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Abstract 

Capsule filling is widely applied in the pharmaceutical industry. Precise dose filling in the lower 

mg-range, which is required for inhalation therapies, is essential for the successful manufacturing 

of high-quality products. One of the greatest challenges for effectively developing low-dose 

inhalation products is dose uniformity. Although several studies have reported that many powder 

and processing parameters affect the quality of filled capsules, little research has been performed 

with regard to low-dose dosator capsule filling processes. Up to now, the main challenge is the 

powder layer inhomogeneity of very fine powders with low density particles, i.e., particle sizes 

smaller than 10 µm, exhibiting poor flowability and high cohesivity. Currently, no systematic 

understanding exists of how the evolution of the powder layer during the capsule filling process 

contributes to critical quality attributes such as the fill weight and the weight variability. 

The goal of this thesis is to analyze and optimize the dosing process with different experimental 

approaches to gain an advanced process understanding and enhance the filling performance, thus 

reduce fill weight variability of low doses (1-50mg). We mainly focused on three grades of 

lactose excipients, but also studied carrier-based DPI products (formulated as dry powders of API 

in the presence of excipient particles – the carrier) and various silicified microcrystalline 

cellulose excipients. The three lactose excipients were extensively characterized and filled into 

hard gelatin size 3 capsules using two different capsule filling modes, i.e. dynamic and static 

mode tests. Dynamic tests refer to filling of capsules in a regular lab-scale, low-dose dosator 

capsule filling machine (Labby, MG2, Bologna) with special low-dose equipment adaptations. 

Static tests were conducted using a novel filling system developed by us. The influence of the gap 

at the bottom of the powder container and the effect of mechanical vibrations on the quality of 

filled capsules were assessed. 

In dynamic mode trials, the layer uniformity, the fill weight and the weight variability strongly 

depend on the powder characteristics and the instrumental settings. When filling powder mixtures 

(i.e., an adhesive powder blend containing an API) we found two distinct performance indicating 

properties of carrier and API in terms of capsule filling and in vitro aerosolization performance 

for the investigated system, i.e. carrier surface properties for capsule filling and API properties 

for in vitro aerosolization. 
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The findings of the static mode trials suggest that for low-dose dosator capsule filling it is 

strongly recommended to continuously control instrumental settings, i.e., gap between the lowest 

point of the dosator and the bottom of the box, as well as mechanical vibrations that clearly affect 

the fill weight and weight variability. 

Based on the generated data where the powder layer inhomogeneity was found to be one of the 

main challenges, at a later stage the focus was on the latter to optimize the filling process. The 

most promising process analytical technology (PAT) analyzer capable to continuously measure 

the layer uniformity of the powder bed was evaluated for its applicability for a capsule filling 

process. A novel approach to quantify density variations in a moving powder bed by means of 

terahertz technology was developed, and the sensitivity of the method was assessed. Relative 

densities predicted from terahertz reflection measurements were correlated to off-line weight 

measurements (i.e. collected filled capsules). In all cases predicted relative densities were in good 

agreement with the respective fill weight of filled capsules. The results demonstrate that it is 

feasible to analyze powder density variations in a rotating container by means of terahertz 

reflection measurements and to predict the fill weight of collected capsules, a further step towards 

capsule filling process optimization. 
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Kurzfassung 

In der pharmazeutischen Industrie ist das Befüllen von Kapseln eine weit verbreitete Methode. 

Die genaue und zuverlässige Dosierung von Dosen im unteren mg-Bereich (1-50mg) ist eine der 

größten Herausforderungen für eine erfolgreiche Produktentwicklung. In der Literatur berichten 

zwar mehrerer Studien vom Einfluss verschiedener Pulver- und Prozessparameter auf die Qualität 

gefüllter Kapseln, jedoch ist in Bezug auf das genaue und zuverlässige Dosieren von kleinsten 

Dosen in Kapseln wenig bekannt. Kürzlich durchgeführte Studien zeigen, dass für das Befüllen 

geringer Dosen die Pulverbettinhomogenität eine große Herausforderung darstellt, vor allem 

wenn sehr feinkörnigen Materialien mit geringen Dichten einzelner Partikel, das heißt 

Materialien mit einer Partikelgröße unter 10 µm welche schlechte Fließfähigkeiten und hohe 

Kohäsionskräfte aufweisen verwendet werden. Gegenwärtig gibt es jedoch kein systematisches 

Verständnis darüber, wie sich diese Pulverbettinhomogenität und deren Veränderung während des 

Prozesses auf die kritischen Qualitätsattribute von gefüllten Kapseln auswirken. 

Das Ziel dieser Arbeit ist es, den Dosierprozess mit verschiedenen experimentellen Methoden zu 

analysieren und zu optimieren. Auf diese Weise sollen Füllgewichtsschankungen von Kapseln 

gefüllt mit sehr niedrigen Dosen (1-50 mg) reduziert werden. Hierzu konzentrierten wir uns auf 

hauptsächlich auf drei Klassen von Laktose Hilfsstoffen, untersuchten aber auch 

Pulvermischungen von Wirkstoffpartikeln auf grobkörnigem Trägermaterial welche häufig im 

Inhalationsbereich verwendet werden, und zusätzlich verkieselte mikrokristalline Cellulose 

Hilfsstoffe. Die drei Laktose Hilfsstoffe wurden umfangreich charakterisiert und in 

Hartgelatinekapseln auf zwei unterschiedliche Arten gefüllt, im dynamischen und statischen 

Modus. Für den dynamischen Modus wurde ein herkömmliches Labormaßstab-Kapselfüllgerät 

mit speziellen Ausrüstungsanpassungen für das Dosieren kleiner Mengen (Labby, MG2, 

Bologna) verwendet. Statische Tests wurden mit einem neuartigen Füllsystem durchgeführt, 

welches von uns selber entwickelt wurde. 

In dynamischen Testversuchen hängen die Pulverbetthomogenität, das Füllgewicht und die 

Füllgewichtsschankung stark von den Pulvereigenschaften und den instrumentellen Einstellungen 

ab. Weiters stellten wir fest, dass beim Befüllen von Pulvermischungen in Kapseln der 

Füllprozess hauptsächlich durch die Eigenschaften des Trägermaterials beeinflusst wird, 

wohingegen die Inhalationsperformance von den Wirkstoffpartikeleigenschaften bestimmt wird.  
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Die Ergebnisse der statischen Testversuche verdeutlichen, dass für das Befüllen von Kapseln mit 

sehr niedrigen Dosen eine kontinuierliche Kontrolle der instrumentellen Einstellungen notwendig 

ist. Hierzu zählen Faktoren wie der Abstand zwischen dem tiefsten Punkt des Dosators und dem 

Behälterboden, sowie auftretende mechanische Vibrationen, welche sich eindeutig auf das 

Füllgewicht und Füllgewichtsschankungen auswirken. 

Basierend auf den generierten Daten, bei denen die Pulverbettinhomogenität als kritischer Faktor 

festgestellt wurde, lag der Fokus zu einem späteren Zeitpunkt darauf den Prozess diesbezüglich 

zu optimieren. Die vielversprechendste prozessanalytische Technology (PAT) Methode welche in 

der Lage ist die Pulverbettinhomogenität kontinuierlich zu messen wurde auf ihre Anwendbarkeit 

für den Kapselfüllprozess bewertet. Ein neuartiger Ansatz zur Quantifizierung von 

Dichtevariationen in einem sich bewegenden Behälter mittels Terahertz Technology wurde 

entwickelt und die Sensitivität der Methode beurteilt. Relative Dichten, welche von den 

Terahertz-Reflexionsmessungen vorhergesagt wurden, korrelierten sehr stark mit off-line 

Gewichtsmessungen (gesammelte gefüllte Kapseln). Mit unserer entwickelten Methode ist es 

möglich Pulverdichtevariationen in einem rotierenden Behälter mittels Terahertz-

Reflexionsmessungen vorherzusagen, ein weiterer Schritt in Richtung Optimierung eines 

Kapselfüllprozesses. 
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1. Introduction and motivation 

For many years there has been growing interest in delivering medicinal products through the 

lung. This mode of drug delivery ensures rapid onset, allows local and systemic mode of action, 

circumvents the first-pass effect and enables delivery also of large molecules. In particular, in the 

past few years, the lung has emerged as an alternative route for the systemic delivery of peptides, 

proteins, anti-viral vaccines and drugs requiring fast onset of action (Hoppentocht et al., 2014). 

Different delivery technologies exist. Dry Powder Inhaler (DPI) devices that utilize capsules as a 

dose-holding system are the most rapidly-expanding field in pulmonary drug delivery (Islam and 

Gladki, 2008). However, filling inhalation powders into capsules often requires specialized 

equipment that can handle the very low fill weight (Edwards, 2010) in the range of a few tens of 

milligrams. For the currently available low-dose capsule filling systems, the dosator method is 

often used (Faulhammer et al., 2014b). 

One of the biggest problems in the manufacturing of high-quality low-dose inhalation products is 

dose uniformity (Islam and Cleary, 2012). Although there is a considerable body of literature on 

identifying and assessing critical material and process parameters that affect the product quality 

for standard doses (Tan and Newton, 1990a; S. B. Tan and Newton, 1990b; Patel and Podczeck, 

1996; Podczeck and Newton, 1999; Podczeck and Newton, 2000; Heda et al., 2002; Nalluri et al., 

2013; Osorio and Muzzio, 2013; Llusa et al., 2013; Llusa et al., 2014a; Faulhammer et al., 2015; 

Faulhammer et al., 2015b; Moolchandani et al., 2015; Moolchandani et al., 2016; Loidolt et al., 

2017; Wagner et al., 2018;), little attention has been paid to low-dose dosator capsule filling 

processes. For the latter there are still some obstacles to be overcome, in particular the filling of 

very fine powders poses a major challenge (Faulhammer et al., 2014b). 

In the scope of this thesis, a low-dose dosator nozzle capsule filling process was investigated 

using three grades of lactose excipients (Lactohale 100, Lactohale 200, Lactohale 220) that are 

commonly applied as carriers in inhalation therapies (Kou et al., 2012a), carrier-based DPI 

products (formulated as dry powders of API in the presence of excipient particles – the carrier) 

and various silicified microcrystalline cellulose excipients (Prosolv® SMCC 50, Prosolv® 

SMCC 50 LD, Prosolv® SMCC 90). The applied experimental approaches are not only relevant 

for a low-dose capsule filling process, but also for other pharmaceutical unit operations like e.g. 

standard capsule filling as well as tableting. 
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The gained knowledge of the effects of various process parameters on the capsule filling 

efficiency may improve current filling systems, the product quality of low-dose capsules for 

inhalation and, ultimately, patients’ health. 

For improving existing capsule filling solutions, considering in particular a lab-scale capsule 

filler (Labby, MG2, Italy) and an industrial scale capsule filler (Planeta 100 MG2, Italy), and gain 

deeper knowledge about the processability of excipient powders and carrier-based DPI 

formulations, the following scientific approaches were applied: 

(1) Characterization of excipient powders using standardized methods (such as particle size, bulk 

powder density and FT4 powder rheometer measurements) and advanced measurement 

techniques to assess the powder’s flowability in detail. For the latter a dynamic test method (the 

avalanching test method) was applied, via which the flowabilty of powders can be assessed by 

measuring their avalanching behavior related to cohesivity and flowability (Kaye, 1997). This 

knowledge about powder properties and how they can be translated to downstream processing 

were investigated through accurate filling studies with different combinations of capsule filing 

settings. In the present study the focus was put on the condition of the powder layer, i.e. powder 

bulk density as well as visible or hidden channels, holes, compacted, loosened, or segregated 

areas within the powder mass, which is known as critical factor affecting the quality of filled 

capsules in terms of fill weight and weight variability. 

(2) Decoupling and comparison of the filling process in dynamic and static tests to identify 

possible emerging critical process parameters. Moreover, the filling performance from the static 

tests carried out with the in-house developed stand-alone test tool, are used as experimental input 

data for simulation studies of the dosator dipping step. For details about the respective DEM 

simulations and developed simulation model we refer to the previously published work (Loidolt 

et al., 2017a) and book chapter (Loidolt et al., 2018). The in-house developed novel test tool used 

for static tests is beneficial for executing pre-tests for optimal process settings of new powders (or 

powder mixtures) with a limited amount of powders. More precisely, it could help formulation 

and process developers to rapidly screen the required process parameters based on the specific 

properties of the powders used. From industrial perspective, this tool will support manufacturer’s 

clients in selecting optimal process parameters for their products. Moreover, it can be used to test 

new dosators or industrial scale dosators to facilitate a rapid scale-up of the process. 
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(3) Monitoring the state and changes of the powder conditions inside the rotary container in terms 

of layer uniformity using Process Analytical Technology (PAT) analyzers. The identified 

technology, i.e. the terahertz technology, is capable of measuring powder density variations in a 

rotating container from which the dosator collects the powder. In general, the implementation of 

a process analyzer in capsule filling processes could significantly reduce the fill weight 

variability of filled capsules. The powder bed density at the position where the dosator collects 

the powder could be measured by placing the terahertz probe at the respective position. The 

knowledge about the state of the powder bed throughout the process will help in designing 

production machines, e.g. introduction of tools to stabilize the powder bed condition, which are 

capable to maintain a constant powder bed density and thus reduce process induced variability of 

final products. 

(4) Study the interplay between particle engineering, particle properties, their downstream 

processability and aerodynamic performance of carrier-based DPI products. This specific 

knowledge base will help in the pre-selecting of suitable API carrier combinations, in terms of 

their engineering routes and downstream process parameters based on particle characteristics. 

Overall, the findings of all these approaches contributed/will contribute in several ways to 

expanding the understanding of downstream processability of powers and required capsule filler 

settings along with special adaptations. Moreover, the studies raised the awareness on the urgency 

of process analyzers capable of continuously monitoring the powder bed conditions. The 

suggested optimization strategies tested at lab-scale can be translated to industrial scale capsule 

fillers to improve current filling systems, the product quality of low-dose capsules and, 

ultimately, patients’ health. 
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1.1 Granular materials 

Granular materials, described as discrete solid, macroscopic particles (Holdich, 2002), are 

ubiquitous in our daily lives and in industrial applications (Lumay et al., 2012). Handling 

granular materials, including powders, plays a crucial role in many industries (such as 

pharmaceutics, agriculture, food and cosmetic production, mining, catalysis technology, chemical 

processing and environment) and modern technologies (such as additive manufacturing). In fact, 

most of the raw materials used for manufacturing end products are granular materials, whose 

handling (e.g. transporting, conveying, storing, dosing) is known to be challenging due to their 

application-dependent performance and their material attributes that hinder an establishment of 

general constitutive equations relating shear rates and stresses (Schulze, 2007; Stiess, 2008; 

Duran, 2012). 

Granular materials, and in particular powders, are considered to be two-phase systems consisting 

of a dispersed phase of solids of various sizes and gas as the continuous phase. Consequently, the 

behavior of powder materials depends on the properties of the particle as an individual entity, the 

properties of an assembly of particles, and the interactions between those assemblies and the 

continuous phase (Ortega-Rivas, 2009). Compared to liquids and gasses, the understanding of the 

granular state properties is poor. In fact, a granular material is a complex system which exhibits 

non-trivial transitions between the static, the quasi-static and the dynamical states. The motion 

and jamming of grains inside a pile are mainly influence by steric repulsions (related to the 

geometry of the particles), friction forces (influences by surface properties and the chemical 

nature of the grains) and cohesive forces (related to liquid bridges, electric charges, van der 

Waals interactions and magnetic dipole-dipole interactions). Any progress in the understanding 

of the granular material behaviors is highly relevant for the industry, in particular during the 

development or the optimization of an industrial process (Lumay et al., 2012). Regarding powder 

properties relevant in capsule filling processes, most of the literature is focused on the effect of 

powder flowability on fill weight variability (S B Tan and Newton, 1990a; S B Tan and Newton, 

1990b; Patel and Podczeck, 1996). However, flowability was also suggested to affect fill weight 

(Patel and Podczeck, 1996). Moreover, Eskandar et al. (2011) reported that successful and 

accurate dosing of low powder masses <10 mg is considered to be challenging due to the 

limitations of current powder volumetric dosing technologies that rely on powder’s having a 

“good” flowability (Eskandar et al., 2011). 
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It is well known that many factors affect the flowabilty of any given powder. This includes 

surface properties, shape and size distribution on the one hand and the geometry of the physical 

system on the other. Thus it is obvious that one general theory can hardly be applicable to all 

powders and all possible conditions that may develop in practice (Peleg, 1977). For example, in a 

dosator nozzle capsule filling process powders must have good flowabilty and be non-adhesive 

yet compressible enough to form plugs (Loidolt et al., 2018). However, since during a dosator 

capsule filling process the powder blend rotates in a powder container, a good flowabilty does not 

necessarily guarantee a good filling performance. Segregation can occur over longer processing 

time. This segregation tendency may be a result of differences in powder density, particle 

mobility induced by the different shapes of particles and, above all, the particle size (Cullen, 

2009). In contrast, for highly compressible powders, jamming and blocking of the piston has to 

be considered critical (Tan and Newton, 1990c). 

In fact, it is thus evident to extensively characterize the powder properties, and relate them to the 

respective filling performance, to use it as a knowledge basis for required instrumental 

adaptations of current filling solutions. This enhanced understanding of processability of different 

powder groups, in our case on a dosator nozzle system, will help to optimize current filling 

systems and ultimately high quality end products. In general terms, powder’s characteristics 

needs to be translated into needed instrumental settings required to successfully produce capsules 

with a constant fill weight and low weight variability to achieve product-specification 

compliance. 

 

1.2 Dry powder filling of hard capsules 

Capsule filling is widely applied in the pharmaceutical industry. Capsule filling machines can be 

classified as manually, semi-automatic and fully automated. Furthermore, as shown in Figure 1, 

the semi- and fully automated systems can be categorized due to their filling principle in direct 

and indirect machines. In the former principle the machines use the capsule body to directly 

measure the dose, which is filled as a loose mass. The auger filling mechanism, a direct filling 

system, uses a hopper with a built in auger which is filled with powder. Capsules are placed on a 

rotating plate at the outlet of the hopper, which are then filled with powder due to the motion the 

auger. Another technique in this category is vibration-assisted filling. The powder is filled in a 

container with an oscillating sieve at the bottom, thus the powder percolates through the sieve 
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and is filled into the capsule which is placed below the container. Indirect filling can be done 

with a dosator nozzle system, a tamp filler, a vacuum drum filler or a vacuum dosator. The 

tamping principle uses tamping pins to sequentially compress little amounts of a powder bed into 

dosing bores to form a powder plug which is subsequently filled into the capsule. The vacuum 

drum filling principle, which applies vacuum to take up powder into the cavity of a dosator and 

subsequently fill it into the capsule, and the dosator system belong also to the indirect filling 

category, and are preferentially used for low-dose capsule filling (Podczeck and Jones, 2004). 

The indirect method of capsule filling is used in the vast majority of commercial filling 

operations, with the two principle methods for making a plug, the dosing disks and the dosator 

method (Hoag, 2016). The work of Lightfoot (2017) reviews the history of capsule filling which 

started in the United States around 1900, and provides a detailed discussion of capsule filling 

machines. 

 

Figure 1: Overview of automated capsule filling principles 
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Data from several sources have identified and assessed material and process parameters affecting 

the quality of filled capsules for standard doses (Tan and Newton, 1990a; S. B. Tan and Newton, 

1990b; Patel and Podczeck, 1996; Podczeck and Newton, 1999; Podczeck and Newton, 2000; 

Heda et al., 2002; Nalluri et al., 2013; Osorio and Muzzio, 2013; Llusa et al., 2013; Llusa et al., 

2014a; Faulhammer et al., 2015; Faulhammer et al., 2015b; Moolchandani et al., 2015; 

Moolchandani et al., 2016; Loidolt et al., 2017; Wagner et al., 2018). 

For example, a series of studies investigated in detail the material and process parameters of a 

dosator nozzle machine affecting the critical quality attributes of filled capsules, i.e. fill weight 

and weight variability. The effects of mechanical vibrations (Llusa et al., 2013), the 

compressibility of powders (Llusa et al., 2014a), the impact of particle modification (Faulhammer 

et al., 2015b), to name a few, were evaluated and translated into the capsule filling performance. 

More recently, Moolchandani et al. (2016) studied the relationship between the physicochemical 

and mechanical properties of lactose that could affect product formulation and processing end 

performance of a dosing disc capsule filling machine. In particular, the effects of drug load and 

change in machine operating variables on formulations derived from different lactose types were 

evaluated in terms of resulting plug characteristics and their capsules. It was found that both 

formulation and machine operating variables had major impacts on the physical, mechanical and 

drug release rate properties of the capsules prepared. 

A recent study by Loidolt et al. (2017) investigated the filling of a dosator nozzle when dipping 

into a powder bed using the Discrete Element Method (DEM). Basically, this method offers the 

opportunity to freely modify powder properties and to observe quantities that are not measurable 

experimentally, making it a great complementary tool to experiments. This study was the first 

attempt of a mechanistic modeling of the dosator filling process. The main findings relevant for 

our purpose are summarized and discussed in section 1.3. 

Since the pharmaceutical industry is moving from batch towards continuous processing (Davies 

et al., 2005; Buchholz, 2010; Poechlauer et al., 2012), the recently published work by Wagner et 

al. (2018) suggests a process model for controlling a continuous capsule filling process, a next 

step towards predicting the optimal processing conditions for a new capsule filling task. 

 

 



 

 

8 

 

1.2.1 Low-dose dosator nozzle technique 

Capsule filling by nozzle dosators has been broadly investigated (Jones, 2001; Podczeck and 

Jones, 2004; Llusa et al., 2013; Llusa et al., 2014a; Faulhammer et al., 2014b; Faulhammer et al., 

2015; Faulhammer et al., 2015b; Loidolt et al., 2017) and is an important technology applied in 

the pharmaceutical industry today. Especially in DPI (Dry powder inhaler) filling the dosator 

principle plays an important role, as the doses need a controlled degree of compaction, to ensure 

that the DPI can reliably turn the plug back into a powder for efficient dose delivery 

(Faulhammer et al., 2014b). 

Precise dose filling in the lower mg-range, which is required for inhalation therapies (Edwards, 

2010), is essential for the successful manufacturing of high-quality products. In addition, the final 

product, i.e. capsule-based dry powder inhalation therapy (DPI) system, has to provide effective 

mono-dose packing of the inhalation formulation, secure the release from the capsules through 

ease of opening in the device (e.g. piercing, shearing) and the complete ejection of the fine 

particles from the capsules (Stegemann et al., 2018). Several low-dose capsule filling systems are 

currently available. The work of Edwards (2010) provides an excellent overview of applications 

of capsule dosing techniques for use in dry powder inhalers. As stated above, the dosator 

principle with its ability to fill powder with a controlled degree of compaction to ensure that for 

efficient dose delivery the plug can be turned back into a loose powder plays an important role in 

DPI product filling. In the following, the dosator nozzle technique is described in more detail, 

because it is the filling principle, which was used in the experimental part of this thesis. 

Figure 2 depicts the multiple steps of a continuous dosator nozzle machine. Here, the powder is 

fed from a powder hopper into a rotating powder container. The dosator nozzles (1 in lab-scale 

machines; 2-32 in industrial scale machines) are fixed in a turret which has a smaller diameter 

than the rotary container and is slightly off-center, whereas both rotate in the same direction. At 

first, the dosator nozzle moves into the powder bed and collects the desired volume of powder 

from the powder layer out of a rotating container. This volume is determined by a spring inside 

the nozzle, which pushes the piston up until the dosing chamber is reached. For inhalation 

products, the capsules are filled with a controlled degree of compaction or even without 

compaction (Figure 2, step 4b), to ensure that the plug is turned back into a powder for efficient 

drug delivery. After collecting the powder, the nozzle and piston are first withdrawn from the 

powder bed, then move through a cleaning unit (Figure 2, step 8), and finally the plug is placed 
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into the body of the capsule. Due to the dosing principle, the powder has to be retained in the 

dosing chamber, while this section is in motion. Thus, for the retention of the powder in the 

nozzle during transfer, the powder must be able to form an arch. If no compaction is applied and 

no plug is formed the transfer step is very critical. Moreover the adhesion of the powders plays an 

important role (Podczeck and Jones, 2004; Faulhammer et al., 2014b; Hoag, 2016; Loidolt et al., 

2018). 

 

Figure 2: Continuous capsule filling with dosator nozzles (Loidolt et al., 2018). 

 

Although, as stated in the previous section, several studies have reported the impact of material 

and process parameters on the capsule filling performance for standard doses, little research has 

been performed with regard to low-dose dosator capsule filling processes. To the best of our 

knowledge, the studies of Faulhammer et al. (2014a) and Seyfang et al. (2014) were the first 

attempts to scientifically qualify dosator nozzles for low-fill-weight capsule filling. The main 

challenge in their experiments was the powder layer inhomogeneity of very fine powders with 

low density particles, i.e., particle sizes smaller than 10 µm, exhibiting poor flowability and high 

cohesivity (Faulhammer et al., 2014a; Seyfang et al., 2014). Currently, no systematic 
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understanding exists of how the evolution of the powder layer during the capsule filling 

contributes to critical quality attributes such as the fill weight and the weight variability. 

 

1.3 Powder bed 

In a dosator nozzle capsule filling process the powder to be filled in a capsule is presented in the 

form of a powder bed from which the dosator collects the desired volume of powder and transfers 

it into a capsule (Podczeck and Jones, 2004). 

It is well known that powder density variations during manufacturing can detrimentally influence 

the quality of final products. This is frequently prescribed (amongst others) for two commonly 

used oral dosage forms, i.e. tablets and capsules. In tablet production powder density variations 

may impact tablet mass and hardness as well as the dissolution performance and it hence affects 

the amount of drug delivered to patients (Singh et al., 2015). In filling capsules with powder or 

with pellets, the content of capsules, i.e. the fill weight, needs to be constant according to 

regulatory requirements. Fill weight variability and content uniformity are therefore considered 

as critical quality attributes (CQAs) within the Quality-by-Design (QbD) framework 

(Faulhammer et al., 2014c). For example, Faulhammer et al. (2014b) reported that for low-fill 

weight (1–50 mg) capsule filling using the dosator nozzle method, the powder density is one of 

the most relevant material attributes affecting the weight variability of final products, i.e. filled 

capsules. Moreover it was found that the influencing process parameters differ for the tested 

powders, whereas particular process parameters are required to successfully fill different types of 

powders into capsules. The recently published work by Loidolt et al. (2017a), where the Discrete 

Element Method (DEM) was used to describe the filling of the dosator nozzle when moving into 

the powder bed, showed the influence of powder properties on the amount of dosed mass. The 

powder packing inside the dosator nozzle and in turn the powder mass was affected by (1) the 

ratio between the particle and dosator diameters, and (2) the flow behavior of the powder which 

modifies the filling and compression behavior. In particular, cohesive powders pack less densely 

inside the powder bed, resulting in a lower amount of dosed powder. In contrast, cohesive 

powders are more compressible and thus the powder density inside the dosator nozzle increases 

during the dosing process. Evidently, the densification of the powder during the dosing step 

increases with powder compressibility, poorer flowability and a higher pre-compression ratio (i.e. 

the ratio between the dosing chamber length and the powder bed height). Moreover, the dosing 
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speed has an impact on the resulting fill weight, but its impact is rather complex and it is still 

unclear whether the increase in fill weight over time is due to the increased nozzle dipping speed 

or the densification of the power bed caused by machine vibrations and other forces. Likely, for 

different powders different effects are dominating (Loidolt et al., 2017a). In general, the major 

challenge is that the dose in the capsule is specified by weight, while the filling systems work 

based on a volumetric principle (Brian E Jones, 2001; Podczeck and Jones, 2004a). This implies, 

that when dosing the same volume of powder into a capsule, the fill weight may vary due to 

natural variations in the bulk density of the powder (Loidolt et al., 2018) 

1.3.1 Bulk powder density 

The relative density of the intermediate and final product is therefore highly critical for the 

product quality and it needs to be monitored and controlled to assure a consistent product 

performance. In general, the bulk powder density can be a useful parameter for the design, 

optimization, and scale-up of manufacturing processes, where density could be used as an 

equipment-independent scaling parameter (Hancock et al., 2003). Furthermore, as the 

pharmaceutical industry is moving from batch towards continuous processing (Davies et al., 

2005; Buchholz, 2010; Poechlauer et al., 2012), real-time monitoring of the product quality is 

inevitable and robust quality descriptors are essential to realize process control (Vanarase et al., 

2010). In this respect, the process analytical technology (PAT) is frequently prescribed as an 

essential step forward in the pharmaceutical industry. Real-time analyzers will provide timely 

data on quality properties, and thus are powerful tools for this industry, for process 

understanding, process and quality monitoring, detection of abnormal situations and for 

improving product quality and process reliability (Kourti, 2006). Based on previous studies of our 

working group where the powder layer inhomogeneity was found to be a critical factor resulting 

in poor quality of end products, a PAT strategy is highly recommended to improve the capsule 

filling performance (Faulhammer et al., 2014a; Faulhammer et al., 2014b). 

 

1.4 Process analytical technology (PAT) 

Food and Drug Administration’s (FDAs) PAT initiative 

In general, the complexity of many processes makes it very difficult to determine the product 

quality during processing. Pharmaceutical developments and manufacturing practices often rely 
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on a number of off-line tests to test whether a final product meets the quality requirements. To 

overcome this, the FDA and other regulatory organizations are encouraging the development of 

process analytical technologies (PATs) with the goal to build quality assurance into the 

manufacturing process by acquiring process data on-line. A key requirement of the initiative is 

the ability to measure critical quality attributes on-line for process monitoring and to verify 

product quality (McKenzie et al., 2006). Since 2004, a series of guidelines regarding Process 

Analytical Technology (PAT) and Quality by Design (QbD) have been released by the FDA 

(FDA, 2004) and ICH (Q8–Q11). 

Quality by design (QbD) 

One of the basic ideas of the PAT Guidance (FDA, 2004) is that quality of the end-product 

“should be built-in or should be design” and that PAT procedures “would be consistent with the 

basic tenet of quality by design”. The QbD framework has led to an important paradigm change 

by allowing pharmaceutical companies to develop well-controlled and consistently optimized 

manufacturing processes. The studies on the QbD procedures are emerging as a specific area with 

its own vocabulary represented by a set of abbreviations, such as QTPP (quality target product 

profile), CPP (critical process parameter), DS (design space), and CQA (critical quality attribute) 

(Pomerantsev and Rodionova, 2012). 

Design space (DS) 

The development of a PAT method requires an in-depth understanding of the physical and 

chemical properties affecting the product quality, as well as how changes in process parameters 

affect these properties (such as, e.g. impeller speed). For this, a design space approach is 

recommended in order to understand the complex relationship between the input variables and 

the process parameters and their impact on product quality. The design space is defined as “a 

multidimensional combination and interaction of input variables (e.g. material attributes) and 

process parameters that have been demonstrated to provide assurance of quality”. The DS is a 

subset of the knowledge space. The knowledge base represents what is known about the process, 

including failure regions, and the DS refers to the set of operating situations where the final 

product quality is acceptable. Another subset is the control space, which is used to further 

optimize the process to define a target range for normal operation. The DS is useful to understand 

how a product performs under different operating conditions and to develop robust processes 
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where variability in materials, process parameters and equipment can be accommodated (FDA, 

2004; ICH (Q8–Q11)). 

Design of experiments (DoE) 

In conjunction with a design space, the statistical approach known as design of experiment (DoE) 

is often used to understand the complex relationship between variables. Basically, experiments 

are designed to identify the root cause of variability and how it affects the process as a whole 

(Box et al., 1978). 

Monitoring process variability 

Based on the FDA’s PAT initiative (FDA, 2004), the following real time measurement modes 

can be performed in order to monitor variables of a process: (1) At-line, where the sample is 

removed and analyzed in close proximity to the process stream, (2) On-line, where the sample is 

diverted from the manufacturing process, and may be returned to the process stream and (3) In-

line, where the sample is not removed from the process stream and can be invasive or non-

invasive. 

Much of the current literature in the manufacturing of solid dosage forms pays particular 

attention to techniques for in-line monitoring of the blend uniformity, with the most common 

employed process analyzer being near-infrared spectroscopy (NIRS) (Reich, 2005a; El-Hagrasy 

and Drennen, 2006; Li et al., 2006; Moes et al., 2008; Lin et al., 2015; Corredor et al., 2014;). 

Other non-destructive techniques such as Raman spectroscopy (Hausman et al., 2005; Wikström 

et al., 2006; Arruabarrena et al., 2014), light induced fluorescence (Karumanchi et al., 2011), and 

chemical imaging (El-Hagrasy et al., 2001; Lyon et al., 2002; Ma and Anderson, 2008; Osorio et 

al., 2014) are commonly used for on-line or in-line measurement of the blend uniformity (H. 

Wang et al., 2017). However, even if blend uniformity is adequate, density changes in the 

product may lead to undesirable variations in the product performance. Density variation can 

either cause an excess/lack of drug in a single dose or it can impact the microstructure which also 

influences the dissolution behavior of the final product (Markl et al., 2017a). Thus, it is crucial to 

not only control the drug concentration but also the relative density during processing. To date, 

only a few studies have attempted to monitor density variations of a powder bed. For example, 

the work by Singh et al. (2015) proposes a novel method for real-time monitoring of bulk powder 

density using a NIR sensor. Sensitivity analysis to quantify the effects of bulk powder density on 
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critical quality attributes of pharmaceutical tablets has been performed. Recently, NIRS 

calibration models for real-time prediction of powder density (tap, bulk and consolidated) were 

developed for a pharmaceutical formulation (Román-Ospino et al., 2016). Moreover, other 

approaches related to monitoring powder bulk densities are reported in the literature such as an 

analytical ultrasound method (Leskinen et al., 2010), an air-coupled acoustic technique (Akseli et 

al., 2010), photo-acoustic testing (Ketolainen et al., 1995), acoustic emission measurements 

(Hakanen and Laine, 1995), microwave measurements (Trabelsi et al., 1998; Trabelsi and 

Nelson, 2004), X-ray based methods (Akseli et al., 2011), thermal effusivity monitoring (Ghorab 

et al., 2007), and electrical tomography (Davies et al., 2005). However, quantitative real-time 

measurements of bulk powder density variations in a moving powder bed remains a challenge 

(Singh et al., 2015). Terahertz time-domain spectroscopy (THz-TDS) has recently emerged as a 

promising analytical tool for characterizing the pore structure of tablets (Markl et al., 2017b). In 

general, within the last ten years, a rapid development of terahertz systems and their 

commercialization driven by their inherent potential for quality control have created many 

exciting opportunities in the pharmaceutical sector (Y. C. Shen, 2011). 

 

1.5 Terahertz technology 

Terahertz electromagnetic radiation covers the spectral range from 2 to 130 cm
-1

 (60 GHz–4 

THz) (Zeitler et al., 2007), as shown in Figure 3. It spans in the range between mid-infrared (IR) 

and microwave radiation, thus terahertz can also be named far-infrared radiation. In contrast to 

the IR region, which is related to intra-molecular vibrations, terahertz region is dominated by 

inter-molecular vibrations, corresponding to coherent, delocalized movements of large number of 

atoms and molecules (Korasa and Vrečer, 2018). As the radiation lies between the electronics and 

optics, terahertz radiation can be obtained with both technologies. Terahertz combines 

advantageous properties of both regions: It can penetrate through most dielectric materials like 

microwaves do, and it features spectral absorption of most polar molecules such as in infrared 

which can be used for chemical identification and sensing applications (Ellrich et al., 2011). 

Compared with NIR, mid-IR, and Raman spectroscopy, THz-TDS is inherently less vulnerable to 

scattering effects from powders due to operating at much longer wavelength (Markl et al., 

2017b). Excipients most commonly used for the formulation of solid dosage forms are 

transparent, or semi-transparent, to terahertz radiation. Hence, the pulse of terahertz light can 
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penetrate into and through a specimen leading to a large representative sample volume. The 

penetration depth of the terahertz radiation into the sample material is dependent on the material 

and the power of the terahertz pulse. At present, penetration depths into typical pharmaceutical 

formulations have been demonstrated up to 5.3 mm (Markl et al., 2017a).  

 

Figure 3: The electromagnetic spectrum showing terahertz radiation in relation to adjacent 

spectral regimes (Zeitler et al., 2007). 

 

Detectors can be either homodyne or heterodyne. Homodyne detectors measure a physical 

property (e.g. volume, electric and dielectric properties) and in heterodyne detectors incoming 

terahertz signals are blend with an additional signal from a local oscillator which results in an 

intermediate frequency signal. Alternatively optoelectronic detectors can be used such as 

optically gated terahertz photoconductive antennas or nonlinear electro-optic crystals (Saeedkia 

and Safavi-Naeini, 2008). Details about detectors (using a solid-state receiver) to detect and 

measure terahertz pulses can be found elsewhere (Zeitler and Gladden, 2009). 

Detailed description of the terahertz theory, device and system has been provided by numerous 

earlier studies and reviews (Jepsen et al., 1996; Ferguson and Zhang, 2002; Schmuttenmaer, 
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2004; Chan et al., 2007; Jansen et al., 2010). Excellent and detailed reviews on pharmaceutical 

applications of terahertz pulsed spectroscopy and imaging were published recently by Zeitler et 

al. (2007b), Ho et al. (2007), Taday (2004, 2009), Y.-C. Shen (2011) and Dave et al. (2017). In 

addition many reviews on other applications e.g., the food and agri-food industry (Gowen et al., 

2012; Qin et al., 2013; K. Wang et al., 2017), imaging of biologically related applications 

(Parvathi Devi et al., 2014), fundamental research and industrial applications (El Haddad et al., 

2013) to name a few, are reported. Recently, an excellent comprehensive overview and summary 

of recent advances and applications of terahertz spectroscopy was published by Prabhu (2018). 

In terms of terahertz as a potential technology for monitoring the density variations of particulate 

material (off-line or in real time) valuable approaches in very similar fields are reported. For 

example, the work by Palermo et al. (2008) demonstrates the ability to quantitatively measure 

density maps of a tablet using terahertz pulsed imaging (TPI). As shown in Figure 4 it was 

possible to quantify the effect of the compaction force on the refractive index of the solid oral 

dosage forms using terahertz spectroscopy. Using a chemometric model, the density distribution 

over the surface of flat tablets was predicted from the TPI maps. 

 

Figure 4: Effect of compaction force (2000, 3500, 5000, 6500 and 8000 lbs) on the mean 

refractive index spectra of all compacts. The arrow indicates the direction of increasing force. 
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In a further study, May et al. (2013) applied TPI for the analysis of the “hardness” (crushing 

strength) of pharmaceutical tablets. Radially symmetric spatial distributions in tablet density due 

to the shape of the punch used in the tablet manufacture were observed. A strong correlation 

between TPI results and those from diametric compression tests as well as finite element analysis 

(FEA) simulations was found. In a related study, Juuti et al. (2008) investigated the surface 

roughness and bulk properties of starch acetate tablets. The time delay of the terahertz pulses 

transmitted through a tablet was found to be correlated with the porosity of the tablet across a 

range of compression pressure. In a different study, the transmission terahertz spectra of porous 

media were also studied by Juuti et al. (2008).  

In a further recent attempt to non-destructively measure the porosity of pharmaceutical tablets, 

the work by Ervasti et al. (2012) showed that in the absence of terahertz scattering, the effective 

refractive index (RI) that is obtained by the detection of the terahertz pulse delay correlates with 

the porosity of the tablet. Additionally, it was proposed that the broadening of the terahertz pulse 

could be a measure of porosity of tablets that scatter terahertz radiation (Ervasti et al., 2012). 

Parrott et al. (2009) have investigated the frequency-dependent RI and the absorption coefficient 

of porous media in the case of media that exhibit low porosity and weak scattering of terahertz 

radiation (Parrott et al., 2009) using the Maxwell Garnett effective medium model (Garnett, 

1905). Furthermore, they have also considered the Bruggeman model (Bruggeman, 1935) for a 

case when the porosity of a sample can be relatively high. The work by Bawuah et al. (2014) 

investigated the dependence of porosity on other physical quantities such as gloss and surface 

roughness and furthermore introduced a method for the non-destructive and the non-invasive 

estimation of the porosity of sample pellets measured with terahertz pulse delay and using the 

Bruggeman effective medium approximation (BR EMA) (Bawuah et al., 2014). 

More recently, the results from the terahertz measurements are complemented and compared with 

characteristic pore structure parameters extracted from X-ray computed microtomography 

(XµCT). It was demonstrated that the long acquisition times (several hours) and safety concerns 

of X-ray computed microtomography measurements can be overcome by terahertz technology, 

which is a fast, non-ionizing, contactless, and non-destructive method. The high potential of this 

technology to analyze the pore structure was emphasized by an 𝑅2 = 0.99 from the correlation 

between the porosity predicted from terahertz measurements and the nominal porosity (Markl et 

al., 2017b). It should also be noted, that some materials have a characteristic fingerprint in the 

terahertz region, which makes it an important technique for identification of various compounds 
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(Dave et al., 2017). All these results suggest that the terahertz technology is suitable for non-

destructive monitoring and analysis of pharmaceutical manufacturing processes. It is also 

suggested that TPI could also be useful for characterizing (tablet) bulk properties non-

destructively. Terahertz is considered to be an attractive PAT tool for monitoring, quality 

assessing and investigating the microstructure of solid dosage forms. Some limitations like the 

relatively high wavelength (i.e. the spatial resolution limits) could be overcome by coupling with 

other techniques such as NIR imaging (Dave et al., 2017). Furthermore, the low absorption of 

pharmaceutical excipients at terahertz frequencies would make OCT (optical coherence 

tomography) a particularly attractive technique to bring together high resolution, high penetration 

and strong contrast (Shen et al., 2008). However, for a OCT-THz coupling, more powerful 

detectors are needed (Zeitler and Gladden, 2009). In the near future, more improvements are 

needed to further allow using the terahertz technology as real-time and on-line PAT tool, and 

enhance its applications in various aspects of pharmaceutical development (Zeitler and Gladden, 

2009). 
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ABSTRACT 

The objective of this work was to assess the effect of process parameters of a dosator nozzle 

machine on the powder bed uniformity of inhalation powders with various characteristics during 

a low-dose dosator capsule filling process. Three grades of lactose excipients were extensively 

characterized and filled into size 3 capsules using different dosing chamber lengths (2.5, 5 mm), 

nozzle diameters (1.9, 3.4 mm), powder bed heights (5, 10 mm) and filling speeds (500, 3000 

capsules/hour). 

The fill weight and the weight variability of Lactohale 100 (large particles, good flowability, low 

cohesion) remained almost the same, regardless of the process parameters throughout the capsule 

filling run time. Moreover, for this powder an increase in the fill weight at a higher filling speed 

was observed in all cases. Fill weight variability was significantly higher for lower dosing 

chamber volumes at a filling speed of 3000 capsules per hour. Lactohale 220 (small particles, 

poor flowability, high cohesion) delivered entirely different results. After a certain run time, 

depending on instrumental settings, a ‘steady-state’ with constant fill weights and low weight 

variability was achieved. For this highly cohesive powder, a high dosing chamber volume 
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requires a low filling speed in order for the powder to completely fill the dosator nozzle. 

Moreover, it was established that a dosing chamber length of 2.5 mm and a powder bed height of 

10 mm were required due to the powder’s high fill weight variability over time, while the dosator 

size had no effect on it. 

In summary, the layer uniformity, the fill weight and the weight variability strongly depend on 

the powder characteristics and the instrumental settings. The results indicate that Lactohale 220 

requires special attention during low-dose capsule filling. The study presents excellent insights 

into the effect of material attributes and process parameters on the layer uniformity and the 

quality of end product.  
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2.1 Introduction 

Capsule filling is widely applied in the pharmaceutical industry. Different methods exist, 

including tamping systems and the nozzle-dosator technique, which is especially relevant for 

filling capsules for inhalation application (Faulhammer et al., 2014b). Precise dose filling in the 

lower mg-range, which is required for inhalation therapies (Kou et al., 2012b), is essential for the 

successful manufacturing of high-quality products. One of the greatest challenges for effectively 

developing low-dose inhalation products is dose uniformity (Islam and Cleary, 2012). Although 

several studies have reported that many powder and processing parameters affect the quality of 

filled capsules (Faulhammer et al., 2014b; Nalluri et al., 2013; Podczeck and Newton, 1999; 

Podczeck and Newton, 2000; Patel and Podczeck, 1996; Tan and Newton, 1990; S. B. Tan and 

Newton, 1990) little research has been performed with regard to low-dose dosator capsule filling 

processes. To the best of our knowledge, the studies of  Faulhammer et al. (2014a) and Seyfang 

et al. (2014) were the first attempts to scientifically qualify dosator nozzles for low-fill-weight 

capsule filling. In these systems the powder is forming a layer in a rotating bowl from which 

periodically material is sampled via the dosator nozzle and filled into empty capsule bodies. The 

main challenge in their experiments was the powder layer inhomogeneity of very fine powders 

with low density particles, i.e., particle sizes smaller than 10 µm, exhibiting poor flowability and 

high cohesivity (Faulhammer et al., 2014a; Seyfang et al., 2014). Currently, no systematic 

understanding exists of how the evolution of the powder layer during the capsule filling 

contributes to such critical quality attributes as the fill weight and the weight variability.  

The objective of this work was to assess the effect of process parameters of a dosator nozzle 

machine on the powder bed uniformity of powders with various characteristics during a low-dose 

dosator capsule filling process. A lab-scale, low-dose dosator nozzle capsule filling machine 

(Labby, MG2, Bologna) with special low-dose equipment adaptations (i.e., smaller nozzles, a 

cleaning unit for the removal of excess powder from the dosator, special blades to create the 

powder layer) was used in this study. The evolution of the powder bed for three grades of lactose 

and the combination of various process parameters was assessed by measuring the weight of 

filled capsules for a total run time of 30 minutes. The effect of combinations of various material 

attributes and process parameters was investigated with respect to fill weight and weight 

variability over time. Compared to previous studies in the field of assessing the capsule filling 

performance, a key strength of this study was the ability to demonstrate the changes in fill weight 
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and weight variability not only depending on the instrumental settings, but also their changes 

over time. 

This study provides new insights into the significance of powder layer monitoring during a low-

dose dosator capsule filling process in order to achieve product-specification compliance. 

 

2.2 Materials and methods 

Three grades of lactose excipients commonly used as carriers in inhalation therapies (Kou et al., 

2012b) were used as received from the supplier (DFE pharma). The sieved Lactohale 100 and 

two milled powders Lactohale 200 and Lactohale 220 were selected since for powders with 

different characteristics (such as compressibility) a certain combination of instrumental settings is 

required in order to successfully fill a dosator nozzle machine. A recent study by Faulhammer et 

al. (2014a) describes the processability of two groups of powders (group 1 – coarse carriers; 

group 2 – fine carriers and API). In our study the described classification of powders will be 

extended by introducing another group -‘intermediate group’ - to enhance the process 

understanding. Each of the three used lactose excipients will act as a representative for one group. 

Table 1 shows the parameters which were used for grouping the powders. In order to minimize 

manufacturer and batch-to-batch variations, experiments were carried out using powders from 

one batch and one supplier (DFE pharma). 

 

Table 1: Material classification 

Group Representative powder Particle size [x50] Bulk density [g/ml] 

Small   Lactohale 220 < 10 µm < 45 g/ml 

Intermediate Lactohale 200 10-150 µm 45-65 g/ml 

Large  Lactohale 100 > 150 µm > 65 g/ml 
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2.2.1 Powder characterization 

All experiments were carried out under controlled environmental conditions (20-24 °C, 40-60 % 

relative humidity). The following material attributes were established in triplicate: Particle size 

was measured via QICPIC (OASIS/L wet and dry dispersing system, Sympatec GmbH, 

Clausthal-Zellerfeld, Germany) and Helos KR (Sympatec GmbH, Clausthal-Zellerfeld, 

Germany). Dynamic image analysis of millions of particles in each sample was performed to 

determine the size distribution and the volumetric mean diameter (VMD) and median particle 

size. 

The bulk (BD) and tapped densities (TD) were analyzed using the Pharmatester (PT-TD200) and 

the standardized method described in the United States Pharmacopeia (USP 2015). To this end, a 

certain mass of powder was filled into a cylinder and the level was recorded. After mechanically 

tapping the powder sample, the tapped density was determined. The true density was measured 

with a helium pycnometer (AccuPac II 1340, Micromeritics, Norcross, USA). 

The compressibility, air permeability, flow function coefficient, cohesivity, angle of internal 

friction, basic flowability energy and wall friction angle were measured with the FT4 powder 

rheometer (Freeman Technology, Malvern, United Kingdom). Compressibility was determined 

by assessing the volume change of a conditioned sample when it was compressed under a specific 

normal force. For this purpose, the conditioned sample was compressed with normal forces 

starting at 0.5 kPa up to 15 kPa. The ratios between the density and bulk density of each 

compaction step were recorded. Air permeability was measured by transmitting air though a bulk 

and detecting the air pressure drop across the powder bed. Pressured dry air (2 mm/s air velocity) 

was used for the permeability test. In order to determine the flow function coefficient and 

cohesion, a 1 ml shear-cell module at a maximum pressure of 3 kPa was used. High flow function 

coefficient values (>4, or more strictly >10) represent powders with good flowability. The 

cohesivity C provides information about inter-particle interactions due to electrostatic, capillary 

or van der Waals forces. The angle of internal friction for a given soil is the angle on the graph in 

Mohr's Circle (shear stress vs. normal stress) at which shear failure occurs. The basic flowability 

energy indicates the amount of energy that is required for establishing a particular flow pattern in 

a conditioned, precise volume of sample. The wall friction angle determines the friction force a 

powder can sustain as a function of normal forces at a surface. We used a stainless steel plate 
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with a nominal roughness of 0.2 µm (Ra), of which MG2 nozzles are typically made (Freeman, 

2007a). 

Furthermore, a dynamic test method (the avalanching test method) was applied, via which the 

flowability of powders can be assessed by measuring their avalanching behavior related to 

cohesivity and flowability (Kaye, 1997). The avalanching test can be conducted with different 

types of equipment, including rotating drums and vibratory feeders (Hancock et al., 2004; Hickey 

and Concessio, 1994). Unlike the shear-cell method mentioned above, the avalanching test 

method using a rotating drum is dynamic in nature (Kaye, 1997). Therefore, it may be more 

applicable to low-shear processes, such as low-dose capsule filling without an additional 

compaction step. In the drum revolving at a fixed speed, the powder is subjected to stress as a 

result of rotation. The applied stress causes the powder to shear, leading to avalanching events 

(Boothroyd et al., 2000) which can be monitored via an optical sensor system. In this study, a 

rotating drum was used for powder characterization. Samples of about 100 ml corresponding to 

50 % fill level were introduced into a metallic drum secured with conductive glass covers. The 

internal diameter of the drum was 100 mm and its depth was 25 mm. The drum was rotated at a 

speed of 2 rotations per minute for 10 minutes. The movement of the drum and powder was 

recorded with a digital camera (Casio Exilim EX-F1) using a diffused backlight. Video resolution 

was 640 x 480 pixels with a frame rate of 30 frames per second. The videos were analyzed via an 

in-house OpenCV-based Python program. The first step of this analysis was to select a circular 

region of interest and a binarization threshold value. The main feature of interest was the border 

between the air and the powder. The border was simplified to three segments using a Ramer-

Douglas-Peucker algorithm, which preserves points with the largest distance to the segments. For 

further analysis, the angle of each segment and the normalized border length were saved for each 

frame. The distribution of angles of the middle segments was analyzed in detail and it was fitted 

to a gaussian function in order to eliminate the outliers caused by some avalanches. The border 

length was normalized by dividing it by the diameter of the region of interest and obtaining 

values larger or equal to 1. A snapshot of all three powders tested and evaluated using our 

software can be seen in Figure 1. The structure of border between the powder and air indicates 

the level of cohesiveness. 
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Figure 1: Exemplary powder behavior under dynamic testing for LH100, LH200 and LH220. 

Red line represents the border length, which was used in normalized border length calculation 

and the green line represents a three segment simplification of the border line, which was used for 

angle determination. 

 

2.2.2 Capsule filling 

Capsule filling experiments were performed using different combinations of four process 

parameters: the dosator diameter (dia), the dosing chamber length (dcl), the powder bed height 

(pbh) and the capsule filling speed in capsules per hour (cph). In order to obtain small fill 

weights, small dosing chambers were used and filling was performed without compaction (which 

is an optional step in dosator filling). Two dosing chamber length (2.5, 5 mm), two dosator sizes 

(1.9, 3.4 mm), two powder bed heights (5, 10 mm) and two filling speeds (500, 3000 cph) were 

used in the experiments. 

Powders were filled into hard gelatin capsules of size 3 (supplied by Capsugel) in a lab scale 

capsule filling machine (Labby, MG2, Bologna) adopted for special low-dose equipment, as 

reported in Faulhammer et al. (2014a). 

The study was performed under humidity-controlled conditions (45-55 % relative humidity). In 

order to create an initial powder bed without densification, the layer was adjusted manually and 

the powder was initially not supplied from the hopper. The capsules were collected as described 

below. Powder feeding from the hopper to the rotary container was adjusted according to the 

amount of powder collected during the capsule filling. Figure 2 shows a sketch of the used 

capsule filling machine. After each run, the powder was removed from the rotary container, all 

equipment was cleaned and a new powder layer was created. The collected capsules were stored 

in cups sealed with Parafilm until their fill weight and weight variability were analyzed. 
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Figure 2: Sketch showing the rotary container with the powder layer, the hopper and the dosator. 

 

2.2.3 Sampling 

After setting all machine parameters and creating a smooth powder layer without densification, 

capsule filling experiments were carried out. The capsule filling process consists of several steps. 

First, the dosator moves towards the powder layer of the rotary container. Next, the dosator dips 

into the powder bed and a predefined volume of powder (volume of dosing chamber) is collected. 

During this step, depending on the material characteristics, a certain stress state in the powder is 

established, resulting in a more or less stable plug, which can be lifted by the nozzle and filled 

into a capsule. The speed of the dosator’s dipping and ejection steps depends on the production 

speed of the machine. After each dosator dipping step, the container with the powder rotates in 

order to enable the voids in the layer to be filled with the powder prior to the next dosing event. 
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In addition, the mounted dosator rotates but at a different rotational speed. Since the dosator 

needs 25 rotations of the rotary container to reach exactly the same point in the powder layer as 

for time point 0, the capsules were collected at time point 0, after 25, 50, 75, 100, etc., rotations 

of the container for a total run time of 30 minutes. This means a total of 11 collected capsules for 

the low filling speed (500 cph) and 61 for the high filling speed. For each run three repetition 

experiments were carried out. This way, the dynamics of the powder layer creation (i.e., 

removing powder from the layer vs. re-establishing a uniform powder bed) could be studied as 

well as the impact on capsule fill-weight variability. 

2.2.4 Analysis of capsule fill weight and variability 

The weight of collected samples was measured with a Denver (SI-234A) analytical scale. Due to 

a relatively high weight of empty capsules and their variability, the collected filled capsules were 

first weighted and then emptied and re-weighed. An air pistol was used to make sure that no 

powder was left in the capsule after it was emptied. 

 

2.3 Results and discussions 

2.3.1 Powder characterization 

Table 2 presents the particle size, friction angles, bulk and flowability properties of the three 

lactose excipients studied. It shows that powders with completely different characteristics were 

used to assess their influence on the processability and, more precisely, on the powder layer 

uniformity during the capsule filling process. In 2004, Podczeck reported that particles with a 

median size larger than 150 µm (due to too good flowability) and particles with a median size 

below 20 µm (due to too poor flowability) were either difficult or impossible to fill with a dosator 

nozzle machine (Podczeck, 2004). In contrast, Faulhammer et al. (2014) successfully filled 

powders with small particle sizes by adding special features to the equipment (MG2). However, 

filling very fine powders proved to be highly challenging, indicating that further investigations 

were required (Faulhammer et al., 2014b). 

The current study aims to determine or, at least, provide an insight into the behavior of these 

challenging powders during the low-dose capsule filling process. 
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Table 2: Material attributes for the three grades of lactose excipients used in this study. Each 

measurement was performed in triplicate. Mean and SD are shown. 

 Lactohale 100 Lactohale 200 Lactohale 220 

Particle size and friction properties    

Volumetric mean diameter [µm]  160.02 ±0.62  83.63 ±n.a.  16.38 ±n.a. 

Particle size x10 [µm]  100.52 ±0.52  10.93 ±0.07  2.41 ±0.01 

Particle size x50 [µm]  155.24 ±0.58  78.72 ±0.44  13.40 ±0.01 

Particle size x90 [µm]  229.14 ±0.75  162.54 ±0.38  33.76 ±0.10 

Angle of internal friction [°]  18.43 ±0.49  21.24 ±0.53  25.73 ±2.66 

Wall friction angle (3 kPa 0.2 Ra) [°]  7.70 ±0.02  11.46 ±0.82  19.97 ±3.82 

    

Bulk powder properties    

Bulk density (BD) [g/ml]  0.697 ±0.004  0.622 ±0.003  0.400 ±0.007 

Tapped density (TD) [g/ml]  0.828 ±0.013  0.996 ±0.002  0.785 ±0.007 

True density [g/ml]  1.539 ±0.003  1.543 ±0.002  1.547 ±0.004 

Compressibility at 8 kPa (ρcomp/ρBD) [%]  1.05 ±0.00  12.66 ±0.29  36.95 ±0.16 

Air permeability  at 8kPa [mbar]  1.05 ±0.02  7.00 ±0.10  12.04 ±0.55 

    

Flowability    

Basic flowability energy [mJ]  910.67 ±43.00  1722.85 ±27.00  667.32 ±10.80 

Flow function coefficient  6.58 ±0.01  4.04 ±0.01  1.65 ±0.01 

Cohesion [kPa]  0.24 ±0.02  0.39 ±0.01  1.05 ±0.13 
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Particle size and friction 

In a capsule filling process the particle size, which is known to have an impact on the bulk 

behavior of powders (Fu et al., 2012a), has to be regarded as a critical factor. It is one of the 

major factors correlating with the capsule fill weight and the fill weight variability (Faulhammer 

et al., 2014c). According to the powder classification in the USP 2011, Lactohale 100 is a fine 

powder and Lactohale 200 and 220 are very fine powders. The particle size affects the flowability 

and cohesivity of a bulk powder, with smaller particle sizes typically showing higher cohesivity 

(Jolliffe and Newton, 1982; Fu et al., 2012). By now, powders with a particle size <10 µm are 

known to be challenging with regard to the dosator nozzle technique (Faulhammer et al., 2014b). 

However, not only the particle size, but also the particle size distribution has to be regarded as 

critical in capsule filling mainly because of its impact on powder compressibility as reported by 

Llusa et al., 2014. The range of the particle size distribution can be assessed using the span 

parameter (Span = (x90- x10)/x50). 

Bulk powder properties 

The compressibility of powder describes the extent of volume change in a conditioned sample 

when it is slowly compressed under a specific normal force. Figure 3 shows the volumetric 

change under the effect of compaction. Especially in fine powders (Lactohale 220), high volume 

changes may occur upon compression. 

 

 

Figure 3: Percentage of compressibility in the range from 1 to 15 kPa. 
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The compressibility of a material is a crucial factor for dosator filling since it correlates with the 

fill weight (Faulhammer et al., 2014c). Since the dosator volume is fixed, compressibility 

determines how much powder enters the nozzle, depending on the stress created. During the 

dosator dipping step, depending on the mode of filling, the powder is compressed to some degree 

to improve its retention inside the nozzle. During a standard dose dosator filling process, a piston 

inside the nozzle is moved downwards (vertical compressive stress) to form a plug. Since the 

plug has to be ejected later, this force should be low (Jolliffe et al., 1980). In contrast, during low-

dose filling, no piston compaction step is performed and the powder is only compacted if the 

powder bed height is higher than the dosing chamber length since in this case pre-compression 

occurs when the nozzle dips into the powder bed. 

Flowability 

It is known that powder flowability affects the filling performance (weight variability) of a 

dosator with a standard nozzle (Freeman and Fu, 2008; Freeman, 2007; Podczeck and Mia, 1996; 

Prescott and Barnum, 2000). Faulhammer et al. (2014a) reported that flowability plays a 

particularly important role in low-dose dosator capsule filling that involves higher weight 

variability of high cohesive powders (Faulhammer et al., 2014b). According to the flow function 

coefficient and cohesion values, Lactohale 100 has the best flowability, followed by Lactohale 

200 and Lactohale 220 (with a flow function coefficient of 1.65 ± 0.01 and a C of 1.05 ±0.13 

kPa), which exhibits poor flowability. 

Avalanching behavior 

The average and the standard deviation of the angle of the second segment was increasing for the 

samples in the following order: Lactohale 100, Lactohale 200 and Lactohale 220 (Table 3). 

Higher values of average values as well as its spread indicate worse flowability. It can be seen 

that the average value of Lactohale 220 is nearly 90°, which can be considered as very bad 

flowability. The values of normalized border length follow the same trend and can therefore be 

used a simple parameter for evaluation of powder cohesiveness. 
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Table 3: Dynamic behaviour for the three grades of lactose excipients used in this study. Mean 

and SD are shown. 

 Lactohale 100 Lactohale 200 Lactohale 220 

Upper angle [°] 52.69 ± 4.25 72.84 ± 12.99 86.17 ± 21.82 

Normalized border length [-]  1.085 ± 0.017 1.459 ± 0.090 1.728 ± 0.206 

 

Additionally, a frequency analysis using Fast Fourier Transform (FFT) was performed on the 

normalized borderline length time series in order to study the dynamics of the avalanching 

behaviour. The power spectra show that LH100 had a peak at the lowest amplitude of around 

500, and frequencies of up to 2.5 Hz were more pronounced, corresponding to the formation of 

small and frequent avalanches. The power spectrum of LH220 shows much higher amplitudes 

(around 150,000) and frequencies up to about 0.3 Hz. These results indicate significant 

avalanching of larger powder assemblies. This means that avalanches of this powder are rarer and 

stronger than those for LH100, which can lead to poorer powder filling. 
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Figure 4: Power spectra of (a) LH100 and (b) LH220. 

(a) 

(b) 
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2.3.2 Capsule filling 

Table 4 presents the experimental plan (DOE) for capsule filling with a dosator size of 3.4 mm, 

i.e., the values of the four process parameters, the fill weight and the weight variability (RSD), as 

well as the obtained results. In some cases powder could not be filled successfully into capsules 

(details described below). These runs are marked with f.n.p., which stands for “filling not 

possible”. 

 

Table 4: Low-dose capsule filling study: 8 experimental runs with 3 repetition experiments 

 Lactohale 100 Lactohale 200 Lactohale 220 

RUN Speed 

[cph] 

Diameter 

[mm] 

Dosing 

chamber 

length 

[mm] 

Layer 

[mm] 

Weight 

[mg] 

RSD 

[%] 

Weight 

[mg] 

RSD 

[%] 

Weight 

[mg] 

RSD 

[%] 

1 500 3.4 2.5 5 22.6 1.6 25.5 3.6 12.3 10.4 

2 3000 3.4 2.5 5 23.6 4.7 27.7 3.1 14.0 13.3 

3 500 3.4 5 5 f.n.p. f.n.p.. f.n.p. f.n.p. f.n.p. f.n.p. 

4 3000 3.4 5 5 f.n.p. f.n.p. f.n.p. f.n.p. f.n.p. f.n.p. 

5 500 3.4 2.5 10 23.1 2.4 29.5 2.0 24.1 5.2 

6 3000 3.4 2.5 10 25.0 1.3 29.5 1.1 24.1 8.9 

7 500 3.4 5 10 37.7 1.3 46.4 1.0 32.2 7.9 

8 3000 3.4 5 10 39.5 3.5 45.0 7.3 30.0 18.9 

 

From Table 4 it can be seen that the fill weight is a function of the chamber length and the depth 

of the powder bed. For experiments for powders with the same chamber length and layer depth 

no sufficient compression was obtained such that the plug in the nozzle was not stable. Thus, the 

layer depth needs to be larger than the chamber length for successful dosing. As can be seen as 

well, the weight correlated with the chamber volume. For the most compressible powder (LH 

220), however, the powder bed layer depth has also a very strong impact on the fill weight. 
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Capsule filling speed has a moderate impact on the fill weight, with higher speeds mostly (not 

always) leading to higher fill weights, due to an increased densification of the powder associated 

with a higher level of vibrations of the machine. 

The highest capsule fill weights were obtained for Lactohale 200, followed by Lactohale 100 and 

Lactohale 220. The fill weight correlates with the measured tapped densities of the powders, 

indicating that the powder layer densifies during the filling experiments. 

In terms of dependence on the fill weight and speed, the more cohesive powders (Lactohale 200 

and 220) behaved differently from Lactohale 100. The fill weight of Lactohale 100 increased at a 

higher filling speed in all combinations of instrumental settings. A possible explanation for these 

results is  that when using a lower filling speed powder is more likely be lost during the transfer 

step from the powder bed to the capsule body compared to a higher filling speed. 

In contrast, for Lactohale 200 and 220, a different dependence on the filling speed and fill weight 

was observed. As shown in Table 4, the combination of a high dosing chamber volume and a 

high filling speed (run 8) resulted in a slightly lower fill weight compared to a low filling speed 

(run 7). When analyzing the weight variability of more cohesive powders, the combination of a 

high dosing volume and a high filling speed (run 8) significantly increased the fill weight 

variability. The hypotheses for this observed dependence of fill weight and weight variability of 

more cohesive powders are that (1) a high dosing chamber volume needs more time to be 

completely filled with powder and (2) the increase in weight variability is caused by the fact that 

for a higher powder bed height, inhomogeneities are more likely to be present compared to a 

smaller powder bed height. Thus, dosing of larger amounts of powders can lead to higher fill 

weight variability. 

With respect to fill weight variability of all three powders, Lactohale 100 shows the most uniform 

filling performance with RSD’s below 5 %, as also described by Faulhammer et al. (2014a). For 

Lactohale 220, overall relatively high RSDs were obtained. The powder layer was not smooth 

and had cracks and agglomerate formations. Feeding and filling up the voids in the powder layer 

after a dosator dipping step was obviously difficult to achieve due to the low flowability and high 

cohesivity of the powder. Since the dosator filling technique is based on volumetric filling, the 

powder bed inhomogeneity is a critical factor since possible densifications or entrapped air can 

introduce fill weight variability as reported by Faulhammer et al. (2014a) and Seyfang et al. 
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(2014). The filling performance of the ‘intermediate’ powder LH 200 with RSD’s up to about 

8 % was, as expected, inferior to that of Lactohale 100 but better than that of Lactohale 220. 

Furthermore we found out that at a dosing-chamber-to-powder-bed height compression ratio of 

1:1, none of the three powders could successfully be filled due to insufficient compression. 

Hence, large dosator sizes require a larger compression ratio (>1:1) for a successful transfer of 

powders into the capsules. 

Table 5 shows the experimental plan and the results for the dosator size of 1.9 mm. As described 

earlier, the abbreviation f.n.p. was used for runs for which filling was not possible. The weights 

were significantly smaller, i.e., in the range of a few mg. As in the case of the dosator size 3.4 

mm, the fill weights of Lactohale 200 were higher than those of Lactohale 220 for all 

instrumental settings and mostly higher than for Lactohale 100. Using the smaller dosator size 

(1.9 mm) rather than the larger dosator size (3.4 mm) resulted in a higher weight variability in all 

cases.  

Interestingly, at a dosing-chamber-length-to-powder-bed height compression ratio of 1:1 (i.e., no 

pre-compression of powder during filling) Lactohale 100 could be filled at a low filling speed and 

Lactohale 220 both at low and fast speeds. However, during the filling process many capsules 

were not filled with powder, resulting in very high weight variability. As reported by 

Faulhammer et al. (2014a) for highly cohesive powders the fill weight is - in contrast to powders 

with lower cohesivity - additionally affected by frictional characteristics (wall friction angle). 

This could be a reason why the highly cohesive powder was occasionally transferred into 

capsules. For the less cohesive powder Lactohale 100, the presence of inter-particle interactions 

(due to electrostatic, capillary or van der Waals forces) which supports arching may be the reason 

for the partially successful filling of capsules. 

In general filling at a dosing-chamber-length-to-powder-bed height compression ratio of 1:1 

proved to be unsuitable, since Lactohale 100 (except for low speed) and 200 could not be filled at 

all due to the lack of compaction and arching and for Lactohale 220 only some capsules could be 

filled but with a very high fill weight variability. 

With a dosator size of 3.4 mm, Lactohale 100’s fill weight increased at a higher filling speed. 

However, this increase was lower with a dosator size of 1.9 mm. Moreover, filling Lactohale 100 

at a higher filling speed resulted in all cases (run 2, 6, 8) in a higher weight variability. This 
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means that filling inhalation powders that have large particles and good flowability should be 

performed at a lower filling speed when using a small dosator size. 

Interestingly, no significant loss in fill weight was detected using a smaller dosator size when a 

combination of a large dosing chamber volume and a high filling speed (run 8) was applied to 

Lactohale 200 and 220. This finding suggests that in contrast to the 3.4 mm dosator for a smaller 

dosator size a high filling speed can also be used for high dosing chamber volumes. 

Table 5: Low-dose capsule filling study – 8 experimental runs with 3 repetitions each. 

 Lactohale 100 Lactohale 200 Lactohale 220 

RUN Speed 

[cph] 

Diameter 

[mm] 

Dosing 

chamber 

length 

[mm] 

Layer 

[mm] 

Weight 

[mg] 

RSD 

[%] 

Weight 

[mg] 

RSD 

[%] 

Weight 

[mg] 

RSD 

[%] 

1 500 1.9 2.5 5 7.4 5.1 7.0 4.0 4.6 13.0 

2 3000 1.9 2.5 5 7.6 12.5 7.5 4.7 3.9 13.9 

3 500 1.9 5 5 4.6 16.8 f.n.p. f.n.p. 4.8 23.6 

4 3000 1.9 5 5 f.n.p. f.n.p. f.n.p. f.n.p. 4.7 47.3 

5 500 1.9 2.5 10 7.2 3.6 8.3 6.7 7.1 7.6 

6 3000 1.9 2.5 10 7.4 11.5 9.3 4.1 7.5 9.0 

7 500 1.9 5 10 9.1 5.2 12.6 4.5 9.0 11.1 

8 3000 1.9 5 10 10.3 12.1 12.7 5.4 9.0 15.3 

 

In order to investigate if the three powders exhibit volumetric filling, the mean fill weight as a 

function of the dosator volume was examined (Figure). Volumetric filling is achieved if the mass 

correlates with the volume (i.e., doubling the dosing chamber volume leads to double the fill 

weight). It is apparent from the two plots that the three powders did not show volumetric filling.  

In order to analyze the effect of doubling the dosing chamber volume in more detail, Table 6 

presents the percentage change in fill weight for the three powders and the two dosator sizes (1.9 

mm, 3.4 mm). When analyzing the results obtained with the large dosator size (3.4 mm), it can be 
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clearly seen that for none of the three powders volumetric filling can be observed. The fill weight 

of Lactohale 100 and 200 increased to a higher extent compared to the highly cohesive Lactohale 

220. Interestingly, for the small dosator size (1.9 mm) the largest changes in fill weight were 

observed for Lactohale 200 at a low filling speed. Using the high filling speed again, Lactohale 

100 and 200 show a higher increase of fill weight compared to Lactohale 220, but with a 

significant lower extent as for the larger dosator size. Contrary to expectations, this study did not 

find a volumetric filling for any of the used powders. However, the larger increase in fill weight 

of Lactohale 100 and 200 supports the idea that the fill weight of powders with properties similar 

to those materials is mainly affected by the diameter of the dosator and the length of the dosing 

chamber as reported by Faulhammer et al. (2014a).  

The fact that ideal volumetric filling was not observed may be due to sampling at exactly the 

same point of the powder layer, in contrast to earlier studies. Additionally, sampling of capsules 

was carried out for a longer run time.  Nevertheless, these results highlight once again that is 

difficult to predict the fill weight for arbitrary powders and that even a systematic interpretation 

of the capsule weight results is difficult. Thus, unless advanced computational methods are 

introduced experiments are necessary to establish fill weight as a function of powder and 

operating variables. 

 

Figure 5: Effect of increasing the dosing chamber volume on the filling behavior (fill weight) of 

LH 100 (blue) LH 200 (black) and LH 220 (green): (a) dosator diameter of 3.4 mm, (b) dosator 

diameter of 1.9 mm. 
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Table 6: Overview of obtained change in fill weight [%] for dosator size 3.4 mm and 1.9 mm. 

Powder LH100 LH200 LH220 

Filling speed 500cph 3000cph 500cph 3000cph 500cph 3000cph 

Dosator size 3.4 mm 

Change in fill 

weight [%] 
63 % 58 % 57 % 53 % 34 % 24 % 

Dosator size 1.9 mm 

Change in fill 

weight [%] 
26 % 39 % 52 % 37 % 27 % 20  

 

2.3.3 Effect of the compression ratio (chamber length/ powder bed height) on the fill 

weight 

As discussed above, the three Lactose excipients have a significantly different compressibility. In 

our study, the effect of compressibility was investigated using different powder bed heights and a 

constant dosing chamber length. Results are shown in Table 7. Here the expected fill weight 

based on bulk density, the compression ratio and the actual fill weight, and the increase of fill 

weight with compression ratio in [%] is shown. 
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Table 7: Change in fill weight using two compression ratios (chamber length/powder bed height) 

Powder Settings 

  
Filled 

powder 

[mg] 

Change 

in fill 

weight 

[%] 

 Dosing 

chamber 

length 

[mm] 

Diameter 

[mm] 

Dosing 

chamber 

volume 

[mm
3
] 

Fill 

weight 

based on 

BD [mg] 

Speed 

[cph] 

Layer 

[mm] 

Compre-

ssion 

ratio 

  

LH 100 2.5 1.9 7.1 4.9 500 5 1:2 7.4 -2.7 

 10 1:4 7.2 

 3000 5 1:2 7.6 -2.7 

 10 1:4 7.4 

3.4 22.7 13.1 500 5 1:2 22.6 2.2 

 10 1:4 23.1 

 3000 5 1:2 23.6 5.9 

 10 1:4 25.0 

LH 200 2.5 1.9 7.1 4.4 500 5 1:2 7.0 18.6 

 10 1:4 8.3 

 3000 5 1:2 7.5 24.0 

 10 1:4 9.3 

3.4 22.7 15.8 500 5 1:2 25.5 15.7 

 10 1:4 29.5 

 3000 5 1:2 27.7 6.5 

 10 1:4 29.5 

LH 220 2.5 1.9 7.1 2.8 500 5 1:2 4.6 54.3 
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 10 1:4 7.1 

 3000 5 1:2 3.9 92.3 

 10 1:4 7.5 

3.4 22.7 12.4 500 5 1:2 12.3 95.9 

 10 1:4 24.1 

 3000 5 1:2 14.0 72.1 

 10 1:4 24.1 

 

For Lactohale 100, the experimentally obtained fill weight is about 35 % and 45 % higher than 

the expected fill weight based on BD for the small dosator size (1.9 mm) and the larger dosator 

size (3.4 mm), respectively. A higher filling speed always resulted in higher fill weights. This 

supports the finding by Faulhammer et al. (2014a) that in low-dose capsule filling experiments 

powders with a VMD bigger than 100 µm are affected by the capsule filling speed, most likely by 

densification of the powder due to higher levels of vibrations at higher speeds. Interestingly, the 

fill weight decreased slightly when the compression ratio was increased for the smaller dosator. 

For the larger dosator there was a modest increase of a few percentage, reflecting the poor 

compressibility of the powder. 

For Lactohale 200 (intermediate size), for both dosator sizes (1.9 mm, 3.4 mm) and a powder bed 

layer of 10 mm, the experimentally obtained fill weight is about 50 % higher than the expected 

one (based on BD), and for a powder bed layer of 5 mm it is about 40 % higher. Again, higher fill 

weights (except for the combination of a larger dosator and a larger powder layer height) could 

be observed using a higher filling speed. Thus, also for powders with a VMD lower than 100 µm 

the capsule filling speed has an effect on the expected fill weight. Upon increase in compression 

ratio there was a significant increase in fill weight, dependent on the size and filling speed. 

For Lactohale 220, the fill weight experimentally obtained with the small dosator size (1.9 mm) is 

30 % and 60 % higher than the expected fill weight (based on BD) with powder layers of 5 mm 

and 10 mm, respectively. For the large dosator size (3.4 mm), the experimentally obtained fill 

weight is 10 % and 50 % higher than the expected fill weight with powder bed heights of 5 mm 

and 10 mm, respectively. As expected, for the highly cohesive Lactohale 220, the change in the 
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powder bed height from 5 mm to 10 mm at a constant dosing chamber length resulted in a 

significant increase in the fill weight for both dosator diameters. This can be correlated with the 

high compressibility of this powder, as shown above. For all three powders, the experimentally 

obtained fill weights are in all cases higher than the expected fill weights (calculated based on 

bulk density). A correction factor that takes into account compressibility behavior and bulk 

density of powders could help to predict the fill weight changes of various powder bed heights.  

Since for Lactohale 220 the biggest fill weight changes were obtained, the results for this powder 

were examined in more detail. The powder bed height (and thus the compression ratio) clearly 

affects the filling of this highly cohesive powder much more than it does powders with less 

compressibility. Moreover, for Lactohale 220 a significant effect of filling speed on the fill 

weight was observed. In the case of the large dosing chamber volume and a low filling speed, the 

fill weight increased much more than it did in the case of the small dosing chamber volume. At a 

higher filling speed, a lower increase in the fill weight was observed for the large dosing chamber 

volume. It can be expected that there is more air entrapped in the large dosing volume than in the 

small one, resulting in a lower increase in the fill weight. All of the above findings indicate that 

highly cohesive powders require a lower filling speed when the dosing volume is increased. 

2.3.4 Fill weight dynamics 

Figure 6 shows the results of the experiments for the three lactose excipients (Lactohale 100, 200, 

220) with various combinations of process parameters (dosator size, dosing chamber length, 

powder bed height, speed) as a function of time. Each data point corresponds to a triplicate 

determination of the capsule fill weight. The plots indicate that for Lactohale 100 and 200 the fill 

weight remained almost constant for all instrumental settings and is mainly a function of the 

chamber volume. There is no significant change of capsule weight over time, which indicates that 

no powder caking in the rotary container during the capsule filling process occurred. A visual 

inspection of the reconstitution of the powder layer throughout the entire process indicated that 

the holes introduced by each dosator dipping step were completely filled with powder and the 

powder layer could be recreated with a smooth surface. Again, it can be clearly seen that for 

Lactohale 100 a change of the powder layer height (from 5 mm to 10 mm) at a constant dosing 

chamber length of 2.5 mm resulted in almost the same fill weights throughout the process.  

For Lactohale 200, the fill weight slightly increased after doubling the powder layer height at a 

constant dosing chamber length due to the higher compressibility (see Fig. 2). These results also 
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agree with a previous study by Faulhammer et al. (2014a), indicating that the fill weight is 

dependent on the powder layer height.  

In contrast, for Lactohale 220 a different behavior was observed. The powder layer was more 

uneven and the surface appeared to crack easily. It became clear from a visual examination that 

the powder bed did not reach a final homogeneity. The poor flowability and high cohesivity of 

this powder made the filling of holes of the powder layer generated by the nozzle more 

challenging. Thus, a high weight variability over time could be detected for this powder. The 

most noticeable variations in the fill weights over time were obtained for the combination of the 

large dosing chamber volume, a filling speed of 3000 cph and a high powder bed height. This is 

shown in Figure 6 (turquoise line) and in Figure 7 which presents the RSD over time for LH 220. 

Obviously, a larger powder bed height leads to less homogenous beds than a shallower one 

because of a significant amount of air entrapped in the powder layer, resulting in large fill-weight 

variability. 

Furthermore, we detected a significant increase of fill weight with time throughout the total run 

time of 30 minutes for a combination of a dosing chamber length of 2.5 mm and a powder bed 

height of 10 mm as shown in Figure 8. These findings suggest that for powders with poor 

flowability and high cohesion (especially when using a larger powder bed layer height) the 

monitoring of the evolution of the powder bed density over time would be crucial for detection of 

variations followed by any corrective actions. 
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Figure 6: Fill weight over time: (a) Lactohale 100, (b) Lactohale 200, (c) Lactohale 220. 

(a) 

(b) 

(c) 
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Figure 7: Weight variability of Lactohale 220 over time. 

 

 

Figure 8: Change of fill weight after a total run time of 30 minutes for a combination of a dosing 

chamber length of 2.5 mm and a powder bed height of 10 mm for both dosator sizes for LH 220. 
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Figure 9 shows the weight of the capsules for Lactohale 220 as a function of time in more detail 

for the high filling speed of 3000 cph. Clearly, as shown above, the height of the powder bed for 

a constant dosing chamber volume significantly influences the fill weight. For the 10 mm height, 

the powder bed required a longer time period to reach a ‘steady-state of fill weight’. For the 1.9 

mm dosator using a combination of a low dosing chamber length (2.5 mm) and a larger powder 

bed height, after 15 minutes a constant fill weight could be obtained. Using the same settings for 

experiments with the 3.4 mm dosator the weight variability was much higher which makes it 

more difficult to reach ‘steady-state’ after a certain filling time.  

Furthermore, filling the highly cohesive Lactohale 220 using a dosing chamber length of 5 mm is 

challenging, regardless of the dosator size. A high fill weight variability was observed over the 

entire sampling period. The effect of powder bed height on the fill weight of high cohesive 

powders can possibly be explained by a densification of the powder layer, which could be caused 

by inherent machine vibrations, as described by Llusa et al. (2013), or by a continuous powder 

accumulation in the lower part of the powder bed due to high pressure generated at the lowest 

point of a dosator dipping step (Pinzon, 2012). For the latter, it may be the case that after the 

dosator dipping step, a small amount of powder remains at the bottom of the rotary container. 

Dosing from the same spot in the powder layer may lead to compaction of the remaining powder, 

resulting in a higher fill weight after a certain run time. Since capsule filling is a dynamic process 

with multiple steps over a short period of time, the effect of instrumental settings on the fill 

weight and weight variability has to be monitored over a certain run time to obtain reliable data, 

as described in this study.  
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Figure 9: The change of fill weight of Lactohale 220 over time: (a) dosator diameter of 1.9 mm, 

(b) dosator diameter of 3.4 mm for a filling speed of 3000 cph. 

 

  

(a) 

(b) 
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2.4 Conclusion and outlook 

The present study focused on the change in the powder layer over time during low-dose capsule 

filling. Three grades of lactose excipients were thoroughly characterized in order to relate their 

powder attributes to the filling performance in various instrumental settings. The off-line 

measured compressibility of the powder, with a high increase in the cohesive Lactohale 220 of up 

to 37 % for an applied normal stress of 8 kPA, correlates with the densification behavior during 

the capsule filling process. During the filling process, the compression ratio (dosing chamber 

length/powder bed height) of Lactohale 220 determined the change in the fill weight over time. 

With that regard, a high compression ratio (1:4) combined with a large powder bed height (10 

mm) results in densification of the powder bed. This densification of powder bed leads to an 

increase of the fill weight over time with significantly higher fill weights at the end of the total 

run time of 30 minutes. Interestingly, the biggest change in the fill weight over time was obtained 

for Lactohale 220 using a high capsule filling speed (3000 cph), a small dosator diameter (1.9 

mm), a large powder bed height (10 mm) and a dosing chamber length of 2.5 mm. The reason 

could be because in the beginning a large quantity of air of entrapped in the powder layer is filled 

instead of powder, which is more critical for smaller filling amounts than for bigger amounts of 

powder filled with a higher dosing chamber volume. Taken together, our findings suggest that for 

low-dose capsule filling with a dosator nozzle system, the desired target fill weight of capsules 

filled with powder strongly depends on both the material characteristics and the instrumental 

settings. The implemented classification of powders according to their processability during 

capsule filling can help to choose appropriate instrumental settings for initial test runs of new 

formulations. 

An issue that was not addressed in this study was the influence of powder mixtures (e.g., powder 

with API) on the powder bed uniformity. Further investigation of this issue and experiments are 

strongly recommended, as well as continuous control of the material variations inside the rotary 

container during the manufacturing process. The implementation of process analytical technology 

(PAT) tools can significantly reduce the fill weight variability via complete monitoring of all 

process steps. 
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ABSTRACT 

Precise filling of capsules with doses in the mg-range requires a good understanding of the filling 

process. Therefore, we investigated the various process steps of the filling process by dynamic 

and static mode tests. Dynamic tests refer to filling of capsules in a regular laboratory dosator 

filling machine. Static tests were conducted using a novel filling system developed by us. Three 

grades of lactose excipients were filled into size 3 capsules with different dosing chamber 

lengths, nozzle diameters and powder bed heights, and, in the dynamic mode, with two filling 

speeds (500, 3000 caps/h). The influence of the gap at the bottom of the powder container on the 

fill weight and variability was assessed. Different gaps resulted in a change in fill weight in all 

materials, although in different ways. In all cases, the fill weight of highly cohesive Lactohale 

220 increased when decreasing the gap. Furthermore, experiments with the stand-alone static test 

tool indicated that this very challenging powder could successfully be filled without any pre-

compression in the range of 5 mg to 20 mg with acceptable RSDs. This finding is of great 

importance since for very fine lactose powders high compression ratios (dosing-chamber-length-

to-powder-bed height compression ratios) may result in jamming of the piston. Moreover, it 

shows that the static mode setup is suitable for studying fill weight and variability. 

Since cohesive powders, such as Lactohale 220, are hard to fill, we investigated the impact of 

vibration on the process. Interestingly, we found no correlation between the reported fill weight 

changes in dynamic mode at 3000 cph and static mode using similar vibration. However, we 
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could show that vibrations during sampling in the static mode dramatically reduced fill weight 

variability. 

Overall, our results indicate that by fine-tuning instrumental settings even very challenging 

powders can be filled with a low-dose dosator capsule filling machine. This study is a further step 

towards a scientific qualification of dosator nozzles for low-fill weight (1–45 mg) capsule filling. 

 

Keywords: Low-dose capsule filling, critical process parameters, process decoupling, powder 

bed density, vibration, dosator nozzle machine, Inhalation powders 
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3.1 Introduction 

For many years there has been significant interest in delivering medicinal products through the 

lungs. This mode of drug delivery ensures fast onset, allows local and systemic modes of action, 

circumvents the first-pass effect and enables delivery also of large molecules. Different delivery 

technologies exist. Dry Powder Inhalers (DPI) devices that utilize capsules as a dose-holding 

system are the most rapidly-expanding field in pulmonary drug delivery (Islam and Gladki, 

2008). However, filling inhalation powders into capsules often requires specialized equipment 

that can handle the very low fill weight (Edwards, 2010) in the range of a few tens of milligrams. 

For the currently available low-dose capsule filling systems, the dosator method is often used  

(Faulhammer et al., 2014b). However, the precise filling of very fine powders remains 

challenging. 

One of the biggest problems in the manufacturing of high-quality low-dose inhalation products is 

dose uniformity (Islam and Cleary, 2012). Although there is a considerable body of literature on 

identifying and assessing critical material and process parameters that affect the product quality 

for standard doses (Faulhammer et al., 2014b; Nalluri et al., 2013; Podczeck and Newton, 1999; 

Podczeck and Newton, 2000; Patel and Podczeck, 1996; Tan and Newton, 1990; S. B. Tan and 

Newton, 1990), little attention has been paid to low-dose dosator capsule filling processes. The 

current study examines this issue and should be regarded as a continuation of the research efforts 

of Faulhammer et al. (2014), Faulhammer et al. (2015) and Stranzinger et al. (2017), who 

assessed the effect of critical material attributes and process parameters on a low-dose dosator 

capsule filling process. These recent studies demonstrated that the low-dose filling of very fine 

carriers with a dosator system is challenging, and further investigations are required in order to 

achieve the required product specification compliance. Moreover, different filling behavior of 

powders with varying material characteristics using different combinations of process parameters 

has been reported. 

The two primary aims of this study are: 

1. to investigate the effect of gaps between the dosator tip at the end of the stroke and the 

bottom of the powder container box with different carrier materials. Although this process 

parameter is expected to affect the fill weight and variability, it has received minimal 

attention to date.  

2. to take a closer look at the filling behavior of challenging fine carrier materials. It was 
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assumed that the mechanical vibration of the powder drum induces particle 

movement/rearrangement in the drum and, possibly, segregation (Metzger et al., 2011; 

Majid and Walzel, 2009; Ellenberger et al., 2006; Rosato et al., 2002; Elperin and 

Golshtein, 1997). To that end, the vibration present in the drum was measured to assess its 

intensity (specifically acceleration and frequency). Subsequently, the vibration was 

recreated in a laboratory setup to isolate the effect of vibrations, separating it from the 

dosing process and drum rotation. 

For the purpose of this study, a lab-scale, low-dose dosator capsule filling machine (Labby, MG2, 

Bologna) with special low-dose equipment adaptations (i.e., smaller nozzles, a cleaning unit for 

the removal of excess powder from the dosator and special blades to create the powder layer) and 

a stand-alone static test tool were used. In the latter, material is dosed from a stationary container. 

Thus, the main achievement of this study was separating the different effects occurring in capsule 

fillers. This was accomplished by using dynamic (rotating bowl) and static (stationary container) 

tests to establish how specifically the process parameters affect the quality of filled capsules.  

The filling behavior of three grades of lactose using a combination of various process parameters 

was assessed in terms of fill weight and weigh variability. Our study provides insights into 

exactly what occurs during the capsule-filling process, from the start of capsule opening to the 

end of filled capsule ejection. A deeper understanding of the effects of various process 

parameters on the capsule filling efficiency may improve current filling systems, the product 

quality of low-dose capsules for inhalation and, ultimately, patients’ health.  

 

3.2 Materials and methods 

3.2.1 Materials 

Three grades of lactose excipients that are commonly applied as carriers in inhalation therapies 

(Kou et al., 2012a) were used as received from the supplier (DFE pharma, Goch, Germany). 

Sieved Lactohale 100 and two milled powders Lactohale 200 and Lactohale 220 were selected, 

since, as stated in the introduction, the present work is a continuation of the research efforts of 

our group, focusing on the powder characteristics that have not been investigated yet. 
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3.2.2 Powder characterization 

Powder characterization was carried out in order to examine the influence of powder attributes 

(e.g., particle size and distribution, powder flow and surface properties) on the capsule filling 

performance. All experiments were carried out under controlled environmental conditions (20–24 

°C, 40–60% relative humidity) and each measurement was made in triplicate (n = 3). 

3.2.3 Particle size and size distribution 

Particle size and size distribution of the carrier material was measured via the laser diffraction 

technique (HELOS/KR, Sympatec GmbH, Clausthal-Zellerfeld, Germany). For powder 

dispersion, a dry dispersing system (Rodos/L, Sympatec) and a vibrating chute (Vibri, Sympatec) 

was used. A dispersion pressure of 2.5 bar was applied. The typical sampling time was 30 

seconds. Data were evaluated using the software Windox 5.6.0.0 (Sympatec, Clausthal-

Zellerfeld, Germany). 

The particle size distribution (PSD), the volumetric mean diameter (VMD) and the median 

particle size (x50) were determined. The latter is defined as the particle diameter corresponding to 

50% of the cumulative undersize distribution. Cumulative volume-based (Q3) particle size 

distribution plots were analyzed. Evaluation of the data was performed using the software 

Windox 5 (Sympatec). To describe the width of the PSD, we used the span (see  Eq (1)) where the 

x10 and x90 are defined analogous to x50. 

𝑆𝑝𝑎𝑛 =
(𝑥90− 𝑥10)

𝑥50
           Eq (1) 

3.2.4 Powder flowability and density 

The angle of repose (AoR) was determined by using a glass funnel and the standardized method 

described in the United States Pharmacopeia (USP 2017, 1174). The static angle of repose is 

defined as the angle at which a material will rest on a stationary heap or the angle θ formed by the 

heap slope and the horizontal when the powder is dropped on a platform (Juliano and Barbosa-

Cánovas, 2010). The bulk density (BD) and tapped density (TD) were measured as described in 

Stranzinger et al. (2017) and the Hausner ratio was computed (as described in USP 2017, 616) as 

another indicator for flowability and cohesivity. 
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3.2.5 Specific surface area (SSA) 

The specific surface area (SSA) of the three grades of lactose excipients was determined using 

the Micromeritics Tristar II 3020 (Micromeritics Instrument Corp., Norcross, GA, USA). 

Samples were initially out-gassed in the Micromeritics VapPrep 061 degas unit (Micromeritics 

Instrument Corp., Norcross, GA, USA) for at least one day at room temperature. The 

measurements were performed using nitrogen gas. The Brunauer, Emmett and Teller (BET) 

absorption method was applied for calculating the specific surface areas, with a pressure range of 

0.05–0.20 normalized to the saturation pressure of the adsorbate. The Barrett, Joyner and Halenda 

(BJH) method was used to calculate the pore size distributions based on experimental isotherms 

from the Kelvin model of pore filling. 

3.2.6 Capsule filling 

Capsule filling experiments were performed under humidity-controlled conditions (45–55% 

relative humidity). Various combinations of four process parameters were considered: the dosator 

diameter (dia), the dosing chamber length (dcl), the powder bed height (pbh) and the capsule 

filling speed in capsules per hour (cph). In order to obtain the fill weight of up to 40 mg that is 

typical for inhalation applications (Edwards, 2010), the capsules were filled using two dosing 

chamber lengths (2.5, 5 mm), two dosator sizes (1.9, 3.4 mm), two powder bed heights (5, 

10 mm) and two filling speeds (500, 3000 cph). 

3.2.6.1 Dynamic mode tests 

Powders were filled into size 3 transparent hard gelatin capsules supplied by Capsugel using a 

lab-scale capsule filling machine (Labby, MG2, Bologna) adopted for special low-dose 

equipment, as reported in Faulhammer et al. (2014). Dynamic mode tests were performed as 

described in our previous work, e.g., Stranzinger et al. (2017). Note that in this setup, the powder 

bowl rotates and the dosator samples material from various locations of the bowl. The dosator 

nozzle matches the speed of the bowl, and thus, during sampling there is no relative horizontal 

speed of the nozzle with respect to the powder bed. The powder bed is continuously reconstituted 

by feeding powder from a hopper. A static scarper on top of the bed defines the powder bed 

height and creates a flat and smooth surface. In front of the scraper typically powder accumulates. 

A certain level of densification apparently occurs during the scraping.  
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3.2.6.2 Static mode tests 

The static mode tests, using a novel test setup, were carried out in a stand-alone static test tool 

(Figure 1). Capsule-filling experiments were conducted using the same combination of process 

settings and environmental conditions as the dynamic mode tests. The difference was that the 

powder was sampled from a static powder bed rather than from a rotating drum, which allows the 

study of the effect of the powder layer homogeneity on the capsule quality attributes and to 

achieve a mechanistic understanding of the powder compaction behavior inside the dosing 

chamber. Additionally, the static mode setup can help to determine the effect of forces that are 

always present in a lab-scale capsule filling machine (e.g., the centrifugal force) by simply 

excluding them using a static powder bed. Furthermore, the stand-alone test tool provides an 

opportunity to fine-tune certain process parameters, such as the gap between the lowest point of 

the dosator and the bottom of the powder box. In this way, the parameter limitations and the 

optimal parameters settings can be identified for various powders before filling up the hopper and 

the bowl of an industrial scale machine with expensive material available in a limited quantity in 

early stages of the development process. 

 

 

 

 

Figure 1: Sketch of the stand-alone static test tool including a bottom view of the box. 
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The following sets of experiments were carried out using the static device: 

 Experiments without vibration: In each case, capsule-filling experiments were performed 

as follows: In order to create an initial powder bed layer without densification, a defined 

volume of powder was poured into a scraper box, which was moved from the left to the 

right side of the metal box to create a homogeneous powder layer. Subsequently, at a pre-

determined point a dosator dipping step was performed and the collected powder was 

transferred into a capsule. Once again the layer was adjusted by moving the scraper box 

from the left to the right side of the metal box. Another dosator dipping step was carried 

out at the same pre-determined point as before. For each instrumental setting 30 capsules 

were collected. 

 Experiments with vibrations: Here the static test tool was placed on top of a Vibration 

Test System TV 51120 (Tira GmbH, Schalkau, Germany), which can vibrate the powder 

box under controlled conditions during the capsule-filling experiments. All experiments 

were initially carried out in the same manner as the experiments without vibration (see 

above). For each instrumental setting 15 capsules, a sample size which was proved to be 

sufficient based on preliminary testing, were collected. Next, the powder box was 

subjected to vibration triggered by a vibration plate (adaption of the vibration settings 

explained in more detail in the following section). The procedure was repeated after 5 min 

and 30 min. By detecting the fill weight and weight variability over time, the evolution of 

the powder bed due to instrumental settings and powder characteristics can be monitored. 

Note that the overall procedure was performed using the same batch of powder during 

experiments, which was guaranteed by using an excess of powder in the scraper box at the 

beginning. 

 

3.2.6.3 Adjusting the vibration parameters 

Vibrations in the lab-scale capsule filling machine (Labby, MG2, Bologna) were recorded with a 

dynamic accelerometer (Seika BDK 100, Seika Mikrosystemtechnik GmbH, Wiggensbach-

Ermengerst, Germany) which contains a capacitive spring-mass accelerometer with integrated 

sensor electronics, resulting in a resolution of < 0.1g, and a measurement frequency of 1651.61 

Hz. Signal acquisition was performed using a NI-9234 (National Instruments GmbH, Salzburg-

Bergheim, Austria) ETC high-accuracy analog input module specifically designed for high-
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channel-count vibration applications and LabVIEW (National Instruments GmbH). The data were 

further analyzed via MatLab (R2014b, The Mathworks Inc, Natick, U.S.A.). 

Due to the rotation of powder drum, it was impossible to directly attach the sensor to the bowl. 

Thus, several positions in proximity to the bowl were tested, and the one that yielded the largest 

vibration readouts was used further. The machine settings relevant to industrial production, with 

the minimum and maximum vibrations expected, were measured and analyzed. 

The laboratory vibration setup (Vibration Test System TV 51120, Tira GmbH, Schalkau, 

Germany) consisted of an electrical amplifier, a cooling blower and a vibration exciter. A module 

NI 9263 (National Instruments GmbH) provides an analogue output for the amplifier. The same 

sensor as mentioned above was mounted on the vibrated plate to produce consistent results. 

Control of the acceleration occurred via a PID loop, as described in the work of Reif (2014). 

3.2.6.4 Analysis of capsule fill weight and weight variability 

The collected samples were weighed on a Denver (SI-234A) analytical scale. Due to a relatively 

high weight of empty capsules and their variability, the collected filled capsules were weighed, 

emptied and re-weighed. An air pistol was used to ensure that no powder was left in the capsule 

after it was emptied. 

 

3.3 Results and discussion 

3.3.1 Powder characterization 

In the literature, it is well-known that numerous particle and powder attributes (and their 

combinations) affect the performance of a pharmaceutical unit operation. For example, Jones 

(2001) reviewed all the powder flow measurements that correlated with capsule-filling 

performance published in the literature up to 2001. Osorio and Muzzio (2013) updated this 

information in light of recent progress in the measurement techniques. In our work, we 

characterized the powders in terms of particle size distribution, flowability and powder porosity 

to enhance process understanding. 
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Particle size and size distribution 

In capsule filling, the particle size (and size distribution) and shape are considered critical 

material attributes, since they are known to significantly affect the powder’s flow characteristics 

over a wide range of stress conditions (Fu et al., 2012a). Furthermore, when filling capsules with 

various powders, the compressibility of powders, which is also affected by the size and shape of 

the particles (Llusa et al., 2014), requires special attention. The compressibility of powders plays 

an especially important role in standard dosator filling processes with the piston inside the nozzle 

moving downwards (vertical compressive stress) to form a plug. Also in low-dose dosator 

capsule filling processes that do not require a piston compaction step, compressibility is critical: 

the powder can be compacted if the powder bed height is higher than the applied dosing chamber 

length since in this case pre-compression occurs when the nozzle dips into the powder bed. For 

this process the minimum gap between nozzle tip and bottom of the container is a critical 

parameter as shown by the first computational work analyzing the dosator process (Loidolt et al., 

2017b). 

Table 1 presents the results for the particle size. Clearly, the width of PSD represented by the 

span value increases (within an acceptable range) for smaller particles. 

 

Table 1: Particle size and size distribution of the three grades of lactose excipients (n =3). 

 Lactohale 100 Lactohale 200 Lactohale 220 

Volumetric mean diameter [µm] 160.0 ± 0.6 83.6 ± n.a. 16.4 ± n.a. 

x10 [µm] 100.52  ± 0.5 10.9 ± 0.1 2.4 ± 0.0 

x50 [µm] 155.2  ± 0.6 78.7 ± 0.4 13.4 ± 0.0 

x90 [µm] 229.14 ± 0.75 162.5 ± 0.4 33.8 ± 0.10 

Span = (x90–x10/x50) [µm] 0.83 1.93 2.34 

 

Powder flowability 

Many methods exits to characterize the flowability of powders (Peleg, 1977, Prescott and 

Barnum, 2000). Note that flowability is not a strictly defined quantity, such as powder density.  

In the present study we characterized the flowability of powders using the angle of repose (AoR) 
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method. In general, the AoR can be related to the inter-particulate friction or the resistance to 

movement between the particles. One of our main reasons for choosing this method was that it is 

commonly used in the pharmaceutical industry and that the literature contains a number of 

examples demonstrating its value in terms of predicting the manufacturing problems (“USP-NF 

Online,” 2017). Another important reason was that this relatively simple method allows 

collecting input data for future in silico simulation studies (i.e., for calibrating a model to 

simulate the powder behavior in the process later on). 

Table 2 presents the results of the angle of repose (AoR) flowability measurements of the carriers 

investigated and the corresponding qualitative description of the powders’ flow properties 

according to the classification proposed by Carr (Carr, 1965). A value of 25–30° indicates an 

excellent flow and a value of >66° suggests a extremely poor flowability. The intermediate scale 

includes the ratings good (θ between 31–35°), fair (θ between 36–40°), passable – may hang up 

(θ between 41–45°), poor – must be agitated or vibrated (θ between 46–55°) and very poor (θ 

between 56–65°). According to this classification, the flowability of Lactohale 100 can be 

classified as good, Lactohale 200 as poor and Lactohale 220 as passable.  

 

Table 2: Results of the AoR measurements (left) of the three grades of lactose excipients and 

qualitative description of the flow properties according to Carr (right). 

 Measured Angle of Repose [°]              Flowability Angle of Repose [°] 

Lactohale 100 33.5 ± 0.7 good 31–35 

Lactohale 200 51.9 ± 0.9 poor – must agitate, vibrate  46–55 

Lactohale 220 43.7 ± 1.1 passable – may hang up 41–45 

 

Table 3: Bulk and tapped densities and Hausner Ratio of the three grades of lactose excipients (n 

= 3). 

 Lactohale 100 Lactohale 200 Lactohale 220 

Bulk density (BD) [g/ml] 0.697 ±0.004 0.622 ±0.003 0.400 ±0.007 

Tapped density (TD) [g/ml] 0.828 ±0.013 0.996 ±0.002 0.785 ±0.007 

Hausner Ratio (HR) 1.187 ±0.024 1.601 ±0.006 1.964 ±0.044 
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Specific surface area (SSA) 

Specific surface area (SSA) is a property of solids defined as the total (inner and outer) surface 

area of a material per unit of mass (Everett, 1972). The specific surface of the three grades of 

lactose excipients were investigated using the BET method, which is generally applied to 

measure the surface of accessible internal pore networks interconnected with the particle surface 

with spatial dimensions above 2 nm. More precisely, surface asperities, surface pores, as well as 

open pore networks interconnected with particle surface that is of spatial dimension above 2 nm, 

are accessible using this method. 

Table 4 lists the results of the specific surface measurements, which are between 0.1 and 0.9 

m
2
/g. Significant differences in the specific surfaces were observed for the three excipients, 

which can be attributed to the distinct methods of powder manufacturing. Milled grades (i.e., 

Lactohale 200 and Lactohale 220) have consistently higher BET surface areas than the coarser 

sieved grades (i.e., Lactohale 100). The low values show that the particles have small internal 

surface area. (The external surface area of a spherical 10 (100) µm lactose particle should be 

approximately 0.4 (0.04) m
2
/g). This indicates that for our powders have low porosity, and thus, 

the external surface area which can be an indicator for surface interaction, cohesivity, and thus, 

flowability. 

Therefore, in terms of capsule filling, determining a specific surface area may help to classify 

powders in terms of the expected flowability behaviour. 

 

Table 4: Specific BET surface area of the three grades of lactose excipients (n = 3). 

 Specific BET surface area [m
2
/g] 

Lactohale 100 0.131 ± 0.005 

Lactohale 200 0.256 ± 0.003 

Lactohale 220 0.880 ± 0.014 
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3.3.2 Capsule filling: static and dynamic mode tests 

Dynamic and static mode tests were performed in order to achieve a good understanding of the 

effect of (1) gaps between the dosator tip and the bottom of the box and (2) vibrations, which are 

known to be an important issue for dosator nozzle machines. 

3.3.2.1 Decoupling to detect the effect of gaps on the fill weight and weight variability 

In order to evaluate the influence of gaps between the lowest point of the dosator and the bottom 

of the powder box (Figure 2) on the fill weight and weight variability, three gap widths were 

examined: the standard gap for a lab-scale filler (Labby, MG2, Bologna) (gap B), a gap for low-

dose capsule filling for an industrial scale filler (Planeta, MG2, Bologna) (gap C) and a gap 

smaller than the standard lab-scale gap (gap A). To be able to draw conclusions about the effect 

of the gap on the filling behavior, it is important to note the following sequence of distances: gap 

C > gap B > gap A. Thus, gap A is the smallest gap. 

Table 5 presents the experimental plan (DoE) for the static mode tests with two dosator sizes 

(1.9 mm and 3.4 mm), i.e., the values of the four process parameters and the obtained fill weight 

and weight variability (RSD) for each setting. All experiments were carried out at a constant 

dosator dipping speed of 0.253 cm/s. If the powder could not be successfully filled into capsules 

(details described below), the runs were marked f.n.p., which stands for ‘filling not possible’. 

 

Figure 2: Sketch of the static test tool. The gap between the dosator tip and the bottom of the 

container are shown. 
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Table 5: Static mode tests: 24 experimental runs with 3 repetition experiments (gap A = gap 

smaller than the standard lab-scale gap, gap B = standard gap used for a lab-scale filler and gap C 

= gap for low doses for industrial scale filling). 

 Lactohale 100 Lactohale 200 Lactohale 220 

RUN Gap 

[mm] 

Diameter 

[mm] 

Powder 

bed 

height 

[mm] 

Dosing 

chamber 

length 

[mm] 

Weight 

[mg] 

RSD 

[%] 

Weight 

[mg] 

RSD 

[%] 

Weight 

[mg] 

RSD 

[%] 

1 Gap A 1.9 5 2.5 6.5 2.5 7.5 4.4 5.4 6.1 

2 Gap A 1.9 5 5 5.8 54.5 3.9 117.2 6.2 9.7 

3 Gap A 1.9 10 2.5 6.8 3.2 8.2 2.8 6.5 9.3 

4 Gap A 1.9 10 5 11.8 4.1 13.6 3.6 8.2 15.6 

5 Gap A 3.4 5 2.5 22.8 0.9 26.4 1.3 18.6 15.4 

6 Gap A 3.4 5 5 f.n.p. f.n.p. 24.2 56.9 20.4 8.2 

7 Gap A 3.4 10 2.5 23.7 1.1 26.8 1.4 22.2 7.8 

8 Gap A 3.4 10 5 38.4 0.6 45.4 0.7 29.8 11.6 

9 Gap B 1.9 5 2.5 6.1 3.9 6.3 11.0 3.1 39.1 

10 Gap B 1.9 5 5 f.n.p. f.n.p. f.n.p. f.n.p. 3.6 51.5 

11 Gap B 1.9 10 2.5 6.0 2.6 7.5 3.4 6.0 7.1 

12 Gap B 1.9 10 5 9.9 5.5 12.6 5.2 7.1 18.3 

13 Gap B 3.4 5 2.5 21.4 2.5 25.5 7.8 15.3 11.2 

14 Gap B 3.4 5 5 f.n.p. f.n.p. f.n.p. f.n.p. f.n.p. f.n.p. 

15 Gap B 3.4 10 2.5 22.9 1.4 27.5 2.3 20.1 4.0 

16 Gap B 3.4 10 5 38.9 1.7 47.7 0.8 26.7 13.2 

17 Gap C 1.9 5 2.5 4.2 51.4 5.9 11.3 3.2 31.1 

18 Gap C 1.9 5 5 f.n.p. f.n.p. f.n.p. f.n.p. 3.3 42.6 
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19 Gap C 1.9 10 2.5 5.5 4.3 6.6 4.9 4.7 10.1 

20 Gap C 1.9 10 5 10.2 5.1 11.9 1.6 6.7 12.2 

21 Gap C 3.4 5 2.5 19.1 3.2 22.0 3.7 12.8 7.3 

22 Gap C 3.4 5 5 f.n.p. f.n.p. f.n.p. f.n.p. f.n.p. f.n.p. 

23 Gap C 3.4 10 2.5 20.0 1.6 23.3 1.4 19.0 8.9 

24 Gap C 3.4 10 5 36.7 1.2 43.1 1.2 25.9 8.7 

 

Table 5 shows that the fill weight of the three powders is affected by varying gaps, but in 

different ways. For the most compressible powder (Lactohale 220), the fill weight correlated with 

the gaps (gap C > gap B > gap A), increasing when smaller gaps existed in all combinations of 

instrumental settings. These findings are discussed in more detail in below. For the ‘intermediate’ 

Lactohale 200, the correlation between the fill weight and the gaps was observable only in the 

case of the smaller dosator (1.9 mm). The fill weight of Lactohale 100 (large particles, good 

flowability, low cohesion) did not correlate with the varying gaps. Interestingly, for the larger 

dosator (3.4 mm) the fill weight of Lactohale 100 and 200 powders varied only slightly for the 

two gaps used on the lab-scale (standard and smaller gap) and significantly dropped in the case of 

the gap used on the industrial scale for low doses. Thus, it can be hypothesized that for these 

powders the critical part determining the fill weight is the lowest part of the dosator dipping step, 

close to or at the end of the stroke. This can be explained by viewing a powder plug mass as a 

function of the particle size, i.e., as a geometric effect that may be more relevant for larger 

particles: more compression of big particles occurs near to the bottom due to earlier confinement 

of particles, resulting in higher fill weight (Loidolt et al., 2017b). Additionally, it can be expected 

that when a larger gap is used, it is much easier for the powders with good or moderate 

flowability to escape from underneath the dosator than in the case with a lower gap and for highly 

cohesive powders (due to the lack of powder mobility caused by large inter-particle interactions 

triggered by cohesive forces). Similar findings were also reported in a recently published study 

by Loidolt et al., 2017. These findings demonstrate that special care has to be taken when capsule 

filling is performed on different machines, as well as for predicting fill weight after scaling up the 

process from a lab-scale to an industrial scale one. 
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In terms of the fill weight variability (RSD), the highly cohesive powder Lactohale 220 had the 

highest one, as expected. For all three powders, no clear trend between the instrumental settings 

and the weight variability was observed, except for the dosator size (a higher weight variability 

occurred for a smaller dosator, which was already discussed in our recent work, e.g., Faulhammer 

et al., 2014a; Faulhammer et al., 2015; Stranzinger et al., 2017).  

Valuable insights into avoiding a pre-compaction step during capsule filling were obtained, 

which is especially relevant for inhalation applications, since the plug has to revert to a loose 

powder to guarantee an efficient dose delivery (Faulhammer et al., 2014b). The highly cohesive 

powder could be filled successfully (with the acceptable weight variability below 10 %) using the 

smallest gap at a dosing-chamber-length-to-powder-bed height compression ratio of 1:1 (i.e., no 

pre-compression of powder during filling). As reported by Faulhammer et al. (2014a), the fill 

weight of powders with smaller particles and lower densities is significantly affected by frictional 

(wall friction angle) and powder flowability characteristics. Therefore, for highly-cohesive 

powders it can be expected that a combination of the friction effect and greater inter-particle 

forces in highly cohesive powders are sufficient to keep them inside the nozzle. 

Figure 3 depicts the results for the highly cohesive powder Lactohale 220 in more detail. It is 

clear that the powder was successfully filled in all combinations of process settings (except for 

the combination of a larger dosator and a dosing-chamber-length-to-powder-bed height 

compression ratio of 1:1). Based on these results, particular combinations of settings can be 

suggested for this powder. When a smaller dosator (1.9 mm) is used for capsule filling, the best 

filling performance in terms of weight variability (low RSD’s) can be achieved using a small 

dosing chamber length (2.5 mm) with a large powder bed height. A short dosing chamber length 

with a powder bed height of 5 mm is also recommended for accurate capsule filling, but only 

with the smallest gap. Based on these observations, we hypothesize that at a compression 

dcl/pbh-ratio of 1:4, the gap size is irrelevant: in all cases the compression due to the dosator 

moving down through a considerable powder bed height is sufficient to reduce any variations 

within the dose that is collected during dosing. In the case of a smaller powder bed heights, a 

very small gap is required to obtain the critical compression of powder required for a low 

variation inside the dosator, In other words, for filling with low RSDs not only the combination 

of a certain dosing chamber length and powder bed height is critical, but also the gap has to be 

taken into account. This is highly relevant for achieving content uniformity of inhalation 

capsules. 
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Figure 3: Fill weight and weight variability of Lactohale 220 for different gaps. Pbh = powder 

bed height, dcl = dosing chamber length, dia = diameter of dosator 

 

Another interesting aspect of the data (see Table 5 and Figure 3) obtained from the static mode 

tests for the highly cohesive Lactohale 220 is that at the low gap setting the powder could be 

filled using both dosator sizes (1.9 mm, 3.4 mm) at a dcl/pbh-ratio of 1:1 with an acceptable 

weight variability (below 10%). This means that lowering the gap makes it possible to fill the 

very fine Lactohale 220 within a range of 6 mg to 20 mg with RSDs below 10% without any pre-

compression. This discovery is highly valuable since (1) filling lactose powders (especially fine 

lactose powders) at high compression ratios tends to be challenging due to jamming and blocking 

of the piston (Tan and Newton, 1990b) and (2) filling very fine lactose powders can be beneficial 

in terms of density similarity with APIs (Stegemann and Bornem, 2002), meaning that pure API 

can be filled into capsules even on the industrial scale. The latter is particularly important since 

during a dosator capsule-filling process the powder blend (lactose powder and API) rotates in a 

powder container, possibly leading to segregation due to differences in powder density, particle 

mobility induced by the different shapes of particles (a non-spherical shape leads to non-isotropic 
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particle orientation and a different particle mobility) and, above all, the particle size (Cullen, 

2009). Segregation results in poor blend uniformity and high dosage variability.  To prevent 

segregation and to ensure a high product quality, filling excipients with small particle sizes 

together with APIs with an aerodynamic diameter of 1 µm – 5 µm for the DPI applications 

(Daniher and Zhu, 2008) could be advantageous 

3.3.2.2 Effect of vibration on the fill weight and weight variability of Lactohale 220 

Since fine and cohesive powders are notoriously hard to fill, we extend here our previous 

findings on the fill weight increase over time for highly cohesive Lactohale 220 (Stranzinger et 

at. 2017). To the best of our knowledge, to date it has not been established which parameters 

have the greatest influence on the reported increase in the fill weight of this fine powder over 

time during low-dose dosator filling, as reported before. To examine this effect more closely, we 

selected a combination of process settings in the Labby that resulted in the most significant 

changes in the fill weight: a dosator diameter of 1.9 mm, a dosing chamber lengths of 5 mm and a 

powder bed height of 10 mm at a filling speed of 3000 cph (Stranzinger et at. 2017). 

Vibrations are known to be an important issue when filling capsules with a dosator nozzle 

system. Typically, capsule fillers are equipped with a rotating bowl that contains a powder bed 

from which a desired volume of powder is collected and loaded into a capsule. The powder bowl 

is subjected to vibration when it rotates. As a result, the powder in the container is densified to a 

certain extent. For example, Llusa et al. (2013) confirmed a correlation between the powder 

densification under more intense vibrations and a higher fill weight.  

In our study, we used a stand-alone static test tool to understand the effect of vibration on the 

critical quality attributes, which in our case were the capsule fill weight and weight variability. 

To this end, we subjected the powder in the static powder bed to a similar level of vibrations as 

the ones observed in the Labby operated at a speed of 3000 cph. The experimental setup is 

described above. Samples were taken over a run time of 30 min. 

Recordings of the vibrations on the Labby were done for several minutes and subsequently 

analyzed. A histogram of the measured acceleration is shown in Figure 6. Note that, due to the 

off-site placement of the sensor, the accelerations in the acceleration sensor may not be identical 

to the real accelerations inside the powder bowl. To identify the dominant frequencies, a Fast-

Fourier-Transformation was applied to the accelerometer data. The power spectrum is also shown 
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in Figure 6. As expected, the signal indicates a major background noise due to the effect of 

stainless steel parts of the machine, which reflected and distorted the vibrations during 

measurements. Evidently, the amplitudes at low frequencies are very low. This is consistent with 

our visual observations that did not suggest clearly detectable vibrations. Nonetheless, some 

dominant frequencies were observed and chosen for the laboratory application. 

An acceleration in the sine-wave form was selected to represent the more complex accelerations 

of the actual machine. The direction was vertical (i.e., parallel to gravitational acceleration), the 

same way the powder drum is installed in the capsule filling machine, with a spindle preventing 

the lateral movement of the drum and making only a vertical movement possible. 

To represent vibration as a sine wave, the dominant frequencies and the corresponding maximum 

(i.e., the limits of the 95% area of the histogram) were chosen to be 0.842 g (8.26 m/s²) at 374 Hz 

at 3000 cph and 0.278 g (2.73 m/s²) at 579 Hz at 500 cph, resulting in very low amplitudes. Since 

it was not clear if the measurement positions represented the powder drum, additional 

experiments were performed at the same frequencies, yet with larger amplitudes and 

accelerations in order to induce clearly-observable reactions in the powder bed. 

 

Figure 6: Vibration measurements at an operating speed of 3000 capsules per hour in the Labby. 

Left: Histogram of accelerations. Right: Fourier Transformation of the acquired signal, showing 

the dominant frequencies. 
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Figure 7 presents a comparison of the results of experiments carried out in the dynamic mode at 

3000 cph, in the static mode without vibration and in the static mode with vibration adjusted to be 

similar to the machine running at 3000 cph. The initial fill weight and weight variability are 

shown, as well as results at 30 min. 

 

 

Figure 7: Fill weight and weight variability of Lactohale 220 for experiments in the dynamic 

mode, static mode without vibration and static mode with vibration. The lab-scale standard gap 

(gap B) was used in dynamic mode and in static mode with vibration. In static mode without 

vibration the gaps A-C were tested. 

 

Interestingly, the results of static mode tests with vibrations (0.842g at 374 Hz, comparable to 

those in dynamic mode at 3000 cph) did not show a major change in the fill weight over a run 

time of 30 min (7.1mg to 7.8 mg, yet with large RSD). However, there are significant differences 

in the results obtained with the static and dynamic mode. There are several possible explanations 

of differences in the results obtained using the two modes of capsule filling:  

(1) In the static mode, the powder is collected from a non-rotating rectangular powder box 

and the powder layer is created by manually moving the scraper box (with powder) from 

one side to the other. In the dynamic mode the powder layer is formed by scrapers that are 
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mounted on a fixed position above the powder container to continuously smooth the 

powder bed surface with each rotation. Consequently, the formation in the powder bed is 

different, introducing differences in the observed data. 

(2) The scraper could be responsible (in addition to the vibrations) for densifying the powder 

over time, resulting in an increase of the powder density. Typically powder accumulates 

in front of the scraper, forming a little hill and being compacted. This is quite possible for 

Lactohale 220 since the powder enters the powder bowl with poured bulk density and the 

tapped density is much higher, i.e., the HR of this powder is 1.964 ±0.044. In contrast the 

increase in fill weight for the non-cohesive Lactohale 100 (Stranzinger et at., 2017), was 

very low, due to the low HR of this powder (1.187 ±0.024). 

(3) The effect of the applied mode of vibrations (horizontal versus vertical) may play a role. 

For example, Deparlment and Road (1984) found that the application of vibration in the 

vertical mode markedly increased the uniformity of the powder packing, while horizontal 

vibrations were less effective in this respect. In our experiments, the powder bed in the 

static mode was subjected to vertical movements only, whereas in the dynamic mode the 

powder bed was exposed to vertical movements and also to some degree to horizontal 

vibrations. In principle, a spindle should prevent the lateral (horizontal) movement of the 

drum, however, it is expected that some minor lateral movement of the drum cannot be 

avoided. Furthermore, as the powder drum rotates during processing, rotational movement 

also needs to be taken into account. 

(4) Different sampling conditions may have an effect. In the dynamic mode, the dosator dips 

into the powder bed, which is continuously subjected to vibration, whereas in the static 

mode sampling is performed after switching the Vibration Test System off. Hence, it can 

be expected that, in the dynamic mode, during the descent of the dosator into the moving 

rotary container the powder is likely to move inside the dosator. To understand the effect 

of sampling with/without continuous vibration, additional static mode tests using a 

different sampling strategy, as described in the following paragraph, were performed. 

 

In addition to the static mode experiments with adjusted 3000 cph vibrations, we performed 

experiments with more intense vibration (maxG) and experiments using another sampling 

strategy “dosing under vibration”. For this, the vibration plate remains switched on throughout 
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the duration of the experiment (incl. during sampling) in contrast to our previous described 

experiments where the vibration plate was turned off for each sampling step. 

Figure 8 presents the fill weight and weight variability after a run time of 30 minutes. No 

significant increase in the fill weight was observed when subjecting the powder bed to more 

intense vibration (two bars on the left). However, the most interesting discovery in terms of 

weight variability was made by changing the sampling strategy. Dosing in the presence of 

vibration decreased the weight variability much more than dosing when the vibrations were 

turned off for the sampling procedure: it was reduced from 14.0% RSD to 4.5% RSD for the 

adjusted 3000 cph vibration and from 18.8% RSD to 6.5% under more intense vibration (maxG). 

Moreover, the dosed mass increased significantly with the intensity of vibrations, from an 

average of 8.1mg to 9.8 mg. The effects of vibro-fluidization of powders that achieves fluid-like 

behavior, as described in the work of Reif (2014), may explain this phenomenon. This in turn 

may lead to a more uniform dosing mass, as expressed by a low weight variability. Thus, 

exposing the system to systematic vibrations (in addition to the naturally occurring ones) might 

improve the capabilities of current dosator systems. In summary, these results show that the most 

critical process step that determines fill weight and variability is the way and mode at which 

powder enters the nozzle. 

 

Figure 8: Fill weight and weight variability of Lactohale 220 for experiments in the static mode 

with different vibrations and using different sampling methods (run time 30 min). 
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3.4 Conclusions and outlook 

The present study was designed to assess factors that influence the quality of capsules filled via a 

dosator nozzle system by decoupling the process in the dynamic and static mode tests. The 

effects of (1) gaps between the lowest point of the dosator and the bottom of the box and (2) 

vibrations, which are known to be an important issue for a dosator nozzle process, were 

examined. 

The investigation of gaps between the lowest point of the dosator and the bottom of the powder 

box indicated that, generally, the fill weight of all three powders in question was affected by 

varying the gaps, but in different ways. The most significant changes in the fill weight were 

observed in the highly cohesive Lactohale 220, with a distinct correlation between the gaps and 

the fill weight: the smaller the gap, the higher the fill weight. These findings clearly demonstrate 

that special care has to be taken when capsule filling is performed on different machines and can 

be used for predicting the fill weight and weight variability after scaling up the process from the 

lab scale to the industrial one.  

Another significant finding of the static mode tests was that with a small gap it was possible to 

fill the highly cohesive Lactohale 220 within a wide range, from 6 mg to 20 mg, with RSDs 

below 10% without any pre-compression. This is important with regard to filling capsules with 

very fine powders since compressing the powder into the dosator may lead to jamming the piston, 

blocking the dosator and stopping the process.  

Interestingly, in terms of vibration no change in the fill weight of highly cohesive Lactohale 220 

over time, as previously reported by Stranzinger et al. (2017), was observed in the static mode 

dosator dipping tests. This may be explained by the different modes of applied vibration (i.e., 

horizontal and vertical vibration), different sampling conditions and different powder layer re-

conditioning strategies. Interestingly, we found that the sampling method, i.e., sampling with or 

without vibration, plays a key role in terms of weight variability.  

Generally, our findings suggest that for low-dose dosator capsule filling it is strongly 

recommended to continuously control instrumental settings, i.e., gaps between the lowest point of 

the dosator and the bottom of the box, as well as vibration that clearly affects the fill weight and 

weight variability. Researching the effect of certain process parameters of various powder 

materials on the filling performance provides valuable insights into a dosator nozzle filling 
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process, step by step. Our results could help machine manufacturers to achieve product-

specification compliance by fine-tuning the process parameters depending on the powders used. 

Since this study was focused on the filling performance of pure carrier material, further research 

should be conducted to investigate the filling behaviour of powder mixtures (e.g., a powder with 

an API). In the end, a stepwise mechanistic process understanding could be developed, with the 

ultimate goal of creating a platform indicating the required instrumental settings for a range of 

various materials. 
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ABSTRACT 

Monitoring the relative density of static or moving powder inside a process line is essential for 

manufacturing high-quality products. The aim of this study was to quantify density variations in a 

moving powder bed using terahertz reflection technology. We systematically investigated three 

grades (varying true density and particle size) of two materials: lactose and silicified 

microcrystalline cellulose (SMCC). These six powders specifically differ in their compressibility, 

which can be applied to assess the sensitivity and applicability of our method. The powders were 

filled into a round container, and terahertz reflection measurements were acquired continuously 

during the container’s rotation. The setup allowed to adjust the relative density by compacting the 

powders into specific powder bed heights. Each powder was compacted to various relative 

densities (compression pressures up to 100 kPa). We calculated the surface refractive index based 

on the in-line terahertz measurements acquired during rotation, which has a linear dependence on 

the relative density of the powder. This was confirmed by correlating the refractive index values 

with the theoretical relative densities based on the bulk and true densities of the powder. The 

coefficient of determination (𝑅2) was larger than 0.962 (Lactohale 100) for all six powders, with 

the highest coefficients for Lactohale 220 (𝑅2 = 0.996) and SMCC 50 LD (𝑅2 = 0.995). The 

results suggest that the proposed method can resolve relative density variations that are as small 
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as 0.3% (Lactohale 100). The high acquisition rate of the terahertz system (15 Hz) made it 

possible to determine the powder density in 230 positions uniformly distributed throughout the 

container, facilitating the investigation of the relative density uniformity in the container as a 

function of the powder bed height. It was observed that SMCC powders undergo a smaller 

change in the relative density variations upon compaction than the lactose powders. Moreover, 

the relative density maps clearly indicate local density differences in the powder bed for all 

powders. The relative density variations (in the horizontal direction) that were introduced by 

packing of the container prevailed throughout the compaction process for all samples with the 

exception of Lactohale 220. The presented approach allows a precise resolution of the spatial 

distribution of relative density, which facilitates an in-depth analysis of powder behavior upon 

compaction. 
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4.1 Introduction 

Handling granular materials, including powders, plays a crucial role in many industries (such as 

pharmaceutics, agriculture, food and cosmetic production, mining, catalysis technology, chemical 

processing and environment) and modern technologies (such as additive manufacturing). In fact, 

most of the raw materials used for manufacturing end products are granular materials, whose 

handling (e.g. transporting, conveying, storing, dosing) is known to be challenging due to their 

application-dependent performance and their material attributes that hinder an establishment of 

general constitutive equations relating shear rates and stresses [1–3]. Granular materials, and in 

particular powders, are considered to be two-phase systems consisting of a dispersed phase of 

solids of various sizes and gas as the continuous phase. Consequently, the behavior of powder 

materials depends on the properties of the particle as an individual entity, the properties of an 

assembly of particles, and the interactions between those assemblies and the continuous phase 

[4]. Even though bulk properties are known to have an important effect on many processes and 

unit operations that involve powders and particulates [4], measuring the process/raw material 

variability in real-time and initiating corrective actions before it can influence the product quality 

is still a major challenge [5]. 

This is particularly important for the manufacturing of pharmaceutical solid dosage forms. The 

production of pharmaceuticals comprises various processes, and the majority of operations (i.e., 

roller compactors, twin-screw granulators, tableting machines, additive manufacturing and 

capsule filling) require a densification of the raw or intermediate material. As such, the relative 

densities of the intermediate and final product are highly critical for the product quality and need 

to be monitored and controlled to assure a consistent product performance. In general, the powder 

density can be a useful parameter in the design, optimization and scale-up of manufacturing 

processes, where density could be used as an equipment-independent scaling parameter [6]. 

Furthermore, as the pharmaceutical industry is moving from batch to continuous processing [7–

9], real-time monitoring of the product’s quality is inevitable, and robust quality descriptors are 

essential for realizing the process control [10]. 

Much of the current literature on the manufacturing of solid dosage forms pays particular 

attention to techniques for in-line monitoring of the blend uniformity, with near-infrared 

spectroscopy (NIRS) being the most widely-employed process analyzer [11–17]. Other non-

destructive techniques, such as Raman spectroscopy [18–20], light induced fluorescence [21], 
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and chemical imaging [22–25], are used for on- and in-line measuring of the blend uniformity 

[26]. However, even if the blend uniformity is adequate, density changes in the product may lead 

to undesirable variations in the product performance. Density variations can either cause an 

excess/lack of drug in a single dose or affect the microstructure, which may influence the 

dissolution behavior of the final product [27]. Thus, it is crucial to control not only the drug 

concentration but also the relative density during processing.  

To date, only a few studies have attempted to monitor density variations in a powder bed. For 

example, Singh et al. [5] proposed a novel method for real-time monitoring of powder bulk 

density using a NIR sensor and performed a sensitivity analysis to quantify the effects of the 

powder’s bulk density on the critical quality attributes of pharmaceutical tablets. Recently, NIRS 

calibration models for real-time prediction of powder density (tap, bulk and consolidated) were 

developed for a pharmaceutical formulation [28]. Moreover, other approaches for monitoring 

powder bulk densities have been reported in the literature: an analytical ultrasound method [29], 

an air-coupled acoustic technique [30], photo-acoustic testing [31], acoustic emission 

measurements [32], microwave measurements [33,34], X-ray based methods [35], thermal 

effusivity monitoring [36] and electrical tomography [37]. However, quantitative real-time 

measurement of bulk density variations in a moving powder bed remains a challenge [5]. 

Terahertz time-domain spectroscopy (THz-TDS) has recently emerged as a promising analytical 

tool for characterizing the pore structure of tablets [38]. In general, within the last ten years, a 

rapid development of terahertz systems and their commercialization driven by their inherent 

potential for quality control have created many exciting opportunities in the pharmaceutical 

sector [39]. The terahertz spectral region, which can be explored using typical commercial 

systems, covers the range from 0.1 to 4 THz or 3 mm to 30 µm, respectively [40]. Compared with 

NIR, mid-IR and Raman spectroscopy, THz-TDS is inherently less vulnerable to the scattering 

effects in powders since it operates at a much longer wavelength [38]. Excipients that are most 

commonly used for the formulation of solid dosage forms are transparent or semi-transparent to 

terahertz radiation, and a pulse of terahertz radiation can easily penetrate a sample matrix [41]. 

This makes it possible to perform transmission measurements through tablets with a thicknesses 

of up to 5.3 mm [27]. In order to use THz-TDS to quantify the porosity and relative density of 

powders and porous media, pulses of terahertz radiation are propagated through the material of 

interest and the pulse delay is used to calculate the refractive index of the samples. This 

information can be combined with an effective medium theory to extract a range of the sample’s 
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properties, including pore structure [37,42]. For example, May et al. [43] proposed terahertz 

pulsed using imaging (TPI) reflection measurements for determining the tablet density, reporting 

a strong correlation between the TPI results and tablet bulk density and how these relate to the 

tablet hardness. 

This work had two objectives. The first one is the development of a novel approach to quantify 

density variations in a moving powder bed by means of terahertz technology. In contrast to 

previous publications, in our case the terahertz probe was applied in the reflection geometry. 

Powder samples of model excipients, i.e., lactose and silicified microcrystalline cellulose 

(SMCC) of varying densities and particle sizes, were systematically investigated at various stages 

of compaction in a moving powder bed. Refractive index values were extracted from the terahertz 

reflection measurements and the average relative density of the powder in the container was 

estimated based on the refractive index data. The second part of the paper introduces the method 

we developed for (1) studying the dependence of relative density on the compression pressure 

and (2) providing spatially resolved relative density variations in the powder bed for each 

powder.  

 

4.2 Materials and methods 

4.2.1 Materials 

Three grades of lactose excipients (Lactohale 100, Lactohale 200, Lactohale 220) supplied by 

DFE Pharma (Goch, Germany) and three microrystalline cellulose (MCC) excipients (Prosolv® 

SMCC 50, Prosolv® SMCC 50 LD, Prosolv® SMCC 90) supplied by JRS Pharma (Rosenberg, 

Germany) were used as received. In order to minimize the manufacturer and batch-to-batch 

variations, the experiments were carried out using powders from the same batch and one supplier. 

4.2.2 Powder characterization 

All experiments were carried out under controlled environmental conditions (T = 20–24 °C, 40–

60% relative humidity). The following material attributes were determined in triplicate: the true 

density was measured with a helium pycnometer (AccuPac II 1340, Micromeritics, Norcross, 

USA); the bulk (BD) and tapped density (TD) values and the median particle size (d50) for the 

lactose excipients were measured previously for the same batch of material [44–45]. BD, TD 
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values and the median particle size (d50) for MCC excipients were taken from the technical data 

sheets (i.e., product sample certificate of analysis) provided by the supplier. 

 

Table 1 presents the bulk powder properties of the excipients and the theoretical amount of 

powder needed to fill the sample container to an initial target powder layer height of 30 mm. 

 

Table 1: Densities and particle size (d50) of the lactose and MCC excipients used in this study. 

The mass in this Table refers to the theoretical weight of the powder filled in the container, in 

order to achieve a fill height of 30 mm. 

Material 

Bulk density 

(g cm
-3

) 

Tapped density 

(g cm
-3

) 

True density 

(g cm
-3

) 

Particle size 

x50 (µm) 

Mass  

(g)  

Lactohale 100 0.697 ±0.004 0.828 ±0.013 1.5385 ± 0.0028 155.24 ±0.58 212.8 

Lactohale 200 0.622 ±0.003 0.996 ±0.002 1.5426 ± 0.0024 78.72 ±0.44 189.9 

Lactohale 220 0.400 ±0.007 0.785 ±0.007 1.5466 ± 0.0042 13.40 ±0.01 122.1 

SMCC 50 0.31 (0.25 - 0.37) 0.44 (0.37 - 0.50) 1.5910 ± 0.0045 64 (45 - 80) 94.7 

SMCC 50 LD 0.24 (0.20 - 0.30) 0.39 (0.34 - 0.47) 1.5866 ± 0.0041 50 (35 - 65) 73.3 

SMCC 90 0.31 (0.25 - 0.37) 0.43 (0.37 - 0.50) 1.5852 ± 0.0037 122 (90 - 150) 94.7 

All parameters are given as average values ± SD. The values in brackets for MCC are the specified limits, as listed in 

the technical data sheets. 

 

4.2.3 Experimental setup  

4.2.3.1 Rotary container and compression unit 

A schematic of the experimental setup is shown in Figure 1. The container was made of high-

density polyethylene (HDPE), which is transparent to terahertz radiation. The height of the 

container’s interior was 45 mm. The compression unit consisted of a metal ring with a thickness 
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of 10 mm combined with a sensor block with a thickness of 63 mm. The pressure in the powder 

bed was adjusted by tightening a nut on the central screw that was used to assemble the 

compression unit and the powder container (Figure 1). Three load sensors (see Supporting 

Information) connected to a computer via an Arduino Uno (Arduino, Somerville, US) were used 

to measure the applied force, which was measured prior to each compaction stage.  

The average relative density,  �̅�𝑟, of the powder was calculated as 

ϱ̅𝑟 =
𝑚

𝑉ϱ𝑡
=

𝑚

𝐴ℎϱ𝑡
 Eq. 1 

where 𝐴 and ℎ are the cross-section area of the container and the fill height, respectively. 𝜚𝑡 is the 

true density (Table 1). 𝐴 = 2827 mm² was kept constant throughout all measurements and was 

determined as 

𝐴 = (
𝐷𝑜 − 𝐷𝑖

2
)

2

𝜋 Eq. 2 

with 𝐷𝑜 = 138 mm and 𝐷𝑖 = 78 mm as the outer and inner diameter of the interior of the 

container. As mentioned previously, the pressure on the powder bed was adjusted by displacing 

the compression unit. This displacement was measured in eight positions from the top of the 

compression unit to the bottom of the container using a digital caliper prior to every 

measurement. An average value of the displacement was subsequently used to calculate the 

average fill height, ℎ̅, and eventually to determine  �̅�𝑟 (Eq. 1). A motor speed of 4 rpm was 

applied in each experiment. 

 



 

 

94 

 

 

 

Figure 1: Schematic of the experimental setup for the terahertz reflection measurements. (a) A 

force is applied to the powder in the container by tightening a nut on the screw. (b) Top view of 

the setup, indicating the direction of the container’s rotation and the displacement measurement 

positions (labelled as 1 to 8 in red). (c) Cross-section through the center of the container. The 

interior of container is filled with the powder. The powder bed height is determined in eight 

different positions, as indicated in (b).  
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4.2.3.2 Terahertz pulsed imaging 

A commercial time-domain terahertz spectrometer (TeraPulse 4000, TeraView Ltd, Cambridge, 

UK) coupled with a fiber-based flexible reflection probe was used in this study. The system was 

configured to acquire the reflected terahertz pulse over an optical time delay of 45 ps at an 

acquisition rate of 15 Hz. The reflection probe had a silicon lens with a focal length of 18 mm. 

The beam waist at the focus was ≈600 µm. At each compression step, 2000 terahertz waveforms 

were acquired continuously while the container was rotating, which yielded a total measurement 

time of 133 s. These 2000 measurements covered about 8.5 rotations of the container. A narrow 

strip of copper foil was fixed to the outside of the container to reflect the terahertz pulse and 

serve as a datum to enable an automatic detection of a full rotation based on the terahertz 

waveforms. Seven full rotation were averaged, yielding 𝑁 = 230 terahertz waveforms uniformly 

distributed around the container.  

The focal point was set on the container/powder interface in order to detect the reflected terahertz 

pulse originating from it. A reduction in the amplitude of the reflected pulse from the 

container/powder interface related to an increase in the refractive index of the powder, 𝑛𝑝, which 

can be calculated using the Fresnel equation for reflection. We would like to emphasize that the 

calculation of the refractive index based on terahertz reflection measurements differs from 

determining it via a transmission setup that was employed for studying the porosity of powder 

compacts [37, 46–49]. 

In order to simplify the calculation of 𝑛𝑝 based on the reflection measurements, we assumed that 

the terahertz beam is focused on a normal incidence on the HDPE container and that absorption 

of the HDPE container and the reflection from the air/container interface are negligible. Although 

these assumptions introduce a minor systematic error to the absolute magnitude of the calculated 

𝑛𝑝, they do not affect the prediction of relative density based on the terahertz measurements.  

In the case of normal incidence of the terahertz beam on the container, the Fresnel reflection 

coefficient, 𝑟𝑐𝑝, can be expressed as 

𝑟𝑐𝑝 =
𝑛𝑐−𝑛𝑝

𝑛𝑐+𝑛𝑝
, Eq. 3 

where 𝑛𝑐 and 𝑛𝑝 are the refractive indices of the container and the powder, respectively. The 

refractive index of the HDPE container is 𝑛𝑐 = 1.54 [50]. Eq. 3 can then be rearranged as 
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𝑛𝑝 =
𝑛𝑐(𝑟𝑐𝑝+1)

𝑛𝑐−𝑟𝑐𝑝
. Eq. 4 

𝑟𝑐𝑝 was calculated by relating the amplitude of the reflected pulse from the container/powder 

interface to a reflection from the copper foil on the container. This reference reflection from the 

copper foil was acquired prior to every experiment. Details of data processing can be found in 

Supporting Information.   

 

4.3 Results 

4.3.1 Method development 

4.3.1.1 Terahertz reflection measurements 

The terahertz reflection measurements were acquired continuously during the rotation of the 

container. Since the container does not have a perfectly uniform diameter, the phase of reflection 

of the container/powder interface varied slightly. Variations due to the container’s non-

uniformity were corrected by applying the terahertz reflection data for an empty container (see 

Supporting Information).  

In each experimental run, the required amount of powder (as shown in Table 1) was manually 

filled into the rotary container. A scraper was used to smoothen the powder layer prior to 

measuring the powder layer height and subsequent mounting the metal ring and the compression 

unit. As outlined in Section 4.2.3.1, the powder’s relative density was adjusted by displacing the 

compression unit. For each compaction step the applied pressure on the powder bed was 

measured using the integrated force sensors. Moreover, a change in the powder layer height was 

measured at each compaction step with a digital caliper. 

The terahertz pulse reflected from the container/powder interface appears negative in the 

terahertz time-domain waveform (Figure 2) as 𝑛𝑐 > 𝑛𝑝. Decreasing the powder bed height results 

in an increase in 𝑛𝑝 in the relative density. The difference between the container and the powder 

refractive indices (|𝑛𝑐 – 𝑛𝑝|) decreases, which reduces the amplitude of the reflected terahertz 

pulse. In theory, 𝑛𝑝 ranges from 1 (only air) to the intrinsic refractive index of the powder, i.e., 

the refractive index of the solid skeleton material without any air voids.  The refractive indices of 

pure α-lactose monohydrate and MCC at 1 THz were reported as ≈1.67 [51] and ≈1.85 [48], 
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respectively. However, the intrinsic refractive indices of the powders used in this study may 

slightly vary from this value.  

 

 

Figure 2: Aligned and averaged terahertz time-domain waveforms for various displacements of 

the experiment with Lactose 220 at a motor speed of 4 rpm. 

 

4.3.1.2 Relationship between measured np and relative density 

As shown in Figure 3, there is a linear relationship between the measured refractive indices and 

the relative densities of the six powders within the range of relative densities studied. In 

particular, the refractive index measurements of Lactohale 220 (𝑅2 = 0.996) and SMCC 50 LD 

(𝑅2 = 0.995) correlated strongly with the respective densities (Table 2). These observations are 

in line with previous studies on the porosity of powder compact, which reported that the 

refractive index has a linear relationship with the porosity [42]. As such, a linear model was fitted 

to this calibration data, which is expressed as 

�̅�𝑟 = 𝑎0 + 𝑎1 �̅�𝑝 Eq. 5 
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where 𝑎0 and 𝑎1 are fitting parameters, �̅�𝑟 is the average relative density from Eq. 1 and �̅�𝑝 =

∑ 𝑛𝑝,𝑖
𝑁
𝑖=1  is the average refractive index with 𝑛𝑝,𝑖 calculated by using Eq. 4 and the terahertz 

reflection measurement in position 𝑖. The dimensions and speed of the container and the 

acquisition rate of the terahertz system yielded 𝑁 = 230 terahertz measurements per container 

rotation. Position 𝑖 corresponds to a certain angle in the container (e.g., 𝑖 = 100 corresponds to 

an angle of 157) measured from the copper foil in the counter-clockwise direction. The noise 

was reduced by applying a moving average filter with a size of 5: the amplitude of reflection peak 

0 of 5 waveforms was averaged before calculating 𝑛𝑝,𝑖. The fitting parameters 𝑎0 and 𝑎1 were 

determined for every powder separately. These models were subsequently used to predict the 

relative densities in each position in the container based on the terahertz reflection measurements.  
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Figure 3: The relative density as a function of surface refractive index calculated based on the 

terahertz measurements for various powder bed heights. The relative density,  �̅�𝑟, and the 

refractive index, �̅�𝑝, were calculated using Eq. 1and Eq. 4, respectively. (a) Lactohale 100, (b) 

Lactohale 200, (c) Lactohale 220, (d) SMCC 90, (e) SMCC 50 and (f) SMCC 50 LD. 
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Table 2: Fitting parameters and assessment of goodness of fit for the various powders. 

Material Fitting parameters Goodness of fit 

 𝒂𝟎 𝒂𝟏 RMSE 𝑹𝟐 

Lactohale 100 -0.910 ± 0.163 1.190 ± 0.136 0.0009 0.962 

Lactohale 200 -2.336 ± 0.117 2.281 ± 0.093 0.0041 0.977 

Lactohale 220 -0.892 ± 0.026 1.007 ± 0.020 0.0024 0.996 

SMCC 50 -0.816 ± 0.054 0.959 ± 0.049 0.0012 0.975 

SMCC 50 LD -0.478 ± 0.024 0.667 ± 0.021 0.0005 0.995 

SMCC 90 -0.447 ± 0.059 0.643 ± 0.053 0.0008 0.967 

RMSE: root mean squared error; the fitting parameters are shown with their standard errors. 

 

The range of relative densities varied depending on the powder. The powders in this study have 

different compressibility values (volume change when compressed under a specific normal 

force), as demonstrated in our previous study [44]. We reported a compressibility at 8 kPa of 

1.05%, 12.66% and 36.95% for Lactohale 100, Lactohale 200 and Lactohale 220, respectively. 

This influenced the calibration in that it limited the maximum displacement that could be 

achieved by the compression unit. In particular, the maximum relative displacement (related to 

the initial powder bed height) and maximum pressure (in brackets) values were 2% (97.7 kPa), 

17% (85.5 kPa) and 51% (72.4 kPa) for Lactohale 100, Lactohale 200 and Lactohale 220, 

respectively. Therefore, the compressibility and the maximum displacement are in good 

agreement with our previous work, provided that a smaller displacement corresponds to a lower 

compressibility. The pressure on the powder was calculated based on the measured force using 

the integrated force sensors.  

Given its limited compressibility, it was impossible to significantly vary the relative density of 

Lactohale 100 in the current experimental setup (Figure 3a). This means that the predictability of 

the linear model for Lactohale 100 is only valid within a small range of relative densities. The 

investigation of such small density changes for Lactohale 100, however, indicates that the 
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terahertz method resolved density variations that are as small as 0.3% (min𝑘∈𝑆(1 − �̅�𝑟(𝑘)/

�̅�𝑟(𝑘 + 1)), with 𝑆 = {1 . . .  𝐾 − 1} and 𝐾=the number of compression steps). In contrast, given 

the higher compressibility of Lactohale 200 and Lactohale 220, a much larger range of powder 

bed heights could be tested, resulting in a broader range of relative densities (Figure 3b-c). 

In the preliminary experiments we investigated the effect of various motor speeds on the 

measurements. The results indicate that the motor speed (in the range of 4 to 16 rpm) has no 

influence on the average surface refractive index. However, a faster rotation of the container 

causes a lower spatial resolution of the terahertz measurements in the container since 𝑁 decreases 

with an increasing motor speed at a fixed acquisition rate. As such, we applied a motor speed of 

4 rpm in all experiments, which resulted in a spatial resolution of 1.57. 

4.3.2 Predicting relative density based on terahertz reflection measurements 

The relative density variations of the powder bed were studied via the linear models, as discussed 

in Section 4.3.1.2. The relative density was subsequently determined based on the linear model 

(Eq. 5) as a function of the container angle and the powder bed height. 

4.3.2.1 Dependence of relative density on the compression pressure 

Data acquired by the force sensors (see Section 4.2.3.1) were used to develop an in-depth 

analysis of the relationship between the pressure applied and the relative densities predicted for 

the two powder types, i.e., lactose and MCC excipients. Data in Figure 4 suggest that, due to the 

powders’ different compressibility, the range of relative density that can be explored in the rig 

varies between the two excipients. A broader relative density range for the lactose excipients 

compared to that of the MCC excipients is attributed to differences in the compaction behavior, 

which is significantly affected by the physicochemical and mechanical properties of the material 

[52]. Heckel [52] proposed density-compression force relationship, the Heckel plot analysis, 

which is often used to describe the plasticity of materials. For example, Teixeira [53] reported 

that, compared to lactose excipients, MCC excipients have a greater plasticity or plastic 

deformation at relatively low pressure and a lower brittle fraction. Lactose is commonly regarded 

as a predominately brittle material that breaks easily at relatively low deformation [54], whereas 

MCC is considered relatively ductile material that can undergo a significantly higher elastic and 

plastic deformation [54].  
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Figure 4: The relative density (calculated from the terahertz measurements) as a function of 

increasing pressure applied to the powder bed. The relative density,  𝜚𝑟, and the refractive index, 

𝑛𝑝, were calculated using Eq. 1 and Eq. 4, respectively. (a) lactose excipients (Lactohale 100, 

Lactohale 200, Lactohale 220); (b) microrystalline cellulose (MCC) excipients (SMCC 90, 

SMCC 50, SMCC 50 LD). 

a 
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4.3.2.2 Spatially-resolved relative density variations 

As described in the previous Section, in this setup we were able to spatially resolve relative 

density variations in the container. Moreover, a precise measurement of the powder bed height in 

eight positions (see Figure1b) of the container facilitates the investigation of density variations 

and powder bed height variations at a specific angle of rotation. The resulting maps of relative 

density and powder bed height variation resolved via the angle of rotation for each powder are 

shown in Figure 5 and Figure 6 for lactose and MCC, respectively. 

Please note that the prediction of relative density values for Lactohale 100 was only calibrated 

over a small density range (51 – 52%) and the values outside this range were determined via a 

linear extrapolation. However, despite this limitation, significant density variations were clearly 

established in the powder bed for Lactohale 100 (Figure 5a). Comparing these local density 

variations as a function of container angle with the measured powder bed height variations 

(Figure5d) makes a relationship between those two parameters evident. In theory, a large powder 

bed height (yellow in Figure 5d-f and in Figure 6d-f) results in a low relative density (blue in 

Figure 5a-c and Figure 6a-c). This was observed for all powders except for Lactohale 220, which 

has the largest compressibility factor. Since the terahertz reflection measurement is performed 

about 9 mm above the bottom surface of the container, the powder bed height variations for 

Lactohale 220 are compensated for by the powder between the position of the terahertz reflection 

measurement and the top surface of the powder bed. This also suggests that the powder bed 

density varies significantly in the vertical direction. This could be investigated in the future by 

acquiring terahertz reflection measurements in various vertical positions at each compression 

step.  

The data for Lactohale 100 indicate that applying normal stress to the powder bed in order to 

decrease the powder bed height does not affect the homogeneity of the powder bed, as reflected 

by the horizontal color distribution along vertical direction. Moreover, we compared local density 

variations for Lactohale 200 with those for Lactohale 100, which is a more non-uniform density 

powder bed upon compaction (Figure 5b and e). The results suggest that significant density 

variations in the container (in the horizontal direction) are introduced when the bed is packed and 

remain there throughout the compaction process. Based on this observation, we conclude that the 

filling process for such powders is particularly crucial since an initial variation in the powder bed 

height will yield a non-uniform relative density distribution even after several compression steps. 
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In contrast, Lactohale 220 has several stages of powder bed variations during compaction. In the 

beginning, moderate relative density variations in the horizontal direction were detected, which 

increased upon compaction and decrease again at the smallest powder bed height (Figure 5c,f). 

The reason may be that this highly cohesive powder has different stages of particle reorganization 

upon compaction. Moreover, the findings are possibly linked to a significant amount of air 

entrapped in the powder layer, which may introduce inhomogeneity and variations in the relative 

densities throughout compaction.  

 

 

Figure 5: Maps of relative density distributions (a-c) and powder bed height variations (d-e) as a 

function of average powder bed height, ℎ̅, and the angle on the container. (a,d) Lactohale 100, 

(b,e) Lactohale 200, (c,f) Lactohale 220. The data were interpolated using a cubic interpolation. 

The compression displacement represents the change of powder bed height from its initial height. 

 

Compared to lactose, MCC excipients undergo a smaller change in the relative density variations, 

but have a notable local density differences within the powder bed. The predicted relative density 

variations are reflected by variations in the powder bed height for all MCC materials. The 

resulting maps of relative density variations (at the top half of Figure 6) clearly show similarities 

between SMCC 90 (Figure 6c) and SMCC 50 LD (Figure 6b). This result is rather surprising if 

we consider the different material attributes of those powders, e.g., the particle size. Since the 
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particle size, along with the particle shape, elasticity, plasticity and brittleness, is known to affect 

the strength of bonds and arrangements of particles in a tablet [27,55], we would expect similar 

distribution maps for SMCC 50 (Figure 6a) and SMCC 50 LD (Figure 6b). However, if one 

considers the bulk densities of the two powders, SMCC 50 and SMCC 50 LD, the latter has a 

lower bulk density, as also evident from the sample label “LD” (low density). It is well known 

that a lower density (higher porosity) may facilitate compressibility, i.e., the densification of a 

powder bed due to the application of a stress [56]. Therefore, a higher relative density (more 

precisely local areas with higher relative density) observed upon compression of the powder bed 

for the SMCC 50 LD (see Figure 6b) may be attributed to differences in the bulk densities rather 

than in the particle sizes. These findings are also reflected in the resulting maps of powder bed 

height variations (Figure 6d-f), which confirm the presence of local density variations in the 

powder bed.  

 

Figure 6: Maps of relative density distributions (a-c) and powder bed height variations (d-e) as a 

function of average powder bed height, ℎ̅, and angle on the container. (a,d) SMCC 50, (b,e) 

SMCC 50 LD, (c,f) SMCC 90. The compression displacement represents the change of powder 

bed height from its initial height. 
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4.4 Conclusions 

This study presents an analysis of powder density variations in a rotating container via terahertz 

reflection measurements. The ability to spatially resolve density variations in a powder bed is 

relevant for a wide range of industrial applications, processes and unit operations, and especially 

for processes in which density variations of the bulk powder can result in out-of-spec end 

products. In the case of tableting process, the proposed method would facilitate the development 

of an in-depth understanding of the effect of compaction force and compression speed on the 

density variations and the porosity of a tablet, which is known to be one of the most important 

contributors to the disintegration of immediate-release tablets [55]. Another application example 

is a direct measurement of powder density variations during capsule filling. In particular, the 

method could be adjusted for implementation as an in-line process analyzer to determine the bulk 

density variations inside a dosator nozzle when the powder is collected from a moving powder 

bed and transferred into a capsule. Establishing a correlation between the bulk density inside the 

nozzle and the resulting fill weight and fill weight variation of filled capsules, which are known 

as critical quality attributes [57], would enhance process understanding and lead to process 

optimization. Although real-time measurement of density variations remains a challenge, it is 

highly desired to enhance the product quality [5]. Overall, our method has great potential to 

quantitatively measure bulk density variations in static or moving powder bulk/powder streams 

and can be implemented as a process analyzer to continuously control the material variations 

during a batch or continuous manufacturing process (in such industries as pharma, food, 

cosmetic, etc.). 
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ABSTRACT 

A good understanding of the powder behavior during the manufacturing of solid oral dosage 

forms that consist of powder is essential to assure high quality products. This is particularly 

relevant for a capsule filling process, where the powder bulk density plays an important role in 

controlling the fill weight and weight variability of the final product. In this study we present a 

novel approach to quantitatively measure bulk density variations in a rotating container by means 

of terahertz reflection technology. The terahertz reflection probe was interfaced to an 

experimental setup that mimics a lab-scale capsule filling machine including a static sampling 

tool. Three grades of lactose excipients were systematically investigated at five compression 

stages. Relative densities predicted from terahertz reflection measurements were correlated to 

off-line weight measurements (i.e. collected filled capsules). The predictions and the measured 

weights of the powder in the capsules were in excellent agreement, where the relative density 

measurements of Lactohale 200 (𝑅2 = 0.995) showed the strongest correlation with the 

respective fill weight. We also studied how the uniformity of the powder bed is impacted by the 

dosing and the subsequently filling of the holes which were introduced in the powder bed after 
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the dosing. Even though the holes seemed to be filled with new powder (by visual inspection), 

the relative density in these specific segments clearly differ from the powder bed state prior to 

dosing. The results demonstrate that it is feasible to analyze powder density variations in a 

rotating container by means of terahertz reflection measurements and to predict the fill weight of 

collected capsules. 

 

Keywords: Powder bulk density, terahertz technology, PAT, capsule filling process 
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5.1 Introduction 

Powder bulk properties are known to be crucial for the operation of many pharmaceutical 

processes and the quality of final products, such as tablets and capsules. In tablet production 

powder density variations may impact tablet mass and hardness, as well as the dissolution 

performance, hence affecting patients (Singh et al., 2015). Capsules are typically filled with 

powder or pellets. First of all, filling processes are typically volumetric, i.e., a certain volume of 

powder is filled into capsules. Thus, only if the density remains constant throughout the process 

the same mass is filled in every capsule. Second, the fill weight is considered to be directly 

related to the drug content. Since this requires a uniform blend, both the fill weight variability 

and content uniformity are critical quality attributes (CQAs) as defined within the Quality-by-

Design (QbD) framework (Faulhammer et al., 2014c). 

The ability to monitor the powder density during processing of pharmaceutical solids thus would 

be an enormous benefit, guaranteeing high quality end products. Powder density is also used as a 

key parameter for the design, optimization, and scale-up of many other manufacturing processes 

by using it as an equipment-independent scaling parameter (Hancock et al., 2003). Furthermore, 

as the pharmaceutical industry moves from batch towards continuous processing (Plumb, 2005; 

Buchholz, 2010, Subramanian, 2013), with solid oral dosage forms as one of the primary 

candidates (Poechlauer et al., 2012), real-time quality monitoring of in-process material is 

required (Vanarase et al., 2010), possibly leading to real-time release (RTR). Powder density 

measurements could provide important information in synergy with the process analytical 

technology (PAT) initiative (Fda, 2004) to enhance end product quality (Singh et al., 2015). 

However, in-line monitoring of powder density still is an unsolved challenge due to two main 

reasons:  

(1) the powder density is dependent on the type of measurement and the history of processing 

(Hancock et al., 2003). There are two basic methods of evaluating the density of a 

powder, the aerated powder (bulk) density and the tapped density (random dense 

packing). The aerated powder density is determined by allowing the dispersed powder to 

settle in a container under the influence of gravity. This is often called bulk density. The 

tapped density is obtained by tapping a container filled with a sample which forces the 

particles to rearrange leading to a higher density value than the bulk density (Abdullah 

and Geldart, 1999). This type of analysis provides accurate values for density but can only 
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be performed off-line. 

(2) the handling of particulate materials and segregation that may occur since blends consist 

of aggregates of different particle size (Hastie, 2015) pose a challenge in the development 

of an in-line powder density monitoring method. In addition, processing effects such as 

compressive stresses at different levels of the feeders, shear stresses during blending and 

particle size distribution affect powder density (Frake et al., 1998; Freeman, 2007; Fu et 

al., 2012; Jallo et al., 2012). 

The most common process analyzer in the manufacturing of solid dosage forms is near-infrared 

spectroscopy (NIRS), which has been extensively described in the literature for in-line 

monitoring of blend uniformity (Reich, 2005a; El-Hagrasy and Drennen, 2006; Li et al., 2006; 

Moes et al., 2008; Corredor et al., 2014; Li and Qu, 2014; Lin et al., 2015). Other non-invasive 

techniques, such as Raman spectroscopy (Hausman et al., 2005; Wikström et al., 2006; 

Arruabarrena et al., 2014), light induced fluorescence (Karumanchi et al., 2011), and chemical 

imaging (El-Hagrasy et al., 2001; Lyon et al., 2002; Ma and Anderson, 2008; Osorio et al., 2014) 

are also commonly used for determining the uniformity of a blend in an on-line or in-line setting 

(H. Wang et al., 2017). However, even when blend uniformity is adequate, density changes 

during the process will cause undesirable variations in capsule weight leading either to an excess 

or lack of the active pharmaceutical ingredient (API). It is thus crucial to integrate process 

analyzers that are capable of controlling the drug concentration and powder density. To date, only 

a few studies have demonstrated the monitoring of density variations of a powder beds. Examples 

are the work by Singh et al. (2015) who proposed a method for real-time monitoring of powder 

bulk density based on NIRS. They also conducted a sensitivity analysis to quantify the effects of 

powder bulk density on critical quality attributes of pharmaceutical tablets. Recently, NIRS 

calibration models for real-time prediction of powder density (tap, bulk and consolidated) were 

developed for a pharmaceutical formulation (Román-Ospino et al., 2016). Other examples for 

measuring powder density are ultrasound technology (Leskinen et al., 2010), air-coupled acoustic 

technique (Akseli et al., 2010), photo-acoustic testing (Ketolainen et al., 1995), acoustic emission 

measurements (Hakanen and Laine, 1995), microwave measurements (Trabelsi et al., 1998), X-

ray based methods (Akseli et al., 2011), thermal effusivity monitoring (Ghorab et al., 2007), and 

electrical tomography (Davies et al., 2005). 

A very promising method to study the density variations of particulate material is terahertz 

technology. The terahertz spectral region covers the range from 0.1 to 4 THz or 3 mm to 30 µm, 



 

 

117 

 

respectively (Bründermann et al., 2012). Compared with NIR, mid-IR, and Raman spectroscopy, 

Terahertz time-domain spectroscopy (THz-TDS) is inherently less vulnerable to scattering effects 

due to its longer wavelength and it is, therefore, a very attractive technique to characterize porous 

materials. Excipients most commonly used for the formulation of solid dosage forms are 

transparent, or semi-transparent, to terahertz radiation. Hence, the pulse of terahertz light can 

penetrate into and through a specimen leading to a large representative sample volume. The 

penetration depth of the terahertz radiation into the sample material is dependent on the material 

and the power of the terahertz pulse. At present, penetration depths into typical pharmaceutical 

formulations have been demonstrated up to 5.3 mm (Markl et al., 2017a). 

The terahertz technology can also be employed to measure the effective refractive index of a 

sample in a non-destructive manner (Bawuah et al., 2016; Markl et al., 2017; Markl et al., 2017a). 

The effective refractive index is a function of the fill fractions of each constituent and the total 

porosity. It can therefore be used to determine the porosity of a tablet within seconds by knowing 

the other fill fractions (e.g., knowing the formulation). Recently, we have demonstrated that 

powder density variations in a rotating container can be captured and analyzed by means of 

terahertz pulsed imaging (Stranzinger et al., 2018a). This setup and methodology were capable of 

spatially resolving density variations as small as 0.3% (Lactohale) in a moving container.  

We utilize the method reported by Stranzinger et al. (2018a) in this study to investigate the 

correlation of the measured powder density with the fill weight in a capsule of three grades of 

lactose excipients at two different terahertz probe positions, i.e. from the side (terahertz probe 

position 1) and the bottom (terahertz probe position 2) of the rotary container. Small quantities 

were drawn from the powder bed using a novel sampling system that mimics the capsule filling 

process (Stranzinger et al., 2018b). We further analyzed the effect of sampling on the density of 

the powder bed for the different materials. 

 

5.2 Materials and methods 

5.2.1 Materials 

Three different grades of lactose excipients (Lactohale 100, Lactohale 200, Lactohale 220) 

supplied by DFE Pharma (Goch, Germany) were used as received. In order to minimize 

manufacturer and batch-to-batch variations, experiments were carried out using powders from 
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one batch and one supplier. Table 1 depicts the bulk, tapped, true densities and median particle 

size (x50) of the used materials, as well as the required mass which results in a layer of powder in 

the container with a height of 10 mm. 

 

Table 1: Properties of the various lactose excipients used in this study. The mass in this table 

refers to the theoretical weight of the powder filled in the container (calculated based on the bulk 

density of the respective powder). 

Material 

Bulk density 

(g cm
-3

) 

Tapped density 

(g cm
-3

) 

True density 

(g cm
-3

) 

Particle size 

x50 (µm) 
Mass (g)  

Lactohale 

100 
0.697 ±0.004 0.828 ±0.013 1.5385 ± 0.0028 155.24 ±0.58 70.9 

Lactohale 

200 
0.622 ±0.003 0.996 ±0.002 1.5426 ± 0.0024 78.72 ±0.44 63.3 

Lactohale 

220 
0.400 ±0.007 0.785 ±0.007 1.5466 ± 0.0042 13.40 ±0.01 40.7 

 

5.2.2 Experimental setup 

A schematic of the experiments setup, comprising the rotary container, the terahertz fiber-based 

flexible reflection probe (at position 1 and 2) and the static test tool, is depicted in Figure 1. The 

rotary container is made of high-density polyethylene (HDPE), which is transparent to terahertz 

radiation. The height of the interior of the container is 45 mm. A metal ring with a thickness of 

10 mm combined with a sensor block with a thickness of 63 mm, both components later referred 

to as compression unit, were used to apply pressure on the powder bed causing a change of the 

relative density. The pressure on the powder bed was adjusted by tightening a nut on the screw to 

increase the compaction pressure on the powder bed. Three load sensors connected to a computer 

via an Arduino Uno (Arduino, Somerville, US) were used to measure the applied force, which 

was only measured prior to each compaction stage. For details about the force sensors and 

installation we refer to our previously published work (Stranzinger et al., 2018a). 
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Figure 1: Schematic of the experimental setup for terahertz reflection probe position 1 and 

terahertz reflection probe position 2, respectively. 

 

The experimental setup was developed to closely mimic a conventional dosator nozzle capsule 

filling process (Figure 2). Clockwise rotating the container filled with powder enables the holes, 

which are introduced in the powder bed after a dosing step, to be filled with the excess of powder 

which is placed behind the scraper. Several rotation cycles are typically needed to completely fill 

the holes in the powder layer. To date, the filling of the holes has only been detected visually 

from the top of the powder layer. Terahertz reflection measurements at both positions were 

performed to gain more insights the powder bed state after dosing. 
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Figure 2: Experimental setup for simulating a conventional dosator nozzle capsule filling 

process. 

 

5.2.3 Powder bed preparation  

For each experimental run, the needed amount of powder (as shown in Table 1) was manually 

filled into the rotary container. A scraper was used to smoothen the powder layer prior to 

measuring the powder layer height and subsequently mounting the compression unit. The 

pressure on the powder bed was changed by displacing the compression unit. This displacement 

was measured at eight different positions from the top of the container to the entire block by a 

digital caliper prior to the start of every measurement. An average value of the displacement was 

then used to calculate the fill height, ℎ̅, and eventually to determine �̅�r (Eq. 1). Moreover, for 

each compaction step the applied pressure on the powder bed was measured using the integrated 

Powder layer after 

dosing of material 

Excess of powder to fill 

up holes  

Scraper 
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force sensors (see section 2.2). The motor speed of 4 rpm was constant throughout all 

experiments. For each experiment the average relative density, �̅�
r
, was calculated by 

 

�̅�r =
𝑚

𝑉𝜚t
=

𝑚

𝐴ℎ̅𝜚t

 Eq. 1 

where 𝐴 is the cross-section area of the container and 𝜚t is the true density (shown in Table 1). 𝐴 

was constant throughout all measurements and is given as 

𝐴 = (
𝐷o − 𝐷i

2
)

2

𝜋 Eq. 2 

with 𝐷o  =  138 mm and 𝐷
i
 =  78 mm as the outer and inner diameter of the interior of the 

container. 

5.2.4 Terahertz reflection measurements and prediction of relative density variations  

Terahertz reflection measurements were continuously acquired for three independent 

experimental runs per material, and the average relative densities of the five different compaction 

steps in each run were predicted. A commercial time-domain terahertz system (TeraPulse 4000, 

TeraView Ltd, Cambridge, UK) coupled with a fiber-based flexible reflection probe was used in 

this study. The system was configured to operate at an optical time delay of 45 ps and an 

acquisition rate of 15 Hz. The reflection probe was equipped with a silicon lens with a focal 

length of 18 mm. The beam waist at the focus is ≈ 600 µm. 2000 terahertz waveforms were 

acquired continuously for each compaction step, which yielded a total measurement time of 

133 s. These 2000 measurements covered about 8.5 rotations of the container. A thin strip of 

copper foil was adhered onto the outside of the container, which reflected the terahertz pulse and 

facilitated the automatic detection of a full rotation from the terahertz waveforms. Seven full 

rotation were averaged which yielded N = 230 terahertz waveforms uniformly distributed around 

the container. 

The refractive index of the powder, 𝑛p, was calculated by measuring the reflection coefficient, 

𝑟cp, (from container and powder) and utilizing its relationship which is given as  

𝑟cp =
𝑛c−𝑛p

𝑛c+𝑛p
, Eq. 3 
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where 𝑛c = 1.54 (refractive index of the HDPE at terahertz frequencies (Wietzke et al., 2011)) is 

the refractive index of the container. Eq. 3 can then be rearranged to 

𝑛𝑝 =
𝑛𝑐(𝑟𝑐𝑝+1)

𝑛𝑐−𝑟𝑐𝑝
. Eq. 4 

𝑟𝑐𝑝 was calculated by relating the amplitude of the reflected pulse from the container/powder 

interface to a reflection from the copper foil on the container. This reference reflection from the 

copper foil was acquired prior to every experiment. 

A linear relationship between the measured refractive indices and the relative densities of the 

powder in the container was observed (for details see (Stranzinger et al., 2018a)), and therefore a 

linear model was fitted to the calibration data. In particular, the model is expressed as 

�̅�r = 𝑎0 + 𝑎1 �̅�p Eq. 5 

with 𝑎0 and 𝑎1 as fitting parameters. �̅�r is the average relative density from Eq. 1 and �̅�p =

∑ 𝑛p,i
𝑁
𝑖=1  is the average refractive index with 𝑛p,i calculated by Eq. 4 and the terahertz reflection 

measurement at position 𝑖. 

The noise in the terahertz data was reduced by applying a moving average filter with a size of 5 

to the data: the reflection coefficient of 5 successive terahertz time-domain waveforms were 

averaged.  

5.2.5 Static mode tests for off-line weight measurements 

Off-line weight measurements of powder samples were performed on samples drawn from the 

rotary container by a novel test setup, i.e., a stand-alone static test tool (Figure 3a), which was 

previously introduced by us (Stranzinger et al., 2018b). Essentially, the static test tool takes 

samples via a dosator head from a static powder bed, mimicking the dosing step in a dosator 

capsule filler. As shown in Figure 3b, the static test tool was placed next to the rotary container. 

Dosator dipping steps, i.e., downward movement of the dosator, collecting of powder from the 

rotary container and ejection of powder into a capsule were performed using the following 

process parameters: a dosing chamber length of 5 mm, a dosator diameter of 3.4 mm and an 

initial powder layer height of 10 mm. This resulted in a pre-compression ratio (i.e., the ratio 

between the dosing chamber length and the powder layer height) of 1:2. Dosator dipping steps 

were performed at the eight different positions shown in Figure 4. The collected capsules were 
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stored in cups sealed with Parafilm until their fill weight and weight variability were analyzed (as 

described in Section 2.6). 

 

 

Figure 3: (a) Schematic of the stand-alone static test tool including a rectangle powder box. (b) 

The static test tool setup used in the present study, i.e. the tool is placed next to the rotary 

container filled with powder. 

 

Figure 4 depicts the eight different positions around the rotary container (M01–M08) from where 

powder was sampled for off-line weight measurements. For each material and compression step 

the fill weight of eight samples was averaged. 
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Figure 4: Schematic of the rotary container dimensions and the eight off-line sampling positions 

(M01–M08). 

 

5.2.6 Analysis of capsule fill weight and weight variability 

The collected samples were weighed on a Denver (SI-234A) analytical scale. Due to a relatively 

high weight of empty capsules and their variability, the collected filled capsules were weighed, 

emptied and re-weighed. An air pistol was used to ensure that no powder was left in the capsule 

after it was emptied. 
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5.3 Results 

5.3.1 Correlation between in-line predicted relative densities and off-line weight 

measurements  

Firstly, a linear model between the measured refractive index and the nominal relative density 

was developed. We observed an excellent linear relationship between the measured refractive 

index and the relative density for each powder, as reflected by the correlation coefficient (𝑅2) and 

root mean square error (RMSE) in Table 2. One linear model was developed per material, which 

was then used to predict the relative densities for all three experiments per material. 

 

Table 2: Correlation coefficient and root mean square error (RMSE) for the linear model (Eq. 5) 

relating the measured refractive index to the relative density for the three different powder. 

Material 𝑹𝟐 RMSE 

Lactohale 100 0.982 0.002 

Lactohale 200 0.996 0.003 

Lactohale 220 0.995 0.003 

 

The predicted relative densities of all three experiments were averaged and then correlated with 

the off-line weight measurements (Figure 5). We observed the highest correlation coefficient 

(𝑅2 = 0.995) for Lactohale 200, which emphasizes that in-line measured relative bulk densities 

are highly suitable to predict the change in fill weights of off-line samples. A significant increase 

in fill weights from 43.1 to 47.1 mg was observed for this powder. This can be correlated with the 

compressibility of the powder as previously discussed by Stranzinger et al. (2017), where a 

compressibility at 8 kPa of 12.66% for Lactohale 200 was reported. In terms of fill weight 

variability, very low relative standard deviations (< 3%) could be achieved for this powder, 

which is highly relevant to guarantee a high quality product. 

A correlation coefficient of 𝑅2 = 0.870 was obtained for Lactohale 100. Given the limited 

compressibility (1.05% at 8 kPa (Stranzinger et al., 2017)) it was not possible to significantly 
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vary the relative density of Lactohale 100 using the experimental setup. The setup would need a 

significant modification in order to make it suitable for higher compression forces. However, 

such high forces are not expected to be relevant for typical capsule filling processes. 

A correlation coefficient of 𝑅2 = 0.864 was observed for the highly cohesive Lactohale 220 

powder. The fill weights significantly increased from 24.4 to 34.1 mg as a function of applied 

normal forces, owing to the high compressibility (36.95% at 8 kPa (Stranzinger et al., 2017)). As 

expected, the highly cohesive powder yields the highest fill weight variability among the three 

powders. These results are in line with the previously reported weight variability of this powder 

(Stranzinger et al., 2017; Stranzinger et al., 2018b). In the latter study, Stranzinger et al. (2018b) 

detected a higher weight variability for this highly cohesive powder when sampled without 

vibration, which was the mode of sampling strategy in the present study. Another interesting 

discovery in terms of weight variability of this powder was observed by visually examining the 

powder bed after dosing (Figure 6a and b): It can be clearly seen that in some cases the dosator 

collected more powder, i.e., the bottom of the container is visible, whereas in other cases some 

powder remained in the container. This phenomenon in turn is expected to be relevant for fill 

weight variability of collected capsules. An important fact to be considered for this type of 

powder is that the fill weight for highly cohesive powders is additionally affected by frictional 

characteristics (wall friction angle) (Faulhammer et al., 2014c). For highly cohesive powders it 

can be expected that a combination of the friction effect and greater inter-particle forces in highly 

cohesive powders are sufficient to keep them inside the nozzle. However, as reported by 

Stranzinger et al. (2018b), a pre-compression ratio of 1:2 would require a smaller gap (i.e., the 

difference between the lowest point of the dosator and the bottom of the container) than the gap 

used in the present study. A smaller gap could provide the critical compression of the powder 

required for a low variation inside the dosator. In other words, it is highly relevant to also 

consider the gap as emphasized by the previous work by Stranzinger et al. (2018b) in addition to 

critical process parameters investigated in earlier studies (Faulhammer et al., 2014a; Faulhammer 

et al., 2014b; Stranzinger et al., 2017). 
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Figure 5: Comparison of the relative density from in-line terahertz reflection measurements and 

off-line weight measurements. a) Lactohale 100, b) Lactohale 200 and c) Lactohale 220. The 

relative density predictions were averaged for three experiments per material. The fill weight is 

the average of eight samples per material and compression step.  

a 

b 
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Figure 6: Experiments with Lactohale 220. (a) Powder bed after dosing of material. (b) Dosator 

with the collected powder after the dosator dipping step. (c) Holes in the powder layer after 

dosing of material. 

 

5.3.2 Effect of dosing of material on powder bed state 

In order to evaluate the impact of dosing of material on the relative density of the powder bed, 

terahertz reflection measurements (using terahertz probe position 2) were acquired continuously 

during rotation of the container for three different conditions (1) powder bed with the 

compression unit for displacement position max (i.e., maximum applied normal force), (2) 

powder bed after removing the compression unit and before dosing, and (3) powder bed without 

compression and after dosing of material. As shown in Figure 7, dosing of material considerably 

affects the state of the powder bed, but to a different extent for the three materials under 

investigation. Not surprisingly, the largest range of relative densities was observed for Lactohale 

220, i.e. the powder that undergoes the largest volume change when it is compressed. 

a b 
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Interestingly, relative densities of Lactohale 100 as a function of the container angle (i.e., local 

relative densities) varied to a greater extent for the different specific angle positions compared to 

Lactohale 200 and Lactohale 220, indicating a more non-uniform powder bed upon compaction. 

This is in line with our previous study Stranzinger et al. (2018a), where maps of relative density 

distributions around the container (in horizontal direction) showed a similar trend for this 

powder. Thus, for such powders the filling process seems to be a crucial part during processing, 

whereas for powders with characteristics similar to Lactohale 200 and Lactohale 220 the dosing 

step itself has to be regarded critically, since it greatly impacts the powder bed condition and 

consequently the quality of the end product, i.e., the filled capsules. 

As described in section 2.2 (Figure 2), the developed method was tested for its applicability in a 

conventional dosator nozzle capsule filling process. In those experiments after conditioning the 

powder layer, i.e., having a smooth powder layer of specific powder layer height, eight dosator 

dipping steps were carried out, followed by rotating the container to fill the introduced holes in 

the powder bed. Terahertz reflections measurements (using terahertz position 2) were 

continuously acquired throughout the entire process, i.e., rotating the container for 2 min to fill 

the holes. The data in Figure 8 and Figure 9 reveal that at each dosing position the spatially 

resolved relative densities are notably lower compared to the rest of the powder layer where no 

samples were taken. Interestingly, these variations of relative densities for segments where 

powder was collected are visible throughout the filling process (Figure 9). This finding indicates 

that even though the holes seemed to be filled (by visual inspection), the relative density in these 

specific segments differ from the initial powder bed state. 

By measuring the actual relative density of those spots of interest in the powder bed, the 

developed method will improve existing solutions in terms of predicting the target fill weight and 

weight variability. Moreover, these results encourage the applicability of this method for 

monitoring powder bulk densities throughout the entire capsule filling process. It is of utmost 

importance to measure the relative density at sampling positions to detect any deviations from the 

target relative density of the powder bed. Powders with characteristics, such as small particles, 

poor flowability, high cohesion, are prone to densify under mechanical vibrations of the powder 

drum during the filling process, resulting in higher fill weights over time (Stranzinger et al., 

2017). This was also discussed in the study by Llusa et al. (2013), where they found a clear 

correlation between more intense mechanical vibrations during capsule filling and fill weight 

changes. The information of changes of the powder bulk density from in-situ terahertz reflection 
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measurements could trigger corrective actions, such as adaption of the dosing chamber length, the 

powder bed height, or even the gap between the lowest point of the dosator at the end of a stroke 

and the bottom of the powder container. The latter parameter was recently reported by 

Stranzinger et al. (2018b) to be a critical process parameter for the filling of powder using a 

dosator nozzle machine for capsule filling. 
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Figure 7: Impact of dosing of material on the powder bed state. The relative densities of the 

powder bed as a function of the container angle are shown with the sensor block (yellow), 

without the sensor block (orange) and after dosing (blue). (a) Lactohale 100, (b,) Lactohale 200, 

(c) Lactohale 220. 

b 

c 
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Figure 8: Average relative density of the powder bed after dosing of material as a function of the 

container angle for Lactohale 100. 

 

 

Figure 9: Map of relative density distributions as a function of increasing number of rotation of 

the container and the angle on the container for Lactohale 100. The dark blue region (very low 

relative density) is an artefact from the container. 

 

 

 



 

 

133 

 

5.4 Conclusion 

We demonstrated the applicability of the terahertz technology as a new process analyzer to 

determine powder bulk density variations in a moving powder bed. Terahertz reflection 

technology was employed to measure changes in the bulk density non-destructively throughout 

the process time, which were further correlated to weight measurements of collected off-line 

samples. The high potential of this technology was emphasized by the determined correlation 

coefficients of 𝑅2 = 0.870, 𝑅2 = 0.995 and 𝑅2 = 0.864  for Lactohale 100, Lactohale 200 and 

Lactohale 220, respectively between the predicted relative densities from in-line terahertz 

measurements and off-line weight measurements. The findings of this study provide a new 

perspective of the terahertz technology to be used as an in-line monitoring tool for manufacturing 

processes where powder bed variations are directly linked to the quality of final products, e.g. 

feeder, rotary container used in a dosator or tamping pin capsule filling process. A critical factor 

of the presented methodology is the positioning of the terahertz probe relative to the moving 

container. The powder bed density at the position where the dosator collects the powder could be 

measured by placing the terahertz probe at the respective position. 

The implementation of a process analyzer in capsule filling processes could significantly reduce 

the fill weight variability in capsules. The knowledge about the state of the powder bed 

throughout the process will help in designing production machines, e.g., introduction of tools to 

stabilize the powder bed condition, which are capable to maintain a constant powder bed density 

and thus reduce process induced variability of final products. 
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ABSTRACT 

This study investigates engineered carrier, as well as engineered API particles, and shows that 

there are distinct performance indicators of particle engineering for carrier-based DPIs. Spray 

dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-

lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent 

capsule filling was performed with different process settings on a dosator nozzle capsule filling 

machine in order to reach a target fill weight of 20 to 25 mg. To evaluate the performance of the 

different mixtures, in vitro lung deposition experiments were carried out with a next generation 

impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the 

specification of the European pharmacopoeia. The FPF of micronised powder blends is 

significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API 

engineering, carrier engineering had a positive effect on the capsule filling performance (weight 

variability and mean fill weight) at lower compression ratios (setting 1). Results further showed 

that higher compression ratios appear to be beneficial in terms of capsule filling performance 

(higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier 

engineering, or generally carrier properties, govern downstream processing, whereas the API 

engineering and API properties govern the aerosolisation performance and thereby significantly 

affect the dose delivery to the lungs.  
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6.1 Introduction 

Dry powder inhalers (DPIs) are important devices for pulmonary drug delivery. They are a 

keystone in the treatment of asthma and chronically obstructive pulmonary diseases (COPD) 

(Yang et al., 2016). Compared to nebulisers and metered dose inhalers (MDIs), DPIs have several 

advantages, such as absence of propellants, no need for co-ordination of inhalation step and dose 

discharge, low costs and superior stability (Alagusundaram et al., 2010; Rahimpour and 

Hamishehkar, 2012). DPIs usually have unit doses of their drug in either a reservoir, a blister 

pack or a capsule. Capsule-based devices allow flexibility, as they can deliver either high or low 

doses, depending on the capsule size used. Moreover, patient compliance can be improved due to 

a feedback mechanism, such as a rattling sound when the correct dosage delivery flow rate is 

achieved. Additionally, the patient can easily check visually if the capsule is empty after 

inhalation and if the dose has been successfully administered (Saleem et al., 2015; Smith et al., 

2010). 

Nevertheless, formulation development for dry powder inhalers is challenging, as active 

pharmaceutical ingredient (API) particles must exhibit an aerodynamic diameter of 1 µm – 5 µm 

in order to reach the deep lung. Particles in this size range are inherently cohesive, showing 

agglomeration and poor flowability. This is problematic for powder handling, processing, and 

especially, during the (gravimetric or volumetric) capsule filling process (Besenhard et al., 2016, 

2015; Faulhammer et al., 2014b). Consequently, well-flowing powders are required to guarantee 

uniform doses, for example during capsule filling or dose metering within a reservoir inhaler. 

This is usually achieved by blending the small API particles with larger carrier particles (usually 

50 µm – 200 µm) which have adequate flowability. This is called a carrier-based formulation. A 

crucial step during inhalation of carrier-based DPI is the detachment of the API from the carrier, 

following device discharge. Particles which do not detach from the carrier usually impact 

together with the carrier in the mouth or throat. They are then swallowed and are not available for 

the delivery via the lungs. Only detached API particles are able to reach the therapeutic target at 

or through the lung (local vs systemic).  

Carrier and API properties influence the drug detachment process. Various studies have focused 

on carrier engineering in order to tailor drug detachment from the carrier (Chow et al., 2007). 

Carrier engineering techniques that have been explored include, for example, spray drying 

(Amaro et al., 2011; Chow et al., 2007; Y. W. Lin et al., 2015; Littringer et al., 2012; Maas et al., 

2011; Wu et al., 2014), crystallisation (Rahimpour and Hamishehkar, 2012; Zeng et al., 2001, 
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2000) novel innovative strategies like Pulmospheres
TN

 (large porous hollow particles comprising 

of phosphatidylcholine (Rahimpour et al., 2014)) or Technospheres® (self-assembled fumaryl 

diketopiperazine (FDKP) carrier particles with a high surface area for absorption of large active 

molecules (de Boer et al., 2017)) and different solvent treatment techniques like wet decantation 

(Boshhiha and Urbanetz, 2009a; Faulhammer et al., 2015; Islam et al., 2004). Wet decantation is 

reported to remove fine particles adhering to the raw carrier material and to overall smoothen 

carrier particles, which in turn result in poorer aeroslisation performance (Boshhiha and 

Urbanetz, 2009a; Faulhammer et al., 2015). Fine lactose particles, and especially the ratio of fines 

and drug particles, play a key role in controlling drug detachment and the volume of particles 

transported to the lung (Islam et al., 2004). Moreover, fine lactose particles are reported to cover 

or saturate so called active sites (which can otherwise irreversibly adhere to API particles) on the 

carrier surface and facilitate efficient detachment of the API particles (Peng et al., 2016; Zhou 

and Morton, 2012). Furthermore, fine lactose particles may help in breaking up drug particle 

agglomerates, by forming mixed agglomerates with the drug particles (Islam et al., 2004; Louey 

et al., 2003).  

The impact of API particle engineering on the aerosolisation performance of carrier-based DPI is 

far less studied. For example, Dhumal et al. investigated salbutamol sulphate particles of different 

shapes, generated via sono-crystallisation, spray drying and jet-milling. They found that the 

elongated sono-crystallised particles showed highest lung deposition, due to a reduction of the 

effective contact area, between the crystals and the carrier surface and thus the adhesive forces 

(Dhumal et al., 2009). Further, Shur et al. compared jet-milled and sono-crystallised Budesonide 

in blends with lactose and found that the engineered sono-crystallised material showed less 

surface disorders and better aerosolisation performance (Shur et al., 2013). Another recently 

published study by Moura et al. reported the effect of jet-milling and wet polishing on inhalation 

API properties. Both techniques supported the production of particles with similar sizes, but with 

distinct physico-chemical properties, such as surface area, rugosity, density, porosity and 

moisture content (Moura et al., 2016).  

The interplay between particle engineering, particle properties, their downstream processability 

and aerodynamic performance is complex. Understanding these factors is crucial in DPI 

formulation development. Primarily, the effect of particle engineering on aerodynamic 

performance, the effect of particle engineering on processability, as well as the impact of the 

latter on aerodynamic performance, must not be neglected. Therefore, the present study evaluates 

the effect of API and carrier particle engineering on processability during blending / capsule 
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filling, as well as on aerodynamic performance. For carrier particle engineering, wet decantation 

was chosen to compare raw inhalation grade carrier material and engineered smooth fines free 

carrier particles. This supports investigation of the impact of surface topography and the effect of 

carrier fines. The model API was engineered to obtain the inhalable size via jet-milling and spray 

drying. Spray drying offers the possibility of tailoring particle properties like size, shape and 

solid-state. Compared with jet-milling, spray drying generates spherical particles with a narrow 

particle size distribution (Littringer et al., 2013). The use of these two techniques allows studying 

the impact of different API characteristics during processing and aerodynamic performance.   

This study is a follow up on our work by Faulhammer et al. where the influence of carrier surface 

processing on capsule filling performance and aerosolisation performance was also analysed 

(Faulhammer et al., 2015). Nevertheless, the present study includes a different carrier engineering 

technique, as well as uses two differently processed/engineered API particles. The carrier 

engineering technique applied is a special wet decantation method, described in materials and 

methods section (6.2.2.1.), and API engineering was done via spray drying and jet-milling. With 

this, it was possible to study not only the impact of carrier particle engineering, but also the 

impact of API particle engineering on downstream processability and aerodynamic performance 

of DPI formulations. The outcome of the present work highlights the importance of assessing 

downstream processability of spray dried amorphous API particles for inhalation and impact on 

the aerosolisation performance. Despite the increasing strides towards engineering inhaled API 

particle via spray drying, this is among first of few studies where the impact of the process like 

capsule filling on emitted and fine particle fractions from the carrier based DPI of spray dried 

particles is compared and contrasted with that of traditionally milled API particles. The obtained 

data expand the understanding of the interplay between carrier and API morphology, drug 

detachment and capsule filling efficiency. The final goal is to analyse combinations of the same 

API and carrier particles as DPI blends that are differently engineered. This leads to a detailed 

understanding of how different engineering techniques affect particle characteristics, enhancing 

capsule filling and aerodynamic performance. We found two distinct performance indicating 

properties of carrier and API in terms of capsule filling and in vitro aerosolisation performance 

for the investigated system. More precisely, smoothening of surface and fines removal from 

lactose surface via wet decantation improved flowability and thus resulted into better capsule 

filling performance (fill weight and weight variability), while improvement of flowability of API 

particles via spray drying has no particular impact on capsule filling. Despite comparable emitted 
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dose, fine particle fraction of spray dried amorphous API was lower compared to that of jet-

milled crystalline API and irrespective of carrier particle types. Therefore, the performance 

indicator for aerosolisation of the selected system appeared to be the solid-states of API rather 

than micromeritics and flow properties of API and carrier. Ideally, this specific knowledge base 

should allow the pre-selection of suitable API carrier combinations, in terms of their engineering 

routes and downstream process parameters based on particle characteristics.  

 

6.2 Materials and methods 

6.2.1 Materials 

Alpha lactose monohydrate (modified Inhalac 70, Meggle, Germany), a standard inhalation 

carrier material was used as received and after wet surface treatment as model carrier. Salbutamol 

sulphate was purchased from Selectchemie (Zuerich, Switzerland) and used as model drug. 

Isopropanol and absolute ethanol were used for the wet surface treatment and obtained from 

Lactan Chemikalien and Laborgeraete Vertriebsgesellschaft m.b.H & Co. KG (Graz, Austria). To 

test the aerodynamic performance, size 3 gelatin capsules were used and supplied by Capsugel® 

(Bornem, Belgium). 

6.2.2 Particle engineering 

6.2.2.1 Engineering of carrier particles via wet decantation  

A wet surface treatment was chosen in order to generate surface engineered carrier particles. To 

achieve that, 200 ml of absolute ethanol and 60 g of lactose were transferred to a beaker and 

mixed. The mixture was vigorously stirred to form a homogenous suspension. The latter was 

allowed to settle for 10 minutes and the supernatant was removed. Another 200 ml of fresh 

ethanol were added and the procedure repeated for a total of 5 times. In a final step, propan-2-ol, 

in which lactose is insignificantly soluble, was added and after a settling time of 10 minutes the 

supernatant was again removed (Boshhiha and Urbanetz, 2009a). Special care was taken to 

ensure minimal disturbance of the lower layer of the suspension when removing the supernatant. 

Sedimentation time (Eq.1) was calculated using the Stokes equation (Eq.2). 
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𝑡 =
ℎ

𝑣𝑠
 

Equation 1: Sedimentation time; t is the time (min), h is the height of the beaker (m) and vs is the 

particle’s settling velocity (m/s). 

𝑣𝑠 =
2

9
∗

𝜌𝑝 − 𝜌𝑓

𝜇
∗ 𝑔 ∗ 𝑅2 

Equation 2: Stokes equation; vs is the particle’s settling velocity (m/s), g is the gravitational 

acceleration (m/s
2
) ρp is the mass density of the particles (kg/m

3
), ρf is the mass density of the 

fluid (kg/m
3
) and μ is the dynamic viscosity (kg/m*s), R is the thermal velocity. 

The cloudy supernatant suspension was decanted and replaced with fresh ethanol. During the 

removal of the supernatant, special care was taken to ensure minimum disturbance of the lower 

layer of the suspension. At the end of the decantation process, the powder sample was left to dry 

for 2–4 days under a fume hood and stored afterwards in desiccators containing silica 

(Faulhammer et al., 2015). 

6.2.2.2 Engineering of API particles 

In order to generate inhalable sized particles (1 µm – 5 µm) spray drying and air jet-milling were 

chosen. Spray drying was performed with a Buchi Nano spray dryer B-90 (Flawil, Switzerland) 

using a spray head mesh of 7 μm, a feed concentration of 7.5% (w/w) salbutamol sulphate in 

purified water, a flow rate was set to 110 L/min and a spraying intensity of 30%. Process 

conditions were chosen based on our previous work and are described in more detail elsewhere 

(Faulhammer et al., 2015; Littringer et al., 2013). Micronisation was performed with an air jet-

mill (Spiral Jet Mill 50 AS, Hosokawa Alpine AG, Augsburg, Germany). An injection pressure 

of 6 bar and a milling pressure of 3 bar were set. Powder was fed manually at an estimated rate of 

30 g/h and one milling cycle was sufficient in order to generate inhalable sized particles.  
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6.2.3 Characterisation of engineered particles 

6.2.3.1 Scanning electron microscopy (SEM) 

The surface morphology of raw and engineered carrier and API particles, as well as the quality of 

the adhesive mixtures, were examined using scanning electron microscopy (SEM) (Zeiss Ultra 

55, Zeiss, Oberkochen, Germany) operating at 5 kV. All samples were gold-palladium sputtered 

prior to analysis. 

6.2.3.2 Particle size characterisation 

The dynamic image analysis system QICPIC (OASIS/L wet and dry dispersing system, Sympatec 

GmbH, Clausthal-Zellerfeld, Germany) was used for particle size characterisation of the carriers 

and the API-carrier mixtures, using dry dispersion mode. A dispersion pressure of 0.5 bar was 

applied. In each measurement (n=3), approximately 4 g powder were used. The images of the 

investigated particles were captured by the camera and evaluated using the software Windox 

5.6.0.0. Particle size distribution, the volumetric mean diameter (VMD) and the median particle 

size (x50) were determined based on the diameter of a circle of equal projection area (EQPC). The 

median of the particle size distribution (x50) describes a particle diameter corresponding to 50% 

of the cumulative undersize distribution. The width of the particle size distribution, measured by 

the laser diffraction, was expressed as span = (x90-x10)/x50. Here, the xz value is the diameter 

where z% of the sample has a smaller particle size.  

The particle size and distribution of the API was measured using the laser diffraction technique 

(HELOS/KR, Sympatec GmbH, Clausthal-Zellerfeld, Germany). A dry dispersing system 

(Rodos/L, Sympatec) and a vibrating chute (Vibri, Sympatec) were used for powder dispersion. 

A dispersion pressure of 2.0 bar was applied. Measurements were made in triplicate (n=3), with a 

typical sampling time of 30 seconds. Data evaluation was performed using the software Windox 

5.6.0.0 (Sympatec, Clausthal-Zellerfeld, Germany). 

6.2.3.3 Bulk density and tapped density  

The bulk and tapped density (BD/TD) were measured via the Pharmatester (PT-TD200) and 

according to the standardised method described in the United States Pharmacopeia (USP 2015) in 

triplicate. The definite volume of powder was filled into a cylinder (250 ml) after which the level 
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and mass were recorded. After the mechanical tapping of the cylinder, the new volume yielded 

the tapped density of the sample.  

6.2.3.4 Powder rheometry  

The FT4 powder rheometer (Freeman Technology, Malvern, United Kingdom) was used to 

determine different indices of powder flow, such as flow function coefficient (FFC), basic 

flowability (BFE) and associated derived properties. 

FFC and Cohesion (C) were measured using the 1 ml shear-cell module, at a normal pressure of 

3 kPa. FFC defines the ratio of consolidated stress to unconfined yield strength. Typically, a high 

FFC value (>4 – 10) represents powder with good flowability. FFC greater than 10 indicates a 

free flowing powder. C is an important parameter to provide information about the inter-particle 

interactions due to electrostatic, capillary or van der Waals forces. The angle of internal friction 

(AIF) for a given powder is the angle on the graph in Mohr's Circle (shear stress vs. normal 

stress) at which shear failure occurs. Details of these methodologies can be found in the literature 

(Freeman, 2007b, 2011; Fu et al., 2012b). 

The BFE defines the energy required to establish a particular flow pattern in a conditioned, 

precise volume of powder. To measure BFE and aerated energy (AE), an air conditioning unit 

providing pressured dry air (2 mm/s air velocity) was applied. Air permeability (PM) was 

determined by transmitting air through a bulk powder bed and measuring the air pressure drop 

(PD) across the powder bed. The higher the air permeability of a bulk powder bed, the lower the 

resistance to air flow and the pressure drop. All measurements were done in triplicate. 

6.2.4 Preparation of adhesive mixtures 

Adhesive mixtures of raw and engineered carrier, and both spray dried and jet-milled API, were 

prepared in a tumble blender TC2 (Willy A. Bachofen Maschinenfabrik, Muttenz, Switzerland). 

The API loading was 2% w/w and a standard mixing procedure was used, where half of the 

carrier was layered in a plastic vessel followed by a layer of API in the middle and the second 

half of the carrier layered on the top (filling volume approximately 40%). The batch size was 150 

g and the mixing time was set to 60 min at 62 rpm (Faulhammer et al., 2015). The blends were 

stored in a desiccator over silica gel before further analysis. The homogeneity of the blends was 

expressed as the coefficient of variation of the mean drug content, of n=10 sample, determined 
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via a validated HPLC method. A mixing homogeneity of below 5% deviation from the mean drug 

content of the sample was regarded as acceptable. 

6.2.5 Capsule filling 

In the present study all four blends were filled using a lab scale dosator nozzle capsule filler, with 

special low powder dosing adjustment (Labby, MG2), into Coni-Snap hard gelatine capsules of 

size 3 (0.3 ml, provided by Capsugel). The target fill weight was approximately 20–25 mg, in 

order to reach a dose of 400 µg. Filling parameters were set at an output rate of 2500 capsules per 

hour (cph), a powder bed height of 5 mm and 10 mm, a dosing chamber length of 2.5 mm and a 

3.4 mm dosator nozzle was used. This resulted in two pre-compression ratios of powder bed 

height versus dosing chamber length of 1:2 and 1:4. Before mounting and feeding the powder, a 

smooth powder layer was created by running the machine without capsule filling. A vernier 

caliper was used to measure the powder layer height. Capsule filling took place under humidity- 

and temperature-controlled conditions (humidity frame of 40% to 55% relative humidity (%RH)) 

to avoid moisture uptake. For each setting a runtime of 15 minutes was chosen and resulted in 

625 capsules per batch using a production speed of 2500 cph. 

Table 1: Capsule filling process parameters 

 Capsules 

per hour 

[cph] 

Dosing 

chamber 

length 

[mm] 

Dosator 

diameter 

[mm] 

Dosing volume 

[mm³] 

Powder bed 

height [mm] 

Setting 

1 

2500 2.5 3.4 22.7 5 

Setting 

2 

2500 2.5 3.4 22.7 10 

 

6.2.6 Pre-weighing and identification of capsules 

Empty capsule shells have a relatively high weight variability compared to the low fill weight 

used for inhalation applications. Therefore, an analytical scale (Denver SI- 234A, Denver 

Instrument GmbH, Göttingen, Germany) was used to measure the exact weight of every empty 

capsule body, which were then assigned with an individual number. Each filled and numbered 
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capsule was weighed again. The weight of the empty, numbered capsules was subtracted from the 

gross weight to obtain the precise fill weight (Faulhammer et al., 2014a). For determining the 

mean fill weight and weight variability 20 capsules were taken. Also, a visual check of the 

capsule content was conducted to ensure that no strong powder plugs were build and that the 

capsule is intact. The capsules were preserved in a desiccator over silica gel, prior to further 

analysis.  

6.2.7 Blend uniformity during filling 

Initial blend uniformity was determined and blends showed acceptable distribution of the API 

within the blends (RSD of mean drug content < 5%). In order to investigate the effect of powder 

handling and processing on blend uniformity the latter was determined during capsule filling 

inside the rotary container by sampling the filled capsules and quantifying the salbutamol 

sulphate content using a validated HPLC method (Faulhammer et al., 2015). Therefore, 25 

capsules were collected after 5 and 10 minutes from the beginning of capsule filling and 10 

capsules taken for determining the mixing homogeneity. The homogeneity of the blends was 

expressed as the coefficient of variation of the mean drug content, of n=10 samples. Therefore, 

the content of the capsules was dissolved in 20 ml of buffer (water adjusted by acetic acid to pH 

3) and the salbutamol sulphate content in each sample was determined via a validated HPLC 

method (Faulhammer et al., 2015). A mixing homogeneity of below 5% deviation from the mean 

drug content of the sample was regarded as acceptable. 

6.2.8 Aerodynamic assessment of particles 

The aerodynamic performance of the different lactose salbutamol sulphate mixtures was tested 

with an Aerolizer® device, coupled with a next generation impactor (NGI) (Copley Scientific, 

Nottingham, UK) using an air flow rate of 100 l/min. For each adhesive mixture four capsules 

were discharged into the impactor in a direct sequence. Experiments were performed according to 

the European Pharmacopoeia and have been described in detail in a previous articles published 

by the authors (Faulhammer et al., 2015). From these experiments, the emitted dose (ED), the 

fine particle dose (FPD), the fine particle fraction (FPF) and the mass median aerodynamic 

diameter (MMAD) were calculated for the different formulations and compared among each 

other. The ED gives the amount of API found in the whole impactor (mouthpiece adaptor, 

introduction port, preseparator, impaction stages) in µg, the FPD gives the amount of API 

exhibiting an aerodynamic diameter of < 5 µm in µg and the FPF gives the % of API < 5 µm 
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related to the ED. The MMAD gives the average size of particles constituting the dose which 

reach the impactor, excluding particles deposited in the throat (Traini, 2013). This governs the 

respirable fraction and represents the particle deposition pattern in the lung. All experiments were 

performed in triplicate. 

6.2.9 HPLC Method 

The salbutamol sulphate content from mixing homogeneity as well as NGI experiments was 

assessed via HPLC using a mobile phase of A – 5 mM hexanesulfonic acid sodium salt in water + 

1% acetic acid and B – methanol (A:B 60%:40%), at a flow rate of 1 ml/min. The system consists 

of a pump (Waters 2695, Milford, USA), an autosampler, a Waters 2996 photodiode array 

detector and, as stationary phase, a Phenomenex Luna C18 5 µm 100 Å column (150 x 4.6 mm, 

5 µm). The column temperature was set to 30 °C and the injection volume was 50 µl. Seven 

calibration standards were prepared with salbutamol sulphate concentrations between 2.6 µg/ml 

and 70.5 µg/ml. To overcome the limit of detection for each experiment, three capsules were 

discharged into the NGI via the Aerolizer® directly after each other. 

 

6.3 Results and discussion 

In the following section, the untreated lactose will be called LAC_R (R representing raw 

material) and the decanted engineered lactose, LAC_E (E representing engineered). The jet-

milled salbutamol sulphate will be called JMSS, and the spray dried salbutamol sulphate SDSS. 

6.3.1 Characterisation of engineered API particles 

API processing can significantly affect the final product characteristics. SEM images in Figure 1 

show that spray drying results in smooth and spherical particles, whereas jet-milling preserves the 

stick- or needle-shaped crystalline particles from the precursor. Although salbutamol sulphate 

particles prepared by two different techniques were in the inhalable size range, SDSS particles 

were larger in comparison to the JMSS particles (Table 2). Furthermore, spray drying resulted in 

a more narrow particle size distribution (PSD), or more precisely, in monodisperse particles, 

indicated by a smaller span value below 2.  

Previous studies from our working group showed that SDSS particles are amorphous, while 

JMSS particles are predominantly crystalline when solid-state is analyzed using DSC and 
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SWAXS (Faulhammer et al., 2015; J.T. Pinto, S.Radivojev, S. Zellnitz, E. Roblegg, 2017; 

Littringer et al., 2013).  

 

Figure 1: SEM images of SDSS (left) and JMSS (right) particles (Image width 114.3 µm). 

 

Table 2: Particle size and distribution of JMSS and SDSS (±stdv) – Helos dry dispersion (2.0 bar 

dispersion pressure). 

 
x10 [µm] ± stdv x50 [µm] ± stdv x90 [µm] ± stdv 

Span 

[(x90-x10)/x50] 

JMSS 0.52 0.01 1.99 0.0 4.97 0.09 2.23 

SDSS 0.50 0.01 3.0 0.13 5.67 0.24 1.72 

 

6.3.2 Characterisation of engineered carrier particles 

SEM images in Figure 2 show the difference in the surface morphology of lactose particles 

before (left) and after (right) decantation. It appears that carrier engineering via wet surface 

processing results in smoother particles, with less fine lactose attached, compared to the raw 

material. Overall, the shape of the particles was not changed. Lactose particles remain tomahawk 

shaped, but shallow steps were introduced on the surface after decantation.  



 

 

152 

 

 

Figure 2: SEM images of lactose carrier particles before (left) and after (right) decantation 

(Image width 572.4 µm). 

 

Table 3 presents the particle size and particle size distribution of the carrier particles, before and 

after decantation. An overall decrease in particle size could be observed after decantation. These 

findings are in agreement with the SEM observations. The differences can be explained by the 

removal of fine lactose particles and particle smoothing. Figure 4 schematically explains the 

reduction in mean particle size of coarse lactose particles, via removal of surface fines during 

decantation. Additionally the decrease in particle size can partly be related to the breakage of 

aggregates during decantation.  

 

 

Figure 3: Scheme - Schematic depiction of the removal of surface fines and reduction of the 

particle size through wet decantation. 
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6.3.3 Characterisation of powder blends 

Figure 4 shows representative SEM images of adhesive mixtures containing engineered lactose 

and SDSS particles (right), or JMSS particles (left). After blending, API particles appear to be 

distributed homogenously over the carrier surface. The free pits/steps that were generated during 

decantation seemed to be filled up with API particles upon blending. SEM images show no visual 

differences in API distribution on the carrier surface when using API particles that were 

engineered via two different means, generating two distinct solid-states (i.e., amorphous SDSS 

versus crystalline JMSS particles). This was further confirmed by the mixing homogeneity 

results; for both samples the RSD of the mean drug content was below 5%. However, the inter-

particle interaction with carriers appeared to be significantly different. This in fact is reflected by 

their NGI performance (see results below). 

 

Figure 4: SEM images of adhesive mixtures of decanted lactose with JMSS (left) and SDSS 

(right) particles (Image width 1.143 mm). 

 

PSD results in Table 3 suggest that for both blends with engineered carrier, the x50-values were 

slightly lower, compared to that of the blends with untreated lactose. This can again be explained 

by the decrease in particle size of the lactose particles, due to the removal of fine lactose particles 

(Figure 4) and some abrasion of the carriers during decantation. When comparing the raw 

material and blends of raw material, the latter show relatively lower mean particle size (Table 3). 

This could again possibly be due to some particle abrasion, in this case due to the forces acting on 

the material during the mixing process, in the tumble blender. The spans of the PSD were in the 
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same range for all powder blends and were not affected by the use of either engineered carrier or 

engineered API particles.   

Table 3: Particle size and distribution of raw and engineered carrier material as well as of the 

drug-carrier blends before and after decantation (n=3 ± stdv) – Qicpic (0.5 bar dispersion 

pressure). 

 
x10[µm] ± stdv x50[µm] ± stdv x90[µm] ± stdv 

Span 

[(x90-x10)/x50] 

LAC_R 95.27 3.74 216.03 5.60 354.70 8.53 1.20 

LAC_E 71.74 3.67 179.04 6.39 313.93 5.33 1.35 

JMSS+LAC_R 95.58 2.08 183.26 7.33 287.42 1.21 1.05 

JMSS+LAC_E 95.76 0.38 173.45 0.70 279.54 1.08 1.06 

SDSS+LAC_R 99.62 1.38 193.11 4.29 310.2 23.14 1.09 

SDSS+LAC_E 99.57 0.44 185.48 0.94 291.98 1.52 1.04 

 

6.3.4 Bulk powder and flowability properties of the blends 

Fu et al. reported a significant effect of the particle size and shape on the bulk and shear 

characteristics of lactose powders (Fu et al., 2012b). Thus, it can be expected that the decrease of 

the PSD will lead to a change of the powder flow behaviour. As a measure for the flowability of 

the different adhesive mixtures, the bulk density (BD) and tapped density (TD) were measured 

and the values of Carr’s index (CI) were calculated. Wet decantation resulted in an increase of 

BD and TD for the carrier materials, possibly through the exposure of surface asperities and the 

consequently improved powder packing and flowability. Furthermore, results show that carrier 

engineering lowered the CI from 26.9 (LAC_R + SDSS) and 26.6 (LAC_R + JMSS) to 21.7 

(LAC_E + SDSS) and 23.2 (LAC_E + JMSS) respectively, indicating better flowability of the 

mixtures with engineered carrier material. This is true for mixtures of engineered carrier and both 

spray dried and jet-milled API. The use of engineered API in the blend preparation appeared not 

to affect the flowability of the mixtures. This is most likely due to the small amount of API 

present in the mixtures and predominance of carrier that can describe blends properties.   

To obtain a deeper insight into the flowability and aeration behaviour of the DPI blends, shear-

based powder flow measurements were carried out using the FT4 powder rheometer (Table 4). 

As previously described, the FFC is defined as the ratio of consolidation stress to unconfined 
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yield strength and also a parameter to describe powder flowability. Blends containing engineered 

lactose carrier particles show higher FFC values, as an indication of the improved flowability. A 

significant improvement of flowability to 9, near to the free-flowing limit of 10, could be 

observed for adhesive mixtures when engineered lactose and JMSS are used, instead of raw 

lactose. The flowability of the API-carrier mixtures of lactose and SDSS improved from 5.43 to 

7.86 when engineered lactose is used. These results agree well with the CI and HR. This further 

supports our findings that powder flowability is governed by carrier properties and that wet 

decantation of the carrier improved the flowability of the adhesive mixtures. 

Regarding the AIF, a different behaviour could be noticed for the two different API-carrier 

mixtures. The AIF for the blend with SDSS decreased after decantation, the AIF for the blend 

with the JMSS remained almost unaltered. This might be explained by the higher rolling ability 

of the spherical spray dried API particles, on the smoother decanted lactose surface, after 

decantation. As the amount of fine lactose particles is reduced and the surface is smoothed, less 

internal friction was measured. This effect could not be observed for needle shaped API particles. 

 

Table 4: Shear cell measurements (n=3) of API-carrier mixtures. 

 
FFC ± stdv 

AIF 

[°] 
± stdv 

Cohesion 

(C) [kPa] 

± 

stdv 

JMSS+LAC_R 5.43 0.93 33.67 0.74 0.29 0.07 

JMSS+LAC_E 7.87 1.53 33.37 0.95 0.17 0.07 

SDSS+LAC_R 6.35 1.1 37.00 1.21 0.19 0.09 

SDSS+LAC_E 9.00 4.5 32.97 0.51 0.23 0.05 

 

Table 5 shows the basic flowability energy (BFE), aerated energy (AE) and permeability (PM) of 

the four blends. Depending on API engineering, the decantation of the carrier has different 

consequences on the BFE. An increase of the BFE could be observed after decantation for the 

blend with the JMSS, while the BFE of the blend with the SDSS remained statistically the same. 

Since other flowability indicators showed an improvement of the flow properties through wet 

decantation, it may be assumed that some unaccountable parameters (like electrostatic forces) 

could have led to the contradicting trends of the obtained BFE values. 
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The AE, which also is a parameter to assess the flowability, is governed by permeability and 

compressibility. Here again, a different behaviour of the two adhesive mixtures could be 

observed. The AE of the mixture of lactose with JMSS decreased after decantation, whereas this 

parameter slightly increased for the mixture with the spray dried API. These results indicate that 

powders tend to be more cohesive when JMSS particles are used and that the combination of 

engineered carrier and jet-milled API lowers the cohesion. This is further supported by the 

cohesion measurements presented in Table 4 (0.29 for JMSS+LAC_R versus 0.17 for 

JMSS+LAC_E). Nevertheless, the cohesion values do not support the findings that adhesive 

mixtures with jet-milled API particles show generally higher cohesion. These different 

observation could be due to the different measuring principles and set up; the sample volume in 

the shear cell is much less than the volume needed for AE measurements.   

The results of the permeability (PM) measurements again support the idea of a different impact 

on the flowability after decantation of mixtures with JMSS and SDSS. First, adhesive mixtures 

with JMSS overall showed higher permeability values, compared to adhesive mixtures with 

SDSS particles. A closer look at the mixture with JMSS showed a slight increase in PM after 

decantation. SDSS displayed a slight decrease. This increase of PM, for the JMSS mixture, 

means that the decanted jet-milled powder blend has a slightly higher capacity to remove air 

during compaction, and therefore, should be easier to handle during capsule filling or tabletting. 

As the PM value of the spray dried blend decreased after the decantation, it can be expected that 

for this blend the air cannot be removed as fast as before this process step, resulting in somewhat 

less effective compaction. Hence, with respect to the initial situation of SDSS and JMSS, it is 

hypothesised that the jet-milled blend will show a better capsule filling performance.  

Generally, in literature it is reported that permeability increases with decreased fine particle 

amounts in the blends (e.g. due to decantation) (Cordts and Steckel, 2012; Shur et al., 2008). In 

our work, this trend can only be observed when jet-milled API is used. The contrasting findings 

for spray dried API blends could possibly be explained by the different solid-state. In presence of 

carrier fines, they might intervene with amorphous SDSS particles pressing them against coarse 

lactose particles and forming bridges (to facilitate airflow). These results imply that permeability 

and (carrier) fines relation for the powder mixture with heterogeneous solid-state could not be 

interpreted in the same way as crystal-crystal mixtures. 
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Table 5: FT4 powder rheometer measurements with the air conditioning unit (n=3) of API-carrier 

mixtures. 

 

Basic 

Flow 

Energy 

[mJ] 

± stdv 

Aeration 

Energy 

[mJ] 

± stdv 

Permeabiliity 

[mBar] at 1 

to 15 kPa 

± 

stdv 

JMSS+LAC_R 337.67 12.58 54.40 10.69 1.84 0.04 

JMSS+LAC_E 388.17 23.93 34.00 5.30 1.90 0.04 

SDSS+LAC_R 326.98 20.78 27.77 0.51 1.62 0.07 

SDSS+LAC_E 324.33 11.93 31.60 2.11 1.29 0.08 

 

6.3.5 Impact of particle engineering on processability – capsule filling performance 

The target fill weight was 20–25 mg, in order to reach a salbutamol sulphate dose of 400 µg.  

This is a common fill weight in capsules for dry powder inhalers (DPI), as used for example in 

the marketed product Salbutamol 400 Cyclocaps® (PB Pharma GmbH, Germany). In these 

capsules 400 µg Salbutamol is blended with lactose monohydrate. Each capsule contains 20 mg 

of the 2%-API blend. 

In order to evaluate the impact of particle (carrier and API) engineering on downstream 

processing (blending / capsule filling), (1) the blend uniformity during filling was evaluated 

between 5 and 10 minutes, as well as between 10 and 15 minutes, of process runtime (2). Fill 

weight and fill weight variability, expressed by the relative standard deviation (RSD), were 

compared for the different adhesive mixtures. A decrease in blend uniformity values represents a 

more homogenous distribution of API within the mixture.  

Overall results in Table 6 show that the blend uniformity is good and within the acceptable range 

of below 5% for all formulations independent of the carrier, API combination and process 

settings. When further investigating the values it can be detected that, for the process setting with 

a higher compression ratio, the blend uniformity drastically improves with increasing capsule 

filling time. After 15 minutes, the API is distributed more homogenously in all blends. This is 

possibly due to start up effects (Stranzinger et al., 2017). This effect is negligible at a lower 
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compression ratio. Nevertheless, neither carrier nor API engineering had a significant effect on 

blend uniformity during capsule filling. 

 

Table 6: Mixture homogeneity during the filling process at different powder bed heights. 

Samples were taken from 5 to 10 minutes and from 10 to 15 minutes (n=10, RSD from mean 

drug content). 

 Mixture Homogeneity at Process 

Setting 1 [%]  

Mixture Homogeneity at Process 

Setting 2 [%] 

  Min 5-10  Min 10-15 Min 5-10 Min 10-15 

JMSS+LAC_R 1.44 0.98 2.96 1.35 

JMSS+LAC_E 1.75 1.62 3.80 0.93 

SDSS+LAC_R 2.11 1.33 3.90 1.81 

SDSS+LAC_E 1.07 0.66 3.32 1.48 

Two different process parameters for capsule filling, resulting in different compression ratios (1:2 

and 1:4), were chosen in order to evaluate the optimum process settings in terms of filling, as 

well as aerodynamic performance. For both compression settings, no powder plug was created, 

which is desirable for inhalation dosage forms. Furthermore, the effect of particle engineering on 

capsule filling performance was evaluated. Results in Table 7 show that the intended fill weight 

of 20–25 mg per capsule was achieved for all blends (Yin, 2007). However, when studying the 

values in more detail, it can be observed that carrier engineering had a positive effect on weight 

variability at a lower compression ratio (setting 1), represented by lower RSD values (significant 

different, p<0.001, F-test of equality of variances). Moreover, the use of engineered carriers in 

combination with process setting 1 led to higher fill weight, compared to raw lactose carriers. The 

positive effect of engineered lactose on the capsule filling performance can be related to the 

increased flowability of adhesive mixtures containing engineered lactose particles. However, the 

LAC_E is far less compressible than the raw material. Comparing the capsule fill weight of 

setting 1 and 2, it can be seen that the capsules filled with blends containing LAC_R as carrier 

show an increase in fill weight of approximately 30%, independent of what kind of engineered 

API was used. In contrast the blends with LAC_E only have little higher fill weight when 

processed at setting 2. 
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Table 7: Capsule filling performance - fill weight and weight variability represented by the RSD 

(n=20 (±stdv) - and in vitro performance - fine particle fraction (FPF), emitted dose (ED) per 

capsule and mass median aerodynamic diameter (MMAD) (n=3 (±stdv – for the different 

adhesive mixtures) and the mean loaded dose determined from the mixing homogeneity 

experiments (n=10 (±stdv) 

Samples 

Setting 1 Setting 2 

Fill 

weight  

[mg] 

RSD  

[%] 

Loaded 

dose 

[%]  

FPF 

 [%] 

MMAD 

[µm] 

ED 

[µg] 

Fill 

weight 

 [mg] 

RSD  

[%] 

Loaded 

dose 

[%] 

FPF  

[%] 

MMAD 

[µm] 

ED 

[µg] 

JMSS+ 

LAC_R 
19.7 6.6 

2.02 ± 

0.02 

15.0 

± 3.8 

2.95 

± 0.1 

358.2 

± 31.3 
27.2 2.0 

2.09 ± 

0.03 

21.0 

± 1.5 

3.19 

± 0.1 

435.2 

± 35.0 

JMSS+ 

LAC_E 
24.1 2.4 

2.06 ± 

0.03 

23.1 

± 6.0 

2.97 

± 0.1 

396.0 

± 18.5 
25.1 1.9 

2.05 ± 

0.02 

23.6 

± 1.1 

2.95 

± 0.3 

387.2 

± 54.9 

SDSS+ 

LAC_R 
20.9 4.2 

1.96 ± 

0.02 

3.5 

± 0.7 

7.17 

± 0.2 

344.4 

± 6.7 
27.2 2.3 

2.01 ± 

0.03 

4.8 

± 1.9 

7.21 

± 0.7 

412.6 

± 57.3 

SDSS+ 

LAC_E 
24.7 2.2 

1.89 ± 

0.02 

1.5 

± 0.5 

7.76 

± 0.4 

372.6 

± 78.2 
27.3 2.0 

1.86 ± 

0.03 

2.0 

± 0.9 

7.62 

± 0.9 

430.2 

± 59.4 

Compared to carrier engineering, API engineering seemed not to affect the capsule filling 

performance. A possible explanation, therefore, could be the amount of API, which is 2% and 

relatively small in the mixtures. Although from powder rheometry, it was expected that the JMSS 

blend will show a better capsule filling performance. This effect was not pronounced during 

capsule filling experiments. 

Furthermore, capsule fill weight and weight variability values indicate that a higher compression 

ratio (setting 2) lead to more constant capsule filling results. Compared to a lower compression 

ratio, where carrier engineering positively affected weight variability and mean fill weight, these 

parameters are independent of the carrier and API material used at a compression ratio of 1:4. 
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6.3.6 Impact of particle engineering on the in vitro aerodynamic performance  

Fine particle fraction (FPF), the emitted dose (ED) and the mass median aerodynamic diameter 

(MMAD) were chosen for evaluating the impact of particle engineering on the performance of 

the different adhesive mixtures. Further, the loaded dose per capsule was determined from the 

mixing homogeneity experiments. Results show that the loaded doses are in the range of the 

target dose (2% API). This is true for all adhesive mixtures however, the drug load is overall 

slightly lower when SDSS is used (Table 7). Irrespective of carrier modifications or capsule 

filling process parameters, the blends comprised of SDSS show considerably lower FPFs (2 to 

5%), compared to those containing JMSS particles (15 to 24%) (Table 7) (significant different, 

p<0.001, 2-tail t-test for unequal variances). This is linked to and can most likely be explained by 

the large MMAD values returned from the blends with SDSS particles (around 7.5 µm), 

compared to those from JMSS based blends (3 µm). The MMAD of JMSS particles is within the 

range of the mean particle size (x50) measured via laser diffraction. By contrast, for SDSS 

particles the MMAD is about double the diameter of the mean particle size, measured via laser 

diffraction. The differences in MMAD might be explained by the different physico-chemical 

properties of spray dried and jet milled material. It is evidently expected that amorphous SDSS 

possesses higher surface energy (and also cohesivity), as well as higher hygroscopicity (thus a 

higher tendency to form solid-bridging), when compared to dominantly crystalline JMSS. 

Therefore, fine SDSS particles tend to form irreversible agglomerates over time or during 

blending (Pinto et al., 2017). 

The fact that the ED is about the same, regardless of whichever spray dried or jet-milled API is 

used and that the FPF is significantly affected by the API used, supports the hypothesis that spray 

dried salbutamol sulphate particles form agglomerates that are able to leave the inhaler but cannot 

be dispersed during inhalation (Pinto et al., 2017). A poor deaggregation and aerosolisation 

efficiency for spray dried particles was described before for Budesonide. To reduce the spray 

dried particle-particle cohesivity and to prevent the micronised particle aggregation, surface 

coating with polymers and surfactants has shown to be a successful approach (Buttini et al., 2008; 

Tuli et al., 2012). Another explanation could be the mechanical forces during mixing that could 

lead to inefficient detachment of spray dried particles from the carrier. Selvam et al. showed that 

drug particle physico-chemical properties might be responsible for differences in the effects of 

the press on forces during mixing on drug detachment of different drug materials (Selvam and 

Smyth, 2011). Furthermore, no correlation between the ED and the different process settings, or 
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the use of engineered particles, can be found. However, the ED can be correlated with the capsule 

fill weight. Higher capsule fill weights resulted in higher EDs, indicating that the dose was 

properly released from the capsule shell. 

Thus, API engineering has a larger effect on the aerodynamic performance than carrier 

engineering. Taking the standard deviations into account, the use of engineered lactose particles 

did not significantly change the FPF when jet-milled API particles were used. By contrast, when 

spray dried API is used, the FPF decreases for the engineered carrier material at high and low 

compression ratios. This is in agreement with previous studies and can be explained by the 

absence of fine lactose particles (Boshhiha and Urbanetz, 2009b; Faulhammer et al., 2015). The 

highest FPFs were obtained for jet-milled API in combination with engineered lactose particles, 

at either low or high compression ratios. 

Concerning the impact of powder properties on the aerodynamic performance, a correlation 

between the air permeability (Table 5) and the FPF could be observed. The higher the air 

permeability of the adhesive mixture, the higher the FPF. Moreover the permeability as well as 

the FPF is drastically reduced when spray dried API was used. Cordts and Steckel investigated 

permeability and aeration of ternary mixtures and no correlations between these two parameters 

and the FPF could be found. However, a relationship between the amount of fines and DPI 

performance was shown, the higher the amount of fines, the lower the permeability value (Cordts 

and Steckel, 2012). Further, Le et al. reported a correlation between the air permeability and the 

quantity of free particle fraction in the interparticular spaces of a powder bed that leads to the fine 

particle fraction during fluidization in the airflow (Le et al., 2010). Recently, Hertel et al. 

reported a correlation between permeability, amount of fines in ternary mixtures and the 

aerodynamic performance. Air permeability in relation to fluidization energy was introduced as a 

tool in order to predict the optimum amount of fines for good inhalation performance (Hertel et 

al., 2018). Nevertheless, more fundamental research is needed to elucidate the aerodynamic 

dispersion of powders linking with their bulk properties. 

Future work will focus on understanding the agglomeration behaviour and tendency of SDSS 

particles, in order to explain the superior in vitro performance of JMSS versus SDSS particles. 

Besides, the interplay between carrier and API properties, drug detachment and capsule filling 

efficiency will be studied for additional carrier API combinations. 
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6.4 Conclusion 

Particle engineering has been intensively explored in carrier-based DPI formulation development. 

This study investigates engineered carrier, as well as engineered API particles, and shows that 

there are distinct performance indicators of particle engineering for carrier-based DPIs. 

Compared to API engineering, carrier engineering has a positive effect on the capsule filling 

performance (fill weight variability) at a lower compression ratio (setting 1). Whereas API 

engineering seems to have no effect on capsule filling performance. Carrier engineering 

significantly improves the flowability of the formulation, which in turn positively affected 

capsule filling. Results further showed that a higher compression ratio during capsule filling 

appears to be beneficial in terms of capsule filling performance. The mean fill weight and fill 

weight variability is not affected by the use of differently engineered carrier materials and higher 

overall fill weight can be achieved. 

By contrast, drug detachment and aerodynamic performance is rather governed by the API 

particles used, and thus, by API engineering. The use of SDSS particles, compared to JMSS 

particles, decreased the FPF. This could be explained by particle characteristics that were more 

distinct for the differently prepared API particles, than for raw and engineered carrier particles. 

API engineering resulted in particles with different size, shape and solid-state properties, whereas 

carrier engineering mainly changed surface topography. Spray dried amorphous particles tend to 

form irreversible agglomerates over time, due to amorphous bridging which leads to poor in vitro 

aerosolisation. Overall carrier engineering did not have a significantly positive effect on the 

aerosolisation performance. The highest FPF (≈23%) was obtained for jet-milled API in 

combination with engineered lactose carrier particles.  

Thus, it can be concluded that in carrier based formulations using lactose and salbutamol 

sulphate, the carrier engineering, or generally carrier properties, govern downstream processing, 

whereas the API engineering and API properties significantly affect the dose delivery to the lung, 

and thereby, govern aerosolisation performance. More precisely, flowability of carrier (tunable 

by altering surface fine and smoothness) acts as a performance indicator for capsule filling 

irrespective of solid-state and shape of the same API used in the blend. On the other hand, solid-

states of API (amorphous versus crystalline and thus the possible difference in mechanical 

properties e.g. press on force) represent in vitro aerosolisation performance indicator irrespective 

of the surface properties of the same carrier. However, for establishing this as a general predictive 
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knowledge requires further investigations including other APIs and/or carriers with varying 

physico-chemical properties.  

The obtained data are useful, to improve the understanding of the relationship between particle 

engineering on capsule filling efficiency and aerosolisation performance in carrier-based DPI 

formulations. Moreover, this should allow knowledge-based preselection of suitable API carrier 

combinations, their engineering routes and downstream process parameters based on particle 

characteristics.  
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7. Summary and conclusion 

The introductory chapter 1 provides an overview of capsule filling systems used for filling of 

granular material into capsules, with the main focus on the dosator capsule filling system in 

particular for low-doses. Since in this filling system the powder condition in the container from 

where the powder is taken and transferred into a capsule is known to be critical, process 

analytical technology (PAT) as a promising tool to optimize filling performance is introduced, 

whereas the terahertz technology as one of the most promising ones for this purpose is described 

in detail. 

In chapter 2 a low-dose dosator nozzle capsule filling machine (Labby, MG2, Bologna) with 

special low-dose equipment adaptations (i.e., smaller nozzles, a cleaning unit for the removal of 

excess powder from the dosator, special blades to create the powder layer) was used to 

investigate the filling performance of three grades of lactose excipient, with a special focus on the 

powder layer uniformity. Prior to capsule filling, powders were extensively characterized using 

standard and advanced measurement techniques. The fill weight of the coarse carrier remained 

almost the same, regardless of the process parameters throughout the capsule filling run time, 

whereas for the cohesive powder the bed inhomogeneity was a critical factor, resulting in an 

increase in fill weight. In terms of combination of process parameters, for the latter a high dosing 

chamber volume requires a low filling speed in order for the powder to completely fill the dosator 

nozzle. Moreover, it was established that a dosing chamber length of 2.5 mm and a powder bed 

height of 10 mm were required due to the powder’s high fill weight variability over time, while 

the dosator size had no effect on it. The results indicate that Lactohale 220 requires special 

attention during low-dose capsule filling. 

Because several process parameters can affect the fill weight and weight variability of the final 

capsule, chapter 3 investigated some of them in more detail by decoupling the capsule filling 

process in dynamic and static mode tests. Dynamic tests refer to filling of capsules in a regular 

lab-scale dosator capsule filling machine (Labby, MG2, Bologna) with special low-dose 

equipment adaptations. Static tests were conducted using a novel filling system developed by us. 

The findings of this study suggest that for low-dose dosator capsule filling it is strongly 

recommended to continuously control instrumental settings, i.e., gaps between the lowest point of 

the dosator and the bottom of the box, as well as factors which mimic environmental conditions, 

i.e. mechanical vibrations. Both parameters clearly affect the fill weight and weight variability. 



 

 

168 

 

Investigations on the effect of certain process parameters of various powder materials on the 

filling performance provide valuable insights into a dosator nozzle filling process, step by step. 

Our results could help formulation and process developers to rapidly screen the required process 

parameters based on the specific properties of the powders used. 

Based on the previous studies, where we found that the powder layer inhomogeneity is one of the 

main challenges during low-dose capsule filling, we placed the strategic focus on the latter to 

optimize the filling process as described in chapter 4. The most promising analytical technology 

capable to continuously measure the layer uniformity of the powder bed was evaluated for its 

applicability for a low-dose capsule filling process. We present a novel approach to quantify 

density variations in a moving powder bed by means of terahertz technology as well as the 

sensitivity of the method. Powder samples of model excipients (lactose and microcrystalline 

cellulose (MCC) of varying density and particle size) were systematically investigated in 

reflection in a moving powder bed. Each powder was compacted to several different relative 

densities and the measured refractive index obtained from in-line terahertz measurements was 

correlated to the powder state inside the moving powder bed. The coefficient of determination 

(𝑅2) was larger than 0.962 (Lactohale 100) for all six powders, with the highest coefficients for 

Lactohale 220 (𝑅2 = 0.996) and SMCC 50 LD (𝑅2 = 0.995). The results suggest that the 

proposed method can resolve relative density variations that are as small as 0.3% (Lactohale 

100). Furthermore, the novel approach allows a precise resolution of the spatial distribution of 

relative density, which facilitates an in-depth analysis of powder behavior upon compaction. 

In chapter 5 we utilized the developed method (see chapter 4) to investigate the correlation of the 

measured powder density with the fill weight in a capsule of three grades of lactose excipients at 

two different terahertz probe positions, i.e. from the side (terahertz probe position 1) and the 

bottom (terahertz probe position 2) of the rotary container. Small quantities were drawn from the 

powder bed using a novel sampling system that mimics the capsule filling process. We further 

analyzed the effect of sampling on the density of the powder bed for the different materials. The 

predictions and the measured weights of the powder in the capsules were in excellent agreement, 

where the relative density measurements of Lactohale 200 (𝑅2 = 0.995) showed the strongest 

correlation with the respective fill weight. We also studied how the uniformity of the powder bed 

is impacted by the dosing and the subsequently filling of the holes which were introduced in the 

powder bed after the dosing. Even though the holes seemed to be filled with new powder (by 

visual inspection), the relative density in these specific segments clearly differ from the powder 
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bed state prior to dosing. The study provides a new perspective of the terahertz technology to be 

used as an in-line monitoring tool for manufacturing processes where powder bed variations are 

directly linked to the quality of final products, e.g. feeder, rotary container used in a dosator or 

tamping pin capsule filling process. 

Since the final targeted product, in our case a DPI product formulated as dry powders of API in 

the presence of excipient particles – the carrier, in chapter 6 we studied performance indicators of 

carrier-based DPIs filled with a lab-scale dosator capsule filling machine (Labby, MG2, Bologna) 

with special low-dose equipment adaptations. In vitro lung deposition experiments were carried 

out with a next generation impactor. We found two distinct performance indicating properties of 

carrier and API in terms of capsule filling and in vitro aerosolization performance for the 

investigated system, i.e. carrier surface properties for capsule filling and API properties for in 

vitro aerosolization. Ideally, this specific knowledge base should allow the pre-selection of 

suitable API carrier combinations, in terms of their engineering routes and downstream process 

parameters based on particle characteristics. The study provides valuable data for improving the 

understanding of the relationship between particle engineering, capsule filling efficiency and 

aerosolization performance of carrier-based DPI formulations. 
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8. Outlook 

The precise dose filling of capsules in the lower mg-range, which is required for inhalation 

therapies, needs a sound understanding of the process in order to successfully manufacture high-

quality products. One of the biggest problems in the manufacturing of high-quality, low-dose 

inhalation products, is dose uniformity, related to safety and efficacy of the drug products. Up to 

now, the main challenge is the powder layer inhomogeneity of very fine powders with low 

density particles, i.e., particle sizes smaller than 10 µm, exhibiting poor flowability and high 

cohesivity. Currently, no systematic understanding exists of how the evolution of the powder 

layer during the capsule filling contributes to such critical quality attributes as the fill weight and 

the weight variability. 

In the course of this thesis several critical process parameters and material attributes that affect 

the filling performance could be identified. Using the developed stand-alone static test tool we 

found two critical instrumental settings, i.e., gaps between the lowest point of the dosator and the 

bottom of the box, as well as mechanical vibrations that clearly affect the fill weight and weight 

variability. As a first step our results could help formulation and process developers to rapidly 

screen the required process parameters based on the specific properties of the powders used. For 

the future, we suggest the novel test tool to be used for preliminary tests to evaluate the 

performance of new dosators and to ascertain optimal process settings for new formulations 

without needing an excessive amount of material. In the end, a stepwise mechanistic process 

understanding could be developed, with the ultimate goal of creating a platform indicating the 

required instrumental settings for a range of various materials. 

Furthermore, in terms of powder layer uniformity we strongly recommend to implement the 

developed novel approach, i.e. terahertz in-line sensing, for continuously monitoring the powder 

bed density variations. This is supported by the findings of our study about how the uniformity of 

the powder bed is impacted by the dosing and the subsequently filling of the holes which were 

introduced in the powder bed after the dosing. Even though the holes seemed to be filled with 

new powder (by visual inspection), the relative density in these specific segments clearly differ 

from the powder bed state prior to dosing. The knowledge about the state of the powder bed 

throughout the process will help in designing production machines, e.g. introduction of tools to 

stabilize the powder bed condition, which are capable to maintain a constant powder bed density 

and thus reduce process induced variability of final products. 
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Moreover, as stated in chapter 6, instrumental settings notably affect the blend uniformity over 

time. In particular, a more homogenously distribution of the API was detected for a higher 

compression ratio after 15 min compared to the samples drawn at the beginning of the capsule 

filling process. However, blend uniformity results must be interpreted carefully due the the small 

sample size and the well-known off-line sampling issues. Therefore, for future research it is 

recommended to determine the blend uniformity continuously throughout the process using in-

line analytical tools. For this, we did preliminary tests using RAMAN spectroscopy for 

continuously monitoring the blend uniformity of the powder bed in the rotary container. The 

developed RAMAN spectroscopy model for blend uniformity measurements has high potential to 

be implemented as an in-line PAT tool. Therefore, the introduced model which was tested at lab-

scale should be further developed to be applied at industrial scale as well. In a further step, this 

model may be used to evaluate the performance of existing solutions to stabilize the powder 

layer, e.g. scrapers, hockey sticks, as well as new adaped respective versions, an in turn improve 

the distribution of the API in the rotary container to have in the end the same API content in each 

filled capsule. 

As discussed in chapter 6, API and carrier particle properties inherited from engineering can 

notably affect downstream processability (i.e. capsule filling) and aerodynamic performance of 

DPI products. Therefore, future work needs to be done to get a detailed mechanistic 

understanding of the interplay of material properties, carrier modification, and downstream 

processability of carrier-based DPI products. Moreover, the emergence of new therapies in 

pulmonary drug delivery which necessitate that higher drug loads are delivered to or through the 

lung, pose a new challenge. This higher drug loads and in consequence the increased importance 

of drug physicochemical characteristics requires a sound understanding of how drug particle 

properties effects the blending and capsule filling process and the aerodynamic performance of 

the respective produced inhalation products under specific process conditions. 

Moreover, we strongly recommend to further investigate the dosator dipping step in more detail 

via simulation studies using the implemented DEM model (for details see (Loidolt et al., 2017 

and Loidolt et al., 2018)) supported by experimental data derived from our in-house developed 

stand-alone static tool. In particular, not only the movement of the dosator into the powder bed, 

but also the movement out of the bed should be considered to establish if the powder plug inside 

the dosator nozzle is kept during the transfer into the capsule or if powder is lost, resulting in 

inconsistent dose units. Furthermore, a greater focus should be placed on the variability of the 
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dosed mass as a function of powder bed inhomogeneity, another critical quality indicator of filled 

pharmaceutical capsules. Especially highly cohesive powders which are known to be challenging 

in term of powder layer inhomogeneity, e.g. due to holes, channels, compacted, loosened, or 

segregated areas within the powder mass, need to be investigated in more detail. 

Based on the findings of the applicability of the developed novel approach to quantify density 

variations in a moving powder bed by means of terahertz technology and its ability to predict 

capsule fill weight, the combination of the former with simulation studies could be a fruitful area 

of future work. In particular, the quantified density variations via terahertz in-line sensing should 

be validated via simulation studies to (1) find the optimal terahertz probe position (e.g. horizontal 

or vertical to the rotary container) for a dosator nozzle capsule filling process and to (2) validate 

the terahertz in-line measurments in terms of “Can the detected density variations of the powder 

bed be deduced to the entire powder bed height. 

The ultimate goal of all proposed further research work should be the determination of material 

and process parmameters (i.e., a comprehensive design space) that should finally ensure a stable 

capsule filling process with low variation in the dosed mass. 
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