown in figure 2.2.
In section 2.1, the behaviour of the oil flow between the disks will be investigated.
From the velocity and pressure distributions, the disk distance h, the partition of oil
flow in the grooves Qg/Q and the forming of rivulets φriv can be described. Using

3



2 Modelling

actuation force

friction disk
separator disk

shaft with holes for oil 
distribution

casing

oil bath

Splashed oil is 
captured and 
recirculated

ω1 ω2

backing holder

Figure 2.1: Schematic illustration of the considered wet clutch system: Oil is pumped into the shaft
and distributed into the stack of disks. The oil flows between the disks and splashes to the
casing where it is captured and recirculated. A hydraulic or electric actuator can press the
disks together to enable torque transmission
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2.1 Oil flow

Section 2.1
Oil flow between 

the disks

Section 2.2
Heat transfer 

from disk to oil

Section 2.3
Heat generation 
and distribution

Section 2.4
Heat conduction 
within the disk

h, φriv,
Qg/Q 

Tq, ω, Toil, Q

Tq, ω
qf

T

T

qoil

Tbulk

Figure 2.2: Physical phenomena influencing the clutch temperature and their interaction

these results, in section 2.2, the heat transfer from the disks to the oil qoil is estimated,
and the resulting oil temperature between the disks Tbulk is calculated. In section 2.3,
the heat qf generated by friction and viscous flow and its partition to friction and
separator disk is described. In section 2.4, the temperature in the disk T and its
distribution is estimated.

2.1 Oil flow

Consider a pair of discs as shown in figure 2.3 with distance h(ϕ) ∈ [hng, hg] to each
other, where hng is the disk distance in the non-grooved area and hg is the disk
distance in the grooved area. The grooved friction plate rotates at speed ω2 and the
smooth separator plate rotates at speed ω1.

Following the simple oil flow model presented in [1], the Reynolds equations in the
considered system will be formulated and solved. In contrast to [1], the grooves will
be taken into account, and both disks can rotate at different speeds (instead of one
disk being stationary). Consequently, the flow will not be rotationally symmetric and
the inertia force can also be taken into account for both disks rotating.

2.1.1 Assumptions

To obtain a simple and comprehensive analytical solution for describing the oil flow,
several assumptions need to be made.

5



2 Modelling

radial 
grooves

ω1 ω2
r

z

h

Q

Q

ng

hg

ϕ 

Figure 2.3: Model for considerations regarding the oil flow. The separator disk rotates at speed ω1, and
the radially grooved friction disk rotates at speed ω2. Between the disks is an oil film with
oil volume flow rate Q
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2.1 Oil flow

• In reality, the oil will flow out through several holes at different angular locations
in the shaft. Optimally, the oil will spread in the area between shaft and the
beginning of the friction surface, radius rin, and is equally distributed when
entering the grooved region. In the presented model, only the flow between rin
and rout will be considered, and speed and temperature of the oil entering this
region are assumed to be rotationally symmetric with regard to the z axis.
• Although, the oil properties (especially the viscosity) highly depend on the

temperature, we assume stationary oil properties equal to the oil properties at
the current mean oil temperature. This assumption will later be dropped for
particular situations to limit the error.
• The behaviour of a thin fluid film between two solid surfaces can be described

with lubrication theories. For a thicker film, hydrodynamic phenomena will be-
come relevant. Reynold’s theory of hydrodynamic lubrication (see [4]) describes
the case where the film is thick enough to be analysed by hydrodynamics and,
at the same time, thin enough so that Reynolds’ assumptions hold. This subject
is further discussed in [5, p. 11-22].
It is assumed, that Reynold’s theory of hydrodynamic lubrication applies. There-
fore, the following assumptions must hold:

– The oil flow is laminar.
– The gravity and inertia forces acting on the fluid can be ignored compared

to the viscous force.
– Compressibility of the fluid is negligible. That is, the density of the oil ρoil

is constant.
– The fluid is Newtonian and the coefficient of viscosity µoil is constant

throughout the area of lubrication.
– The fluid pressure p does not change along the film thickness h.
– The rate of change of the velocities vr and vϕ in the r direction and ϕ

direction is negligible compared with the rate of change in the z direction.
– There is no slip between the fluid and the solid surface.

Since Reynold’s theory neglects inertia forces, the Reynolds equations will be
modified such that the inertia force due to the rotational speeds ω1 and ω2 is
taken into account.

7



2 Modelling

2.1.2 Oil volume flow rate

With the stated assumptions, the Reynolds equations in cylindrical coordinates, as
expressed in [5, p. 55f], can be formulated.

µoil
∂2vr

∂z2 =
∂p
∂r
− ρoil

v2
ϕ

r
(2.1a)

µoil
∂2vϕ

∂z2 =
1
r

∂p
∂ϕ

(2.1b)

With the second term on the right hand side of (2.1a), the centrifugal force is taken
into account.

Considering the Reynolds assumptions, these equations are integrated in z twice.

µoil · vr =
∂p
∂r
· z2

2
− ρoil

r

∫ z

0

∫ z

0
v2

ϕ · dz̃dz̃ + z · C1 + C2 (2.2a)

µoil · vϕ =
1
r
· ∂p

∂ϕ

z2

2
+ z · C3 + C4 (2.2b)

C1...4 are the integration constants, that will be determined with the boundary condi-
tions.

For easier reading, in the following, the disk distance will be written as

h := h(ϕ) ∈ [hng, hg]. (2.3)

With the no-slip boundary conditions vr(z = 0) = 0 and vr(z = h) = 0, equation (2.2a)
leads to:

vr =
1

µoil
· ∂p

∂r
· z(z− h)

2
+

ρoil

µoil · r

(
z
h

∫ h

0

∫ z

0
v2

ϕ · dz̃dz−
∫ z

0

∫ z̃

0
v2

ϕ · dz̃dz̃
)

(2.4)

With the no-slip boundary conditions vϕ(z = 0) = r ·ω1 and vϕ(z = h) = r ·ω2, equa-
tion (2.2b) leads to:

vϕ =
z(z− h)
2r · µoil

· ∂p
∂ϕ

+ r ·ω1 +
z
h

r · (ω2 −ω1) (2.5)

Inserting equation (2.5) into (2.4), the mean radial velocity v̄r can be calculated.

h · v̄r =
∫ h

0
vr · dz =

1
40

ρoil

µoil
h3 · r · (ω2

1 + ω2
2 +

4
3
·ω1 ·ω2)−

1
µoil
· ∂p

∂r
· h3

12

+
ρoil

µoil · r

(
− ∂p

∂ϕ
· h5

120µoil
· (ω1 + ω2) +

(
∂p
∂ϕ

)2

· h7

1120µ2
oil · r2

)
(2.6)
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2.1 Oil flow

For easier reading, the characteristic rotational speed Ω is introduced.

Ω2 = ω2
1 + ω2

2 +
4
3
·ω1 ·ω2 (2.7)

To simplify the multidimensional partial differential equation (PDE) in (2.6), the
method of Non-dimensionalization is performed. For this purpose, first, all variables
will be expressed with dimensionless variables and constants. The constants are chosen
such that the dimensionless variables will have a magnitude around 1. In a next step,
the value of the constant part in each term can be calculated and compared. This
values are representative for the impact of the corresponding term on the equation.
Therefore, terms where the value is very small can be neglected.

The introduced dimensionless variables are:

r∗ :=
r
R

, R := (rout + rin)/2 (2.8a)

h∗ :=
h
H

, H := (hng + hg)/2 (2.8b)

p∗ :=
p

ρoil ·U2 , U :=
Q

2πRH
(2.8c)

ϕ∗ :=
ϕ

2π/ng
(2.8d)

v̄∗r :=
v̄r

U
(2.8e)

where ng is the number of radial grooves.

Substituting (2.8) into (2.6) results in:

H · h∗ · v̄r =
ρ

µoil
H3 ·

[
1

40
R ·Ω2 · h∗3 · r∗2 + U2

12 · R

(
−∂p∗

∂r∗
h∗3

−H2(ω1 + ω2) · ρoil

10 · µoil · 2π/ng
· 1

r∗
∂p∗

∂ϕ∗
+

H4 · 3
280

(
U · ρoil

2π · R · µoil

)2( ∂p∗

∂ϕ∗

)2 1
(r∗)2

)]
. (2.9)

The last three terms are investigated to find the negligible terms. The constant part of
the first term is 1. For the second and third term, exemplary values for dimensions
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Q
Qng

g

separator disk

friction disk

(a) Clutch open

Qg

(b) Clutch closed

Figure 2.4: The oil flow is split in two independent sections: the oil volume flow in the grooves Qg and
the oil volume flow outside Qng

and properties from table 3.2 are used to estimate their magnitudes.

H2

10
· (ω1 + ω2) · ρoil

µoil · 2π/ng
≈ (0.2 mm)2

10
· 3000 rpm · 857 kg/m3

0.12 kg/(m·s) · 2π/60
= 0.056 (2.10a)

U =
Q

2π · R · H ≈
1 l/min

2π · 120 mm · 0.2 mm
= 110.53 mm/s (2.10b)

H4 · 3
280

(
U · ρoil

2π/ng · R · µoil
)2 ≈ (0.2 mm)4 · 3

280
(

66.32 mm/s
2π/60 · 120 mm · 0.12 kg/(m·s)

)2

= 4.07 · 10−8.
(2.10c)

Consequently, both terms containing the pressure gradient ∂p∗/∂ϕ∗ can be dropped.
In the resulting equation, the dimensionless variables are substituted by the original
variables. The resulting, simplified PDE is:

h · v̄r =
∫ h

0
vr · dz =

1
40

ρoil

µoil
h3 · r · (ω2

1 + ω2
2 +

4
3
·ω1 ·ω2)−

1
µoil
· ∂p

∂r
· h3

12
. (2.11)

In this equation, the mean radial velocity is not influenced by the oil flow at other
angular locations. Therefore, the oil flow in the grooves Qg and outside Qng can be
considered as two independent sections (see figure 2.4).

The oil volume flow rates in both sections can be calculated with (2.11). However, for
the oil volume flow rate in the non-grooved area Qng, the roughness of disk surface
needs to be taken into account.
When the surface roughness RRMS is not very small compared to the lubrication film
thickness h (h/RRMS < 5), the flow rate will be smaller. In [6], a factor φp is proposed
to account for surface roughness in lubrication flow. For isotropic surfaces where

10



2.1 Oil flow

h/RRMS < 5, the following approximation formula applies:

Qng := Q̃ng · φp (2.12a)

φp = 1− e0.56hng/RRMS (2.12b)

The surface roughness RRMS is the standard deviation of the combined roughness of
both surfaces and Q̃ng is the oil volume flow between smooth surfaces.

The resulting oil volume flow rate in the two sections is:

Q =
∫ 2π

0

∫ h

0
r · vr · dzdϕ = Qg + Qng (2.13a)

Qg = 2π · xg ·
(

1
40

ρoil

µoil
h3

g · r2 ·Ω2 − r
µoil
· ∂p

∂r
·

h3
g

12

)
(2.13b)

Qng = 2π · (1− xg) ·
(

1
40

ρoil

µoil
h3

ng · r2 ·Ω2 − r
µoil
· ∂p

∂r
·

h3
ng

12

)
· φp (2.13c)

Where xg is the ratio of the grooved area on the disk surface to the total area of the
disk surface.

Since the pressure gradient in angular direction ∂p/∂ϕ is negligible regarding its
influence on the oil volume flow rate, the pressure gradient in radial direction ∂p/∂r
can be assumed to be the same in both sections. With this equality and (2.13b), the oil
volume flow rate in each section can finally be calculated.

∂p
∂r

=
3

10
ρoilrΩ2 −

Qg

2πxg

12
h3

g

µoil

r
=

3
10

ρoilrΩ2 −
Qng

2π(1− xg)φp

12
h3

ng

µoil

r

(2.13a)
=⇒ Qg = Q

1
(1− xg)h3

ng

(
φp

xgh3
g
+

1
(1− xg)h3

ng

)−1 (2.14)

2.1.3 Disk distance

During open and slip state of the clutch, the torque Tq results from viscous drag
and therefore highly depends on the disk distance h. Thus, with knowledge of the
torque, the disk distance can be estimated. The following calculations are based on
the approach in [7].

The drag torque Tqdrag is

Tqdrag =
∫ rout

rin

∫ 2π

0
σϕz · r2 · dϕ · dr, (2.15)

11



2 Modelling

where σϕz is the viscous stress defined as

σϕz = µoil
∂vϕ

∂z
. (2.16)

The angular flow speed vϕ is formulated in (2.5) and depends on the still unknown
pressure gradient ∂p/∂ϕ. The pressure gradient is calculated in a similiar way as
described in [7]: For a large number of grooves, the pressure can be approximated
as a piecewise linear function in angular direction in each section (grooved and
non-grooved). In other words, the pressure gradients ∂p/∂ϕ|ng and ∂p/∂ϕ|g are
constant.

With the conservation of mass equation in angular direction (applied to the flow
relative to the groove),∫ hng

0
(vϕ,ng −ω2 · r) · dz =

∫ hg

0
(vϕ,g −ω2 · r) · dz, (2.17)

and the periodicity of the pressure in angular direction,

xg ·
∂p
∂ϕ

∣∣∣∣
g
+ (1− xg) ·

∂p
∂ϕ

∣∣∣∣
ng

= 0, (2.18)

the pressure gradient ∂p/∂ϕ can be calculated.

∂p
∂ϕ

∣∣∣∣
ng

= −
6r2µoil(hg − hng) · (ω1 −ω2)

h3
ng +

1−xg
xg

h3
g

(2.19a)

∂p
∂ϕ

∣∣∣∣
g
=

6r2µoil(hg − hng) · (ω1 −ω2)
xg

1−xg
h3

ng + h3
g

(2.19b)

Inserting (2.19) and (2.5) into (2.16) results in:

σϕz = µoil · (ω1 −ω2) · r ·

xg

hg
+

1− xg

hng
+

3(hg − hng)2

1
1−xg

h3
ng +

1
xg

h3
g

 (2.20)

The viscosity of the oil µoil highly depends on the oil temperature and, since the
temperature depends on the radial position, the viscosity of the oil µoil changes with
the radial position. To keep the computational effort low, the viscosity is assumed to
be linear in radial direction:

µoil(r) = µoil(rin) + (r− rin)/(rout − rin) · (µoil(rout)− µoil(rin)). (2.21)

12



2.1 Oil flow

With (2.15) and (2.20), the relation between drag torque Tqdrag and h can finally be
formulated:

Tqdrag =

(
µoil(rin)

r4
out − r4

in
4

+
µoil(rout)− µoil(rin)

rout − rin

)(
r5

out
5
−

r5
in

20
− rin · r4

out
4

)

· (ω1 −ω2) ·

xg

hg
+

1− xg

hng
+

3(hg − hng)2

1
1−xg

h3
ng +

1
xg

h3
g

 (2.22)

In section 2.3.1, a relation between the drag torque Tqdrag between two disks and the
torque Tq transmitted by the clutch is formulated and discussed. The relation (2.22)
can be either used to estimate the drag torque in the open clutch state, where the disk
distance h can be derived from the clutch geometry, or to estimate the disk distance h
during closing or slip state, when Tqdrag can be derived from Tq.

2.1.4 Forming of rivulets

At low rotation speeds, the fluid transport is mainly caused by the pressure difference
pin − pout (Poiseuille force) generated by the pump. At high rotation speed, the
centrifugal force dominates the Poiseuille force and accelerates the radial speed of the
fluid v̄r. Since the oil volume flow rate Q stays constant, rivulets of oil are forming.
This phenomenon is discussed in [8] and [9]. The rivulets are surrounded by a mist
film of air and oil. Figure 2.5 shows an illustration of the situation.

With (2.13b) and the boundary condition p(rout) = pout, the pressure p(r) can be
calculated.

pout − p(r) =
∫ rout

r

∂p
∂r

dr =
3

10
ρoil

r2
out − r2

2
Ω2 − ·

Qng

2π

1
1− xg

12
h3

ng
log
(rout

r

)
µoil (2.23)

Where pout is the overpressure at the outlet - typically 0 N/m2.

Obviously, the pressure p(r) will decrease with increasing rotational speed Ω. When
p(r) reaches values beyond pout, air will flow in from the outside of the disk stack
and drive the pressure to pout (see figure 2.6).

This leads to the so called Reynolds cavitation boundary conditions [4]:

∂p
∂r

∣∣∣∣
r=rc

= 0 (2.24a)

p(r ≥ rc) = pout (2.24b)
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2 Modelling

mist

oil
rc

Figure 2.5: Due to the centrifugal force, rivulets of oil between the disks are forming, beginning at
radius rc. Between the rivulets is a mist film of oil and air.

rin rc rout

pout

pin

theoretical pressure (without cavitation)
pressure with cavitation

Figure 2.6: Pressure profile of the oil film between the clutch disks. Beginning at radius rc, rivulets
start to form, driving the pressure to pout
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2.2 Heat transfer to the oil

Where rc is the radius, where the continuous lubrication ends and rivulets start to
form. This is illustrated in figure 2.5.

When (2.24a) is applied to (2.14), the radius rc can be calculated.

r2
c =

Qg

2π · xg
· 12

h3
g
· µoil

ρoil ·Ω2 ·
10
3

(2.25)

Note that this radius is equal in the grooved and non-grooved sections due to the
previous claim of equal pressure distribution.

The mean radial speed of the rivulets in the grooved and non grooved section is
calculated from (2.11).

v̄r,i =
1
hi
·
∫ hi

0
vr,i · dz =

ρoil · h2
i · r ·Ω2

40µoil
−

h2
i

12µoil
· ∂p

∂r︸ ︷︷ ︸
(2.24a)
= 0

, i ∈ {g, ng}, r > rc (2.26)

From the conservation of mass, the ratio of the circular segment of rivulets to the total
circumference φriv can be calculated.

Qg = φriv · xg · 2π · r · hg · v̄r,g

=⇒ φriv(r) :=
Qg · 20µ

xgπr2 · h3
g · ρoil ·Ω2

(2.27)

Since this phenomenon will reduce the area of lubrication, the viscous torque and
also the heat transfer to the oil at high rotation speeds will decrease. The radius rc is
exemplarily shown in figure 2.7 for different rotational speeds.

2.2 Heat transfer to the oil

As also described in [10, chap. 9], an established method for modelling the heat
transfer qconv between a solid body and fluid is to first find the convective heat
transfer coefficient hconv for which the following relation applies:

qconv,i = hconv,i · (Ts − Tbulk,i), i ∈ {g, ng}, (2.28)

where Tbulk is the mean effective oil temperature in the groove

Tbulk,g =

∫ h
0 T · vr · r · dz∫ h

0 vr · r · dz
, (2.29)
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rotational speed Ω in rpm

400 600 800 1000 1200 1400

ra
d
iu
s
r
in

m
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0

100

200

300

rc
rin
rout

Figure 2.7: Exemplary magnitude of the radius rc where rivulets start to form depending on the
rotational speed Ω. When rc reaches values beyond the outer radius rout, rivulets start to
form. For rc < rin, there are rivulets on the whole surface

or outside

Tbulk,ng =

∫ h
0 T · vϕ · dz∫ h
0 vϕ · r · dz

, (2.30)

respectively.

koil is the thermal conductivity of oil for which the following relation holds:

qconv = − ∂T
∂z

∣∣∣∣
z=0
· koil (2.31)

With this approach, the temperature distribution in z and in r direction can be inves-
tigated separately. Subsections 2.2.2 and 2.2.3 deal with the heat transfer coefficient
hconv. In subsection 2.2.4, the temperature distribution in r direction will be estimated,
using hconv.

2.2.1 Assumptions

In this section, many strong assumptions are made, that are not all sufficiently
justified. For the relations derived in this section, empirical validation is particularly
important.

• For considerations regarding the heat transfer coefficient hconv, the system is
assumed stationary. For estimating the temperature distribution in r direction,
only the time variance of the oil temperature and the surface temperature will be
considered. Especially during closing or opening of the clutch, this assumption
will lead to a deviation of the result from the real heat transfer, since the squeeze
flow is not considered.

16



2.2 Heat transfer to the oil

• The oil temperature profile is assumed symmetric in z direction. This assumption
is applicable if either the surface temperatures of the separator disk and the
friction disk do not differ significantly, or the oil temperature in the centre of the
flow is not significantly influenced. In the considered system, neither of these
conditions can be assumed. Therefore, the arising error will be reduced by a
separate term for the heat transfer between both halves of the oil film:

qconv,oil = (Tbulk,g,1 − Tbulk,g,2) · hc,oil, (2.32)

where hc,oil is found empirically.
• The Nusselt number in the grooves and outside will be estimated independently.

Therefore, for estimating the heat transfer in the groove, the influence of the
non-grooved area is neglected and for estimating the heat transfer in the non-
grooved area, the temperature in the groove is assumed constant in z. This is
further discussed in subsection 2.2.2.

2.2.2 Nusselt number

The Nusselt number Nu is a dimensionless variable that characterizes the heat transfer.
This is further discussed in [10, chap. 9.4]. It is defined as

Nu =
hconv · Dhyd

koil
, (2.33)

where Dhyd is the characteristic hydraulic diameter, which is 4 times the ratio of the
cross section area of the flow to the wetted circumference in this cross section:

Dhyd =
4 · 2πr · h

2πr · 2 = 2 · h (2.34)

From (2.28) and (2.31) follows:

hconv =

∂T
∂z

∣∣∣
z=0
· koil

Ts − Tbulk
(2.35)

From (2.33) and (2.35) follows that, to calculate the Nusselt number, the temperature
gradient is necessary. Therefore, the problem of finding Nu is equal to solving the
conservation of thermal energy equation

ρoilcp,oil

(
1
r

∂

∂r
(r · vr · T) +

∂

∂ϕ
(

vϕ

r
· T)

)
= koil

∂2T
∂z2 (2.36)

where cp,oil is the heat capacity of oil. This is a PDE that cannot be solved analytically
for the situation as it was described so far. Therefore, several further assumptions and
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2 Modelling

simplifications need to be made. These are preferably based on the observations from
other resources.

In [11], the heat transfer during slip state of the wet clutch was analysed numerically.
It was shown that the oil flow can be separated in 2 zones: a recirculation zone in the
groove and a stream along the separator plate that can be considered as Couette flow.
The Nusselt number in the recirculation zone will increase with increasing Reynolds
number of the Couette flow. In [12] the Nusselt number in a general lid driven cavity
is numerically investigated. The qualitative results for the Nusselt number in the
groove are similar.

Since neither an analytical nor a numerical solution for describing the recirculation
zone would be compatible with the limited computational resources presumed in
this thesis, only approaches for the Nusselt number in the grooves without rotational
speed and the Nusselt number of the Couette flow in the non-grooved area will be
presented. The error by neglecting the recirculation flow will be discussed in chapter
3.

In the closed clutch state, the angular flow velocity disappears. Therefore the velocity
reduces from (2.4) to

vr,g =
Qg

2πr · xg
z(hg − z)

6
h3

g
. (2.37)

As discussed, the flow in the non-grooved area will be assumed to be a Couette flow.
That is, the flow will be solely driven by movement of the walls and not by pressure
difference. However, the decrease of the velocity due to the roughness of the friction
surface will be considered. This is modelled with the shear flow factor φs presented
in [13].

The coordinate system will be placed on the grooved disk, oriented in the direction
of positive relative angular speed ∆ω = |ω1 −ω2|. In the resulting Couette flow, the
velocity reduces from (2.5) to

vϕ,ng = r · ∆ω · z
hng
· φs (2.38)

For isotropic roughness on the paper surface and hng < 0.02 mm, the shear flow factor
φs can be calculated with

φs = 1− 1.899 ·
(

hng

RRMS

)−0.02

· exp

(
−0.92 ·

hng

RRMS
+ 0.05 ·

(
hng

RRMS

)2
)

. (2.39)

Where RRMS is the root-mean square amplitude of the surface roughness. For larger
disk distance hng, the shear flow factor is approximately 1.
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2.2 Heat transfer to the oil

z

z
r

T(r,z)

h
gT(rin)

z*

r*

θ(r*,z*)
2

θ(1)

θ = 0

θ = 1

Figure 2.8: Considered system for the Nusselt number in the grooves

For all presented approaches, laminar flow is assumed. As stated in [10, chap. 9.10],
this is a valid assumption if the Reynolds number Re is smaller than 2300. To check
this, the Reynolds number is calculated using exemplary values from table 3.2.

Re =
vr · Dhyd · ρoil

µoil
=

Q · ρoil

π · r · µoil
≈ 1 l/min · 857 kg/m3

π · 120 mm · 0.12 kg/ms
= 0.316 (2.40)

To gain an analytical solution of an applicable complexity for the Nusselt number in
the grooves, the PDE in (2.36) needs to be further simplified. This can be done for
example by assuming constant wall temperature or constant rate of heat transfer. Both
approaches will be presented.

Average Nusselt number in the groove with constant wall temperature

With (2.37), (2.36) becomes:

ρoilcp,oil ·
Qg

2πr · xg
z(hg − z)

6
h3

g

∂T
∂r

= koil ·
∂2T
∂z2 . (2.41)

In the first step, (2.41) is transformed to a more convenient form. This is done by
shifting the z-axis of the coordinate system to the centre of the flow, and then trans-
forming the variables to a dimensionless form. The considered system is illustrated in
figure 2.8.
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2 Modelling

The following dimensionless variables are introduced:

θ :=
T − Ts

T(rin)− Ts
(2.42a)

z∗ :=
z

hg/2
− 1 (2.42b)

r∗ :=
r

r∗in
, r∗in := rin

(
2πr2

in
Qg

4koil

3hgρoilcp,oil

)−1/2

(2.42c)

where Ts = T(z = 0) is the surface temperature.

Substituting these variables into (2.41) results in:

1
r∗
(1− z∗2)

∂

∂r∗
θ =

∂2θ

∂z2 (2.43)

As discussed in 2.2.1, the temperature profile is assumed symmetric. Therefore, the
boundary conditions are:

θ(z∗ = ±1) = 0 (2.44a)
θ(r∗ = r∗in) = 1 (2.44b)

Since the PDE (2.43) with boundary conditions (2.44) is homogeneous, it can be solved
by the method of separation of variables. This method is described for example in [14,
p.98ff].

With
θ(r∗, z∗) := R(r∗) · Z(z∗), (2.45)

(2.43) transforms to two ordinary differential equations.

∂R(r∗)
∂r∗

· 1
r∗ · R(r∗) = λ̃ (2.46a)

∂2Z(z∗)
∂(z∗)2 ·

1
Z(z∗) · (1− (z∗)2)

= λ̃, (2.46b)

where λ̃ is the eigenvalue. For physically reasonable results, λ̃ must be non-positive.
Therefore, the following substitution is applied: −λ2 := λ̃.
The ODE in z∗ with the boundary condition (2.44a) is a Sturm Liouville problem (this
type of problems is described in [14]) with a finite number of eigenvalues λ that lead
to non-trivial solutions. In the following, these eigenvalues and their corresponding
solutions are indexed with m ∈N.
In [15] an approach for calculating the eigenvalues λm is presented. The first 3 values
are shown in table 2.1.
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2.2 Heat transfer to the oil

m λm
0 1.6816

1 5.6698

2 9.6682

Table 2.1: Values of λm

m
0 1 2 3 4

λ
m
−
(5
/3

+
4
·
m
)

0

0.005

0.01

0.015

Figure 2.9: The eigenvalues from the Sturm Liouville Eigenvalue problem (2.46) soon converge to the
linear function (2.47)

It is also shown in [15] and apparent from figure 2.9, that λm will soon converge to

λm=̇
5
3
+ 4 ·m. (2.47)

The corresponding solutions will be formulated as a power series

Zm(z∗) =
∞

∑
k=0

am,k · (z∗)k, (2.48)

with the recurrence formula

am,k =
λm

k(k− 1)
(am,k−4 − am,k−2), k > 2 (2.49)

Note that only even powers of z will occur due to the symmetry of the temperature
profile. From (2.44a), the following condition for am,k results:

∞

∑
k=0

am,k = 0. (2.50)

The initial condition for the recurrence formula is chosen as:

am,0 := 1. (2.51)
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2 Modelling

A particular solution of the ODE in (2.46a) is

Rm(r∗) = Am · e−
λ2

m
2 r∗2 , (2.52)

where Am is a constant that results from the boundary conditions.

Combining (2.48) and (2.52) leads a particular solution for θm:

θm(r∗, z∗) = Rm(r∗) · Zm(z∗) = Am · e−
λ2

m
2 r∗2 ·

∞

∑
k=0

am,k(z∗)k (2.53)

The general solution reads

θ(r∗, z∗) = R(r∗) · Z(z∗) =
∞

∑
m=1

(Am · e−
λ2

m
2 r∗2 ·

∞

∑
k=0

am,k(z∗)k)

=
∞

∑
m=1

∞

∑
k=0

(Am · e−
λ2

m
2 r∗2 · am,k(z∗)k)

(2.54)

Applying boundary condition (2.44b) gives

θ(r∗ = r∗in, z∗) =
∞

∑
k=0

(
(z∗)k ·

∞

∑
m=1

(
Am · e−

λ2
m
2 r∗2in · am,k

))
= 1

=⇒
∞

∑
m=1

(Am · e−
λ2

m
2 (r∗in)

2 · am,k) =

{
0 k > 0
1 k = 0

.

(2.55)

The values for Am can be estimated by solving (2.55) for a finite sum:

M

∑
m=1

(Am · e−
λ2

m
2 (r∗in)

2 · am,k) =

{
0 M− 1 > k > 0
1 k = 0

. (2.56)

This is possible, since the terms of the sum converge to zero, which can be shown by
trial.

For calculating the Nusselt number, we are interested in the mean effective oil temper-
ature θbulk, which results from substituting (2.42a) into (2.29).

θbulk =

∫ 1
0 θ · (1− (z∗)2) · dz∗∫ 1

0 ·(1− (z∗)2) · dz∗

=
∞

∑
m=1

3
2

Am

∞

∑
k=0

am,k

(
1

k + 1
− 1

k + 3

)
· e−

λ2
m
2 r∗2

=
∞

∑
m=1

Gm · e−
λ2

m
2 (r∗2−r2

in),

(2.57a)

with Gm =
3
2

Am · e−
λ2

m
2 r∗2in ·

∞

∑
k=0

am,k

(
1

k + 1
− 1

k + 3

)
. (2.57b)
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2.2 Heat transfer to the oil

m λm Gm
1 1.6816 0.910

2 5.6698 0.0533

3 9.6682 0.0153

Table 2.2: Values of λm and Gm

With (2.56), the values for Gm can be determined. The first three values are shown in
table 2.2

To calculate the average Nusselt number Nug,1 the conservation of thermal energy
equation is formulated again, with (2.29), (2.35) and (2.33):

ρoilcpoil ·
Qg

2πrxg
·

∂Tbulk,g

∂r
= Nug

koil

2h
(Ts − Tbulk,g)

(2.42)
=⇒ 1

r∗
∂θbulk

∂r∗
8
3
= −Nug · θbulk

(2.58)

Solving this differential equation, the average Nusselt number Nug,1 in the region
between r∗in and r∗out can be calculated

Nug,1 =
8
3

ln
(

θbulk(r∗in)
θbulk(r∗out)

)
·
(

r∗2out
2
−

r∗2in
2

)−1

(2.59)

where θbulk(r∗in) and θbulk(r∗out) are calculated with equation (2.57a).

Average Nusselt number in the groove with constant rate of heat transfer

Constant rate of heat transfer qconv suggests the assumption of thermally fully de-
veloped flow. This means that the shape of the temperature profile in z direction is
constant along r. In other words:

∂2T
∂r∂z

= 0. (2.60)

With this assumption, the solution for the Nusselt number becomes very simple. The
derivation can also be found in [10, chap. 9.10] for Cartesian coordinates.

With this condition and (2.37), (2.36) can easily be integrated along z:

T = −
ρoilcp,oil

koil

1
r

∂T
∂r

Q
2π

(
z3hg −

z4

2

)
1
h3

g
+ C1 · z + C2, (2.61)

where C1 and C2 are integration constants.
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When assuming a symmetric temperature profile in z, the boundary conditions are

∂T
∂z

∣∣∣∣
z=h/2

= 0 (2.62a)

T(z = 0) = Ts. (2.62b)

Inserting this boundary conditions into (2.61) results in:

T = −
ρoilcp,oil

koil

1
r

∂T
∂r

Q
2π

(
(z3hg −

z4

2
)

1
h3

g
− z

2

)
+ Ts, (2.63)

and the derivative of the temperature on the disk surface is:

∂T
∂z

∣∣∣∣
z=0

=
ρoilcp,oil

koil

1
r

∂T
∂r

Q
2π

1
2

. (2.64)

Combining equations (2.33), (2.34) and (2.64), the Nusselt number can be calculated:

Nug,2 =
ρoilcp,oil

1
r
·

∂T
∂r
·

Q
2π
·

1
2

Q
2π

ρoilcp,oil

koil

1
r
·

∂T
∂r
·

17hg

140

·
2hg

koil
= 8.235 (2.65)

This is the Nusselt number for fully developed flow. Checking of applicability of
this assumption is done by quantifying the thermal entry length. The thermal entry
length Llam,t characterizes the flow length after which fully developed flow is (almost)
reached. If this length is much smaller than the total flow length L = rout − rin, the
assumption of fully developed flow is applicable. In [10, chap. 9.6], an approximate
formula for Llam,t is stated. Using exemplary values from table 3.2 and the Reynolds
number Re from (2.40), an estimate can be calculated.

Llam,t = 0.05 · Re · Pr · Dhyd = 0.05 · Re · Pr · 2hg

≈ 0.05 · 0.316 · 1510 · 2 · 0.2 mm = 9.55 mm
(2.66a)

with Pr =
cp,oil · µoil

koil
≈ 1990 J/(kg· K) · 0.12 kg/(m· s)

0.158 W/(m· K)
= 1510 (2.66b)

where the Prandtl number Pr is a dimensionless variable that characterizes the ratio
of viscous diffusivity to thermal diffusivity. The estimated thermal entry length is not
much smaller than the total flow length, which is around 30 mm.

Consequently, the Nusselt number will be corrected for non-developed flow. For
this purpose, the formula by Hausen, as stated in [10, chap. 9.10], that provides an
approximate solution for the mean Nusselt number over the whole flow length, will be
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2.2 Heat transfer to the oil

adapted for cylindrical coordinates and used to estimate the average Nusselt number
Nug,2.

Nug,2 = Nug,2 +

0.023
Dhyd

L

(
µoil(rout) · rout

µoil(rin) · rin

)0.14

Re · Pr

1 + 0.0012

[
Dhyd

L
Re · Pr

] (2.67)

Two different approaches for estimating the Nusselt number have now been presented.
Since neither the surface temperature Ts nor the rate of heat transfer qconv is constant
over r, it is important to quantify the error caused by these assumptions. This will be
further discussed in chapter 3. However, it is noted that the estimation of the Nusselt
number is just a raw approximation, and implementing a complex model for the
Nusselt number would not be appropriate.

Both Nusselt numbers Nug,1 and Nug,2 over the disk distance hg and the outer radius
(starting from rin) are shown in figure 2.10 for exemplary data from table 3.2. Since
the magnitude of both is almost constant in a wide range, the Nusselt number will be
assumed constant. This will cause that the heat transfer in the entry region will be
underestimated. However, since the average Nusselt number of the whole surface is
indeed almost constant in hg, the total heat transfer will not be significantly influenced
by this simplification. The average values of the two presented methods are around 7.8
and 8.4. Only with the considerations made in this section, there is no valid reasoning
for the best choice of which value to use for the Nusselt number Nug. This issue will
be treated in chapter 3.

Nusselt number in the non-grooved area with constant wall temperature and a
linear velocity profile

For the non-grooved region, it is assumed that the temperature entering this region
T(ϕ = 0) is constant in z. For a more accurate boundary condition, knowledge of the
recirculation flow would be necessary. The value of T(ϕ = 0) is:

T(ϕ = 0) = Tbulk,ng(ϕ = 0) = Tbulk,g(r) · ξ + Ts(r) · (1− ξ), (2.68)

where ξ is found empirically.
The considered situation is illustrated in figure 2.11 The angular flow speed in the
non-grooved area (see equation (2.38)) is linear in z. This fact makes the solution for
the Nusselt number with constant wall temperature a lot easier.

Substituting (2.38) into (2.36) leads to the PDE:

ρcp,oil
∂

∂ϕ

(
r · ∆ω · z

hng
· φs

r
· T
)

= koil
∂2T
∂z2 , (2.69)
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Figure 2.10: The Nusselt number in the grooves can be estimated for example by assuming constant
heat transfer on the surface or constant surface temperature. For the exemplary data from
table 3.2, they are both almost constant in r and hg in a wide range

When substituting the following dimensionless variables:

θ :=
T − Ts

T(ϕ = 0)− Ts
(2.70a)

z∗ :=
z

hng
(2.70b)

ϕ∗ := ϕ ·
(

ρoilcp,oil

koil
· ∆ω · h2

ng · φs

)−1

, (2.70c)

this PDE becomes:

z∗
∂θ

∂ϕ∗
=

∂2θ

∂(z∗)2 . (2.71)

This equation can be solved by the method of combination of variables if the boundary
conditions are compatible. The combined variable is

η := z∗ · (9 · ϕ∗)−1/3. (2.72)

The boundary conditions then are:

θ(z∗ = 0) = θ(η = 0) = 1 =⇒ θ(ϕ∗ → ∞) = 1 (2.73a)
θ(ϕ∗ = 0) = θ(η → ∞) = 0 =⇒ θ(z∗ → ∞) = 0. (2.73b)
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Tbulk(r)

Δω

ϕ

z
T(r,z,ϕ)r δt(ϕ)

Figure 2.11: Considered system for the Nusselt number in the non-grooved region. On the surface of the
disk, a thermal boundary layer with thickness δt in which the temperature is significantly
influence by the surface will emerge

While boundary condition (2.73a) results from the previous assumption of constant
temperature at the beginning of the non-grooved section, for (2.73b) another assump-
tion is needed. For this, the following is considered: Beginning at the entry region, a
thermal boundary layer with thickness δt will emerge. This is illustrated in figure 2.11.
Outside this boundary layer, the temperature is not influenced significantly. Conse-
quently, as long as the boundary layers from both disks do not touch (2 · δt < hng),
they can be considered independently. In other words, the influence of the disk oppo-
site to the considered boundary layer can be neglected and the boundary condition
θ(z∗ → ∞) = 0 will hold.

The boundary layer thickness δt(∆ϕ · r) can be approximated as stated in [10, chap.
9.6]. Using exemplary values from table 3.2, the thickness can be estimated:

δt = 5 · ∆ϕ · r ·
(

∆ωρoil

µoil
∆ϕ · r2

)−0.5

· Pr−0.33

≈ 5 · 0.06 · 120 mm ·
(

2000 rpm · 857 kg/m3

0.12 kg/ms
0.06 · (120 mm)2

)−0.5

· (1510)−0.33

= 0.094 mm
(2.74)

Consequently, this model is not valid in the slip state, for which the Nusselt number
will be underestimated. Nevertheless, the Nusselt number for large disk distance hng
can be estimated with the proposed approach.

The PDE (2.71) simplifies to an ODE by inserting the combined variable (2.72):

− 3 · η2 ∂θ

∂η
=

∂2θ

∂η2 . (2.75)

27



2 Modelling

Figure 2.12: The Nusselt number in the non-grooved area significantly depends on the disk distance
hng. With the exemplary data from 3.2, the model is only valid for hng > 0.2mm

With the boundary conditions (2.73), the solution is:

θ(η) = 1−

∫ ∞

η3

e−η̃

η̃2/3dη̃∫ ∞

0

e−η

η2/3dη

= 1− Γ(1/3, η3)

Γ(1/3)
(2.76)

where Γ(x) is the so called Gamma-function and Γ(x, y) is the incomplete Gamma-
function as described in [16, p.41].

With (2.76), (2.35),(2.33) and (2.70), the Nusselt number can be calculated:

Nung =
∂θ

∂η

∣∣∣∣
z=0
· (9ϕ∗)−1/3 · 2

=
3

Γ(1/3)

(
ρoilcp,oil

koil
· ∆ω · h2

ng · φs

)1/3

(9ϕ)−1/3 · 2.
(2.77)

The average Nusselt number between two grooves Nu with distance ∆ϕ · r results
in:

Nung =
1

∆ϕ

∫ ∆ϕ

0
Nung · dϕ = 1.614 ·

(
ρoilcp,oil

koil
· ∆ω · h2

ng · φs

)1/3

· (∆ϕ)−1/3 (2.78)

The Nusselt number Nung over the disk distance hng and the flow length represented
as a percentage of the groove distance ∆ϕ is shown in figure 2.12 for exemplary data.
For this data, the model is valid for hng > 0.2 mm.

Again, for the same reasoning, the Nusselt number will be assumed constant along
the flow length ϕ. The dependence on the disk distance hng is not negligible.
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Δω
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Figure 2.13: Heat is added to the oil in the groove by mass transfer ṁ from the non-grooved area

2.2.3 Total heat transfer coefficient

To reduce computational effort, only the bulk temperature in the grooved area and the
influence of the non-grooved area on this temperature is calculated. For this purpose,
a total heat transfer coefficient hconv,t, representing the combined heat transfer in the
grooves and outside is introduced.

hconv,t = hconv,g · xg + hconv,ng, (2.79)

where hconv,g is the heat transfer in the groove calculated with equation (2.33):

hconv,g = Nug ·
koil

2hg
, (2.80)

and hconv,ng accounts for the heat added to the oil in the groove by mass transfer from
the non-grooved area as illustrated in figure 2.13.

To calculate the bulk temperature of the oil that flows from the non-grooved area into
the groove, the conservation of energy equation in angular direction is considered.

With (2.28), (2.30) and (2.33), the conservation of energy in the non-grooved area in
angular direction is:

∂

∂ϕ

∫ hng

0
ρoilcp,oil ·

∆ω

2
· φs · Tbulk,ng(ϕ) · dz = qconv,ng

=̇Nung ·
koil

2hng

(
Ts − Tbulk,ng(ϕ)

)
,

(2.81)

where qconv,ng is the convective heat transfer in the non-grooved area.
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With the boundary condition Tbulk,ng(ϕ = 0) = ξ · Tbulk,g + (1− ξ) · Ts, the solution
to this differential equation is:

Tbulk,ng(ϕ) = Ts · (1− e−C·ϕ) +
(
ξ · Tbulk,g + (1− ξ) · Ts

)
· e−C·ϕ, (2.82a)

with C =
koil

ρoilcp,oil · φs · ∆ω · h2
ng
· Nung. (2.82b)

The heat transfer due to mass flow from the non-grooved area to the oil in the groove
is:

qṁ,ng =

∆ω

2
· φs · ρoilcp,oil · hng

(
Tbulk,ng(ϕ = ∆ϕ)− (ξ · Tbulk,g + (1− ξ) · Ts)

)
·

ng

2π · r ,
(2.83)

where ng is the number of grooves. The distance of the grooves ∆ϕ is:

∆ϕ =
2πr
ng

(1− xg). (2.84)

Substituting (2.82) and (2.84) into (2.83) results in:

qṁ,ng =
1

C · ∆ϕ
(1− e−C·∆ϕ) · Nung ·

koil

2hng
· (1− xg) · ξ · (Ts − Tbulk,g), (2.85)

and the corresponding heat transfer coefficient hconv,ng is

hconv,ng =
1

C · ∆ϕ
(1− e−C·∆ϕ) · Nung ·

koil

2hng
· (1− xg) · ξ. (2.86)

Finally, the total heat transfer coefficient hconv,t is:

hconv,t = Nug ·
koil

2hg
xg +

1
C · ∆ϕ

(1− e−C·∆ϕ) · Nung ·
koil

2hng
(1− xg) · ξ, (2.87)

and the total rate of heat transfer qconv is:

qconv = hconv,t · (Ts − Tbulk,g). (2.88)
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2.2.4 Oil temperature distribution in radial direction

As discussed in the subsection 2.2.3, due to the limited computational resources, only
the bulk temperature in the groove Tbulk,g will be calculated. For better readability,
the subscript g will be omitted for Tbulk,gin this subsection.

When using the heat transfer coefficient hconv,t (2.87), the oil temperature Tbulk can
be calculated without considering the z or ϕ coordinate. For stationary flow, the
conservation of energy equation would simplify from a PDE to an ODE in r. Since
the surface temperature Ts is highly time variant, the transient conservation of energy
equation needs to be considered.

For this problem, an analytical solution is not applicable. The most common numerical
method for solving a one-dimensional, transient heat transfer problem in a fluid flow
would be the finite difference method, as stated in [10].

The quality of the solution of finite difference schemes highly depends on the CFL
number (Courant-Friedrichs-Lewy number) as described in [17, p. 106ff].

CFL = v̄r
∆t
∆x

(2.89)

Where ∆t is the time step and ∆x the space step in r direction.

Since the velocity v̄r will vary in a wide range due to varying disk distance h and oil
flow rate Q, a variable step size would be necessary. Another drawback is the high
computational effort that is needed for a sufficiently small step size.

For these reasons, a different approach will be attempted in this subsection. The
main focus is to preserve the conservation of energy in the entire system. The idea
is to approximate the heat transfer qconv with a polynomial such that the change of
temperature in the oil and in the disk caused by the approximated rate of heat transfer
qconv can be calculated exact. Although the conservation of energy and therefore first
law of thermodynamics will hold, the second law of thermodynamics may be violated
since the heat transfer will not be modelled exact. The stability of the system will be
investigated in chapter 3.

While the Eulerian specification of the flow field, where the flow is observed at specific
locations in the field, was used for all previous considerations, in this chapter the
Lagrangian specification of the flow field will be used. In the Lagrangian specification
of the flow field, one fluid parcel is observed while it flows through space. This is
illustrated in figure 2.14. Following the considerations in subsection 2.2.2, not an
actual fluid parcel is observed, but rather a fictional bulk segment, extending over
the whole disk distance h̄ = xg · hg + (1− xg) · hng, that moves with the mean flow
speed.
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r(t)
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q       (r(t),t)conv

T(r(t),t)

vr

Figure 2.14: In the Lagrangian specification of the flow, one fluid parcel is observed while it flows with
velocity v̄r. At each point in time and space, the heat flows to the parcel through heat
transfer qconv(r(t), t)

The transient conservation of energy equation in the Lagrangian specification of the
field is:

dTbulk(t, r(t))
dt

h̄ρoilcp,oil = qconv (2.90)

with dr(t) = v̄r · dt.

This equation is transformed to a more convenient form by introducing a variable dr∗

such that v∗r = dr∗/dt is constant in r. For the oil flow with rivulets, different variables
dr∗riv and v∗r,riv are necessary.

v∗r :=
Q

2πh̄
, dr∗ = r · dr (2.91a)

v∗r,riv :=
1

40
· ρoil

µoil
· h̃2 ·Ω2, dr∗riv =

dr
r

(2.91b)

Where h̃ is the mean effective disk distance h̃2 = ((1− xg) · h3
ng + xg · h3

g)/h̄.

The following derivation will be equal for the flow with rivulets and without. For
simplicity, the subscript riv will be omitted.

When inserting (2.91) into (2.90) and integrating in time, the change of the bulk
temperature Tbulk in one time step ∆t results in:

Tbulk(r∗, t)− Tbulk(r∗ − v∗r · ∆t, t− ∆t) =
1

ρoilcp,oil · h̄

∫ t

t−∆t
qconv(v∗r · t̃, t̃) · dt̃

=
1

ρoilcp,oil · h̄ · v∗r

∫ r∗

r∗−∆r∗
qconv(r∗, r∗/v∗r ) · dr∗

(2.92)
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Due to the discrete time computation of the heat transfer, the following equation
holds:

qconv(t− ∆t̃) = qconv(t− ∆t), ∀∆t̃ ∈ (0, ∆t] , (2.93)

and (2.92) can be simplified to:

Tbulk(r∗, t)− Tbulk(r∗ − ∆r, t− ∆t) =
1

ρoilcp,oil · h̄ · v∗r

∫ r∗

r∗−∆r∗
qconv(r∗, t) · dr∗, (2.94)

where ∆r = v∗r · ∆t is the space step.

For expressing time-variant variables f in discrete time, the following notation is
introduced:

f t := f (t0 + ∆t · t), t ∈ Z (2.95)

The polynomial approximation of the heat transfer qconv is chosen such that it is
optimal in the least-squares sense. As it is derived in [18, p. 251ff], such an approx-
imation is achieved by projecting the function to any orthogonal polynomial space.
The Chebyshev polynomials are orthogonal polynomials used for this purpose. This
is derived in [18, p.239f]. Therefore when using the Chebyshev nodes for polynomial
interpolation, the resulting polynomial will be optimal in the least squares sense.

The n Chebyshev nodes in the interval [r∗in, r∗out] are:

r∗cheb,k =
r∗in + r∗out

2
+

r∗out − r∗in
2

· cos(
2k− 1

2n
π), k ∈ {1, ..., n}. (2.96)

The heat transfer qconv is approximated with a polynomial of order n.

qt
conv(r

∗) :=
n

∑
k=0

(r∗ − r∗in)
k · ãt

k (2.97)

Therefore, its antiderivative Fqconv will be of order n + 1.

Ft
qconv

(r∗) =
∫

qconv · dr∗ :=
n+1

∑
k=0

(r∗ − r∗in)
k · at

k (2.98)

With this and (2.95), (2.94) results in:

Tt
bulk(r

∗) =
1

ρoilcp,oil · h · v∗r

(
Ft−1

qconv
(r∗)− Ft−1

qconv
(r∗ − ∆r∗)

)
+ Tt−1

bulk(r
∗ − ∆r∗). (2.99)

As a result, Tbulk will be a polynomial of order n.

Tt
bulk(r

∗) :=
n

∑
k=0

(r∗ − r∗in)
k · bt

k (2.100)
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The coefficients bk can be calculated with (2.99). The linear system of equations,
exemplary for n = 3, is:


b0
b1
b2
b3


t

=


1 −∆r∗ (∆r∗)2 −(∆r∗)3

0 1 −2∆r∗ 3(∆r∗)2

0 0 1 −3∆r∗

0 0 0 1

 ·


b0
b1
b2
b3


t−1

+

1
ρoilcp,oil · h · v∗r


∆r∗ −(∆r∗)2 (∆r∗)3 −(∆r∗)4

0 2∆r∗ −3(∆r∗)2 4(∆r∗)3

0 0 3∆r∗ −6(∆r∗)2

0 0 0 4∆r∗

 ·


a1
a2
a3
a4


t−1

(2.101)

Since Tbulk is a polynomial of order n, with (2.88), the problem of approximating qconv
can be shifted to the polynomial approximation of a fictional surface temperature
Ts,f.

Tt
s,f :=

n

∑
k=0

(r∗ − r∗in)
k · ct

k (2.102)

qt
conv = hconv ·

n

∑
k=0

(r∗ − r∗in)
k · (ct

k − bt
k) (2.103)

Note that polynomial approximation is a linear operation and therefore, least squares
optimal approximation of the surface temperature implies least squares optimal
approximation of the heat transfer.

The following boundary condition for Tbulk must be satisfied:

Tt
bulk(r

∗ = r∗in) = bt
0 = Tt

oil,in, (2.104)

where Toil,in is the temperature of the incoming oil. With (2.88) and (2.99), (2.104)
becomes:

∫ −∆r

0
Tt

s,f(−∆r)dr∗ =
(

Tt−1
bulk(−∆r∗)− Tt

oil,in

) ρoilcp,oil · h · v∗r
hconv,t

+
∫ −∆r

0
Tt

bulkdr∗

(2.105)
To satisfy (2.105), the approximation of the fictional surface temperature must be
adapted accordingly. The Vandermonde Matrix for the polynomial interpolation, as
described in [18, p. 147], is extended by the boundary condition (2.105). The resulting
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Figure 2.15: Relations between the variables used for calculating the oil bulk temperature and the
convective heat transfer from the disk to the oil qconv. From the polynomial interpolation
of the surface temperature and the boundary condition (2.105), the fictional surface
temperature is calculated in (2.106). From the conservation of energy, the relations between
Ts,f, Tbulk and qconv are formulated in (2.101) and (2.103)

equation, exemplary for n = 3, is:
1 r∗cheb,1 (r∗cheb,1)

2 (r∗cheb,1)
3

1 r∗cheb,2 (r∗cheb,2)
2 (r∗cheb,2)

3

1 r∗cheb,3 (r∗cheb,3)
2 (r∗cheb,3)

3

−∆r∗ (−∆r∗)2

2
(−∆r∗)3

3
(−∆r∗)4

4

 ·


c0
c1
c2
c3



=


Ts(r∗cheb,1)

Ts(r∗cheb,2)

Ts(r∗cheb,3)

(Tt−1
bulk(−∆r∗)− Tt

oil,in)
ρoilcp,oil·h·v∗r

hconv,t
+
∫ −∆r

0 Tbulkdr∗

 .

(2.106)

In figure 2.15, the relations between the calculated variables are summarized. In
figure 2.16, the surface temperature of the clutch Ts, the fictional temperature Ts,f
and the bulk temperature Tbulk are shown for exemplary data from table 3.2 for
n = 6. At r ≤ rin, the correction of the fictional surface temperature for the boundary
condition (2.105) is evident.
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Figure 2.16: Surface temperature of the clutch Ts and resulting bulk temperature Tbulk and fictional
surface temperature Ts,f. At r ≤ rin, the correctio of the fictional surface temperature for
the boundary condition (2.105) is evident. At r > 145, the oil temperature profile disagrees
with the second law of thermodynamics, due to the approximation error

2.3 Heat generation and distribution

The heat qgen is generated by friction between the disks and viscous dissipation in the
oil between the disks. The total heat generation on the disk surface equals the input
of mechanical power into the system, which is:

∫ rout

rin

∫ 2π

0
qgen · r · dϕ · dr = Tqdrag · ∆ω + Q · (pout − pin). (2.107)

In normal clutch operation (that is, the magnitude of the oil volume flow is in an
appropriate range), the second term is insignificantly small and will therefore be
neglected.

The drag torque Tqdrag can be calculated from the torque transmitted by the clutch
Tq. Due to the axial force loss, the drag torque is different in each pair of disks.
This will be discussed in subsection 2.3.1. The distribution of the generated heat in
radial direction depends on the pressure distribution between the disks and will be
estimated in subsection 2.3.2. The heat is not distributed to the friction and the steel
disks equally, which will be discussed in subsection 2.3.3
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Figure 2.17: Friction between the disks and the splined shaft or casing due to the transmitted torque Tq
reduces the axial force Fax that pushes the disks together

2.3.1 Axial force loss

The actuation force Fact to close the clutch, generates an axial force Fax on each pair
of disks. Due to friction force Ffric between the disks and the splined shaft or casing,
where the disks are mounted, the axial force will decrease with each disk on the stack.
This is illustrated in figure 2.17.

As long as the disks do not touch (that is, when the clutch is open or slipping), the
axial force equals the integral of the pressure in the oil over the surface area:

Fax =
∫ rout

rin

2π · r · p(r) · dr. (2.108)

In (2.14), the pressure gradient ∂p
∂r has been formulated as a function of the oil volume

flow in the grooves Qg and the characteristic rotation speed Ω. The pressure p(r) can
be calculated by integrating (2.14) in r with the boundary condition p(rout) = pout:

p(r) = pout −
3
20

ρoil · (r2
out − r2) ·Ω2 + ln

(rout

r

) 12 ·Qg

2π · xg · h3
g
· µoil. (2.109)

With (2.108) and (2.109), it is apparent, that the oil flow rate Q and the disk distance h
depend on the axial force. When recalling the relation between the drag torque Tqdrag
and disk distance h (see (2.22)), it is obvious, that the drag torque is lower when the
axial force is lower.
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When the clutch closes, the asperities on the disk surfaces get in contact. The relation
between the drag torque and the axial force then becomes more complex. Therefore,
considering the goals discussed in 1.2, an empirical model for this problem is more
suitable than a physical model. For example in [19], the contact pressure and drag
torque due to the axial force are estimated based on empirical methods.

However, since also the friction force Ffric cannot easily be modelled with physical
relations due to the imperfect contact in the splines and vibrations, not the relation
between drag torque and axial force, but the drag torque itself will be estimated with
an empirical model.

The drag torque Tqdrag in the disk pair i is:

Tqdrag,i = ζ · Tqdrag,i−1, (2.110)

where ζ is an empirical value. From ∑n
i=1 Tqdrag,i = Tq results:

Tqdrag,i =
ζ i

∑n−1
j=0 ζ j

Tq, i ∈ {0, 1, ...., n}, (2.111)

where n is the number of disk pairs.

The dependence of the axial force loss on the oil flow Q is neglected. In other words,
the oil flow is assumed to be equal in each pair of disks.

2.3.2 Heat distribution in radial direction

The friction coefficient µfric characterizes the relation between the contact pressure of
the disks p and the friction force Ff,s on the surface.

Ff,s = µfric · p. (2.112)

The generated heat can then be expressed as:

qgen = µfric · r · ∆ω · p(r). (2.113)

Inserting (2.113) into (2.107) results in:

Tqdrag =
∫ rout

rin

µfric · 2π · r2 · p(r) · dr. (2.114)

According to [20], in an unworn, accurately manufactured clutch, with rigid backing
holders, the contact pressure can be assumed constant in r and ϕ.

Therefore, the integral in (2.114) can be solved and the result is used to express µfric
in (2.113). The generated heat qgen then results in:

qgen =
Tqdrag · ∆ω

2π
· 3 · r

r3
out − r3

in
(2.115)
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2.4 Heat conduction within the disk

2.3.3 Partition of the friction heat

The friction heat is generated in the interface between friction and separator disk.
The fraction of the generated heat that will flow to the friction disk depends on the
material properties of the disks. Assuming perfect contact on the non-grooved surface
between the disks means, that the temperature on the surface of each disk is equal.
It is shown in many studies (for example [20], [21]), that this assumption is valid.
Therefore, the partition of the heat transfer can be calculated as stated in [22], where
the temperature and heat distribution of two bodies in perfect contact, with a heat
source in the interface, is calculated analytically.

The heat transfer to the separator disk qs and the heat transfer to the friction disk qf
are:

qs =
s

1 + s
· qgen (2.116a)

qf =
1

1 + s
· qgen (2.116b)

with s =
As

Af
·
√

ks · ρs · cp,s

kf · ρf · cp,f
, (2.116c)

where ks, ρs and cp,s are the thermal conductivity, the density and the heat capacity
of the separator disk. kf, ρf and cp,f are the thermal conductivity, the density and the
heat capacity of the friction disk.
Af is the area of heat input on the friction disk, which equals the non-grooved area
of the disk. The area of heat input on the separator disk As is its total surface area.
Therefore, (2.116c) becomes:

s =
1

(1− xg)
·
√

ks · ρs · cp,s

kf · ρf · cp,f
. (2.117)

Note, that qf is the heat transfer rate averaged in angular direction. Actually, the heat
is only generated on the non-grooved area, where the heat transfer qf,ng is

qf,ng =
qf

1− xg
(2.118)

2.4 Heat conduction within the disk

Now that the convective heat transfer to the oil qconv and the heat transfer from
the generated heat qs and qf,ng are calculated, the boundary conditions for the heat
transfer problem within the disk can be formulated and the temperature distribution
in the disk can be estimated. The considered system is shown in figure 2.18. To enable

39



2 Modelling
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qconvqs
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Figure 2.18: The temperature distribution in the separator disk of width 2b results from the heat transfer
on the surface. At the inner and outer radius, heat is transferred in radial direction from
the disk to the oil or the casing. In z direction, there is heat transfer due to convection to
the oil (qconv) and due to friction or viscous dissipation (qs or qf)

qf,ng qf,ng

T(r,z)

qcond

z
φ

r

T(r,z)
qcond

friction layer

steel

Figure 2.19: The heat from friction and viscous dissipation qf,ng will flow into the non grooved surface
area of the friction disk. Nevertheless, the temperature under the grooves is assumed
constant in angular direction.

implementing a generic number of disk pairs, the disk is split at the halve disk width
b and modelled separately. The conductive heat transfer qcond between these halves is
an additional boundary condition.

The temperature distribution is assumed constant in angular direction. In the separator
disk, this is a valid assumption since the disk is rotationally symmetric. In the friction
disk, the generated heat will first flow into the non-grooved area and then distribute
in the whole disk volume. This is illustrated in figure 2.19. When the conductivity
of the friction layer and the steel disk is large enough, the temperature can still be
assumed constant in angular direction. This will be further discussed in chapter 3.

When neglecting the temperature gradient in angular direction, the conservation of
energy equation in the separator and the friction disk becomes:

ρ(z)cp(z)
∂T
∂t

=
k(z)

r
∂

∂r

(
r

∂T
∂r

)
+

∂

∂z

(
k(z)

∂T
∂z

)
, (2.119)
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Figure 2.20: The heat conduction problem in the disk is solved with the FDM with I elements in z
direction and J elements in r direction.

where ρ, cp and k are the density, heat capacity and thermal conductivity of the disk
material. In the friction disk, these values depend on z, since the friction layer has
properties different from the steel disk.

The boundary conditions are:

k · ∂T
∂z

∣∣∣∣
z=0

= qconv − qs (2.120a)

k · ∂T
∂z

∣∣∣∣
z=b

= qcond (2.120b)

k · ∂T
∂r

∣∣∣∣
r=rin

= qr,in (2.120c)

k · ∂T
∂r

∣∣∣∣
r=rout

= qr,out (2.120d)

This PDE will be solved numerically with the Finite Difference Method (FDM). The
considered system for the friction disk is shown in figure 2.20.

The following notation for discrete time and space is introduced:

f k
i,j = f (t = t0 + k · ∆t · k, z = zi, r = rj)

fi+1/2 = f (z = zi + ∆zi/2)
i ∈ {1, 2, ...I}, j ∈ {1, 2, ...J}, k ∈ Z

(2.121)
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where ∆t is the time step, and zi and rj are the positions of the FDM elements as
shown in figure 2.20. f k

i,j corresponds to an element of the grid and f k
i+1/2 corresponds

to the boundary between two elements. Therefore, while the width of an element is
∆zi, the distance between two elements is ∆zi+1/2 = ∆zi/2 + ∆zi+1/2.
The gird in r direction is chosen such that the finite volumes are equal at each radial
position.

rj · ∆rj = rj+1 · ∆rj+1 (2.122)

The grid in z direction is chosen such that an element boundary is on the boundary
between friction layer and steel. The finite volumes in each material are chosen to be
of equal size.

Since, in the friction disk, the thermal conductivity k(z) is discontinuous in z at the
boundaries of the finite volumes, the finite difference for k ∂T

∂z can be modified to
improve accuracy. The discrete heat transfer between two volumes qcond,i+1/2 is:

qcond,i+1/2 = ki
Ti+1/2 − Ti

∆zi/2
= ki+1

Ti+1 − Ti+1/2

∆zi+1/2
:= ui+1/2(Ti+1 − Ti) (2.123)

where ui+1/2 is the thermal transmittance between the volumes i and i+ 1. From (2.123)
results:

ui+1/2 =

(
∆zi+1

2ki+1
+

∆zi

2ki

)−1

(2.124)

With this, the finite difference can be calculated:

k · ∂T
∂z

∣∣∣∣
z=zi+1/2

=̇ui+1/2 · (Ti+1 − Ti) (2.125)

With forward differencing in time and the modified central difference approximation
of the second derivative in space, (2.119) becomes

ρicp,i
Tk+1

i,j − Tk
i,j

∆t
=

1
∆zi

[(
Tk

i+1,j − Tk
i,j

)
· ui+1/2 −

(
Tk

i,j − Tk
i−1,j

)
· ui−1/2

]
+

ki

rj∆rj

(
rj+1/2

Tk
i,j+1 − Tk

i,j

rj+1 − rj
− rj−1/2

Tk
i,j − Tk

i,j−1

rj − rj−1

)
,

(2.126)
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2.4 Heat conduction within the disk

with the boundary conditions(
Tk

1,j − Tk
0,j

)
· u1−1/2 = qk

surf,j (2.127a)(
Tk

I+1,j − Tk
I,j

)
· uI+1/2 = qk

cond,j (2.127b)

ki
Tk

i,1 − Tk
i,0

r1 − r0
= qk

r,in,i (2.127c)

ki
Tk

i,J+1 − Tk
i,J

rJ+1 − rJ
= qk

r,out,i . (2.127d)

With (2.98), (2.115) and (2.116) the mean heat transfer on the elements surface for the
separator disk qk

surf,s,j and for the friction disk qk
surf,f,j can be calculated.

qk
surf,s,j =

1
r2

j+1/2 − r2
j−1/2

−
∫ rj+1/2

rj−1/2

(qk
conv(r)− qk

s(r)) · r · dr

=
1

r2
j+1/2 − r2

j−1/2

(
Fk

qconv
(r∗j+1/2)− Fk

qconv
(r∗j−1/2)

)
−

r3
j+1/2 − r3

j−1/2

(r3
out − r3

in) · (r2
j+1/2 − r2

j−1/2)
·

Tqdrag∆ω

π
· s

1 + s

(2.128a)

qk
surf,f,j =

1
r2

j+1/2 − r2
j−1/2

−
∫ rj+1/2

rj−1/2

(qk
conv − qk

f ) · r · dr

=
1

r2
j+1/2 − r2

j−1/2

(
Fk

qconv
(r∗j+1/2)− Fk

qconv
(r∗j−1/2)

)
−

r3
j+1/2 − r3

j−1/2

(r3
out − r3

in) · (r2
j+1/2 − r2

j−1/2)
·

Tqdrag∆ω

π
· 1

1 + s
,

(2.128b)

where r∗j is the radial position rj transformed according to (2.91).

The radial rates of heat transfer qk
r,in,i and qk

r,out,i depend on the assembly of the clutch
and on the casing, which can not be generalized. Therefore, these heat transfers will
be modelled with an empiric relation:

qk
r,in,i = uin · (Tk

i,1 − Toil,in) (2.129a)

qk
r,out,i = uout · (Tk

i,J − Toil,in) (2.129b)

where uin and uout has to be found empirically.

The conductive heat transfer between the two halves of the disks is:

qk
cond,j = T̃k

I,j − Tk
I,j ·

ks

∆zI
, (2.130)

43



2 Modelling

where T̃ is the temperature in the other halve of the disk.

Finally, when solving (2.126) and (2.127) for Tk+1
i,j , the temperature in the disks can be

calculated incrementally in time.
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3 Validation

In the presented model, many empirical relations and simplifications were used.
Therefore, correctness of the model and its components need to be validated by
comparison with data from measurements. A complete validation of all components
would require a large amount of measurements and thus an effort that goes beyond
the scope of this thesis. Therefore, the model will be validated with measurements
only to a limited extend. However, qualitative validation of the behaviour of the
model and its components will be conducted. Since many parameters need to be
identified with measurement data, in section 3.2, a sensitivity analysis is performed
to rate the accuracy of the model in a different setup, when no parametrization can be
performed.

3.1 Qualitative validation and analysis of stability

In this section, the stability of the model in different artificial scenarios will be
investigated. Among others, this will give a notion of appropriate values for the time-
and space step. Also, the correctness of some of the models components is validated
qualitatively by comparison to results from literature and to a simple stationary model.
The investigated components are the heat transfer from the disk to the oil and the heat
conduction within the disk. For the oil flow between the disks and the heat generation
and distribution, no qualitative validation is conducted.

3.1.1 Heat transfer to the oil

In subsection 2.2.4, the rate of heat transfer from the disk to the oil was approximated
with a polynomial function. This model can become unstable or highly inaccurate.
Therefore, correct choice of the order of the polynomial approximation and the time
step is crucial. Also, pre-processing of the input data can help to ensure stability. In
the following, the reasons for inaccuracy or instability are discussed:
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Neglecting the recirculation flow in the grooves

As discussed in subsection 2.2.2, during slip state, a recirculation flow will emerge
in the grooves. In the model, only the flow in radial direction has been considered
for estimating the Nusselt number and the convective heat transfer coefficient hconv,t.
Moreover, the Nusselt number in the grooves was only calculated for constant rate of
heat transfer or constant wall temperature on the surface and the Nusselt number in
the non-grooved area was only calculated for open clutch state.
These simplifications will be compensated with parametrization of Nug and the
empirical factor ζ. In the following, the qualitative relations will be compared to
literature, where mainly empirical relations to model the total heat transfer coefficient
hconv,t were used.
In [21], the total Nusselt number Nu was modelled as a function of the Reynolds and
Prandtl number. In [23], the convective heat transfer coefficient was modelled with
a constant empiric Nusselt number and as a function of the oil properties and the
square root of the angular velocity. [24] used a simple analytical solution for the heat
transfer on a flat plate:

hconv,t = 0.332 · koil

r
√

Reω · Pr1/3, (3.1)

were Reω is the Reynolds number resulting from the rotational speed difference ∆ω.
All these solutions have in common, that the oil flow in radial direction is neglected
(that is, the heat transfer is zero at 0 rpm). In [24], although the grooves are not
considered at all, the results are acceptable. The reason is, that starting at low rotational
speeds, the rate of convective heat transfer in the non-grooved area is much larger
than in the grooved area. The actual error by neglecting the recirculation flow can
only be determined with measurements.

In figure 3.1, the rate of convective heat transfer according to [24] and the rate of
convective heat transfer in the proposed model is shown. Since the convective heat
transfer in the presented model depends on many parameters such as geometry and
oil volume flow rate, the graph in 3.1 only fits quite well with the simple relation
from [24] for a particular range of parameters. Also, to fit with the assumption of no
convective heat transfer at 0 rpm, the grooves need to be removed from the model
(that is, xg = 0). However, the qualitative trend of the rate of convective heat transfer
in the presented model matches with the proportionality to

√
ω, as it is stated in

many literature, quite well.

Explicit integration in discrete time

The heat transfer problem is solved with explicit time integration. A criterion for the
stability of this solution is the Courant-Friedrichs-Lewy (CFL) condition, as described
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Figure 3.1: The convective heat transfer from the disk to the oil is simulated for different rotational
speeds. This result can be compared to the convective heat transfer when the width of the
grooves reaches 0 and to a simple relation for the convective heat transfer as described in
[24].

in [17, p. 106ff].

up ·
∆t
∆x

!
< 1 (3.2)

Where up is the propagation speed of the state variable (here the temperature T) and
∆x is the space step. For the present model, the respective finite difference equation
is:

Tk
bulk,g − Tk−1

bulk,g

∆t
= up ·

Ts − Tk−1
bulk,g

∆x
=

hconv,t

ρoil · cp,oil
(Ts − Tk−1

bulk,g) (3.3)

Using exemplary values from 3.2, the propagation rate up/∆x can be estimated:

up

∆x
=

hconv,t

ρ · cp · h̄
≈ 2000W/(m2·K)

857 kg/m3 · 1990 J/(kg·K) · 0.1 mm
= 11.76 Hz (3.4)

With (3.2) and (3.4), the condition for the time step can be formulated:

∆t < 0.085 s (3.5)

Polynomial approximation of the heat transfer

The rate of heat transfer was approximated with a polynomial function. Therefore,
equalization of the temperatures of the oil and the disk is not guaranteed, even though
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Figure 3.2: Extending the polynomial interpolation Ts of the surface temperature Ts,fdm of order n = 2
by the boundary condition results in the fictional surface temperature Ts,f of order n = 3.
The order of the interpolation is not high enough, which results in waves in the surface
temperature Ts,fdm.

the CFL condition is met. In figure 3.2, the surface temperatures and the oil bulk
temperature are shown for a polynomial order of the rate of heat transfer n = 3.
Apparently, the difference between the polynomial approximation of the surface
temperature to the surface temperature resulting from the heat conduction in the disk
is large. The reason is, that the polynomial order of the surface temperature Ts is not
sufficient to reproduce the actual surface temperature Ts,fdm. At location, where the
surface temperature is underestimated, also the rate of heat transfer to the oil will be
underestimated. Consequently, the surface temperature at this location will increase
and thus, also the error of underestimation will increase. This phenomenon creates
the waviness of the surface temperature Ts,fdm as seen in figure 3.2. The amplitude
of these waves is limited due to the heat conduction in radial direction within the
disk.

In figure 3.3, the error between the polynomial approximation of the surface tempera-
ture Ts and the surface temperature resulting from the heat conduction in the disk
is shown for different polynomial orders n. The mean square error between Ts and
Ts,fdm is almost halved with each increase of the order. However, the computational
effort increases with n, especially because the matrix in (2.106) needs to be inverted.
Considering this trade-off, the order n = 6 is chosen.
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Figure 3.3: The mean squared error between the polynomial interpolation of the surface temperature
Ts and the surface temperature Ts,fdm almost halves with each increment of the order n.

Time variance of input parameters

In subsection 2.2.4, most of the input variables where assumed constant in time. A
change of the oil volume flow rate Q will lead to different values for the flow speed
and therefore the space step ∆r will change (see (2.91)). The behaviour of the presented
model in this situation has not been investigated so far. The relevant quantity for this
investigation is the change of the input variables from one time step to another. The
following tests are conducted with a constant time step ∆t = 0.01s. The encountered
limits of the slew rates can be scaled linearly by the time step.

In figure 3.4, the rate of convective heat transfer from the disk to the oil when the
oil volume flow rate is changed from 3 l/min to 13 l/min with a slew rate of 10
(l/min)/s is shown. At the beginning, the model is in a stationary state. In the time
slot between 1 s and 2 s, the oil volume flow rate is increased. Consequently, the rate
of heat transfer increases too, which causes the disk temperature to decrease and the
rate of heat transfer falls until the stationary state is reached again. Therefore, the rate
of heat transfer qconv(r2−6) behaves as expected. However, the rate of heat transfer
at the outer radius r8 shows oscillations that are not expected in reality. Apparently,
these oscillations result from the error caused by assuming constant input variables.
For a higher slew rate, these oscillations will increase. Therefore, a rate limiter for
the oil volume flow rate will be used. Similar behaviour can be seen in the artificial
situation, where only the disk distance hng changes with an opening time of 200 ms.

A change of the oil temperature or other input parameters does not show any critical
behaviour. An exception to this is the start of the forming and dissolving of rivulets.
In the model presented in subsection 2.2.4, a continuous transition from a continuous
oil flow to rivulets is not possible due to the non-linear change of the coordinate r∗

(see equation (2.91)). It is not even possible, to model the situation where part of the
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Figure 3.4: The convective heat transfer from the disk to the oil on different radial locations is simulated
during a change of the oil volume flow rate from 3 to 13 (l/min) in the timeslot between 1 s
and 2 s.

flow is continuous and the other part contains rivulets. For this situation, a simpler,
stationary model will be derived:

The stationary conservation of energy in radial direction is:

ρ · cp
1
r

∂

∂r

(
Tbulk

∫ h̄

0
r · vr · dz

)
= hconv,t · (Ts − Tbulk). (3.6)

With the dimensionless radius r∗ and average radial velocity v∗r as defined in (2.91),
(3.6) becomes:

∂Tbulk

∂r∗
=

hconv,t · (Ts − Tbulk)

ρ · cp · h̄ · v∗r
. (3.7)

The surface temperature is interpolated linearly:

Tint
s,j = Ts,j + (r∗ − r∗j ) ·

Ts,j+1 − Ts,j−1

rj+1 − rj−1
(3.8)

Solving the differential equation (3.6) and inserting (2.27) results in:

Tbulk,j+1/2 = (1− eC) · Ts,j + eC · Tbulk,j−1/2 +
Ts,j+1 − Ts,j−1

2

(
1 + eC

2
+

1− eC

C

)
,

with C =
2π

Q · ρ · cp
hconv,t · φ2

riv(r = ri) · (r∗i+1 − r∗i )

(3.9)
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Figure 3.5: The convective heat transfer from the disk to the oil on different radial locations is simulated
in a stationary state both using the presented instationary model (see subsection 2.2.4) and
the stationary model presented in this subsection

In a stationary test setup, this model should give similar values for the rate of
convective heat transfer as the model presented in subsection 2.2.4. Exemplary results
for the rate of heat transfer during stationary state are shown in figure 3.5. The
difference between the shown profiles is in a range that is to be expected from the
different interpolation methods for the surface temperature.

3.1.2 Heat conduction within the disk

The accuracy and stability of calculating the heat conduction within the disk depends
on the grid used for the FDM. When the grid elements are too large, the model will
be inaccurate and when the elements are too small, the model will be unstable.

Maximum element size

The maximum grid size used for the FDM to obtain accurate results depends on the
temperature gradient in the disk. This relation can be described with the Biot number,
as described in [10, chap. 7.4]. The Biot number Bi is defined as the ratio of conductive
resistance in the solid to convective resistance at the surface.

Bi =
hconv,t · Lc

k
(3.10)
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Where Lc is the characteristic length defined as the ratio of the volume of the solid to
its surface area and k is the thermal conductivity of the solid.

When the Biot number is much less than 1, the temperature distribution in the element
can be assumed to be uniform. The larger the Biot number, the larger the error due to
space discretization will be. Technically this criterion is for convective heat transfer
only. However, when the generated heat qgen is in the same order of magnitude, the
considerations can be also applied in the present situation.

To check if a resolution of the temperature in z direction is necessary in the steel disk
or the friction layer, the characteristic length Lc is based on the half width of the steel
disk bs or the thickness of the friction layer made of sintered material bsi or paper bp
respectively.

Lc =
(r2

out − r2
in)π · b

(r2
out − r2

in)π
= b (3.11)

Using exemplary data from 3.2 and an exemplary value for hconv,t from simulations,
the Biot numbers for a steel disk Bis, a paper based friction layer Bip and a copper
based sintered friction layer Bisi are estimated.

Bis =
hconv,t · bs

ks
≈ 2000 W/(m2· K) · 1.15 mm

50 W/(m· K)
= 0.046 (3.12a)

Bisi =
hconv,t · bsi

ksi
≈ 2000 W/(m2· K) · 0.575 mm

1.5 W/(m· K)
= 0.767 (3.12b)

Bip =
hconv,t · bp

kp
≈ 2000 W/(m2· K) · 0.475 mm

0.4 W/(m· K)
= 2.37 (3.12c)

Consequently, the temperature need not be resolved in z direction in the separator
steel disk or the steel disk of the friction disk. For the friction layer, at least a small
number of elements would be appropriate to obtain accurate results.

The temperature gradient in angular direction has been neglected. The characteristic
length to quantify the error caused by this assumption, the characteristic length is:

Lc =
∆ϕ · (rout + rin)/2 · (rout − rin) · b

2 · (rout − rin) · b
= ∆ϕ · (rout + rin)/4. (3.13)
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3.1 Qualitative validation and analysis of stability

And, with exemplary data from 3.2, the Biot number is:

Biang,s =
hconv,t · Lc

ks
≈ 2000 W/(m2· K) · 3.78 mm

50 W/(m· K)
= 0.151

Biang,si =
hconv,t · Lc

ksi
≈ 2000 W/(m2· K) · 3.78 mm

1.5 W/(m· K)
= 5.04

Biang,p =
hconv,t · Lc

kp
≈ 2000 W/(m2· K) · 3.78 mm

0.4 W/(m· K)
= 18.9

with Lc ≈ 0.063 · 120 mm/2 = 3.78

(3.14)

Consequently, resolving the temperature in the steel disk in angular direction is not
necessary. The Biot numbers of the friction layer Biang,si and Biang,p are very large.
However, it is possible, that the temperature gradient will be compensated by the
constant temperature in the steel disk and by the oil. Therefore, to determine if
the presented model will still give accurate results, further empirical or numerical
investigations are necessary.

Minimum element size

The heat conduction within the disk is solved by the FDM with explicit time in-
tegration. Therefore, the CFL condition for stability (as described in 3.1.1) can be
formulated. The relevant CFL conditions (see (3.2)) for the heat conduction in the
paper based friction disc in r and z direction are:

∆t ≤
ρs · cp,s · ∆r2

ks
(3.15a)

∆t ≤
ρp · cp,p · ∆z2

kp
(3.15b)

∆t ≤
ρs · cp,s · ∆z2

ks
(3.15c)

The CFL condition in r direction of the friction layer is not relevant since the thermal
diffusivity ρp · cp,p/kp is much smaller than the thermal diffusivity of steel.

For exemplary data from 3.2 and the time step ∆t = 0.05 s, the maximum numbers of
elements in z direction nz and in r direction nr can be calculated. Since the temperature
in the steel disk will not be resolved in z direction, the CFL condition (3.15c) is used
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3 Validation

Variable chosen value limiting effects

time step ∆t 0.01 s

time variance of input
variables

CFL condition
computational resources

polynomial order n 6 polynomial approximation
computational resources

rate limiter for Q 3 (l/min)/s discrete time step
FDM elements in z direction nz
in the friction layer 2

Biot number
CFL condition

FDM elements in r direction nr 8 computational resources

Table 3.1: Parameters chosen after the qualitative validation

to find a condition for the maximum time step.

nz,p ≤ bp ·
(

ρp · cp,p

kp · ∆t

) 1
2

≈ 0.475 mm

(
1799kg/m3 · 740.7 J/(kg·K)

0.4 W/(m·K) · 0.05 s

) 1
2

= 3.88 (3.16a)

nr ≤ (rout − rin) ·
(

ρs · cp,s

ks · ∆t

) 1
2

≈ 30 mm ·
(

7850 kg/m3 · 500 J/(kg·K)
50 W/(m·K) · 0.05 s

) 1
2

= 37.6

(3.16b)

∆t ≤
ρs · cp,s · b2

s

ks
≈ 7850kg/m3 · 500 J/(kg·K) · (0.73 mm)2

50 W/(m·K)
= 0.042 s (3.16c)

According to the results in subsubsection 3.1.2, a number of elements in z direction
larger than 3 would not be appropriate anyway. A number of elements in r direction
larger than 37 would not be appropriate considering the computational effort. There-
fore, the only relevant criterion in (3.16) is the maximum time step ∆t ≤ 0.042 s.

In table 3.1, appropriate parameters for the model are summarized.

3.2 Validation with measurement data

For the validation with measurement data, the model will first be parametrized for the
clutch used in the measurements. The parametrized model is then used to estimate the
temperature during the measurements and the results are compared to the measured
temperature. Also, to rate the transferability of the model, the sensitivity of the model
to its parameters is analysed. In the last sub-subsection, all results from this subsection
are discussed.
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3.2 Validation with measurement data

3.2.1 Test bench and clutch parameters

The clutch used for validation has a stack of 3 paper based friction disks and 4

separator disks. The test bench is schematically illustrated in figure 3.6. On the test
bench, one side of the clutch is attached to an electric motor while the other is
stationary. The oil is conditioned to a preferably constant temperature Toil,in and
pumped with a variable volume flow Q into the clutch. The measured variables are:

• the temperature of the incoming oil Toil,in
• the torque transmitted by the clutch Tq
• the rotational speed ω2
• a temperature in each friction disk T̂1,T̂2 and T̂3.

The radial or axial location of the temperature sensor in the disks is not known and the
oil volume flow rate Q was not measured. Furthermore, the properties of the friction
layer as well as the geometry or thermal behaviour of the casing are unknown.

All modelling parameters of the clutch and variables needed for the exemplary
calculations in chapter 2, as well as their known or expected values are listed in
table 3.2.
The exact properties of the friction layer are not known, but in literature ([20], [25],
[26]), exemplary values are given. The friction disks are not radially grooved but have
a waffle grooving, as described in [3]. Therefore, for ng and xg, characteristic values
that fit with a radially grooved pattern will be used. It will have to be verified, if the
model can still be valid for the waffle groove pattern.
The depth of the grooves hg − hng is not known, but can not be greater than the
thickness of the friction layer.
In chapter 2, only a range of possible values for the Nusselt number in the grooves
Nug has been derived. Its approximative value will be identified with measurement
data. The geometrical or thermal properties of the casing of the clutch are not known.
The properties of the oil (10W40) are specified as a function of the temperature. For
the radial thermal transmittances uin and uout, a maximum can be roughly estimated
from the tooth geometry of the disks.

3.2.2 Measuring procedure

Stationary and dynamic measurements have been conducted at different loads and oil
temperatures. In the following, these are described shortly.
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ω2

engine

T

ω2

temperature 
conditioning

T3 T T12

Tq

oil,in

Figure 3.6: Schematic illustration of the test bench: The disk stack consists of 3 paper based friction
disks and 4 separator disks. One side of the clutch is attached to an electric motor (speed
ω2), while the other is stationary (ω1 = 0). The oil is conditioned to the temperature Toil,in
and pumped with oil volume flow rate Q into the clutch. Temperature sensors are attached
to the friction disks (T̂1, T̂2, T̂3) and the oil bath (Toil,in). Also, the torque Tq and the rotational
speed ω2 at the motor are measured.
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3.2 Validation with measurement data

Variable Symbol Value Source
Inner radius of the friction surface rin 115 mm
Outer radius of the friction surface rout 148 mm
Thickness of the steel in the
friction disk bp,s 1.45 mm

Thickness of the friction layer bp 0.475 mm data sheet
Thickness of the separator disk bs 2.3 mm
Number of grooves ng 50− 80
Ratio of grooved area xg 0.2− 0.4
Disk distance of the open clutch hng 0.2 mm
Depth of the grooves hg − hng ≤ 0.475 mm
Radial thermal transmittance of
the casing uin, uout < 3000 W/(m2· K)

Heat capacity of steel C60 cps 500 J/(kg·K)
Thermal conductivity of steel C60 ks 50 W/(m· K) [27]
Density of steel C60 ρs 7850 kg/m3

Heat capacity of the paper friction
layer cp,p ≈ 740.7 J/(kg·K)

Thermal conductivity of the
paper friction layer kp 0.2− 0.6 W/(m· K) [20], [25],

[26, p. 11]
Density of the paper friction layer ρp ≈ 1799 kg/m3

Heat capacity of engine oil 10W40 cp,oil 1990-2450 J/(kg·K) [28]
Thermal conductivity of oil 10W40 koil 0.158 W/(m·K)
Kinematic viscosity of oil 10W40

(at 0− 200◦C) µoil/ρoil 10 - 840 mm2/s [29]

Density of oil 10W40 (at 0− 200◦C) ρoil 808 - 876 kg/m3

Oil volume flow rate Q 6 l/min exemplary
Relative rotation speed ∆ω 2000 rpm
Nusselt number in the grooves Nug 7.8 - 8.4
Coefficient for the temperature
in the non-grooved area ξ 0 - 1 Chapter 2

Heat transfer between the disks hc,oil
Axial thermal transmittance of
the casing uax,in, uax,out unknown

Axial force loss ζ 0.998 - 0.918 [30]

Table 3.2: Modelling parameters of the clutch

57



3 Validation

(Tq · ω2) in W
×105

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

(T̂
2
−
T
oi
l,
in
)
in

◦
C

20

40

60

80

100

120

140

160

Toil,in = 36◦C

Toil,in = 65◦C

Toil,in = 83◦C

Toil,ATF = 36◦C

Toil,ATF = 65◦C

Toil,ATF = 83◦C

Figure 3.7: Stationary measurement points at 15 different loads in separate runs for both engine oil
and ATF

Stationary measurements

In the stationary measurements, the clutch is in slipping state with constant torque
and rotational speed until the temperature in the clutch becomes approximately
constant.

30 stationary measurements were conducted with different loads and oil temperatures.
The first 15 stationary points were measured in separate runs while the others were
measured in 3 runs of several stationary points each. They can be classified in 3 values
of incoming oil temperature: 36◦C, 65◦C and 83◦C. The incoming oil temperature
Toil,in during one measuring run was approximately constant.
The same measurements have also be conducted with an automatic transmission fluid
(ATF) instead of engine oil. Since several parameters differ for these measurements,
they will only be used for the identification of the axial force loss ζ and the axial
thermal transmittance uax,in and uax,out.

The first 15 stationary points with engine oil and with ATF are shown in figure 3.7 and
the second 15 stationary points are shown in figure 3.8. The approximately constant
proportionality factor between temperature T̂2 and dissipation power Tq ·ω2 indicates
that the oil volume flow rate Q is constant during one measuring run.
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Figure 3.8: Stationary measurement points at 15 different loads in 3 runs for both engine oil and ATF

Dynamic measurements

In the dynamic measurements, the clutch is first open at constant rotational speed and
then actuated, such that the torque reaches and keeps a desired, constant value. The
rotational speed is then decreased until it reaches 0 and the torque drops to almost 0.
The clutch is then opened again and the rotational speed is increased to the initial
value. An exemplary sequence of dynamic measurements is shown in figure 3.9.

Dynamic measurements are conducted in 3 runs of different incoming oil temperatures.
The rotational speed while the clutch is open is ω2 = 1000 rpm in all measurements.
In each run, 4 different loads are tested. The oil volume flow rate Q is assumed
constant during each run.

3.2.3 Parametrization

As mentioned, several parameters needed for the model are not known and need
to be identified with measurement data. For an unbiased validation, independent
measurement data, that has not been used for parametrization is needed. To keeping
the bias of the validation down, only a part of the available measurement data is used
for parametrization and the rest is used for validation. Despite the oil volume flow rate
Q was treated as an input to the model, it has not been measured on this test bench.
When assuming constant oil volume flow rate during one run of measurements, the
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Figure 3.9: Exemplary sequence of dynamic measurements. The clutch is first open at constant rotational
speed and then actuated, such that the torque reaches and keeps a desired, constant value.
The rotational speed is then decreased until it reaches 0 and also the torque drops to
approximately 0. The clutch is then opened again and the rotational speed is increased to
the initial value.

oil volume flow rate can be estimated using only the parametrization dataset and
treated as known input for the validation.

First, using only stationary measurements, the axial force loss ζ will be estimated.
Then, the rest of the parameters will be estimated using both stationary and dynamic
measurements.

Parametrization with stationary measurements

The empiric factor ζ for the axial force loss (defined in (2.110)) and the axial thermal
transmittance to the casing uax,in, uax,out (see (2.129)) will be estimated by comparing
the temperatures of the 3 friction disks to each other. In figure 3.10 and 3.11, the
temperatures of all 3 friction disks during the stationary measurements are shown.

Due to the axial heat transfer to the casing from disk 1 and disk 3, the temperature is
expected highest in disk 2 and due to the axial force loss, the temperature in disk 1
is expected to be higher than the temperature in disk 3. The measurements in figure
3.10 match this expectation, while in figure 3.11, several measurement points differ
from this expectation. Apparently, at low load points as in figure 3.11, other influences
outweigh these effects since both the friction force Ffric (which is proportional to the
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Figure 3.10: Temperature in all 3 friction disks during the stationary measurements in separate runs
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Figure 3.11: Temperature in all 3 friction disks during the stationary measurements in 3 runs
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axial force loss) and the rate of axial heat transfer are very low. Therefore, to estimate
ζ, uax,in and uax,out, only the measurements shown in figure 3.10 are used.

The axial heat transfer from a friction pair to the casing is assumed uniform on the
disk surface. The total rate of axial heat transfer to the casing is estimated with:

Qax,in = uin · (T̂1 − Toil,in) · (r2
out − r2

in)π (3.17a)

Qax,out = uout · (T̂3 − Toil,in) · (r2
out − r2

in)π, (3.17b)

From the stationary measurements, Qax will be estimated and with (3.17), the thermal
transmittance can then be calculated.

As discussed in chapter 2, the value for ζ is assumed equal for every disk and can be
calculated from the difference of the drag torques transmitted at the disk interfaces.
To estimate ζ from the temperatures in the friction disks, a relation between the
temperatures and the drag torque at each disk needs to be found. In stationary state,
the dissipation power at each disk i equals the heat that is emitted from the disk
Qi(T̂i). With (2.111), (2.110) and (2.116), the dissipation power results in:

Qi = Tq · ζ2i · 1 + ζ

∑n−1
j=0 ζ j

·ω2 (3.18)

The emitted heat Qi(T̂i) is split in a function Q̂(T̂), that is assumed independent of
the disk position and the axial heat transfer Qax(T̂i).

Q1(T̂1) = Q̂(T̂1) + Qax,in (3.19a)

Q2(T̂2) = Q̂(T̂2) (3.19b)

Q3(T̂3) = Q̂(T̂3) + Qax,out, (3.19c)

When linearising the function Q̂(T̂) in the interval [T̂1, T̂3], the following approxima-
tions can be formulated:

Q̂(T̂3)− Q̂(T̂1)=̇
∂Q̂
∂T̂

∣∣∣∣∣
T̂2

· (T̂3 − T̂1) (3.20a)

Q̂(T̂2)− Q̂(T̂1)=̇
∂Q̂
∂T̂

∣∣∣∣∣
T̂2

· (T̂2 − T̂1). (3.20b)

With (3.18) and (3.19), the derivative can be expressed as:

∂Q̂
∂T̂

∣∣∣∣∣
T̂2

=
∂Tq ·ω2

∂T̂

∣∣∣∣
T̂2

· ζ2 · 1 + ζ

∑n−1
j=0 ζ j

, (3.21)
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3.2 Validation with measurement data

where ∂Tq
∂T̂

∣∣∣
T̂2

is estimated with a linear regression of T̂2 − Toil,in and Tq · ω2 in all

stationary measurements.

Combining equation (3.18)-(3.21) results in:

Tq(ζ4 − 1) + (Qax,in −Qax,out) ·
1

ω2
· 1 + ζ

∑n−1
j=0 ζ j

=
∂Tq
∂T̂

∣∣∣∣
T̂2

· ζ2 · (T̂3 − T̂1) (3.22a)

Tq(ζ2 − 1) + Qax,in ·
1

ω2
· 1 + ζ

∑n−1
j=0 ζ j

=
∂Tq
∂T̂

∣∣∣∣
T̂2

· ζ2 · (T̂2 − T̂1) (3.22b)

Since the presented model leads to only 2 independent equations (3.22), the axial heat
transfer is assumed to be equal on both sides of the disk stack Qax := Qax,in = Qax,out.
Then, (3.22a) becomes:

Tq · (ζ4 − 1) =
∂Tq
∂T̂

∣∣∣∣
T̂2

· ζ2 · (T̂3 − T̂1), (3.23)

and ζ can be estimated. The results for all considered measurements are shown in
figure 3.12. The mean value of all ζ is 0.996. The total axial force reduction for the
last friction surface (1− ζ5) · 100 % is 2.49 %. Since this value is very low, the errors
due to the simplifications made in this chapter will make little contribution to the
total error. In [30], the loss of drag torque has been investigated. The percentage of
the torque reduction with a stack of 6 disks ranges from 1 % to 35 %. The value in the
presented model is therefore within the expected range.

With (3.22b), the rate of axial heat transfer Qax can be estimated. In figure 3.13, the
results for the rate of axial heat transfer are shown. Recalling (3.17), the thermal
transmittance uax := uax,in=̇uax,out is estimated with

uax =
dQax

dT̂2

1
(r2

out − r2
in)π

, (3.24)

where dQax
dT̂2

is the linear regression without intercept from the results in figure 3.13.
As can be seen in figure 3.13, a linear regression with intercept would fit the results a
lot better. This suggests an offset error in the rate of axial heat transfer.

The results for the axial thermal transmittance is uax = 1577 W/(m2·K).

Parametrization with stationary and dynamic measurement data

To reduce the computational effort, the influence of the axial heat transfer on the
middle disk is neglected for the parameter identification. The model can then be
reduced to a single pair of disks.
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Figure 3.12: The estimated empirical constant ζ for the axial force loss for all considered stationary
measurements and the RMS value.
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Figure 3.13: The estimated rate of axial heat transfer to the casing for all considered stationary mea-
surements and the linear regression without intercept.
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The remaining unknown parameters (as listed in table 3.3) are determined iteratively,
minimizing the error of the temperature of the middle paper disk in 1 load of
each dynamic measurement run as well as the temperature error in all stationary
measurements. The other loads of each dynamic measurement run will be used for
validation.

The identified parameters and their expected range of values are listed in table 3.3
and will be discussed in subsection 3.2.5.

Parameter value expected range
number of grooves ng 60 50 - 80
Ratio of grooved area xg 0.4 0.2 - 0.4
Depth of the grooves hg − hng 0.25 mm 0.25 - 0.48 mm
Heat capacity and density of the
paper friction layer ρp · cp,p

1.33 · 106 J/(m3K) ≈ 1.33 · 106 J/(m3K)

Thermal conductivity of the
paper friction layer kp

0.2 W/(m·K) 0.2 - 0.6 W/(m· K)

Nusselt number in the grooves Nug 8.4 7.8 - 8.4
Heat transfer between the disks hc,oil 1.2 0.1 - 10
Coefficient for the temperature
in the non-grooved area ξ

0.5 0 - 1

Table 3.3: Identified parameters and their expected range of values

The temperature estimation with the parametrized model is shown exemplary for one
dynamic measurement sequence in figure 3.14. The position of the temperature sensor
is not known, but the measured temperature fits best with the estimated temperature
in the inner half of the friction layer (in axial direction) and at radial position r = 139
mm. For all following considerations, it is assumed that the temperature was measured
at this location and the estimated temperature at this location will be referred as T. The
RMS error between the measured and estimated temperature at this location is 1.58 K
and the positive and negative maximum error is 5.67 K and −5.62 K respectively. In
figure 3.15, the results are shown for one sequence of stationary measurements. In the
4 stationary points, the RMS error of the final temperature is 1.01 K with positive and
negative maximum error of 0.9 K and −1.3K respectively.

3.2.4 Validation

To validate the model, first, the estimation error for the present test setup is quantified.
Then, to rate the accuracy of the model for other clutches, where the empiric or not
exactly known parameters (see table 3.3) are not adjusted, the sensitivity of the model
to this parameters is estimated.
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Figure 3.14: Resulting temperature estimation from the parametrized model in the inner half of the fric-
tion layer T and in the steel disk under the friction layer Ts, and the measured temperature
T̂ in the middel friction disk.
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Figure 3.15: Resulting temperature estimation from the parametrized model in the inner half of the fric-
tion layer T and in the steel disk under the friction layer Ts, and the measured temperature
T̂ in the middle friction disk (the exact location is not known).
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Figure 3.16: Temperature estimation error in all dynamic measurements.

Estimation error

With the parametrized model, the temperature was estimated in all dynamic and
stationary measurements. The estimation error for the dynamic measurements is
shown in figure 3.16. The total RMS error is 2.61 K and the maximum positive error
is 10.27 K. In the stationary measurements, the final temperature in each stationary
point has an RMS error of 1.65 K and a maximum positive error of 2.5 K.

Sensitivity analysis

The sensitivity of the model to the parameters in table 3.3 is estimated by comparing
the estimation error for varied parameters to the estimation error for the original
parametrization. To get an estimate of how much these parameters can vary in
reality, measurements on different clutches would be necessary. However, to find the
sensitivity of the model to an equal variation of each parameter, consecutively, each
parameter is increased and decreased by 20 %. The results are shown in figure 3.17

for the dynamic measurements used for parametrization. The largest error results
from an increase of the depth of the grooves hg − hng, which increases the RMS error
by 38 %. Some variations even decrease the error, since the stationary measurements
are not considered for the sensitivity analysis.

67



3 Validation

Varied parameter f

ng xg hg − hng ρp · cp,p kp Nug hc,oil ξ

R
M
S
er
ro
r
in

◦
C

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

no variation

f := f · 1.2

f := f · 0.8

Figure 3.17: Change of the RMS error when parameters of the model are varied. Consecutively, each
parameter f is increased or decreased by 20 %.

3.2.5 Discussion

As discussed in the beginning of this chapter, the presented measurement data is not
sufficient for a full validation of the model. Therefore, it is particularly important to
clarify what conclusions can be made from the presented validation and what remains
still uncertain.

During the identification of the parameters for the axial force loss and the rate of
axial heat transfer, many restrictive simplifications were made, which led to a large
variance of the values for ζ (see figure 3.12) and the rate of axial heat transfer (see
figure 3.13). Moreover, since the casing of the clutch and its behaviour regarding the
axial force loss and axial heat transfer differ in each clutch, the found parameters will
have to be adjusted for every clutch. However, the rate of axial heat transfer from the
paper disks to the casing is very low and will therefore have no big influence to the
accuracy of the model.

Using also measurement data from dynamic test runs, all parameters in table 3.3 have
been found within the expected range. However, the influence of some parameters
on the result is redundant. For example, a bigger groove depth hg − hng would lead
to similar results as a larger ratio of the grooved area xg combined with a lower
Nusselt number in the grooves Nug. Therefore, the correct parametrization of the
model requires much effort. A purely empirical model with a number of parameters
that requires similar effort would likely result in an even better accuracy. However,
the sensitivity of the parameters would be much larger than in the presented model.
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Figure 3.18: In the first 3 stationary points from the sequence in figure 3.15, the relation between
temperature and power is linear. However, in the last stationary point, the temperature is
higher. The reason is the high rotational speed which causes rivulets to form.

Another advantage of this model compared to an empirical model is, that it can help to
understand the physical background of the disk temperature behaviour. The estimated
temperature profile over the time qualitatively equals the measured temperature
profile most of the time, as can be seen in figure 3.14. For these temperature profiles,
the model provides an insight in the oil flow and heat transfer. For example, in the
test run shown in figure 3.15, the following two phenomena can be seen:

• When the clutch opens (t = 260 s, 390 s, 512 s), there is a sharp upper peak in
temperature. This results from the increased heat transfer coefficient hconv,t due
to the increased disk distance hng, which causes the steel disk to heat the oil
even more, which also increases the temperature of the friction disk.
• In figure 3.18, the stationary points from the sequence in figure 3.15 are shown.

In the first 3 stationary points, the power Tq ·ω2 is approximately proportional
to the temperature difference T − Toil,in. In the last stationary point (t = 820
s, Tq · ω2 = 8 · 104 W), the temperature is higher. The reason is, that, due to
the high rotational speed ω2, rivulets are forming and therefore, the rate of
convective heat transfer decreases.

The RMS error of the temperature estimation of the parametrized model was very
low for all tested measurement sequences. However, especially regarding the thermal
stress limits, the maximum positive error is more important.

The sensitivity of the model was analysed by varying each parameter by 20 %. With
this variation, the estimation errors still remain in a range that is acceptable for the
intended application. However, no estimation of the actual variance of the parameters
in different test setups was made. Especially the heat transfer coefficient hc,oil and the
coefficient ξ could possibly vary in a vast range.
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4.1 Summary and conclusions

In chapter 1, an overview of this thesis was given and its motivation was discussed
shortly.

In chapter 2, a semi-physical model was developed, that provides an estimate of the
disk temperature under consideration of many physical phenomena regarding the oil
flow between the disks, the convective and conductive heat transfer and generation
and distribution of the friction heat. Despite neglecting some effects of minor influence
and approximating some phenomena with empirical relations, the complexity of the
model is still high. Therefore, defining the numerical procedures to implement the
developed relations was a difficult trade-off between accuracy and computational
efficiency. However, the chosen procedures can be parametrized depending on the
specific application to either increase the accuracy of estimation or decrease the
required computational resources.

In chapter 3, first the consistency and stability of the model was determined with
numerical analysis and qualitative validation of selected model components. The
parameters of the numerical methods need to be chosen with great care to ensure
both stable and accurate results. However, correctly parametrized, the model and its
components provide estimations of the oil flow and heat transfer that are internally
consistent and also consistent with literature.
With measurement data from a test bench, the model was validated empirically. For
this, many empirical parameters and unknown properties needed to be estimated with
measurements. However, the sensitivity to most of these parameters was rather low.
The estimated temperature profile in time of the parametrized model qualitatively
equals the measured temperature profile most of the time and also the estimation
error was low.

The intention of this thesis was to make a model for estimating the temperature in the
disks that can be used to optimize cooling and operation of the clutch system. Due to
the requirements to minimize costs, the components are designed closer and closer
to their performance limits. An accurate model is therefore necessary to ensure the
durability and availability of the clutch system and to design the system at its limits.
Also, computational efficiency, transferability and a wide scope of validity is important.
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The most critical scope of operation is close to maximum load, where knowledge of the
disk temperature is important to prevent overheating and maximizing the durability.
The presented model provided good estimates for the temperature maxima with low
positive errors. However, further validation with a wider range of measurements is
important to ensure that this accuracy will also apply to higher loads.

4.2 Outlook

As discussed, the validation carried out so far, could be expanded with further
measurements. To rate the validity and accuracy of the model and its components,
further measurements under different conditions as well as the measurement of other
quantities are required. Furthermore, some physical effects in the clutch were not
investigated so far. The model can possibly be improved by considering these effects.

4.2.1 Consideration of further physical phenomena

In chapter 2, many assumptions and simplifications were made. While many of them
where sufficiently justified, the influence of others is still not validated. Some physical
phenomena that should be investigated are:

• The clutch disks reach the highest temperature while or immediately after the
clutch is closed. Therefore, a correct model for this situation is most important.
In the presented model, the time variance of the disk distance hng was not
considered. While the clutch closes, a squeeze flow emerges, that has a great
influence on the cooling of the clutch.
• Paper based friction material has a significant permeability, which influences

the oil flow and consequently also the heat transfer. The oil flow between the
disks with a permeable friction layer was investigated for example in [31].
• The model was developed for a radially grooved friction layer. However, various

other patterns are also common. For example the waffle, spiral or swirl pattern
as shown in figure 4.1. In [7], the flow model for radial grooves was generalized
to grooves with an arbitrary orientation.
• The oil flow was only investigated in the friction surface area. The temperature

and flow velocity was assumed to be uniform when entering this region. In
reality, the oil is distributed through several holes in the shaft and will therefore
not be rotationally symmetric at the beginning of the friction surface.
• The contact pressure on the disk surfaces was assumed uniformly distributed.

In reality, the pressure distribution will not be uniform due to deformation,
production tolerance and wear. This leads to a different distribution of the

72



4.2 Outlook

Figure 4.1: Common groove patterns for friction disks: waffle, spiral and swirl (from left to right)

friction heat. For a dry friction clutch, the contact pressure distribution was
investigated for example in [32].
• As discussed in chapter 2, due to the axial force loss, the disk distance and

consequently also the oil volume flow will be different between each pair of
disks. The influence of this effect and its significance have not been investigated
in this thesis.

4.2.2 Validation with measurement data

In chapter 3, validation of the model by comparison to measurement data was already
conducted. However, these measurement data should be supplemented by further
measurements. The model needs to be tested in a wider range of situations and not
only the temperature estimation but also the models components need to be validated.
This can be done by comparing the model with results from extensive numerical
simulations or from measurements on a test bench.

In the following, possible measurement setups and procedures are proposed.

Validation of the oil flow model

In section 2.1, the oil flow was investigated to gather relations for calculating the disk
distance hng, the forming of rivulets φriv and the partition of the oil flow Qg/Q. The
validity of these relations could be verified on an adaptation of the test bench used in
chapter 3 as shown in figure 4.2. To reduce the effect of axial force loss, only 1 friction
disk is used. Especially for validation of the forming of rivulets, both rotational speeds
ω1 and ω2 can be specified. The (directly or indirectly) measured variables are:

• the temperature of the incoming oil Toil,in
• the torque transmitted by the clutch Tq
• the rotational speed of the friction disk and the separator disk, ω1 and ω2

respectively
• the oil volume flow rate Q.
• the disk distance h
• the pressure at the inlet pin
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The disk distance h can be determined by measuring the displacement of the piston
for closing the clutch. For example in [1], this approach is used and its noise factors
are investigated and suppressed. The pressure pin should be measured as close to the
clutch as possible to minimize the error caused by pressure loss between the sensor
and the disks. This problem is dealt with in [9].

With this test bench, the relation between the drag torque and the disk distance
(2.22) can be validated with the measured values for Tq, h, ω1 and ω2 in different
operation conditions. The forming of rivulets can be tested when measuring the Ω -
pin characteristic and comparing it to (2.27). With equation (2.14), the partition of the
oil flow Qg/Q and also the inlet pressure pin can be calculated. With measurement
results for the inlet pressure pin, the validity of this equation can be investigated.
Especially the following statements should be verified:

• With constant oil volume flow rate Q, the inlet pressure pin does not significantly
depend on the difference ω1 −ω2, as long as Ω is constant.
• In open or slipping clutch state with continuous lubrication, the drag torque Tq

does not significantly depend on the oil volume flow rate Q
• When rivulets are forming (that is, pin≤̃0), the torque Tq decreases with the

relation Tq ∝ Ω−2

Validation of the heat transfer and generation

To validate the heat transfer and generation in the clutch, the test bench used in
chapter 3 could be extended by adding temperature sensors to the separator disks
and the temperature of the oil splashing out of the disks Toil,out.

As it was also conducted in [11] the rate of convective heat transfer can be approx-
imated with temperature measurements of the disk and the oil. The average total
convective heat transfer coefficient hconv,t can be estimated with

hconv,t=̇
Q · ρoilcp,oil · (Toil,out − Toil,in)

∆TLMTD · 2h̄2 (4.1a)

∆TLMTD = [(T(rout)− Toil,out)− (T(rin)− Toil,in)] ln
(

T(rin)− Toil,in

T(rout)− Toil,out

)
, (4.1b)

where T(rout) and T(rin) are the temperatures measured at the outer and inner radius
of the separator disk respectively.
By comparing these results to the results of the model presented in chapter 2, the
accuracy of the presented model can be quantified.

The distribution of the generated heat mainly depends on the distribution of the
contact pressure between the disks. In chapter 2, this distribution was assumed
constant. The error caused by this assumption can be quantified by comparing the
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Figure 4.2: Proposed test bench for validating the oil flow model: To reduce the effect of axial force
loss, only 1 friction disk is used. Especially for validation of the forming of rivulets, both
rotational speeds ω1 and ω2 can be specified. The disk distance h is measured indirectly by
measuring the displacement of the actuating piston.
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temperature difference T(rout)− T(rin) to the estimation of this temperature difference
in the model.

Validation of the complete model

As it was done in chapter 3, the complete model can be validated by comparing
the estimated temperature in the disks to the measured values. However, as already
discussed, the test bench and the measuring procedure had several issues. The
following improvements would lead to a better validation:

• The properties of the friction material (such as density, specific heat capacity
and thermal conductivity) are determined beforehand.
• The locations of the temperature sensors in the disks are known.
• The temperature is not only measured in the friction disks but also in the

separator disks.
• The oil volume flow rate Q is measured.
• Measurements are also conducted on higher loads and at different rotational

speeds.
• Measurements are conducted with at least 2 different clutches of different size
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Symbols

Variable Symbol Unit

Coordinates
Radial coordinate r m
Axial coordinate z m
Angular coordinate ϕ rad
Time t s

Indices
Groove g
Non-grooved (between the grooves) ng
Separator disk / Surface s
Friction disk f
Paper material p
Sinter material si

Geometry
Disk distance h m
Standard deviations of roughness RRMS m
Ratio of grooved area to non-grooved area xg -
Hydraulic diameter Dhyd m
Thermal entry length Llam,t m
Thermal boundary layer thickness δt m
Number of grooves ng -
Disk width b m

Material properties
Density ρ kg/m3

Specific heat capacity cp J/(kg·K)
Dynamic viscosity µ kg/(m· s)
Thermal conductivity k W/(m·K)
Thermal transmittance u W/(m2·K)

Oil flow properties
Oil volume flow Q m3/s
Flow velocity v m/s

77



Ratio of wetted area to total area φriv -
Pressure flow factor φp -
Shear flow factor φs -

Dimensionless variables
Nusselt number Nu
Reynolds number Re
Prandtl number Pr
Normalized temperature θ
Normalized radius R
Normalized disk distance H
Normalized velocity U

Other variables
Rotational speed ω rad/s
Characteristic rotational speed Ω rad/s
Pressure p N/m2

Shear stress σϕz N/m2

Force F N
Axial force loss ζ -
Friction coefficient µfric m2

Torque τ N· m
Temperature T K
Heat transfer q W/m2

Antiderivative of the heat transfer Fqconv W/m
Axial heat transfer on the whole surface area Qax W
Convective heat transfer coefficient hconv W/(m2·K)
Coefficient for the temperature in the
non-grooved area ξ -
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