

Korucu Muhammed, BSc

Simulation halbelliptischer Risse mit FE-Methoden

MASTERARBEIT

Technischen Universität Graz Intitut für Stahlbau

Betreuer:

Univ.-Prof. Dipl.-Ing. Dr.techn. Unterweger Harald Institut für Stahlbau Mitbetreuender Assistent: Dipl.-Ing. BSc. Kugler Paul Institut für Stahlbau

Graz, August 2018

EIDESSTATTLICHE ERKLÄRUNG AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

Danksagung

Ich möchte mich herzlich bei Herrn Univ.-Prof. Dipl.-Ing. Dr. techn. Univ.-Prof. Unterweger Harald für die Möglichkeit bedanken, dass ich meine Masterarbeit am Institut für Stahlbau verfassen durfte und für die begeisternde Art in seinen Vorlesungen, welche mein Interesse dazu geweckt hat.

Des Weiteren bedanke ich mich bei meinem Betreuer Herrn Dipl.-Ing. BSc. Kugler Paul für die Korrektur meiner Arbeit, wegweisende Vorschläge und vor allem seine Hilfsbereitschaft.

Mein größter Dank gebührt meiner Frau Seyhan für die Unterstützung während der gesamten Studienzeit und für die große Geduld.

Die größte Motivation und Zielstrebigkeit habe ich meinem Sohn Ömer Resad und meiner Tochter Beyza zu bedanken.

Natürlich möchte ich mich bei meinen Eltern und Geschwistern bedanken, die mir immer einen starken Rückhalt gegeben haben.

Zu guter Letzt danke ich noch meinen Freunden und Studienkollegen für die schöne und lustige Studienzeit.

Kurzfassung

In dieser Arbeit werden zwei Methoden verglichen, wie halbelliptische Oberflächenrisse mit der Finiten Elemente Methode berechnet werden können. Diese Analyse beinhaltet den Vergleich der Resultate von Handrechenformeln mit den FEM-Methoden für halbelliptische Oberflächenrisse. Bei bruchmechanischen Nachweisen werden vor Schweißnähten häufig halbelliptische Oberflächenrisse unterstellt. Basis für solche Nachweise sind meist Lösungen für den Spannungsintensitätsfaktor K, dem wesentlichen Parameter der Bruchmechanik, anhand einfacher Scheiben- bzw. Plattenmodelle.

In dieser Arbeit wurden die geometrischen Abmessungen der untersuchten Platten-und Rissgrößen variiert, um die Treffsicherheit der Ergebnisse für mehrere Fälle zu testen. Abschließend wird am Beispiel exzentrisch angeordneter, halbelliptischer Oberflächenrisse gezeigt, wie Risskonfigurationen berechnet werden können, die nicht als Handbuchlösung verfügbar sind.

Abstract

In this work two methods are compared how semi-elliptical surface cracks can be calculated with the finite element method (FEM). This analysis involves comparing the results of hand calculation formulas with the FEM methods for semi-elliptical surface cracks. In the application of fracture mechanics, semi-elliptical surface cracks are often assumed near welds. The basis for such verifications are simple plate solutions for the stress intensity factor K, the essential parameter of fracture mechanics.

The geometric dimensions of the investigated slab and crack sizes were varied in order to test the accuracy of the results for several cases. Finally, using the example of eccentrically arranged, semi-elliptical surface cracks, it is shown how to calculate crack configurations that are not available as a simple design manual.

Inhaltsverzeichnis

KAPITEI	L 1: AUFGABENSTELLUNG UND ZIEL DER ARBEIT	1
KAPITEI	L 2: GRUNDLAGEN DER BRUCHMECHANIK	3
2.1	SPANNUNGSINTENSITÄTSFAKTOR K	5
2.2	J-INTEGRAL	6
KAPITEI	L 3: DIE FINITE ELEMENTMETHODE IN DER BRUCHMECHANIK	9
3.1	ALLGEMEIN	9
3.2	RISSSPITZENELEMENTE-METHODE (RSE)	10
3.2.1	Vorteile und Nachteile der RSE-Methode	13
3.3	ERWEITERTE FINITE ELEMENT-METHODE (XFEM)	13
3.3.1	Einleitung	13
3.3.2	XFEM-Anreicherung: Heavysidefunktion [8]	14
3.3.3	XFEM-Anreicherung: Asymptotische Singularitätsfunktion	16
3.3.4	Elemente in der XFEM	
3.3.5	Vorteile der XFEM-Methode	18
KAPITEI	L 4: UNTERSUCHTES RISSMODELL UND LÖSUNGEN AUS DER LITEI	RATUR 19
4.1	UNTERSUCHTES RISSMODELL – RISSGEOMETRIE UND BELASTU	NG19
4.1.1	Rissmodell	19
4.1.2	Rissgeometrie	20
4.1.3	Belastung	
4.2	SPANNUNGSINTENSITÄTSFAKTOREN K – LÖSUNGEN AUS DER L	ITERATUR
421	Einleitung	21
422	SIE-Berechnung gemäß der Lösung von Varfolomevev [13]	22
423	SIF-Berechnung gemäß der Lösung von Newman und Raiu [15]	26
424	SIF-Berechnung gemäß der Lösung von Chapuilot [14]	30
4.2.5	SIF-Berechnung gemäß der Lösung von Wang und Lambert [12]	
4.3	VERGLEICH DER LITERATURLÖSUNGEN DER UNTERSUCHTEN EINZELFÄLLE.	
4.3.1	FALL 1	
4.3.2	FALL2	
4.3.3	FALL 3	
4.3.4	FALL 4	
4.3.5	FALL 5	
4.3.6	FALL 6	

4.3.7	FALL 7	39
4.3.8	FALL 8	39
4.3.9	FALL 9	40
4.3.10	FALL 10	40
4.3.11	FALL 11	41
4.3.12	FALL 12	41
4.3.13	FALL 13	42
4.3.14	FALL 14	42
4.3.15	Schlussfolgerung	42
KAPITEL 5: 1	FEM-MODELLIERUNG EINES HALBELLIPTISCHEN RISSES	44
5.1	EINLEITUNG	44
5.2	MODELLVEREINFACHUNGSSTUDIE	44
5.3	ANWENDUNG DER RISSSPITZENELEMENTE-METHODE	47
5.3.1	globales RSE-Modell	48
5.3.1.2	Materialkennwerte	49
5.3.1.3	Randbedingungen im Abaqus-Modell	49
5.3.1.4	Diskretisierung der Elemente am Globalmodell	50
5.3.1.5	Rissdefinition für RSE im Abaqus-Modell	51
5.3.2	RSE-Submodell	52
5.3.2.1	Geometrie des Submodells	52
5.3.2.2	Randbedingungen im Abaqus-Modell	54
5.3.2.3	Diskretisierung der Elemente	54
5.3.3	Diskretisierung am ungeteilten Modell	56
5.4	ANWENDUNG MIT DER XFEM-METHODE	58
5.4.1	Globales XFEM-Modell	58
5.4.1.1	Materialkennwerte	59
5.4.1.2	Randbedingungen im Abaqus-Modell	59
5.4.1.3	Diskretisierung der Elemente am Globalmodell	60
5.4.1.4	Rissdefinition für RSE-Modelle in Abaqus	61
5.4.2	XFEM-Submodell	62
5.4.2.1	Geometrie des Submodells	62
5.4.2.2	Randbedingungen im Abaqus-Modell	63
5.4.2.3	Diskretisierung der XFEM-Elemente	63
5.5	PRAKTISCHE HINWEISE ZUR MODELLERSTELLUNG	65
KAPITEL 6:]	ERGEBNISVERGLEICH DER SPANNUNGSINTENSITÄTS-FAKTOREN	66

6.1	ERGEBNISVERGLEICH FÜR FALL 5 – GÜTE DER ERGEBNISSE IN ABHÄNGIGKEIT DES DISKRETISIERUNGSGRADES	66
6.1.1	K-Faktoren für Rissspitzenelemente (RSE-Methode)	67
6.1.2	K-Faktoren für XFEM Methode	69
6.2	GÜTE DER ERGEBNISSE IN ABHÄNGIGKEIT DES INTEGRATIONSF (ANZAHL DER GEWÄHLTEN KONTUREN)	RAUMES 71
6.2.1	Rissspitzenelemente (RSE-Methode)	71
6.2.2	K-Faktoren mit XFEM Methode	72
6.3	GESAMTERGEBNISSE FALL 1 BIS 14	73
6.3.1	Fall 1	73
6.3.2	Fall 2	73
6.3.3	Fall 3	74
6.3.4	Fall 4	74
6.3.5	Fall 5	75
6.3.6	Fall 6	75
6.3.7	Fall 7	76
6.3.8	Fall 8	76
6.3.9	Fall 9	77
6.3.10	Fall 10	77
6.3.11	Fall 11	78
6.3.12	Fall 12	78
6.3.13	Fall 13	79
6.3.14	Fall 14	79
6.4	VERGLEICH DER GESAMTERGEBNISSE FALL 1 BIS 14	80
6.4.1	Detailergebnisse für Fall 1 bis 14	80
6.4.1.1	Fall 1	80
6.4.1.2	Fall 2	82
6.4.1.3	Fall 3	83
6.4.1.4	Fall 4	84
6.4.1.5	Fall 5	85
6.4.1.6	Fall 6	86
6.4.1.7	Fall 7	87
6.4.1.8	Fall 8	
6.4.1.9	Fall 9	90
6.4.1.10	Fall 10	91

6.4.1.11	Fall 11
6.4.1.12	Fall 12
6.4.1.13	Fall 13
6.4.1.14	Fall 14
6.5	ZUSAMMENFASSENDE BEURTEILUNG97
KAPITEL 7:]	EXZENTRISCHE HALBELLIPTISCHE RISSE MIT RSE/XFEM
7.1	UMSETZUNG MIT RISSSPITZENELEMENTE (RSE) UND XFEM-METHODE. 98
7.1.1	Modell mit XFEM-Methode
7.1.2	Modell mit Rissspitzenelementen (RSE)
KAPITEL 8: 1	LITERATUR
A-1	Literaturverzeichnis
A-2	Abbildungsverzeichnis
A-3	Tabellenverzeichnis
ANHANG B	ANALYSE FALL 5- ERGEBNISSE DER K-WERTE (RSE BZW. XFEM) FÜR
	UNTERSCHIEDLICHE INTEGRATIONSWEGEI
ANHANG C	POLYNOMISCHE EINFLUSSFUNKTIONEN f ₀₀ FÜR HALBELLIPTISCHE OBERFLÄCHENRISSE –BERECHNUNG NACH VARFOLOMEYEVXVI

KAPITEL 1: AUFGABENSTELLUNG UND ZIEL DER ARBEIT

In dieser Arbeit werden halbelliptische Risse untersucht. Die Basis dieser Arbeit bildet die Entstehung eines solchen Risses im Trägergurt vor einem geschweißten Quersteifenanschluss, welcher z.B. in einem Hauptträger einer Brücke zu finden ist.

Die Bewertung der Risse setzt zwingend die Anwendung einer Beanspruchungsgröße voraus. Vor allem ist das Beanspruchungsgeschehen an der Rissspitze bzw. entlang der Rissfront für die Beurteilung eines Risses maßgebend. Das mechanische Verhalten in der Kontinuumsmechanik wird mit den Größen wie Spannungen und Deformationen beschrieben. Diese eignen sich jedoch für die Beschreibung eines Bruchvorganges aufgrund von Singularitäten ($\sigma, \varepsilon \rightarrow \infty$) an der Rissspitze nicht. Damit der lokale Zustand an der Rissspitze besser charakterisiert wird, werden in der Bruchmechanik zusätzliche Beanspruchungsgrößen eingeführt. Die Komplexität dieser Aufgabenstellung liefert meist keine exakte Lösungen. Für die praktische Verwendung sind Näherungsformeln, die die verschiedensten Einflussgrößen sicherstellen, unabdingbar. Um das Beanspruchungsgeschehen entlang der Rissfront bzw. an der Rissspitze zu analysieren, ist der Spannungsintensitätsfaktor K (Rissspitzenparameter) in der Linear Elastischen Bruchmechanik (LEB) die wesentliche Größe. Die theoretischen Grundlagen der LEB wie Spannungsintensitätsfaktor K und J-Integral werden in Kapitel 2 überblicksmäßig dargestellt. Die Anwendung der LEB setzt ein rein elastisches Werkstoffverhalten im gesamten Gebiet eines rissbehafteten Bauteils voraus. Bei Auftreten von elastisch-plastischen Vorgängen müssen diese auf einem kleineren Bereich eingeschränkt und makroskopisch betrachtet, vernachlässigbar sein.

In der Literatur findet man zahlreiche Näherungsformeln, welche einen zentrischen halbelliptischen Riss in einer rein auf Zug belasteten Scheibe bzw. Platte behandeln. Für diese Arbeit wurden vier Näherungsformeln (= auch als "analytische Modellierung" bezeichnet) aus der Literatur ausgesucht. Diese sind von Varfolomeyev, Newman & Raju, Chapuilot und Wang & Lambert.

Die Kontaktbereitschaft von Herrn Dr. Igor Varfolomeyev aus dem Frauenhofer Institut in Freiburg zum aktuellen Stand seiner Formelwerke war für die Festlegung seiner K-Wertlösung als zutreffender Referenzwert, in der Gegenüberstellung der Spannungsintensitätsfaktoren K mit den Näherungsformeln ganz wesentlich. Als Probekörper werden unterschiedliche Plattendimensionen gewählt, welche in Kapitel 4 zu finden sind. Zu diesen Plattengrößen werden wiederum verschiedene Riss-Geometrien angenommen und mit den angesprochenen Formelwerken (=Näherungsformeln) der Literatur durchgerechnet.

Neben dem erwähnten analytischen Berechnungsverfahren (Näherungsformeln) gibt es für die Anwendung und Entwicklung der Bruchmechanik numerische Berechnungsverfahren der Strukturmechanik. Heutzutage ist der Anwender mit den Mitteln eines numerischen Simulationsprogramms (z.B. Abaqus) in der Lage die tatsächliche Rissfront vorzugeben, die z.B. aus einem Versuch oder aufgrund eines Aufmaßes von einem Bauteil kommt. Für diese Arbeit werden zwei aktuelle numerische Berechnungsverfahren der Strukturmechanik ausgesucht. Diese sind einerseits die Rissspitzen Elemente Methode RSE und andererseits die erweiterte Finite Elemente Methode XFEM (auf engl. Extended Finite Element Method), welche in Kapitel 3 behandelt werden. Beide Methoden erlauben komplexe Rissfronten rechnerisch zu

beurteilen und den nachfolgenden Rissfortschritt abzubilden. Es ist unumgänglich das Vertrauen für diese Methoden anhand der Berechnung einfacher Beispiele – in dieser Arbeit der halbelliptische Riss zu gewinnen. Dazu fehlen insbesondere Erfahrungswerte hinsichtlich des Diskretisierungsgrades. In Kapitel 5 wird anhand eines ausgesuchten Falles die FEM-Modellierung erläutert und der notwendige Diskretisierungsgrad erarbeitet.

Das Ziel dieser Arbeit ist es für die festgelegte halbelliptische Rissform den notwendigen oder den erforderlichen Detaillierungsgrad zu erarbeiten. Es wird angestrebt, dass man nicht mehr an die Plattenlösungen der analytischen Berechnung gebunden ist, sondern für jedes Modell individuell die Position des Risses vorgeben kann. Als erstes werden 14 zentrisch positionierte halbelliptische Risse mit den Näherungsformeln der Analytik und den Finite Elemente Methoden (RSE und XFEM) der numerischen Verfahren untersucht und die Ergebnisse anhand von Tabellen und Diagrammen gegenübergestellt (siehe Kapitel 6). Letzten Endes wird in Kapitel 7 ein exzentrischer Riss, jeweils in den Viertelpunkten der Plattenbreite liegend, mit RSE und XFEM untersucht. Damit die Plausibilität der Ergebnisse vorhanden ist, wird für diese Exzentrizität der gleich große zentrische halbelliptische Riss als Vergleich gegenübergestellt.

KAPITEL 2: GRUNDLAGEN DER BRUCHMECHANIK

In diesem Abschnitt werden einige grundlegende Zusammenhänge der Bruchmechanik beleuchtet. Für eine ausführliche Einführung in die Bruchmechanik sind die Bücher [1] (Dietmar Gross & Thomas Seelig) und [2] (FKM-Richtlinie) empfohlen.

Zuzüglich zur klassischen Festigkeitsberechnung im Nennspannungskonzept wird ein Bauteil in der Bruchmechanik (Abbildung 2.1) unter Berücksichtigung eines tatsächlichen oder postulierten Fehlers (Risstiefe a), betrachtet. Damit ist jene kritische Rissgröße ermittelbar, die zu einem unmittelbaren Sprödbruch führt (wenn $K_I = K_{Ic}$).

Abbildung 2.1: Bruchmechanik - Konzept 1

In der Bruchmechanik gibt es mit der linear-elastischen Bruchmechanik (LEBM) und der elastischplastischen Bruchmechanik (EPBM) unterschiedliche Ansätze für spröde und duktile Materialien, die auch unterschiedliche Beanspruchungsparameter erfordern (siehe Abbildung 2.2).

Abbildung 2.2: Bruchmechanikkonzepte nach der Duktilität des Werkstoffs

Das Verhalten eines Risses hängt im Wesentlichen von der Belastung und deren Richtung sowie von Materialeigenschaften und der Geometrie (vgl. Abb. 2.1) des Bauteils ab. Die Belastungsrichtung kann im Hinblick auf die Deformation des Risses drei unterschiedliche in Abbildung 2.3 dargestellte, Rissöffnungsarten bedingen. Diese werden in Modus 1, Modus 2 und 3 unterteilt. Bei dieser Arbeit werden ausschließlich Rissmodelle mit dem Modus 1 behandelt. Bei diesem Rissmodell entsteht durch eine Zugbelastung senkrecht zur Rissebene x,z eine symmetrische Rissöffnung.

Abbildung 2.3: Rissverschiebungsmodi [1]

Die Entwicklungsstufen der Plastizierung eines Bauteils mit Riss werden in Abbildung 2.4 schematisch dargestellt. Die Größe der plastischen Bereiche ist für die Unterscheidung zwischen LEBM und EPBM (elastisch plastischer Bruchmechanik) verantwortlich. Es ist zu sehen, dass in den Fällen 2, 3 und 4 in Abbildung 2.4 die plastische Zone größer wird. Der Fall 1 zeigt rein elastisches Verhalten. Die lineare elastische Bruchmechanik (LEBM) ist die Bruchtheorie, die sich mit scharfen Rissen in rein elastischen Körpern beschäftigt. Die LEBM kann auch bei einer plastischen Zone vor der Rissspitze verwendet werden. Diese muss allerdings sehr klein sein in Bezug auf die restlichen Bauteilabmessungen.

Abbildung 2.4: Größe der plastischen Zone vor der Rissspitze bei zunehmender Bauteilbelastung [3]

Zur Beschreibung der Spannungen und Deformationen im Bereich der Rissspitze (Abbildung 2.5) werden spezielle Beanspruchungsparameter benötigt.

Abbildung 2.5: Rissspitzenumgebung [1]

Es gibt mehrere Möglichkeiten den Bereich vor der Rissspitze zu beschreiben, davon werden in dieser Arbeit zwei näher betrachtet. Erstens der Spannungsintensitätsfaktor K (Stress Intensity Factor, SIF), der als Beanspruchungsparameter der linear elastischen Bruchmechanik gilt. In unmittelbarer Nähe der Rissspitze gilt der SIF als Maß für die Belastungsintensität des singulären Rissspitzenfeldes. Dieser wird in Abschnitt 2.1 näher beschrieben. Der zweite Beanspruchungsparameter ist das J-Integral, das sowohl im Bereich der LEBM als auch in der EPBM gültig ist.

In Abschnitt 2.3 wird auf das J-Integral näher eingegangen und auch der Zusammenhang mit dem Spannungsintensitätsfaktor gezeigt.

In den darauffolgenden Kapiteln werden Handrechnungen und FEM-Rechnungen für unterschiedliche halbelliptische Oberflächenrisse verglichen.

2.1 SPANNUNGSINTENSITÄTSFAKTOR K

Die Spannungsintensitätsfaktoren (K_I , K_{II} und K_{III}) werden für den Ausdruck des Spannungsfeldes an einer Rissspitze verwendet. Für einen Oberflächenriss (in Abbildung 2.6 unten schematisch dargestellt) ist die dreidimensionale Betrachtung des Rissspitzenfeldes notwendig, da sich der SIF entlang der Rissfront ändert.

Abbildung 2.6: dreidimensionale Darstellung der Rissfront eines Oberflächenrisses; links: Lastaufbringung auf einen Bauteilausschnitt, rechts: zugehöriger lokaler Spannungsverlauf aus [3] mit Anmerkungen
 In Abbildung 2.6 rechts ist schematisch der Verlauf der σ_{x, lokal}-Spannung vor der Rissspitze zu sehen.

Der Spannungsintensitätsfaktor K ist einerseits von der Bauteil-und Rissgeometrie und andererseits von der Beanspruchung des Bauteils und der Lage des Risses abhängig. Der SIF kann für die Beurteilung der Rissausbreitung unter zyklischer Belastung und des Versagensverhaltens unter statischer Belastung herangezogen werden.

In dieser Arbeit wird nur auf die Bestimmung von K_I näher eingegangen. Der Index I steht für Rissöffnungsmodus 1 (vgl. Abbildung 2.3).

Mit der allgemeinen Formel (2.1) kann man den Spannungsintensitätsfaktor KI wie folgt bestimmen:

$$K_I = \sigma_0 * \sqrt{\pi * a} * F(y) \qquad \left[N / mm^{3/2} \right] \tag{2.1}$$

a Risstiefe

F(y) Korrekturfunktion, Geometriefunktion

 σ_0 Nennspannung

Die Geometriefunktionen werden in tabellarischer, graphischer und analytischer Form zur Verfügung gestellt. In der FKM-Richtlinie sind einige SIF-Lösungen zu finden. Es gibt für viele Fälle weit ausgestattete SIF-Handbücher, welche für die in der Praxis häufig vorkommenden Anwendungen Lösungen anbieten. Im Kapitel 4 werden einige Lösungen aus der Literatur vorgestellt.

2.2 J-INTEGRAL

Wie der Spannungsintensitätsfaktor K beschreibt auch das J-Integral das Beanspruchungsfeld vor der Rissspitze und ermöglicht es zusätzlich die Bruchvorgänge bei größeren plastischen Verformungen vor der Rissspitze zu analysieren. Im Gültigkeitsbereich der LEBM kann das J-Integral in den Spannungsintensitätsfaktor K umgerechnet werden. Die Umrechnung von K in J lautet:

$$J = \frac{K_I^2}{E'}$$

$$E' = E \quad fiir \quad ESZ \quad (ebenen \quad Spannungszustand)$$

$$E' = \frac{E}{(1-v)^2} \quad fiir \quad EDZ \quad (ebenen \quad Dehnungszustand)$$

$$v... \quad Querkontraktionszahl \quad mit \quad v = 0, 3$$

$$(2.2)$$

In der Abbildung 2.7 werden die Beanspruchungsparameter K und K_J (K mit dem J-Integral berechnet) unter Einfluss der zunehmender Bauteilplastifizierung dargestellt. Im Gültigkeitsbereich der LEBM ist K mit dem aus dem J-Integral berechneten K_J gleichwertig. Wird die plastische Zone größer, ist der Parameter K nicht mehr gültig. Die weiteren Berechnungen müssen mit der EPBM durch die Einsetzung des J-Integrals durchgeführt werden.

Abbildung 2.7: Spannungsintensitätsfaktor K für linear-elastischen Fall und Kj für den elastisch-plastischen Fall unter Plastizitätseinfluss [2]

Das J-Integral kann als Linienintegral entlang einer Kontur um die Rissspitze definiert werden. In Abbildung 2.8a ist eine frei wählbare Kontur C zur Berechnung des J-Integrals zu sehen, deren Anfang und Ende an den gegenüberliegenden Rissufern liegt, wodurch die Rissspitze umschlossen wird.

Abbildung 2.8: Wahl des Integrationsweges bei ebener Betrachtung der Rissspitze [1]

Der Vorteil des J-Integrals ist, dass der J-Integral Wert unabhängig von der konkreten Wahl des Integrationsweges ist (wie in Abbildung 2.8b für die Kontur C1 und C2 dargestellt, die zum gleichen Ergebnis für J führen).

Der Spannungsintensitätsfaktor K wird in der Regel aus dem J-Integral nach Gl. (2.2) rückgerechnet. Die verwendete FEM-Software Abaqus stellt ein Verfahren für die Berechnungen des J-Integrals sowie des Spannungsintensitätsfaktors K bereit. Der Anwender hat nun die Möglichkeit die Größe des Integrationsbereiches um die Rissspitze festzulegen, durch Vorgabe sogenannter Konturen. Innerhalb der Kontur werden die notwendigen Elemente für die Integration von Abaqus entlang vorhandener Elementkanten automatisch ausgewählt.

In Abbildung 2.9 sieht man die räumliche Darstellung der Elemente entlang der Rissfront eines halbelliptischen Oberflächenrisses. In der Querschnittsdarstellung (Teilbilder links) sind fünf mögliche Vorgaben für Kontruren (Konturen 1 bis 5) bei der Berechnung getrennt veranschaulicht. Das restlichte FEM-Netz ist ausgeblendet. Die Knotenpunkte, die Abaqus für die Berechnung des J-Integrals verwendet sind in rot im rechten Teilbild zu sehen. Die Integration erfolgt getrennt für jede Elementreihe, die denselben Abstand R_i zur Rissfront besitzt. Bei "Kontur 1" erfolgt nur eine Integration, wobei bei "Kontur 5" für jede Elementreihe i eine Integration erfolgt.

Abbildung 2.9: Anpassung der Konturen an das FE-Netz (Anwendung Abaqus)

Bei der Anwendung im Zuge dieser Arbeit erfolgt bei der Ermittlung des zutreffenden Wertes des Spannungsintensitätsfaktors K eine Mittelwertbildung über die Einzelergebnisse der Elementreihen i, so "Kontur 2" bis "Kontur 5" vorgegeben ist (vgl. Abschnitt 6.2). Bei Vorgabe von "Kontur 5" liegen i=5 Elementreihen vor, sodass das Gesamtergebnis für K aus dem Mittelwert von 5 Einzelwerten gebildet wird.

KAPITEL 3: DIE FINITE ELEMENTMETHODE IN DER BRUCHMECHANIK

3.1 ALLGEMEIN

Das Einsatzgebiet der FEM ist mit der Behandlung von statischen, dynamischen, stabilitätstechnischen und natürlich auch bruchmechanischen Problemen ziemlich umfangsreich.

In diesem Kapitel wird eine kurze Übersicht über die Finite Elemente Methode (FEM) in der Bruchmechanik dargestellt, insbesondere in Hinblick auf die Berechnung von halbelliptischen Oberflächenrissen. Für mehr Details und Herleitungen wird auf Kuna [3] verwiesen.

Durch eine sorgfältige Einhaltung der dargestellten Eingabeschritte können Risse zuverlässig modelliert werden. Allgemein wird versucht die Elementanzahl so gering wie möglich zu halten und dennoch genaue Ergebnisse zu erhalten.

In den nächsten Kapiteln werden zwei Methoden zur Berechnung von J mit der FEM gegenübergestellt. Die erste Methode heißt Rissspitzenelemente-Methode RSE (engl.: *crack tip elements*), die zweite Methode ist eine Erweiterung der Finite Elemente Methode und heißt *Extended Finite Element Method* (XFEM), mit der man eine aufwendige Vernetzung der Elemente um die Rissspitze vermeiden kann.

In dieser Arbeit werden Volumenelemente (=Kontinuumselemente) zur Modellierung und Berechnung eines halbelliptischen Risses verwendet. In der Abbildung 3.1 sieht man das erste Volumenelement, ein sogenanntes Hexaederelement, das sowohl bei der RSE Methode als auch bei XFEM zum Einsatz kommt. Abb. 3.2 zeigt ein RSE Element, das nur bei der RSE-Methode verwendet wird.

Abbildung 3.1: allgemeines Hexaederelement, ausserhalb des Rissbereiches

Kollabierte Knoten in einem geometrischen Punkt der Rissfront

Abbildung 3.2: Kollabiertes Hexaederelement mit Viertelpunkt-Verschiebung der Kanten-Mittelpunkte [3]

In Abbildung 3.2 wird ein kollabiertes Hexaederelement vorgestellt, welche im Rissspitzenbereich zum Einsatz kommt. (Vergleich der Knotennummern mit Abb. 3.1)

Es sind zwei unterschiedliche Ebenen zu sehen. In der Seitenfläche sind sogenannte Viertelpunktknoten (Knoten 10,14,12,16) vorhanden, in der mittleren Schnittebene gibt es diese Knoten nicht. Dies führt dazu, dass in dieser mittleren Schnittebene die Singularität schlechter abgebildet werden kann. Deshalb wird vorgeschlagen, die Längen der Elemente im Rissfrontverlauf so klein wie möglich zu wählen.

3.2 RISSSPITZENELEMENTE-METHODE (RSE)

FE-Lösungen zur Berechnung von J mit regulären Elementen rund um die Rissspitze wurden schon in den 1970er Jahren untersucht. Durch die Forschung wurden besondere Elementformulierungen entwickelt. Das Resultat sind Rissspitzenelemente (engl. *Crack tip elements* CTE). Die unmittelbare Rissspitzenelementen diskretisiert und der Rest der Struktur mit regulären Elementen modelliert.

In Abbildung 3.4 ist der singuläre Spannungsverlauf an der Rissspitze zu sehen. Gegenüber der aussen angelegten Belastung (Nennspannung) treten an der Rissspitze Spannungsüberhöhungen auf. Solange der Radius der plastischen Zone $r_{p \ll a}$ ist, kann der Spannungsverlauf mit K (dem Beanspruchungsparameter der LEBM) beschrieben werden. Die Spannungen zeigen naheam Riss eine $\frac{1}{\sqrt{r}}$ Singularität.

Abbildung 3.4: Spannungsüberhöhung an der Rissspitze gegenüber der aussen angelegten Spannung σ In Abbildung 3.5 sind Rissspitzenelemente für unterschiedliche Singularitäten zu sehen. Die zweidimensionale Darstellung der RSE und Knotenbezeichnung entspricht der Ansicht der Rissspitze aus Abbildung 3.2.

Wenn an der Rissspitze die drei Knoten (z.B. Knoten 6, 18 und 2) eines Hexaederelementes zusammengeführt werden, erhält man das sogenannte kollabierte Element. Die Abb. 3.5 a) zeigt ein RSE-Element mit gefesselten Rissspitzenknoten. Gefesselt bedeutet, dass sich die Rissspitzenenden auch während der Rissbeanspruchung nicht unabhängig voneinander bewegen können. Zusätzlich werden die mittleren Seitenmittelknoten 10 und 14 auf den Viertelpunkt verschoben, damit eine $1/\sqrt{r}$ Singularität erreicht wird. Es entsteht ein Viertelpunktelement *auf Engl. Quarter Point Element-QPE*. Mit diesem Element wird rein linear elastisches Materialverhalten simuliert.

Wird die ideal plastische Berechnung mit dem Softwarepaket Abaqus erwünscht, reicht die lose Zusammenführung der Knoten an der Rissspitze. Die Seitenmittelknoten 10 und 14 bleiben unbewegt. Die Rissspitzenknoten 6, 18 und 2 sind nicht gefesselt. Dadurch wird eine **1/r Singularität** erzielt (siehe Abbildung 3.5 b)).

Für einen linear elastisch-ideal plastischen Ansatz werden die Seitenmittelknoten 10 und 14 in den Viertelpunkt verschoben (siehe Abbildung 3.5 c) und die Knoten 6, 18 und 2 an der Rissspitze nicht gefesselt.

In dieser Arbeit wird das in Abbildung 3.5a) dargestellte Viertelpunktelement zur Abbildung einer $1/\sqrt{r}$ Singularität verwendet.

Abbildung 3.5: Viertelpunktelemente zur Abbildung unterschiedlicher Singularitäten

Die Erweiterung der RSE auf dreidimensionale Rissprobleme ist problemlos möglich. In Abbildung 3.5 wird dies veranschaulicht. Jede Segmentgruppierung enthält RSE-Rissspitzenelemente, welche über den dargestellten Halbkreis fächerförmig miteinander verbunden sind. Diese Elemente umfassen die Rissfront.

Abbildung 3.5 Auszug aus der Segmentgruppierung von kollabierten Hexaederlementen mit Knotenpunkten an der Rissspitze

Die in Abbildung 3.5 dargestellte RSE-Elemente haben 15 Knoten und werden im Abaqus [5] als C3D15 bezeichnet. C steht für Kontinuums-Elemente, 3D für räumliche Dimension und 15 für Knotenanzahl. Die genaue Herleitung dieser Elemente ist in [3] zu finden.

3.2.1 VORTEILE UND NACHTEILE DER RSE-METHODE

Vorteil: sehr genaue Lösung für K möglich

Nachteil: sehr aufwendige Vernetzung der Bereiche rund um die Rissspitze

3.3 ERWEITERTE FINITE ELEMENT-METHODE (XFEM)

3.3.1 EINLEITUNG

Die erweiterte Finite-Element-Methode, XFEM, ist eine Weiterentwicklung der klassischen Finite-Element-Methode. Die erweiterte Finite-Element-Methode wurde entwickelt, um Schwierigkeiten bei der Lösung von Problemen mit lokalisierten Merkmalen zu lösen, die durch Netzverfeinerung nicht effizient gelöst werden können. Das Grundkonzept von XFEM besteht darin, den Approximationsraum so anzureichern, dass er bestimmte Merkmale des interessierenden Problems, insbesondere Diskontinuitäten wie Risse oder Grenzflächen, reproduzieren kann.

Diese Methode wurde ursprünglich von Ted Belytschko [7] und seinen Kollegen 1999 entwickelt. Dieses Verfahren ist sehr attraktiv, um Risse zu simulieren, da eine genaue Modellierung des Netzes um die Rissspitze nicht mehr erforderlich ist.

Im XFEM werden den Elementen sogenannte Anreicherungsfunktionen hinzugefügt, um Informationen über Diskontinuitäten und Singularitäten um den Riss herum aufzunehmen. Diese Funktionen sind die assymptotischen Nah-Spitzen-Lösungen, die auf Singularitäten reagieren, und die Sprungfunktionen (=Heavysidefunktion), die die Diskontinuität beim Öffnen des Risses simulieren.

3.3.2 XFEM-ANREICHERUNG: HEAVYSIDEFUNKTION [8]

Um zu erklären, wie Diskontinuitäten bei der XFEM hinzugefügt werden, wird im Folgenden eine einfache zweidimensionale Geometrie (Abbildung 3.6) mit vier Elementen und einem Kantenriss betrachtet. Der Einfachheit halber ist das lokale Koordinatensystem mit der Rissspitze ausgerichtet. Man möchte veranschaulichen, wie ein äquivalenter diskreter Raum mit dem in Abbildung 3.7 gezeigten Gitter und der Hinzufügung eines diskontinuierlichen Feldes aufgebaut werden kann.

Abbildung 3.6: zweidimensionale Geometrie für die XFEM Ableitung [8]

Die Lösung für die Verschiebung ist typischerweise gegeben durch die Finite-Elemente-Approximation, die dem Netz der Abbildung 3.6 zugeordnet ist:

$$u(x, y) = \sum_{i=1}^{10} N_i(x, y) \mathbf{u}_i$$
(3.1)

Dabei ist $N_i \ (x, \ y)$ die Formfunktion am Knoten i mit den Koordinaten $(x, \ y)$ und u_i ist der Verschiebungsvektor.

Mit der Definition von c als ein Mittelpunkt zwischen u9 und u10 und d als der Abstand zwischen den beiden Knoten bereits des Risses ist es möglich zu schreiben,

$$c = \frac{u9 + u10}{2}$$
(3.2)

$$d = \frac{u9 - u10}{2}$$
(3.3)

Es gilt aber auch:

$$u9 = c + d \tag{3.4}$$

$$u10 = c - d \tag{3.5}$$

Durch Einsetzen in Gl. 3.1, ergibt sich

$$u(x, y) = \sum_{i=1}^{8} N_i(x, y) u_i + c(N9 + N10) + d(N9 + N10) H(x, y)$$
(3.6)

Es wurde eine Heavyside-funktion H (x, y) (auch als diskontinuierliche Funktion oder "Sprung" -Funktion genannt) hinzugefügt,

$$H(x, y) = \begin{cases} 1 & y > 0 \\ -1 & y < 0 \end{cases}$$
(3.7)

sodass H(x,y)=1 auf Element 1 bzw. -1 auf Element 3 wird.

Abbildung 3.7: zweidimensionale Geometrie, die finale Vernetzung des Risses, mit dem neuen Knoten [8] Betrachtet man das Netz in Abbildung 3.7 und ersetzt (N9 + N10) durch N11 und c durch u11, ergibt sich die Verschiebungsapproximation zu (mit d nach Gl.3.2):

$$u(x, y) = \sum_{i=1}^{8} N_i(x, y) \mathbf{u}_i + N_{11} u_{11} + dN_{11} H(x, y)$$
(3.8)

Der erste Teil der Gleichung entspricht der Annäherung durch die FEM, der zweite Teil entspricht der Sprunganreicherung, die einem neuen Knoten zugeordnet ist, mit der Verschiebung u11 und demzufolge einem neuen Freiheitsgrad.

Die Gleichung 3.8 zeigt, dass der Riss in Abb. 3.6 dann durch ein Netz dargestellt werden kann, das keine Diskontinuität enthält. Die Rissdiskontinuität wird durch den Anreicherungsterm abgebildet.

Abbildung 3.8: keine Ausrichtung des Netzes mit dem Riss; a) eingekreiste Knoten mit Heavyside-Funktion, b) mit Quadrat markierte Knoten mit Rissspitzenfunktion (asymptotische Singularitätsfunktion) [8]

Die vorherige Ableitung gibt einen Einblick für den Fall, dass der Riss mit dem Netz ausgerichtet ist. Die Hauptprobleme sind die Auswahl der geeigneten Knoten zur Anreicherung und die Form der zugehörigen Anreicherungsfunktionen. In Bezug auf die Anreicherung mit der Sprungfunktion nimmt man die Konvention an, dass ein Knoten angereichert wird, wenn seine Unterstützung durch den Riss in zwei disjunkte Stücke geschnitten wird. Diese Regel stimmt mit dem vorherigen Beispiel überein, in dem nur der Knoten 11 angereichert wurde. Abbildung 3.8a) zeigt die Anwendung dieser Regel, wenn der Riss nicht mit den Kanten des Elements ausgerichtet ist, in denen die eingekreisten Knoten mit der Sprungfunktion angereichert sind.

3.3.3 XFEM-ANREICHERUNG: ASYMPTOTISCHE SINGULARITÄTSFUNKTION

Im vorhergehenden Abschnitt wurde gezeigt, welche Anreicherungsfunktion einen Riss erfassen kann. Es bleibt zu illustrieren, wie man die Singularitäten aufgreift. Die oben genannte Anreicherungsfunktion wird in allen Elementen um den Riss herum eingeführt. Die folgenden asymptotischen Lösungen werden jedoch nur an den Rissspitzen eingeführt.

Alle Knoten werden durch die Menge S repräsentiert. Die Knoten, die die Rissspitze umfassen, werden als Menge S_c definiert. Die anderen Knoten entlang eines Risses werden als Menge S_h definiert (siehe Abbildung 3.9).

:

Abbildung 3.9: links: beliebiger Riss in einem Netz; rechts: lokale Koordinatenachsen an der Rissspitze [8]

In einem allgemeineren Fall, wie dem in Abbildung 3.8b) gezeigten, wird die Rissspitze nicht mit einer Elementkante zusammenfallen, und in diesem Fall kann die Diskontinuität nicht adäquat unter Verwendung nur einer Funktion wie H (x) beschrieben werden. Die Sprunganreicherung der eingekreisten Knoten sieht in diesem Fall nur die Modellierung der Diskontinuität bis zum Punkt p vor (siehe Abb. 3.8). Um die gesamte Diskontinuität entlang des Risses nahtlos zu modellieren, werden die mit Quadraten bezeichneten Knoten mit den asymptotischen Rissspitzenfunktionen, mit der in Belytschko und Black entwickelten Technik angereichert [7]. Für die in Abbildung 3.8b) gezeigte Diskretisierung hat beispielsweise die Approximation die Form:

$$u(x, y) = \sum_{k \in S} N_I(x, y) \begin{bmatrix} u_I + \underbrace{H(x, y)a_k}_{k \in S_h} & + \underbrace{\sum_{l=1}^4 F_l(x, y)b_k^l}_{k \in S_c} \end{bmatrix}$$
(3.9)

 u_I ist die Knotenverschiebung, a_k repräsentiert den Vektor angereicherter Knoten mit der Heavysidefunktion (wird auch Diskontinuitätsfunktion oder Sprungfunktion genannt), und b_k sind die Knoten, die mit den asymptotischen Lösungen der Rissspitze angereichert sind.

Die Anreicherungsfunktionen an den Rissspitzen, für linear-elastische isotrope Materialien sind gegeben durch;

$$\left[\left(F_l(\mathbf{r},\alpha) \right)_{l=1}^4 \right] = \left[\sqrt{r} \sin\frac{\alpha}{2}, \sqrt{r} \cos\frac{\alpha}{2}, \sqrt{r} \sin\theta \sin\frac{\alpha}{2}, \sqrt{r} \sin\theta \cos\frac{\alpha}{2} \right]$$
(3.10)

Wobei (r,α) den Polarkoordinaten eines Punktes mit kartesischen Koordinaten (x, y) entspricht. Man beachte, dass die erste Funktion in (3.10) $\sqrt{r} \sin (\alpha/2)$ über die Rissflächen hinweg diskontinuierlich ist, während die letzten drei Funktionen kontinuierlich sind. Die Funktion H (x,y) ist gegeben durch (3.7) wobei die lokalen Achsen so ausgerichtet sind, dass sie mit der Rissspitze, wie in Abb. 3.6, ausgerichtet sind.

3.3.4 ELEMENTE IN DER XFEM

Vier verschiedene Arten von 3D-Elementen können in Abaqus für XFEM-Simulationen verwendet werden;

- Lineare / quadratische Tetraederelemente,
- lineare / quadratische Hexaederelemente (siehe Abbildung 3.10)

Das lineare Tetraederelement besitzt einen einzelnen Integrationspunkt, das quadratische Tetraederelement besitzt vier Integrationspunkte. Das Hexaederelement verwendet acht Integrationspunkte, das Hexaederlement mit reduzierter Integration verwendet einen. Das hexaedrische Element erster Ordnung wird als C3D8 mit voller Integration und C3D8R mit reduzierter Integration in Abaqus bezeichnet. Das Tetraederelement erster Ordnung wird als C3D4 und zweiter Ordnung mit C3D10 (vollständige Integration) bezeichnet. In dieser Arbeit werden für XFEM lineare C3D8R Elemente mit reduzierter Integration verwendet, um Rechenzeiten zu verkürzen. Die Resultate der Vergleichrechnungen haben gezeigt, dass man mit den C3D8R Elementen die erwünschte Genauigkeit erreichen kann.

Abbildung 3.10: isoparametrische Tetraederlemente der a)1. Ordnung und b)2. Ordnung; c) Hexaederelement der 1.Ordnung mit 8 Knoten [5]

3.3.5 VORTEILE DER XFEM-METHODE

Diese Methode erleichtert die Modellierung von Rissen durch die Flexibilität der FE Vernetzung. Um die Bedeutung der XFEM hervorzuheben werden zwei Vorteile nochmals aufgelistet:

- Einfachheit der anfänglichen Rissdefinition und Generierung des erforderlichen FE Netzes
- Wesentliche Verringerung der Rechenzeit gegenüber anderen Methoden
- Sensitivitätsanalysen der Netzverfeinerung sind viel einfacher (Verminderter Aufwand)

KAPITEL 4: UNTERSUCHTES RISSMODELL UND LÖSUNGEN AUS DER LITERATUR

4.1 UNTERSUCHTES RISSMODELL – RISSGEOMETRIE UND BELASTUNG

In diesem Kapitel wird das Rissmodell vorgestellt. Für den Vergleich mit den hier behandelten FE-Methoden werden Lösungen aus der Literatur herangezogen und veranschaulicht. Es werden 2 unterschiedlich breiten Plattengrößen betrachtet. Die untersuchten Risskonfigurationen sind mit 1 bis 14 nummeriert und in der Tabelle 4.1 aufgelistet. Die einzelnen Fälle werden mit den ausgesuchten Handrechenformeln berechnet und mit FE-Lösungen verglichen.

4.1.1 RISSMODELL

In dieser Arbeit wird ein **halbelliptischer Oberflächenriss** in einer einfachen Platte betrachtet (Abb. 4.1a)). Ein halbelliptischer Oberflächenriss kann sich unter anderem vor einem Quersteifenanschluss bilden (Abbildung 4.1b), wenn der Flansch eines Trägers mit einer Ermüdungsbeanspruchung $\Delta \sigma$ auf Zug belastet wird. Dann muss zusätzlich zur einfachen Plattenlösung auch die Spannungserhöhung durch den Quersteifenanschluss berücksichtigt werden. In dieser Arbeit wird nur die einfache Plattenlösung nach Abb.4.1a behandelt. Dieses Rissmodell wird für zwei verschiede Flanschbreiten 2W=200 od. 400 mm und für zwei verschiedene Flaschdicken t=12 od. 24 mm untersucht. Der halbelliptische Oberflächenriss befindet sich zentrisch in der Zugplatte.

Abbildung 4.1: a) einfache Platte, b) Rissmodell eines gezogenen Flansches

4.1.2 RISSGEOMETRIE

Die Abmessungen aller untersuchten Rissgeometrien sind in der Tabelle 4.1 aufgelistet.

Die Fälle 1 bis 12 haben ein identes Halbachsenverhältnis von $a/c \ge 0,4$. Mit den Fällen 13 und 14 werden niedrigere Halbachsenverhältnisse mit a/c=0,15 untersucht. Des Weiteren wurde für die Fälle 1-12 die relative Risstiefe a/t=0,1/0,5/0,8 gewählt und jeweils für eine Plattenbreite von 2W=200 bzw. 400 mm und eine Plattendicke von t=12 bzw. 24 mm untersucht.

	-								
Fällo	Halbe	Plattondicko	Picctiofo	Picchroito	relative	Halbachsen-	Kurz-		
Falle	Plattenbreite	Flattenuicke	Risstiere	Risstiere	Risstlere	isstiele Rissbreite	Risstiefe	verhältnis	bezeichnung
	W [mm]	t [mm]	a [mm]	c [mm]	a/t	a/c			
1	100	12	1,2	3	0,1	0,4	100_Risstiefe_1,2_12		
2	100	12	6	15	0,5	0,4	100_Risstiefe_6,0_12		
3	100	12	9,6	24	0,8	0,4	100_Risstiefe_9,6_12		
4	100	24	2,4	6	0,1	0,4	100_Risstiefe_2,4_24		
5	100	24	12	30	0,5	0,4	100_Risstiefe_12_24		
6	100	24	19,2	48	0,8	0,4	100_Risstiefe_19,2_24		
7	200	12	1,2	3	0,1	0,4	200_Risstiefe_1,2_12		
8	200	12	6	15	0,5	0,4	200_Risstiefe_6,0_12		
9	200	12	9,6	24	0,8	0,4	200_Risstiefe_9,6_12		
10	200	24	2,4	6	0,1	0,4	200_Risstiefe_2,4_24		
11	200	24	12	30	0,5	0,4	200_Risstiefe_12_24		
12	200	24	19,2	48	0,8	0,4	200_Risstiefe_19,2_24		
13	100	12	1,2	8	0,1	0,15	100_Risstiefe_1,2_12_8		
14	200	12	1,2	8	0,1	0,15	200_Risstiefe_1,2_12_8		

Tabelle 4.1: Angaben zur Geometrie und Rissgröße der untersuchten Fälle 1-14

4.1.3 BELASTUNG

In dieser Arbeit wurden die Spannungsintensitätsfaktoren durchgängig mit einer reinen Zugmembranspannung von σ_m =200 N/mm² berechnet. Der SIF ist direkt proportional zur Nennspannung σ (vgl. Formel 2.1).

Nennspannung od. aufgebrachte Membranspannung:

$$\sigma_m = 200 \frac{N}{mm^2}$$

Abbildung: 4.2: links: Belastung am Teilmodell für RSE-Methode, rechts: Belastung am Gesamtmodell für XFEM-Methode

4.2 SPANNUNGSINTENSITÄTSFAKTOREN K – LÖSUNGEN AUS DER LITERATUR

4.2.1 EINLEITUNG

Für die Berechnung von Spannungsintensitätsfaktoren unterschiedlicher Formelwerke werden vier Lösungswege genauer dargestellt. Die Lösungswege nach Newman [15], Raju [15], Chapuilot [14] und Varfolomeyev [13] sind auch in der FKM-Richtlinie [2] (Forschungskuratorium Maschinenbau) zu finden. Die Lösungen unterscheiden sich durch die Geometriefunktion F(y) (Formel (2.3)). F(y) hängt von der Geomentrie des Bauteils, von der Lage, Form und Größe des Risses und von der äußeren Belastung ab.Weitere Details dazu werden in den einzelnen Handformeln aufgezeigt.

4.2.2 SIF-BERECHNUNG GEMÄß DER LÖSUNG VON VARFOLOMEYEV [13]

Abbildung 4.3: Rissmodell des halbelliptischen Oberflächenrisses aus [11]

Die nachfolgende Formel ist aus dem Dokument "Verb:Failure Assessment Software Version 8.0" [11] entnommen und auch in [2] zu finden. An einem beliebigen Punkt der Rissfront wird der Spannungsintensitätsfaktor K berechnet mit:

$$K\left(\frac{a}{c},\frac{a}{t},\frac{c}{W},\phi\right) = \left[\sum_{m=0}^{4}\sum_{n=0}^{4}D_{mn}f_{mn}\left(\frac{a}{c},\frac{a}{t},\phi\right)\left(\frac{a}{t}\right)^{m+n}\left(\frac{a}{c}\right)^{-n}\right]\sqrt{\frac{\pi a}{Q}}f_{w}\left(\frac{c}{W},\frac{a}{t}\right)$$
(4.1)

 $D_{mn} = \sigma_{mn}$; polynomische Zugmembranspannung (hier $D_{mn}=200$ =konstant)

f_{mn} polynomische Einflussfunktion

mn-Indizes Polynomordnung (für eine konstante Belastung gilt m=n=0)

Die Formel (4.1) gilt allgemein für polynomische Belastung. Für konstante Belastung werden die Indizes m und n mit 0 ersetzt. Damit bleiben von der allgemeinen Formel (4.1) nur die angegebene Spannung σ_{mn} (= σ konstante Zugspannung auch Membranspannung genannt), die Risstiefe a, die polynomische Einflussfunktion f₀₀(ϕ) und die Korrekturfaktor fw für die Plattenbreite W über.

$$K_{1} = \sigma^{*} \sqrt{\frac{\pi^{*}a}{Q}} * f_{00}(\frac{a}{c}, \frac{a}{t}, \phi) * f_{w}(\frac{c}{W}, \frac{a}{t})$$
(4.2)

Der geometrische Korrekturfaktor Q für elliptische Risse ist:

$$Q = 1 + 1.464 \left(\frac{a}{c}\right)^{1.65}, \frac{a}{c} \le 1$$

$$Q = 1 + 1.464 \left(\frac{c}{a}\right)^{1.65}, \frac{a}{c} \ge 1$$
(4.3)

Die Anwendung der empirischen Gleichung für Q verbessert das Ergebnis für K-Werte deutlich. Der zweite Faktor für die Geometrie des untersuchten Körpers ist der *Korrekturfaktor f_w zur Berücksichtigung der halben Plattenbreite W*. Für die in der Arbeit untersuchten Rissgeometrien beträgt der f_w-Wert immer 1.0.

$$f_{w} = \left[\sec\left(\frac{\pi c}{2W}\sqrt{\frac{a}{t}}\right)\right]^{\frac{1}{2}}$$
(4.4)

Die numerisch ermittelten $f_{00}(\phi, a/t, a/c)$ -Werte wurden von Herrn Varfolomeyev übermittelt. Sie sind im Anhang B, Tabelle B3, angeführt. Die f_{mn} -Werte hängen von der *relativen Risstiefe a/t*, vom *Halbachsenverhältnis a/c* und vom *Winkel \u03c6* ab. Für die im Kapitel 4.1 untersuchten Angaben sind die Koeffizienten m und n mit Null zu besetzen gewesen.

Zum besseren Verständnis wird Fall 1 aus der Angabe als Beispielrechnung vollständig mit Zahlen veranschaulicht. Dabei werden Lösungen des *Spannungsintensitätsfaktors am Scheitel der Ellipse K_a*, an *der Oberfläche der Platte* K_c und alle $\Delta \phi = 10^{\circ}$ dazwischen dargestellt.

> <u>Gültigkeitsbereich</u>

Gültigkeitsgrenze der Geometriedaten:

$$a/t \le 0.9$$

$$0 \le a/c \le 1.5$$

$$c/w \le 0.5$$

$$0^{\circ} \le \phi \le 180^{\circ}$$
(4.5)

Fehlergrenze der Ergebnisse [11] für K:
$$\leq 5\%$$
 (4.6)

Der Gültigkeitsbereich ist für alle Fälle in Tab. 4.1 erfüllt. Die angegebene Fehlergrenze wurde bei den Vergleichsrechnungen mit FEM nicht überschritten (siehe Ergebnisse Kapitel 6).

Angabe für Fall 1: σ_m= E= 210000 N/mm² 200 N/mm² σ_b = c= 3 mm 0 N/mm² a= 1,2 mm 2c= 6 mm w= a/c= 100 mm 0,40 t= a/t= 0,1 12 mm Membranspannung (Zugspannung) $\sigma_{\rm m}$ σ_{b} Biegespannung Rissbreite с

- a Risstiefe
- W halbe Plattenbreite
- t Plattendicke
- a/t relative Risstiefe
- a/c Halbachsenverhältnis der Ellipse
- E Elastizitätsmodul

Lösung für Fall 1:

Der geometrische Korrekturfaktor Q für elliptische Risse beträgt (vgl. 4.4):

$$Q = 1 + 1.464 \left(\frac{1,2}{3}\right)^{1.65} = 1,3228 \qquad für \frac{a}{c} \le 1$$
(4.7)

Der Korrekturfaktor fw beträgt (vgl. 4.4):

$$f_{w} = \left[\sec\left(\frac{\pi * 3}{2*100}\sqrt{\frac{1,2}{12}}\right)\right]^{\frac{1}{2}} = 1,00$$
(4.8)

Die polynomische Einflussfaktoren $f_{00(\phi)}$ sind von Herrn Varfolomeyev numerisch berechnet worden und in Anhang B, Tabelle B3, vollständig angeführt. Tabelle 4.2 zeigt einen Auszug der $f_{mn}(\phi)$ Werte in $\Delta \phi = 10^{\circ}$ Schritten für das untersuchte Beispiel.

Das Ergebnis für K_I=Kc an der Stelle ϕ =0 beträgt:

$$K_{I} = K_{c} = 200 * \sqrt{\frac{\pi * 1.2}{1.3228}} * 0.789471 * 1.0 = 266.57 \frac{N}{mm^{\frac{3}{2}}}$$
(4.9)

Dieser oben berechnete K_1 -Wert ist in der Tabelle 4.2 als Spannungsintensität an der Oberfläche K_c wiederzufinden.
	Winkel ϕ	f00(φ)	К1	
Кс=К(ф=0)	0	7,89E-01	266,57	N/mm ^{3/2}
К(ф=5)	5	7,69E-01	259,50	N/mm ^{3/2}
К(ф=10)	10	7,59E-01	256,37	N/mm ^{3/2}
К(ф=20)	20	8,04E-01	271,34	N/mm ^{3/2}
К(ф=30)	30	8,66E-01	292,33	N/mm ^{3/2}
К(ф=40)	40	9,26E-01	312,71	N/mm ^{3/2}
К(ф=50)	50	9,82E-01	331,51	N/mm ^{3/2}
К(ф=60)	60	1,03E+00	346,23	N/mm ^{3/2}
К(ф=70)	70	1,06E+00	357,00	N/mm ^{3/2}
К(ф=80)	80	1,08E+00	363,83	N/mm ^{3/2}
Ка=К(ф=90)	90	1,08E+00	366,05	N/mm ^{3/2}

Tabelle 4.2: SIF-Lösungen auf Basis Varfolomeyev [13] für Fall 1

4.2.3 SIF-BERECHNUNG GEMÄß DER LÖSUNG VON NEWMAN UND RAJU [15]

Abbildung 4.4-2: Rissmodell einer gezogenen Scheibe [2]

Für die bruchmechanische Analyse von halbelliptischen Rissen haben Newman, J.C. und Raju Jr. 1984 Formeln für die Nasa entwickelt. Diese sind vor allem in der Flugzeugindustrie in Verwendung und haben sich bis heute auch in anderen Industriegebieten bewährt. Newman und Raju haben diese Formeln auf Basis der Finiten Elemente Methode FEM entwickelt.

$$K_1 = (\sigma_m F_m + \sigma_b F_b) \sqrt{\frac{\pi \cdot a}{Q}}$$
(4.10)

 K_a entspricht dem SIF am Scheitelpunkt der Halbellipse ($\phi = \pi/2$). K_c ist der SIF an der Bauteiloberfläche bei $\phi = 0$.

$$K_a = K(\phi = \frac{\pi}{2})$$

$$K_c = K(\phi = 0)$$
(4.11)

$$F_m = \left[M_1 + M_2 \left(\frac{a}{t}\right)^2 + M_3 \left(\frac{a}{t}\right)^4 \right] g f_{\phi} f_w \tag{4.12}$$

$$F_{b} = F_{m} \Big[H_{1} + (H_{2} - H_{1}) \sin^{P} \phi \Big]$$
(4.13)

Der Korrekturfaktor f_w ident zu Gl. (4.4) und (4.3) und der geometrische Korrekturfaktor Q (4.3) für elliptische Risse ist:

$$f_{w} = \left[\sec\left(\frac{\pi c}{2W}\sqrt{\frac{a}{t}}\right)\right]^{\frac{1}{2}}$$
(4.4)

$$Q = 1 + 1.464 \left(\frac{a}{c}\right)^{1.65}, \frac{a}{c} \le 1$$

$$Q = 1 + 1.464 \left(\frac{c}{a}\right)^{1.65}, \frac{a}{c} \ge 1$$
(4.3)

Die folgenden Faktoren gelten für ein Halbachsenverhältnis von $a/c \le 1$. Für $a/c \ge 1$ siehe [2].

$$g = 1 + \left[0, 1 + 0, 35\left(\frac{a}{t}\right)^{2}\right] \left(1 - \sin\phi\right)^{2}$$
(4.14)

$$M_{1} = 1,13 - 0,09 \frac{a}{c}$$

$$M_{2} = -0,54 + \frac{0,89}{0,2 + \frac{a}{c}}$$
(4.15)

$$M_3 = 0, 5 - \frac{1}{0, 65 + \frac{a}{c}} + 14 \left(1 - \frac{a}{c}\right)^{24}$$

$$f_{\phi} = \left(\sin^2\phi + \frac{a^2}{c^2}\cos^2\phi\right)^{\frac{1}{4}} \tag{4.16}$$

$$p = 0, 2 + \frac{a}{c} + 0, 6\frac{a}{t}$$
(4.17)

$$H_1 = 1 - 0.34 \frac{a}{t} - 0.11 \frac{a}{c} \frac{a}{t}$$
(4.18)

$$H_2 = 1 + \left(-1, 22 - 0, 12\frac{a}{c}\right)\frac{a}{t} + \left[0, 55 - 1, 05\left(\frac{a}{c}\right)^{0, 75} + 0, 47\left(\frac{a}{c}\right)^{1, 5}\right]\left(\frac{a}{t}\right)^2$$
(4.19)

Gültigkeitsbereich

Gültigkeitsgrenze der Geometriedaten:

$$\begin{array}{l}
a / t \leq 1 \\
0 \leq a / c \leq 2 \\
c / w \leq 0.5 \\
0^{\circ} \leq \phi \leq 180^{\circ}
\end{array}$$
(4.20)

 $\label{eq:Fehlergrenze} Fehlergrenze \ der \ Ergebnisse \ [11] \ f \ddot{u} r \ K_{I} \hspace{-0.5mm}: \hspace{1.5mm} \leq 5\%$

Der Gültigkeitsbereich ist für alle Fälle in Tabelle 4.1 erfüllt. Die angegebene Fehlergrenze wurde eingehalten (siehe Ergebnisse Kapitel 6).

Lösung für Fall 1:

Für Fall 1 in Tab. 4.1 werden die K1-Werte berechnet (vgl. Tab. 4.3). Dazu sind die oben angeführten Formeln heranzuziehen. Für K_c (ϕ =0) sind alle Zahlenwerte in den Gleichungen (410÷4.19) dargestellt.

$$g = 1 + \left[0, 1+0, 35\left(\frac{1.2}{12}\right)^2\right] \left(1-\sin(0)\right)^2 = 1.1035$$
(4.14)

Für f_w nach (4.8) und für Q nach (4.7), gilt: $f_w=1,00$; Q=1,3228

$$M_{1} = 1,13 - 0,09 \frac{1.2}{3} = 1,094$$
$$M_{2} = -0,54 + \frac{0,89}{0,2 + \frac{1.2}{3}} = 0,943333$$
(4.15)

$$M_3 = 0, 5 - \frac{1}{0, 65 + \frac{1.2}{3}} + 14\left(1 - \frac{1.2}{3}\right)^{24} = -0,45231$$

$$f_{\phi} = \left(\sin^2(0) + \frac{1.2^2}{3^2}\cos^2(0)\right)^{\frac{1}{4}} = 0,632 \tag{4.16}$$

$$p = 0, 2 + \frac{1.2}{3} + 0, 6\frac{1.2}{12} = 0, 66 \tag{4.17}$$

$$H_1 = 1 - 0,34 \cdot \frac{1,2}{12} - 0,11\frac{1,2}{3} \cdot \frac{1,2}{12} = 0,9616 \tag{4.18}$$

$$H_{2} = 1 + \left(-1, 22 - 0, 12\frac{1, 2}{3}\right)\frac{1, 2}{12} + \left[0, 55 - 1, 05\left(\frac{1, 2}{3}\right)^{0, 75} + 0, 47\left(\frac{1, 2}{3}\right)^{1, 5}\right]\left(\frac{1, 2}{12}\right)^{2} = 0,874608$$
(4.19)

$$F_m = \left[1,094+0,943333\left(\frac{1,2}{12}\right)^2 + (-0,45231)\left(\frac{1,2}{12}\right)^4\right] 1,1035\cdot 0,632\cdot 1,00 = 0,770114$$
(4.12)

$$F_b = 0,770114 \Big[0,9616 + (0,874608 - 0,9616) \sin^{0.66}(0) \Big] = 0,740114$$
(4.13)

$$K_{1} = K_{c} = (200 \cdot 0,770114 + 0.0,740114) \sqrt{\frac{\pi \cdot 1,2}{1,3228}} = 260,02 \frac{N}{mm^{\frac{3}{2}}}$$
(4.10)

SIF-Lösungen auf	f Basis Newm	an, Raju [15] für Fall	1		
	Winkel ø	fø	g	Fm	Fb	K1
Кс=К(ф=0)	0	0,632	1,1035	0,770114	0,740541	260,02
К(ф=5)	5	0,639	1,086245	0,765519	0,722818	258,47
К(ф=10)	10	0,656	1,070676	0,775169	0,724167	261,72
К(ф=20)	20	0,713	1,044809	0,821872	0,755095	277,49
К(ф=30)	30	0,780	1,025875	0,882871	0,800362	298,09
К(ф=40)	40	0,844	1,013207	0,943446	0,845909	318,54
К(ф=50)	50	0,899	1,005665	0,997523	0,886438	336,80
К(ф=60)	60	0,943	1,001858	1,042234	0,919757	351,89
К(ф=70)	70	0,974	1,000376	1,075687	0,944568	363,19
К(ф=80)	80	0,994	1,000024	1,096421	0,959897	370,19
Ка=К(ф=90)	90	1,000	1	1,103449	0,965085	372,56

In Tabelle 4.3 werden die resultierenden K-Werte im Abstand von $\Delta \phi = 10^{\circ}$ dargestellt.

Tabelle 4.3

4.2.4 SIF-BERECHNUNG GEMÄß DER LÖSUNG VON CHAPUILOT [14]

Abbildung 4.3: Halbelliptischer Oberflächenriss an einem Hohlzylinder [2]

Chapuilot hat sich auf die Ermittlung der Spannungsintensitäten am Hohlzylinder unter Umfangsnormalspannungen σ (siehe Abbildung 4.3) konzentriert und für diese die Parameter entwickelt. Die allgemeine Formel basiert auf der Methode der polynomischen Einflussfunktionen. Diese werden hier sehr einfach gehalten und aus den geometrischen Parametern a/t und t/r_i kombiniert, unter Einhaltung des Gültigkeitsbereichs. Die Lösungen sind in der FKM-Richtlinie tabellarisch aufgelistet und die notwendigen Parameter entsprechend ihrem Gültigkeitsbereich eingesetzt.

$$K\left(\frac{a}{c}, \frac{a}{t}, \frac{t}{r_i}, \phi\right) = \left[\sum_{n=0}^{3} A_n f_n\left(\frac{a}{c}, \frac{a}{t}, \frac{t}{r_i}, \phi\right) \left(\frac{a}{t}\right)^n\right] \sqrt{(\pi a)}$$
(4.21)

Der Spannungsverlauf $\sigma(x)$ wird polynomisch approximiert:

$$\sigma(x) = \sum_{n=0}^{N} A_n \left(\frac{x}{t}\right)^n \tag{4.22}$$

Mit $\sigma_m = \sigma_{(x)} =$ konstant folgt n=N=0 und somit:

$$K_1 = \sigma_m * \sqrt{\pi a} * f_n \tag{4.23}$$

$$f_n\left(\frac{a}{c}, \frac{a}{t}, \frac{t}{r_i}, \phi\right) \quad mit \quad 0 \le \frac{t}{r_i} \le 1 \qquad f\ddot{u}r \quad \frac{t}{r_i} = 0:$$
(4.24)

Die erforderliche Polynomfunktion $f_n = f_0$ ist teilweise für die angegebenen geometrischen Parameter a/t und t/r_i aus den Tabellenwerken (s. Anhang C2) interpoliert, da keine Lösungen für die relative Risstiefe a/t und für das Halbachsenverhältnis a/c zu finden waren. Die Lösungswerte dieser Handrechnung wurden mit den Werten aus dem Programm Verb8.0 verglichen (dort ist auch dieser Fall erfasst) und aus diesem Programm entnommen. Dadurch wurden die Ergebnisse durch diese zusätzliche Kontrolle abgesichert.

Gültigkeitsbereich

Gültigkeitsgrenze der Geometriedaten:	$a/t \le 0.8$ $0 \le a/c \le 1$ $c/w \le 0.5$
	$\phi = 0^\circ, 90^\circ$
Fehlergrenze der Ergebnisse [11] für Kı:	≤5%

Der Gültigkeitsbereich ist für alle Fälle in Tabelle 4.1 erfüllt. Die angegebene Fehlergrenze wurde eingehalten (siehe Ergebnisse Kapitel 6).

Lösung für Fall 1:

Die für die Geometriedaten zutreffenden Polynomfunktionen $f_n=f_0$ sind aus den angegebenen Tabellenwerten entnommen und für den Scheitelpunkt **Ka=K(\phi=90**) und den Oberflächenpunkt **Kc=K(\phi=0**) über Interpolation ermittelt worden. Die aus der FKM-Richtlinie [2] (*Tabelle 7.4.7.1.4 Seite 307*) interpolierten f_n -Werte sind:

Scheitelpunkt Ka mit t/r_i=0:

$$f_n\left(\frac{a}{t}, \frac{t}{r_i}\right) = 0,941 \quad mit \quad 0 \le \frac{a}{t} \le 0,8 \quad \to \quad 0 \le \frac{1,2}{12} \le 0,8$$
$$K_1 = 200^* \sqrt{\pi^* 1, 2^* 0,941} = 365,49 \quad \left[\frac{N}{mm^{3/2}}\right]$$

Oberflächenpunkt Kc mit t/r_i=0:

$$f_n\left(\frac{a}{t}, \frac{t}{r_i}\right) = 0,661 \quad mit \quad 0 \le \frac{a}{t} \le 0,8 \quad \to \quad 0 \le \frac{1,2}{12} \le 0,8$$
$$K_1 = 200^* \sqrt{\pi^* 1, 2^* 0,661} = 256,76 \quad \left[\frac{N}{mm^{3/2}}\right]$$

4.2.5 SIF-BERECHNUNG GEMÄß DER LÖSUNG VON WANG UND LAMBERT [12]

Abbildung 4.4: Halbelliptischer Oberflächenriss mit der Belastung aus [12]

Die Berechnung nach Wang deckt ebenfalls die vorliegende Belastungsart mit σ_m =konstant (siehe Abb. 4.4) ab. Die Formeln nach Wang und Lambert bieten jedoch nur für zwei Winkel ϕ die Möglichkeit den K-Wert zu ermitteln, am Scheitel für ϕ =90 und an der Oberfläche ϕ =0. Der Spannungsintensitätsfaktor wird für eine gleichmäßige Spannungsverteilung $\sigma(x)=\sigma_m$ (siehe Abb. 4.4), am Oberflächenpunkt K_c und dem tiefsten Punkt K_a (Risszentrum) des Risses berechnet, ([11] und [12]).

$$K_a = K(\phi = 90) = \sigma_m * \sqrt{\frac{\pi * a}{Q}} * Y_0$$
 (4.25)

$$K_c = K\left(\phi = 0\right) = \sigma_m * \sqrt{\frac{\pi * a}{Q}} * F_0 \tag{4.26}$$

mit: Q nach Gl. (4.3)

Die Formfunktion Y₀ f
ür K_a:

$$Y_0 = B_0 + B_1 * \left(\frac{a}{t}\right)^2 + B_2 * \left(\frac{a}{t}\right)^4$$
(4.27)

➢ Parameter für Y₀:

$$B_{0} = 1,112 - 0,09923 \left(\frac{a}{c}\right) + 0,02954 \left(\frac{a}{c}\right)^{2}$$

$$B_{1} = 1,138 - 1,134 \left(\frac{a}{c}\right) + 0,3073 \left(\frac{a}{c}\right)^{2}$$

$$B_{2} = -0,9502 + 0,8832 \left(\frac{a}{c}\right) - 0,2259 \left(\frac{a}{c}\right)^{2}$$
(4.28)

 \succ Die Formfunktion F₀ für K_c:

$$F_{0} = \left[C_{0} + C_{1} * \left(\frac{a}{t}\right)^{2} + C_{2} * \left(\frac{a}{t}\right)^{4}\right] * \sqrt{\frac{a}{c}}$$
(4.29)

Parameter f
ür F₀:

$$C_{0} = 1,340 - 0,2872 \left(\frac{a}{c}\right) + 0,06611 \left(\frac{a}{c}\right)^{2}$$

$$C_{1} = 1,882 - 1,7569 \left(\frac{a}{c}\right) + 0,4423 \left(\frac{a}{c}\right)^{2}$$

$$C_{2} = -0,1493 + 0,01208 \left(\frac{a}{c}\right) - 0,02215 \left(\frac{a}{c}\right)^{2}$$
(4.30)

Für Q gilt Gl. (4.3).

Gültigkeitsbereich

Gültigkeitsgrenze der Geometriedaten:

$$a / t \le 0.8$$

$$0 \le a / c \le 1$$

$$c / w \le 0.5$$

$$\phi = 0^{\circ}, 90^{\circ}$$

Der Gültigkeitsbereich ist für alle Fälle in Tab. 4.1 erfüllt. Die angegebene Fehlergrenze wurde bei den Vergleichsrechnungen mit FEM nicht überschritten (siehe Ergebnisse Kapitel 6).

Lösung für Fall 1:

Die relative Risstiefe a/t=0,1 und das Halbachsenverhältnis a/c=0,4 werden gleich eingesetzt.

$$B_{0} = 1,112 - 0,09923(0,4) + 0,02954(0,4)^{2} = 1,077$$

$$B_{1} = 1,138 - 1,134(0,4) + 0,3073(0,4)^{2} = 0,733568$$

$$B_{2} = -0,9502 + 0,8832(0,4) - 0,2259(0,4)^{2} = -4,2113$$

(4.28)

$$Y_0 = 1,077 + 0,733568 * (0,1)^2 - 4,2112 * (0,1)^4 = 1,0839$$
(4.27)

$$C_{0} = 1,340 - 0,2872(0,4) + 0,06611(0,4)^{2} = 1,2356976$$

$$C_{1} = 1,882 - 1,7569(0,4) + 0,4423(0,4)^{2} = 1,25$$

$$C_{2} = -0,1493 + 0,01208(0,4) - 0,02215(0,4)^{2} = -0,140924$$
(4.30)

$$F_0 = \left[1,2356976+1,25*(0,1)^2-0,140924*(0,1)^4\right]*\sqrt{0,4} = 0,78942$$
(4.29)

$$K_{a} = K(\phi = 90) = 200 * \sqrt{\frac{\pi * 1, 2}{1,3288}} * 1,0839 = 365,96 \frac{N}{mm^{\frac{3}{2}}}$$
(4.25)

$$K_{c} = K(\phi = 0) = 200 * \sqrt{\frac{\pi * 1, 2}{1,3288}} * 0,78942 = 266,54 \frac{N}{mm^{\frac{3}{2}}}$$
(4.26)

4.3 VERGLEICH DER LITERATURLÖSUNGEN DER UNTERSUCHTEN EINZELFÄLLE

Die Lösungen der einzelnen Fälle werden tabellarisch gegenübergestellt. In den Tabellen 4.4 bis 4.17 sind die Angaben bezüglich Geometrie des Bauteils und des Risses eingetragen. Die Lösungen von Varfolomeyev werden als Referenzgröße genommen und dienen als Vergleichswerte für die Abaqus-Ergebnisse in Kapitel 6.

Umrechnung von N/mm^{3/2} in MPa√m:

$$\sqrt{1000} \frac{N}{mm^{3/2}} = 1MPa\sqrt{m}$$

4.3.1 FALL 1

Aus den Ergebnissen in Tab. 4.4 ist ersichtlich, dass die errechneten K-Werte nur geringere Abweichungen zeigen.

Die untersuchten Literaturlösungen streuen im Fall 1 für K_a um bis zu 2.42% und für K_c um bis zu 3.68% (vgl. Tabelle 4.4), gegenüber der Referenzlösung nach Varfolomeyev.

Tabelle 4.4: Ergebnisse von Handformeln für Fall 1

Ang	aben
{Fall 1}	а

all 1}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	σ_{b}	E´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm ²
	1,20	12,00	3,00	100,00	0,10	0,40	0,03	200,00	0,00	210000

	Resultate										
	Varfolo (Refe	omeyev erenz)	Chapuilot			Wang. X, Lambert			Newman, Raju		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	266,58	8,43	256,78	8,12	-3,68	266,54	8,43	-0,02	260,00	8,22	-2,47
Ka	366,19	11,58	365,56	11,56	-0,17	365,96	11,57	-0,06	372,52	11,78	1,73

4.3.2 FALL2

Die untersuchten Literaturlösungen streuen im Fall 2 für K_a um bis zu 2.04% und für K_c um bis zu 4.56% (vgl. Tabelle 4.5).

Tabelle 4.5: Ergebnisse von Handformeln für Fall 2

	Angaben									
{Fall 2}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	6,00	12,00	15,00	100,00	0,50	0,40	0,15	200,00	0,00	210000

Resultate

	Varfolomeyev		Chapuilot			Wang. X, Lambert			Newman, Raju		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	769,70	24,34	742,19	23,47	-3,57	734,60	23,23	-4,56	743,14	23,50	-3,45
Ka	974,30	30,81	994,22	31,44	2,04	982,20	31,06	0,81	989,48	31,29	1,56

Bei einer relativen Risstiefen a/t=0,5 steigern sich die beiden Spannungsintensitätsfaktoren im Vergleich zu a/t=0,1 etwa um den Faktor 2.

4.3.3 FALL 3

Die untersuchten Literaturlösungen streuen im Fall 3 für K_a um bis zu 8.17% und für K_c um bis zu 5.97% (vgl. Tabelle 4.6).

Tabelle 4.6: Ergebnisse von Handformeln für Fall 3

	Angaben									
{Fall 3}	а	t	c	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	9,60	12,00	24,00	100,00	0,80	0,40	0,24	200,00	0,00	210000

	Resultate										
	Varfolo	omeyev	Chapuilot			Wang. X, Lambert			Newman, Raju		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	1324,05	41,87	1285,47	40,65	-2,91	1310,13	41,43	-1,05	1244,99	39,37	-5,97
Ka	1374,64	43,47	1437,26	45,45	4,55	1388,87	43,92	1,04	1486,90	47,02	8,17

Bei einer relativen Risstiefe a/t=0,8 wächst der Spannungsintensitätsfaktor Kc über das 4-fache vom Kc-Wert bei a/t=0,1. Die Differenz zwischen den Ka und Kc-Werten wird mit größer werdendem a/t-Verhältnis deutlich geringer. Die Newman, Raju Resultate zeigen bei a/t=0.8 eine deutliche Abweichung von 8.17% zur Lösung von Varfolomeyev (siehe Tabelle 4.6).

4.3.4 FALL 4

Die untersuchten Literaturlösungen streuen im Fall 4 für Ka um bis zu 2.50% und für Kc um bis zu 3.61% (vgl. Tabelle 4.7).

Tabelle 4.7: Ergebnisse von Handformeln für Fall 4

	Angaben									
{Fall 4}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	σ_{b}	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	2,40	24,00	6,00	100,00	0,10	0,40	0,06	200,00	0,00	210000

	Resultate										
	Varfolo	meyev	Chapuilot			Wang. X, Lambert			Newman, Raju		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	376,94	11,92	363,35	11,49	-3,61	375,36	11,87	-0,42	367,77	11,63	-2,43
Ka	517,66	16,37	517,03	16,35	-0,12	530,63	16,78	2,50	526,84	16,66	1,77

Docultoto

4.3.5 FALL 5

Die untersuchten Literaturlösungen streuen im Fall 5 für K_a um bis zu 2.07% und für K_c um bis zu 4.58% (vgl. Tabelle 4.8).

Tabelle 4.8: Ergebnisse von Handformeln für Fall 5

	Angaben									
{Fall 5}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	σ_{b}	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	12,00	24,00	30,00	100,00	0,50	0,40	0,30	200,00	0,00	210000

Resultate

	Varfolo	Varfolomeyev Ch N/mm ^{3/2} MPa√m N/mm ^{3/2} MF 1111,86 35,16 1072,01 3 1407,52 44.51 1426.62 44.51			ot	War	Wang. X, Lambert			Newman, Raju			
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]		
Kc	1111,86	35,16	1072,01	33,90	-3,58	1060,94	33,55	-4,58	1073,59	33,95	-3,44		
Ka	1407,53	44,51	1436,62	45,43	2,07	1418,91	44,87	0,81	1429,67	45,21	1,57		

4.3.6 FALL 6

Die untersuchten Literaturlösungen streuen im Fall 6 für K_a um bis zu 8.17% und für K_c um bis zu 5.96% (vgl. Tabelle 4.9).

Tabelle 4.9: Ergebnisse von Handformeln für Fall 6

	Angaben									
{Fall 6}	а	t	с	w	a/t		c/w	σ_{m}	$\sigma_{\rm b}$	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	19,20	24,00	48,00	100,00	0,80	0,40	0,48	200,00	0,00	210000

Resultate Wang. X, Lambert Varfolomeyev Chapuilot Newman, Raju N/mm^{3/2} MPa \sqrt{m} Abw. [%] MPa√m Abw. [%] $N/mm^{3/2}$ MPa√m N/mm^{3/2} MPa \sqrt{m} Abw. [%] N/mm^{3/2} Kc 2058,01 65,08 1998,24 63,19 -2,90 2036,51 64,40 -1,04 1935,31 61,20 -5,96 Ka 2136,75 67,57 2234,15 70,65 4,56 2159,20 68,28 1,05 2311,31 73,09 8,17

Die Verdoppelung der Dimensionen a, t und c von Fall 3 bewirken hier zwar eine Differenz der Spannungsintensitätsfaktoren zum Fall 3, jedoch bleiben die Abweichungen zu den Bezugsgrößen von Fall 3 und Fall 6 zueinander ident (siehe Tabelle 4.6 und 4.9).

4.3.7 FALL 7

Die untersuchten Literaturlösungen streuen im Fall 7 für K_a um bis zu 2.42% und für K_c um bis zu 3.67% (vgl. Tabelle 4.10).

Tabelle 4.10: Ergebnisse von Handformeln für Fall 7

	Angaben									
{Fall 7}	а	t	с	w	a/t	a/c	c/w	σ_{m}	σ_{b}	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	1,20	12,00	3,00	200,00	0,10	0,40	0,02	200,00	0,00	210000

	Resultate										
	Varfolo	meyev		Chapuilo	ot	War	ig. X, La	mbert	Ne	ewman, I	Raju
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	266,55	8,43	256,78	8,12	-3,67	265,44	8,39	-0,42	260,00	8,22	-2,46
Ka	366,19	11,58	365,56	11,56	-0,17	375,05	11,86	2,42	372,52	11,78	1,73

Aus der Tabelle 4.10 kann man erkennen, dass die Resultate ident zu Fall 1 sind. Dies bedeutet, dass die Breite W der Platte auf das Ergebnis von K hier keinen Einfluss hat.

4.3.8 FALL 8

Die untersuchten Literaturlösungen streuen im Fall 8 für K_a um bis zu 2.06% und für K_c um bis zu 4.54% (vgl. Tabelle 4.11).

Tabelle 4.11: Ergebnisse von Handformeln für Fall 8

Angaben

{Fall 8}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	σ_{b}	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	6,00	12,00	15,00	200,00	0,50	0,40	0,08	200,00	0,00	210000

	Resultate										
	Varfolo	meyev		Chapuil	ot	Wan	ng. X, La	mbert	Ne	ewman, l	Raju
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	765,59	24,21	738,08	23,34	-3,59	730,80	23,11	-4,54	739,34	23,38	-3,43
Ka	969,24	30,65	989,16	31,28	2,06	977,14	30,90	0,82	984,42	31,13	1,57

In diesem Fall werden die Resultate im Vergleich zum Fall 2 minimal kleiner (siehe Tabelle 4.11 und 4.5). Auch hier zeigt sich, dass die Variation der Plattenbreite von 2W=200 auf 2W=400 mm nur einen geringen Einfluss auf den Spannungsintensitätsfaktor hat. Die restlichen Abweichungen sind mit dem von Fall 2 äquivalent.

4.3.9 FALL 9

Die untersuchten Literaturlösungen streuen im Fall 9 für K_a um bis zu 8.16% und für K_c um bis zu 5.96% (vgl. Tabelle 4.12).

Tabelle 4.12: Ergebnisse von Handformeln für Fall 9

	Angaben									
{Fall 9}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	9,60	12,00	24,00	200,00	0,80	0,40	0,12	200,00	0,00	210000

Resultate

	Varfolo	meyev		Chapuil	ot	Wan	g. X, La	mbert	Ne	wman, I	Raju
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	1295,27	40,96	1257,64	39,77	-2,91	1281,99	40,54	-1,03	1218,11	38,52	-5,96
Ka	1344,92	42,53	1406,26	44,47	4,56	1359,15	42,98	1,06	1454,65	46,00	8,16

Hier kann man den Einfluss der Gewichtsparameter (4.27) auf die größer werdenden Risse nochmals eindeutig erkennen. Vergleiche hierfür die Varfolomeyev-Werte der Tabellen 4.6 und 4.12.

4.3.10 FALL 10

Die untersuchten Literaturlösungen streuen im Fall 10 für K_a um bis zu 2.50% und für K_c um bis zu 3.69% (vgl. Tabelle 4.13).

Tabelle 4.13: Ergebnisse von Handformeln für Fall 10

	Angaben									
{Fall 10}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm²
	2,40	24,00	6,00	200,00	0,10	0,40	0,03	200,00	0,00	210000

	Resultate										
	Varfolo	meyev		Chapuilo	ot	War	ng. X, La	mbert	Ne	ewman, I	Raju
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	376,94	11,92	363,03	11,48	-3,69	375,36	11,87	-0,42	367,77	11,63	-2,43
Ka	517,66	16,37	517,03	16,35	-0,12	530,63	16,78	2,50	526,84	16,66	1,77

Aus der Tabelle 4.13 kann man erkennen, dass sich hier die gleichen Resultate wie für Fall 4 ergeben. Dies bedeutet, dass die Breite W (2W=200 bzw. 400mm) der gezogenen Platte hier auf das Ergebnis keinen Einfluss hat.

4.3.11 FALL 11

Die untersuchten Literaturlösungen streuen im Fall 11 für K_a um bis zu 2.07% und für K_c um bis zu 4.56% (vgl. Tabelle 4.14).

Tabelle 4.14: Ergebnisse von Handformeln für Fall 11

Angaben									
a	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E´
[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
12,00	24,00	30,00	200,00	0,50	0,40	0,15	200,00	0,00	210000
	a [mm] 12,00	a t [mm] [mm] 12,00 24,00	a t c [mm] [mm] [mm] 12,00 24,00 30,00	a t c w [mm] [mm] [mm] [mm] 12,00 24,00 30,00 200,00	a t c w a/t [mm] [mm] [mm] [mm] 12,00 24,00 30,00 200,00 0,50	a t c w a/t a/c [mm] [mm] [mm] [mm] [mm] 12,00 24,00 30,00 200,00 0,50 0,40	a t c w a/t a/c c/w [mm] [mm] [mm] [mm] [mm] 12,00 24,00 30,00 200,00 0,50 0,40 0,15	a t c w a/t a/c c/w σm [mm] [mm] [mm] [mm] [mm] N/mm² 12,00 24,00 30,00 200,00 0,50 0,40 0,15 200,00	a t c w a/t a/c c/w σm σb [mm] [mm] [mm] [mm] [mm] [mm] N/mm² N/mm² 12,00 24,00 30,00 200,00 0,50 0,40 0,15 200,00 0,00

	Resultate										
	Varfolo	meyev		Chapuilo	ot	War	ng. X, La	mbert	Ne	ewman, I	Raju
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	1088,46	34,42	1049,56	33,19	-3,57	1038,81	32,85	-4,56	1051,14	33,24	-3,43
Ka	1377,80	43,57	1406,26	44,47	2,07	1389,19	43,93	0,83	1399,31	44,25	1,56

Aus der Tabelle 4.14 kann man herauslesen, dass sich hier die Resultate von K im Vergleich zu Fall 5 (Tab. 4.8) vermindern.

4.3.12 FALL 12

Die untersuchten Literaturlösungen streuen im Fall 12 für K_a um bis zu 8.17% und für K_c um bis zu 5.96% (vgl. Tabelle 4.15).

Tabelle 4.15: Ergebnisse von Handformeln für Fall 12

Angaben

{Fall 12}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm²	N/mm ²
	19,20	24,00	48,00	200,00	0,80	0,40	0,24	200,00	0,00	210000

	Resultate										
	Varfolo	meyev		Chapuilo	ot	Wan	ıg. X, La	mbert	Ne	wman, I	Raju
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	1872,38	59,21	1817,99	57,49	-2,90	1852,78	58,59	-1,05	1760,76	55,68	-5,96
Ka	1943,85	61,47	2032,71	64,28	4,57	1964,41	62,12	1,06	2102,60	66,49	8,17

Aus der Tabelle 4.15 kann man herauslesen, dass sich hier die Resultate von K im Vergleich zu Fall 6

(Tab. 4.9) vermindern.

4.3.13 FALL 13

Die untersuchten Literaturlösungen streuen im Fall 13 für K_a um bis zu 1.49% und für K_c um bis zu 6.96% (vgl. Tabelle 4.16).

Tabelle 4.16: Ergebnisse von Handformeln für Fall 13

	Angaben									
{Fall 13}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	σ_{b}	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	1,20	12,00	8,00	100,00	0,10	0,15	0,08	200,00	0,00	210000

Resultate

	Varfolomeyev		Chapuilot			Wang. X, Lambert			Newman, Raju		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	196,63	6,22	183,76	5,81	-6,55	187,71	5,94	-4,54	182,94	5,79	-6,96
Ka	423,11	13,38	419,95	13,28	-0,75	429,44	13,58	1,49	428,17	13,54	1,20

In diesem Fall wird der Effekt vom Halbachsenverhältnis a/c auf die Spannungsintensitätsfaktoren untersucht. Dabei stellte man fest, dass die Spannungsintensitäten an der Oberfläche größere Abweichungen aufzeigen. Trotz der gleichen Risstiefe wie beim Fall 1 sieht man die deutliche Vergrößerung der Ka-Wert vom 366,58 N/mm^{3/2} auf 423,11 N/mm^{3/2} (vergleiche Tabelle 4.4 mit 4.16). Im Gegensatz dazu nimmt der K_c-Wert ab.

4.3.14 FALL 14

Die untersuchten Literaturlösungen streuen im Fall 14 für K_a um bis zu 1.42% und für K_c um bis zu 6.97% (vgl. Tabelle 4.17).

Tabelle 4.17: Ergebnisse von Handformeln für Fall 14

_	Angaben									
{Fall 14}	a	t	с	w	a/t	a/c	c/w	$\sigma_{\rm m}$	$\sigma_{\rm b}$	E´
	[mm]	[mm]	[mm]	[mm]				N/mm ²	N/mm ²	N/mm ²
	1,20	12,00	8,00	200,00	0,10	0,15	0,04	200,00	0,00	210000

Resultate

	Varfolomeyev		Chapuilot			Wang. X, Lambert			Newman, Raju		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]	N/mm ^{3/2}	MPa√m	Abw. [%]
Kc	196,57	6,22	183,70	5,81	-6,55	187,65	5,93	-4,54	182,87	5,78	-6,97
Ka	423,11	13,38	419,95	13,28	-0,75	429,12	13,57	1,42	427,86	13,53	1,12

In diesem Fall wird wiederum der Effekt der Verdoppelung von der halben Plattenbreite W im Vergleich zu Fall 13 untersucht. Hierbei treten nur minimale Differenzen zum Fall 13 auf.

4.3.15 SCHLUSSFOLGERUNG

Aus den Vergleichen wird die Erkenntnis gewonnen, dass je nach a/t-Verhältnis die Resultate zu der Referenzgröße Varfolomeyev unterschiedlich streuen.

Insgesamt sind Abweichungen zwischen den Literaturlösungen im Bereich +8.17% und -6.97% zu beobachten.

Für K_a wurden über alle Fälle Abweichungen von +8.17% bis -0,75% festgestellt. Betrachtet man nur K_c , ergeben sich für alle Fälle Abweichungen von -6.97% bis -0,42%.

Daraus ist ersichtlich, dass die Lösungen für K_c weniger streuen als für K_a . Bei einer relativen Risstiefe von a/t=0,1 wurden Abweichungen von bis zu -6.97% und bis zu +2.50% beobachtet.

Bei einer relativen Risstiefe von a/t=0,5 wurden Abweichungen von bis zu -4.58% und bis zu +2.07% beobachtet.

Bei einer relativen Risstiefen von a/t=0,8 wurden Abweichungen von bis zu -5.97% und bis zu +8.17% beobachtet.

Insgesamt haben die K-Werte bei kleinerem a/t–Verhältnis von 0,1 und 0,5 eine geringere Streuung als bei a/t=0,8.

Die Plattenbreite 2W scheint bei beiden hier untersuchten Fällen zwischen W=100 und W=200 mm praktisch keinen Einfluss auf den Spannungsintensitätsfaktor zu haben.

KAPITEL 5: FEM-MODELLIERUNG EINES HALBELLIPTISCHEN RISSES

5.1 EINLEITUNG

In diesem Kapitel wird auf die praktische Umsetzung der FEM-Modellierung eines halbelliptischen Oberflächenrisses eingegangen. Hierfür kommen zwei unterschiedliche Methoden zum Einsatz. Die Rissspitzenelemente-Methode RSE und XFEM. Beide Methoden wurden im Kapitel 3 kurz theoretisch erklärt.

Bevor man hier die Anwendung dieser zwei Methoden im Einzelnen betrachtet, sollte man sich mit den allgemeinen Vereinfachungstechniken der FE-Modellierung auseinandersetzen. Diese werden im Abschnitt 5.2 behandelt.

5.2 MODELLVEREINFACHUNGSSTUDIE

Eine Möglichkeit ein FE-Modell zu vereinfachen, ist die Nutzung der Symmetrie. Eine weitere Möglichkeit zur Vereinfachung ist die Submodelltechnik. Die Erste wird in der RSE-Methode und die Zweite sowohl in der RSE-Methode als auch in der XFEM-Methode angewandt.

Modellvereinfachungsstudien werden durchgeführt, um die Modellierung zu vereinfachen und die Anzahl der Elemente im Modell zu reduzieren. Diese Studie ist wichtig, da hohen Anforderungen an das FE-Netz gestellt werden.

Modellierungsvereinfachung 1: Ausnutzung von Symmetrieebenen

Abbildung 5.1 links: gesamtes Modell, rechts: in Abaqus zu modellierendes äquivalentes Teilmodell [3]

Die Abbildung 5.1 links demonstriert die Modellierung einer zugbelasteten Platte mit einem zentrischen halbelliptischen Oberflächenriss. Aufgrund der doppelten Symmetrie kann das FE-Modell entsprechend geteilt werden. Diese Herangehensweise wird lediglich in der RSE-Methode angewandt. Die Randbedingungen in den Symmetrieebenen 1 und 2 müssen eingehalten werden. Dazu werden die Verschiebungen und Verdrehungen entsprechend behindert und an untere der Fläche Zugspannungen angelegt. Die Rissufer müssen unbelastet bleiben.

Modellierungsvereinfachung 2: Teilung mit Submodell-Technik

Submodelling ist eine Technik, um ein bestimmtes Gebiet in einem Modell mit einem verfeinerten Netz zu untersuchen, um genauere und detailliertere Lösungen zu erhalten [5]. Die Technik ist sehr vorteilhaft bei komplexen Geometrien, bei denen es Schwierigkeiten gibt, einen bestimmten Teil des Modells zu verfeinern.

In der hier mit Abaqus durchgeführten Submodellanalyse werden zwei getrennte Modelle verwendet; ein globales Modell und ein Submodell (siehe Abbildung 5.2). Das globale Modell enthält die Gesamtgeometrie, Lasten und Randbedingungen. Das Submodell wird als Ausschnitt aus dem globalen Modell einschließlich einer genaueren Modellierung der speziellen Merkmale angegeben. Das globale Modell und das Submodell müssen im Abaqus im Koordinatensystem genau übereinanderliegen, sodass die Knotenverschiebungen an den Submodellrändern automatisch übernommen werden können.

Abbildung 5.2 Prinzip eines Submodells aus [16]

Die Spannungsberechnung am globalen Modell wird zuerst gelöst, um die Probenreaktion aufgrund der angewandten Belastungen und Randbedingungen zu erhalten. In der Submodellanalyse werden dann die Verschiebungen aus dem globalen Modell auf die Oberflächen des Submodells übertragen. So wird das Submodell ausschließend separat vom globalen Modell gelöst.

Die Verbindung zwischen den beiden Modellen wird an den Schnittflächen durch Randbedingungen definiert. Für diese Verbindungen existieren in Abaqus zwei Ansätze; Knotenbasierte Verbindung und oberflächenbasierte Verbindung. In der knotenbasierten Verbindung werden die Verschiebungen interpoliert und in der oberflächenbasierten Verbindung werden die Spannungen übernommen. Für weitere Informationen zum eigentlichen Interpolationsverfahren wird auf die Abaqus 6.14 Online-Dokumentation [5] verwiesen.

Die Beziehung zwischen globalen Modell- und Submodelldimensionen muss gründlich untersucht werden. Das Problem besteht darin, dass das Teilmodell groß genug sein muss, um keine signifikanten Variationen des Spannungs/Dehnungs-Feldes in dem Schnittflächenbereich hervorzurufen. Für eine lastgesteuerte Umgebung im globalen Modell liefert die Knotenverbindung im Allgemeinen genauere Ergebnisse [5]. Eine zusätzliche Abweichung der Ergebnisse kann auch auftreten, wenn die Steifigkeit im globalen Modell und im Teilmodell unterschiedlich sind.

Abbildung 5.3 Submodellvarianten mit dem globalen Modell schematisch dargestellt

In der Abbildung 5.3 werden zwei Möglichkeiten eines Submodells veranschaulicht. Die rot gefüllten Bereiche in den Submodellvarianten sind die Kontaktflächen zum globalen Modell. Hier werden die Freiheitsgrade (Verschiebungen) vom globalen Modell eins zu eins übernommen. Für die Submodellgröße ist der Einflussbereich der Spannungsspitzen maßgebend. Die Außenkanten des Submodells sollen von der Rissspitze so weit entfernt sein, dass die vom globalen Modell übernommene Verschiebungen das Ergebnis nicht negativ beeinflussen. Das globale Modell ist durch die gröbere FE-Vernetzung nicht in der Lage den Spannungs/Dehnungszustand im Bereich um den Riss korrekt wiederzugeben. Für größere Risse (kleine Radien erschweren die FE-Vernetzung) ist ein halbschlauchförmiges Submodell und für kleinere Risse ein quaderförmiges Submodell zu empfehlen.

5.3 ANWENDUNG DER RISSSPITZENELEMENTE-METHODE

Nachfolgend werden die Eingabeschritte im Abaqus für die Fälle 5 und 1,1 sowohl für das globale Modell, als auch für Submodell, behandelt. Diese Fälle unterscheiden sich lediglich in der Plattenbreite W, deshalb wird zur besseren Übersicht nur der Fall 5 in der Abbildung dargestellt.

5.3.1 GLOBALES RSE-MODELL

Als erstes wird das Probekörper (einachsig gezogene Platte) in Abaqus 6.14 [5] modelliert. Dafür wird ein Teilmodell (=globales Modell) gewählt (vgl. Abb. 5.1 rechts).

Abbildung 5.4 Modelldarstellung für Fall 5 RSE-Modell

In der Abbildung 5.4 ist das Teilmodell dargestellt. Der rot markierte Bereich ist die Rissoberfläche und ist als Teilfläche modelliert. Dies kann durch Partitionieren (Trennen) der Flächen im Abaqus erfolgen. Die Fläche entlang der Rissoberfläche ist von der Symmetrierandbedingung ausgenommen.

Partition

Die Geometrie des Abaqus-Modells kann man in verschiedene Abschnitte oder in verschiedene Formen unterteilen, die sogenannten Partitionen. Diese Partitionen können verwendet werden, um einzelne Eigenschaften zu spezifizieren, vor allem die Maschenweite, aber auch Materialeigenschaften, Lasten oder Randbedingungen. Um eine bestimmte Verfeinerung der Partitionen zu steuern, werden an den Partitionskanten Elementgrößen angegeben. Man kann willkürlich mehrere Partitionen innerhalb des untersuchten Körpers einsetzen. Die Lage und Anzahl der Partitionen beeinflussen die Netzgröße und Netzdichte. Es ist zu empfehlen, zuerst das Rissspitzenumfeld zu partitionieren und danach das Gesamtmodell. In diesem Kapitel sind einfache Linienpartitionen oder halbelliptische Partitionen für den Riss und schlauchförmige halbelliptische Partitionen für den Nahbereich des Risses dargestellt. In Abbildung 5.4 ist eine Linienpartition zu sehen, welche die Netzverteilung in der Draufsicht zur Außenkante gleichmäßig strukturiert.

5.3.1.2 Materialkennwerte

Ein isotropes elastisches Material mit

8355	Stahlgüte ($f_y = 355 \text{ N/mm}^2$)
E=210 000 N/mm ²	Elastizitätsmodul
q=0.3	Querkontraktionszahl (auch als Poissonzahl v bekannt)

ist unter "Materials" zu definieren.

5.3.1.3 Randbedingungen im Abaqus-Modell

Abbildung 5.5: links: Zugbelastung an unterer Fläche, rechts: Symmetrie-Lagerflächen rot gefüllt

Es wird eine einachsige Zugspannung auf die rot umrahmte Fläche in der oberen Abbildung links aufgebracht (vgl. Kapitel 4.1.3).

Die rot gefüllten Bereiche in der Abbildung 5.5 rechts stellen die Symmetrieebenen dar und werden lediglich gegen die Verschiebung in ihrer Normalen gehalten. Die Verdrehung dieser schraffierten Flächen ist gesperrt.

5.3.1.4 Diskretisierung der Elemente am Globalmodell

Im globalen Modell wurden nur die Hexaederelemente C3D20R (R für reduzierte Integration) angewendet und mit der Netztechnik "Sweep" (auch "swept meshing" genannt) vernetzt. Mit dieser Technik wird vorerst nur eine Fläche (Quellseite der Swept-Vernetzung) vernetzt. Das Netz kann hier im Bereich der Rissfront und am Rissenden entsprechend verfeinert werden (Abbildung 5.6). Diese Netzstruktur der x-z Ebene wird durch Angabe der Knotenanzahl an der Plattenkante in y-Richtung "übereinandergestapelt".

Anzahl der Elemente:	37205
Elementtyp:	quadratisches Element (C3D20R: A 20-node quadratic brick, reduced integration)
Elementform:	Hexaederelement
Vernetzungstechnik:	Sweep

Besonderer Augenmerk in der Vernetzung der oberen Struktur ist dem Bereich innerhalb der "orangen Wolke" (Abbildung 5.6 rechts) zu legen. Aufgrund des engen Radiusverlaufs der Halbellipse zur Oberfläche werden in diesem Vernetzungsgebiet verzerrte und kleinere Elementgrößen evtl. problematisch.

Abbildung 5.7 Draufsicht der Rissfläche im Detailbereich, Vernetzung der oberen Struktur als Quellseite

In der Analyse wurden zuerst größere Elemente in der Rissfront gewählt (z.B.: 1mm oder größer), damit man geringere Elementmengen erreichen kann. Da bei den Ergebnissen größere Abweichungen zu sehen waren, wurden die Kantenlängen in der Rissfront schrittweise in Anbetracht der Elementanzahl bis zur Größe von 0.8mm verkleinert. Ziel hierbei ist es, schon mit dem globalen Modell die geringste Abweichung von SIF-Resultaten zu bekommen. Damit ist eine gute Basis für die Berechnung mit dem Submodell gegeben und die Exaktheit der Ergebnisse kann weiter erhöht werden. Die weiteren relevanten Kantenlängen siehe Abbildung 5.7.

Quadratische violett gekennzeichnete Knoten in Abb. 5.7 lassen nicht zu, dass sich die Anzahl der angegebenen Elemente im Abaqus ändert. Schwarze gekennzeichnete einstellbare Knoten in Abb. 5.7 lassen zu, dass die Anzahl der angegebenen Elemente durch Abaqus automatisch geändert werden kann.

5.3.1.5 Rissdefinition für RSE im Abaqus-Modell

Um den Riss zu definieren, werden folgende Angaben erforderlich:

- ✤ Angabe der Rissfront und der Rissspitze
- * normal zur Rissebene (engl.: Normal to crack plane) oder in Richtung des Rissfortschritts
 - > Die Rissfortschrittsrichtung (engl.: Crack Extension direction), Bezeichnung mit q-Vektor

Abbildung 5.8: Ausschnitt aus dem Teilmodell für die Darstellung der Rissfortschrittsrichtung (q-Vektor) an der Rissfront

In der Abbildung 5.8 ist die Rissfortschrittsrichtung zu sehen. Die Einstellungen im Abaqus werden in der Abbildung 5.9 verdeutlicht. Die Symmetrie des Teilmodells wird mit "*On symmetry plane"* eingestellt. Die Rissfortschrittsrichtung kann man entweder mit "*q vectors"* oder "*Normal to crack plane"* festlegen (Abbildung 5.9 links). Das Erste ist für Rissfortschrittsrichtungen, welche normal zu einer Fläche stehen. In unserem Fall für die untersuchten Modus I Richtungen (vgl. Abb. 2.3). Das Zweite kann man auch für komplizierte Rissfortschrittsrichtungen anwenden. Beide Anwendungen werden bei Konturintegralberechnungen verwendet.

+ Edit Crack	🜩 Edit Crack 🛛 🕅 🕅
Name: Crack-1	Name: Crack-1
Type: Contour integral	Type: Contour integral
Domain: Geometry	Domain: Geometry
General Singularity	General Singularity
 On symmetry plane (half-crack model) Crack front: (Picked) Crack tip/line: (Same as crack front) Crack Extension Direction Normal to crack plane: (0,-1,0) q vectors 	Second-order Mesh Options Midside node parameter (0 <t<1): 0.25<br="">Note: Crack tip is at t=0 Degenerate Element Control at Crack Tip/Line No degeneracy Collapsed element side, single node Collapsed element side, duplicate nodes</t<1):>
OK Cancel	OK Cancel

Abbildung 5.9: Risseinstellungen im Abaqus-Modell, links: Symmetrieeinstellung und Rissfortschrittsrichtung, rechts: Singularitätseinstellung [Abaqus 6.14, 2018]

In der Abbildung 5.9 rechts wird die Singularität mit der Eingabe einer Mittelpunktverschiebung mit 0.25 festgelegt. Die im Kapitel 3 beschriebenen Rissspitzenelemente werden kollabierend eingestellt. Die Knoten dieser Elemente werden an der Rissspitze mit der Einstellung "Collapsed element side, duplicate nodes" für die Singularität angepasst.

5.3.2 RSE-SUBMODELL

Es gibt mehrere Varianten wie man das Submodell im Abaqus-Modell erstellen kann. Für diese Arbeit wurde im Abaqus das bestehende Globalmodell kopiert und die Attribute dementsprechend umgeändert. Nachfolgend werden nur die Änderungen vorgestellt. Die restlichen Eingaben sind dem globalen Modell äquivalent.

5.3.2.1 Geometrie des Submodells

Anhand der im Kapitel 5.1 vorgestellten Möglichkeiten und Varianten zur Definition eines Submodells wird hier eine Geometrie festgelegt. Die Tiefe t des Submodells ist gleich dem Referenzmodell (=globales Modell). Die Höhe und die Breite wurden in einer willkürlichen Entfernung von der Rissspitze gewählt. Die Submodellbreite S_B entspricht für diesen Fall einer Größe von 5 S_B=42.83 mm und die Höhe beträgt

 S_H =14.15mm. Zusätzlich werden Partitionen eingefügt, um die Rissspitzenelemente einarbeiten zu können. Zwei halbschlauchförmige Partitionen dienen der Diskretisierung um die Rissspitze. Die Partition 1 trennt die Halbschläuche in 2 Teile, um die Diskretisierung zu vereinfachen (vgl. Abb. 5.10). Dies verhindert auch die Entstehung von zu verzerrten Elementen unterhalb der Rissfront und ermöglicht zusätzlich die Anwendung von sogenannten Wedge-Elementen (quadratische C3D15-Elemente). Diese Wedge-Elemente sind dem im Kapitel 3.2.2 beschriebenen kollabierten Hexaederelementen äquivalent.

Abbildung 5.10 Submodell-Geometrie

Randbedingungen im Abagus-Modell

23 🐥 Edit Boundary Condition Name: BC-3 Submodel Type: Step: Step-1 (Static, General) Region: sub_mantelfläche 💫 Driving region: Automatic Specify: Exterior tolerance: Relative Relative: 0.05 Absolute Magnitudes: Use results from global model Degrees of freedom: 1.2.3 Global step number: 1 Trennung zw. Sub-Scale: 1 und Globalmodell Scale time period of global step to time period of submodel step. ОК Cancel a) vom Globalmodell übernommene RB Auflagerfläche Auflagerfläche 5 XSYMM(U1=UR2=UR3=0) YSYMM(U2=UR1=UR3=0)

b) Symmetriebedingungen in x-und y-Richtung

Abbildung 5.11: Submodell Lagerbedingungen, a) Schnittflächen zum globalen Modell, b) Symmetrieflächen

In der Abbildung 5.11 a) werden die Verschiebungseigenschaften vom globalen Modell über die orange markierten Flächen zum Submodell übertragen. Die Berührungsfläche zum globalen Modell wird als Mantelfläche definiert und mit den Freiheitsgraden 1,2,3 versehen. Die Verschiebungen vom globalen Modell werden in x,y-und z Richtung über die Freiheitsgrade 1,2 und 3 übertragen. Die Skalierung und weitere Schritte werden eins zu eins vom globalen Modell übernommen (Abbildung 5.11 a) rechts). In Abbildung 5.11 b) sind die gleichen Symmetrieebenen wie im globalen Modell dargestellt. Diese müssen im Abaqus-Modell neu definiert werden.

5.3.2.3 Diskretisierung der Elemente

Es gelten prinzipiell die gleichen Einschränkungen wie im Kapitel 5.3.1.4. Zusätzlich zu dem Globalmodell werden hier zwei Halbschläuche eingeführt, um die Rissfront mit den Rissspitzenelementen vernetzen zu können. Der innere Halbschlauch ermöglicht die Diskretisierung mit den Singularitätselementen. Dieser hat für den Fall 5 einen Radius von 0.4 mm und sollte nicht größer als 0.5 mm sein. Der äußere Halbschlauch hat 4 mm und hängt von Rissbreite c, Halbachsenverhältnis a/c und von der benötigten Feinheit der Diskretisierung um die Rissspitze ab. Weiters beeinflusst der äußere Halbschlauch auch die

5.3.2.2

Elemente außerhalb seiner Grenzen. Die Halbschlauchbögen haben über die gesamte Bogenlänge 20 Elemente (siehe Abbildung 5.12).

Die Kantenlänge in der Rissfront hat großen Einfluss auf die Genauigkeit der errechneten K-Werte. Schon bei 0.4 mm Kantenlänge bekommen die K-Werte Abweichungen von über 1%. Abaqus akzeptiert die Berechnung bis zur Kantenlänge von 0.2mm an der Rissfront. Schon bei 0.1 mm Kantenlänge bilden sich "Fehlelemente", die keine weitere Berechnung mehr ermöglichen, am engen Radiusbereich der Halbellipse. (siehe Abbildung 5.13)

Tabelle 5.1:	Vernetzung am	Submodell mi	t RSE-Methode
<i>iuvuu 5.1</i> .	i ci ncizang uni	Submouch mi	i Koll-mout

	an derRissfront	Halbschlauch	Submodell
			Gesamt
Anzahl der Elemente:	1760	12320	74609
Elementtyp:	quadratisches Element	quadratisches Element	gemischt
	(C3D15: A 15-node	(C3D20R: A 20-node	
	quadratic triangular	quadratic brick, reduced	
	prism.)	integration.)	
Elementform:	Wedge-Element	Hexaeder-Element	gemischt
Vernetzungstechnik:	Sweep	Structured	gemischt

Gefahr der Fehlvernetzung

Abbildung 5.13: Vernetzungsvarianten an der Rissfront, links: 0.1mm Kantenlänge an der Rissfront, rechts: 0.6 mm Kantenlänge an der Rissfront

Die Abbildung 5.13 stellt eigentlich die Grenzen der Kantenlängen dar. Die violett markierten Elemente innerhalb der rot umrahmten Wolke sind "Fehlelemente", die von Abaqus für die Berechnung nicht akzeptiert werden. Bei diesen Vernetzungsarten werden die Berechnungen mit Abaqus nicht gestartet.

Die erste Kantenlänge mit 0.1 mm an der Rissfront verdichtet die Struktur und vergrößert die Elementanzahl deutlich (Abbildung 5.13 links). Die zweite Variante (Abbildung 5.13 rechts) hat zwar eine übersichtliche Struktur, jedoch werden die Elemente zur Rissspitze verzerrter und gelten somit als "Fehlelemente".

5.3.3 DISKRETISIERUNG AM UNGETEILTEN MODELL

Bei Risstiefen bis zu 10 mm werden die Teilmodelle ohne Submodellierung als Ganzes betrachtet. Da bei der RSE-Methode die Vernetzung immer von der Rissspitze bzw. von der Rissfront ausgehend erfolgen muss, formen sich die Elemente bis zur äußeren Probenkante in Abhängigkeit von den Knotenangaben (bzw. der Kantenlänge) im Halbschlauchbereich. (siehe Abbildung 5.14)

Abbildung 5.14: links: Gesamtmodell mit Partitionen und Halbschläuchen, rechts: Vernetzung des Gesamtmodells (Fall 3 mit 9.6 mm Risstiefe)

In Abbildung 5.14 rechts ist weiter zur Rissspitze hin eine Zentrierung und eine massiv konzentrierte Verfeinerung der Elemente zu sehen.

Abbildung 5.15: Ausschnitt der Draufsicht im Rissbereich, Vernetzung an der Rissoberfläche (Fall 3 mit 9.6 mm Risstiefe)

Die Elementkanten an der Rissfront können auch mit variablen Längen ausgebildet werden, um die Genauigkeit der K-Werte an der Oberfläche bzw. am Scheitel zu erhöhen. Wie mehrmals erwähnt, wird als erstes die Akzeptanz der Vernetzung am inneren Halbschlauch überprüft und nach außen hin diskretisiert.

Je kleiner die Rissgröße, desto kleiner die Kantenlänge an der Rissfront oder auch umgekehrt.

In der Abbildung 5.15 variieren die Kantenlängen der Elemente von 1 mm bis 0.3 mm. Die restliche Struktur wird dem Bereich des äußeren Halbschlauchs angepasst.

5.4 ANWENDUNG MIT DER XFEM-METHODE

Nachfolgend werden die Eingabeschritte in Abaqus für die Fälle 5 und 11 sowohl für das globale Modell als auch für das Submodell behandelt. Diese Fälle unterscheiden sich lediglich in der gezogenen Probenbreite W, deshalb wird zur besseren Übersicht nur der Fall 5 für die Abbildung verwendet.

Bei der XFEM-Methode wird der Riss als eigene Instanz betrachtet und in der Modellierung getrennt als Schalenelement (Shell planar) diskretisiert. Daher ist es bei der XFEM nicht möglich, das Gesamtmodell in Teilmodelle bzw. in Symmetrieachsen zu teilen, wie in der Modellierungsvariante 1 im Kapitel 5.1 dargestellt wiederzufinden ist. Um die erforderliche Genauigkeit der K-Werte schon bei dem ersten Versuch zu bekommen, werden alle Fälle mit der Submodelltechnik modelliert.

5.4.1 GLOBALES XFEM-MODELL

Abbildung 5.16: Gesamtmodell als globales Modell für Fall 5

In der Abbildung 5.16 sieht man den Riss als vollelliptischen Riss. Dies hat den Grund, dass der Riss im Abaqus mit der XFEM als eigene Instanz modelliert ist. Es ist einzig und allein die Lage des Risses festzulegen. In Abaqus geschieht dies durch die Verdrehung und Verschiebung dieses "Shell"-Enelementes in die richtige Position. Diese Position wird durch eine Bezugsebene (gelb strichlierter Rahmen), die hier als Partition eingeführt worden ist, festgehalten. Die Hälfte der Ellipse befindet sich nach dieser

Positionierung in der Platte. Es wird somit ein halbelliptisches Risselement in die Platte eingefügt (sozusagen als Naht implementiert).

5.4.1.1 Materialkennwerte

Ein isotropes elastisches Material ist mit

S355	Stahlgüte (f _y =355 N/mm ²)
E=210 000 N/mm ²	Elastizitätsmodul
q=0.3	Querkontraktionszahl (auch als Poissonzahl v bekannt)

unter "Materials" zu definieren.

5.4.1.2 Randbedingungen im Abaqus-Modell

Abbildung 5.17: einachsige Zugbelastung an der Platte, links: Isometrie, rechts: Ansicht Die Platte wird in die Y-Richtung mit einer Zugbelastung gezogen. Dies erfolgt über die rot strichlierte Fläche (Abbildung 5.17) mit einer Membranspannung von 200 N/mm².

Abbildung 5.18: Auflagerfläche im XFEM-Modell

Die obere Querschnittsfläche der Platte wird als festes Auflager fixiert. Dieses feste Auflager ist in der Abbildung 5.18 rot strichliert zu sehen. Die Auflagerbedingungen sind im Abaqus mit: "Pinned(U1=U2=U3=0)" festzulegen. Die Platte wird hier gelenkig mit festem Auflager gehalten.

5.4.1.3 Diskretisierung der Elemente am Globalmodell

Die im Kapitel 5.2.1 beschriebene Netztechnik "Sweep" wird auch hier angewendet. Bei der XFEM werden ausschließlich lineare Elemente verwendet. Dies hat gegenüber RSE den Vorteil, dass man mit der gleichen Elementanzahl wie bei RSE schnellere Berechnungszeiten erzielt. Dies bedeutet darüber hinaus, dass eine größere Anzahl von Elementen berechnet werden können. Die räumliche Diskretisierung im Rissfeldbereich muss so fein sein, dass ausreichend genaue Resultate der Nahfeldlösung erzielt werden können. Mit dieser Gedanke wird ein Rahmen um den Riss gelegt, der später auch als Submodell in Anwendung gezogen wird. Dieser Rahmen wird dem Gültigkeitsbereich der Spannungsintensitäten deckend positioniert. Das FEM-Netz muss nicht der Rissgeometrie entsprechen. Das lokale Submodellgebiet wird gleichmäßig unter "structed" Technik vernetzt (siehe Abbildung 5.18).

Abbildung 5.19: links: Vernetzung vom Gesamtmodell, rechts: Ausschnitt vom Rissnahbereich

Im globalen Modell wurden nur die Hexaederelemente C3D8R (R für reduzierte Integration) angewendet und mit der Netztechnik "Sweep" (auch "swept meshing" genannt) vernetzt. Die Verzerrung der Elemente befindet sich in der x-y Ebene und damit auch die Quellseite der Vernetzung.

Anzahl der Elemente:	254328
Elementtyp:	lineares Element (C3D8R: 8-node linear brick, reduced integration, hourglass control.)
Elementform:	Hexaederelement
Vernetzungstechnik:	Sweep und Structured (im Submodellbereich)

XFEM ist wesentlich einfacher zu verwenden, als herkömmliche fokussierte Netz-Ansätze, um Konturintegrale zu bewerten. Die für das Konturintegral benötigten Daten werden automatisch auf der Ebene bestimmt. Die vorzeichenbehafteten Abstandsfunktionen sind die Knoten in einem Element.

5.4.1.4 Rissdefinition für RSE-Modelle in Abaqus

Der Riss wird bei der XFEM-Methode als ein ebener Teil in Form einer ganzen Ellipse, ins Gesamtmodell eingebettet. Diese ebene schalenförmige Atrappe enthält keinerlei Vernetzung und wird auch ohne Eigenschaften modelliert (siehe Abbildung 5.20 links). Die Risseinstellung in Abaqus ist in Abbildung 5.20 rechts zu sehen. Die in Rot gezeichnete Struktur links wird unter "Region" und das pink schraffierte Risselement unter "Crack location" markiert.

Abbildung 5.20: links: Risspositionierung in das Gesamtmodell, rechts: Einstellungen zur Rissbildung im Abaqus

In Abb. 5.20 kann man die Vereinfachung bei der Eingabe erkennen, sodass die Rissbestimmung im XFEM-Methode wesentlich leichter erfolgt, als bei der RSE-Methode. Dies wird im nächsten Kapitel, bei Partitionierung und Vernetzung der Struktur, deutlicher zu sehen sein.

5.4.2 XFEM-SUBMODELL

Die Beschreibung im Kapitel 5.3.2 gilt auch hier. Zusätzlich kann man sagen, dass in XFEM das Submodell nur dann notwendig ist, wenn an der Rissfront eine weitere Netzverfeinerung gezogen werden sollte. Bei dieser Arbeit wurden alle symmetrischen Fälle mit einem Submodell, berechnet, um die unteren Grenzen der Netzfeinheit herauszufinden. In den nachfolgenden Unterkapiteln werden die Schritte zur Definition eines Submodells für die XFEM-Methode ausgearbeitet.

5.4.2.1 Geometrie des Submodells

Abbildung 5.21 Submodell-Geometrie für XFEM-Modell für Fall 5

Die Submodelldimension ist mit dem Maß S_H der Höhe und S_B der Breite und t der Tiefe bestimmt. Die Tiefe t entspricht der des globalen Modells (t=24mm), die Breite beträgt S_B =70 mm und die Höhe beträgt S_H =20 mm. Es wurden Partitionen erstellt, um die Rissfront feiner zu diskretisieren. Dazu werden in der Abbildung 5.21 vier Partitionsflächen erzeugt, um die Rissfront einzugrenzen. Die zwei horizontalen und die zwei vertikalen Partitionen umschließen die Rissfront für ein feineres Netz. Der Abstand von horizontalen Partitionen beträgt 2 mm und von vertikalen halbelliptischen Partitionen beträgt 3 mm zueinander.

5.4.2.2 Randbedingungen im Abaqus-Modell

Abbildung 5.22: Auflagerungen des XFEM-Submodells

In der Abbildung 5.22 markierte Schnittflächen stellen die Verbindung zwischen Submodell und Globalmodell dar. Für die Randbedingungen sind lediglich die Freiheitsgrade einzustellen, die die Verschiebungen vom Globalmodell übernehmen. Diese Einstellung ist unter dem Kapitel 5.3.2.2 zu finden.

5.4.2.3 Diskretisierung der XFEM-Elemente

Abbildung 5.23: Vernetzung des XFEM-Submodells

Die Grundeinstellung der Kantenlänge beträgt 1mm. Die violett markierten Linien in Abb. 5.23 deuten auf eine verfeinerte Netzeinstellung. Die horizontale Kantenlänge in der Rissfrontumgebung beträgt 0,3 mm. Die vertikalen Kanten in der Rissebene haben eine Kantenlänge von 0,2mm. In der Abbildung 5.23 sieht man die Basisebene des Netzes im Gegensatz zum Globalmodell in der oberen Draufsicht. Dies hat hier den Vorteil, dass die Netzfeinheit in der Belastungsebene das Nahfeld des Risses abdeckt.

	Submodell Gesamt
Anzahl der Elemente:	268184
Elementtyp:	Lineares Element
	(C3D8R: An 8-node
	linear brick, reduced
	integration, hourglass
	control.)
Elementform:	Hexaeder-Element
Vernetzungstechnik:	Sweep

Tabelle 5.2: Vernetzung am Submodell mit XFEM

Die Elementanzahl ist mit 268184 höher als im Globalmodell. Dies ist als Vorteil zu betrachten, da mit linearen Elementen der Rissbereich deutlich feiner vernetzt werden kann.

Problem der Fehlvernetzung

Die Diskretisierung mit der XFEM hat in Abaqus großes Variationsfeld. Mithilfe der Vernetzungstechnik "Sweep" können zahlreiche Elementgrößen miteinander in Kombination gebracht werden. Eine inakzeptable Diskretisierung tritt dann ein, wenn die Kantenlängen der Elemente in den Partitionskanten z.B. von 0,2 mm auf 5 mm springen (vgl. Abbildung 5.24). Die gelb gefüllten Partitionen werden demnach nicht vernetzt.

Abbildung 5.24: XFEM-Submodel mit zu stark verzerrten Elementen (gelber Bereich)

Es gibt jedoch die Möglichkeit auch mit zusätzlichen Partitionen die Diskretisierung zu erstellen. In diesem Fall müsste man mit großen Elementmengen und folglich mit sehr langen Rechenzeiten rechnen.

5.5 PRAKTISCHE HINWEISE ZUR MODELLERSTELLUNG

Bei den bisherigen Abschnitten ab 5.2 wurden anhand eines Fallbeispiels die Details der Modellerstellung gezeigt. Daher werden hier die wesentlichen Punkte nochmals zusammengefasst:

- Bei Anwendung von Abaqus
 - > Unterscheidung nach der angewendeten Methode (RSE, XFEM)
- Die Geometrie der untersuchten Struktur (Platte) optimieren
 - > Die Teilung von Modellen anhand von Symmetrieebenen unbedingt ausnutzen (RSE-Methode)
 - Querschnitt wird zumeist vorgegeben, die Länge der Struktur nach der Querschnittsbreite orientieren
- Sei der RSE-Methode wird der Riss und die Platte zusammen modelliert
 - Um die Rissspitze zu erfassen, wird eine kreisförmige Partition (in dieser Arbeit "Halbschlauch") mit dem Radius unter 1 mm vorausgesetzt
 - Um die Konturen zu erfassen wird vorgeschlagen, eine kreisförmige Partition in äußeren Konturebenen zu setzen (vgl. Abb. 5.12)
 - Innerhalb dieser kreisförmigen Partitionen, rund um die Rissspitze, wird die Anwendung von Vernetzungstechnik "structured" vorgeschlagen
 - Ausserhalb der Halbschläuche können je nach der Partitionsart verschiedene Vernetzungstechniken wie "structured" oder "sweep" verwendet werden.
- Bei Anwendung der XFEM-Methode
 - > Der Riss wird als Ganzes modelliert, daher keine Trennung in den Symmetrieebenen möglich
 - > Alle Modelle enthalten die gleiche Vernetzungstechnik "sweep", Entfall von Halbschläuchen
- Riss breitet sich in einem Berechnungsschritt vollständig durch ein Element aus
 - > Deshalb kann bei der XFEM nur die anfängliche Rissspitze innerhalb eines Elements liegen
- Bei der XFEM-Methode sollten die äußeren Risskanten über die Basisgeometrie hinaus erweitert werden
 - Dies hilft, eine falsche Identifikation von externen Kanten als intern aufgrund von geometrischen Toleranzproblemen zu vermeiden

KAPITEL 6: ERGEBNISVERGLEICH DER SPANNUNGSINTENSITÄTS-FAKTOREN

6.1 ERGEBNISVERGLEICH FÜR FALL 5 – GÜTE DER ERGEBNISSE IN ABHÄNGIGKEIT DES DISKRETISIERUNGSGRADES

Bei der Diskretisierung handelt es sich um die Aufteilung des untersuchten Gebietes (in unserem Fall der "Platte") in kleine Teile, sogenannte Elemente. Dies wird auch als Vernetzung bezeichnet. Die Netzdichte der untersuchten Platte beeinflusst das SIF-Ergebnis. Vor allem die Vernetzung an der Rissfront ist hierbei ausschlaggebend. Neben der Netzdichte im Rissfeld ist auch die Vernetzungsart an der Rissfront für die SIF-Ergebnisse von großer Bedeutung.

Abbildung 6 1: SIF-Werte in Abhängigkeit des Winkels ϕ für Fall 5

In Abbildung 6.1 werden die SIF-Ergebnisse aus der RSE-Methode und der XFEM-Methode mit der Lösung Varfolomeyev für Fall 5 gegenübergestellt. Die Ergebnisse basieren bei der RSE-Methode auf einen Mittelwert von 5 Konturen und bei der XFEM auf einen Mittelwert von 7 Konturen. Im Folgenden werden für Fall 5 mit beiden numerischen Berechnungsmethoden unterschiedliche Diskretisierungsgrade gegenübergestellt.

6.1.1 K-FAKTOREN FÜR RISSSPITZENELEMENTE (RSE-METHODE)

Es werden drei unterschiedliche Varianten zum Diskretisierungsgrad vorgestellt. Bei den Varianten wurden im Globalmodel bezüglich Elementanzahl keine Änderungen durchgeführt. Die Elementanzahl von 37205 im Globalmodel bleibt bestehen. Die Änderungen beziehen sich lediglich auf das Submodell (vgl. Abschnitt 5.3.2.3). In Tabelle 6.1 werden diese Änderungen bezüglich der Elementanzahl und Elementgröße gezeigt.

	Variante 1	Variante 2	Variante 3
Elementkantenlänge global [mm]	1,0	0,75	0,75
Elementkantenlänge an der	0,8 →0,5	0.2	0.4
Rissfront [mm]	$(\phi=90^\circ) \rightarrow (\phi=0^\circ)$	0,2	0,4
Anzahl d. Elemente im Submodel	35530	153125	74069

Tabelle 6.1: Angaben zur Diskretisierung mit RSE-Methode Fall 5

Abbildung 6.2: Variatenvergleich des Diskretisierungsgrades mit RSE-Methode

Die Variante 1 weist die genauesten Resultate im Vergleich zur Lösung der Varfolomeyev auf, sowohl für Ka-Werte als auch für Kc-Werte. Deshalb wird die Variante 1 für Fall 5 als Endergebnis festgelegt. Diese Genauigkeit ist in Prozent in Abbildung 6.2 ersichtlich.

Die Variante 2 und Variante 3 in Abbildung 6.2 weisen mit minimalem Unterschied, tendenziell die gleichen Abweichungen auf. Eine deutliche Änderung der Ergebnisse ist zur Plattenoberfläche hin und zwischen den Winkeln 10° und 50° zu sehen.

Die Variante 2 weist mit 3.5% Abweichung an der Oberfläche der Platte für den Kc-Wert ein deutlich besseres Ergebnis als das der Variante 3 auf (im Vergleich zu Lösung Varfolomeyev).

In Abbildung 6.3 a) wird anhand von zwei Graphiken die Deformation im Bereich der Rissöffnung veranschaulicht (Darstellung der verformten Geometrie). Die Graphik in Abb. 6.3b) basiert auf dem globalen Model und besitzt an der Rissfront 0,8 mm große Elemente. In diesem Fall ist die Diskretisierung für eine akkurate Ergebnisbestimmung nicht ausreichend, da die Vernetzung zu grob ist. Die Graphik in Abb.6.3a) weist dahingegen eine feinere Vernetzung mit dem sichtbaren Halbschlauch an der Rissfront. In beiden Graphiken ist die plastische Zone grau gefüllt zu sehen, welche bei der RSE-Methode keinen Einfluss auf die Konturgestaltung und in weiterer Folge auf die Ermittlung der K-Werte hat.

6.1.2 K-FAKTOREN FÜR XFEM METHODE

In der Tabelle 6.2 sind Angaben zu der Elementgröße und Elementanzahl zu sehen, welche in drei Varianten unterteilt werden. Die Variante 1 umfasst die größte Anzahl an Elementen, mit deutlich kleineren Elementen an der Rissfront. Die Variante 2 weist mit ihren fast 31 Tausend Elementen, im Vergleich zu den anderen Varianten sehr kurze Rechenzeiten auf. In Variante 3 sind 162144 Elemente für die Diskretisierung vorgesehen.

	Variante 1	Variante 2	Variante 3
Elementkantenlänge global [mm]	1	4	3
Elementkantenlänge am Rissfeld [mm]	0,3	2	1
Anzahl d. Elemente im Submodel	268 184	30 696	162 144

Tabelle 6.2: Angaben zur Diskretisierung mit XFEM

Abbildung 6. 4: Variantenvergleich des Diskretisierungsgrades mit XFEM-Methode

In Abbildung 6.4 sind die Verläufe der Varianten in prozentuelle Darstellung zu sehen. Die Varianten haben einen unregelmäßigen Verlauf und zeigen zum Scheitelpunkt der Halbellipse hin die geringsten Abweichungen (K_a -Wert).

Die Variante 1 weist gegenüber der Lösung Varfolomeyev einen genaueren Verlauf auf und hat ihre maximale Abweichung bei $\phi=30^{\circ}$ (9%).

Die Variante 2 schneidet an der Oberfläche der Platte zwischen $\phi 0^{\circ}-5^{\circ}$ (K_c-Wert) und bei $\phi=30^{\circ}$ besser gegenüber der Variante 1 ab. Der restliche Verlauf ist jedoch über der akzeptablen Abweichungsgrenze.

Die Variante 3 weist an der Oberfläche der Platte eine Abweichung von über 5% auf (K_c -Wert). Zum Scheitelpunkt der Halbellipse hin zeigt die Variante 3 geringere Abweichungen (K_a -Wert).

a-) Globalmodell

Im Unterschied zur RSE-Methode ist die Rissöffnung mit der XFEM-Methode als Ganzes zu sehen. In der Ergebnisgraphik sind die Rissspitzen an der Oberfläche eindeutig erkennbar. Die unbelasteten Rissoberflächen strecken sich nach oben und nach unten im blauen Bereich aus (vgl. Abbildung 6.5 a)). Das Submodell als Ausschnitt ist für die feinere Diskretisierung hilfreich, verbessert jedoch die Resultate nicht erheblich (vgl. Abbildung 6.5 b). Betrachtet man den Plattenquerschnitt in der Seitenansicht, ist eine Biegung der ungerissenen Plattenoberfläche zur Rissspitze hin am Scheitelpunkt der Halbellipse zu erkennen. Der ganze Querschnitt auf der gelben Linienmarkierung (vgl. Abbildung 6.5 c-)) verschiebt sich zu der gerissenen Plattenseite hin. In der Rissfrontumgebung bildet sich eine grau dargestellte plastische Zone, die einem Hundeknochen ähnelt.

6.2 GÜTE DER ERGEBNISSE IN ABHÄNGIGKEIT DES INTEGRATIONSRAUMES (ANZAHL DER GEWÄHLTEN KONTUREN)

Der Integrationsraum wird in der RSE-Methode über die kreisförmigen Elementringe um die Rissfront gebildet (vgl. Abb. 2.9), die innerhalb der vorgegebenen Kontur liegen. Ein Elementring ist Teil einer Kontur, welche in Abbildung 5.12 in Abschnitt 5.3.2.3 zu sehen ist. In der XFEM-Methode haben diese einzelnen Elementringe rechteckige Form (vgl. Abb. 5.23, in der x-y-Ebene).

Die endgültigen ausgewiesenen SIF-Werte stellen einen Mittelwert aus den numerisch ermittelten Werten für jede Elementreihe dar. Bei der XFEM-Methode wurden für alle Fälle 10 Elementreihen innerhalb der vorgegebenen Kontur gerechnet. Bei der RSE-Methode variiert die Anzahl der Elementreihen zwischen 5 und 6.

Im Weiteren wird die Auswirkung des gewählten Integrationsraums auf die SIF-Werte untersucht. Die Auswirkung wird über die Anzahl Elementreihen innerhalb der Kontur gesteuert.

6.2.1 RISSSPITZENELEMENTE (RSE-METHODE)

Für den Fall 5 werden insgesamt 5 verschiedene Konturen angesetzt (vgl. Abbildung 2.9 in Kapitel 2). Der ausgewiesene SIF-Wert wird entweder aus der Berechnung übernommen (für Kontur 1, Berechnung mit "1x Kontur" in Abb. 6.4) bei Vorgabe von Kontur 2 bis 5 erfolgt eine entsprechende Mittelwertbildung über die numerisch errechneten Einzelergebnisse in 2 Elementreihen (für Kontur 2) bis 5 Elementreihen (für Kontur 5). In Abb. 6.4 bedeutet "5 x Konturen" die Vorgabe von Kontur 5 und "3 x Konturen" die Vorgabe von Kontur 3.

Abbildung 6.4: prozentuelle Gegenüberstellung der SIF-Resultate mit der RSE-Methode

Die Ergebnisse in Abbildung 6.4 zeigen, dass die Verläufe nahezu deckungsgleich übereinanderliegen. Es werden minimale Differenzen unter 1% festgestellt.

6.2.2 K-FAKTOREN MIT XFEM METHODE

Die XFEM-Methode benötigt mehr Elementreihen innerhalb der vorgegebenen Konturen als die RSE-Methode, um zutreffende Ergebnisse zu erzielen. Ein großer Faktor dabei ist das Gültigkeitsgebiet des K-Wertes.

Das Gültigkeitsgebiet des K-Wertes hängt stark von der Abbildung der Singularität ab. Im Rissspitzenbereich wird die Singularität ungenau erfasst. Diese Ungenauigkeit umfasst je nach Rissgröße 2 bis 4, in manchen Fällen sogar 5 Konturen. Für alle XFEM-Berechnungen werden daher einheitlich die ersten 3 Konturen C1 bis C3 weggelassen.

Abbildung 6.5: prozentuelle Gegenüberstellung der SIF-Resultate mit der XFEM-Methode

In Abbildung 6.5 kann aus den Verläufen eindeutig geschlossen werden, dass K-Werte mit steigender Konturzahl konvergieren. Mit einer Kontur weist der K-Wert für Fall 5 bis zu 13.95% Streuung auf. Mit 4 Konturen ist eine maximale Streuung von 9.43% zu erkennen. Die FE-Lösungen mit 7 Konturen streuen im Fall 5 für Ka(ϕ =90°) um bis zur 3.06% und für Kc(ϕ =0°) um bis zu 0.67%, gegenüber der Lösung Varfolomeyev.

6.3 GESAMTERGEBNISSE FALL 1 BIS 14

Die Lösungen der einzelnen Fälle werden vorerst tabellarisch gegenübergestellt. In den Tabellen 6.3 bis 6.16 sind die Angaben bezüglich Geometrie des Bauteils und des Risses eingetragen. Mit den vorgestellten zwei Methoden werden die K-Faktoren ermittelt und den Ergebnissen nach Varfolomeyev für $\phi=0^{\circ}$ (K_c) und $\phi=90^{\circ}$ (K_a) gegenübergestellt.

Die genauen Verläufe der numerisch errechneten K-Faktoren ($\phi=0^{\circ}$ bis 90°) finden sich in Abschnitt 6.4. Zu beachten ist, dass für die Werte Kc in den nachfolgenden Tabellen aus den numerischen Berechnungen immer die Werte für $\phi\sim5^{\circ}$ angeführt sind (Begründung in Abschnitt 6.4).

6.3.1 FALL 1

Bei den SIF-Werten an der Oberfläche Kc wurden für beide Berechnungsmethoden höhere Abweichungen festgestellt. Die untersuchten FE-Lösungen streuen im Fall 1 für K_a um bis zu -0,22% und für K_c um bis zu -4,62% (vgl. Tabelle 6.3).

Tabelle 6.3: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 1

Angaben

ĴΕ-	111	1
۱rc	1111	

1}	а	t	с	w	a/t	a/c	c/w	σ_{m}	σ_{b}	E
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	1,20	12,00	3,00	100,00	0,10	0,40	0,03	200,00	0,00	210000

Resu	ltate

	Varfolomeyev	Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Кс	259,50	8,21	247,50	-4,62	257,00	-0,96
Ка	366,05	11,58	365,60	-0,12	365,40	-0,18

6.3.2 FALL 2

Die untersuchten FE-Lösungen streuen im Fall 2 für K_a um bis zu -3,14% und für K_c um bis zu -3,21% (vgl. Tabelle 6.4).

Tabelle 6.4: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 2

	Angaben
{Fall 2}	a

Fall 2}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	6,00	12,00	15,00	100,00	0,50	0,40	0,15	200,00	0,00	210000

	Resultate						
	Varfolomeyev (Referenz)		Abaqu	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]	
Кс	750,60	23,74	734,80	-2,10	774,70	3,21	
Ка	974,30	30,81	943,70	-3,14	992,10	1,83	

6.3.3 FALL 3

Die untersuchten FE-Lösungen streuen im Fall 3 für K_a um bis zu -0,26% und für K_c um bis zu 7,20% (vgl. Tabelle 6.5).

Tabelle 6.5: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 3

Angaben

{Fall 3}	а	t	С	w	a/t	a/c	c/w	σ_{m}	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	9,60	12,00	24,00	100,00	0,80	0,40	0,24	200,00	0,00	210000

Resultate

	Varfolomeyev (Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2} MPa√m		$N/mm^{3/2}$	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Kc	1278,20	40,42	1237,00	-3,22	1370,20	7,20
Ka	1374,64	43,47	1375,00	0,03	1371,00	-0,26

6.3.4 FALL 4

Die untersuchten FE-Lösungen streuen im Fall 4 für K_a um bis zu 0,64% und für K_c um bis zu -3,01% (vgl. Tabelle 6.6).

Tabelle 6.6: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 4

	Angaben									
{Fall 4}	а	t	с	w	a/t	a/c	c/w	σ_{m}	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	2,40	24,00	6,00	100,00	0,10	0,40	0,06	200,00	0,00	210000

Resultate

	Varfolomeyev	Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	$N/mm^{3/2}$	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Кс	367,05	11,61	356,00	-3,01	365,90	-0,31
Ка	517,66	16,37	521,00	0,64	519,10	0,28

6.3.5 FALL 5

Die untersuchten FE-Lösungen streuen im Fall 5 für K_a um bis zu 0,67% und für K_c um bis zu -3,49% (vgl. Tabelle 6.7).

Tabelle 6.7: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 5

Angaben

{Fall 5}	а	t	C	w	a/t	a/c	c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	12,00	24,00	30,00	100,00	0,50	0,40	0,30	200,00	0,00	210000

Resultate

	Varfolomeyev (Abaque	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2} MPaVm		N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Кс	1111,86	35,16	1146,00	3,07	1073,00	-3,49
Ка	1407,53	44,51	1417,00	0,67	1407,30	-0,02

6.3.6 FALL 6

Die untersuchten FE-Lösungen streuen im Fall 6 für K_a um bis zu -6,04% und für K_c um bis zu 6,47% (vgl. Tabelle 6.8).

Tabelle 6.8: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 6

{Fall 6}	а	t	С	w	a/t		c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	19,20	24,00	48,00	100,00	0,80	0,40	0,48	200,00	0,00	210000

Resu	ltate

	Varfolomeyev (Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Кс	1987,85	62,86	2116,50	6,47	1934,71	-2,67
Ка	2136,60	67,57	2235,50	4,63	2007,51	-6,04

6.3.7 FALL 7

Die untersuchten FE-Lösungen streuen im Fall 7 für K_a um bis zu -3,97% und für K_c um bis zu -3,90% (vgl. Tabelle 6.9).

Tabelle 6.9: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 7

Angaben

{Fall 7}	а	t	С	w	a/t	a/c	c/w	σ_{m}	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	1,20	12,00	3,00	200,00	0,10	0,40	0,02	200,00	0,00	210000

Resulate

	Varfolomeyev (Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2} MPa√m		$N/mm^{3/2}$	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Kc	259,50	8,21	249,21	-3,97	269,60	3,89
Ka	366,05	11,58	351,79	-3,90	369,50	0,94

6.3.8 FALL 8

Die untersuchten FE-Lösungen streuen im Fall 8 für K_a um bis zu 0,50% und für K_c um bis zu -3,24% (vgl. Tabelle 6.10).

Tabelle 6.10: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 8

	Angaben									
{Fall 8}	а	t	с	w	a/t	a/c	c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	6,00	12,00	15,00	200,00	0,50	0,40	0,08	200,00	0,00	210000

Resultate

	Varfolomeyev	Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{³/2} MPa√m		$N/mm^{3/2}$	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Кс	750,60	23,74	726,30	-3,24	728,40	-2,96
Ка	974,30	30,81	970,20	-0,42	969,40	-0,50

6.3.9 FALL 9

Die untersuchten FE-Lösungen streuen im Fall 9 für K_a um bis zu -2,44% und für K_c um bis zu -5.13% (vgl. Tabelle 6.11).

Tabelle 6.11: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 9

Angaben

{Fall 9}	а	t	с	w	a/t	a/c	c/w	σ_{m}	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	9,60	12,00	24,00	200,00	0,80	0,40	0,12	200,00	0,00	210000

	Resultate					
	Varfolomeyev (Referenz)	Abaqus (Xfem)		Abaqus (RSE)	
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Kc	1278,80	40,44	1213,20	-5,13	1245,10	-2,64
Ка	1374,50	43,47	1370,90	-0,26	1341,00	-2,44

6.3.10 FALL 10

Die untersuchten FE-Lösungen streuen im Fall 10 für K_a um bis zu -0,79% und für K_c um bis zu 2,51% (vgl. Tabelle 6.12).

Tabelle 6.12: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 10

Angaben

(Fall 10)	а	t	с	w	a/t	a/c	c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	2,40	24,00	6,00	200,00	0,10	0,40	0,03	200,00	0,00	210000

	Resultate					
	Varfolomeyev (Referenz)	Abaque	s (Xfem)	Abaqu	s (RSE)
	Resultate Varfolomeyev (N/mm ^{3/2} 367,00 517,70	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Kc	367,00	11,61	376,20	2,51	364,40	-0,71
Ка	517,70	16,37	513,60	-0,79	517,70	0,00

6.3.11 FALL 11

Die untersuchten FE-Lösungen streuen im Fall 11 für K_a um bis zu 0,96% und für K_c um bis zu -3,44% (vgl. Tabelle 6.13).

Tabelle 6.13: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 11

Angaben

(Fall 11	а	t	с	w	a/t	a/c	c/w	σ_{m}	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	12,00	24,00	30,00	200,00	0,50	0,40	0,15	200,00	0,00	210000

Resultate

	Varfolomeyev (Referenz)	Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]	
Kc	1061,50	33,57	1025,00	-3,44	1043,60	-1,69	
Ка	1377,80	43,57	1364,80	-0,94	1391,00	0,96	

6.3.12 FALL 12

Die untersuchten FE-Lösungen streuen im Fall 12 für K_a um bis zu 11,47% und für K_c um bis zu 5,40% (vgl. Tabelle 6.14).

Tabelle 6.14: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 12

	Angaben									
[Fall 12]	а	t	с	w	a/t	a/c	c/w	σ_{m}	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	19,20	24,00	48,00	200,00	0,80	0,40	0,24	200,00	0,00	210000

Resultate

	Varfolomeyev	(Referenz)	Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	$N/mm^{3/2}$	Abw. [%]	N/mm ^{3/2}	Abw. [%]	
Кс	1808,50	57,19	1888,60	4,43	1906,20	5,40	
Ка	1943,80	61,47	2166,70	11,47	2049,30	5,43	

6.3.13 FALL 13

Die untersuchten FE-Lösungen streuen im Fall 13 für K_a um bis zu 2,36% und für K_c um bis zu 4,02% (vgl. Tabelle 6.15).

Tabelle 6.15: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 13

Angaben

(Fall 13)	а	t	С	w	a/t	a/c	c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	1,20	12,00	8,00	100,00	0,10	0,15	0,08	200,00	0,00	210000

	Resultate						
	Varfolomeyev (Referenz)	Abaqus	s (Xfem)	Abaqus (RSE)		
	N/mm ^{3/2}	MPa√m	$N/mm^{3/2}$	Abw. [%]	N/mm ^{3/2}	Abw. [%]	
Kc	196,60	6,22	204,50	4,02	200,50	1,98	
Ка	423,10	13,38	433,10	2,36	423,20	0,02	

6.3.14 FALL 14

Die untersuchten FE-Lösungen streuen im Fall 14 für K_a um bis zu -0.61% und für K_c um bis zu -5.35% (vgl. Tabelle 6.16).

Tabelle 6.16: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 14

Angaben

(Fall 14)	а	t	с	w	a/t	a/c	c/w	$\sigma_{\sf m}$	σ_{b}	Ε´
	[mm]	[mm]	[mm]	[mm]				N/mm²	N/mm²	N/mm²
	1,20	12,00	8,00	200,00	0,10	0,15	0,04	200,00	0,00	210000

	Resultate					
	Varfolomeyev (Referenz)		Abaqus (Xfem)		Abaqus (RSE)	
	N/mm ^{3/2}	MPa√m	N/mm ^{3/2}	Abw. [%]	N/mm ^{3/2}	Abw. [%]
Кс	194,40	6,22	194,80	0,21	184,00	-5,35
Ка	423,00	13,38	420,40	-0,61	423,10	0,02

Seite 79

6.4 VERGLEICH DER GESAMTERGEBNISSE FALL 1 BIS 14

Die K-Werte aus der FE-Lösung werden anhand einer Graphik mit der Handformel-Lösung von Varfolomeyev verglichen. Für alle 14 Fälle wird jeweils der Spannungsintensitätsfaktor jeweils für Winkel ϕ zwischen 0°-90° veranschaulicht. Der SIF-Verlauf wird für Varfolomeyev in rot, für die XFEM-Methode in türkis und für die RSE-Methode in orange abgebildet.

6.4.1 DETAILERGEBNISSE FÜR FALL 1 BIS 14

Aufgrund der optimierten Netzfeinheit entlang der Rissfront enthalten die Detailergebnisse in graphischer Form unterschiedlich viele K-Werte, welche über den Verlauf punktiert zu sehen sind. Die Kc-Werte sollten zwischen den Winkeln $\phi=0^{\circ}$ und $\phi=10^{\circ}$ entnommen werden. Der Wert direkt an der Oberfläche Kc($\phi=0^{\circ}$) ist meist zu vermeiden, ausser die Abweichung ist im Gültigkeitsbereich. Der Wert bei $\phi=5^{\circ}$ wird dahingegen für die Praxis empfohlen, weshalb er auch analytisch berechnet wurde. Für die Ka-Werte werden die Werte bei Winkel $\phi=90^{\circ}\pm5^{\circ}$ betrachtet. Der K-Wert bei Winkel $\phi=90^{\circ}$ ist bei Risstiefen bis zur Hälfte der Platte t/2 vorrangig heranzuziehen. Bei Risstiefen knapp vor der Plattenkante (a~t), wie beim Fall 3 und Fall 6, sollen die Werte für den Winkel $\phi=95^{\circ}$ herangezogen werden.

Die Graphiken werden für SIF-Werte mit:

W_Risstiefe_a_t und für die prozentuelle Darstellung mit:

Fall Nr. bezeichnet.

Abbildung 6.8: Gegenüberstellung der SIF-Verläufe für Risstiefe a=1,2 mm

Der Verlauf der RSE-Methode weist für einen Integrationsraum entlang der 6 Kontur eine Zickzackform auf (vgl. Abbildung 6.8). Diese Zickzackform beginnt ab der 4. Kontur und steigt mit zunehmender Konturzahl.

Beide FE-Verläufe nehmen zum Scheitelpunkt der Halbellipse hin denselben Wert an.

Der SIF-Wert mit der RSE-Methode beträgt für $Kc(\phi=5.00^{\circ})=257,00$ N/mm3/2 und für $Ka(\phi=90,00^{\circ})=365,40$ N/mm3/2 (vgl. Abbildung 6.8).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =5.00°)=247,50 N/mm3/2 und für Ka(ϕ =90,00°)=365,60 N/mm3/2 (vgl. Abbildung 6.8).

Abbildung 6.9: prozentuelle Gegenüberstellung der SIF-Verläufe

Zwischen den Winkeln $\phi=10^{\circ}$ bis 50° ist eine starke Streuung der Ergebnisse von beiden Methoden zu erkennen (vgl. Abbildung 6.9).

Die XFEM hat ihre max. Abweichung an der Oberfläche der Platte ($\phi=0^{\circ}$)mit -14,52%.

Die RSE-Methode weist eine negative Abweichung von -4,27% an der Oberfläche der Platte ($\phi=0^\circ$) auf.

6.4.1.2 Fall 2

Abbildung 6.10: Gegenüberstellung der SIF-Verläufe für Risstiefe a=6,0 mm

Bei Verwendung der 5. Kontur wurde bei der RSE-Methode über den gesamten Verlauf eine positive Abweichung festgestellt. Die XFEM-Methode weist einen Zickzackverlauf auf (vgl. Abbildung 6.10).

Bei der XFEM-Methode beträgt der Maximalwert von K(ϕ =72°)=1025,00 N/mm^{3/2} und der Minimalwert K(ϕ =8,31°)=674,4 N/mm^{3/2}. Die RSE-Methode dahingegen weist den Maximalwert am Scheitelpunkt der Halbellipse bei Ka(ϕ =90°)=992,1 N/mm^{3/2} auf (vgl. Abbildung 6.10).

Abbildung 6.11: prozentuelle Gegenüberstellung der SIF-Verläufe

Zwischen den Winkeln $\phi=20^{\circ}$ bis 60° ist eine starke Streuung der Ergebnisse bis zu 12% von beiden Methoden zu erkennen (vgl. Abbildung 6.11).

Die XFEM weist eine max. Abweichung bei $K(\phi=30^{\circ})$ mit +12,00% auf.

Die RSE-Methode weist an derselben Stelle K(ϕ =30°) eine Abweichung von +11,8% auf.

Abbildung 6.12: Gegenüberstellung der SIF-Verläufe für Risstiefe a=9,6 mm

Der Verlauf der RSE-Methode weist für einen Integrationsraum bei der 5. Kontur eine Zickzackform auf (vgl. Abbildung 6.12). Diese Zickzackform beginnt ab der 4. Kontur und steigt mit zunehmender Konturzahl. Der XFEM Verlauf ist ebenfalls teilweise ausschlaggebend und schlägt besonders am Scheitelpunkt der Halbellipse und an der Oberfläche der Platte (ϕ =0°) aus.

Der SIF-Wert mit der RSE-Methode beträgt für $Kc(\phi=1,84^{\circ})=1421,4$ N/mm^{3/2} und für $Ka(\phi=89,08^{\circ})=1371,9$ N/mm^{3/2} (vgl. Abbildung 6.12).

Der SIF-Wert mit der XFEM beträgt für Ka(ϕ =90,59°)=1375 N/mm^{3/2} und für Kc(ϕ =5,16°)=1237 N/mm^{3/2} (vgl. Abbildung 6.12).

Abbildung 6.13: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=0^{\circ})$ mit +5,57% auf (vgl. Abbildung 6.13).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =5°) von +7.60% Abweichung auf (vgl. Abbildung 6.13).

Abbildung 6.14: Gegenüberstellung der SIF-Verläufe für Risstiefe a=2,4 mm

Der Verlauf der RSE-Methode weist für einen Integrationsraum entlang der 5. Kontur eine Zickzackform auf (vgl. Abbildung 6.14). Diese Zickzackform beginnt ab der 4. Kontur und steigt mit zunehmender Konturzahl.

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =4,91°)=365,9 N/mm^{3/2} und für Ka(ϕ =90,0°)=519,1 N/mm^{3/2} (vgl. Abbildung 6.14).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =4.91°)=356 N/mm^{3/2} und für Ka(ϕ =90,59°)=487 N/mm^{3/2} (vgl. Abbildung 6.14).

Abbildung 6.15: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=40,91^{\circ})$ mit +8,10% auf (vgl. Abbildung 6.15).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =40,91°) von +10.50% auf (vgl. Abbildung 6.15).

6.4.1.5 Fall 5

Für Fall 5 ist der Abschnitt 6.1 und 6.2 nachzuschlagen.

6.4.1.6 Fall 6

Abbildung 6.16: Gegenüberstellung der SIF-Verläufe für Risstiefe a=19,20 mm

Der Verlauf der RSE-Methode weist für einen Integrationsraum mit 3 Konturen einen kontinuierlichen Verlauf auf. Mit größer werdendem Riss werden auch die K-Werte zum Scheitelpunkt der Halbellipse hin größer (vgl. Abbildung 6.16). Dies kann auf die kleiner werdenden Belastungsflächen zwischen der Rissfront und der Plattenkante zurückgeführt werden. Die plastische Zone nähert sich zur Plattenoberfläche.

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =5,17°)=1934,61 N/mm^{3/2} und für Ka(ϕ =90,0°)=2007,51 N/mm^{3/2}.

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =5,17°)=2116,5 N/mm^{3/2} und für Ka(ϕ =90,0°)=2235,5 N/mm^{3/2}.

Abbildung 6.17: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=30,0^{\circ})$ mit -15,30% auf (vgl. Abbildung 6.17).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =90,0°) von -6.00% auf (vgl. Abbildung 6.17).

Abbildung 6.18: Gegenüberstellung der SIF-Verläufe für Risstiefe a=1,20 mm, W=200

Der Verlauf der RSE-Methode weist für einen Integrationsraum mit 3 Konturen eine nahezu kontinuierliche Form bei Verdoppelung der Breite auf (vgl. Abbildung 6.18).

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =4,19°)=269,6 N/mm^{3/2} und für Ka(ϕ =90,0°)=369,5 N/mm^{3/2} (vgl. Abbildung 6.18).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =4.19°)=249.21 N/mm3/2 und für Ka(ϕ =87,91°)=351.79 N/mm3/2 (vgl. Abbildung 6.18).

Abbildung 6.19: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=20,93^{\circ})$ mit +9.85% auf (vgl. Abbildung 6.19).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =41.86°) von +7.3% auf (vgl. Abbildung 6.19).

Abbildung 6.20: Gegenüberstellung der SIF-Verläufe für Risstiefe a=6,0 mm, W=200 mm

Bei Verwendung von 5 Konturen wurde bei der RSE-Methode über den gesamten Verlauf eine positive Abweichung festgestellt. Die XFEM weist einen teilweise lokal stark veränderlichen Verlauf auf (vgl. Abbildung 6.20).

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =5.27°)=728,40 N/mm^{3/2} und für Ka(ϕ =90,44°)=969,40 N/mm^{3/2} (vgl. Abbildung 6.20).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =5.27°)=726,30 N/mm^{3/2} und für Ka(ϕ =86,05°)=970,20 N/mm^{3/2} (vgl. Abbildung 6.20).

Abbildung 6.21: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=30,73^{\circ})$ mit +5.60% auf (vgl. Abbildung 6.21).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =0,00°) von -6.10% auf (vgl. Abbildung 6.21).

6.4.1.9 Fall 9

Bei Verwendung von 5 Konturen wurde bei der RSE-Methode über den gesamten Verlauf eine negative Abweichung festgestellt. Die XFEM weist einen lokal stark veränderlichen Verlauf auf (vgl. Abbildung 6.22).

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =4,79°)=1245,10 N/mm^{3/2} und für Ka(ϕ =90,00°)=1341,00 N/mm^{3/2} (vgl. Abbildung 6.22).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =4,54°)=1213,2 N/mm^{3/2} und für Ka(ϕ =89,15°)=1370,90 N/mm^{3/2} (vgl. Abbildung 6.22).

Abbildung 6.23: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=30,09^{\circ})$ von -6.90% auf (vgl. Abbildung 6.23).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =0,00°) von -7.50% auf (vgl. Abbildung 6.23).

6.4.1.10 Fall 10

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =4,69°)=364,4 N/mm^{3/2} und für Ka(ϕ =90,00°)=517,70 N/mm^{3/2} (vgl. Abbildung 6.24).

Der SIF-Wert mit der XFEM beträgt für Kc($\phi=4,39^\circ$)=376,2 N/mm^{3/2} und für Ka($\phi=89,27^\circ$)=513,6 N/mm^{3/2} (vgl. Abbildung 6.24).

Abbildung 6.25: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=20,49^{\circ})$ von +10,4% auf (vgl. Abbildung 6.25).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =0,00°) von -7,86% auf (vgl. Abbildung 6.25).

6.4.1.11 Fall 11

Abbildung 6.26: Gegenüberstellung der SIF-Verläufe für Risstiefe a=12 mm, W=200 mm

Beide Methoden haben zwischen $\phi=15^{\circ}$ und 60° größere Abweichugen.

Der SIF-Wert mit der RSE-Methode beträgt für $Kc(\phi=5,10^{\circ})=1043,6$ N/mm3/2 und für $Ka(\phi=90,00^{\circ})=1391,0$ N/mm3/2 (vgl. Abbildung 6.26).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =5,10°)=1025 N/mm3/2 und für Ka(ϕ =90,2°)=1398,2 N/mm3/2 (vgl. Abbildung 6.26).

Abbildung 6.27: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=30,4^{\circ})$ von +9,6% auf (vgl. Abbildung 6.27).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =30,40°) von +7,30% auf (vgl. Abbildung 6.27).

6.4.1.12 Fall 12

Für die XFEM wird eine polynomische Trendlinie hinzugefügt, um die Werte genauer abzuschätzen. Bei der RSE-Methode sind die Werte mit 5 Konturen ausgewertet worden.

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =5,21°)=1906,2 N/mm^{3/2} und für Ka(ϕ =87,16°)=2049,3 N/mm^{3/2} (vgl. Abbildung 6.28).

Der SIF-Wert mit der XFEM beträgt für $Kc(\phi=5,66^{\circ})=1888,6$ N/mm^{3/2} und für $Ka(\phi=90,12^{\circ})=2166,7$ N/mm^{3/2} (vgl. Abbildung 6.28).

90

Die XFEM weist eine max. Abweichung bei $K(\phi=19,9^{\circ})$ von +13,5% auf (vgl. Abbildung 6.29).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =4,90°) von +5,50% auf (vgl. Abbildung 6.29).

6.4.1.13 Fall 13

Abbildung 6.30: Gegenüberstellung der SIF-Verläufe für Risstiefe a=1,2 mm, c=8mm

Winkel entlang der Halbellipse [\u03c6 in grad]

Bei der RSE-Methode sind die Werte mit 4 Konturen ausgewertet worden. Je kleiner der Radius auf der Halbellipse wird, desto größer werden die FEM-Abweichungen.

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =2,73°)=200,50 N/mm^{3/2} und für Ka(ϕ =90,00°)=423,20 N/mm^{3/2} (vgl. Abbildung 6.30).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =1,68°)=204,50 N/mm^{3/2} und für Ka(ϕ =89,16°)=433,10 N/mm^{3/2} (vgl. Abbildung 6.30).

Abbildung 6.31: prozentuelle Gegenüberstellung der SIF-Verläufe

In Abbildung 6.31 ist der Radiuseffekt eindeutig zu erkennen. Zum Scheitelpunkt der Halbellipse hin sind beide FE-Methoden genauer, gegenüber der Lösung Varfolomeyev.

Die XFEM weist eine max. Abweichung bei $K(\phi=10,09^\circ)$ mit +40,73% auf (vgl. Abbildung 6.31).

Die RSE-Methode weist eine max. Abweichung an der Stelle $K(\phi=10,09^{\circ})$ von +20,06% auf (vgl. Abbildung 6.31).

6.4.1.14 Fall 14

Abbildung 6.32: Gegenüberstellung der SIF-Verläufe für Risstiefe a=1,2 mm, c=8mm, W=100mm

Der SIF-Wert mit der RSE-Methode beträgt für Kc(ϕ =1,82°)=184,00 N/mm^{3/2} und für Ka(ϕ =90,0°)=423,10 N/mm^{3/2} (vgl. Abbildung 6.32).

Der SIF-Wert mit der XFEM beträgt für Kc(ϕ =1,89°)=194,8 N/mm^{3/2} und für Ka(ϕ =89,05°)=420,4 N/mm^{3/2} (vgl. Abbildung 6.32).

Abbildung 6.33: prozentuelle Gegenüberstellung der SIF-Verläufe

Die XFEM weist eine max. Abweichung bei $K(\phi=11,37^{\circ})$ von +27,41% auf (vgl. Abbildung 6.33).

Die RSE-Methode weist eine max. Abweichung an der Stelle $K(\phi=11,37^{\circ})$ von +19,32% auf (vgl. Abbildung 6.33).

6.5 ZUSAMMENFASSENDE BEURTEILUNG

Insgesamt wurden bisher Benchmark-Lösungen für 14 stationäre halbelliptische Risse ermittelt. Bei den Fällen 1 bis 12 wurden zwei unterschiedliche Verhältnisse von Geometriegrößen untersucht. Mit den Fällen 13 und 14 ist ein zweites Halbachsenverhältnis a/c=0,15 berechnet worden.

Die untersuchten Fälle stellten eindeutig heraus, dass die Ergebnisse der RSE-Methode abhängig sind von der Diskretisierung an der Rissfront. Dabei spielt nicht nur die Feinheit des Netzes, sondern auch die Art der Vernetzung eine große Rolle. Deshalb ist eine variable Vernetzung der Rissfront, je nach Größe des Risses unbedingt zu empfehlen. Bei der RSE-Methode ist ab einer Elementanzahl von 100 000 die Modellierungstechnik bewusst zu überlegen. Die RSE-Methode stellt eine sehr aufwändige Vernetzung dar. Vor allem bei großen Risstiefen, wie in Fall 5 und 6, ist dies kräftig zu spüren. Für eine gute Ergebnisübereinstimmung sind einige Faktoren in der Modellierung und Vernetzung unabdingbar. Damit die Werte an der Risspitze sinnvoll erfasst werden können, muss die erste Kontur als Partition vorher festgelegt werden.

Für relative Risstiefen bis a/t=0,5 wird mit der RSE-Methode für alle K-Werte eine gute Übereinstimmung mit der Lösung nach Varfolomeyev erzielt. Bei den Fällen mit einer relativen Risstiefe a/t=0,8 werden die Abweichungen hingegen größer (\geq 5%).

Die Diskretisierung in XFEM ist relativ einfach und schnell durchzuführen. Es wurde eine unerwartete höhere Netzabhängigkeit in der Rissumgebung, vor allem an der Rissspitze festgestellt. Für eine bessere Übereinstimmung der K-Werte sollen die Elementkanten die Rissspitze nicht berühren, sondern diese umhüllen. Die in der RSE-Methode verwendeten Hexaederelemente 2. Ordnung konnten aufgrund höhere Rechenzeiten (schon bei kleinen Rissen über 8 Stunden nach Rechnerkapazität) bei der XFEM nicht verwendet werden. Diese wurden für XFEM-Methode einheitlich mit den linearen Hexaederelementen C3D8 ersetzt. Die Anwendung der linearen Elemente brachte neben der schnelleren Rechenzeit bei größer werdender Rissgeometrie höhere Streuungen über der gesamten Rissfront. Um die Fälle einheitlich und konsequent durchzurechnen, wurde die Variabilität der Elemente an der Rissfront vernachlässigt.

Die XFEM-Methode liefert ähnlich wie die RSE-Methode gleichwertige Ergebnisse in Bezug auf die 5% Fehler Abweichung. Im Gegensatz zur RSE-Methode, macht die einfachere Modellierung und die schnelle Vernetzung bei der XFEM-Methode diese FE-Methode sehr attraktiv.

Elementgrößen zwischen 0,1 mm bis 0,8 mm an der Rissfront, mit steigendem Halbachsenverhältnis und Rissgröße, ergeben vernünftige Resultate. Mit der Variierung dieser Elemente können die Ka-und Kc-Werte verbessert werden.

Bei beiden FE-Methoden ist die Vernetzungsdichte und die Vernetzungsart in der untersuchten Struktur, vor allem an der Rissfront, für gute K-Werte von großer Bedeutung. Der Integrationsraum spielt in XFEM eine große Rolle. In XFEM wurden systematisch die ersten 3 Konturen weggelassen, wobei bei einigen Fällen das Weglassen von den ersten 4 oder sogar 5 Konturen, eine verbesserte Übereinstimmung der K-Werte liefert. Im Allgemeinen ist zu sagen, dass der Anwender mit beiden FE-Methoden gute Resultate erzielen kann. In dieser Arbeit wurden für beide FE-Methoden systematisch gleichförmige Partitionen und gleiche Vernetzungstechniken verwendet. Dies war für eine einheitliche Betrachtung der Fälle unbedingt nötig. Eine Verbesserung der SIF-Werte kann die Anwendung unterschiedlicher Partitionstechniken und Vernetzungstechniken durchaus ermöglichen.

KAPITEL 7: EXZENTRISCHE HALBELLIPTISCHE RISSE MIT RSE/XFEM

7.1 UMSETZUNG MIT RISSSPITZENELEMENTE (RSE) UND XFEM-METHODE

Bisher wurden symmetrisch zentrierte Risse in den Plattenoberflächen behandelt. In der Praxis kommen jedoch Risse in exzentrischen Punkten der Plattenoberfläche vor. Um halbelliptische Oberflächenrisse in beliebigen Lagen zu untersuchen, wird hier ein weiterer Fall behandelt. Der Riss im Fall 5 wird auf den Viertelpunkt der Plattenbreite verschoben (vgl. Abbildung 7.1), um auf Vergleichswerten basierend rechnen zu können und damit auch die Plausibilität der Werte zu überprüfen.

Abbildung 7.1: Draufsicht auf die Risslage in der Platte, Fall 5 modifiziert

In Abbildung 7.1 ist in blau der Riss, mit der umgebenden Partitionierung in der Struktur zu sehen.

7.1.1 MODELL MIT XFEM-METHODE

Abbildung 7.2: Draufsicht auf die Rissebene, vernetzte Struktur, Fall 5 modifiziert

Die Rissfront wird deutlich feiner vernetzt als der umgebende Strukturkörper. Die Elementgrößen zwischen den Vernetzungsgrenzen der Rissfront und der äußeren Plattenkante werden vom Abaqus automatisch generiert (vgl. Abbildung 7.2).

Abbildung 7.3: diskretisiertes FE-Modell der Platte mit XFEM

Die Risslage und Rissfront müssen in der "sweep" Technik jeweils bis zur äußeren Plattenkante fein vernetzt werden. In Abbildung 7.3 sind diese fein vernetzten Ebenen eindeutig erkennbar.

Abbildung 7.4: Berechnetes FE-Modell mit XFEM, links; Isometriedarstellung, rechts; Seitenansicht des FE-Modells

Nach der Rissöffnung ist eine stark erkennbare Deformation der Platte im Rissquerschnitt zu sehen (vgl. Abbildung 7.4). In der Seitenansicht ist in blau die Verschiebung der Rissöffnung außerhalb der Plattenkante wie ein Fischmund zu sehen. Im FE-Modell ist zu erkennen, dass die kantennahe Rissspitze an der Oberfläche (ϕ =0°) K_{c2} stärker belastet ist als die innenliegende Rissspitze K_{c1}. Dies bewirkt über den gesamten Verlauf der Rissfront eine unsymmetrische Spannungsverteilung.

7.1.2 MODELL MIT RISSSPITZENELEMENTEN (RSE)

Bei der RSE-Methode wurde die Modellierungsvariante 1 und 2 verwendet. In Abbildung 7.5 ist die einzige Symmetriehälfte (Symmetrieebene =x-z-Ebene) als Globalmodell veranschaulicht.

Abbildung 7.6: berechnetes FE-Modell mit RSE, Fall 5 modifiziert

Die Asymmetrie der K-Werte kann anhand der Größe der plastischen Zone (grau eingefärbt) an der Oberfläche bzw. an horizontalen Isolinien erkannt werden (vgl. Abbildung 7.6).

Abbildung 7.7: oben; diskretisiertes FE-Modell, unten; berechnetes FE-Modell mit RSE-Methode, Fall 5 mod Die Verwendung von einem halbschlauchförmigen Submodell, welche alle zu berechnenden Konturen einschließt, ist für die Berechnung möglich und sinnvoll (vgl. Abbildung 7.7).

Seite 102

In Abbildung 7.8 werden die asymmetrischen FE-Lösungen mit der symmetrischen Handrechenformel von Varfolomeyev verglichen.

Der Verlauf der RSE-Methode weist für einen Integrationsraum mit 6 Konturen eine kontinuierliche Form auf (vgl. Abbildung 7.8), der Einfluss der exzentrischen Risslage ist kaum erkennbar. Beide FE-Lösungen haben über den gesamten Verlauf positive Abweichungen.

Der SIF-Wert mit der RSE-Methode beträgt für $K_{c1}(\phi=5,06^{\circ})=1133,1 \text{ N/mm}^{3/2}$, für $K_{c2}(\phi=174,94^{\circ})=1178,7 \text{ N/mm}^{3/2}$ und für $Ka(\phi=90,0^{\circ})=1508,00 \text{ N/mm}^{3/2}$ (vgl. Abbildung 7.8).

Der SIF-Wert mit der XFEM beträgt für $K_{c1}(\phi=3,96^{\circ})=1142,00$ N/mm3/2, $K_{c2}(\phi=176,04^{\circ})=1174,00$ N/mm^{3/2} und für Ka($\phi=90,99^{\circ}$)=1456,00 N/mm^{3/2} (vgl. Abbildung 7.8).

Die XFEM weist eine max. Abweichung bei $K(\phi=150^\circ)$ mit .15,5% auf (vgl. Abbildung 7.9).

Die RSE-Methode weist eine max. Abweichung an der Stelle K(ϕ =160°) von +9.80% auf (vgl. Abbildung 6.15).

KAPITEL 8: LITERATUR

A-1 Literaturverzeichnis

- [1] GROSS, D. und T. SEELIG: Bruchmechanik: Mit einer Einführung in die Mikromechanik. Springer Verlag, Berlin, 2001.
- [2] FKM-Richtlinie Rechnerischer Festigkeitsnachweis f
 ür Maschinenbauteile aus Stahl, Eisengussund Aluminiumwerkstoffen. 5., erweiterte Ausgabe 2003. VDMA-Verlag GmbH, Frankfurt (2003), ISBN 3-8163-0479-6.
- [3] M. Kuna, Numerische Beanspruchungsanalyse von Rissen: Finite Elemente in der Bruchmechanik; mit zahlreichen Beispielen, 2nd ed., Vieweg + Teubner, Wiesbaden 2010.
- [4] Martin Bäker, Numerische Methoden in der Materialwissenschaft, Braunschweig: Inst. für Werkstoffe, Fachbereich Maschinenbau der Technischen Universität, 2009 http://www.digibib.tu-bs.de/?docid=00026725
- [5] Dassault Systèmes (2018): Abaqus 6.14 Online Documentation, Dassault Systèmes, Providence, Rhode Island.
 http://abaqus.software.polimi.it/v6.14/books/usi/default.htm
- [6] Melenk, J.M., Babuska, I. (1996): The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1, 1996, pp. 289–314.
- [7] Belytschko, T., Black, T. (1999): Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, 1999, pp. 601-620.
- [8] Moës, N., Dolbow, J., Belytschko, T. (1999): A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, 1999, pp. 132-150.
- [9] Sukumar, N., Moës, N., Moran, B., Belytschko, T. (1999): Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering, Vol. 48, No. 11, 2000, pp. 1549-1570.
- [10] Belytschko, T., Gracie, R., Venture, G. (): a Review of extended/generalized finite element methods for material modeling. Modeling and Simulation in Materials Science and Engineering, vol. 17, No 4, 2009, pp. 043001.

- [11] VERB: Failure Assessment Software Version 8.0, Compendium of Stress Intensity factor and Limit Load Solutions, Fraunhofer IWM, December 2008 (revised January 2009)
- [12] Wang, X., Lambert, S.B., Stress intensity factors for low aspect ratio semi-elliptical sur-face cracks in finite-thickness plates subjected to nonuniform stresses, Engineering Fracture Mechanics 51, 517.532, 1995
- [13] Varfolomeyev, I., Gienko, A., Krasowsky, A., Schmitt, W., Development of weight functions for cracks in 3D bodies, Report T 1/2000, Fraunhofer IWM, Freiburg, 2000
- [14] Chapuilot, S., KI formula for pipes with a semi-elliptical longitudinal or circumferential, internal or external cracks, CEA Report CEA-R-5900, 2000
- [15] Newman, J.C., Jr., Raju, I.S., Stress-intensity factor equations for cracks in three dimensional finite bodies subjected to tension and bending loads, NASA Technical Memorandum 85793, Lengley Research Center, Hampton, VA, 1984
- [16] Cherfi Mohamed, Sahli Abderahmane and Smail Benbarek, Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacemen https://www.researchgate.net/publication/324389493_Fracture_behavior_modeling_of_a
 2D crack emanated from hony inclusion in the cement PMMA of total hip replacement

_3D_crack_emanated_from_bony_inclusion_in_the_cement_PMMA_of_total_hip_replacement

A-2 Abbildungsverzeichnis

Abbildung 2.1: Bruchmechanik - Konzept 1
Abbildung 2.2: Bruchmechanikkonzepte nach der Duktilität des Werkstoffs
Abbildung 2.3: Rissverschiebungsmodi [1]
Abbildung 2.4: Größe der plastischen Zone vor der Rissspitze bei zunehmender Bauteilbelastung [3].4
Abbildung 2.5: Rissspitzenumgebung [1]
Abbildung 2.6: dreidimensionale Darstellung der Rissfront eines Oberflächenrisses; links: Lastaufbringung
auf einen Bauteilausschnitt, rechts: zugehöriger lokaler Spannungsverlauf aus [3] mit Anmerkungen . 5
Abbildung 2.7: Spannungsintensitätsfaktor K für linear-elastischen Fall und Kj für den elastisch-plastischen
Fall unter Plastizitätseinfluss [2]7
Abbildung 2.8: Wahl des Integrationsweges bei ebener Betrachtung der Rissspitze [1]7
Abbildung 2.9: Anpassung der Konturen an das FE-Netz (Anwendung Abaqus)
Abbildung 3.1: allgemeines Hexaederelement, ausserhalb des Rissbereiches
Abbildung 3.2: Kollabiertes Hexaederelement mit Viertelpunkt-Verschiebung der Kanten-Mittelpunkte [3]
10
Abbildung 3.4: Spannungsüberhöhung an der Rissspitze gegenüber der aussen angelegten Spannung $\sigma 11$
Abbildung 3.5: Viertelpunktelemente zur Abbildung unterschiedlicher Singularitäten
Abbildung 3.5 Auszug aus der Segmentgruppierung von kollabierten Hexaederlementen mit
Knotenpunkten an der Rissspitze 13
Abbildung 3.6: zweidimensionale Geometrie für die XFEM Ableitung [8] 14
Abbildung 3.7: zweidimensionale Geometrie, die finale Vernetzung des Risses, mit dem neuen Knoten [8]
15
Abbildung 3.8: keine Ausrichtung des Netzes mit dem Riss; a) eingekreiste Knoten mit Heavyside-
Funktion, 16
b) mit Quadrat markierte Knoten mit Rissspitzenfunktion (asymptotische Singularitätsfunktion) [8]. 16
Abbildung 3.9: links: beliebiger Riss in einem Netz; rechts: lokale Koordinatenachsen an der Rissspitze [8]
17
Abbildung 3.10: isoparametrische Tetraederlemente der a)1. Ordnung und b)2. Ordnung; c)
Hexaederelement der 1.Ordnung mit 8 Knoten [5]
Abbildung 4.1: a) einfache Platte, b) Rissmodell eines gezogenen Flansches
Abbildung: 4.2: links: Belastung am Teilmodell für RSE-Methode, rechts: Belastung am Gesamtmodell für
XFEM-Methode 21
Abbildung 4.3: Rissmodell des halbelliptischen Oberflächenrisses aus [11]
Abbildung 4.4-2: Rissmodell einer gezogenen Scheibe [2]
Abbildung 4.3: Halbelliptischer Oberflächenriss an einem Hohlzylinder [2]
Abbildung 4.4: Halbelliptischer Oberflächenriss mit der Belastung aus [12]
Abbildung 5.1 links: gesamtes Modell, rechts: in Abaqus zu modellierendes äquivalentes Teilmodell [3]
45
Abbildung 5.2 Prinzip eines Submodells aus [16]
Abbildung 5.3 Submodellvarianten mit dem globalen Modell schematisch dargestellt
Abbildung 5.4 Modelldarstellung für Fall 5 RSE-Modell
Abbildung 5.5: links: Zugbelastung an unterer Fläche, rechts: Symmetrie-Lagerflächen rot gefüllt 49
Abbildung 5.6: links: Vernetzung vom Ganzkörper, rechts: Ausschnittvergrößerung des Rissbereichs50
Abbildung 5.7 Draufsicht der Rissfläche im Detailbereich, Vernetzung der oberen Struktur als Quellseite
51

Abbildung 5.8: Ausschnitt aus dem Teilmodell für die Darstellung der Rissfortschrittsrichtung (q-Vektor) an der Rissfront51 Abbildung 5.9: Risseinstellungen im Abaqus-Modell, links: Symmetrieeinstellung und Abbildung 5.11: Submodell Lagerbedingungen, a) Schnittflächen zum globalen Modell, b) Symmetrieflächen 54 Abbildung 5.13: Vernetzungsvarianten an der Rissfront, links: 0.1mm Kantenlänge an der Rissfront, rechts: Abbildung 5.14: links: Gesamtmodell mit Partitionen und Halbschläuchen, rechts: Vernetzung des Abbildung 5.15: Ausschnitt der Draufsicht im Rissbereich, Vernetzung an der Rissoberfläche (Fall 3 mit 9.6 mm Risstiefe) 57 Abbildung 5.19: links: Vernetzung vom Gesamtmodell, rechts: Ausschnitt vom Rissnahbereich.......60 Abbildung 5.20: links: Risspositionierung in das Gesamtmodell, rechts: Einstellungen zur Rissbildung im Abagus 61 Abbildung 5.21 Submodell-Geometrie für XFEM-Modell für Fall 5......62 Abbildung 6.3: Ausschnitt aus der Ergebnisgraphik für Variante 1, a) Submodell, b): Globalmodell..68 Abbildung 6.5: Ausschnitt aus der Ergebnisgraphik für Variante 1, a) Submodell, b): Globalmodell..70 Abbildung 6.4: prozentuelle Gegenüberstellung der SIF-Resultate mit der RSE-Methode......71 Abbildung 6.5: prozentuelle Gegenüberstellung der SIF-Resultate mit der XFEM-Methode......72

A-3 **Tabellenverzeichnis**

Tabelle 4.1: Angaben zur Geometrie und Rissgröße der untersuchten Fälle 1-14	20
Tabelle 4.2: SIF-Lösungen auf Basis Varfolomeyev [13] für Fall 1	25
Tabelle 4.3: SIF-Lösungen auf Basis Newman, Raju [15] für Fall 1	29
Tabelle 4.6: Ergebnisse von Handformeln für Fall 3	37
Tabelle 4.7: Ergebnisse von Handformeln für Fall 4	37
Tabelle 4.8: Ergebnisse von Handformeln für Fall 5	38
Tabelle 4.9: Ergebnisse von Handformeln für Fall 6	38
Tabelle 4.10: Ergebnisse von Handformeln für Fall 7	39
Tabelle 4.11: Ergebnisse von Handformeln für Fall 8	39
Tabelle 4.12: Ergebnisse von Handformeln für Fall 9	40
Tabelle 4.13: Ergebnisse von Handformeln für Fall 10	40
Tabelle 4.14: Ergebnisse von Handformeln für Fall 11	41
Tabelle 4.15: Ergebnisse von Handformeln für Fall 12	41
Tabelle 4.16: Ergebnisse von Handformeln für Fall 13	42
Tabelle 4.17: Ergebnisse von Handformeln für Fall 14	42
Tabelle 5.1: Vernetzung am Submodell mit RSE-Methode	55
Tabelle 5.2: Vernetzung am Submodell mit XFEM	64
Tabelle 6.1: Angaben zur Diskretisierung mit RSE-Methode Fall 5	67
Tabelle 6.2: Angaben zur Diskretisierung mit XFEM	69
Tabelle 6.3: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 1	73
Tabelle 6.4: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 2	73
Tabelle 6.5: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 3	74
Tabelle 6.6: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 4	74
Tabelle 6.7: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 5	75
Tabelle 6.8: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 6	75
Tabelle 6.9: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 7	76
Tabelle 6.10: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 8	76
Tabelle 6.11: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 9	77
Tabelle 6.12: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 10	77
Tabelle 6.13: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 11	78
Tabelle 6.14: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 12	78
Tabelle 6.15: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 13	79
Tabelle 6.16: Ergebnisvergleich der FEM mit Varfolomeyev für Fall 14	79
Tabelle B1: Ergebnisse der K-Werte für einzelne Konturen sowie errechnete gemittelte K-Werte - I	Fall 5I
Tabelle C1: polynomische Einflussfaktoren fmn=f ₀₀	KVI
Tabelle C2: polynomische Einflussfunktionen f ₀ auf der Aussenseite eines Hohlzylinders [2], Ch	apuilot
XXII	

ANHANG B Analyse Fall 5- Ergebnisse der K-Werte (RSE bzw. XFEM) für unterschiedliche Integrationswege

Anbei werden 2 Tabellen erstellt, die für den untersuchten Fall 5 die Resultate für die Integration des J-Integrals entlang der einzelnen Konturen für die jeweiligen Winkel ϕ zeigt. Die Werte der anderen Fälle werden hier nicht angeführt, weil diese sonst den Rahmen der Arbeit verdoppeln würde.

In der Tabelle B1 sind die ersten 5 Konturwerte zuerst einzeln ermittelt und anschließend gemittelt zu finden. In dieser Tabelle werden wegen der Symmetrie in der Modellierung die Werte zwischen 0° und 90° Grad aufgelistet. Winkel 90° deutet hier den Wert für den Scheitelpunkt K_a der Halbellipse. Für den Oberflächenpunkt (K_c-Wert) werden die Werte zwischen 5° und 10° Grad angeschaut.

	RSE Abaqus											
	Winkel ϕ	K1	К2	К3	К4	К5	Mittelwert					
0	90,00	1408,3	1406,6	1407,2	1407,2	1407,3	1407,3					
1	89,36	1408,3	1406,5	1407,1	1407,2	1407,2	1407,3					
2	88,71	1408,2	1406,5	1407,1	1407,2	1407,2	1407,2					
3	88,07	1408,1	1406,4	1407,0	1407,1	1407,1	1407,1					
4	87,43	1408,0	1406,3	1406,9	1407,0	1407,0	1407,1					
5	86,79	1407,9	1406,1	1406,8	1406,8	1406,8	1406,9					
6	86,14	1407,7	1406,0	1406,6	1406,7	1406,7	1406,8					
7	85,50	1407,5	1405,8	1406,4	1406,5	1406,5	1406,5					
8	84,86	1407,3	1405,6	1406,2	1406,3	1406,3	1406,3					
9	84,21	1407,1	1405,3	1405,9	1406,0	1406,0	1406,1					
10	83,57	1406,8	1405,1	1405,7	1405,7	1405,8	1405,8					
11	82,93	1406,5	1404,7	1405,3	1405,4	1405,4	1405,5					
12	82,29	1406,1	1404,4	1405,0	1405,1	1405,1	1405,1					
13	81,64	1405,7	1404,0	1404,6	1404,7	1404,7	1404,7					
14	81,00	1405,3	1403,6	1404,3	1404,3	1404,3	1404,4					

Tabelle B1: Ergebnisse der K-Werte für einzelne Konturen sowie errechnete gemittelte K-Werte - Fall 5

15	80,36	1404,9	1403,2	1403,8	1403,8	1403,9	1403,9
16	79,71	1404,4	1402,7	1403,4	1403,4	1403,4	1403,5
17	79,07	1403,9	1402,2	1402,8	1402,9	1402,9	1402,9
18	78,43	1403,4	1401,7	1402,3	1402,4	1402,4	1402,4
19	77,79	1402,9	1401,1	1401,7	1401,8	1401,8	1401,9
20	77,14	1402,2	1400,5	1401,2	1401,2	1401,2	1401,3
21	76,50	1401,6	1399,9	1400,5	1400,6	1400,6	1400,6
22	75,86	1401,0	1399,3	1399,9	1400,0	1400,0	1400,0
23	75,21	1400,3	1398,5	1399,2	1399,2	1399,2	1399,3
24	74,57	1399,6	1397,9	1398,5	1398,5	1398,6	1398,6
25	73,93	1398,8	1397,1	1397,7	1397,8	1397,8	1397,8
26	73,29	1398,0	1396,3	1397,0	1397,0	1397,0	1397,1
27	72,64	1397,2	1395,5	1396,1	1396,2	1396,2	1396,2
28	72,00	1396,4	1394,7	1395,3	1395,4	1395,4	1395,4
29	71,36	1395,5	1393,8	1394,4	1394,4	1394,5	1394,5
30	70,71	1394,6	1392,9	1393,5	1393,6	1393,6	1393,6
31	70,07	1393,6	1391,9	1392,5	1392,6	1392,6	1392,6
32	69,43	1392,6	1390,9	1391,6	1391,6	1391,6	1391,7
33	68,79	1391,6	1389,9	1390,5	1390,6	1390,6	1390,6
34	68,14	1390,6	1388,9	1389,5	1389,6	1389,6	1389,6
35	67,50	1389,5	1387,8	1388,4	1388,4	1388,4	1388,5
36	66,86	1388,4	1386,7	1387,3	1387,3	1387,4	1387,4
37	66,21	1387,2	1385,5	1386,1	1386,2	1386,2	1386,2
38	65,57	1386,0	1384,3	1384,9	1385,0	1385,0	1385,1
39	64,93	1384,8	1383,1	1383,7	1383,7	1383,7	1383,8
40	64,29	1383,5	1381,8	1382,4	1382,5	1382,5	1382,6
41	63,64	1382,2	1380,5	1381,1	1381,2	1381,2	1381,2
42	63,00	1380,9	1379,2	1379,8	1379,9	1379,9	1379,9

43	62,36	1379,5	1377,8	1378,4	1378,4	1378,5	1378,5
44	61,71	1378,1	1376,4	1377,0	1377,1	1377,1	1377,1
45	61,07	1376,6	1374,9	1375,5	1375,6	1375,6	1375,6
46	60,43	1375,1	1373,4	1374,1	1374,1	1374,1	1374,2
47	59,79	1373,6	1371,9	1372,5	1372,6	1372,6	1372,6
48	59,14	1372,0	1370,3	1371,0	1371,0	1371,0	1371,1
49	58,50	1370,4	1368,7	1369,3	1369,4	1369,4	1369,4
50	57,86	1368,8	1367,1	1367,7	1367,7	1367,7	1367,8
51	57,21	1367,0	1365,4	1366,0	1366,0	1366,0	1366,1
52	56,57	1365,3	1363,6	1364,3	1364,3	1364,3	1364,4
53	55 <i>,</i> 93	1363,5	1361,8	1362,4	1362,5	1362,5	1362,6
54	55,29	1361,7	1360,0	1360,6	1360,7	1360,7	1360,8
55	54,64	1359,8	1358,1	1358,8	1358,8	1358,8	1358,9
56	54,00	1358,0	1356,3	1356,9	1356,9	1356,9	1357,0
57	53 <i>,</i> 36	1356,0	1354,3	1354,9	1354,9	1354,9	1355,0
58	52,71	1354,0	1352,3	1352,9	1353,0	1353,0	1353,0
59	52,07	1351,9	1350,2	1350,8	1350,9	1350,9	1350,9
60	51,43	1349,9	1348,2	1348,8	1348,8	1348,8	1348,9
61	50,79	1347,7	1346,0	1346,6	1346,7	1346,7	1346,7
62	50,14	1345,5	1343,9	1344,4	1344,5	1344,5	1344,6
63	49,50	1343,2	1341,6	1342,2	1342,2	1342,2	1342,3
64	48,86	1341,0	1339,3	1339,9	1340,0	1339,9	1340,0
65	48,21	1338,6	1337,0	1337,6	1337,6	1337,6	1337,7
66	47,57	1336,3	1334,6	1335,2	1335,2	1335,2	1335,3
67	46,93	1333,8	1332,1	1332,7	1332,8	1332,8	1332,8
68	46,29	1331,4	1329,7	1330,3	1330,3	1330,3	1330,4
69	45,64	1328,7	1327,1	1327,7	1327,7	1327,7	1327,8
70	45,00	1326,2	1324,5	1325,1	1325,2	1325,1	1325,2

71	44,36	1323,5	1321,8	1322,4	1322,5	1322,5	1322,5
72	43,71	1320,9	1319,2	1319,8	1319,8	1319,8	1319,9
73	43,07	1318,0	1316,4	1317,0	1317,0	1317,0	1317,1
74	42,43	1315,3	1313,6	1314,2	1314,2	1314,2	1314,3
75	41,79	1312,3	1310,7	1311,2	1311,3	1311,3	1311,4
76	41,14	1309,5	1307,8	1308,3	1308,4	1308,3	1308,4
77	40,50	1306,3	1304,7	1305,3	1305,3	1305,4	1305,4
78	39,86	1303,4	1301,7	1302,3	1302,3	1302,2	1302,4
79	39,21	1300,1	1298,5	1299,1	1299,2	1299,2	1299,2
80	38,57	1297,1	1295,4	1295,9	1296,0	1295,9	1296,1
81	37,93	1293,7	1292,1	1292,7	1292,7	1292,7	1292,8
82	37,29	1290,5	1288,8	1289,4	1289,4	1289,3	1289,5
83	36,64	1286,9	1285,4	1286,0	1286,0	1286,0	1286,1
84	36,00	1283,7	1282,0	1282,5	1282,5	1282,5	1282,6
85	35,36	1280,0	1278,41	1278,97	1279,02	1279,02	1279,1
86	34,71	1276,61	1274,87	1275,4	1275,39	1275,32	1275,5
87	34,07	1272,67	1271,15	1271,71	1271,75	1271,76	1271,8
88	33,43	1269,22	1267,47	1268	1267,98	1267,9	1268,1
89	32,79	1265,12	1263,61	1264,16	1264,2	1264,21	1264,3
90	32,14	1261,54	1259,78	1260,29	1260,26	1260,17	1260,4
91	31,50	1257,26	1255,76	1256,31	1256,35	1256,36	1256,4
92	30,86	1253,55	1251,78	1252,29	1252,24	1252,14	1252,4
93	30,21	1249,09	1247,61	1248,15	1248,2	1248,21	1248,3
94	29,57	1245,26	1243,48	1243,97	1243,91	1243,79	1244,1
95	28,93	1240,61	1239,14	1239,68	1239,73	1239,74	1239,8
96	28,29	1236,64	1234,85	1235,32	1235,25	1235,12	1235,4
97	27,64	1231,8	1230,35	1230,89	1230,93	1230,94	1231,0
98	27,00	1227,71	1225,9	1226,36	1226,26	1226,11	1226,5

99	26,36	1222,67	1221,24	1221,76	1221,81	1221,82	1221,9
100	25,71	1218,44	1216,62	1217,05	1216,94	1216,76	1217,2
101	25,07	1213,2	1211,78	1212,31	1212,35	1212,36	1212,4
102	24,43	1208,85	1207	1207,41	1207,27	1207,07	1207,5
103	23,79	1203,4	1202	1202,51	1202,56	1202,57	1202,6
104	23,14	1198,92	1197,04	1197,43	1197,26	1197,03	1197,5
105	22,50	1193,27	1191,88	1192,39	1192,43	1192,44	1192,5
106	21,86	1188,67	1186,76	1187,11	1186,9	1186,64	1187,2
107	21,21	1182,81	1181,44	1181,94	1181,98	1181,99	1182,0
108	20,57	1178,09	1176,16	1176,46	1176,21	1175,89	1176,6
109	19,93	1172,03	1170,68	1171,17	1171,21	1171,22	1171,3
110	19,29	1167,22	1165,25	1165,5	1165,19	1164,82	1165,6
111	18,64	1160,98	1159,64	1160,12	1160,16	1160,17	1160,2
112	18,00	1156,08	1154,06	1154,24	1153,87	1153,43	1154,3
113	17,36	1149,68	1148,35	1148,82	1148,86	1148,88	1148,9
114	16,71	1144,72	1142,65	1142,76	1142,3	1141,78	1142,8
115	16,07	1138,19	1136,87	1137,33	1137,37	1137,38	1137,4
116	15,43	1133,23	1131,09	1131,1	1130,54	1129,92	1131,2
117	14,79	1126,61	1125,29	1125,75	1125,78	1125,8	1125,8
118	14,14	1121,7	1119,5	1119,39	1118,69	1117,94	1119,4
119	13,50	1115,07	1113,75	1114,19	1114,23	1114,24	1114,3
120	12,86	1110,3	1108,03	1107,77	1106,91	1106	1107,8
121	12,21	1103,76	1102,44	1102,85	1102,89	1102,91	1103,0
122	11,57	1099,24	1096,89	1096,45	1095,41	1094,3	1096,5
123	10,93	1092,96	1091,61	1092	1092,03	1092,05	1092,1
124	10,29	1088,86	1086,43	1085,79	1084,52	1083,19	1085,8
125	9,64	1083,03	1081,66	1082	1082,03	1082,04	1082,2
126	9,00	1079,59	1077,08	1076,25	1074,71	1073,13	1076,2

127	8,36	1074,49	1073,09	1073,36	1073,37	1073,39	1073,5
128	7,71	1072,04	1069,45	1068,46	1066,65	1064,79	1068,3
129	7,07	1068,06	1066,63	1066,81	1066,79	1066,8	1067,0
130	6,43	1067,07	1064,4	1063,36	1061,33	1059,23	1063,1
131	5,79	1064,68	1063,22	1063,3	1063,18	1063,18	1063,5
132	5,14	1065,79	1063,09	1062,2	1060,15	1057,91	1061,8
133	4,50	1065,61	1064,09	1064,03	1063,74	1063,67	1064,2
134	3,86	1069,78	1066,93	1066,36	1064,71	1062,65	1066,1
135	3,21	1072,39	1071,08	1070,95	1070,5	1070,21	1071,0
136	2,57	1079,36	1077,67	1077,55	1076,59	1075,3	1077,3
137	1,93	1086,24	1083,9	1083,76	1083,31	1082,92	1084,0
138	1,29	1107,77	1106,49	1106,47	1106,14	1105,74	1106,5
139	0,64	1106,09	1105,16	1105,54	1105,35	1105,14	1105,5
140	0	1070,76	1073,09	1073,54	1073,65	1073,65	1072,9

In der Tabelle B2 werden die K-Werte der Konturen C4 bis C10 sowie deren Mittelwert dargestellt. Im Vergleich zur RSE-Modellierung werden hier die Werte entlang der ganzen Halbellipse ersichtlich (ϕ =0-180°).

	XFEM Abaqus												
	Winkel ¢	C4	C5	C6	C7	C 8	С9	C10	Mittelwert				
0	0	1.157	1.223	1.150	1.074	1.106	1.136	1.175	1.146				
1	0,47	1.105	1.172	1.109	1.027	1.066	1.113	1.148	1.106				
2	0,94	1.130	1.196	1.122	1.033	1.077	1.123	1.151	1.119				
3	1,40	1.124	1.195	1.114	1.019	1.064	1.108	1.137	1.109				
4	1,87	1.134	1.207	1.121	1.024	1.071	1.114	1141,38	1.116				
5	2,34	1.116	1.191	1.102	1.004	1.053	1.094	1.121	1.097				
6	2,81	1.126	1.200	1.107	1.012	1.062	1.103	1128,34	1.105				
7	3,27	1.117	1.193	1.097	1.006	1.056	1.096	1.121	1.098				
8	3,74	1.089	1.169	1.093	1.008	1.046	1.085	1.114	1.086				
9	4,21	1.028	1.083	1.078	1.029	1.038	1.066	1.103	1.061				
10	4,68	976	1.020	1.073	1.063	1.037	1.046	1.087	1.043				
11	5,14	974	1.021	1.087	1.083	1.047	1.051	1.092	1.051				

Tabelle B2: Ergebnisse der gemittelten K-Werte für Fall 5

-										
	12	5,61	982	1.026	1.075	1.066	1.037	1.041	1.079	1.044
	13	6,08	1.067	1.115	1.095	1.060	1.054	1.063	1.093	1.078
	14	6,55	1.144	1.206	1.103	1.031	1.064	1.097	1.119	1.109
	15	7,01	1.151	1.204	1.079	1.021	1.066	1.106	1.125	1.107
	16	7,48	1.124	1.185	1.068	1.012	1.053	1.096	1.114	1.093
	17	7,95	1.125	1.184	1.078	1.014	1.051	1.089	1.107	1.093
	18	8,42	1.157	1.206	1.087	1.029	1.070	1.109	1.124	1.112
	19	8,88	1.167	1.212	1.076	1.033	1.076	1.117	1.128	1.116
	20	9,35	1.144	1.201	1.075	1.037	1.076	1.114	1.124	1.110
	21	9,82	1.083	1.148	1.083	1.037	1.070	1.105	1.121	1.092
	22	10,29	1.003	1.063	1.099	1.068	1.069	1.081	1.116	1.071
	23	10,75	993	1.060	1.131	1.107	1.086	1.084	1.129	1.084
	24	11,22	994	1.058	1.130	1.112	1.087	1.081	1130,38	1.085
	25	11,69	996	1.064	1.136	1.114	1.092	1.086	1.135	1.089
	26	12,16	998	1.074	1.149	1.121	1.098	1.094	1.146	1.097
	27	12,62	1.001	1.075	1.153	1.127	1.101	1.096	1.152	1.101
	28	13,09	1.007	1.076	1.151	1.129	1.105	1.099	1.152	1.103
	29	13,56	1.009	1.080	1.152	1.128	1.110	1.103	1.153	1.105
	30	14,03	1.014	1.094	1.168	1.135	1.119	1.113	1.164	1.115
	31	14,49	1.014	1.094	1.172	1.140	1.121	1.115	1.170	1.118
	32	14,96	1.024	1.097	1.173	1.146	1.126	1.118	1.173	1.122
	33	15,43	1.024	1.094	1.165	1.140	1.126	1.117	1.167	1.119
	34	15,90	1.032	1.113	1.184	1.148	1.139	1.131	1.180	1.132
	35	16,36	1.030	1.114	1.190	1.152	1.140	1.133	1.186	1.135
	36	16,83	1.035	1.116	1.193	1.160	1.144	1.136	1.191	1.139
	37	17,30	1039,8	1.116	1.191	1.160	1.147	1.137	1190,13	1.140
	38	17,77	1.043	1.121	1.193	1.160	1.151	1.141	1.191	1.143
	39	18,23	1.048	1.133	1.207	1.167	1.159	1.150	1.201	1.152
	40	18,70	1.047	1.134	1.211	1.172	1.161	1.152	1.207	1.155
	41	19,17	1.053	1.135	1.213	1.178	1.164	1.154	1.210	1.158
	42	19,64	1.056	1.134	1.208	1.176	1.166	1.154	1.207	1.157
	43	20,10	1.060	1.142	1.214	1.177	1.172	1.159	1.210	1.162
	44	20,57	1.063	1.150	1.225	1.184	1.177	1.166	1.218	1.169
	45	21,04	1.060	1.149	1.226	1.187	1.176	1.164	1.220	1.169
	46	21,51	1.067	1.151	1.226	1.190	1.181	1.168	1.222	1.172
	47	21,97	1.074	1.151	1.216	1.173	1.175	1.158	1.204	1.164
	48	22,44	1.141	1.187	1.215	1.168	1.177	1.162	1.197	1.178
	49	22,91	1.315	1.331	1.235	1.200	1.223	1.225	1.246	1.254
	50	23,38	1.319	1.325	1.183	1.172	1.207	1.235	1.238	1.240
	51	23,84	1.313	1.320	1.177	1.185	1.223	1.257	1.249	1.246
	52	24,31	1.305	1.315	1.182	1.198	1.231	1.262	1.258	1.250
	53	24,78	1.300	1.313	1.186	1.204	1.235	1.264	1261,14	1.252
	54	25,25	1.299	1.316	1.186	1.205	1.234	1.264	1.262	1.252
	55	25,71	1.304	1.323	1.183	1.201	1.230	1.260	1.259	1.251
	56	26,18	1.308	1.334	1.180	1.190	1.223	1.253	1.253	1.249
	57	26,65	1.307	1.342	1.178	1.173	1.212	1.245	1244,89	1.243

58	27,12	1.289	1.337	1.175	1.146	1.197	1.228	1.227	1.228
59	27,58	1.322	1.363	1.208	1.167	1.222	1.253	1.251	1.255
60	28 <i>,</i> 05	1.334	1.362	1.210	1.169	1.218	1.247	1.249	1.256
61	28,52	1.340	1.367	1.213	1.184	1.228	1.260	1.259	1.264
62	28,99	1.350	1.370	1.209	1.195	1.236	1.270	1.271	1.271
63	29,45	1.352	1.366	1.212	1.210	1.248	1.283	1.281	1.279
64	29,92	1.346	1.361	1.217	1.222	1.257	1.289	1.290	1.283
65	30,39	1.340	1.360	1.220	1.229	1.262	1.293	1.294	1.285
66	30,86	1.338	1.361	1.222	1.232	1.264	1.295	1.297	1.287
67	31,32	1.340	1.365	1.221	1.231	1.263	1.294	1.297	1.287
68	31,79	1.343	1.374	1.220	1.224	1.258	1.292	1.295	1.287
69	32,26	1.344	1.380	1.215	1.214	1.250	1.287	1.289	1.282
70	32,73	1.334	1.386	1.222	1.213	1.251	1.290	1.295	1.285
71	33,19	1.257	1.328	1.211	1.172	1.217	1.254	1.258	1.242
72	33,66	1.205	1.236	1.216	1.165	1.196	1.221	1.240	1.212
73	34,13	1.350	1.378	1.319	1.275	1.281	1.290	1.324	1.317
74	34,60	1.386	1.427	1.283	1.246	1.270	1.293	1.307	1.316
75	35,06	1.382	1.416	1.251	1.230	1.267	1.302	1313,32	1.309
76	35,53	1.380	1.410	1.250	1.238	1.277	1.314	1.319	1.313
77	36,00	1.378	1.406	1.254	1.248	1.286	1.319	1.326	1.317
78	36,47	1.375	1.405	1.258	1.254	1.290	1.321	1.329	1.319
79	36,94	1.372	1.407	1.260	1.256	1.291	1.323	1.332	1.320
80	37,40	1.371	1.412	1.261	1.255	1.290	1.323	1.332	1.321
81	37,87	1.372	1.418	1.260	1.252	1.287	1.323	1330,83	1.320
82	38,34	1.377	1.423	1.259	1.243	1.280	1.318	1.326	1.318
83	38,81	1.385	1.430	1.259	1.238	1.276	1.317	1.325	1.319
84	39,27	1.367	1.420	1.245	1.216	1.259	1.300	1.308	1.302
85	39,74	1.357	1.422	1.258	1.212	1.258	1.299	1.307	1.302
86	40,21	1.373	1.433	1.280	1.217	1.262	1.304	1.314	1.312
87	40,68	1.394	1.446	1.289	1.230	1.275	1.316	1.327	1.325
88	41,14	1.405	1.452	1.283	1.238	1.283	1.324	1.335	1.331
89	41,61	1.408	1.453	1.285	1.251	1.294	1.334	1.344	1.338
90	42,08	1.404	1.452	1.288	1.262	1.303	1.339	1.352	1.343
91	42,55	1.400	1.450	1.290	1.269	1.310	1.343	1.357	1.346
92	43,01	1.396	1.449	1.293	1.274	1.313	1.345	1.360	1.347
93	43,48	1.394	1.449	1.294	1.276	1.314	1.345	1.362	1.348
94	43,95	1.394	1.452	1.296	1.274	1.312	1.346	1361,86	1.348
95	44,42	1.397	1.454	1.295	1.269	1.307	1.344	1.360	1.347
96	44,88	1.400	1.455	1.292	1.263	1.302	1.341	1.356	1.344
97	45,35	1.402	1.459	1.292	1.252	1.293	1.336	1.349	1.340
98	45,82	1.405	1.470	1.305	1.249	1.294	1.339	1.352	1.345
99	46,29	1.364	1.441	1.283	1.209	1.260	1.300	1314,2	1.310
100	46,75	1.387	1.454	1.291	1.215	1.278	1.317	1.329	1.324
101	47,22	1.415	1.471	1.296	1.233	1.294	1.328	1.342	1.340
102	47,69	1.424	1.478	1.308	1.265	1.319	1.345	1.365	1.358
103	48,16	1.410	1.463	1.323	1.308	1.350	1.368	1.388	1.373

104	48,62	1.380	1.429	1.327	1.343	1.363	1.374	1.392	1.373
105	49,09	1.365	1.393	1.318	1.364	1.358	1.369	1.379	1.364
106	49,56	1.374	1.363	1.307	1.371	1.352	1.363	1362,24	1.356
107	50,03	1.396	1.343	1.301	1.371	1.352	1.360	1.350	1.353
108	50,49	1.414	1.330	1.302	1.364	1.355	1.360	1.343	1.352
109	50,96	1.425	1.323	1.307	1.354	1.361	1.360	1.340	1.353
110	51,43	1.431	1.321	1.314	1.347	1.367	1.361	1.342	1.355
111	51,90	1.435	1321,85	1.319	1.343	1.373	1.362	1344,18	1.357
112	52,36	1436,57	1.324	1.322	1.341	1377,28	1.364	1347,15	1.359
113	52,83	1.438	1.327	1324,3	1.340	1.381	1.365	1349,39	1.361
114	53 <i>,</i> 30	1439,34	1329,52	1.325	1.341	1.383	1366,74	1350,97	1.362
115	53,77	1.442	1.332	1.325	1.343	1.384	1368,24	1351,78	1.364
116	54,23	1.445	1.334	1.324	1.346	1.384	1.370	1351,98	1.365
117	54,70	1.447	1336,02	1.322	1.350	1.383	1.371	1351,96	1.366
118	55,17	1.449	1.339	1.318	1.356	1.381	1.371	1352,93	1.367
119	55,64	1.449	1.345	1.313	1.365	1.378	1.371	1355,07	1.368
120	56,10	1.446	1.355	1.309	1.375	1.375	1.373	1359,08	1.370
121	56,57	1.439	1.371	1.309	1.383	1.371	1.376	1366,02	1.374
122	57,04	1.425	1.394	1.316	1.387	1.369	1.382	1377,88	1.379
123	57,51	1.407	1.420	1.333	1.384	1.370	1.390	1394,08	1.385
124	57,97	1.393	1.447	1.352	1.378	1.375	1.397	1411,67	1.393
125	58,44	1.389	1.471	1.363	1.365	1.377	1.397	1423,69	1.398
126	58,91	1.395	1.486	1359,05	1.340	1.367	1.390	1424,86	1.395
127	59,38	1.407	1.489	1.345	1.299	1.341	1.369	1405,29	1.380
128	59 <i>,</i> 84	1.419	1.502	1.349	1.268	1.321	1.357	1390,94	1.372
129	60,31	1.400	1.494	1.357	1.264	1.312	1.347	1376,04	1.364
130	60,78	1.357	1.445	1.301	1200,28	1.258	1.293	1321,77	1.311
131	61,25	1438,23	1.517	1.353	1.257	1.321	1355,59	1388,32	1.376
132	61,71	1.446	1.523	1.360	1.293	1348,92	1.375	1409,6	1.394
133	62,18	1.432	1.518	1371,93	1.334	1.378	1.398	1427,98	1.408
134	62,65	1.410	1.493	1.373	1.361	1.390	1.407	1427,29	1.409
135	63,12	1.398	1.466	1.366	1.379	1.389	1.405	1417	1.403
136	63 <i>,</i> 58	1402,31	1.441	1.352	1.392	1.383	1.401	1404,15	1.397
137	64,05	1.422	1.420	1.337	1.402	1.380	1.398	1393,9	1.393
138	64,52	1.444	1.403	1.326	1.407	1.381	1.396	1388,37	1.392
139	64,99	1.460	1.391	1.321	1.405	1.385	1.395	1385,31	1.392
140	65 <i>,</i> 45	1.471	1.384	1.320	1.401	1.391	1.395	1383,97	1.392
141	65 <i>,</i> 92	1.477	1.380	1.323	1.395	1.397	1.396	1383,8	1.393
142	66,39	1.481	1.379	1.327	1.390	1.401	1.397	1384,26	1.394
143	66,86	1.483	1.380	1.330	1.387	1.405	1.398	1385,06	1.395
144	67,32	1.485	1.381	1.331	1.385	1.408	1.399	1386	1.397
145	67,79	1.487	1.382	1.332	1.385	1.410	1.400	1386,88	1.398
146	68,26	1.488	1.384	1.332	1.387	1.410	1.401	1387,69	1.398
147	68,73	1.488	1.385	1.331	1.390	1409,34	1.401	1388,47	1.399
148	69,19	1.488	1387,9	1.328	1.394	1.408	1.401	1389,37	1.400
149	69,66	1.487	1.392	1.325	1.400	1.405	1.401	1390,69	1.400

150	70,13	1.485	1.398	1.324	1.406	1.401	1.401	1392,57	1.401
151	70,60	1.479	1.407	1.326	1.411	1397,38	1.403	1395,83	1.403
152	71,06	1.468	1.422	1.335	1410,54	1.393	1.405	1400,38	1.405
153	71,53	1.451	1.441	1.348	1.407	1.391	1.409	1407,37	1.408
154	72,00	1430,62	1.464	1.364	1.402	1.392	1.415	1417,63	1.412
155	72,47	1.416	1.486	1.381	1.395	1397,06	1.421	1430,75	1.418
156	72,94	1.411	1.508	1.394	1.387	1.401	1.423	1443,84	1.424
157	73,40	1.417	1.525	1399,95	1.372	1.398	1.419	1451,72	1.426
158	73,87	1432,86	1.532	1.396	1.338	1.379	1.404	1444,12	1.418
159	74,34	1.445	1534,72	1.392	1.299	1354,42	1.385	1424,67	1.405
160	74,81	1.426	1.525	1.384	1.264	1.324	1.359	1394,76	1.382
161	75,27	1.413	1.517	1.376	1.248	1.309	1.345	1379,69	1.369
162	75,74	1.458	1.550	1.402	1.289	1.350	1.383	1421,53	1.408
163	76,21	1.455	1.548	1.399	1.315	1.371	1.399	1438,68	1.418
164	76,68	1.436	1.543	1.405	1.353	1.395	1.419	1452,59	1.429
165	77,14	1.421	1.526	1.403	1.378	1.406	1.427	1451,29	1.430
166	77,61	1.413	1.505	1.395	1391,32	1.406	1.427	1440,47	1.425
167	78 <i>,</i> 08	1.419	1.484	1.382	1.402	1.401	1.424	1428,5	1.420
168	78,55	1.437	1.464	1.367	1.410	1.397	1.420	1419,9	1.416
169	79,01	1.459	1.446	1.354	1.416	1.397	1.416	1414,55	1.415
170	79,48	1.478	1.432	1.344	1.418	1.400	1413,94	1410,99	1.414
171	79 <i>,</i> 95	1.490	1.422	1.337	1.419	1.405	1.413	1408,58	1.413
172	80,42	1.497	1.416	1.333	1.418	1.410	1.413	1407,27	1.414
173	80,88	1.501	1.413	1.331	1.416	1.414	1.413	1406,6	1.414
174	81,35	1.504	1.411	1332,15	1.414	1.418	1.414	1406,39	1.414
175	81,82	1.506	1.411	1.333	1.411	1.421	1.415	1406,43	1.415
176	82,29	1.507	1.411	1.335	1.410	1.422	1.415	1406,67	1.415
177	82,75	1.507	1.411	1.335	1409,95	1.422	1.415	1406,94	1.415
178	83,22	1.507	1.412	1.334	1.412	1421,56	1.415	1407,24	1.416
179	83,69	1.506	1.414	1.333	1.415	1.420	1.415	1407,73	1.416
180	84,16	1.504	1.416	1.333	1.418	1.417	1.415	1408,52	1.416
181	84,62	1.501	1.420	1.335	1.419	1.413	1.415	1409,65	1.416
182	85,09	1.495	1.427	1.340	1.420	1.409	1.415	1411,58	1.417
183	85,56	1.485	1.438	1.347	1.419	1.404	1.417	1414,66	1.418
184	86,03	1468,11	1.453	1.358	1.417	1.400	1.420	1419,24	1.419
185	86,49	1.447	1.472	1.372	1.413	1.400	1.424	1425,33	1.422
186	86,96	1.427	1.492	1.387	1.405	1.404	1.428	1434,32	1.425
187	87,43	1.418	1.512	1.401	1.397	1.409	1.431	1446,26	1.431
188	87,90	1.420	1.531	1.411	1.387	1410,81	1.432	1457,31	1.436
189	88,36	1431,03	1.544	1.415	1.364	1.402	1.425	1458,55	1.434
190	88,83	1.451	1.550	1.411	1328,36	1.381	1.409	1447,28	1.426
191	89,30	1.461	1.557	1.413	1.300	1.361	1.393	1432,27	1.417
192	89,77	1.426	1.533	1.393	1.260	1.321	1.354	1392,01	1.383
193	90,23	1.426	1.533	1.393	1.260	1.321	1.354	1392,01	1.383
194	90,70	1460,5	1.557	1.413	1.300	1.361	1.393	1432,27	1.417
195	91,17	1.451	1.550	1.411	1.328	1.381	1.409	1447,28	1.426

196	91,64	1.431	1.544	1.415	1.364	1.402	1425,27	1458,54	1.434
197	92,10	1.420	1.531	1.411	1.387	1.411	1.432	1457,3	1.436
198	92,57	1.418	1.512	1.401	1.397	1409,01	1.431	1446,25	1.431
199	93,04	1427,06	1.492	1.387	1405,48	1.404	1.428	1434,31	1.425
200	93 <i>,</i> 51	1.447	1.472	1.372	1.413	1.400	1.424	1425,32	1.422
201	93 <i>,</i> 97	1.468	1.453	1.358	1.417	1.400	1.420	1419,23	1.419
202	94,44	1.485	1.438	1.347	1.419	1.404	1.417	1414,65	1.418
203	94,91	1.495	1.427	1.340	1.420	1.409	1.415	1411,57	1.417
204	95 <i>,</i> 38	1.501	1.420	1.335	1.419	1.413	1414,84	1409,64	1.416
205	95,84	1504,33	1.416	1.333	1.417	1.417	1.415	1408,51	1.416
206	96,31	1.506	1.414	1.333	1.415	1.420	1.415	1407,72	1.416
207	96,78	1.507	1.412	1.334	1.412	1.422	1.415	1407,23	1.416
208	97,25	1.507	1.411	1.335	1.410	1.422	1.415	1406,93	1.415
209	97,71	1.507	1.411	1.335	1.410	1.422	1415,08	1406,66	1.415
210	98,18	1.506	1.411	1.333	1.411	1.421	1.415	1406,43	1.415
211	98 <i>,</i> 65	1504,04	1.411	1.332	1.414	1.418	1.414	1406,38	1.414
212	99,12	1.501	1.413	1.331	1.416	1.414	1.413	1406,59	1.414
213	99 <i>,</i> 58	1.497	1416,25	1.333	1.418	1.410	1.413	1407,26	1.414
214	100,05	1.490	1.422	1.337	1.419	1.405	1412,91	1408,57	1.413
215	100,52	1.478	1.432	1.344	1418,38	1.400	1.414	1410,99	1.414
216	100,99	1.459	1.446	1.354	1415,81	1.397	1.416	1414,55	1.415
217	101,45	1436,98	1.464	1.367	1.410	1.397	1.420	1419,9	1.416
218	101,92	1.419	1.484	1.382	1.402	1.401	1.424	1428,49	1.420
219	102,39	1.413	1.505	1.395	1.391	1.406	1426,51	1440,46	1.425
220	102,86	1.421	1.526	1.403	1.378	1.406	1.427	1451,28	1.430
221	103,32	1.436	1.543	1.405	1.353	1.395	1.419	1452,58	1.429
222	103,79	1.455	1.548	1.399	1.315	1.371	1.399	1438,68	1.418
223	104,26	1.458	1.550	1.402	1.289	1.350	1.383	1421,53	1.408
224	104,73	1.413	1.517	1.376	1.248	1.309	1.345	1379,69	1.369
225	105,19	1.426	1.525	1.384	1263,59	1.324	1.359	1394,76	1.382
226	105,66	1.445	1534,73	1.392	1.299	1.354	1.385	1424,68	1.405
227	106,13	1.433	1.532	1396,23	1.338	1.379	1.404	1444,13	1.418
228	106,60	1.417	1.525	1.400	1.372	1.398	1.419	1451,73	1.426
229	107,06	1.411	1.508	1.394	1.387	1.401	1.423	1443,85	1.424
230	107,53	1.416	1.486	1.381	1.395	1.397	1.421	1430,76	1.418
231	108,00	1.431	1.464	1.364	1.402	1.392	1.415	1417,64	1.412
232	108,47	1.451	1.441	1348,12	1.407	1.391	1409,43	1407,38	1.408
233	108,94	1467,89	1.422	1.335	1.411	1.393	1.405	1400,39	1.405
234	109,40	1478,96	1.407	1.327	1.411	1.397	1.403	1395,85	1.403
235	109,87	1.485	1.398	1.324	1.406	1.401	1.401	1392,58	1.401
236	110,34	1.487	1.392	1.325	1.400	1.405	1.401	1390,71	1.400
237	110,81	1.488	1.388	1.328	1.394	1.408	1.401	1389,38	1.400
238	111,27	1.488	1.385	1.331	1.390	1.409	1.401	1388,48	1.399
239	111,74	1.488	1.384	1.332	1.387	1.410	1.401	1387,72	1.398
240	112,21	1.487	1.382	1.332	1.385	1.410	1.400	1386,9	1.398
241	112,68	1.485	1.381	1.331	1.385	1.408	1.399	1386,03	1.397

242	113,14	1.483	1.380	1.330	1.387	1.405	1.398	1385,08	1.395
243	113,61	1.481	1.379	1.327	1.390	1.401	1.397	1384,29	1.394
244	114,08	1.477	1.380	1.323	1.395	1.397	1.396	1383,82	1.393
245	114,55	1.471	1.384	1320,37	1.401	1.391	1394,86	1383,98	1.392
246	115,01	1.460	1.391	1.321	1.405	1.385	1.395	1385,32	1.392
247	115,48	1.444	1.403	1.326	1.407	1.381	1.396	1388,38	1.392
248	115,95	1.422	1.420	1.337	1.402	1.380	1.398	1393,9	1.393
249	116,42	1.402	1440,96	1.352	1.392	1.383	1.401	1404,15	1.397
250	116,88	1.397	1.466	1.366	1.379	1.389	1.405	1416,99	1.403
251	117,35	1.410	1.493	1373,37	1.361	1389,85	1.407	1427,29	1.409
252	117,82	1.432	1.518	1.372	1.334	1.378	1.398	1427,97	1.408
253	118,29	1.446	1.523	1.360	1.293	1.349	1.375	1409,59	1.394
254	118,75	1.438	1.517	1.353	1.257	1.321	1.356	1388,32	1.376
255	119,22	1.357	1.445	1.301	1.200	1.258	1.293	1321,76	1.311
256	119,69	1.400	1.494	1.357	1.264	1.312	1.347	1376,03	1.364
257	120,16	1.419	1.502	1348,59	1.268	1.321	1.357	1390,93	1.372
258	120,62	1.407	1489,23	1.345	1.299	1.341	1.369	1405,27	1.380
259	121,09	1.395	1.486	1.359	1.340	1.367	1.390	1424,84	1.395
260	121,56	1.389	1.471	1.363	1.365	1.377	1.397	1423,67	1.398
261	122,03	1.393	1.447	1.352	1.378	1.375	1.397	1411,64	1.393
262	122,49	1.407	1.420	1.333	1.384	1.370	1.390	1394,05	1.385
263	122,96	1.425	1.394	1.316	1.387	1.369	1.382	1377,85	1.379
264	123,43	1.439	1.371	1.309	1.383	1.371	1.376	1365,99	1.374
265	123,90	1.446	1.355	1.309	1.375	1.375	1.373	1359,05	1.370
266	124,36	1.449	1.345	1.313	1.365	1377,95	1.371	1355,04	1.368
267	124,83	1.449	1.339	1.318	1.356	1.381	1370,65	1352,9	1.367
268	125,30	1.447	1.336	1.322	1.350	1.383	1.370	1351,93	1.366
269	125,77	1.445	1.334	1.324	1.346	1.384	1.370	1351,96	1.365
270	126,23	1.442	1.332	1.325	1.343	1.384	1.368	1351,75	1.364
271	126,70	1.439	1.330	1.325	1.341	1.383	1.367	1350,95	1.362
272	127,17	1.438	1.327	1324,27	1.340	1.381	1.365	1349,37	1.361
273	127,64	1.437	1.324	1.322	1.341	1377,26	1.364	1347,13	1.359
274	128,10	1.435	1.322	1.319	1.343	1.373	1.362	1344,17	1.357
275	128,57	1430,91	1.321	1.314	1.347	1.367	1360,94	1341,53	1.355
276	129,04	1.425	1323,36	1.307	1.354	1.361	1.360	1340,47	1.353
277	129,51	1.414	1.330	1.302	1363,79	1.355	1.360	1342,94	1.352
278	129,97	1.396	1.343	1.301	1.371	1.352	1.360	1350,13	1.353
279	130,44	1.374	1.363	1.307	1.371	1.352	1.363	1362,26	1.356
280	130,91	1.365	1.393	1.318	1.364	1.358	1.369	1378,82	1.364
281	131,38	1.380	1.429	1.327	1.343	1363,02	1.374	1391,82	1.373
282	131,84	1.410	1.463	1.323	1.308	1.350	1.368	1388,53	1.373
283	132,31	1.424	1.478	1.308	1.265	1318,84	1.346	1364,65	1.358
284	132,78	1.415	1.471	1.296	1.233	1.294	1.328	1342,44	1.340
285	133,25	1.387	1454,07	1.291	1.215	1278,43	1.317	1329,45	1.325
286	133,71	1.360	1.437	1.281	1.206	1.257	1.297	1310,58	1.307
287	134,18	1.403	1468,59	1.304	1.248	1291,66	1.337	1351,72	1.343

288	134,65	1.403	1.460	1.293	1.252	1.293	1336,71	1350,14	1.341
289	135,12	1.400	1454,94	1.292	1262,8	1301,76	1.341	1355,58	1.344
290	135,58	1.397	1.454	1295,46	1.269	1.307	1.344	1359,62	1.347
291	136,05	1.394	1.452	1.296	1.274	1311,72	1.346	1361,89	1.348
292	136,52	1393,59	1.450	1.294	1.276	1.314	1.345	1361,77	1.348
293	136,99	1.396	1.449	1.293	1.274	1313,07	1.345	1360,31	1.347
294	137,45	1.400	1.450	1.290	1.269	1.310	1.343	1357,13	1.346
295	137,92	1.404	1.452	1287,83	1.262	1303,17	1.339	1352,19	1.343
296	138,39	1.408	1.453	1.285	1.251	1.294	1.334	1344,51	1.338
297	138,86	1.408	1.453	1.284	1.240	1284,46	1.325	1337,14	1.333
298	139,32	1.395	1.445	1.290	1.231	1.274	1.315	1327,39	1.325
299	139,79	1.374	1.434	1.281	1217,69	1262,5	1304,07	1315,02	1.312
300	140,26	1.357	1.422	1.258	1.212	1.258	1.299	1307,28	1.302
301	140,73	1.367	1.420	1.245	1.216	1.259	1.300	1308,49	1.302
302	141,19	1.385	1.430	1.259	1.238	1.276	1.317	1324,77	1.319
303	141,66	1.377	1.423	1.259	1.243	1.280	1.318	1325,95	1.318
304	142,13	1.372	1417,64	1.260	1.252	1286,91	1.323	1330,84	1.320
305	142,60	1.371	1.412	1.261	1.255	1.290	1.323	1331,98	1.321
306	143,06	1.372	1.407	1.260	1.256	1.291	1.323	1332	1.320
307	143,53	1.375	1.405	1.258	1.254	1.290	1.321	1329,36	1.319
308	144,00	1.378	1.406	1254,33	1.248	1.286	1.319	1325,7	1.317
309	144,47	1.380	1.410	1.250	1.238	1277,37	1.314	1318,69	1.313
310	144,94	1.382	1.416	1.251	1.230	1.267	1.302	1313,32	1.309
311	145,40	1385,52	1.427	1.283	1.246	1.270	1292,56	1307,27	1.316
312	145,87	1.350	1.378	1.319	1.275	1.281	1.290	1324,2	1.317
313	146,34	1.205	1.236	1.216	1.165	1.196	1.221	1240,42	1.212
314	146,81	1.256	1.326	1.212	1.173	1215,33	1.252	1257,36	1.242
315	147,27	1.335	1.387	1.222	1.216	1.249	1.288	1294,33	1.284
316	147,74	1.343	1.379	1.214	1.214	1.249	1.286	1288,79	1.282
317	148,21	1.343	1.374	1.220	1.224	1.258	1.292	1295,3	1.287
318	148,68	1339,54	1.365	1.221	1.231	1.263	1.294	1296,89	1.287
319	149,14	1.338	1.361	1221,77	1.232	1264,06	1.295	1297,43	1.287
320	149,61	1.340	1.360	1.220	1.229	1.262	1.293	1294,39	1.285
321	150,08	1.346	1.361	1.216	1.222	1.257	1.289	1289,82	1.283
322	150,55	1.352	1.366	1.211	1.210	1.248	1.283	1280,45	1.279
323	151,01	1.350	1.370	1.209	1.195	1.236	1.270	1270,77	1.271
324	151,48	1.340	1.367	1.213	1.184	1.227	1.260	1259,1	1.264
325	151,95	1.334	1361,81	1.210	1.169	1.218	1.247	1249,23	1.256
326	152,42	1322,11	1.363	1.208	1.167	1222,32	1.253	1250,71	1.255
327	152,88	1.289	1336,53	1.174	1.145	1.196	1.227	1225,85	1.228
328	153,35	1.307	1.340	1.177	1.172	1.211	1243,85	1244,27	1.242
329	153,82	1.308	1.334	1.179	1.189	1.223	1.253	1253,27	1.249
330	154,29	1.304	1.323	1.183	1.201	1.230	1.260	1259,09	1.251
331	154,75	1.299	1.316	1.186	1.205	1.234	1.264	1262,12	1.252
332	155,22	1.300	1.313	1185,72	1.204	1.235	1.264	1261,21	1.252
333	155,69	1.305	1.315	1.182	1.198	1231,04	1.262	1257,62	1.250

334	156,16	1.313	1.320	1.177	1.185	1.223	1.257	1248,71	1.246
335	156,62	1.318	1.329	1.180	1.171	1.209	1.240	1239,95	1.241
336	157,09	1.298	1.335	1.227	1.190	1.219	1.224	1240,46	1.248
337	157,56	1.152	1.204	1.221	1.173	1.185	1.172	1205,24	1.188
338	158,03	1.074	1.151	1.216	1.173	1.175	1.158	1203,83	1.164
339	158,49	1066,55	1.151	1.227	1.191	1.181	1.168	1222,2	1.172
340	158,96	1.060	1.149	1.226	1.187	1.176	1.164	1219,81	1.169
341	159,43	1.063	1.150	1.225	1.184	1.177	1.166	1218	1.169
342	159,90	1.060	1.142	1.214	1.177	1.172	1.159	1210,03	1.162
343	160,36	1.056	1.134	1.208	1.176	1.166	1.154	1207,12	1.157
344	160,83	1.053	1.135	1.213	1.178	1.164	1.154	1209,7	1.158
345	161,30	1047,01	1.134	1211,32	1.172	1.161	1.152	1206,57	1.155
346	161,77	1.048	1.133	1.207	1.167	1.159	1.150	1201,33	1.152
347	162,23	1.042	1.120	1192,67	1.160	1.151	1140,39	1191,03	1.143
348	162,70	1039,67	1.116	1.190	1.160	1.147	1.137	1190,11	1.140
349	163,17	1.035	1.116	1.193	1.160	1.144	1.136	1191,12	1.139
350	163,64	1.029	1.114	1.190	1.152	1.140	1.133	1186,47	1.135
351	164,10	1.032	1.113	1.184	1.148	1.139	1130,68	1179,5	1.132
352	164,57	1.024	1.094	1.165	1.140	1.126	1.117	1166,74	1.119
353	165,04	1.024	1.097	1.173	1.146	1.126	1.118	1172,47	1.122
354	165,51	1.014	1.094	1.172	1.140	1.121	1.115	1170,28	1.118
355	165,97	1.014	1.094	1.168	1.135	1.119	1113,12	1164,35	1.115
356	166,44	1.009	1.080	1.152	1.128	1.110	1.103	1152,62	1.105
357	166,91	1.007	1.076	1.151	1.129	1.105	1.099	1151,72	1.103
358	167,38	1.001	1075,39	1.152	1.127	1.101	1.097	1151,66	1.101
359	167,84	998	1074,22	1.149	1.121	1.098	1093,83	1146,01	1.097
360	168,31	996	1.064	1.136	1.114	1.092	1.086	1134,99	1.089
361	168,78	994	1.058	1.130	1.112	1.087	1.081	1130,31	1.085
362	169,25	993	1.060	1.130	1.107	1.086	1.083	1128,62	1.084
363	169,71	1.003	1.063	1.099	1.068	1.069	1.081	1115,68	1.071
364	170,18	1.083	1.148	1.082	1.037	1.070	1.105	1120,77	1.092
365	170,65	1.142	1199,45	1.075	1.037	1.076	1.114	1124,16	1.110
366	171,12	1.168	1.211	1.076	1.033	1.077	1.118	1129,46	1.116
367	171,58	1.158	1.207	1.086	1.029	1070,08	1.110	1124,14	1.112
368	172,05	1127,46	1.186	1.078	1.014	1.052	1.090	1107,83	1.094
369	172,52	1.125	1.186	1.069	1.013	1.054	1.096	1113,92	1.094
370	172,99	1.151	1.204	1.079	1.022	1.067	1.108	1127,28	1.108
371	173,45	1.139	1.199	1.099	1.031	1.062	1.097	1119,93	1.107
372	173,92	1.071	1.120	1096,3	1059,87	1.055	1066,74	1096,08	1.081
373	174,39	982	1.027	1.075	1.066	1.037	1.042	1078,87	1.044
374	174,86	974	1.021	1.087	1.083	1.047	1.051	1092,02	1.051
375	175,32	976	1.020	1.073	1.063	1037	1.046	1086,81	1.043
376	175,79	1.028	1.083	1078,48	1.029	1.038	1.066	1102,94	1.061
377	176,26	1087,69	1.168	1.093	1008,69	1.047	1.085	1114,43	1.086
378	176,73	1.119	1.194	1.096	1.005	1.057	1095,24	1120,45	1.098
379	177,19	1.124	1.199	1.105	1.011	1.061	1.102	1126,98	1.104

380	177,66	1.116	1.191	1.102	1.004	1.053	1.095	1120,66	1.097
381	178,13	1.134	1.208	1.121	1.024	1.071	1.114	1141,44	1.116
382	178,60	1.124	1.195	1.114	1.019	1.064	1.109	1136,68	1.109
383	179,06	1.130	1.196	1.122	1.033	1.077	1.123	1151,19	1.119
384	179,53	1.105	1.172	1.109	1.028	1.066	1.113	1148,17	1.106
385	180,00	1.157	1.223	1.150	1074,31	1.106	1.136	1174,59	1.146

ANHANG C Polynomische Einflussfunktionen foo für halbelliptische Oberflächenrisse –Berechnung nach Varfolomeyev

Die Einflussfunktion f_{00} wird für Winkeln zwischen $\phi=0-180^{\circ}$ (Angle) meist mit $\Delta\phi=10^{\circ}$ an der Rissfront ermittelt. Analog dazu berücksichtigt f_{00} als Geometriefunktion die Bauteil-und Rissabmessungen. Die Anwendung dieser Einflussfunktion ist in Formel (4.2) zu finden.

a/t:	0.02	a/t:	0.02	a/t:	0.02
a/c:	0.1	a/c:	0.2	a/c:	0.4
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	4.581E-01	0	5.82E-01	0	7.71E-01
5	4.37E-01	5	5.57E-01	5	7.50E-01
10	5.08E-01	10	5.86E-01	10	7.41E-01
20	6.54E-01	20	6.91E-01	20	7.84E-01
30	7.71E-01	30	7.95E-01	30	8.44E-01
40	8.63E-01	40	8.80E-01	40	9.01E-01
50	9.38E-01	50	9.48E-01	50	9.53E-01
60	9.95E-01	60	1.00E+00	60	9.94E-01
70	1.04E+00	70	1.04E+00	70	1.02E+00
80	1.06E+00	80	1.06E+00	80	1.04E+00
90	1.07E+00	90	1.07E+00	90	1.05E+00
a/t:	0.02	a/t:	0.02	a/t:	0.02
a/t: a/c:	0.02	a/t: a/c:	0.02	a/t: a/c:	0.02
a/t: a/c: Angle	0.02 0.6 Load#1	a/t: a/c: Angle	0.02 1 Load#1	a/t: a/c: Angle	0.02 1.5 Load#1
a/t: a/c: Angle 0	0.02 0.6 Load#1 9.03E-01	a/t: a/c: Angle 0	0.02 1 Load#1 1.13E+00	a/t: a/c: Angle 0	0.02 1.5 Load#1 8.43E-01
a/t: a/c: Angle 0 5	0.02 0.6 Load#1 9.03E-01 9.01E-01	a/t: a/c: Angle 0 5	0.02 1 Load#1 1.13E+00 1.14E+00	a/t: a/c: Angle 0 5	0.02 1.5 Load#1 8.43E-01 8.74E-01
a/t: a/c: Angle 0 5 10	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01	a/t: a/c: Angle 0 5 10	0.02 1 Load#1 1.13E+00 1.14E+00 1.11E+00	a/t: a/c: Angle 0 5 10	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01
a/t: a/c: Angle 0 5 10 20	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01	a/t: a/c: Angle 0 5 10 20	0.02 1 Load#1 1.13E+00 1.14E+00 1.11E+00 1.07E+00	a/t: a/c: Angle 0 5 10 20	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 8.17E-01
a/t: a/c: Angle 0 5 5 10 20 30	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01	a/t: a/c: Angle 0 5 10 20 30	0.02 1 Load#1 1.13E+00 1.14E+00 1.11E+00 1.07E+00 1.05E+00	a/t: a/c: Angle 0 5 10 20 30	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 8.17E-01 7.86E-01
a/t: a/c: Angle 0 5 10 20 30 40	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01 9.37E-01	a/t: a/c: Angle 0 5 10 20 30 40	0.02 1 Load#1 1.13E+00 1.14E+00 1.11E+00 1.07E+00 1.05E+00 1.04E+00	a/t: a/c: Angle 0 5 10 20 30 40	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 8.17E-01 7.86E-01 7.58E-01
a/t: a/c: Angle 0 5 10 20 30 40 50	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01 9.37E-01 9.70E-01	a/t: a/c: Angle 0 5 10 20 30 40 50	0.02 1 Load#1 1.13E+00 1.14E+00 1.07E+00 1.05E+00 1.04E+00 1.03E+00	a/t: a/c: Angle 0 5 10 20 30 30 40 50	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 8.17E-01 7.86E-01 7.58E-01 7.31E-01
a/t: a/c: Angle 0 5 10 20 30 40 50 60	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01 9.37E-01 9.70E-01 9.95E-01	a/t: a/c: Angle 0 5 5 10 20 30 40 50 60	0.02 1 Load#1 1.13E+00 1.14E+00 1.11E+00 1.07E+00 1.05E+00 1.04E+00 1.03E+00 1.02E+00	a/t: a/c: Angle 0 5 10 20 30 40 50 60	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 8.17E-01 7.86E-01 7.58E-01 7.31E-01 7.04E-01
a/t: a/c: Angle 0 5 5 10 20 30 40 50 60 70	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01 9.37E-01 9.70E-01 9.95E-01 1.02E+00	a/t: a/c: Angle 0 5 10 20 30 40 50 60 70	0.02 1 Load#1 1.13E+00 1.14E+00 1.07E+00 1.07E+00 1.04E+00 1.03E+00 1.02E+00 1.02E+00	a/t: a/c: Angle 0 5 10 20 30 30 40 50 60 70	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 7.86E-01 7.58E-01 7.31E-01 7.04E-01 6.80E-01
a/t: a/c: Angle 0 5 10 20 30 40 50 60 70 80	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01 9.37E-01 9.70E-01 9.70E-01 1.02E+00 1.03E+00	a/t: a/c: Angle 0 5 10 20 30 40 50 60 70 80	0.02 1 Load#1 1.13E+00 1.14E+00 1.07E+00 1.07E+00 1.04E+00 1.03E+00 1.02E+00 1.02E+00	a/t: a/c: Angle 0 5 10 20 30 40 40 50 60 70 80	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 8.17E-01 7.86E-01 7.31E-01 7.31E-01 6.80E-01 6.61E-01
a/t: a/c: Angle 0 5 10 20 20 30 40 50 60 70 80 80 90	0.02 0.6 Load#1 9.03E-01 9.01E-01 8.81E-01 8.86E-01 9.09E-01 9.37E-01 9.70E-01 9.95E-01 1.02E+00 1.03E+00	a/t: a/c: Angle 0 5 10 20 30 40 50 60 70 80 80 90	0.02 1 Load#1 1.13E+00 1.14E+00 1.07E+00 1.07E+00 1.04E+00 1.03E+00 1.02E+00 1.02E+00 1.02E+00	a/t: a/c: Angle 0 5 10 20 20 30 40 50 60 50 60 70 80 80	0.02 1.5 Load#1 8.43E-01 8.74E-01 8.55E-01 7.86E-01 7.58E-01 7.31E-01 7.04E-01 6.80E-01 6.58E-01

a/t:	0.1	a/t:	0.1	a/t:	0.1
a/c:	0.1	a/c:	0.2	a/c:	0.4
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	4.54E-01	0	5.90E-01	0	7.89E-01
5	4.45E-01	5	5.69E-01	5	7.69E-01
10	5.21E-01	10	6.01E-01	10	7.59E-01
20	6.76E-01	20	7.09E-01	20	8.04E-01
30	8.06E-01	30	8.18E-01	30	8.66E-01
40	9.10E-01	40	9.09E-01	40	9.26E-01
50	9.92E-01	50	9.83E-01	50	9.82E-01
60	1.05E+00	60	1.04E+00	60	1.03E+00
70	1.10E+00	70	1.08E+00	70	1.06E+00
80	1.12E+00	80	1.11E+00	80	1.08E+00
90	1.13E+00	90	1.11E+00	90	1.08E+00
	•	•	•	-	

a/t:	0.1	a/t:	0.1	a/t:	0.1
a/c:	0.6	a/c:	1	a/c:	1.5
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	9.19E-01	0	1.15E+00	0	8.92E-01
5	9.21E-01	5	1.16E+00	5	9.25E-01
10	9.04E-01	10	1.13E+00	10	9.03E-01
20	9.07E-01	20	1.09E+00	20	8.60E-01
30	9.30E-01	30	1.07E+00	30	8.24E-01
40	9.60E-01	40	1.06E+00	40	7.91E-01
50	9.94E-01	50	1.05E+00	50	7.60E-01
60	1.02E+00	60	1.04E+00	60	7.30E-01
70	1.04E+00	70	1.04E+00	70	7.03E-01
80	1.06E+00	80	1.03E+00	80	6.83E-01
90	1.06E+00	90	1.03E+00	90	6.79E-01
a/t:	0.2	a/t:	0.2	a/t:	0.2

a/t:	0.2	a/t:	0.2	a/t:	0.2
a/c:	0.1	a/c:	0.2	a/c:	0.4
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	4.77E-01	0	6.12E-01	0	8.09E-01
5	4.67E-01	5	5.92E-01	5	7.90E-01
10	5.48E-01	10	6.27E-01	10	7.82E-01
20	7.13E-01	20	7.41E-01	20	8.25E-01
30	8.51E-01	30	8.54E-01	30	8.88E-01
40	9.64E-01	40	9.50E-01	40	9.50E-01
50	1.06E+00	50	1.03E+00	50	1.01E+00
60	1.13E+00	60	1.09E+00	60	1.05E+00
70	1.18E+00	70	1.13E+00	70	1.08E+00
80	1.21E+00	80	1.16E+00	80	1.10E+00
90	1.22E+00	90	1.17E+00	90	1.11E+00

a/t:	0.2	a/t:	0.2	a/t:	0.2	
a/c:	0.6	a/c:	1	a/c:	1.5	
Angle	Load#1	Angle	Load#1	Angle	Load#1	
0	9.37E-01	0	1.16E+00	0	8.96E-01	
5	9.39E-01	5	1.17E+00	5	9.30E-01	
10	9.21E-01	10	1.14E+00	10	9.08E-01	
20	9.23E-01	20	1.10E+00	20	8.65E-01	
30	9.46E-01	30	1.08E+00	30	8.28E-01	
40	9.76E-01	40	1.06E+00	40	7.95E-01	
50	1.01E+00	50	1.05E+00	50	7.63E-01	
60	1.04E+00	60	1.05E+00	60	7.33E-01	
70	1.06E+00	70	1.04E+00	70	7.06E-01	
80	1.07E+00	80	1.04E+00	80	6.86E-01	
90	1.08E+00	90	1.04E+00	90	6.81E-01	

a/t:	0.4	a/t:	0.4		a/t:	0.4
a/c:	0.1	a/c:	0.2		a/c:	0.4
Angle	Load#1	Angle	Load#1		Angle	Load#1
0	5.65E-01	0	7.25E-01		0	9.18E-01
5	5.51E-01	5	7.00E-01		5	8.98E-01
10	6.45E-01	10	7.40E-01		10	8.85E-01
20	8.41E-01	20	8.69E-01		20	9.27E-01
30	1.02E+00	30	1.00E+00		30	9.91E-01
40	1.17E+00	40	1.12E+00		40	1.05E+00
50	1.31E+00	50	1.21E+00		50	1.11E+00
60	1.42E+00	60	1.29E+00		60	1.16E+00
70	1.51E+00	70	1.34E+00		70	1.19E+00
80	1.56E+00	80	1.38E+00		80	1.21E+00
90	1.58E+00	90	1.39E+00		90	1.22E+00
				-		

a/t:	0.5	a/t:	0.4	a/t:	0.6
a/c:	0.4	a/c:	0.6	a/c:	0.4
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	1.01E+00	0	1.03E+00	0	1.11E+00
5	9.87E-01	5	1.03E+00	5	1.08E+00
10	9.70E-01	10	1.01E+00	10	1.05E+00
20	1.01E+00	20	1.00E+00	20	1.09E+00
30	1.07E+00	30	1.02E+00	30	1.15E+00
40	1.13E+00	40	1.05E+00	40	1.21E+00
50	1.19E+00	50	1.08E+00	50	1.26E+00
60	1.23E+00	60	1.10E+00	60	1.30E+00
70	1.26E+00	70	1.12E+00	70	1.32E+00
80	1.28E+00	80	1.14E+00	80	1.34E+00
90	1.28E+00	90	1.14E+00	90	1.35E+00

a/t:	0.4	a/t:	0.4	a/t:	0.6
a/c:	1	a/c:	1.5	a/c:	0.1
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	1.22E+00	0	9.22E-01	0	7.20E-01
5	1.23E+00	5	9.54E-01	5	7.09E-01
10	1.19E+00	10	9.30E-01	10	8.29E-01
20	1.15E+00	20	8.83E-01	20	1.08E+00
30	1.12E+00	30	8.44E-01	30	1.32E+00
40	1.10E+00	40	8.08E-01	40	1.54E+00
50	1.08E+00	50	7.74E-01	50	1.74E+00
60	1.08E+00	60	7.43E-01	60	1.91E+00
70	1.07E+00	70	7.14E-01	70	2.03E+00
80	1.07E+00	80	6.93E-01	80	2.09E+00
90	1.07E+00	90	6.89E-01	90	2.12E+00
	•				

a/t:	0.6	a/t:	0.6		a/t:	0.6
a/c:	0.2	a/c:	0.4		a/c:	0.6
Angle	Load#1	Angle	Load#1		Angle	Load#1
0	9.28E-01	0	1.11E+00		0	1.19E+00
5	8.91E-01	5	1.08E+00		5	1.18E+00
10	9.35E-01	10	1.05E+00		10	1.15E+00
20	1.09E+00	20	1.09E+00		20	1.12E+00
30	1.24E+00	30	1.15E+00		30	1.13E+00
40	1.38E+00	40	1.21E+00		40	1.15E+00
50	1.49E+00	50	1.26E+00		50	1.17E+00
60	1.58E+00	60	1.30E+00		60	1.18E+00
70	1.64E+00	70	1.32E+00		70	1.20E+00
80	1.68E+00	80	1.34E+00		80	1.21E+00
90	1.69E+00	90	1.35E+00		90	1.21E+00
				•		

				-		
a/t:	0.6	a/t:	0.6		a/t:	0.8
a/c:	1	a/c:	1.5		a/c:	0.1
Angle	Load#1	Angle	Load#1		Angle	Load#1
0	1.32E+00	0	9.64E-01		0	1.03E+00
5	1.33E+00	5	9.94E-01		5	9.98E-01
10	1.28E+00	10	9.66E-01		10	1.16E+00
20	1.22E+00	20	9.12E-01		20	1.50E+00
30	1.18E+00	30	8.66E-01		30	1.83E+00
40	1.15E+00	40	8.26E-01		40	2.12E+00
50	1.13E+00	50	7.88E-01		50	2.35E+00
60	1.11E+00	60	7.53E-01		60	2.49E+00
70	1.10E+00	70	7.22E-01		70	2.55E+00
80	1.09E+00	80	7.00E-01		80	2.56E+00
90	1.09E+00	90	6.94E-01		90	2.56E+00
a/t:	0.8	a/t:	0.8		a/t:	0.8
a/c:	0.2	a/c:	0.4		a/c:	0.6

Angle	Load#1	Angle	Load#1	Angle	Load#1
0	1.23E+00	0	1.35E+00	0	1.37E+00
5	1.17E+00	5	1.30E+00	5	1.35E+00
10	1.22E+00	10	1.26E+00	10	1.30E+00
20	1.39E+00	20	1.27E+00	20	1.25E+00
30	1.57E+00	30	1.32E+00	30	1.24E+00
40	1.71E+00	40	1.36E+00	40	1.24E+00
50	1.81E+00	50	1.39E+00	50	1.24E+00
60	1.85E+00	60	1.40E+00	60	1.24E+00
70	1.87E+00	70	1.40E+00	70	1.24E+00
80	1.86E+00	80	1.40E+00	80	1.23E+00
90	1.86E+00	90	1.40E+00	90	1.23E+00
a/t:	0.8	a/t:	0.8	a/t:	0.9

0.8	a/t:	0.8
1	a/c:	1.5
Load#1	Angle	e Load#1
1.42E+00	C	0 1.02E+00
1.44E+00	5	5 1.04E+00
1.39E+00	10	0 1.01E+00
1.30E+00	20	9.45E-01
1.24E+00	30	8.92E-01
1.20E+00	40	8.45E-01
1.16E+00	50	8.02E-01
1.14E+00	60	7.62E-01
1.12E+00	70	7.27E-01
1.11E+00	80	7.03E-01
1.10E+00	90	6.96E-01

a/c:

Angle

-		
	a/t:	0.9
	a/c:	0.1
	Angle	Load#1
	0	1.21E+00
	5	1.18E+00
	10	1.37E+00
	20	1.75E+00
	30	2.12E+00
	40	2.43E+00
	50	2.62E+00
	60	2.67E+00
	70	2.63E+00
	80	2.57E+00
	90	2.54E+00
-		

a/t:	0.9	a/t:	0.9	a/t:	0.9
a/c:	0.2	a/c:	0.4	a/c:	0.6
Angle	Load#1	Angle	Load#1	Angle	Load#1
0	1.39E+00	0	1.46E+00	0	1.45E+00
5	1.32E+00	5	1.41E+00	5	1.43E+00
10	1.37E+00	10	1.36E+00	10	1.37E+00
20	1.55E+00	20	1.36E+00	20	1.31E+00
30	1.72E+00	30	1.39E+00	30	1.29E+00
40	1.85E+00	40	1.42E+00	40	1.28E+00
50	1.92E+00	50	1.44E+00	50	1.27E+00
60	1.92E+00	60	1.43E+00	60	1.26E+00
70	1.88E+00	70	1.42E+00	70	1.26E+00
80	1.85E+00	80	1.41E+00	80	1.25E+00
90	1.83E+00	90	1.40E+00	90	1.25E+00

a/t:	0.9	a/t:	0.9
a/c:	1	a/c:	1.5
Angle	Load#1	Angle	Load#1
0	1.48E+00	0	1.03E+00
5	1.48E+00	5	1.05E+00
10	1.43E+00	10	1.02E+00
20	1.34E+00	20	9.53E-01
30	1.27E+00	30	9.00E-01
40	1.22E+00	40	8.54E-01
50	1.19E+00	50	8.13E-01
60	1.16E+00	60	7.75E-01
70	1.14E+00	70	7.42E-01
80	1.13E+00	80	7.19E-01
90	1.13E+00	90	7.13E-01

-								Funk	tion f ₀								
				Schei	telpun	ıkt (ø=	= 90°)				0)berfli	ichenp	ounkt	(\$\$ = 0°	")	
					ť	ri				t/r _i							
a/c	a/t	1,0	0,5	0,2	0,1	0,05	0,025	0,0125	0,0	1,0	0,5	0,2	0,1	0,05	0,025	0,0125	0,0
1,0	0,0	0,657	0,657	0,657	0,657	0,657	0,657	0,657	0,657	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744
	0,1	0,666	0,663	0,660	0,658	0,657	0,657	0,657	0,657	0,764	0,759	0,753	0,751	0,750	0,749	0,748	0,748
	0,2	0,679	0,673	0,666	0,663	0,662	0,661	0,660	0,660	0,785	0,774	0,764	0,759	0,757	0,755	0,754	0,754
	0,4	0,717	0,704	0,690	0,684	0,680	0,678	0,676	0,675	0,847	0,830	0,811	0,802	0,796	0,793	0,791	0,789
	0,6	0,771	0,746	0,719	0,706	0,699	0,694	0,691	0,691	0,939	0,921	0,893	0,878	0,867	0,860	0,856	0,853
	0,8	0,843	0,792	0,743	0,722	0,710	0,703	0,700	0,697	1,062	1,042	1,001	0,975	0,955	0,942	0,934	0,927
0,5	0,0	0,883	0,883	0,883	0,883	0,883	0,883	0,883	0,883	0,704	0,704	0,704	0,704	0,704	0,704	0,704	0,704
	0,1	0,908	0,900	0,892	0,888	0,886	0,885	0,885	0,884	0,727	0,722	0,717	0,715	0,713	0,712	0,712	0,712
	0,2	0,945	0,930	0,914	0,907	0,903	0,901	0,899	0,898	0,752	0,744	0,736	0,732	0,729	0,728	0,727	0,726
	0,4	1,066	1,039	1,005	0,988	0,976	0,969	0,965	0,962	0,835	0,835	0,827	0,820	0,815	0,810	0,808	0,806
	0,6	1,254	1,209	1,139	1,099	1,072	1,055	1,045	1,038	0,959	0,987	0,992	0,982	0,968	0,957	0,950	0,947
	0,8	1,540	1,429	1,275	1,190	1,136	1,105	1,087	1,070	1,129	1,206	1,233	1,211	1,179	1,153	1,134	1,117
0,25	0,0	1,022	1,022	1,022	1,022	1,022	1,022	1,022	1,022	0,568	0,568	0,568	0,568	0,568	0,568	0,568	0.568
0.01010	0,1	1,062	1,051	1,039	1,034	1,031	1,029	1,028	1,027	0,592	0,590	0,588	0,586	0,586	0,585	0,585	0,585
	0,2	1,129	1,110	1,090	1,080	1,073	1,069	1,067	1,066	0,612	0,612	0,612	0,611	0,610	0,609	0,608	0,608
	0,4	1,353	1,342	1,310	1,285	1,265	1,251	1,242	1,234	0,669	0,693	0,715	0,720	0,720	0,717	0,715	0,714
	0,6	1,705	1,728	1,681	1,617	1,557	1,514	1,486	1,452	0,742	0,816	0,898	0,924	0,927	0,920	0,912	0,900
	0,8	2,272	2,291	2,157	1,990	1,834	1,725	1,657	1,573	0,834	0,990	1,189	1,267	1,270	1,244	1,216	1,167
0,125	0,0	1,088	1,088	1,088	1,088	1,088	1,088	1,088	1,088	0,432	0,432	0.432	0.432	0.432	0.432	0.432	0.432
CONCENSION OF	0,1	1,134	1,123	1,111	1,105	1,102	1,100	1,099	1,095	0,447	0,447	0,448	0,447	0,447	0,447	0.447	0.445
	0,2	1,223	1,213	1,198	1,190	1,182	1,178	1,175	1,172	0,456	0,462	0,467	0,469	0,469	0,469	0,469	0.469
	0,4	1,504	1,547	1,567	1,559	1,538	1,519	1,505	1,482	0,482	0,504	0,534	0,551	0,559	0,561	0,561	0,559
	0,6	1,924	2,084	2,213	2,214	2,165	2,096	2,038	1,943	0,513	0,565	0,647	0,697	0,732	0,744	0,745	0,725
	0,8	2,626	2,890	3,175	3,172	3,014	2,804	2,614	2,300	0,536	0,630	0,816	0,939	1,038	1,085	1,081	1,006
0,0625	0,0	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	0,282	0.282	0.282	0.282	0.282	0.282	0.282	0.282
-8	0,1	1,160	1,152	1,142	1,138	1,134	1,133	1,131	1,129	0,334	0,335	0,336	0,337	0,337	0.337	0.337	0.336
	0,2	1,259	1,263	1,263	1,261	1,256	1,252	1,249	1,243	0,338	0,342	0,347	0,350	0,352	0.352	0.353	0.353
	0,4	1,548	1,633	1,718	1,747	1,753	1,744	1,729	1,693	0,349	0,362	0.382	0,392	0,401	0,408	0,410	0,410
	0,6	1,992	2,234	2,546	2,679	2,728	2,711	2,661	2,470	0,361	0,385	0,435	0,462	0,485	0,506	0.521	0.515
	0,8	2,727	3,116	3,829	4,232	4,401	4,349	4,146	3,331	0,364	0,402	0,506	0,577	0,634	0,691	0,740	0,729
0,0	0,0	1,122	1,122	1,122	1,122	1,122	1,122	1,122	1,122	0,0	0,0	0,0	0.0	0.0	0.0	0.0	0.0
	0,1	1,182	1,180	1,182	1,183	1,184	1,185	1,185	1,185	0,0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
	0,2	1,282	1,301	1,329	1,344	1,353	1,359	1,362	1,364	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0.0
	0,4	1,580	1,695	1,867	1,967	2,030	2,068	2,088	2,109	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0
	0,6	2,028	2,319	2,864	3,270	3,578	3,785	3,903	4,030	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0.0
	0,8	2,779	3,220	4,408	5,825	7,473	9,088	10,286	11,949	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Tahelle ($2 \cdot no$	lvnomische	Finfluss	funktionen	faau	f dør	Aussenseite	eines	Hohlz	vlinders	[2]	Chanuilot
I ubtile C	<i>∠</i> ⊒• po	<i>iynomusche</i>	Luguass	junknonen	joun	,	Inssensence	cinco	110mil	yuuuus	L=1,	Chapanoi