
Christoph Erwin Dobraunig

On the Security and Design of
Authenticated Encryption

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Florian Mendel

Assessors

Prof. Christian Rechberger
Prof. Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK)

Graz, November 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

Preface

First of all, live is meaningless without having friends and family. Hence, I want
to thank my friends, my family, and my girlfriend Anna for their mere existence
and the fun, love, patience, and sorrow provided by them. So far, I can consider
myself to be one of the luckiest persons on earth, who has never had any health
issues and in general has experienced life in easy mode.

While my interest in cryptography already started back in my school days (mainly
because the concept of asymmetric cryptography felt too unrealistic), I have to
thank Mario Lamberger for giving excellent courses on IT-security, which have
woken my interest in this area again. Although the concept of cryptanalysis —
to make contributions to the progress of science by pure thinking, just needing
pen&paper — seemed very appealing to me, my fear of failure was overwhelming.
Luckily, I met Martin Schläffer, who took that fear away and guided me through
my first steps, until he had to leave the department during the first months of
my PhD.

My PhD started with Maria Eichlseder, Florian Mendel, and Martin Schläffer
inviting me to join the design team of the CAESAR candidate Ascon, which
was an incredible honour for a rookie like me. Their spirit of working without
the slightest sign of enviousness, putting the result in the first place has served
as a role model for me and I have always tried to follow this spirit.

Most of the time during my PhD, I had the opportunity to work with two geniuses,
Maria and Florian. I have to thank Maria for being a wonderful colleague,
patiently bearing my humor and always open to discuss ideas. Moreover, I am
very thankful for the guidance provided by Florian. From the start of my PhD
on, he has become the mentor I needed. He never hesitated to share his ideas,
or to discuss mine. Without his continuous support and motivation I would not
have been able to finish this thesis. Moreover, I want to thank Vincent Rijmen
for agreeing to be my external assessor.

Furthermore, I want to thank Stefan Mangard and Christian Rechberger for
employing me, leaving me freedom to do research in areas of my interest and
always having an open door to discuss issues, or to provide help with their
expertise. Moreover, I want to thank all my colleagues and the small board
for providing such a great working atmosphere. At last, I have to thank all
my co-authors: Andrey Bogdanov, Christoph Ehrenhöfer, Maria Eichlseder,

v

vi

Hannes Groß, Markus Hofinger, Daniel Kales, François Koeune, Thomas Korak,
Martin M. Lauridsen, Eik List, Victor Lomné, Stefan Mangard, Florian Mendel,
Alexander Oprisnik, Thomas Plos, Martin Schläffer, François-Xavier Standaert,
Elmar Tischhauser, Thomas Unterluggauer, Erich Wenger, Christoph Wiesmeier,
and Johannes Wiesmeier. Without them, none of the work would have been
possible.

Abstract

In contrast to ordinary encryption schemes that only ensure the confidentiality of
data, the purpose of authenticated encryption is to ensure both, confidentiality
and authenticity. In this work, we look at authenticated encryption from the two
different perspectives of algorithmic security and implementation security (e.g.,
side-channel and fault attacks). This work focuses on symmetric authenticated
encryption, meaning that all involved parties share the same key material.

The contributions regarding cryptanalysis are tightly linked with CAESAR,
an international competition aiming to identify good authenticated encryption
schemes which are secure for the next decades. In the first round of CAESAR,
57 candidates entered this competition. Since the selection process of CAESAR
is largely based on publicly available inputs, one task of the cryptographic
community to aid the progress of CAESAR is to identify insecure candidates and
get insight in the security of the others. To contribute in this direction, we have
developed an automatic search tool for linear characteristics that is applicable to
a wide range of candidates. Furthermore, we provide dedicated analyses for the
CAESAR candidates Ascon, ICEPOLE, and KIASU.

While it is the minimum requirement to withstand cryptanalytic attacks, the
trend to connect more and more devices to the Internet generates the need for
implementations of authenticated encryption schemes that withstand side-channel
and fault attacks. The need for low-cost countermeasures against side-channel
attacks has led us in the direction of re-keying. We present new fresh re-keying
schemes, allowing the protection of a simple blockcipher call, and evaluate the
security of re-keying schemes like Keymill. Moreover, we have designed Isap,
a sponge-based authenticated encryption scheme, where we put the focus on
side-channel protection during the whole design process.

With respect to fault attacks, the nonce defined in most schemes seems — at the
first glimpse — to be a built-in countermeasure against fault attacks, since it
usually prevents an attacker from collecting pairs of faulty and correct ciphertexts.
This is a condition needed to execute a wide range of fault attacks like differential
fault analysis. To counter this impression, we provide practical fault attacks on
AES-based authenticated encryption schemes, which are applicable to several
CAESAR candidates.

vii

Table of Contents

Preface v

Abstract vii

I Background 1

1 Introduction 3

2 Designing Authenticated Encryption Schemes 7

2.1 Generic Composition . 8

2.2 (Tweakable) Blockcipher-based Designs 9

2.3 Sponge-based Designs . 11

2.3.1 Sponge Construction . 11

2.3.2 Duplex Construction . 12

2.3.3 Variants . 13

2.4 Designing Building Blocks . 14

3 Cryptanalysis 17

3.1 On Security Claims and Goals . 19

3.2 Differential and Linear Cryptanalysis 21

3.2.1 A Short Introduction to Differential Cryptanalysis and
Linear Cryptanalysis . 21

3.2.2 Searching for Characteristics 23

3.3 Cube and Cube-like Attacks . 24

ix

x Table of Contents

3.4 Integral Attacks . 26

4 Side-Channel Attacks 29

4.1 Timing Attacks . 31

4.2 Power Analysis Attacks . 32

4.2.1 Simple Power Analysis . 33

4.2.2 Differential Power Analysis 33

4.3 Masking . 35

4.4 Re-keying . 36

4.4.1 The Concept of Fresh Re-keying 36

4.4.2 Time-Memory Trade-off Attacks on Re-keying 38

4.4.3 Side-channel Aspects of Re-keying 39

4.4.4 Re-keying and Authenticated Encryption 40

5 Fault Attacks 43

5.1 Differential Fault Analysis . 44

5.2 Statistical Fault Attacks . 45

5.3 Other Fault Attack Techniques 46

5.4 Fault Attacks on Authenticated Encryption 47

Bibliography 49

II Publications 65

List of Publications 67

Heuristic Tool for Linear Cryptanalysis with Applications to
CAESAR Candidates 71

Forgery Attacks on Round-Reduced ICEPOLE-128 107

Cryptanalysis of Ascon 123

Table of Contents xi

Square Attack on 7-Round Kiasu-BC 143

ISAP – Towards Side-Channel Secure Authenticated Encryption 163

Towards Fresh and Hybrid Re-Keying Schemes with Beyond
Birthday Security 191

Side-Channel Analysis of Keymill 209

Statistical Fault Attacks on Nonce-Based Authenticated Encryp-
tion Schemes 225

Part I

Background

1

1
Introduction

T
his thesis is centered around authenticated encryption. More precisely,
we focus on nonce-based symmetric authenticated encryption schemes
with associated data [121]. In the context of this thesis, we consider

an authenticated encryption algorithm as a function that takes a quadruple of
secret key K, nonce N , associated data A and plaintext P as input and generates
a ciphertext C and a tag T as output:

E(K,N,A, P) = (C, T)

We assume that the secret key K is pre-shared between communication parties,
whereas the nonce N , associated data A, ciphertext C and the tag T can be
exchanged between communicating parties via insecure/public channels. This
means that they can typically be observed and manipulated by third parties. The
goal of authenticated encryption is to ensure the confidentiality of the plaintext P
and additionally the authenticity of the plaintext P and associated data A under
such conditions. In order to achieve this, nonce-based authenticated encryption
schemes typically require a nonce N (number used only once) as additional input,
while the tag T is additional information used to verify the authenticity.

Informally speaking, confidentiality in the context of authenticated encryption
means that it should be infeasible for an entity not knowing the secret key
K to extract any information about the plaintext P (except its length) from
observed data, i.e., the nonce N , associated data A, ciphertext C, or tag T .
The idea behind keeping the plaintext P and associated data A authentic is

3

4 Chapter 1. Introduction

to ensure that an intentional (by an entity not knowing the secret key), or
unintentional modification of plaintext P and associated data A can be detected.
As a consequence, the corresponding decryption algorithm processing (N,A,C, T)
returns the plaintext P only if the tag verifies, otherwise invalid (⊥) is returned:

D(K,N,A,C, T) ∈ {P,⊥}

Motivation. Authenticated encryption fulfills a crucial need, because for most
practical applications there is not much value in just ensuring that a message
is kept confidential. For instance, consider an ordinary bank transaction. Here,
confidentiality on how much money to whom is transmitted is clearly desirable.
However, the authenticity that 4 e should be transmitted and not 4 000 000 e
can also be considered as crucial. Despite this need, research has focused
for a long time on schemes just fulfilling one property separately, providing
encryption schemes for confidentiality and message authentication codes (MAC)
to ensure authenticity. Thus, in order to achieve authenticated encryption,
ordinary encryption schemes and MACs have been combined in a so-called
generic composition [13, 75].

While first dedicated authenticated encryption schemes were already presented by
Jutla [64] around 2000 and many more followed, the question from a practitioner’s
viewpoint is to choose amongst them. For symmetric cryptography, cryptographic
competitions have shown to be a valuable instrument in identifying good and
useful cryptographic primitives, as demonstrated by the AES competition [106],
the eSTREAM Project [46], or the SHA-3 competition [108].

In 2014, the competition for authenticated encryption: security, applicability, and
robustness (CAESAR) [34] started. The goal of this competition is to identify a
portfolio of authenticated encryption schemes that are suitable for widespread
adoption and offer an advantage over AES-GCM [34]. A total of 57 authenticated
encryption schemes entered the first round of the competition. Amongst them
was Ascon:

• Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon”. Submission to the CAESAR competition: http :
//competitions.cr.yp.to. 2014

The task of the cryptographic community is to participate in the selection process.
While this is typically done by providing cryptanalysis of the candidates, over the
past years, the resistance of schemes and their implementations against so-called
implementation attacks has become more and more important. In contrast
to cryptanalysis, implementation attacks do not only consider the algorithmic
description of a scheme alone, but consider it together with its implementation
as a whole. Most implementation attacks require an attacker to have access to
the device in order to observe side-channels like the power consumption [72], or
to be able to induce faults to disturb the computation [33].

http://competitions.cr.yp.to
http://competitions.cr.yp.to

Chapter 1. Introduction 5

Contributions in this thesis. This thesis gives a broad view on authenticated
encryption by considering it under the light of cryptanalysis, side-channel attacks,
and fault attacks. The provided cryptanalytic results are tightly coupled with
CAESAR. We present an automatic search tool for linear characteristics [c7] in
order to facilitate the analysis of the candidates. To demonstrate its power, this
tool is applied to the CAESAR candidates Ascon, ICEPOLE, Keyak, Minalpher,
and Prøst. Our contribution to the cryptanalysis of CAESAR candidates is
complemented with dedicated analyses for Ascon [c13], ICEPOLE [c10], and
KIASU [c12].

In the context of implementation attacks, we present Isap [j2], a sponge-based
authenticated encryption scheme, where we focus on side-channel protection
during the design process. Amongst others, Isap contains concepts inherited
from re-keying-based countermeasures, knowledge we have gathered during the
design of fresh re-keying schemes [c14] and the analysis of Keymill [c3]. The
last contribution contained in this thesis presents fault attacks on authenticated
encryption schemes [c2]. In particular, it is demonstrated that such attacks
are easy to execute in practice for a wide range of schemes, and the need for
dedicated countermeasures against fault attacks for implementations that are
used in hostile environments is pointed out.

Other contributions. Besides the contributions that can be found in this
thesis, the author of this thesis has contributed to various other publications.
This includes participation in the analysis of hash functions like Kupyna [c9] or
SHA-512/224 and SHA-512/256 [c6], (tweakable) blockciphers like LowMC [c11],
MANTIS [j1], or KIASU-BC [c15], permutations like Simpira [c5], and further
authenticated encryption schemes like Calico [c1] or Prøst-OTR [c8]. Moreover,
the author contributed to the development of a search tool for differential char-
acteristics [c16], attacks on fresh re-keying schemes [c4], and made some small
contributions in the area of hardware designs [c17, j3, c18]. A full list of over 20
publications can be found in Part II.

About this thesis. This thesis is a cumulative thesis consisting of two parts.
The first part of this thesis serves as a high-level overview on the field of au-
thenticated encryption, cryptanalysis, side-channel attacks, and fault attacks to
put the publications of Part II in context. Hence, Part I does not contain any
new scientific contributions or any new insights, and is only based on previously
published work (where the author of this thesis has given his best to correctly
give all references). For sake of clarity and to be easier to digest, the explanations
given in Part I are highly condensed and simplified, giving probably too much of
a black-and-white view about the topic.

Part II contains the scientific contributions of this thesis by appending the papers
and detailing the author’s contribution to each paper. Regarding the contribution,
we want to point out the following statement of the American Mathematical

6 Chapter 1. Introduction

Society, which we think also applies to cryptography: “In most areas of mathe-
matics, joint research is a sharing of ideas and skills that cannot be attributed to
the individuals separately. The roles of researchers are seldom differentiated (in
the way they are in laboratory sciences, for example). Determining which person
contributed which ideas is often meaningless because the ideas grow from complex
discussions among all partners” [3]. As a consequence, the lists of authors of
all appended papers are in alphabetical order, which stands in contrast to other
areas that always identify a most important person that is put in first place.

The outline of Part I is as follows. First, we show the basic principles of the design
of authenticated encryption schemes and its building blocks in Chapter 2. After
that, we discuss the purpose of cryptanalysis and introduce important techniques
in Chapter 3. Chapter 4 gives a short introduction to side-channel attacks and
potential countermeasures with a focus on re-keying. Then, we introduce the
concept of fault attacks and discuss their application to authenticated encryption
in Chapter 5.

2
Designing Authenticated Encryption

Schemes

K
eeping data confidential and authentic is one of the main goals of
symmetric cryptography. One way to achieve both (confidentiality
and authenticity) is to combine two schemes that just achieve one

(either confidentiality or authenticity) in a so-called “generic composition”, where
an encryption scheme is combined with a message authentication code (MAC).
Such constructions are widely used in practice, for example in TLS [42], SSH [145],
or IPSec [67]. However, using two schemes for authenticated encryption implies
usually two runs over the data, resulting in a potential implementation overhead.
So it is natural to ask: can we do better?

A partial answer to this question might be given by CAESAR [34], a competition
that aims to identify a portfolio of authenticated encryption schemes. In total,
57 authenticated encryption schemes have been submitted to the first round of
CAESAR, too many to cover them all in this chapter. Therefore, we restrict the
focus of this chapter on (tweakable) blockcipher-based and sponge-based designs,
which are covered in Part II of this thesis.

As the name suggests, the underlying “building blocks” of (tweakable) blockcipher-
based authenticated encryption schemes are (tweakable) blockciphers, whereas in
the case of sponge-based designs, those are typically unkeyed permutations. The
design of these “building blocks” is a delicate task that significantly influences
the security and implementation characteristics of the resulting authenticated

7

8 Chapter 2. Designing Authenticated Encryption Schemes

encryption scheme. Although there are numerous ways for designing these blocks,
several “higher level” design principles, or structures, have been demonstrated
to be useful. We briefly introduce two of them in this chapter, substitution
permutation networks (SPNs) and the Feistel structure.

The remainder of this chapter is structured as follows. First, we give a brief
overview on the combination of encryption schemes and MACs to construct
authenticated encryption schemes in Section 2.1. This is followed by a review
of dedicated designs: (tweakable) blockcipher-based designs in Section 2.2 and
sponge-based designs in Section 2.3. Finally, we have a brief look at design
principles of building blocks, like blockciphers or unkeyed permutations, in
Section 2.4.

2.1 Generic Composition

In the context of authenticated encryption, the term “generic composition” usu-
ally refers to constructions that combine an encryption scheme (ENC) with a
message authentication code (MAC) in order to provide authenticated encryption.
Naturally, there exist several ways how an encryption scheme can be combined
with a MAC, which do not necessarily follow the interface of nonce-based au-
thenticated encryption as introduced in Chapter 1. As a consequence, different
compositions have been used in practice. For instance, TLS [42] can use a MAC-
then-encrypt approach, SSH [145] an encrypt-and-MAC approach, and IPSec [67]
an encrypt-then-MAC approach (if they do not use a dedicated authenticated
encryption scheme), which has already been pointed out by Krawczyk [75]:

• MAC-then-encrypt: T = MACKa(P), C = ENCKb
(P‖T). C is ex-

changed.

• Encrypt-and-MAC: T = MACKa(P), C = ENCKb
(P). C and T are

exchanged.

• Encrypt-then-MAC: C = ENCKb
(P), T = MACKa(C). C and T are

exchanged.

These constructions have been analyzed independently by Krawczyk [75] and
Bellare and Namprempre [13]. Both analyses seem to have a clear favorite,
encrypt-then-MAC. For instance, Krawczyk states: “We show that any secure
channels protocol designed to work with any combination of secure encryption
(against chosen plaintext attacks) and secure MAC must use the encrypt-then-
authenticate method” [75]. But does this mean that the other two methods should
not be used at all?

Recently, Namprempre, Rogaway, and Shrimpton [104] give a more extensive
analysis of the generic composition. They investigate how nonce-based authen-
ticated encryption with associated data can be realized using various building

Chapter 2. Designing Authenticated Encryption Schemes 9

blocks like encryption schemes that require an initial value IV to be random,
or encryption schemes that just require a nonce N to be unique. Some of the
resulting schemes that have been shown to be secure by them can be considered
to follow MAC-then-encrypt and encrypt-and-MAC principles. Furthermore,
Namprempre, Rogaway, and Shrimpton [104] also demonstrate that encrypt-
then-MAC constructions can fail if, for example, the nonce is not authenticated.
Therefore, they point out that extreme caution has to be taken when interpreting
results for the generic composition from the literature in an attempt to instantiate
concrete schemes.

2.2 (Tweakable) Blockcipher-based Designs

As we have seen in the previous section, it is possible to design authenticated
encryption schemes by combining an encryption scheme with a MAC. Besides
the danger of insecure instantiations of generic compositions, the fact that two
dedicated schemes are used requires the data to be processed twice (two-pass
scheme). However, it is also possible to design dedicated authenticated encryption
schemes which provide authenticity and confidentiality with just one pass over
the data, potentially leading to schemes with a lower overhead for implementation
and higher performance.

Among the first dedicated authenticated encryption schemes are the blockcipher-
based schemes by Jutla [64]. Jutla observes that an encryption of a plaintext
concatenated with a checksum of it using the CBC mode yields a dedicated
authenticated encryption scheme providing confidentiality and authenticity if
the output is masked with a random sequence. In a further step, Jutla also uses
masks to remove the chaining between the processing of the single blocks, leading
to IAPM shown in Figure 2.1.

IV P [1] P [t]
∑

P [i]

∆1 ∆t ∆t+1

∆1 ∆t ∆0

EKa
EKa

EKa

C[0] C[1] C[t] T

EKb

IV

∆0,∆1, . . . ,∆t+1

Generate Masks

Figure 2.1: Integrity aware parallelizable mode (IAPM) as shown in [65].

There exist many variants of IAPM and the variant shown in Figure 2.1 is
described by Jutla in [65]. This variant of IAPM requires two secret keys Ka and

10 Chapter 2. Designing Authenticated Encryption Schemes

Kb. The secret key Kb, together with a random IV is used for the generation of
the secret masks ∆i. These masks are needed for the encryption of the plaintext
P and the generation of the tag T . The plaintext P is split into t n-bit blocks
P [i], which are encrypted separately using a blockcipher with the key Ka and
secret masks that are xored to the input and output of the blockcipher. The tag
T is generated by encrypting the xor sum of all plaintext blocks using the masks
∆t+1 and ∆0.

Building upon IAPM, Rogaway, Bellare, Black, and Krovetz [122] propose the
offset codebook mode (called OCB1 in the following [76]). OCB1 provides several
improvements over IAPM. For instance, OCB1 allows the encryption of arbitrary-
length plaintexts, which do not have to be a multiple of the block size, while
ensuring that the resulting ciphertext length (not considering the tag) matches
the plaintext length. Schemes like IAPM and OCB1 provide confidentiality and
authenticity for data, however, as noted by Rogaway [121], those schemes (in
their initial versions) do not address the problem of associated data. Associated
data is data that shall be kept authentic, but where confidentiality is not needed,
or is even undesired. For example, consider the concatenation of some header
information (associated data A) with some message (plaintext P). Clearly,
for transmission via public networks, the authenticity of A and P and the
confidentiality of P are desirable properties, while the confidentiality of A might
be counterproductive for the transmission. Thus, Rogaway introduces OCB2,
which provides authenticated encryption with associated data (AEAD) [121].

In [82], Liskov, Rivest, and Wagner introduce the concept of tweakable blockci-
phers. In contrast to blockciphers, tweakable blockciphers provide an additional

EK

P [0]

C[0]

0‖N‖0

P [t− 1]

C[t− 1]

0‖N‖t−1

P [t]‖10∗

C[t]

4‖N‖t

∑

T

5‖N‖t+1

0

V

A[0]

2‖0 2‖1

A[1] A[s]

2‖s

V

EK EK EK

EK EK EK

Figure 2.2: ΘCB3-based mode of Deoxys v1.41 (figure based on [62]).

Chapter 2. Designing Authenticated Encryption Schemes 11

public input called the tweak. As stated by Liskov, Rivest, and Wagner, “each
fixed setting of the tweak gives rise to a different, apparently independent, family
of standard blockcipher encryption operators” [82]. This property can be used to
design quite elegant schemes, for instance, the authenticated encryption scheme
TAE [82], which essentially follows the ideas of OCB1, but uses a tweakable
blockcipher instead of a masked blockcipher.

Acknowledging the idea of tweakable blockciphers, Krovetz and Rogaway [76]
introduce the tweakable blockcipher-based authenticated encryption scheme
ΘCB3 that underlies OCB3. ΘCB3 serves as basis of modes used by the CAESAR
candidates Kiasu [60] and Deoxys [62]. The ΘCB3-based mode of Deoxys is
sketched in Figure 2.2.

2.3 Sponge-based Designs

Besides basing authenticated encryption schemes on (tweakable) blockciphers,
another prominent way of designing authenticated encryption schemes is to utilize
unkeyed permutations. A significant number of permutation-based authenticated
encryption schemes (for instance Ascon, ICEPOLE, Keyak, or Ketje) follow
the concept of the sponge construction [17, 19], or rather the concept of the
duplex construction [19, 22]. In this section, we will briefly describe the sponge
and duplex construction in Section 2.3.1 and Section 2.3.2, while discussing
variants and modifications of them in Section 2.3.3.

2.3.1 Sponge Construction

Amongst others, the winner of the SHA-3 competition Keccak [16, 109] follows
the sponge construction [17, 19], proposed by Bertoni, Daemen, Peeters, and Van
Assche. Keccak and most other sponge based schemes build upon a fixed-width
b-bit permutation p. As shown in Figure 2.3, a sponge splits its b-bit internal
state into an outer part of r bits and an inner part of c bits, where only the outer
part is modified by the input I, or used as output O. The size of the outer part
is called the rate r and the size of the inner part is called the capacity c.

An input I that has to be processed by a sponge is padded and split into r-bit
blocks. Those r-bit blocks are absorbed by xoring each block to the outer part
of the state, followed by an application of the permutation p. To produce the
output O, the sponge is then squeezed. Here, the permutation p is iteratively
applied to the whole state, where r bits of the outer part can be used as output
after each application of p. In this way, a sponge is able to provide outputs of
arbitrary length.

Bertoni, Daemen, Peeters, and Van Assche [18] have been able to prove that the
sponge construction is indifferentiable from a random oracle if it is used with

12 Chapter 2. Designing Authenticated Encryption Schemes

p

r

p p
c

r

c

r

c

pad trunc

I

Absorb Squeeze

c

r

p
c

r

p
c

r

O

0

0

Figure 2.3: Sponge construction (figure based on [19]).

a random permutation. They show that the advantage of an attacker trying
to differentiate such a sponge from a random oracle depends on the capacity c.
Informally, a random oracle is a theoretical construction, which maps each new
input of arbitrary length to a random infinite output string, providing always
the same output for the same input. Having a construction that essentially
behaves like a random oracle does not only allow hashing, but can also be used
to instantiate message authentication codes (MAC), or streamciphers as observed
in [17]. For instance, a sponge-based MAC and a sponge-based streamcipher are
used in the authenticated encryption scheme Isap [j2] in a generic composition.
However, it is also possible to design authenticated encryption schemes that only
need a single pass over the data by utilizing the duplex construction.

2.3.2 Duplex Construction

Bertoni, Daemen, Peeters, and Van Assche [22] introduce the duplex construction
shown in Figure 2.4. Like sponge constructions, the duplex construction builds
upon fixed-width permutations (or transformations). However, in contrast to
the sponge construction, the duplex construction allows to absorb one r-bit
input block I[i], while producing one r-bit output block O[i] separated by one
permutation call p. An output block O[i] depends on all previously absorbed
input blocks I[0], I[1], . . . , I[i].

With the help of the duplex construction, single-pass authenticated encryption
schemes can be realized. However, while a lot of authenticated encryption schemes
have their roots in the duplex or sponge construction, designers usually take
some liberty to tweak (and possibly improve upon) the original duplex or sponge
construction. In the following, we will have a look at developments in this area.

Chapter 2. Designing Authenticated Encryption Schemes 13

p

r

p p
c

r

c

r

c

pad trunc

I[0]

c

r

O[0]

0

0

pad

I[1]

pad

I[i]

trunc

O[1]

trunc

O[i]

Figure 2.4: Duplex construction (figure based on [19]).

2.3.3 Variants

The sponge construction and its most prominent instance Keccak [16] allow
a broad range of use cases, ranging from unkeyed constructions, like hash func-
tions, to keyed constructions, such as MACs or streamciphers. However, it is an
interesting question to ask which modifications of the original sponge and duplex
construction can be made for constructions that limit the potential use cases and,
for instance, always use a secret key and potentially a unique nonce. Various lines
of work deal with this question and propose designs that, for example, reduce
the capacity, allow the modification of the inner part of the state, and explore
the use of permutations with a different cryptographic “strength” (typically a
different number of rounds). One of the first proposals in this direction comes
from Bertoni, Daemen, Peeters, and Van Assche [23], who propose the construc-
tions DonkeySponge for, e.g., MACs and MonkeyDuplex for, e.g., authenticated
encryption.

As already mentioned, several CAESAR candidates build upon the sponge
construction, or more precisely, the MonkeyDuplex construction. For instance,
they also use permutations with a different number of rounds for different phases
of the scheme. Typically, those phases can be split into initialization, data
processing, and finalization, as sketched in Figure 2.5.

pI pD

r

c

K‖N‖0 A[0] P [0] C[0]

pD

r

c

pD

c

P [t] C[t]

pF

c

TA[s]

Initialization

r r

FinalizationData Processing

Figure 2.5: Sketch of MonkeyDuplex-based authenticated encryption scheme.

14 Chapter 2. Designing Authenticated Encryption Schemes

During the initialization, the key K is processed together with the nonce N .
The permutation pI used during this phase is a “strong” permutation, so that
states after the initialization can be considered to be independent for different
nonces. This fact usually limits the available attack paths and might allow a
designer to reduce the number of rounds of the permutation pD that is used
during the processing of the associated data A, plaintext P , and generation of
the ciphertext C. Typically, the number of rounds of the permutation pF used
for the finalization is increased compared to pD. As a result of this approach,
parameters like the rate r or the number of rounds for the permutation used in
such designs have a tight interaction with the security of the scheme and thus,
have to be based on a thorough cryptanalysis of the whole resulting authenticated
encryption scheme.

Besides using permutations of different “strength”, other tweaks introduced
include the keying of initialization and finalization as done by, e.g., Ascon [i2],
or parallel processing of data as done by, e.g., NORX [7]. By making such modi-
fications compared to the scrutinized original sponge and duplex constructions,
designers take the risk of introducing flaws and allowing, for instance, generic
attacks on their sponge-based constructions that are independent of the choice
of the concrete permutations. Thus, Jovanovic, Luykx, and Mennink [63] take
a closer look at the security of several sponge-based authenticated encryption
schemes (independent of the used permutations) focusing on NORX, but also
argue that their given proof generalizes to several other CAESAR candidates
like, e.g., Ascon, ICEPOLE, or Keyak. They observe that the use of a unique
nonce and secret key can allow to reduce the size of the capacity compared to
the results regarding unkeyed sponge-based constructions, also enhancing the
insights already developed for keyed sponges in [21].

Further work in the area of sponge-based authenticated encryption deals with the
ways of absorbing associated data. As already observed for DonkeySponge [23],
which has been shown to be sound in [53], it is possible to construct a sponge-
based MAC where the whole permutation width b can be used to absorb the data.
Hence, for sponge-based authenticated encryption schemes, the question arises if
the inner part of the state can be modified and used to absorb associated data.
A positive answer is given in the work of Sasaki and Yasuda [127] or Mennink,
Reyhanitabar, and Vizár [99].

2.4 Designing Building Blocks

So far, we have dealt with rather high-level descriptions of authenticated en-
cryption schemes, not tackling the problem of designing their building blocks,
which are in our case unkeyed permutations and (tweakable) blockciphers (which
are permutations for a fixed key and tweak). So typically, the design of a per-
mutation is similar to the design of a blockcipher without a key schedule as
already mentioned by Bertoni, Daemen, Peeters, and Van Assche [22]. For sake of

Chapter 2. Designing Authenticated Encryption Schemes 15

simplicity, we just focus on the design of the (underlying) permutation and ignore
the design of a key schedule. We will discuss two prominent design approaches —
substitution permutation networks (SPNs) and Feistel structures — and describe
their high-level working principle in this section.

Already an article dating back to 1973 by Feistel [48] describes the concept of
substitution permutation networks (SPN), where its roots have been credited
to earlier work of Shannon [129]. Figure 2.6 sketches the concept of an SPN,
which consists of the iterative application of small non-linear substitution boxes
(S-boxes), a bit permutation (or more general any linear function L), and a
round key addition K (or constant addition in the case of unkeyed permutations).
Following the principles of Shannon [129], the non-linear S-boxes are responsible
for providing confusion, while the linear layer provides diffusion between them.

S

K0[0]

P[0]
S0[0]

S

K0[1]

P[1]
S0[1]

S

K0[2]

P[2]
S0[2]

S

K0[3]

P[3]
S0[3]

L

S

K1[0]

S1[0]

S

K1[1]

S1[1]

S

K1[2]

S1[2]

S

K1[3]

S1[3]

L

Kr[0]

C[0]

Kr[1]

C[1]

Kr[2]

C[2]

Kr[3]

C[3]

Figure 2.6: Sketch of an SPN-based blockcipher having r rounds.

In contrast to an SPN, where each round has to be a permutation and thus
also each S-box, the so-called Feistel structure (Figure 2.7) as used for instance
by DES [105] allows to design a permutation from (possibly keyed) functions
Fi. However, usually, the used round functions follow similar design principles
as SPNs, meaning that they also consist of layers of small S-boxes and linear
functions. Nevertheless, an advantage of the Feistel structure is the fact that it is
invertible without the need to implement the inverse of the single round functions
Fi. Furthermore, by relying on generalized Feistel structures, permutations of
different width can be realized using always similar round functions Fi as done,
e.g., by Simpira [57].

Based on these concepts, numerous different ciphers and permutations have been
designed and the choice of the used S-boxes, linear layers, and the resulting
number of rounds r can be seen as an evolutionary process that is driven by new
insights regarding security and possible applications, but also depends on the
context of the use of the building block (e.g., in which high level construction

16 Chapter 2. Designing Authenticated Encryption Schemes

F1

F2

Fr

P [0] P [1]

C[0] C[1]

Figure 2.7: Sketch of a Feistel-based blockcipher having r rounds.

the building block is used). With respect to security, the introduction of timing
attacks on table-based implementations of AES [14, 114] and power analysis
attacks [72] are reasons to develop building blocks and designs which allow for
constant-time implementations and are easy to mask like the permutations of the
CAESAR candidates Ascon [i2] or Keyak [24]. Furthermore, new cryptanalytic
insights like the discovery of differential [27] and linear cryptanalysis [88] usually
lead to novel designs like Shark [120], Square [37], and Rijndael [38] that aim to
resist these attacks by carefully choosing the S-boxes and incorporating maximum
distance separable error correcting codes in their respective linear layers. In the
next chapter, we will see various cryptanalytic techniques that we have used in
Part II of this thesis to evaluate the security of various authenticated encryption
schemes.

3
Cryptanalysis

T
his chapter deals with the analysis of cryptographic primitives, focus-
ing on authenticated encryption schemes. In contrast to side-channel
(Chapter 4) and fault attacks (Chapter 5), cryptanalysis assesses

the security of a cryptographic primitive when it is treated like a black-box, as
illustrated in Figure 3.1. In such a scenario, it is usually assumed that an attacker
has knowledge about the cryptographic algorithm used (except the secret key)
and is able to observe the data that is exchanged. In the case of authenticated
encryption, this might be the nonce N , associated data A, ciphertext C, and tag
T . Furthermore, an attacker might have knowledge about confidential inputs like
the plaintext, or is even able to enforce the encryption of chosen inputs. However,
an attacker is assumed to neither have information about intermediate results of
the internal computation, nor the ability to influence the internal computation.

EK
N
A
P

Attacker

C

T

Figure 3.1: Basic concept of cryptanalytic attacks.

17

18 Chapter 3. Cryptanalysis

The aim for a real-world attacker is typically to break an authenticated encryption
scheme, having probably the ultimate goal of recovering the secret key, which
results in a total loss of confidentiality and authenticity. In contrast to a real-world
attacker, whose interest is only the knowledge whether a scheme can be broken
or not, the purpose of cryptanalysis is to get as much insight in the security of a
cryptographic primitive as possible. This is typically done by evaluating different
design choices and parameters that might influence the security of a cryptographic
scheme, like the number of rounds for the building blocks or the rate r of designs
following a MonkeyDuplex-based [23] design approach, but can also include the
evaluation of the building blocks apart from their use in authenticated encryption
schemes. Thus, cryptanalysis has typically a tight interaction with the design of
primitives by evaluating the effects of design choices and changes in the security
parameters (e.g., number of rounds) on the security of the scheme.

Over the years, various techniques have been proven to be useful in the process
of analyzing primitives. Differential cryptanalysis, introduced by Biham and
Shamir [27], and linear cryptanalysis, introduced by Matsui [88], are probably the
most popular ones. Typically, differential cryptanalysis exploits knowledge that
pairs of inputs having a certain difference lead to certain differences at the output
(or intermediate values) of a cryptographic primitive, while linear cryptanalysis
exploits good linear approximations of non-linear equations. Since finding and
evaluating the probability of such differentials or linear approximations for
larger structures like several rounds of a permutation or blockcipher is usually
infeasible, differentials and linear approximations are typically evaluated for small
structures like an S-box and “chained” together resulting in a differential or linear
characteristic. Due to the popularity of differential and linear cryptanalysis,
ciphers are expected to provide good arguments why they are secure against
these techniques, which is typically achieved by a combination of proofs on
upper bounds of the probability/bias of characteristics and heuristic searches for
characteristics suitable for attacks.

However, quite naturally, it is usually not sufficient for a cipher to withstand one
set of attacks, rather all have to be considered. For instance, in recent years, it
has become more and more popular to design ciphers which use S-boxes with a
low algebraic degree (e.g., Ascon [i2], LowMC [2], Ketje [25], Keyak [24], etc.).
As a consequence, attacks directly targeting the algebraic description of the cipher
become an interesting research field, which can be seen in the recent development
of, e.g., cube-like [43] and conditional cube attacks [58]. Furthermore, it has
become quite popular to base authenticated encryption schemes on tweakable
blockciphers [60, 62, 76, 82]. Therefore, design strategies for dedicated tweakable
blockciphers are explored, as, for instance, in the TWEAKEY framework [61].
However, compared to classic blockciphers, the insertion of the tweak results
in additional freedom that can potentially be exploited by an attacker. Thus,
dedicated analysis to investigate potential negative effects of the tweak on the
security is needed.

Our contributions in the area of cryptanalysis (Part II of this thesis) are centered

Chapter 3. Cryptanalysis 19

around CAESAR. To aid the analysis of CEASER candidates, we have developed
an automatic search tool [c7] dealing with the task of finding good linear char-
acteristics suitable for various purposes. Automatic search tools have also been
used in the analyses of the CAESAR candidates ICEPOLE and Ascon [c10, c13].
Additionally, we demonstrate with the forgery attack on round-reduced variants
of ICEPOLE that in addition to good search tools, a cryptographer still has to
find a good point to attack the scheme [c10]. Furthermore, we complement the
analysis of Ascon with cube-like [43] attacks that are able to attack 6 (out of 12)
rounds of the initialization [c13]. We also analyze the effect of tweaks in dedicated
tweakable blockiphers. To be more precise, we analyze KIASU-BC, a dedicated
tweakable blockcipher that underlies the CAESAR candidate KIASU [60] and
builds upon AES-128 [107]. We show that the additional freedom introduced by
the tweak allows to perform square attacks for one more round on KIASU-BC
compared to AES-128, leading to an attack on 7 (out of 10) rounds of KIASU-BC.

We start this chapter with a discussion on security claims and goals of cryptana-
lysis (Section 3.1). The following Sections 3.2, 3.3, and 3.4 provide an introduction
to differential and linear cryptanalysis, cube and cube-like attacks, and integral
attacks, respectively.

3.1 On Security Claims and Goals

An important aspect for cryptographic primitives are the requirements that they
should fulfill and in turn the security claim of the designer. Likely, different
designers have different ideas what, for instance, the security requirements
for an authenticated encryption scheme are. For example, let us consider the
following requirements for an authenticated encryption scheme regarding the
complexity of key recovery (breaking confidentiality and authenticity), tag forgery
(breaking authenticity), and plaintext recovery (breaking confidentiality), which
are based on the security requirements given by Bertoni, Daemen, Peeters, and
Van Assche [19, Section 4.1.2]:

• Key Recovery: Assuming a key length of k bits, there should not be an
attack significantly better than a brute force search for the key, where the
probability of success after Y tries is Y · 2−k.

• Tag Forgery: The success probability for a forgery of a chosen quadruple
(N,A,C, T) should not be significantly higher than 2−t, where t is the
bit-length of the tag. To be a forgery, the quadruple (N,A,C, T) has to be
new, e.g., not produced by a legitimate holder of the secret key.

• Plaintext Recovery: Recovering information (beside its length) about the
plaintext P out of quadruples (N,A,C, T) should be as hard as recovering
the secret key, assuming that the nonce used for every encryption is unique.

20 Chapter 3. Cryptanalysis

Clearly, this interpretation of security requirements for authenticated encryption
schemes is just one possible out of many and it results in a security strength that
is fully determined by the size of the used keys and tags. However, not every
construction is capable of fulfilling such requirements. Therefore, CAESAR [34]
explicitly requires for each candidate to make a security claim and quantify the
intended number of bits of security regarding its confidentiality and authenticity.
According to NIST, the security strength (or “bits of security”) is: “A number
associated with the amount of work (that is, the number of operations) that is
required to break a cryptographic system” [9]. Usually, this number is taken to
the logarithm base 2 and the point of reference is left free to interpretation,
but typically, one call to a primitive or building block is considered to be one
operation.

Besides evaluating the security claim, the main task of cryptanalysis is to get as
much insight in the security of a cryptographic scheme as possible. This process
involves the analysis of weakened versions of the scheme, e.g., by reducing the
number of rounds of underlying building blocks, or, as proposed for Ketje [25],
to change the rate. Usually, a decrease in the number of rounds leads to a
point where the round-reduced scheme does not hold up against attacks anymore.
The difference between this point to the original proposed number of rounds is
typically referred to as the security margin (see e.g., [39]). However, gathering
insight in the security of a scheme does not stop at evaluating round-reduced
versions, but also includes evaluating design decisions (e.g., the choice of the
S-box), assessing the security of isolated building blocks, etc. Moreover, it is also
important that all relevant design decisions are documented by the designers of
a scheme. This allows cryptanalysts, e.g., to reconstruct the design process to a
certain extend and to evaluate the decisions made in order to gather knowledge
that can be used in future designs.

Such an analysis happens under various assumptions on the capabilities of an
attacker, e.g., if the attacker just knows the transmitted data (N,A,C, T), or
additionally knows the corresponding plaintext P , or is even able to manipulate
inputs that get encrypted, cf. [98, Section 1.13.1]. However, in the case of
nonce-based authenticated encryption, the manipulation of the public nonce
might be limited. As mentioned in the CAESAR call for submissions [34], no
assumptions on how the nonce is chosen should be made, except for the fact that
it is unique for every encryption. Furthermore, all security can be lost if nonces
are repeated. Thus, some attacks consider an attacker to be able to influence
the nonce, or assume that the protocol uses a specific implementation of the
nonce, while forbidding the attacker to use the same nonce twice. Nevertheless,
it might also be interesting to evaluate the effects of such a nonce-reuse, which
typically ranges from some loss of confidentiality up to key recovery. Note that
some authenticated encryption schemes (e.g., Deoxys [62], AES-COPA [6]) also
make security claims in such nonce-misuse scenarios.

An attacker additionally faces a restriction for the decryption. As we have seen
in Chapter 1, the plaintext is just released to the user and thus, in a worse case,

Chapter 3. Cryptanalysis 21

to the attacker if the quadruple (N,A,C, T) is authentic. So, an attacker is
unable to observe the effect of, e.g., a chosen ciphertext on the plaintext without
creating a forgery in the first place. However, similar to the nonce-reuse, it is
also of interest to evaluate the effect of a release of unverified plaintext on an
authenticated encryption scheme [5].

3.2 Differential and Linear Cryptanalysis

Differential cryptanalysis by Biham and Shamir [27] and linear cryptanalysis
by Matsui [88] are cryptanalytic techniques that have been introduced by show-
ing attacks on DES [105]. These techniques can be seen as the root for a
plethora of subsequently introduced techniques and concepts, amongst others
zero-correlation [32], truncated differentials [68], boomerang attacks [142], or
differential-linear attacks [79]. While arguably one of the most popular use-cases
for differential and linear cryptanalysis is the analysis of blockciphers and hence,
they are usually introduced on the basis of this example, those techniques are
not limited to this single cryptographic primitive. To better fit to the context in
Part II of this thesis, we will describe differential and linear cryptanalysis with the
help of sponge-based authenticated encryption schemes [19] in the next section.
This use of differential and linear cryptanalysis is not an invention of the author
of this thesis and can probably be traced back to the results for hash functions
given in the original paper of Biham and Shamir [27] in the case of differential
cryptanalysis. Moreover, note that the explanations in Section 3.2.1 are highly
simplified. However, from the point of view of the author of this thesis, they are a
suitable and easy way to understand the basic concepts of differential and linear
cryptanalysis. After the introduction to differential and linear cryptanalysis,
we give an overview on strategies and tools for searching differential and linear
characteristics to set our contributions in this area in context.

3.2.1 A Short Introduction to Differential Cryptanalysis
and Linear Cryptanalysis

As described by Biham and Shamir [27], differential cryptanalysis is a technique
that analyzes the influence that differences of input values have on the difference
of the output (or some intermediate value) for a cryptographic primitive. Now, let
us consider the unkeyed permutation p shown in Figure 3.2. For this permutation,
we assume that we have knowledge that pairs of inputs (I1, I2) having difference
∆I = I1⊕I2 lead to output pairs having difference ∆O = O1⊕O2 with probability
P∆I ,∆O

. In short, we assume that we know a differential ∆I −→ ∆O for the
permutation p that holds with a certain probability P∆I ,∆O

. Since we deal
with an unkeyed permutation in this example, P∆I ,∆O

depicts the relation of all
plaintext pairs with difference ∆I that lead to the output difference ∆O to all
possible plaintext pairs with difference ∆I .

22 Chapter 3. Cryptanalysis

P [0]⊕∆I C[0]⊕∆I

p

P [1]⊕∆O C[1]

p
KS [0] KS [1]⊕∆O

T

inner part

outer part

Figure 3.2: Concept of a forgery for a sponge-based authenticated encryption scheme.

We can use this differential [78] to create forgeries from known valid messages
with probability P∆I ,∆O

if ∆I and ∆O are free of differences for the inner part
of the state. As shown in Figure 3.2, creating a second message (N2, A2, C2, T2)
out of a known valid message (N1, A1, C1, T1) by just changing one ciphertext
block to C2[0] = C1[0]⊕∆I results in a valid forgery with probability P∆I ,∆O

,
where two plaintext blocks have differences compared to the original message,
but the rest remains the same. A similar principle targeting the finalization
is used in the analysis of round-reduced variants of the CAESAR candidate
ICEPOLE-128 [101]:

• Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Forgery
Attacks on Round-Reduced ICEPOLE-128”. In: Selected Areas in Cryptog-
raphy – SAC 2015. Ed. by Orr Dunkelman and Liam Keliher. Vol. 9566.
LNCS. Springer, 2016, pp. 479–492. url: https://doi.org/10.1007/978-3-
319-31301-6_27

While differential cryptanalysis deals with the exploitation of differences between
pairs of processed data, linear cryptanalysis [88] exploits good linear approxima-
tions of input and output bits (or bits of intermediate values) of cryptographic
primitives. Since we only deal with unkeyed permutations in our example, we
do not consider potential bits of (round) keys and effects of them. A linear
approximation holds with a certain probability, where its quality is captured by
the actual value of the deviation of the probability from 1/2. This deviation
from 1/2 is called the bias ε. Such linear approximations are usually depicted as
the inner product of vectors between linear masks αI or αO and the input x or
output y:

αI · x = αO · y

Bits which are involved in the linear approximation (’1’ entries in masks) are
called active bits, whereas the other bits (’0’ entries in masks) are called inactive.

Let us assume that we know a good linear approximation for the permutation p
shown in Figure 3.2, which is characterized by the input and output masks αI

and αO. If those masks do not have active bits involving the inner part of the

https://doi.org/10.1007/978-3-319-31301-6_27
https://doi.org/10.1007/978-3-319-31301-6_27

Chapter 3. Cryptanalysis 23

state, the linear approximation just involves bits of a ciphertext block, e.g., C[0]
and the keystream, e.g, KS [1]. This allows to distinguish the keystream used to
encrypt P [1] from a uniformly distributed random sequence.

Cryptanalysts typically face the problem of finding good and useful differentials
and linear approximations covering larger structures (e.g., several rounds of a
blockcipher or permutation). In fact, even evaluating the probability for such
differentials and linear approximations is usually infeasible. A concept that is
often used instead are differential and linear characteristics (also known as path,
or trail) that have already been proposed in the original work of Biham and
Shamir [27] and Matsui [88]. Please note that differential and linear characteristics
are not only a substitute for differentials and linear approximations covering
larger structures, but are a more versatile tool.

On a high level, the concept of differential and linear characteristics can be
seen as a divide and conquer approach, where smaller parts of a cipher (e.g.,
a single round) are analyzed, typically leading to a fixation of intermediate
differences or intermediate masks. Those intermediate differences or masks
chained together form a differential or linear characteristic. For a differential
characteristic, differences at the output of one round are the input differences for
the next one and thus, have to match in order to form a valid characteristic. This
is also the case for the intermediate mask in a linear characteristic. Non-matching
masks would result in linear approximations involving bits of some intermediate
variable, which is usually not wanted. A prominent strategy to estimate the
probability of a differential characteristic is to multiply the probability of the
differentials forming the differential characteristic [27], while in the case of linear
characteristics the Piling-up lemma is used [88]. In both cases, the fulfillments of
the individual differentials or smaller linear approximations are implicitly treated
as independent events. In the next section, we give a brief overview on the
automatic search for differential or linear characteristics.

3.2.2 Searching for Characteristics

While the manual search for characteristics can lead to good and useful results,
searching manually is usually quite time consuming and prone to errors. Hence,
several methods and tools that aid in the search for characteristics have been
proposed over the past years. On a high level, the automatic search for char-
acteristics can be categorized into approaches that build tools and programs
from scratch and approaches that build upon existing MILP or SAT solvers.
Furthermore, the aim of the resulting search tools varies. For example, there
exist tools that aim at finding or bounding the probability of the best existing
characteristic, whereas other tools are more heuristic in their nature and just
search for good characteristics that are useful in attacks. If a tight bound on the
probability can be given and the corresponding characteristic can be found highly
depends on the analyzed primitive. Often, tight bounds can only be derived for a

24 Chapter 3. Cryptanalysis

small number of rounds, making the heuristic search for characteristics that cover
more rounds necessary to get additional insight in the security of the primitive.

Already in 1994, Matsui [89] introduced a dedicated method that is capable of
finding the best differential and linear characteristics for DES. Based on Matsui’s
insights, Biryukov and Nikolić [29] presented a tool searching for related-key
differential characteristics that provides good results for byte-aligned ciphers.
Biryukov, Velichkov, and Le Corre [30] deal with the automatic search for best
characteristics for ARX-based primitives. Tools dedicated to specific primitives
that typically exploit structural properties have been used in the case of Keccak
by Mella, Daemen, and Van Assche [93] and Daemen and Van Assche [40] in
order to provide bounds on the probability. The seminal work of Wang and
Yu [143] on the search for collisions for hash functions has lead to numerous
tools capable of searching for differential characteristics. Those tools aided in the
process of getting insight in the security of various hash functions like MD4 [50,
128], MD5 [131], SHA-1 [41], SHA-2 [c6, 47, 95, 97], SM3 [96], or Skein [80].

Besides designing search tools for characteristics from scratch, it has become more
and more popular to base the search for differential and linear characteristics
on MILP and SAT solvers. One of the first works utilizing mixed integer linear
programming (MILP) to prove bounds on the minimum number of active S-boxes
in a differential or linear characteristic has been described by Mouha, Wang,
Gu, and Preneel [103]. This method has been extended to also prove bounds in
the related-key setting for SPN-structures in [133]. Recently, MILP solvers and
SAT solvers are also used in the search for differential and linear characteristics
for ARX-based primitives [51, 83, 102]. As can be seen from the numerous
results [51, 74, 83, 134, 135] for the lightweight primitives Simon and Speck,
MILP- or SAT-based approaches excel whenever ciphers have a rather simple
round function or small state size (or are structured). To complement MILP-
or SAT-based tools and due to the lack of publicly available dedicated heuristic
search tools for linear characteristics that are capable of dealing with weakly
aligned [20] primitives having a large state size like Ascon, ICEPOLE, and
Keyak, we have developed the following publicly available tool:

• Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Heuristic
Tool for Linear Cryptanalysis with Applications to CAESAR Candidates”.
In: Advances in Cryptology – ASIACRYPT 2015. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 490–509. url:
https://doi.org/10.1007/978-3-662-48800-3_20

3.3 Cube and Cube-like Attacks

Cube attacks introduced by Dinur and Shamir [44] exploit the fact that the single
output bits of most cryptographic algorithms can be expressed as polynomial
functions of the input bits. Typically, such a polynomial is depicted in its

https://doi.org/10.1007/978-3-662-48800-3_20

Chapter 3. Cryptanalysis 25

algebraic normal form (ANF), being the sum of terms, where each term is a
product of the input bits (or a constant). The input bits of a cryptographic
primitive can be split into public bits Vi that can be influenced (e.g., plaintext,
nonce), public bits Ci that are constant (e.g., constant initial value), and secret
bits Ki that are typically constant (e.g., the key). The goal of a cube attack is
now to find the values of the secret bits. In a cube attack, some of the public
input bits Vi are now selected as cube variables CVi = Vi, while others are set to
a constant value. If the product of the cube variables

∏
(CVj) is now factored

out of all terms where it appears, we can express one output bit Oi as:

Oi =
∏

(CVj) · pS + q

Here, pS is called the superpoly and q is a polynomial where in each term at
least one of the cube variables CVi is missing. In a cube attack, we now calculate
the sum of Oi for each possible assignment of our cube variables CVi. The
resulting cube sum is then just the evaluation of the superpoly pS , because the
superpoly influences the output bit Oi just one time when all CVi are 1, whereas
all terms appearing in q are summed an even number of times since at least one
cube variable per term is missing. Dinur and Shamir [44] demonstrate that a
careful selection of the cube variables leads to situations where the superpoly
pS is just a linear function of the secret bits Ki. If the cube sum is known, such
linear functions can be used to reveal the secret key. It is worth noting that the
underlying working principles of cube attacks are similar to, e.g., higher order
differential cryptanalysis introduced by Lai [77] or an algebraic IV differential
attack (AIDA) by Vielhaber [141].

Later, Dinur, Morawiecki, Pieprzyk, Srebrny, and Straus [43] published cube-like
attacks, where the superpoly does not have to be a linear function of the secret
bits ki; in fact, the presented attacks also work if it is a non-linear function. In
the presented cube-like attacks, the cube variables are chosen so that it is known
which secret bits ki appear in the superpoly. With this knowledge, a fingerprint
for each possible assignment of the involved ki can be created with the help of
the cube sum in a pre-processing phase, which in turn is used in an attack to
recover parts of the secret key. We apply this strategy to analyze round-reduced
variants of Ascon:

• Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Cryptanalysis of Ascon”. In: Topics in Cryptology – CT-
RSA 2015. Ed. by Kaisa Nyberg. Vol. 9048. LNCS. Springer, 2015,
pp. 371–387. url: https://doi.org/10.1007/978-3-319-16715-2_20

Recently, Li, Dong, and Wang [81] present conditional cube attacks on round-
reduced variants of Ascon that improve upon the cube-like attacks presented
in [c13]. Conditional cube attacks have been introduced by Huang, Wang, Xu,
Wang, and Zhao [58]. These attacks exploit knowledge about the appearance of

https://doi.org/10.1007/978-3-319-16715-2_20

26 Chapter 3. Cryptanalysis

the product of all cube variables
∏

(CVj) in the terms of the output functions.
If this product does not appear, the superpoly is empty and the cube sum is
guaranteed to be zero, whereas if it appears, the cube sum of a bit can also be
1. By carefully selecting cube variables and analyzing their distribution and
propagation within the first few rounds of a targeted cipher, necessary conditions
(certain values that input bits have to take) for

∏
(CVj) not appearing in the

terms can be identified. If secret bits are needed to fulfill these conditions, cube
sums of an attacked cipher give information about those secret bits.

3.4 Integral Attacks

The square attack has been developed for the blockcipher Square [37] and exploits
its byte-aligned structure. The concept of the square attack is also applicable
to AES [39], which has later been improved in [49] and generalized as integral
attacks by Knudsen and Wagner [69]. In Part II of our thesis, we only rely
on concepts introduced in the attack on Square [37] and extensions of it on
AES-128 [49]. Hence, we decided to stick with the name square attack for this
attack. In this section, we explain the working principles of such a square or
integral attack based on the work of Daemen and Rijmen [39] on AES-128 first.
Then, we discuss the relation to our work on KIASU-BC, give recent attacks
on KIASU-BC and finally, discuss the division property as generalization of the
properties exploited in square or integral attacks, which might also be considered
in future work on KIASU-BC.

AES-128 [107] is a blockcipher that operates on a state arranged as a 4×4 square
of bytes. Its round function consists of the iterative application of SubBytes,
ShiftRows, MixColumns, and AddRoundKey. In a square attack, the encryption
of a set of 256 plaintexts is now traced. When looking at a single byte position
in this set, the byte is called active A if the values of the set at its position iterate
over all possible 256 values, constant C if the values of the set at its position
always have the same value and balanced B if the xor sum over the set at this
position is zero.

The properties of a set can be influenced by the round functions. For instance,
AddRoundKey does not change the properties of a set, while ShiftRows just
changes the position of the bytes. However, a closer look has to be taken on
SubBytes and MixColumns.

SubBytes is the byte-wise application of a bijective S-box to the state. Thus, if
the input of the S-box iterates over all possible values, also the output iterates
over all possible values. Hence, an active byte A stays active. Furthermore, the
same input always results in the same output. Therefore, a constant byte C
stays constant. However, since the S-box is a non-linear transformation, it is not
guaranteed that an input set which sums to zero leads to an output that sums to
zero. So, the balanced property vanishes in general.

Chapter 3. Cryptanalysis 27

MixColumns is a linear transformation applied to each column of the state
separately. Thus, we can conclude that a column of constant bytes at the
input leads to constant bytes at the output. Each output byte of MixColums is
calculated as a linear function of the 4 input bytes, where each coefficient of the
function is invertible. Thus, having one byte active while the other three bytes
are constant results in an all-active column. Moreover, if all bytes at the input
are active and so each byte sums to zero, also the output sums to zero, which
leads to the knowledge that the bytes at the output are at least balanced.

This knowledge can be used to construct a 3-round distinguisher for AES-128
(Figure 3.3), where one active and 15 constant bytes at the input lead to an
all-balanced state after 3 rounds.

Round

A A

A

A

A

A A A

A A A

A A A

A A A

A

A

A

AC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C B B B

B B B

B B B

B B B

B

B

B

B

Round Round

Figure 3.3: Square distinguisher.

For KIASU-BC, we show that the additional freedom introduced by the tweak
allows to extend this 3-round distinguisher by one more round. Thus, it is
possible to attack 7 (out of 10) rounds of KIASU-BC. Furthermore, a variant
of this attack is also applicable to a round-reduced variant of the authenticated
encryption scheme KIASU 6=:

• Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Square
Attack on 7-Round Kiasu-BC”. In: Applied Cryptography and Network
Security, ACNS 2016. Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and
Steve Schneider. Vol. 9696. LNCS. Springer, 2016, pp. 500–517. url:
https://doi.org/10.1007/978-3-319-39555-5_27

Subsequent work shows that the freedom introduced by the tweak can also
be exploited to improve other attack techniques, so that also one more round
can be gained compared to the same technique applied to AES-128. Tolba,
Abdelkhalek, and Youssef [139] show meet-in-the-middle attacks targeting round-
reduced versions of KIASU-BC with 8 rounds, impossible differential attacks are
demonstrated to work for 8 rounds of KIASU-BC independently by Dobraunig
and List [c15] and by Abdelkhalek, Tolba, and Youssef [1], and Boomerang
attacks are shown for 8 rounds by Dobraunig and List [c15].

Recently, a generalization of the properties used to construct integral distinguish-
ers has been proposed under the name division property by Todo [138]. The
division property [138] characterizes multisets of n-bit binary values xj with the
help of the bit product function πu(xj) =

∏
i(xj [i]u[i]). This function processes

https://doi.org/10.1007/978-3-319-39555-5_27

28 Chapter 3. Cryptanalysis

the single bits xj [i] and u[i] of the n-bit values xj and u. The outcome of this
function is the binary AND of the value xj [i] for positions where u[i] = 1. A mul-
tiset of values xj has the division property Dn

k if it is fulfilled that
⊕

j πu(xj) = 0
for all u with a Hamming weight smaller than k. The division property allows to
capture the properties used in integral attacks. For instance, the property that a
set contains all values can be captured by Dn

n, or the property that the values in
a multiset sum to 0 can be captured with Dn

2 .

As demonstrated by Todo [138], the division property provides a nice framework
to construct integral distinguishers for ciphers, especially if S-boxes (or functions
in general) are non-bijective or have a low algebraic degree d. Todo shows that
an input multiset with division property Dn

k leads to a multiset at the output of
an S-box having division property Dn

r with r = dk/de. Furthermore, a multiset
preserves the division property Dn

n for bijective S-boxes.

The division property has been used in various attacks, most prominently in the
attack on full MISTY1 [137]. Besides this result, we see a constant development
of new tools and methods that aid in the search for integral characteristics using
the division property, amongst others the work of Zhang and Rijmen [146] and
Sun, Wang, and Wang [132]. Often, the found integral distinguishers improve
upon previous results, which construct integral distinguisher just relying on the
concepts introduced in square or integral attacks that we use in our analysis
of KIASU-BC. Hence, we consider the application of the division property on
KIASU-BC as an interesting research topic, especially when considering potential
exploitations of the interaction of the tweak and the AES round function.

4
Side-Channel Attacks

I
n this chapter, we deal with side-channel attacks. In contrast to
cryptographic attacks discussed in Chapter 3, here, we assume that an
attacker has also limited information about the internal processing of

cryptographic algorithms via side-channels (see Figure 4.1). Side-channel attacks
became popular in the 1990’s when attacks exploiting the timing information [71]
and, especially, power analysis attacks like simple power analysis (SPA) and
differential power analysis (DPA) were introduced [72]. In particular for power
analysis attacks, it turned out that when this side-channel is not taken into
consideration during the design and implementation of a cryptographic algorithm,
an attacker is almost always able to extract the secret from a device that executes
the algorithm if the attacker is able to observe the device’s power consumption.

EK
N
A
P

Attacker

C

T

side-channel
information

Figure 4.1: Concept of side-channel attacks.

From this point on, a rich research field emerged, proposing a plethora of different

29

30 Chapter 4. Side-Channel Attacks

countermeasures and attacks. While the exploitation of timing side-channels of
symmetric cryptographic primitives [14, 114, 140] has become less important due
to the introduction of fast implementations that have a data-independent timing
behaviour [66], power analysis attacks — especially DPA — are still a threat to
deployed implementations of cryptographic algorithms. Two recent examples of
DPA targeting deployed devices are attacks targeting FPGAs [100] and smart
lamps [123]. In the first attack, Moradi and Schneider recover the secret key
that is used to decrypt bitfiles for FPGAs [100], while in the second attack, a
sophisticated DPA is used to extract the global AES-CCM key that is used to
encrypt and authenticate firmware updates [123].

Although side-channel attacks target the implementation of an algorithm rather
than the algorithm itself, taking countermeasures against side-channel attacks
into account during the design process leads to constructions that are “easier”
to protect. In this context, the term “easier” has a wide range of meaning that
typically depends on what a designer wants to achieve. For instance, modern
authenticated encryption schemes like Ascon [i2] or Keyak [24] allow fast
constant-time implementations, so that no data-dependent look-ups are necessary
to achieve fast implementations in software. Another trend in authenticated
encryption is to use building blocks (e.g., blockciphers, permutations, etc.) which
are “easier” to mask, as indicated in the design documents of, e.g., Ascon [i2],
PRIMATEs [4], and SCREAM [56]. Here, the term “easier” typically refers
to overhead in terms of either space (e.g., additional area to store shares for
hardware implementations) or time (e.g., additional time needed to process
shares).

In this thesis, we explore further options to harden authenticated encryption
schemes against side-channel attacks. The outcome of this research is Isap [j2].
Isap incorporates principles of fresh re-keying [92] to provide protection against
DPA. A crucial part that leads to Isap are the insights gathered during our
research on fresh re-keying schemes in [c14] and [c3].

The purpose of this chapter is to make the reader familiar with the high-level
concepts of side-channel attacks and countermeasure against them in general,
complemented by a more detailed look on fresh re-keying. For a more detailed de-
scription of power analysis attacks and masking, we refer to the work of Mangard,
Oswald, and Popp [85] and more recent publications like [119]. Furthermore, we
refer the reader to the thesis of Neve [110] that covers the content presented in
Section 4.1 about cache attacks in more detail.

This chapter starts with an overview on side-channel attacks exploiting timing
information in Section 4.1, followed by power analysis attacks in Section 4.2.
After that, we give a short introduction to masking, which is a prominent
countermeasure against power analysis attacks in Section 4.3. Finally, we discuss
re-keying-based countermeasures in Section 4.4.

Chapter 4. Side-Channel Attacks 31

4.1 Timing Attacks

In the seminal work of Kocher [71] on timing attacks, he demonstrates that
variations in the timing behaviour of cryptographic primitives caused by the
processed data can be used to extract secret information. Concretely, Kocher
attacks a simple modular exponentiator. Besides this attack, Kocher’s paper
contains the following remark that turned out to have a significant impact on the
design of modern symmetric encryption schemes: “RAM cache hits can produce
timing characteristics in implementations of Blowfish[. . .], SEAL[. . .], DES, and
other ciphers if tables in memory are not used identically in every encryption” [71].
Kocher refers here to potential problems of cipher implementations using tables,
which are caused by the memory hierarchy. In short, there exists a measurable
time difference if the data of accessed table entries is located in the cache (cache
hit), or if it has to be loaded from main memory (cache miss).

Among the first practical attacks that make use of access dependent timing be-
haviour is an attack on DES by Tsunoo, Saito, Suzaki, Shigeri, and Miyauchi [140].
Their attack relies on the following observation. Let us assume that the attacked
cipher is implemented in software and uses tables to implement the S-boxes.
Because of the fact that tables are used, the time needed for a single encryption
depends on the number of cache hits, or respectively on the number of cache
misses. A short encryption time indicates more cache hits, whereas a longer
encryption time indicates fewer cache hits. If no S-box data is present in the
cache at the start of the encryption, more cache hits indicate that the inputs of
the used S-boxes are more likely to be similar, whereas less cache hits indicate
that they are more likely to be different. A convenient way to see how this
observation translates to an attack is to have a look at the toycipher example
(Figure 4.2) used in [140], which only has two S-boxes.

S

K[0]

P [0]

S

K[1]

P [1]

P C

Figure 4.2: Toycipher with two S-boxes used in [140].

If we now encrypt several different plaintexts P and measure the time needed for
encryption, we can observe differences in the encryption time. These differences
in the encryption time are likely caused by differences in the number of cache hits.
In the concrete example, we only observe a cache hit if P [0]⊕K[0] = P [1]⊕K[1].
Thus, we can deduce from plaintexts with a short encryption time the difference
of K[0]⊕K[1] = P [0]⊕ P [1]. For plaintexts characterized by a long encryption

32 Chapter 4. Side-Channel Attacks

time, it can be assumed that the inputs of the two S-boxes are different and
thus K[0]⊕K[1] 6= P [0]⊕ P [1]. Furthermore, it is demonstrated in [140] that
this concept translates to more complex constructions by attacking a specific
implementation of DES executed on a Pentium III.

Later on, table-based implementations of AES have been attacked independently
by Bernstein [14] and Osvik, Shamir, and Tromer [114]. Back then, the fastest
way to implement AES in software was making use of four 1024-byte tables
(nowadays the fastest way to use AES in software is usually to make use of AES
instructions, or use fast bitsliced implementations [66] that provide protection
against timing attacks). Bernstein’s attack targets a server that uses a table-
based AES implementation and processes data received from clients. Assuming
that the processing time of the server is somehow related to the actual input
that is processed by the tables in the first round of AES, an attacker could learn
those timings from a server using a known key, and utilize this information on
an identical setup to retrieve information about the secret key. In an attack of
Osvik, Shamir, and Tromer [114], the attacker is assumed to be able to run an
unprivileged process in parallel to the encryption on the same processor. By
observing the cache access patterns of the encrypting process, information about
the used secret key can be deduced.

As observed by Bernstein [14] and Osvik, Shamir, and Tromer [114], one counter-
measure against this type of attacks is to use (or design) ciphers that facilitate fast
constant-time implementations. This phrase simply means that only operations
which have an execution time that is independent of the values of their opera-
tors on most platforms should be used, like bitwise Boolean functions, modular
addition, or shifts and rotations by a constant value. In particular, data depen-
dent table look-ups or data dependent rotations should be avoided. Examples
for primitives that allow fast implementations only relying on bitwise Boolean
functions and rotations by constant values are among others the permutations
used in Ascon [i2] or Keccak [16].

4.2 Power Analysis Attacks

Power analysis attacks are known to a broader audience since the late 1990s
when Kocher, Jaffe, and Jun [72] introduced simple power analysis (SPA) and
differential power analysis (DPA). In principle, it turned out that an attacker
can extract the secret of a device if the attacker is able to observe side-channels
like the power consumption [72], or electro magnetic radiation [118] during the
execution of a cryptographic algorithm. The reason for power analysis attacks to
work is the fact that the power consumption of a device executing a cryptographic
algorithm usually depends on the data that is processed [85]. Since the processed
data is usually a mixture of known and secret components, the power consumption
leaks information of the secret. In this section, we give a brief overview on the
working principles of simple power analysis (SPA) and differential power analysis

Chapter 4. Side-Channel Attacks 33

(DPA). The presented content can also be found in the work of Mangard, Oswald,
and Popp [85] to which we refer for a more detailed description of the various
attacks.

4.2.1 Simple Power Analysis

Kocher, Jaffe, and Jun [72] refer to SPA as an attack technique that involves
the direct interpretation of the measurements collected during the execution of a
cryptographic algorithm. As shown in their paper, it can be possible to deduce
the different stages of cryptographic algorithms for unprotected implementations
down to the revelation of the actual sequence of instructions that are executed.
They give various examples where an SPA can be used in such cases. For instance,
they describe attacks targeting the key schedule of DES if the key schedule is
implemented in the following way.

For the DES key schedule, the 28-bit halves of the key are rotated to the left in
each round as part of the key schedule to produce the single round keys. Let us
assume that a rotation to the left by one bit is implemented by a left shift and
a conditional check if the bit that is shifted out is 1 or not. Depending on this
decision, different code is executed. If an attacker can distinguish this code with
the help of measurements, single bits of the secret key can be recovered.

Another SPA that targets the key schedule of a blockcipher has been demonstrated
by Mangard [84]. This attack focuses on the key schedule of AES and — in
contrast to the attack above — does not exploit conditional branching. Instead,
the fact that certain devices leak the Hamming weight of intermediates is utilized.
Mangard [84] shows that the leakage of Hamming weight information of single
round key bytes can be rather efficiently combined via the key schedule to
significantly reduce the number of key candidates for a brute force search.

The two presented SPAs are just a small fraction of all possible variants and
published attacks. Nevertheless, they give insight into the principles and assump-
tions behind an SPA. Typically, an SPA requires detailed knowledge about the
implementation of the attacked algorithm and possibly about the hardware of
the attacked device. Next, we will have a look at a more powerful class of attacks
presented by Kocher, Jaffe, and Jun [72], differential power analysis (DPA).

4.2.2 Differential Power Analysis

In contrast to simple power analysis (SPA), differential power analysis (DPA)
exploits differences in the power consumption caused by different inputs to
the cryptographic algorithm at a fixed moment of time [85]. For that, an
attacker usually makes predictions about the power consumption of intermediate
variables under a certain key guess and evaluates these predictions against real
measurements. The advantage of a DPA lies in the ability that the key can be

34 Chapter 4. Side-Channel Attacks

guessed in fractions of a size that is typically tied to the size of the used S-box
for the cipher. For such attacks to work, an attacker has to be able to observe a
device processing many different inputs under the same key.

In their seminal work on power analysis, Kocher, Jaffe, and Jun [72] introduce
DPA by attacking DES. In this attack, they make predictions about a single bit
at the output of an S-box in the last round and expect to see a difference in the
power consumption whether this bit is 0 or 1. To calculate this bit from known
ciphertexts, 6 bits of the last round key have to be guessed. In an attack, many
power traces for different plaintexts are recorded. For each guess of 6 bits of
the round key, those traces are separated into two groups, where the targeted
bit of the S-box output is calculated to be 0 or 1. For the correct key guess,
the respective 0 and 1 bits are assigned to the correct groups, while this is not
necessarily true for other guesses. Hence, if the difference of the means of the
power traces of both groups is calculated, the resulting differential trace should
have spikes in regions where the power consumption depends on the value of the
targeted bit for a correct key guess.

From this point on, many variants and extensions of differential power analysis
have been developed, too many to be covered in this work. However, Mangard,
Oswald, and Standaert [86] provide a nice description of the underlying working
principle of a class of DPAs to which they refer to as standard DPA. Next, we will
restate this description taking an SPN-based blockcipher (sketched in Figure 2.6)
as example. As mentioned by Mangard, Oswald, and Standaert [86], a standard
DPA is characterized by executing the following three points:

• Prediction of intermediate values: In the first step, an attacker cal-
culates intermediate values for a certain key guess. For the example in
Figure 2.6, an attacker could target the output of one S-box of the first
round. Thus, the attacker calculates the value S0[0] under the guess
of the partial key K0[0] for every different plaintext P for which power
measurements have been conducted.

• Prediction of power consumption: In this second step, the power
consumption that leads to or is caused by the predicted intermediate values
of S0[0] is modeled. Often, simple models like the Hamming weight of the
predicted intermediate value S0[0] or the Hamming distance are used.

• Evaluation of prediction against measurements: In this step, the
predicted power consumption is evaluated against the measured one for
each plaintext P and partial key guess K0[0]. For this evaluation, various
statistical tests can be used. The partial key K0[0] that produces the best
result in this evaluation is most likely the correct one.

In the following sections, we will have a look at two classes of countermeasures
against side-channel attacks, namely countermeasures based on masking and re-
keying. The countermeasures based on masking of Section 4.3 attempt to achieve

Chapter 4. Side-Channel Attacks 35

independence of power consumption from the value of intermediate variables by
splitting the single intermediate variables into s shares. Countermeasures based
on re-keying (Section 4.4) on the other hand aim to limit the usage of the secret
key. Hence, the number of measurements per secret key is limited in the most
extreme case to one measurement, which makes side-channel attacks harder to
execute and usually precludes techniques that require measurements of a device
processing different inputs under the same key like DPA.

4.3 Masking

The idea of masking [35, 55] is to make the power consumption of the device
processing a cryptographic algorithm independent of the values of the intermediate
variables [85]. Already in the work of Chari, Jutla, Rao, and Rohatgi [35], it
is proposed to split the intermediate variables v of a cryptographic algorithm
into s shares vi so that the shares vi recombine to v with respect to a certain
operator ◦ and to execute the algorithm by just using these shares vi without
reconstructing the original value v:

v = v1 ◦ v2 ◦ v3 ◦ . . . ◦ vs−1 ◦ vs

The operation that is used to split and recombine v into the shares vi depends
on the operations used in the algorithm that has to be protected. For instance,
Boolean masking, where the xor operation is used to share the variables, has
turned out to be quite suitable for many ciphers. Chari, Jutla, Rao, and
Rohatgi [35] require that the single shares are uniformly distributed and that any
subset of s− 1 shares vi is statistically independent of v. If we do not consider
the processing of the shares, this requirement ensures that an attacker who learns
at most s− 1 shares of vi via side-channels cannot reconstruct v.

While most masking schemes agree upon the uniformity requirement of the initial
sharing (for Boolean masking) and the fact that functions f that are linear with
respect to the sharing should be processed per share f(v) = f(v1⊕v2⊕ . . .⊕vs) =
f(v1)⊕ f(v2)⊕ . . .⊕ f(vs), there exists a myriad of masking schemes proposing
ways of, e.g., handling the non-linear parts, or the injection of fresh randomness
having different assumptions about the underlying hardware and using different
models to prove the masking schemes secure. One of the first and still important
schemes that comes with a proof is the scheme of Ishai, Sahai, and Wagner [59].
In the case of Boolean masking, they show a general concept how to transform a
cryptographic algorithm into a masked scheme that can withstand an attacker
probing a limited amount of bits (or wires) per clock cycle. As later observed by
Mangard, Popp, and Gammel [87], Ishai, Sahai, and Wagner [59] assume that
the information on such wires can just change once per clock cycle, which is not
necessarily the case for hardware implementations due to glitches. A method
that works on a more abstract level and provides protection in the presence of
glitches are threshold implementations [111–113].

36 Chapter 4. Side-Channel Attacks

The idea of threshold implementations [111–113] is to split an input v into
shares vi and compute a function z = f(v) decomposed into functions fi in a
way that a first-order DPA on an implementation cannot be performed. For
withstanding first-order DPA, a masked implementation of f following the ideas
of threshold implementations has to fulfill the two properties correctness and
non-completeness. For being correct, the output shares zi should recombine to
the correct value z. Non-completeness means that the computation of an output
share zi using function fi should be independent of at least one input share vi.
Hence, an attacker who is just able to observe the execution of one function fi

cannot learn information about v assuming v has been shared uniformly.

To sum up, this section contains a basic and probably oversimplified view on
the working principles of masking. For more details about masking we refer
to [85, 119]. Clearly, the challenge of masking is to provide implementations of
cryptographic algorithms that protect against DPA attacks, while minimizing
the overhead induced by the masking. This overhead depends amongst other
things on the number of shares used, additional computational overhead for
processing the shares, and the required number of random bits. However, the
resulting overhead also depends on the cryptographic algorithm that has to be
masked, e.g., on the choice of the S-box. Designers of new schemes tend to take
this fact into account as indicated in the design documents of, e.g., Ascon [i2],
PRIMATEs [4], and SCREAM [56].

4.4 Re-keying

While the idea of masking is to make the power consumption of a device inde-
pendent of the data it processes, the idea of re-keying based countermeasures is
to limit the number of measurements an attacker is allowed to make per secret
key. While not as prominent as masking, the idea of re-keying is mentioned by
Kocher [70] and in the book “Power Analysis Attacks” by Mangard, Oswald, and
Popp [85].

In this section, we will focus on a countermeasure called fresh re-keying [92] and
extensions of it. First, we give an introduction to the ideas and concepts of fresh
re-keying. Then, we discuss the fact that some instantiations of fresh re-keying,
or re-keying in general, are susceptible to time-memory trade-off attacks. After
that, we put the contributions included in Part II in this area in context and
detail why fresh re-keying might lead to interesting constructions in the field of
authenticated encryption.

4.4.1 The Concept of Fresh Re-keying

Fresh re-keying has been proposed in [92] as low-cost countermeasure against
differential power analysis (DPA) and differential fault attacks (DFA), where

Chapter 4. Side-Channel Attacks 37

this section focuses on its side-channel characteristics. To provide protection
against DPA, fresh re-keying deploys a “separation of duties” principle, where
a cryptographic function (in the simplest case just one blockcipher call E) is
protected (re-keyed) by a function g that is easy to protect against side-channel
attacks (Figure 4.3).

g

E

N

K

P

K∗

Tag

g

E−1

K

K∗

Reader

P
C

Figure 4.3: Fresh re-keying as proposed in [92] (figure based on [c3]).

Figure 4.3 depicts a communication scenario, where a low-cost RFID tag, requiring
cheap protection against DPA, communicates with an RFID reader, where more
costly countermeasures like masking of the blockcipher can be deployed. Every
time the tag wants to encrypt a plaintext P , it generates a fresh nonce N to
derive a session key K∗ from a static master key K. This session key K∗ is then
used to encrypt the plaintext P to get the ciphertext C. The ciphertext C is
sent together with the nonce N to the reader, where it can be decrypted again.

First, we focus just on the blockcipher call on the side of the tag. Here, using
a fresh session key K∗ ideally limits the exploitable measurements to one per
session key. Thus, assuming that one measurement per key is not sufficient to
perform a DPA, an attacker can just perform SPA and hence, the blockcipher
has “just” to be protected against this class of attacks. Since the session key
is derived from the public on tag generated nonce N and the static master key
K, the problem of protection against DPA is shifted to g. Therefore, g requires
protection against both, SPA and DPA. If we take a look on the reader, we see
that the reader has no means to influence the nonce N and usually has to decrypt
any combination of received nonce N and ciphertext C. So, it cannot be assumed
for the reader that a session key is not used more than once in combination with
different ciphertext. Thus, also the blockcipher requires protection against DPA.

The question that we have not answered yet is which function to use for g. Ideally,
we want to use functions which behave like a pseudo-random function to generate
the session keys K∗, for instance constructions based on GGM trees [54] as
proposed in [130]. However, the usage of such a function would not result in a
“cheap” protection of a single blockcipher call. Thus, it is argued in [92] that
also “cryptographically weak” functions can serve as re-keying functions g, while

38 Chapter 4. Side-Channel Attacks

providing protection against DPA for the blockcipher. In [92], six properties that
such a function g should fulfill are listed, which we restate next:

1. Good Diffusion: The re-keying function should provide good diffusion,
so that one bit of the session key K∗ depends on several bits of the master
key K.

2. Synchronization Free: The session key K∗ should only be derived from
a static master key K and a nonce N without the need of other secret
internals, which probably have to be synchronized between parties.

3. No Additional Key Material: The size of the session key K∗ should
match the size of the master key K in bits.

4. Small Implementation Overhead: The overall construction should be
cheaper than directly protecting the blockcipher by using, e.g., masking.

5. Easy Protection Against Side-Channel Attacks: The re-keying func-
tion should facilitate easy protection against SPA and DPA by, e.g., masking.

6. Regularity: The re-keying function should provide a regular structure in
order to be easier to implement.

It is proposed by Medwed, Standaert, Großschädl, and Regazzoni [92] to use
a polynomial multiplication as re-keying function g. They argue that such a
multiplication allows the efficient implementation of countermeasures like shuffling
and masking against SPA and DPA. Subsequent work [91] proposes re-keying
functions that are able to process multiple nonces, so that multiple parties can
contribute to the generation of the session key K∗ and thus, can be protected
against DPA.

4.4.2 Time-Memory Trade-off Attacks on Re-keying

In this section, we shortly summarize time-memory trade-off attacks on fresh
re-keying that are capable of recovering the secret master key [c4]. Please note
that the underlying principle of the attack is neither new nor limited to fresh
re-keying and has already been applied in scenarios where a blockcipher is re-
keyed as already demonstrated by Biham [26], or — in a more general sense — is
used in many attacks (or is part of attacks) where the key is mixed with a known
variable value in an unfortunate way via a function that is easy to invert [c1, 94].

To demonstrate the attack, let us assume a simple challenge-response protocol
using a blockcipher with a matching key size k and block size n, where the reader
sends a challenge P to the tag in Figure 4.3 and the tag replies with the pair
(N,C), where C = EK∗(P) and K∗ = gK(N). Now, an attacker can execute the
following key recovery attack by impersonating the reader:

Chapter 4. Side-Channel Attacks 39

• Offline Phase: In the offline phase, the attacker creates a list having t
entries of pairs (Ci,K

∗
i), where Ci is generated by encrypting always a

constant challenge P with changing K∗i .

• Online Phase: In the online phase, the attacker queries the RFID tag t′
times with the constant challenge P used to generate the list during the
offline phase. The tag replies with a pair (Ni, Ci). If a ciphertext appears in
the list, the attacker can recover the session key K∗i and the corresponding
nonce Ni. Depending on the used re-keying function g, an attacker can use
Ni and K∗i to recover the master key K.

The attack complexity depends on the size of the list t, which in turn determines
the expected number of online queries t′ needed before we find a matching entry
in the list. The trade-off that needs the least amount of 2 · 2k/2 total blockcipher
calls uses a list of size 2k/2 followed by 2k/2 online queries. Finding ways of
preventing this attack on re-keying schemes is the goal of the following publication,
which is included in Part II:

• Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel,
and François-Xavier Standaert. “Towards Fresh and Hybrid Re-Keying
Schemes with Beyond Birthday Security”. In: Smart Card Research and
Advanced Applications, CARDIS 2015. Ed. by Naofumi Homma and
Marcel Medwed. Vol. 9514. LNCS. Springer, 2016, pp. 225–241. url:
https://doi.org/10.1007/978-3-319-31271-2_14

4.4.3 Side-channel Aspects of Re-keying

Choosing a suitable re-keying function, which together with the re-keyed cryp-
tographic primitive gives a construction that makes the life of a side-channel
attacker as hard as possible, is not a trivial task. While the straightforward
application of known standard side-channel attacks is usually precluded, other
attacks might still be feasible. In the case of the multiplication used in [92],
several side-channel attacks have been shown [11, 12, 115].

Those attacks build upon the insight that the polynomial multiplication used
in [92] can be rewritten as a system of linear equations in GF(2). An attacker
who is able to get noisy information about the single bits of the session key K∗
by, e.g., observing its use in the blockcipher E, faces a similar problem as in the
learning parity with noise (LPN) problem [116]. For a detailed description of the
attacks we refer to the original publications [11, 12, 115].

Alternative proposals include re-keying functions which base their security on
hard problems like learning parity with leakage (LPL) or learning with errors
(LWE) [45], or Keymill [136], a construction based on NLFSRs. For this construc-
tion, it is claimed that it is secure against side-channel attacks without needing

https://doi.org/10.1007/978-3-319-31271-2_14

40 Chapter 4. Side-Channel Attacks

additional circuits. In particular, it is claimed that in a DPA, the key hypothesis
has to be done for the whole key, not allowing a divide and conquer approach.
However, in the following publication shown in Part II, we show a side-channel
attack by recovering information equivalent to the secret key. Concretely, we
recover differences of neighboring bits of the used shift-registers:

• Christoph Dobraunig, Maria Eichlseder, Thomas Korak, and Florian
Mendel. “Side-Channel Analysis of Keymill”. In: Constructive Side-
Channel Analysis and Secure Design, COSADE 2017. Ed. by Sylvain
Guilley. Vol. 10348. LNCS. Springer, 2017, pp. 138–152. url: https:
//doi.org/10.1007/978-3-319-64647-3_9

4.4.4 Re-keying and Authenticated Encryption

Recently and independently from our work, several authenticated encryption
schemes have been proposed that address the need for protection against side-
channel attacks. For instance, Berti, Koeune, Pereira, Peters, and Standaert [15]
and Barwell, Martin, Oswald, and Stam [10] propose leakage resilient authen-
ticated encryption schemes. Berti, Koeune, Pereira, Peters, and Standaert [15]
present a construction that achieves leakage resilience of the authenticated encryp-
tion, but leaves the option to attack the authenticated decryption out of scope.
With Isap [j2], we wanted to focus also on authenticated decryption and propose
a sponge-based authenticated encryption scheme that withstands DPA for both,
encryption and decryption, by incorporating concepts from (fresh) re-keying.
Additionally, Isap reduces the attack surface against SPA by increasing the
capacity of keyed parts compared to the minimum required from a cryptographic
perspective.

C[0] C[1]

p

r

C[t]

p p
c

K

p

gr

c

K∗

k k

T

k

c

r

const

Figure 4.4: Sketch of the MAC used in Isap [j2].

Isap is an encrypt-then-MAC construction that uses a sponge-based suffix MAC
(sketched in Figure 4.4) and a sponge-based streamcipher. For encryption, DPA
is prevented by the requirement that the nonce has to be unique and thus, keys
for encryption and MAC change. However, the decryption should at least process
every input, leading to the threat that the nonce could be kept constant while the
ciphertext is changed, enabling DPA. For Isap, a DPA on the decryption part
is prevented by executing the MAC first. In the case of the used sponge-based

https://doi.org/10.1007/978-3-319-64647-3_9
https://doi.org/10.1007/978-3-319-64647-3_9

Chapter 4. Side-Channel Attacks 41

suffix MAC, a change of the ciphertext (or any other processed data) always
results in a change of the key K∗, thus also precluding DPA here:

• Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. “ISAP – Towards Side-Channel Secure Au-
thenticated Encryption”. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 80–105. url: http://tosc.iacr.org/index.php/ToSC/
article/view/585

After the publication of Isap, we discovered that Kocher, Jaffe, Jun, and Rohatgi
describe an authenticated encryption scheme in a paper called “Introduction to
differential power analysis” [73]. Here, they sketch an encrypt-then-MAC scheme,
where the MAC is the combination of a key-tree [70] with a hash function. To
be precise, the ciphertext is hashed and the result is processed by the key-tree.
This results in a MAC that withstands DPA. In addition, they describe the
idea to execute the MAC before decrypting the ciphertext to prevent any DPA
attacks on the upcoming decryption. So contrary to what is claimed in Isap [j2],
the credits for the first authenticated encryption scheme that prevents DPA for
encryption and decryption belong to Kocher, Jaffe, Jun, and Rohatgi [73].

Nevertheless, we think that the sponge-based authenticated encryption scheme is a
valuable contribution in itself. For instance, the MAC of Figure 4.4 demonstrates
that just changing the function to absorb the key can result in a construction
which is much harder to attack by DPA compared to using a plain xor. A
very interesting topic for future research is to evaluate the side-channel and
cryptographic security of the MAC shown in Figure 4.4 for different re-keying
functions g that are more lightweight compared to the one used in Isap. Potential
candidates are polynomial multiplications as proposed in [92], or the functions
proposed in [45].

http://tosc.iacr.org/index.php/ToSC/article/view/585
http://tosc.iacr.org/index.php/ToSC/article/view/585

5
Fault Attacks

L
ike side-channel attacks discussed in Chapter 4, fault attacks
belong to the category of implementation attacks. However, in
contrast to side-channel attacks, an attacker does not exploit side-

channels to retrieve information about the internal computations, or values during
the execution of a cryptographic algorithm. Instead, the attacker disturbs the
internal computation or values as sketched in Figure 5.1.

EK
N
A
P

Attacker

C

T

fault

Figure 5.1: Concept of fault attacks.

The problem of faults induced by physical means in electronic circuits has already
been known for decades. As mentioned in [8], already May and Woods [90] or
Ziegler and Lanford [147] describe sources and effects of faults in the late 1970s.
However, to the best of our knowledge, the first work pointing out that faults can
be used to break cryptographic algorithms is the work of Boneh, DeMillo, and
Lipton [33] published in 1996. They already mention the option that an attacker

43

44 Chapter 5. Fault Attacks

possessing a device may induce faults and show fault attacks on implementations
of various asymmetric schemes, such as RSA. Shortly after the publication of
Boneh, DeMillo, and Lipton [33], Biham and Shamir [28] demonstrated the
vulnerability of symmetric schemes by presenting several attacks on blockciphers,
including differential fault analysis (DFA).

Differential fault analysis is closely related to differential cryptanalysis and usually
works by exploiting pairs of correct and faulted computation results, e.g., pairs of
correct and faulty ciphertexts. So, simply speaking, DFA requires an attacker to
be able to trigger an encryption of the exact same input twice, where one execution
is faulted. This condition is often not fulfilled for authenticated encryption
schemes, since usually, each new encryption uses a new nonce. Additionally, the
condition that unverified plaintext is not released often implicitly detects single
faults. Thus, recent fault attacks on authenticated encryption usually require
nonce reuse [126], release of unverified plaintext [125], or multiple faults per
invocation [124].

To counteract the potential resulting impression that authenticated encryption
schemes are secure against fault attacks, we demonstrate fault attacks on a
wide range of AES-based primitives in [c2] (Part II of this thesis). In contrast
to DFA, our attacks are based on statistical fault attacks (SFA) on AES [52].
Hence, our attacks target the underlying (tweakable) blockciphers and assume
that an attacker is able to change the distribution of an intermediate value from
uniform to some non-uniform distribution, while the input of the blockcipher is
different and potentially unknown for each invocation. Thus, the requirement of
encrypting the same input twice is circumvented, allowing the attack to also be
applicable in a nonce-respecting scenario.

The remainder of this chapter is as follows. First, we introduce the working
principles of differential fault analysis (DFA) in Section 5.1 and describe statistical
fault attacks (SFA) in Section 5.2, which are the basis of our attacks. Section 5.3
gives a short summary on fault attacks besides DFA and SFA. Finally, we give a
short overview on recent fault attacks on authenticated encryption schemes in
Section 5.4.

5.1 Differential Fault Analysis

Differential Fault Analysis (DFA) has been introduced by Biham and Shamir [28]
in 1997. The working mechanisms of DFA are closely related to differential
cryptanalysis [27] and require typically the knowledge of correct and faulty data.
Usually, the ability of an attacker to induce a fault towards the last rounds
of a cipher can be exploited to inject a difference (compared to the correct
intermediate value) in the intermediate state, which basically allows to apply the
concepts of differential cryptanalysis to just a few rounds. As an example, Biham
and Shamir [28] give an attack on DES, which we summarize in the following.

Chapter 5. Fault Attacks 45

Let us assume a round-based hardware implementation of DES where an attacker
can flip a single bit in a register, but has no influence on the position or the round
where the fault occurs. Assuming that just one bit-flip happens per encryption,
then — due to the Feistel structure — a bit-flip that happens before the last
round can be easily identified. Such a fault is characterized by just a single
difference in the half of the ciphertext that formed the input to the last round,
while the other half of the state shows only differences due to the single bit
entering the function. As argued by Biham and Shamir [28], knowing the input
and output differences of one S-box reduces the set of possible keys to four 6-bit
keys on average.

However, DFA is not limited to Feistel constructions and thus, can also be applied
to SPN structures like AES. For instance, Piret and Quisquater [117] show how
to attack AES using just 2 faulty ciphertexts. On a high level, the attack can
be seen as truncated differential attack [68] on 2 rounds of AES. For simplicity,
let us start with a simpler version to explain, which assumes that an attacker
can inject a difference in one byte just before the last MixColumns operation of
AES. Thus, as a result, the ciphertext has differences in 4 bytes. An attacker
can now guess the 4 last round key bytes at the position of the differences and
invert the last round followed by an inverse MixColumns operation. Key guesses
that lead to a state having more then one byte difference can be discarded. As
shown by Piret and Quisquater [117], two faulty cipheretxts are usually sufficient
to determine the 4 key bytes uniquely. Placing the difference right before the
second to last application of MixColumns leads to a single one-byte difference
per column right before the last MixColumns, allowing to recover 4 times 4 bytes
of the last round key in parallel.

5.2 Statistical Fault Attacks

In contrast to differential fault analysis (DFA), statistical fault attacks (SFA) [52]
do not exploit the fact that a fault can be used to inject differences in a pair of
intermediate states. Instead, it is assumed that faults can be used to influence
the distribution of intermediate values across many encryptions. Thus, the
requirements of encrypting two times the same inputs are replaced with just
processing many different unknown inputs. The probably simplest version of
this attack on AES is a stuck-at-zero fault right before the last application of
the round key, which immediately reveals the key. Fuhr, Jaulmes, Lomné, and
Thillard [52] consider the following three fault models on byte level assuming v
is the targeted byte:

1. v ← v AND 0

2. v ← v AND 0 with probability 0.5
v ← v AND e with probability 0.5
e picked randomly from uniform distribution

46 Chapter 5. Fault Attacks

3. v ← v AND e
e picked randomly from uniform distribution

These three fault models are used to show attacks on AES targeting the 6th to 9th

round. Since our attacks on nonce-based authenticated encryption schemes [c2]
are based on statistical fault attacks [52] targeting the 8th round, we will have a
closer look at this attack.

In their 8th-round attack, Fuhr, Jaulmes, Lomné, and Thillard [52] assume that
an attacker can fault one byte right after the key addition of the 8th round, which
also marks the beginning of the 9th, and change the distribution of this byte.
Since the S-box of AES acts as a permutation on byte level and ShiftRows just
influences the position, we end up with a situation where 1 byte right before
the last MixColumns application is not uniformly distributed. The idea of the
attack is to exploit this distribution under a 4-byte key guess of the last round
key, assuming that a wrong key guess will result in a byte distribution which is
closer to uniform compared to a right key guess. To evaluate the distribution,
Fuhr, Jaulmes, Lomné, and Thillard [52] use the squared euclidean imbalance
(SEI). They show that 6 faults are needed in the case of fault model 1, 14 faults
for fault model 2, and 80 faults for fault model 3 to recover 4 bytes of the last
round key with a probability of 99%.

5.3 Other Fault Attack Techniques

Clearly, DFA and SFA are not the only way in which cryptographic primitives
can be attacked via faults. In this section, we want to provide a short summary
of other prominent fault attacks apart from DFA and SFA.

The underlying principle of collision fault attacks [31] is somewhat similar to
DFA. However, in collision fault attacks, related inputs are used to induce a
difference, which is then tried to be cancelled after a few rounds by using a fault.
If the induced differences can be cancelled successfully, the knowledge about the
difference caused by the fault in combination with knowledge about the input
difference gives insight on the used secret.

Another interesting category of fault attacks are attacks that just exploit the
knowledge whether a fault has an effect on the computation or not. One prominent
example of this category is the safe error attack [144]. In their attack, Yen and
Joye [144] are able to retrieve information on the secret by observing if faulted
intermediate values are used or not. To perform an ineffective fault attack [36], an
attacker needs knowledge on the effect of a fault, e.g., that a fault can be used to
set one byte to zero. Such a behaviour can be used to “probe” intermediate values
of a cryptographic primitive, which can then in turn be exploited in attacks.

Chapter 5. Fault Attacks 47

5.4 Fault Attacks on Authenticated Encryption

In this section, we discuss our work on fault attacks on authenticated encryp-
tion schemes [c2] in relation with recent attacks targeting the authenticated
encryption scheme APE [125, 126] and PAEQ [124]. The fault attacks on APE
require the cipher to be used in a so-called misuse scenario. Concretely, the first
attack [126] on APE requires multiple encryptions using the same nonce, while
the second attack [125] works only if unverified plaintext is released. The attack
on PAEQ [124] is parallel independent work to the statistical fault attacks on
nonce-based authenticated encryption schemes [c2] and attacks the encryption
without making any assumptions on how the nonce is chosen. Simplified, PAEQ
generates keystream to encrypt plaintext by using a permutation in a counter
mode. Hence, a fault on the counter can be used to receive two permutation
implementations having the same inputs, while a second fault can be used to
get a pair of fault-free and faulty outputs, which can then be used to mount a
DFA. So, are nonce-reuse, release of unverified plaintext, or the use of a counter
mode necessary conditions for a fault attack and are other modes used in a
nonce-respecting setting secure?

For understanding why — at the first glimpse — one might have the impression
that authenticated encryption schemes withstand fault attacks, let us take a
look at the encryption of COPA [6]. The value V in Figure 5.2 depends in an
usually (for an attacker) unpredictable way on the nonce N and thus changes in
a nonce-respecting use for every new invocation of the encryption. Therefore,
also ciphertext and tag change even if the plaintext is kept constant. This leads
to the fact that fault attacks like DFA that rely on that ability to collect faulty

EK

P [0] P [1] P [t]
∑

P [i]

3L 2·3L 2t3L 2t32L

2L 22L 2t+1L 2t+17L

C[0] C[1] C[t] T

V

L

EK EK EK

EK EK EK EK

Figure 5.2: Encryption of AES-COPA [6]. (L = EK(0))

48 Chapter 5. Fault Attacks

and fault-free ciphertext pairs cannot be applied in a straightforward manner.

This changes if we move away from fault models which assume that just bits
can be flipped, or that a fault changes the value of intermediates randomly
according to a uniform distribution. The assumption that faults can be used
to change the distribution of uniformly distributed values to some non-uniform
distribution as in SFA [52] allows for attacks on authenticated encryption without
the need of having pairs of faulty and fault-free ciphertexts. In the following
work, we demonstrate the applicability of statistical fault attacks on a wide range
of authenticated encryption schemes that are based on AES:

• Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. “Statistical Fault Attacks on Nonce-Based Authenticated
Encryption Schemes”. In: Advances in Cryptology – ASIACRYPT 2016.
Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016,
pp. 369–395. url: https://doi.org/10.1007/978-3-662-53887-6_14

https://doi.org/10.1007/978-3-662-53887-6_14

Bibliography

[1] Ahmed Abdelkhalek, Mohamed Tolba, and Amr M. Youssef. “Impossible
Differential Cryptanalysis of 8-round Kiasu-BC”. Personal communication.

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. “Ciphers for MPC and FHE”. In: Ad-
vances in Cryptology – EUROCRYPT 2015. Ed. by Elisabeth Oswald
and Marc Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 430–454. url:
https://doi.org/10.1007/978-3-662-46800-5_17.

[3] American Mathematical Society. “The Culture of Research and Scholarship
in Mathematics: Joint Research and Its Publication”. http://www.ams.
org/profession/leaders/culture/CultureStatement04.pdf. 2004.

[4] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian
Mendel, Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda.
“PRIMATEs v1.02”. Submission to the CAESAR competition: http://
competitions.cr.yp.to. 2014.

[5] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. “How to Securely Release Unverified Plaintext
in Authenticated Encryption”. In: Advances in Cryptology – ASIACRYPT
2014. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer,
2014, pp. 105–125. url: https://doi.org/10.1007/978-3-662-45611-8_6.

[6] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar
Tischhauser, and Kan Yasuda. “AES-COPA v.2”. Submission to the
CAESAR competition: http://competitions.cr.yp.to.

[7] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. “NORX
V1”. Submission to the CAESAR competition: http://competitions.cr.
yp.to. 2014.

[8] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and
Claire Whelan. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In:
Proceedings of the IEEE 94.2 (2006), pp. 370–382. url: https://doi.org/
10.1109/JPROC.2005.862424.

[9] Elaine B. Barker. “NIST SP-800-57 Pt1 Rev 4: Recommendation for Key
Management, Part 1: General”. Jan. 2016. url: https://doi.org/10.6028/
NIST.SP.800-57pt1r4.

49

https://doi.org/10.1007/978-3-662-46800-5_17
http://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://doi.org/10.1007/978-3-662-45611-8_6
http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4

50 Bibliography

[10] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam.
“Authenticated Encryption in the Face of Protocol and Side Channel
Leakage”. Cryptology ePrint Archive, Report 2017/68. http://eprint.
iacr.org/2017/068. 2017.

[11] Sonia Belaïd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoît Gérard,
Jean-Gabriel Kammerer, and Emmanuel Prouff. “Improved Side-Channel
Analysis of Finite-Field Multiplication”. In: Cryptographic Hardware and
Embedded Systems – CHES 2015. Ed. by Tim Güneysu and Helena Hand-
schuh. Vol. 9293. LNCS. Springer, 2015, pp. 395–415. url: https://doi.
org/10.1007/978-3-662-48324-4_20.

[12] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. “Side-Channel
Analysis of Multiplications in GF(2128) - Application to AES-GCM”.
In: Advances in Cryptology – ASIACRYPT 2014. Ed. by Palash Sarkar
and Tetsu Iwata. Vol. 8874. LNCS. Springer, 2014, pp. 306–325. url:
https://doi.org/10.1007/978-3-662-45608-8_17.

[13] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition Para-
digm”. In: Advances in Cryptology – ASIACRYPT 2000. Ed. by Tatsuaki
Okamoto. Vol. 1976. LNCS. Springer, 2000, pp. 531–545. url: https:
//doi.org/10.1007/3-540-44448-3_41.

[14] Daniel J. Bernstein. “Cache-timing attacks on AES”. https://cr.yp.to/
papers.html#cachetiming. 2004.

[15] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. “Leakage-Resilient and Misuse-Resistant Au-
thenticated Encryption”. Cryptology ePrint Archive, Report 2016/996.
http://eprint.iacr.org/2016/996. 2016.

[16] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.
“The Keccak SHA-3 submission (Version 3.0)”. http://keccak.noekeon.
org/Keccak-submission-3.pdf. 2011.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Sponge functions”. Ecrypt Hash Workshop 2007. May 2007.

[18] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“On the Indifferentiability of the Sponge Construction”. In: Advances in
Cryptology – EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS.
Springer, 2008, pp. 181–197. url: https://doi.org/10.1007/978-3-540-
78967-3_11.

[19] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Cryptographic sponge functions (Version 0.1)”. http://sponge.noekeon.
org. Jan. 2011.

[20] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On
alignment in Keccak”. http://www.ecrypt.eu.org/hash2011/proceedings/
hash2011_15.pdf. May 2011.

http://eprint.iacr.org/2017/068
http://eprint.iacr.org/2017/068
https://doi.org/10.1007/978-3-662-48324-4_20
https://doi.org/10.1007/978-3-662-48324-4_20
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://cr.yp.to/papers.html#cachetiming
https://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/2016/996
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
http://sponge.noekeon.org
http://sponge.noekeon.org
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_15.pdf
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_15.pdf

Bibliography 51

[21] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On
the security of the keyed sponge construction”. Symmetric Key Encryption
Workshop (SKEW). Feb. 2011.

[22] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Duplexing the Sponge: Single-Pass Authenticated Encryption and Other
Applications”. In: Selected Areas in Cryptography, SAC 2011. Ed. by Ali
Miri and Serge Vaudenay. Vol. 7118. LNCS. Springer, 2012, pp. 320–337.
url: https://doi.org/10.1007/978-3-642-28496-0_19.

[23] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Permutation-based encryption, authentication and authenticated encryp-
tion”. Directions in Authenticated Ciphers. July 2012.

[24] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. “Keyak”. Submission to the CAESAR competition:
http://competitions.cr.yp.to. 2014.

[25] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. “Ketje v2”. Submission to the CAESAR competition:
http://competitions.cr.yp.to. 2016.

[26] Eli Biham. “How to decrypt or even substitute DES-encrypted messages
in 228 steps”. In: Inf. Process. Lett. 84.3 (2002), pp. 117–124. url: https:
//doi.org/10.1016/S0020-0190(02)00269-7.

[27] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryp-
tosystems”. In: Advances in Cryptology – CRYPTO ’90. Ed. by Alfred
Menezes and Scott A. Vanstone. Vol. 537. LNCS. Springer, 1991, pp. 2–21.
url: https://doi.org/10.1007/3-540-38424-3_1.

[28] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key
Cryptosystems”. In: Advances in Cryptology – CRYPTO ’97. Ed. by
Burton S. Kaliski Jr. Vol. 1294. LNCS. Springer, 1997, pp. 513–525. url:
https://doi.org/10.1007/BFb0052259.

[29] Alex Biryukov and Ivica Nikolić. “Automatic Search for Related-Key
Differential Characteristics in Byte-Oriented Block Ciphers: Application
to AES, Camellia, Khazad and Others”. In: Advances in Cryptology –
EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS. Springer,
2010, pp. 322–344. url: https://doi.org/10.1007/978-3-642-13190-5_17.

[30] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. “Automatic Search
for the Best Trails in ARX: Application to Block Cipher Speck”. In: Fast
Software Encryption, FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. LNCS.
Springer, 2016, pp. 289–310. url: https://doi.org/10.1007/978-3-662-
52993-5_15.

[31] Johannes Blömer and Volker Krummel. “Fault Based Collision Attacks
on AES”. In: Fault Diagnosis and Tolerance in Cryptography, FDTC
2006. Ed. by Luca Breveglieri, Israel Koren, David Naccache, and Jean-
Pierre Seifert. Vol. 4236. LNCS. Springer, 2006, pp. 106–120. url: https:
//doi.org/10.1007/11889700_11.

https://doi.org/10.1007/978-3-642-28496-0_19
http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://doi.org/10.1016/S0020-0190(02)00269-7
https://doi.org/10.1016/S0020-0190(02)00269-7
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-13190-5_17
https://doi.org/10.1007/978-3-662-52993-5_15
https://doi.org/10.1007/978-3-662-52993-5_15
https://doi.org/10.1007/11889700_11
https://doi.org/10.1007/11889700_11

52 Bibliography

[32] Andrey Bogdanov and Vincent Rijmen. “Linear hulls with correlation zero
and linear cryptanalysis of block ciphers”. In: Des. Codes Cryptography
70.3 (2014), pp. 369–383. url: https://doi.org/10.1007/s10623-012-
9697-z.

[33] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Im-
portance of Checking Cryptographic Protocols for Faults (Extended
Abstract)”. In: Advances in Cryptology – EUROCRYPT ’97. Ed. by
Walter Fumy. Vol. 1233. LNCS. Springer, 1997, pp. 37–51. url: https:
//doi.org/10.1007/3-540-69053-0_4.

[34] CAESAR committee. “CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robustness”. 2014. url: http://
competitions.cr.yp.to/caesar.html.

[35] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
“Towards Sound Approaches to Counteract Power-Analysis Attacks”. In:
Advances in Cryptology – CRYPTO ’99. Ed. by Michael Wiener. Vol. 1666.
LNCS. Springer, 1999, pp. 398–412. url: https://doi.org/10.1007/3-
540-48405-1_26.

[36] Christophe Clavier. “Secret External Encodings Do Not Prevent Transient
Fault Analysis”. In: Cryptographic Hardware and Embedded Systems –
CHES 2007. Ed. by Pascal Paillier and Ingrid Verbauwhede. Vol. 4727.
LNCS. Springer, 2007, pp. 181–194. url: https://doi.org/10.1007/978-
3-540-74735-2_13.

[37] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Ci-
pher Square”. In: Fast Software Encryption, FSE ’97. Ed. by Eli Biham.
Vol. 1267. LNCS. Springer, 1997, pp. 149–165. url: https://doi.org/10.
1007/BFb0052343.

[38] Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”. In:
Smart Card Research and Applications, CARDIS ’98. Ed. by Jean-Jacques
Quisquater and Bruce Schneier. Vol. 1820. LNCS. Springer, 2000, pp. 277–
284. url: https://doi.org/10.1007/10721064_26.

[39] Joan Daemen and Vincent Rijmen. “The Design of Rijndael: AES – The
Advanced Encryption Standard”. Information Security and Cryptography.
Springer, 2002. isbn: 3-540-42580-2.

[40] Joan Daemen and Gilles Van Assche. “Differential Propagation Analysis of
Keccak”. In: Fast Software Encryption, FSE 2012. Ed. by Anne Canteaut.
Vol. 7549. LNCS. Springer, 2012, pp. 422–441. url: https://doi.org/10.
1007/978-3-642-34047-5_24.

[41] Christophe De Cannière and Christian Rechberger. “Finding SHA-1 Char-
acteristics: General Results and Applications”. In: Advances in Cryptology
– ASIACRYPT 2006. Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. LNCS.
Springer, 2006, pp. 1–20. url: https://doi.org/10.1007/11935230_1.

[42] T. Dierks and E. Rescorla. “The Transport Layer Security (TLS) Protocol
Version 1.2”. RFC 5246. RFC. 2008.

https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/11935230_1

Bibliography 53

[43] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. “Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function”. In: Advances in Cryptology – EU-
ROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
LNCS. Springer, 2015, pp. 733–761. url: https://doi.org/10.1007/978-
3-662-46800-5_28.

[44] Itai Dinur and Adi Shamir. “Cube Attacks on Tweakable Black Box
Polynomials”. In: Advances in Cryptology – EUROCRYPT 2009. Ed.
by Antoine Joux. Vol. 5479. LNCS. Springer, 2009, pp. 278–299. url:
https://doi.org/10.1007/978-3-642-01001-9_16.

[45] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Jour-
nault, Daniel Masny, and François-Xavier Standaert. “Towards Sound
Fresh Re-keying with Hard (Physical) Learning Problems”. In: Advances
in Cryptology – CRYPTO 2016. Ed. by Matthew Robshaw and Jonathan
Katz. Vol. 9815. LNCS. Springer, 2016, pp. 272–301. url: https://doi.
org/10.1007/978-3-662-53008-5_10.

[46] ECRYPT. “The eSTREAM Project”. 2004. url: http://www.ecrypt.eu.
org/stream/project.html.

[47] Maria Eichlseder, Florian Mendel, and Martin Schläffer. “Branching Heuris-
tics in Differential Collision Search with Applications to SHA-512”. In:
Fast Software Encryption, FSE 2014. Ed. by Carlos Cid and Christian
Rechberger. Vol. 8540. LNCS. Springer, 2015, pp. 473–488. url: https:
//doi.org/10.1007/978-3-662-46706-0_24.

[48] Horst Feistel. “Cryptography and Computer Privacy”. In: Scientific Amer-
ican 228 (May 1973), pp. 15–23.

[49] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay,
David Wagner, and Doug Whiting. “Improved Cryptanalysis of Rijndael”.
In: Fast Software Encryption, FSE 2000. Ed. by Bruce Schneier. Vol. 1978.
LNCS. Springer, 2001, pp. 213–230. url: https://doi.org/10.1007/3-
540-44706-7_15.

[50] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. “Automatic
Search of Differential Path in MD4”. Cryptology ePrint Archive, Report
2007/206. http://eprint.iacr.org/2007/206. 2007.

[51] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. “MILP-Based
Automatic Search Algorithms for Differential and Linear Trails for Speck”.
In: Fast Software Encryption, FSE 2016. Ed. by Thomas Peyrin. Vol. 9783.
LNCS. Springer, 2016, pp. 268–288. url: https://doi.org/10.1007/978-
3-662-52993-5_14.

[52] Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. “Fault
Attacks on AES with Faulty Ciphertexts Only”. In: 2013 Workshop on
Fault Diagnosis and Tolerance in Cryptography. Ed. by Wieland Fischer
and Jörn-Marc Schmidt. IEEE Computer Society, 2013, pp. 108–118. url:
https://doi.org/10.1109/FDTC.2013.18.

https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-662-53008-5_10
https://doi.org/10.1007/978-3-662-53008-5_10
http://www.ecrypt.eu.org/stream/project.html
http://www.ecrypt.eu.org/stream/project.html
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
http://eprint.iacr.org/2007/206
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1109/FDTC.2013.18

54 Bibliography

[53] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. “The Exact PRF
Security of Truncation: Tight Bounds for Keyed Sponges and Truncated
CBC”. In: Advances in Cryptology – CRYPTO 2015. Ed. by Rosario
Gennaro and Matthew Robshaw. Vol. 9215. LNCS. Springer, 2015, pp. 368–
387. url: https://doi.org/10.1007/978-3-662-47989-6_18.

[54] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct
random functions”. In: J. ACM 33.4 (1986), pp. 792–807. url: http:
//doi.acm.org/10.1145/6490.6503.

[55] Louis Goubin and Jacques Patarin. “DES and Differential Power Analysis
(The "Duplication" Method)”. In: Cryptographic Hardware and Embedded
Systems, CHES’99. Ed. by Çetin Kaya Koç and Christof Paar. Vol. 1717.
LNCS. Springer, 1999, pp. 158–172. url: https://doi.org/10.1007/3-
540-48059-5_15.

[56] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
Anthony Journault, François Durvaux, Lubos Gaspar, and Stéphanie Ker-
ckhoff. “SCREAM (Version 3)”. Submission to the CAESAR competition:
http://competitions.cr.yp.to. 2015.

[57] Shay Gueron and Nicky Mouha. “Simpira v2: A Family of Efficient Per-
mutations Using the AES Round Function”. In: Advances in Cryptol-
ogy – ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Vol. 10031. LNCS. 2016, pp. 95–125. url: https://doi.org/10.1007/978-
3-662-53887-6_4.

[58] Senyang Huang, XiaoyunWang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. “Conditional Cube Attack on Reduced-Round Keccak Sponge
Function”. In: Advances in Cryptology – EUROCRYPT 2017. Ed. by
Jean-Sébastien Coron and Jesper Buus Nielsen. Vol. 10211. LNCS. 2017,
pp. 259–288. url: https://doi.org/10.1007/978-3-319-56614-6_9.

[59] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Secur-
ing Hardware against Probing Attacks”. In: Advances in Cryptology –
CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, 2003,
pp. 463–481. url: https://doi.org/10.1007/978-3-540-45146-4_27.

[60] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. “KIASU”. Submission to
the CAESAR competition: http://competitions.cr.yp.to. 2014.

[61] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. “Tweaks and Keys for
Block Ciphers: The TWEAKEY Framework”. In: Advances in Cryptology
– ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8874.
LNCS. Springer, 2014, pp. 274–288. url: https://doi.org/10.1007/978-
3-662-45608-8_15.

[62] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. “Deoxys
v1.41”. Submission to the CAESAR competition: http://competitions.
cr.yp.to. 2016.

https://doi.org/10.1007/978-3-662-47989-6_18
http://doi.acm.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
http://competitions.cr.yp.to
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-540-45146-4_27
http://competitions.cr.yp.to
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
http://competitions.cr.yp.to
http://competitions.cr.yp.to

Bibliography 55

[63] Philipp Jovanovic, Atul Luykx, and Bart Mennink. “Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes”. In: Advances in
Cryptology – ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata.
Vol. 8873. LNCS. Springer, 2014, pp. 85–104. url: https://doi.org/10.
1007/978-3-662-45611-8_5.

[64] Charanjit S. Jutla. “Encryption Modes with Almost Free Message In-
tegrity”. In: Advances in Cryptology – EUROCRYPT 2001. Ed. by Birgit
Pfitzmann. Vol. 2045. LNCS. Springer, 2001, pp. 529–544. url: https:
//doi.org/10.1007/3-540-44987-6_32.

[65] Charanjit S. Jutla. “Encryption Modes with Almost Free Message In-
tegrity”. In: J. Cryptology 21.4 (2008), pp. 547–578. url: https://doi.
org/10.1007/s00145-008-9024-z.

[66] Emilia Käsper and Peter Schwabe. “Faster and Timing-Attack Resistant
AES-GCM”. In: Cryptographic Hardware and Embedded Systems – CHES
2009. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. LNCS. Springer,
2009, pp. 1–17. url: https://doi.org/10.1007/978-3-642-04138-9_1.

[67] S. Kent. “IP Encapsulating Security Payload (ESP)”. RFC 4303. RFC.
2005.

[68] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In: Fast
Software Encryption, FSE 1994. Ed. by Bart Preneel. Vol. 1008. LNCS.
Springer, 1995, pp. 196–211. url: https://doi.org/10.1007/3-540-60590-
8_16.

[69] Lars R. Knudsen and David A. Wagner. “Integral Cryptanalysis”. In: Fast
Software Encryption, FSE 2002. Ed. by Joan Daemen and Vincent Rijmen.
Vol. 2365. LNCS. Springer, 2002, pp. 112–127. url: https://doi.org/10.
1007/3-540-45661-9_9.

[70] Paul Kocher. “Design and Validation Strategies for Obtaining Assurance in
Countermeasures to Power Analysis and Related Attacks”. NIST Physical
Security Testing Workshop (http://csrc.nist.gov/groups/STM/cmvp/
documents/fips140-3/physec/papers/physecpaper09.pdf). Dec. 2005.

[71] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. In: Advances in Cryptology – CRYPTO
’96. Ed. by Neal Koblitz. Vol. 1109. LNCS. Springer, 1996, pp. 104–113.
url: https://doi.org/10.1007/3-540-68697-5_9.

[72] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: Advances in Cryptology – CRYPTO ’99. Ed. by Michael
Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 388–397. url: https://doi.
org/10.1007/3-540-48405-1_25.

[73] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. “Intro-
duction to differential power analysis”. In: J. Cryptographic Engineering
1.1 (2011), pp. 5–27. url: https://doi.org/10.1007/s13389-011-0006-y.

https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/s00145-008-9024-z
https://doi.org/10.1007/s00145-008-9024-z
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper09.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper09.pdf
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y

56 Bibliography

[74] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. “Observations on the
SIMON Block Cipher Family”. In: Advances in Cryptology – CRYPTO
2015. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9215. LNCS.
Springer, 2015, pp. 161–185. url: https://doi.org/10.1007/978-3-662-
47989-6_8.

[75] Hugo Krawczyk. “The Order of Encryption and Authentication for Protect-
ing Communications (or: How Secure Is SSL?)” In: Advances in Cryptology
– CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, 2001,
pp. 310–331. url: https://doi.org/10.1007/3-540-44647-8_19.

[76] Ted Krovetz and Phillip Rogaway. “The Software Performance of Authen-
ticated-Encryption Modes”. In: Fast Software Encryption, FSE 2011. Ed.
by Antoine Joux. Vol. 6733. LNCS. Springer, 2011, pp. 306–327. url:
https://doi.org/10.1007/978-3-642-21702-9_18.

[77] Xuejia Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In:
Communications and Cryptography: Two Sides of One Tapestry. Ed. by
Richard E. Blahut, Daniel J. Costello Jr., Ueli Maurer, and Thomas
Mittelholzer. Vol. 276. International Series in Engineering and Computer
Science. Kluwer Academic Publishers, 1994, pp. 227–233.

[78] Xuejia Lai, James L. Massey, and Sean Murphy. “Markov Ciphers and
Differential Cryptanalysis”. In: Advances in Cryptology – EUROCRYPT
’91. Ed. by Donald W. Davies. Vol. 547. LNCS. Springer, 1991, pp. 17–38.
url: https://doi.org/10.1007/3-540-46416-6_2.

[79] Susan K. Langford and Martin E. Hellman. “Differential-Linear Cryptana-
lysis”. In: Advances in Cryptology – CRYPTO ’94. Ed. by Yvo Desmedt.
Vol. 839. LNCS. Springer, 1994, pp. 17–25. url: https://doi.org/10.
1007/3-540-48658-5_3.

[80] Gaëtan Leurent. “Construction of Differential Characteristics in ARX
Designs Application to Skein”. In: Advances in Cryptology – CRYPTO
2013. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer,
2013, pp. 241–258. url: https://doi.org/10.1007/978-3-642-40041-4_14.

[81] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. “Conditional Cube At-
tack on Round-Reduced ASCON”. In: IACR Transactions on Symmetric
Cryptology 2017.1 (2017), pp. 175–202. url: http://tosc.iacr.org/index.
php/ToSC/article/view/590.

[82] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweakable Block
Ciphers”. In: Advances in Cryptology – CRYPTO 2002. Ed. by Moti Yung.
Vol. 2442. LNCS. Springer, 2002, pp. 31–46. url: https://doi.org/10.
1007/3-540-45708-9_3.

[83] Yunwen Liu, Qingju Wang, and Vincent Rijmen. “Automatic Search of
Linear Trails in ARX with Applications to SPECK and Chaskey”. In:
Applied Cryptography and Network Security, ACNS 2016. Ed. by Mark
Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Vol. 9696. LNCS.

https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/978-3-642-40041-4_14
http://tosc.iacr.org/index.php/ToSC/article/view/590
http://tosc.iacr.org/index.php/ToSC/article/view/590
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3

Bibliography 57

Springer, 2016, pp. 485–499. url: https://doi.org/10.1007/978-3-319-
39555-5_26.

[84] Stefan Mangard. “A Simple Power-Analysis (SPA) Attack on Implementa-
tions of the AES Key Expansion”. In: Information Security and Cryptology
– ICISC 2002. Ed. by Pil Joong Lee and Chae Hoon Lim. Vol. 2587. LNCS.
Springer, 2003, pp. 343–358. url: https://doi.org/10.1007/3-540-36552-
4_24.

[85] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. “Power Analysis
Attacks. Revealing the Secrets of Smart Cards”. Springer, 2007. isbn:
978-0-387-30857-9.

[86] Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. “One
for all - all for one: unifying standard differential power analysis attacks”.
In: IET Information Security 5.2 (2011), pp. 100–110. url: https://doi.
org/10.1049/iet-ifs.2010.0096.

[87] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. “Side-Channel
Leakage of Masked CMOS Gates”. In: Topics in Cryptology – CT-RSA
2005. Ed. by Alfred Menezes. Vol. 3376. LNCS. Springer, 2005, pp. 351–
365. url: https://doi.org/10.1007/978-3-540-30574-3_24.

[88] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In:
Advances in Cryptology – EUROCRYPT ’93. Ed. by Tor Helleseth. Vol. 765.
LNCS. Springer, 1994, pp. 386–397. url: https://doi.org/10.1007/3-
540-48285-7_33.

[89] Mitsuru Matsui. “On Correlation Between the Order of S-boxes and the
Strength of DES”. In: Advances in Cryptology – EUROCRYPT ’94. Ed. by
Alfredo De Santis. Vol. 950. LNCS. Springer, 1995, pp. 366–375. url:
https://doi.org/10.1007/BFb0053451.

[90] Timothy C. May and Murray H. Woods. “A New Physical Mechanism
for Soft Errors in Dynamic Memories”. In: 16th International Reliability
Physics Symposium. Apr. 1978, pp. 33–40.

[91] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. “Fresh Re-keying II: Securing Multiple
Parties against Side-Channel and Fault Attacks”. In: Smart Card Research
and Advanced Applications, CARDIS 2011. Ed. by Emmanuel Prouff.
Vol. 7079. LNCS. Springer, 2011, pp. 115–132. url: https://doi.org/10.
1007/978-3-642-27257-8_8.

[92] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. “Fresh Re-keying: Security against Side-Channel
and Fault Attacks for Low-Cost Devices”. In: Progress in Cryptology
– AFRICACRYPT 2010. Ed. by Daniel J. Bernstein and Tanja Lange.
Vol. 6055. LNCS. Springer, 2010, pp. 279–296. url: https://doi.org/10.
1007/978-3-642-12678-9_17.

https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/3-540-36552-4_24
https://doi.org/10.1007/3-540-36552-4_24
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/978-3-642-12678-9_17

58 Bibliography

[93] Silvia Mella, Joan Daemen, and Gilles Van Assche. “New techniques for
trail bounds and application to differential trails in Keccak”. In: IACR
Transactions on Symmetric Cryptology 2017.1 (2017), pp. 329–357. url:
http://tosc.iacr.org/index.php/ToSC/article/view/597.

[94] Florian Mendel, Bart Mennink, Vincent Rijmen, and Elmar Tischhauser.
“A Simple Key-Recovery Attack on McOE-X”. In: Cryptology and Network
Security, CANS 2012. Ed. by Josef Pieprzyk, Ahmad-Reza Sadeghi, and
Mark Manulis. Vol. 7712. Springer, 2012, pp. 23–31. url: https://doi.
org/10.1007/978-3-642-35404-5_3.

[95] Florian Mendel, Tomislav Nad, and Martin Schläffer. “Finding SHA-2
Characteristics: Searching through a Minefield of Contradictions”. In:
Advances in Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon Lee
and Xiaoyun Wang. Vol. 7073. LNCS. Springer, 2011, pp. 288–307. url:
https://doi.org/10.1007/978-3-642-25385-0_16.

[96] Florian Mendel, Tomislav Nad, and Martin Schläffer. “Finding Collisions
for Round-Reduced SM3”. In: Topics in Cryptology – CT-RSA 2013.
Ed. by Ed Dawson. Vol. 7779. LNCS. Springer, 2013, pp. 174–188. url:
https://doi.org/10.1007/978-3-642-36095-4_12.

[97] Florian Mendel, Tomislav Nad, and Martin Schläffer. “Improving Local
Collisions: New Attacks on Reduced SHA-256”. In: Advances in Cryptology
– EUROCRYPT 2013. Ed. by Thomas Johansson and Phong Q. Nguyen.
Vol. 7881. LNCS. Springer, 2013, pp. 262–278. url: https://doi.org/10.
1007/978-3-642-38348-9_16.

[98] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. “Handbook
of Applied Cryptography”. CRC Press, 1996. isbn: 0-8493-8523-7.

[99] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. “Security of Full-
State Keyed Sponge and Duplex: Applications to Authenticated Encryp-
tion”. In: Advances in Cryptology – ASIACRYPT 2015. Ed. by Tetsu
Iwata and Jung Hee Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 465–489.
url: https://doi.org/10.1007/978-3-662-48800-3_19.

[100] Amir Moradi and Tobias Schneider. “Improved Side-Channel Analysis
Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series”. In: Con-
structive Side-Channel Analysis and Secure Design, COSADE 2016. Ed.
by François-Xavier Standaert and Elisabeth Oswald. Vol. 9689. LNCS.
Springer, 2016, pp. 71–87. url: https://doi.org/10.1007/978-3-319-
43283-0_5.

[101] Pawel Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz,
Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and Marcin Wójcik.
“ICEPOLE v1”. Submission to the CAESAR competition: http://compet
itions.cr.yp.to. 2014.

[102] Nicky Mouha and Bart Preneel. “A Proof that the ARX Cipher Salsa20
is Secure against Differential Cryptanalysis”. Cryptology ePrint Archive,
Report 2013/328. http://eprint.iacr.org/2013/328. 2013.

http://tosc.iacr.org/index.php/ToSC/article/view/597
https://doi.org/10.1007/978-3-642-35404-5_3
https://doi.org/10.1007/978-3-642-35404-5_3
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-36095-4_12
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-319-43283-0_5
https://doi.org/10.1007/978-3-319-43283-0_5
http://competitions.cr.yp.to
http://competitions.cr.yp.to
http://eprint.iacr.org/2013/328

Bibliography 59

[103] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. “Differential
and Linear Cryptanalysis Using Mixed-Integer Linear Programming”. In:
Information Security and Cryptology, Inscrypt 2011. Ed. by Chuankun Wu,
Moti Yung, and Dongdai Lin. Vol. 7537. LNCS. Springer, 2012, pp. 57–76.
url: https://doi.org/10.1007/978-3-642-34704-7_5.

[104] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. “Re-
considering Generic Composition”. In: Advances in Cryptology – EURO-
CRYPT 2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441.
LNCS. Springer, 2014, pp. 257–274. url: https://doi.org/10.1007/978-
3-642-55220-5_15.

[105] National Bureau of Standards. “FIPS PUB 46: Data Encryption Standard”.
Jan. 1977.

[106] National Institute of Standards and Technology. “ANNOUNCING RE-
QUEST FOR CANDIDATE ALGORITHM NOMINATIONS FOR THE
ADVANCED ENCRYPTION STANDARD (AES)”. http://csrc.nist.
gov/archive/aes/pre-round1/aes_9709.htm. Sept. 1997.

[107] National Institute of Standards and Technology. “FIPS PUB 197: Specifi-
cation for the ADVANCED ENCRYPTION STANDARD (AES)”. Federal
Information Processing Standards Publication 197. Nov. 2001. url: http:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[108] National Institute of Standards and Technology. “Announcing Request
for Candidate Algorithm Nominations for a New Cryptographic Hash
Algorithm (SHA-3) Family”. http://csrc.nist.gov/groups/ST/hash/
documents/FR_Notice_Nov07.pdf. Nov. 2007.

[109] National Institute of Standards and Technology. “FIPS PUB 202: SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions”.
Federal Information Processing Standards Publication 202, U.S. Depart-
ment of Commerce. Aug. 2015. url: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf.

[110] Michael Neve. “Cache-based Vulnerabilities and SPAM analysis”. PhD
thesis. Université catholique de Louvain, June 2006.

[111] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Threshold
Implementations Against Side-Channel Attacks and Glitches”. In: Infor-
mation and Communications Security, ICICS 2006. Ed. by Peng Ning,
Sihan Qing, and Ninghui Li. Vol. 4307. LNCS. Springer, 2006, pp. 529–545.
url: https://doi.org/10.1007/11935308_38.

[112] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. “Secure Hardware
Implementation of Non-linear Functions in the Presence of Glitches”. In:
Information Security and Cryptology – ICISC 2008. Ed. by Pil Joong Lee
and Jung Hee Cheon. Vol. 5461. LNCS. Springer, 2009, pp. 218–234. url:
https://doi.org/10.1007/978-3-642-00730-9_14.

https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-00730-9_14

60 Bibliography

[113] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. “Secure Hardware
Implementation of Nonlinear Functions in the Presence of Glitches”. In:
J. Cryptology 24.2 (2011), pp. 292–321. url: https://doi.org/10.1007/
s00145-010-9085-7.

[114] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and
Countermeasures: The Case of AES”. In: Topics in Cryptology – CT-RSA
2006. Ed. by David Pointcheval. Vol. 3860. LNCS. Springer, 2006, pp. 1–20.
url: https://doi.org/10.1007/11605805_1.

[115] Peter Pessl and Stefan Mangard. “Enhancing Side-Channel Analysis of
Binary-Field Multiplication with Bit Reliability”. In: Topics in Cryptology
– CT-RSA 2016. Ed. by Kazue Sako. Vol. 9610. LNCS. Springer, 2016,
pp. 255–270. url: https://doi.org/10.1007/978-3-319-29485-8_15.

[116] Krzysztof Pietrzak. “Cryptography from Learning Parity with Noise”.
In: SOFSEM 2012: Theory and Practice of Computer Science. Ed. by
Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser,
and György Turán. Vol. 7147. LNCS. Springer, 2012, pp. 99–114. url:
https://doi.org/10.1007/978-3-642-27660-6_9.

[117] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault Attack
Technique against SPN Structures, with Application to the AES and
KHAZAD”. In: Cryptographic Hardware and Embedded Systems – CHES
2003. Ed. by Colin D. Walter, Çetin Kaya Koç, and Christof Paar. Vol. 2779.
LNCS. Springer, 2003, pp. 77–88. url: https://doi.org/10.1007/978-3-
540-45238-6_7.

[118] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards”. In: Smart
Card Programming and Security, E-smart 2001. Ed. by Isabelle Attali and
Thomas P. Jensen. Vol. 2140. LNCS. Springer, 2001, pp. 200–210. url:
https://doi.org/10.1007/3-540-45418-7_17.

[119] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and
Ingrid Verbauwhede. “Consolidating Masking Schemes”. In: Advances
in Cryptology – CRYPTO 2015. Ed. by Rosario Gennaro and Matthew
Robshaw. Vol. 9215. LNCS. Springer, 2015, pp. 764–783. url: https:
//doi.org/10.1007/978-3-662-47989-6_37.

[120] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and Erik
De Win. “The Cipher SHARK”. In: Fast Software Encryption, FSE 1996.
Ed. by Dieter Gollmann. Vol. 1039. LNCS. Springer, 1996, pp. 99–111.
url: https://doi.org/10.1007/3-540-60865-6_47.

[121] Phillip Rogaway. “Authenticated-encryption with associated-data”. In:
Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002. Ed. by Vijayalakshmi Atluri. ACM, 2002, pp. 98–107.
url: http://doi.acm.org/10.1145/586110.586125.

https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-319-29485-8_15
https://doi.org/10.1007/978-3-642-27660-6_9
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/3-540-60865-6_47
http://doi.acm.org/10.1145/586110.586125

Bibliography 61

[122] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. “OCB: a
block-cipher mode of operation for efficient authenticated encryption”. In:
Proceedings of the 8th ACM Conference on Computer and Communications
Security, CCS 2001. Ed. by Michael K. Reiter and Pierangela Samarati.
ACM, 2001, pp. 196–205. url: http://doi.acm.org/10.1145/501983.
502011.

[123] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. “IoT
Goes Nuclear: Creating a ZigBee Chain Reaction”. In: 2017 IEEE Sympo-
sium on Security and Privacy, SP 2017. IEEE Computer Society, 2017,
pp. 195–212. url: https://doi.org/10.1109/SP.2017.14.

[124] Dhiman Saha and Dipanwita Roy Chowdhury. “EnCounter: On Breaking
the Nonce Barrier in Differential Fault Analysis with a Case-Study on
PAEQ”. In: Cryptographic Hardware and Embedded Systems – CHES
2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813. LNCS.
Springer, 2016, pp. 581–601. url: https://doi.org/10.1007/978-3-662-
53140-2_28.

[125] Dhiman Saha and Dipanwita Roy Chowdhury. “Scope: On the Side Chan-
nel Vulnerability of Releasing Unverified Plaintexts”. In: Selected Areas
in Cryptography – SAC 2015. Ed. by Orr Dunkelman and Liam Keliher.
Vol. 9566. LNCS. Springer, 2016, pp. 417–438. url: https://doi.org/10.
1007/978-3-319-31301-6_24.

[126] Dhiman Saha, Sukhendu Kuila, and Dipanwita Roy Chowdhury. “Es-
cApe: Diagonal Fault Analysis of APE”. In: Progress in Cryptology –
INDOCRYPT 2014. Ed. by Willi Meier and Debdeep Mukhopadhyay.
Vol. 8885. LNCS. Springer, 2014, pp. 197–216. url: https://doi.org/10.
1007/978-3-319-13039-2_12.

[127] Yu Sasaki and Kan Yasuda. “How to Incorporate Associated Data in
Sponge-Based Authenticated Encryption”. In: Topics in Cryptology – CT-
RSA 2015. Ed. by Kaisa Nyberg. Vol. 9048. LNCS. Springer, 2015, pp. 353–
370. url: https://doi.org/10.1007/978-3-319-16715-2_19.

[128] Martin Schläffer and Elisabeth Oswald. “Searching for Differential Paths
in MD4”. In: Fast Software Encryption, FSE 2006. Ed. by Matthew J. B.
Robshaw. Vol. 4047. LNCS. Springer, 2006, pp. 242–261. url: https:
//doi.org/10.1007/11799313_16.

[129] Claude E. Shannon. “Communication Theory of Secrecy Systems”. In:
Bell System Technical Journal 28 (1949), pp. 656–715.

[130] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quis-
quater, Moti Yung, and Elisabeth Oswald. “Leakage Resilient Cryptog-
raphy in Practice”. Cryptology ePrint Archive, Report 2009/341. http:
//eprint.iacr.org/2009/341. 2009.

[131] Marc Stevens. “Fast Collision Attack on MD5”. Cryptology ePrint Archive,
Report 2006/104. http://eprint.iacr.org/2006/104. 2006.

http://doi.acm.org/10.1145/501983.502011
http://doi.acm.org/10.1145/501983.502011
https://doi.org/10.1109/SP.2017.14
https://doi.org/10.1007/978-3-662-53140-2_28
https://doi.org/10.1007/978-3-662-53140-2_28
https://doi.org/10.1007/978-3-319-31301-6_24
https://doi.org/10.1007/978-3-319-31301-6_24
https://doi.org/10.1007/978-3-319-13039-2_12
https://doi.org/10.1007/978-3-319-13039-2_12
https://doi.org/10.1007/978-3-319-16715-2_19
https://doi.org/10.1007/11799313_16
https://doi.org/10.1007/11799313_16
http://eprint.iacr.org/2009/341
http://eprint.iacr.org/2009/341
http://eprint.iacr.org/2006/104

62 Bibliography

[132] Ling Sun, Wei Wang, and Meiqin Wang. “Automatic Search of Bit-Based
Division Property for ARX Ciphers and Word-Based Division Property”.
Cryptology ePrint Archive, Report 2017/860. http://eprint.iacr.org/
2017/860. 2017.

[133] Siwei Sun, Lei Hu, Ling Song, Yonghong Xie, and Peng Wang. “Auto-
matic Security Evaluation of Block Ciphers with S-bP Structures Against
Related-Key Differential Attacks”. In: Information Security and Cryptol-
ogy, Inscrypt 2013. Ed. by Dongdai Lin, Shouhuai Xu, and Moti Yung.
Vol. 8567. LNCS. Springer, 2014, pp. 39–51. url: https://doi.org/10.
1007/978-3-319-12087-4_3.

[134] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang
Ma, Danping Shi, Ling Song, and Kai Fu. “Constructing Mixed-integer
Programming Models whose Feasible Region is Exactly the Set of All
Valid Differential Characteristics of SIMON”. Cryptology ePrint Archive,
Report 2015/122. http://eprint.iacr.org/2015/122. 2015.

[135] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. “Automatic Security Evaluation and (Related-key) Differential
Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L)
and Other Bit-Oriented Block Ciphers”. In: Advances in Cryptology –
ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873.
LNCS. Springer, 2014, pp. 158–178. url: https://doi.org/10.1007/978-
3-662-45611-8_9.

[136] Mostafa M. I. Taha, Arash Reyhani-Masoleh, and Patrick Schaumont.
“Keymill: Side-Channel Resilient Key Generator”. Cryptology ePrint
Archive, Report 2016/710. http://eprint.iacr.org/2016/710. 2016.

[137] Yosuke Todo. “Integral Cryptanalysis on Full MISTY1”. In: Advances
in Cryptology – CRYPTO 2015. Ed. by Rosario Gennaro and Matthew
Robshaw. Vol. 9215. LNCS. Springer, 2015, pp. 413–432. url: https:
//doi.org/10.1007/978-3-662-47989-6_20.

[138] Yosuke Todo. “Structural Evaluation by Generalized Integral Property”. In:
Advances in Cryptology – EUROCRYPT 2015. Ed. by Elisabeth Oswald
and Marc Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 287–314. url:
https://doi.org/10.1007/978-3-662-46800-5_12.

[139] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. “A Meet in
the Middle Attack on Reduced Round Kiasu-BC”. In: IEICE Transactions
99-A.10 (2016), pp. 1888–1890. url: http://search.ieice.org/bin/
summary.php?id=e99-a_10_1888.

[140] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. “Cryptanalysis of DES Implemented on Computers with Cache”.
In: Cryptographic Hardware and Embedded Systems – CHES 2003. Ed. by
Colin D. Walter, Çetin Kaya Koç, and Christof Paar. Vol. 2779. LNCS.
Springer, 2003, pp. 62–76. url: https://doi.org/10.1007/978-3-540-
45238-6_6.

http://eprint.iacr.org/2017/860
http://eprint.iacr.org/2017/860
https://doi.org/10.1007/978-3-319-12087-4_3
https://doi.org/10.1007/978-3-319-12087-4_3
http://eprint.iacr.org/2015/122
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-45611-8_9
http://eprint.iacr.org/2016/710
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-46800-5_12
http://search.ieice.org/bin/summary.php?id=e99-a_10_1888
http://search.ieice.org/bin/summary.php?id=e99-a_10_1888
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6

Bibliography 63

[141] Michael Vielhaber. “Breaking ONE.FIVIUM by AIDA an Algebraic IV
Differential Attack”. Cryptology ePrint Archive, Report 2007/413. http:
//eprint.iacr.org/2007/413. 2007.

[142] David Wagner. “The Boomerang Attack”. In: Fast Software Encryption,
FSE ’99. Ed. by Lars R. Knudsen. Vol. 1636. LNCS. Springer, 1999,
pp. 156–170. url: https://doi.org/10.1007/3-540-48519-8_12.

[143] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash
Functions”. In: Advances in Cryptology – EUROCRYPT 2005. Ed. by
Ronald Cramer. Vol. 3494. LNCS. Springer, 2005, pp. 19–35. url: https:
//doi.org/10.1007/11426639_2.

[144] Sung-Ming Yen and Marc Joye. “Checking Before Output May Not Be
Enough Against Fault-Based Cryptanalysis”. In: IEEE Trans. Computers
49.9 (2000), pp. 967–970. url: https://doi.org/10.1109/12.869328.

[145] T. Ylonen and C. Lonvick. “The Secure Shell (SSH) Transport Layer
Protocol”. RFC 4253. RFC. 2006.

[146] Wenying Zhang and Vincent Rijmen. “Division Cryptanalysis of Block
Ciphers with a Binary Diffusion Layer”. Cryptology ePrint Archive, Report
2017/188. http://eprint.iacr.org/2017/188. 2017.

[147] J. F. Ziegler and W. A. Lanford. “Effect of Cosmic Rays on Computer
Memories”. In: Science 206.4420 (1979), pp. 776–788.

http://eprint.iacr.org/2007/413
http://eprint.iacr.org/2007/413
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1109/12.869328
http://eprint.iacr.org/2017/188

Part II

Publications

65

List of Publications

Journal Articles

[j1] Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel.
“Practical Key-Recovery Attack on MANTIS5”. In: IACR Transactions
on Symmetric Cryptology 2016.2 (2017), pp. 248–260. url: http://tosc.
iacr.org/index.php/ToSC/article/view/573.

[j2] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. “ISAP – Towards Side-Channel Secure Au-
thenticated Encryption”. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 80–105. url: http://tosc.iacr.org/index.php/ToSC/
article/view/585.

[j3] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehren-
höfer. “Ascon hardware implementations and side-channel evaluation”. In:
Microprocessors and Microsystems 52 (2017), pp. 470–479. url: https:
//doi.org/10.1016/j.micpro.2016.10.006.

Conference and Workshop Papers

[c1] Andrey Bogdanov, Christoph Dobraunig, Maria Eichlseder, Martin M.
Lauridsen, Florian Mendel, Martin Schläffer, and Elmar Tischhauser.
“Key Recovery Attacks on Recent Authenticated Ciphers”. In: Progress in
Cryptology – LATINCRYPT 2014. Ed. by Diego F. Aranha and Alfred
Menezes. Vol. 8895. LNCS. Springer, 2015, pp. 274–287. url: https:
//doi.org/10.1007/978-3-319-16295-9_15.

[c2] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné,
and Florian Mendel. “Statistical Fault Attacks on Nonce-Based Authenti-
cated Encryption Schemes”. In: Advances in Cryptology – ASIACRYPT
2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS.
2016, pp. 369–395. url: https://doi.org/10.1007/978-3-662-53887-6_14.

67

http://tosc.iacr.org/index.php/ToSC/article/view/573
http://tosc.iacr.org/index.php/ToSC/article/view/573
http://tosc.iacr.org/index.php/ToSC/article/view/585
http://tosc.iacr.org/index.php/ToSC/article/view/585
https://doi.org/10.1016/j.micpro.2016.10.006
https://doi.org/10.1016/j.micpro.2016.10.006
https://doi.org/10.1007/978-3-319-16295-9_15
https://doi.org/10.1007/978-3-319-16295-9_15
https://doi.org/10.1007/978-3-662-53887-6_14

68 List of Publications

[c3] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, and Florian
Mendel. “Side-Channel Analysis of Keymill”. In: Constructive Side-Chan-
nel Analysis and Secure Design, COSADE 2017. Ed. by Sylvain Guilley.
Vol. 10348. LNCS. Springer, 2017, pp. 138–152. url: https://doi.org/10.
1007/978-3-319-64647-3_9.

[c4] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Florian
Mendel. “On the Security of Fresh Re-keying to Counteract Side-Channel
and Fault Attacks”. In: Smart Card Research and Advanced Applications,
CARDIS 2014. Ed. by Marc Joye and Amir Moradi. Vol. 8968. LNCS.
Springer, 2015, pp. 233–244. url: https://doi.org/10.1007/978-3-319-
16763-3_14.

[c5] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Cryptana-
lysis of Simpira v1”. In: Selected Areas in Cryptography – SAC 2016. To
appear.

[c6] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Analysis
of SHA-512/224 and SHA-512/256”. In: Advances in Cryptology – ASI-
ACRYPT 2015. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. LNCS.
Springer, 2015, pp. 612–630. url: https://doi.org/10.1007/978-3-662-
48800-3_25.

[c7] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Heuristic
Tool for Linear Cryptanalysis with Applications to CAESAR Candidates”.
In: Advances in Cryptology – ASIACRYPT 2015. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 490–509. url:
https://doi.org/10.1007/978-3-662-48800-3_20.

[c8] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Related-
Key Forgeries for Prøst-OTR”. In: Fast Software Encryption, FSE 2015.
Ed. by Gregor Leander. Vol. 9054. LNCS. Springer, 2015, pp. 282–296.
url: https://doi.org/10.1007/978-3-662-48116-5_14.

[c9] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Analysis of
the Kupyna-256 Hash Function”. In: Fast Software Encryption, FSE 2016.
Ed. by Thomas Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 575–590.
url: https://doi.org/10.1007/978-3-662-52993-5_29.

[c10] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Forgery
Attacks on Round-Reduced ICEPOLE-128”. In: Selected Areas in Cryp-
tography – SAC 2015. Ed. by Orr Dunkelman and Liam Keliher. Vol. 9566.
LNCS. Springer, 2016, pp. 479–492. url: https://doi.org/10.1007/978-
3-319-31301-6_27.

[c11] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Higher-
Order Cryptanalysis of LowMC”. In: Information Security and Cryptology
– ICISC 2015. Ed. by Soonhak Kwon and Aaram Yun. Vol. 9558. LNCS.
Springer, 2016, pp. 87–101. url: https://doi.org/10.1007/978-3-319-
30840-1_6.

https://doi.org/10.1007/978-3-319-64647-3_9
https://doi.org/10.1007/978-3-319-64647-3_9
https://doi.org/10.1007/978-3-319-16763-3_14
https://doi.org/10.1007/978-3-319-16763-3_14
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_20
https://doi.org/10.1007/978-3-662-48116-5_14
https://doi.org/10.1007/978-3-662-52993-5_29
https://doi.org/10.1007/978-3-319-31301-6_27
https://doi.org/10.1007/978-3-319-31301-6_27
https://doi.org/10.1007/978-3-319-30840-1_6
https://doi.org/10.1007/978-3-319-30840-1_6

List of Publications 69

[c12] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Square
Attack on 7-Round Kiasu-BC”. In: Applied Cryptography and Network
Security, ACNS 2016. Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and
Steve Schneider. Vol. 9696. LNCS. Springer, 2016, pp. 500–517. url:
https://doi.org/10.1007/978-3-319-39555-5_27.

[c13] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Cryptanalysis of Ascon”. In: Topics in Cryptology – CT-RSA
2015. Ed. by Kaisa Nyberg. Vol. 9048. LNCS. Springer, 2015, pp. 371–387.
url: https://doi.org/10.1007/978-3-319-16715-2_20.

[c14] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel,
and François-Xavier Standaert. “Towards Fresh and Hybrid Re-Keying
Schemes with Beyond Birthday Security”. In: Smart Card Research and
Advanced Applications, CARDIS 2015. Ed. by Naofumi Homma and
Marcel Medwed. Vol. 9514. LNCS. Springer, 2016, pp. 225–241. url:
https://doi.org/10.1007/978-3-319-31271-2_14.

[c15] Christoph Dobraunig and Eik List. “Impossible-Differential and Boomer-
ang Cryptanalysis of Round-Reduced Kiasu-BC”. In: Topics in Cryptology
– CT-RSA 2017. Ed. by Helena Handschuh. Vol. 10159. LNCS. Springer,
2017, pp. 207–222. url: https://doi.org/10.1007/978-3-319-52153-4_12.

[c16] Christoph Dobraunig, Florian Mendel, and Martin Schläffer. “Differential
Cryptanalysis of SipHash”. In: Selected Areas in Cryptography – SAC 2014.
Ed. by Antoine Joux and Amr M. Youssef. Vol. 8781. LNCS. Springer,
2014, pp. 165–182. url: https://doi.org/10.1007/978-3-319-13051-4_10.

[c17] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehren-
höfer. “Suit up! - Made-to-Measure Hardware Implementations of AS-
CON”. In: 2015 Euromicro Conference on Digital System Design, DSD
2015. IEEE Computer Society, 2015, pp. 645–652. url: https://doi.org/
10.1109/DSD.2015.14.

[c18] Thomas Plos, Christoph Dobraunig, Markus Hofinger, Alexander Oprisnik,
Christoph Wiesmeier, and Johannes Wiesmeier. “Compact Hardware Im-
plementations of the Block Ciphers mCrypton, NOEKEON, and SEA”. In:
Progress in Cryptology – INDOCRYPT 2012. Ed. by Steven D. Galbraith
and Mridul Nandi. Vol. 7668. LNCS. Springer, 2012, pp. 358–377. url:
https://doi.org/10.1007/978-3-642-34931-7_21.

Informal and Other Publications

[i1] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Security
Evaluation of SHA-224, SHA-512/224, and SHA-512/256”. Tech. Report
CRYPTREC. 2015. url: http://www.cryptrec.go.jp/english/estimation.
html.

https://doi.org/10.1007/978-3-319-39555-5_27
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-31271-2_14
https://doi.org/10.1007/978-3-319-52153-4_12
https://doi.org/10.1007/978-3-319-13051-4_10
https://doi.org/10.1109/DSD.2015.14
https://doi.org/10.1109/DSD.2015.14
https://doi.org/10.1007/978-3-642-34931-7_21
http://www.cryptrec.go.jp/english/estimation.html
http://www.cryptrec.go.jp/english/estimation.html

70 List of Publications

[i2] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon”. Submission to the CAESAR competition: http://
competitions.cr.yp.to. 2014.

http://competitions.cr.yp.to
http://competitions.cr.yp.to

Heuristic Tool for Linear Cryptanalysis
with Applications to CAESAR

Candidates

Publication Data

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Heuristic Tool
for Linear Cryptanalysis with Applications to CAESAR Candidates”. In: Ad-
vances in Cryptology – ASIACRYPT 2015. Ed. by Tetsu Iwata and Jung
Hee Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 490–509. url: https :
//doi.org/10.1007/978-3-662-48800-3_20

The appended paper is an author-created extended version available at https:
//eprint.iacr.org/2015/1200. This extended version contains the found linear
characteristics.

Contributions

• One of the main authors.

71

https://doi.org/10.1007/978-3-662-48800-3_20
https://doi.org/10.1007/978-3-662-48800-3_20
https://eprint.iacr.org/2015/1200
https://eprint.iacr.org/2015/1200

Heuristic Tool for Linear Cryptanalysis with
Applications to CAESAR Candidates

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. Differential and linear cryptanalysis are the general purpose
tools to analyze various cryptographic primitives. Both techniques have
in common that they rely on the existence of good differential or linear
characteristics. The difficulty of finding such characteristics depends on
the primitive. For instance, AES is designed to be resistant against dif-
ferential and linear attacks and therefore, provides upper bounds on the
probability of possible linear characteristics. On the other hand, we have
primitives like SHA-1, SHA-2, and Keccak, where finding good and
useful characteristics is an open problem. This becomes particularly in-
teresting when considering, for example, competitions like CAESAR. In
such competitions, many cryptographic primitives are waiting for anal-
ysis. Without suitable automatic tools, this is a virtually infeasible job.
In recent years, various tools have been introduced to search for charac-
teristics. The majority of these only deal with differential characteristics.
In this work, we present a heuristic search tool which is capable of find-
ing linear characteristics even for primitives with a relatively large state,
and without a strongly aligned structure. As a proof of concept, we ap-
ply the presented tool on the underlying permutations of the first round
CAESAR candidates Ascon, ICEPOLE, Keyak, Minalpher and Prøst.

Keywords: linear cryptanalysis · authenticated encryption · automated
tools · guess-and-determine · CAESAR competition

1 Introduction

Research in symmetric cryptography in the last few years is mainly driven by
dedicated high-profile open competitions such as NIST’s AES and SHA-3 selec-
tion procedures, or ECRYPT’s eSTREAM project. While these focused com-
petitions in symmetric cryptography are generally viewed as having provided a
tremendous increase in the understanding and confidence in the security of these
cryptographic primitives, the impressive increase of submissions to such competi-
tions reveals major problems related to the analytical effort for the cryptographic
community. To better evaluate the security margin of the various submissions,
automatic tools are needed to assist cryptanalysts with their work.

One important class of attacks is linear cryptanalysis [15, 25]. The success
of these attacks relies on the existence of suitable linear characteristics. The

c© IACR 2015. This article is a minor revision of the version published by Springer-Verlag available
at http://dx.doi.org/10.1007/978-3-662-48800-3_20.

difficulty of finding such characteristics depends on the primitive. For example,
the wide-trail design strategy [7] incorporated by AES provides lower bounds on
the minimum number of active S-boxes in a linear characteristic and therefore,
gives an upper bound on the highest possible bias. On the other hand, we have
primitives with weak alignment [1], such as the winner of the SHA-3 competition
Keccak, where finding good characteristics is an open problem, and heuristic
search results are required to evaluate the security margin of the primitive. This
is particularly interesting in the context of the CAESAR competition [26]. We
noticed that many first round submissions focus their analysis on differential
cryptanalysis, but provide only few results for linear cryptanalysis.

Our contribution. The main contribution of this paper is a dedicated au-
tomatic tool for linear cryptanalysis, which is available at github1. The tool
performs heuristic searches for good linear characteristics in cryptographic prim-
itives. It was designed for primitives based on substitution-permutation networks
(SP networks).

The modular design of the tool allows easy extension to other cryptographic
primitives. It also allows to easily develop and test new dedicated search strate-
gies. To facilitate further improvements and analysis, the tool is publicly avail-
able and its source code is published together with this paper. Such a tool is
particularly useful when designing new cryptographic primitives. It allows to
easily explore the effects of, for instance, different S-boxes and linear layers on
linear characteristics and reveals possible bad decisions in an early stage of the
design process. Even in wide-trail designs with provable bounds, it can be useful
to evaluate different choices for building blocks with respect to their long-term
behaviour over a larger number of rounds, where the quality of the best charac-
teristics can deviate significantly from the derived bounds (i.e., two algorithms
with the same bounds may behave quite differently in a heuristic search, which
can be a basis for the decision of choosing one design over the other).

As a proof of concept and to demonstrate the advantages of the tool, we
have chosen the first round CAESAR candidates Ascon [9], ICEPOLE [19],
Keyak [4], Minalpher [22] and Prøst [13] as analysis targets. Ascon, ICEPOLE,
and Keyak are sponge-based authenticated encryption schemes. All three prim-
itives use permutations that are not strongly aligned, making it hard to find
good linear characteristics. We demonstrate the capability of our automated
search tool by giving linear characteristics suitable for different attack scenarios.
In comparison, the permutations used in Minalpher and Prøst provide more
“structure” by incorporating an “AES-like” design strategy. Hence, the design-
ers of these two primitives are able to give bounds on the minimum number of
active S-boxes by using mixed-integer linear programming (MILP) for a number
of rounds sufficient to thwart attacks. For Minalpher and Prøst, we show that
our tool is capable of finding linear characteristics which match the provided
bounds. Our results are summarized in Table 1 (Sect. 4).

1 https://github.com/iaikkrypto/lineartrails

73

Related Work. While several automatic tools for differential cryptanalysis
have been published in the last few years [5, 6, 8, 12, 14, 16, 20, 23], in particular
for hash functions, the work on automatic tools dedicated to linear cryptanalysis
is very limited. One example is a tool designed by Sun et al. [24], extending pre-
vious work of Mouha et al. [21]. They model the differential and linear behavior
of a block cipher as a mixed-integer linear program (MILP) and use general-
purpose MILP tools to solve the optimization problem (i.e., find the optimal
characteristics for the – often simplified – model of the cipher). This approach
works well for lightweight ciphers like Simon or Present, but faces problems when
it comes to large-state and less structured ciphers such as Ascon, ICEPOLE,
and Keyak. Hence, a dedicated search tool for linear characteristics will com-
plement the existing tools.

Outline. This paper is divided into two main parts: the description of our new
automated search tool for linear characteristics in Sect. 3, and its application
to the CAESAR candidates in Sect. 4. However, first, we start with a short
introduction to linear cryptanalysis and our notation in Sect. 2. Then, we deal
with the propagation of linear masks in Sect. 3.2 and discuss the proposed search
strategy for linear characteristics in Sect. 3.3. The application of the tool (Sect. 4)
is first discussed in detail for Keyak in Sect. 4.1. Then, our results for the other
ciphers are summarized and briefly discussed in Sect. 4.2 to 4.5. Finally, we
conclude in Sect. 5.

2 Linear cryptanalysis

The goal of linear cryptanalysis [15,25] is to identify good affine linear approxi-
mations for the target cipher. More specifically, we want to find linear equations
between the plaintext bits, ciphertext bits and key bits that hold with prob-
ability significantly different from 1

2 (bias). Then, in the actual attack phase,
these equations can be used to derive information on the key bits from known
plaintext-ciphertext pairs.

For linear cryptanalysis, the operation of the cipher, or building blocks of
the cipher, is considered as a vectorial boolean function f : Fm2 → Fn2 (where the
key bits might be part of Fm2). A (probabilistic) linear relation between input
and output bits of f is then characterized by two linear masks α ∈ Fm2 , β ∈ Fn2 .
For x ∈ Fm2 , y ∈ Fn2 with y = f(x), the masks represent the relation

αt · x = βt · y,

where vt · w denotes the natural inner product of vectors. The quality of a
linear approximation α, β is measured by the probability that the corresponding
relation holds; or more precisely, by how far this probability deviates from the

74

average 1
2 . This deviation is referred to as the bias of the masks α, β:

εα,β = biasf (α, β) =

∣∣∣∣P [αt · x = βt · y | y = f(x)
]
− 1

2

∣∣∣∣
=

1

2m
·
∣∣∣ ∣∣{x ∈ Fm2 | αt · x = βt · f(x)

}∣∣− 2m−1
∣∣∣.

If m is very small, the expression for εα,β can easily be evaluated explicitly for all
masks α, β to determine the best masks. This information is summarized in the
linear distribution table (LDT), where non-zero entries mark masks α, β with
non-zero bias.

However, this is obviously infeasible for the complete cipher at once. To
obtain an approximation of the complete cipher, it is split into smaller parts
that are easier to analyze. Matsui’s piling-up lemma [15] is used to combine the
individual biases of multiple building blocks to derive the overall bias (under the
assumption that the validity of the partial approximations is independent). If ε
denotes the bias of the overall approximation of the block cipher, Matsui [15]
showed that the necessary number of plaintext-ciphertext pairs to derive the bit
of key information from the approximation is proportional to 1

ε2 .
The difficult part is to find a network or “trail” of partial approximations

that are compatible with each other and give a good overall bias. In particular,
each involved approximation must have non-zero bias, otherwise the overall bias
becomes zero. For this reason, we refer to non-zero entries in the individual LDTs
as “valid transitions” of masks for this building block. In the the following, such
a “trail” of partial linear approximations is called linear characteristic.

Several algorithms and improvements thereof have been proposed for finding
characteristics with the highest overall bias, typically by a sort of branch-and-
bound algorithms. For more complex, modern ciphers, such a complete search is
not feasible. Two possible approaches to handle this situation are (a) to design
ciphers in a way to allow to prove bounds on the best possible bias, and (b)
to use heuristic search methods to find stronger biases (for reduced versions of
the cipher) to make better predictions on the security margin of the complete
cipher.

In the following, we will focus on the second approach, and heuristically
search for good characteristics. Unlike the original, complete search algorithms,
our search will not proceed in a “linear”, round-by-round manner. Instead, we
will take inspiration from similar searching tools for differential cryptanalysis [8],
and randomize the search order. This naturally implies that we will often start
building inconsistent characteristics, which will need to be fixed or discarded.

3 An automated tool for linear cryptanalysis

The proposed automated tool can be roughly split into two main parts. The
first part is described in Sect. 3.2 and deals with the description of crypto-
graphic primitives within the search tool, including the representation of linear
approximations and, most importantly, their propagation. The other part of the

75

tool is the choice of the search algorithm to find good linear characteristics (see
Sect. 3.3). Before we start with the description of the tool, we take a look at
the requirements we have for the design and implementation of such a heuristic
search tool.

3.1 Implementation requirements for the search tool

In order for any automatic cryptanalysis tool to be useful for general application,
for example to analyze the 57 first round CAESAR submissions, there are a
number of flexibility and usability requirements:

– Easy to add new primitives. This is one of the main goals for the cre-
ation of this tool. To fulfill this requirement, we have decided to put the
focus on primitives based on SP networks, i.e., with alternating S-box and
linear layers. This simplifies the design process of the tool, since we did not
have to consider every possible specialty, while still having a large group
of applicable primitives. The programming interface should be designed to
require as little effort as possible for converting, for example, a CAESAR
reference implementation to a suitable cipher definition for the tool – ide-
ally, it should be possible to just copy the corresponding code fragments for
the round transformation steps.

– An easily adaptable, parameterized search algorithm. The linear
tool implements a heuristic guess-and-determine search algorithm. This al-
gorithm delivers good results for various primitives. However, the success of
the search is highly dependent on various different parameters, such as the
configuration of the searching order and conflict-handling behavior. There-
fore, it is crucial that these parameters can be adjusted easily. For this rea-
son, our standard guess-and-determine algorithm is parameterizable via an
XML-file. This XML-file specifies the search starting point and allows to
configure various other parameters.

– Easy to add other search algorithms. The currently implemented, stack-
based guess-and-determine algorithm is certainly not the only possible way to
search for linear characteristics. To be open for new ideas and evaluate other
algorithms, we have designed the tool in a way that the search algorithm is
clearly separated from the description of the cipher and thus, can be replaced
easily. This opens the door for experiments with various alternative search
algorithms and will hopefully lead to new insights in this direction.

– Portability of the code. We do not want the tool to require a specific
operating system or platform to run. Therefore, we have reduced the de-
pendence from external libraries whenever possible, and omitted the use of
platform-specific instructions.

3.2 Propagation of linear masks

Our overall search strategy is based on the “guess-and-determine” approach.
We want to build a consistent linear characteristic with high bias step by step,

76

starting from a “mostly unknown” (undetermined) characteristic of masks, and
progressively deciding which bits should be selected (activated) by the final mask.
For this purpose, we repeatedly “guess” the value of small parts of the masks,
and then “determine” the consequences of this guess (in particular, whether this
updated partial characteristic can still be completed to a “valid” characteristic).
We refer to the “determining” step as propagation of information.

Representation of partial linear masks. The tool represents the linear
masks on bit-level. During the search, we work with partially-determined search
masks. We represent an active bit in the linear mask with 1 and an inactive bit
of a linear mask with 0. Mask bits that are not yet determined are represented
by ?.

Propagation in SP networks. We want to find linear characteristics for
SP networks. Such a network consists of iterative applications of a substitu-
tion layer (consisting of relatively small S-boxes) and an (affine) linear layer
(which typically covers larger parts of the state at once). We use different tech-
niques for the propagation of information in these two layer types. The goal of
the propagation step is to investigate whether the guess allows to derive explicit
values for other (“neighbouring”) bits, and in particular whether this explicit
information is contradictory. The constraints that allow this propagation can be
derived from the linear distribution table of the involved functions, since the
characteristic must not contain any mask transitions with bias 0.

Propagation in the non-linear layer. We only deal with non-linear layers
which can be represented by parallel applications of S-boxes. So the propaga-
tion of the linear masks at the input and the output of the S-boxes can be
treated individually, since the parallel applications are considered independent
of each other (any dependencies induced by the linking linear layers are treated
separately). Therefore, we can do the propagation separately per S-box.

Many state-of-the-art ciphers use relatively small S-boxes. In many recent
cipher proposals, the S-boxes map 4- to 5-bit inputs to outputs of the same
size. Even the largest S-boxes hardly ever exceed a size of 8 bits. Therefore,
the propagation of the linear masks can be done in a brute-force manner, based
on the linear distribution table (LDT) of the S-box. The LDT is an exhaustive
list of all valid (biased) mask transitions from mask α to mask β. Our cur-
rent “knowledge” of the values of some input and output mask bits limits the
set of available transitions. Depending on the concrete values of α and β and
the remaining transition options, we have one of the following outcomes of the
propagation:

1. Contradiction: The LDT reveals that no valid, biased transitions remain
that satisfy the fixed mask bits; i.e., there is no linear relationship involving
the bits currently marked by α and β as 1 (and optionally the ? bits). In
other words, we have a contradiction. This means that the current, partially

77

determined linear characteristic is in fact invalid. This situation has to be
handled by the search algorithm by, e.g., backtracking and resolving the
contradiction.

2. Updated bits: The LDT reveals that one or more biased transitions re-
specting the partially determined α and β remain. In addition, all remaining
transitions share the same value (0 or 1) for one or more of the current ?

bits. Thus, we can refine some previously undefined bits in the masks to ac-
tive or inactive bits by using information from the LDT. Before taking any
further guesses, this newly-won information must in turn be propagated in
all connected function components.

3. No updates: The LDT reveals that α and β are possible, but no additional
explicit bit-wise information can be won. Nothing else happens.

Propagation in the linear layer. There are two main differences between the
linear and non-linear layers from the propagation perspective: On the one hand,
the linear layer typically involves significantly more variables than individual S-
boxes. On the other hand, propagating partial linear masks for linear functions
can be achieved easily using basic linear algebra.

Assume that the function f : Fm2 → Fn2 is linear, i.e., f(x) = A · x = y for
some A ∈ Fn×m2 . Note that we can include affine linear functions in the same
model, since the affine (constant) part is irrelevant for the bias of the linear
model if we do not consider the sign of the bias. Then, for a fully determined
mask α, β, the bias εα,β is either 0 (wrong model) or 1

2 (exact, correct model).
More specifically, α, β is a valid input-output mask if

∀x : αt · x = βt · f(x) ⇔ ∀x : αt · x = βt · (A · x)

⇔ ∀x : αt · x = (At · β)t · x
⇔ α = At · β.

If α and β are only partially determined, all propagation can be performed by
propagating the information in the linear system α = At · β. For this purpose,
we always keep the half-solved system in reduced row echelon form for all linear
layers. Whenever mask values in α or β are updated, we perform partial Gaussian
elimination to retain reduced row echelon form. If in the process, other bits of α
or β are determined (case 1 or 2 from above), this information is extracted from
the system and instead stored in the regular representation α, β of the mask bits
that is also used for S-box propagation.

Update process. Every time the propagation step leads to new, explicit infor-
mation in the linear masks (i.e., mask bits that were previously undetermined
are now fixed, case 2), this information has to be propagated over the connected
linear or non-linear layers, which share those updated mask bits. In other words,
the propagation step needs to be iterated to update the neighbouring layers.
Since we require that every linear layer is only connected to non-linear layers
and vice versa, we can use a very simple update process scheduling: After each

78

guess or update, we first perform propagation on all non-linear layers (with up-
dated bits), then on all linear layers (with updated bits). This process is iterated
until the propagation process has converged and no additional explicit informa-
tion can be learned anymore, or a contradiction is detected.

3.3 Search for linear characteristics

In this section, we discuss our proposed search strategy. The search strategy
guides the guessing behavior (choice of bits or bit sets to guess, and their val-
ues), as well as the backtracking behavior after detecting contradictions. We
currently implement a simple stack-based search algorithm, similar to the strat-
egy used in recent tools for differential characteristic search [16, 17]. We first
give an algorithmic overview, before detailing the choices made for individual
ingredients.

Basic search algorithm. We start from a mostly-undetermined characteristic
A0 as a starting point, and incrementally guess more and more of its mask bits.
We refer to the current characteristic as A, and keep a history of the guesses
that led from A0 to A in the stack S. For each guess, we select a guessable item
X in the current characteristic A. Depending on the search strategy, this can
be a single bit, or all bits of an S-box input-output mask (unlike some tools for
differential characteristic search which only consider individual bits). The choice
of X is guided by the search and backtracking strategy. The characteristics
stored in S are used for backtracking, where some of the most recent guesses are
undone to resolve conflicts, i.e., we return to an older status stored in S. The
basic search algorithm is summarized in Algorithm 1.

Algorithm 1 Guess-and-determine search algorithm

choose characteristic A0 as starting point
loop

push A0 to empty stack S
repeat

get the topmost characteristic A from S
select a guessable item (bit or S-box) X in A
for all most preferable possible values x of X do

guess X to x
propagate information
if contradiction detected then

undo guess x and all resulting updates
else

push A to S and break
if no valid assignment x was found then

backtrack by popping characteristics from S
mark X critical

until exhausted or solution characteristic found

79

Choice of the starting point. The starting point is a linear characteristic,
in which most mask bits are still undetermined. The appearance of the starting
point depends highly on the scenario in which the linear characteristic will be
used, since it can be used to define which bits of the resulting characteristic must
definitely be active or inactive.

For instance, consider the search for a linear characteristic for a block cipher
or a permutation. In principle, every bit of the input or the respective output
mask can be active in such a scenario. So, we can use a starting point where
nearly every bit of the respective input and output linear masks is free for guess-
ing during the search. On the other hand, if we consider sponge-like modes, we
have more restrictions on the characteristic. Here, the attacker can only observe
or control a fraction of the state on the input and the output. Depending on the
actual attack, it can be necessary that bits belonging to unknown parts of the
state remain inactive, and that only observable or controllable bits are active.

Besides defining the possible use-cases of the linear characteristic, the choice
of the starting point also greatly influences the expected success of the search.
By fixing parts of the starting point, it is possible to reduce the search space
significantly, and thus accelerate the search to quickly find results that would
otherwise be out of range. However, reducing the search space also has the
potential to exclude classes of good characteristics. Thus, the starting point
is usually not too much restricted at the beginning of the analysis of a certain
cipher. Instead, the choice of the starting point is an adaptive process based on
the cryptographer’s intuition and the cipher’s structure, using information from
previous searches.

Guessing strategy. The guessing strategy specifies which undetermined bit
or S-box is picked next for guessing, and how it will be refined. In S-box-based
designs, the search success can profit significantly from guessing in an S-box-
oriented manner; that is, by guessing the value of all bits in an S-box input-
output mask at once. We refer to this as “guessing the S-box”. Even if guesses
are made S-box after S-box, the propagation procedure can produce half-guessed
S-boxes with some bits fixed and others undetermined. It is also possible to mix
S-box-wise and bit-wise guessing.

We refer to an S-box as “guessable” if the linear input and output masks
contain at least one remaining undetermined ?-bit, and “fixed” or “not guess-
able” otherwise. In addition, the search configuration may limit the selection
of S-boxes currently eligible for guessing, depending on the guessing progress.
The most important example for this is the “critical” status that is assigned
to an S-box after a failed attempt to find any valid assignment for this S-box,
and assigns top priority to this S-box. Additionally, it can be useful to impose
cipher-specific rules; for example, to demand that all S-boxes of the first few
rounds must be fixed before we start guessing values in the following rounds.

To guide the guessing procedure, each guessable S-box is assigned a proba-
bility for being selected as the next guessing target, for example based on the
criteria described above. In addition, all possible assignments for a guessable

80

S-box are ranked by how promising they are estimated to be for high-bias char-
acteristics. Of course, the primary guess for potentially inactive S-boxes (i.e.,
only with bits 0 and ? so far) is to keep them inactive (i.e., all 0). If this is
not possible, the S-box is marked as active. If the selected guessable S-box is
already marked active, we rank all possible assignments of the linear masks ac-
cording to their linear bias and the number of active bits. We pick a random
optimally ranked assignment as primary guess. If the following propagation re-
veals that this assignment is in fact impossible, we try other assignments until
no alternative is left, or we have reached a predefined threshold on the number
of trials.

Backtracking. If all alternative assignments fail (or a predefined threshold of
trials is reached), we need to backtrack. To resolve this conflict, we return to an
earlier version of the linear characteristic as stored on the stack S. Again, we try
to guess the same critical S-box that caused the conflict. If we cannot resolve
the conflict here, we jump further back, until it can be resolved.

Restarts. To better randomize the search process and avoid being “stuck” with
a few unhappy first guesses, it is helpful to occasionally restart the complete
search. For this purpose, we define a limit of “credits” or resources for one
search run. When this limit is exhausted before finding a valid, fully determined
characteristic, we clear the stack S and restart from scratch with the starting
point A0. Additionally, the search is also restarted after completing a successful
run, with the hope of finding new, better characteristics. If the cryptographer
detects promising patterns in the preliminary results, these can serve as a basis
for improved starting points for the next run.

4 Application to CAESAR candidates

In this section, we demonstrate the advantages of our tool for linear cryptanal-
ysis by applying it to several first round CAESAR candidates: Keyak, Ascon,
ICEPOLE, Prøst, and Minalpher. All the analyzed candidates are permutation-
based (rather than based on block ciphers). This is, however, not a constraint
of the linear tool, which works just as well for block ciphers, since the typical
round-key additions do not influence the linear characteristics. Rather, it is rep-
resentative of the trend that a significant portion of CAESAR candidates with
new, dedicated SPN primitives are permutation-based, since most block-cipher
modes employ AES.

For each candidate, we first consider linear characteristics for the (round-
reduced) permutation. However, for many modes (in particular for sponges),
an attacker cannot influence the complete input to the permutation, or cannot
observe its complete output. For this reason, we also investigate characteristics
with additional constraints, where parts of the linear masks are fixed beforehand.
We define the following three types of linear characteristics:

81

– Type I (permutation): For this type of characteristics, we do not require
any additional restrictions regarding the positions of active bits in the linear
characteristic. Hence, a characteristic of this type might not be usable in
a concrete attack on the duplex-like constructions of Keyak, Ascon, and
ICEPOLE. Nevertheless, even for modes where Type-I characteristics allow
no direct attacks, they still give insights in the resistance of the cryptographic
primitive against linear attacks.

– Type II (output constrained): Linear characteristics of this type have
the restriction that all active bits at the end of the characteristic have to be
“observable”. For duplex-like constructions, this means that all active mask
bits have to be in the outer (rate) part of the state. Such linear characteristics
can be used to create key-stream distinguishers in known-plaintext scenarios
for duplex-like constructions, or even to perform key-recovery attacks.

– Type III (input and output constrained): In addition to Type-II char-
acteristics, also all active bits of the input have to be in the outer (rate) part
of the state. This type of linear characteristic can act as a key-stream distin-
guisher in known-plaintext scenarios for duplex-like constructions, targeting
the encryption of the plaintext. A similar type of linear relations has been
used for instance by Minaud [18] to detect linear biases in the key-stream of
the CAESAR candidate AEGIS.

We first discuss our approach and our findings for Keyak in more detail, and
then briefly present our results for Ascon, ICEPOLE, Prøst, and Minalpher.

4.1 Keyak

Brief description of Keyak. Keyak is a family of authenticated encryption
algorithms designed by Bertoni et al. [4] and is one of the 57 submissions to
the first round of the CAESAR competition. It is based on the round-reduced
Keccak-f permutation and follows the duplex construction [2]. The designers
have defined four instances of Keyak; all instances share the same capacity
c = 252 and use 12 rounds of the Keccak-f permutation, but differ in their
state size b and the degree of parallelism p:

– River Keyak: b = 800, p = 1 (serial),
– Lake Keyak: b = 1600, p = 1 (serial),
– Sea Keyak: b = 1600, p = 2 (parallel),
– Ocean Keyak: b = 1600, p = 4, (parallel).

The Keyak duplex mode. Fig. 1 sketches the encryption of serial Keyak without
associated data: The initialization takes as input the secret key K and public
nonce N , and applies the permutation f once. This ensures that one always
starts with a random-looking state at the beginning of the encryption of the
plaintext. Afterwards, the plaintext is processed by xoring it block-wise to the
internal state, separated by invocations of the permutation f . The ciphertext
blocks are extracted from the state after adding the plaintext. After all data is

82

processed, the finalization applies the permutation f once more and returns the
tag. For more details on Keyak, including the rules for processing associated
data, we refer to the specification [4].

f

0

0

Initialization
Processing

Finalization

K,N M1

C1

pad

f

Ms

Cs

f

pad

Tag

M0

C0

pad

f
c c c

r r r

of Plaintext

Fig. 1: Simplified sketch of Lake Keyak encryption (without associated data).

The Keyak permutation. The Keyak permutation is a round-reduced version of
the Keccak-f permutation, reduced to 12 rounds. It operates on the 5×5 = 25
w-bit words (“lanes”) S[x][y][∗] of the state S, with w = 32 or 64. Each round
applies the five steps R = ι ◦χ ◦ π ◦ ρ ◦ θ, where all steps except ι are equivalent
for each round.

– Step θ adds to every bit of the state S[x][y][z] the bitwise sum of the neigh-
bouring columns S[x− 1][∗][z] and S[x+ 1][∗][z − 1]. This procedure can be
described by the following equation:

θ : S[x][y][z]← S[x][y][z] +

4∑
y′=0

S[x− 1][y′][z] +

4∑
y′=0

S[x+ 1][y′][z − 1].

– Step ρ rotates the bits in every lane by a constant value,

ρ : S[x][y][z]← S[x][y][z + C(x, y)],

where C(x, y) is a constant value.
– Step π permutes the lanes using the following function:

π : S[x][y][∗]← S[x′][y′][∗], where

(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
.

– Step χ is the only non-linear step in Keccak and operates on each row of
5 bits:

χ : S[x][y][z]← S[x][y][z]⊕ ((¬S[x+ 1][y][z]) ∧ S[x+ 2][y][z]),

which can be seen as applying a 5-bit S-box in parallel to all rows.

83

– Step ι adds a round-dependent constant to the state. For the actual values
of the constants, we refer to the design document [4].

The designers provide some results on the linear properties of this permutation
online, as part of the KeccakTools package [3].

Results for Keyak. For our analysis, we focus on the primary recommenda-
tion Lake Keyak using state size b = 1600. Since Lake Keyak, in contrast
to Ascon and ICEPOLE, uses the same permutation (with the same num-
ber of rounds) in the initialization, finalization, and plaintext-processing phase,
Type-III characteristics (to target plaintext-processing) offer no remarkable ad-
vantage over Type-II characteristics (to target the initialization). For this reason,
we only consider Type-I and Type-II characteristics.

Type-I characteristics (for 3 and 4 rounds of the permutation). We first con-
sider Type-I characteristics, i.e., linear characteristics for the underlying round-
reduced Keyak permutation (Keccak-f) without any additional restrictions.
We performed a search for linear characteristics for 4 rounds of the 1600-bit per-
mutation. The best linear characteristic we found is given in Table 2b. In total,
this characteristic only has 33 active S-boxes, which results in a bias of 2−34. The
best linear characteristic for 3 rounds with 13 active S-boxes and a bias of 2−14

can be obtained by omitting the first round of the 4-round linear characteristic.
Our results are very similar to the characteristic given in the KeccakTools
package [3].

Type-II characteristics (for 3 and 4 rounds of the initialization). The previous
3 and 4-round characteristics have active bits in the inner part (last four 64-bit
words) of the state after round 4. Therefore, we cannot use this characteristic in
an actual attack. For an attack on the initialization of round-reduced Keyak, we
have to apply additional restrictions on the linear characteristics. Since we can
only observe the outer (rate) part of the state at the output of the permutation
after the initialization, we apply the restriction that only this part is allowed to
contain active bits. Note that the input of the first permutation call is either
known or constant. Therefore, we have no problems with active bits there.

For the initialization reduced to 3 rounds, we found the characteristic in
Table 3a, and for the 4-round version, the characteristic given in Table 3b. In
the last round, both characteristics only have active S-boxes in the rate part of
the state. Thus, considering a known-plaintext attack, we know all the output
bits of these S-boxes and can invert them. This leads to the fact that the last
round does not influence the bias. So we have an expected bias of 2−13 for the
3-round version, and 2−49 for the 4-round version of these characteristics. Taking
the last S-box layer also into account, the bias of those characteristics would be
2−26 and 2−70, respectively. When inverting the last S-boxes, both characteristics
result in trivial key-stream distinguishers for round-reduced versions of Keyak
with complexity 226 and 298, respectively. Moreover, these distinguishers could
also be used in a key-recovery attack on round-reduced Keyak, resulting in
similar complexities.

84

Configuration of the search. As already mentioned, the proposed search tool is a
heuristic one and thus, the quality of the results heavily depends on the applied
heuristic search criteria, as well as on the definition of the starting points. For
the search process that led to the Type-II characteristics for 3 and 4 rounds of
Keyak, we used a quite natural starting point: For both starting points, the
only restriction is that the S-boxes of the last round which “belong” to the inner
part of the state must be inactive. In addition, one S-box in the second round is
marked as active (to exclude the trivial, entirely inactive solution).

We split the search into two stages. In the first stage, we only pick poten-
tially inactive guessable S-boxes, and set them to the best possible assignment
(typically a completely inactive input and output linear mask). Which S-box is
picked and refined is determined by a heuristic that picks the S-boxes according
to a previously configured weight distribution. These weights can be manually
assigned in the search configuration file (the same file in which the starting
point is defined). In case of the search for the 3-round Type-II characteristic,
the weights were assigned so that S-boxes of the first and second round have a
50 times higher chance to be picked compared to an S-box of the last round.
The intention behind this distribution is that the majority of the active S-boxes
of the resulting linear characteristic should be located in the last round, because
their output is known in an attack. Hence, these active S-boxes can be inverted
and do not contribute to the bias. Our heuristic for the 4-round Type-II char-
acteristic prefers S-boxes from rounds 2 and 3 over S-boxes from rounds 1 and
4. Additionally, round 1 is favored over the last round 4. In the second stage,
after every guessable and potentially inactive S-box is already determined, we
continue by guessing active and yet not fully determined S-boxes until the linear
characteristic is fully determined.

As can be seen above, the choice of the starting point and search heuristic
depends on the structure of the target primitive, the planned use for the linear
characteristic, and on the intuition of the cryptographer. Thus, better search
strategies and starting points might exist, which may lead to better linear char-
acteristics than those given in this paper.

4.2 Ascon

Brief description of Ascon. Ascon is a family of sponge-based candidates,
designed by Dobraunig et al. [9]. Compared to Keyak, it features a significantly
smaller state of 320 bits, and the linear layer is applied to each of the 5 64-
bit words independently. The 5-bit S-box, on the other hand, is closely related
(affine equivalent) to that of Keyak. The primary proposal Ascon-128 has a
rate of 64 bits and hence, a capacity of 256 bits.

Results for Ascon. For the linear tool, the simple design of the linear layer
means that its linear model can be split into 5 separate, independent matrices.
Combined with a small state size, this property greatly reduces the cost for linear
algebra needed to perform the propagation compared to Keyak.

85

Our findings for Ascon are summarized in Table 1. The number of active
S-boxes of Type-I characteristics found with the help of this tool have already
been included in work presented at CT-RSA 2015 [10]. Note that the char-
acteristics given here are optimized for a minimum number of active S-boxes,
rather than minimal bias. For Ascon-128, we additionally search for Type-II and
Type-III characteristics. However, regarding Type-III characteristics, no mean-
ingful results were obtained.

4.3 ICEPOLE

Brief description of ICEPOLE. ICEPOLE is a family of authenticated en-
cryption schemes designed by Morawiecki et al. [19]. It consists of the three
proposals ICEPOLE-128, ICEPOLE-128a, and ICEPOLE-256a, which all use
the same underlying 1280-bit permutation. All variants use 12 rounds of the
permutation for initialization, and 6 rounds for processing of plaintext and fi-
nalization. However, they differ in details like size of the rate, key, nonce and
tag.

The 1280-bit state of ICEPOLE is stored in 5 × 4 = 20 64-bit words. For
the linear layer, an MDS matrix over F25 is first applied 64 times in parallel (to
each 20-bit slice of the state). Then, each word is rotated, and the words swap
positions. The S-box layer applies 5-bit S-boxes (4 parallel row-wise applications
for each 20-bit slice).

ICEPOLE’s designers perform no dedicated linear analysis, but compare the
cipher’s resistance to linear cryptanalysis to its well-studied resistance against
differential cryptanalysis. They conclude that the attack complexity after 5–6
rounds should be “completely intractable” [19]. At FSE 2015, Huang et al. [11]
presented 3-round linear characteristics that they use in a differential-linear at-
tack on ICEPOLE.

Results for ICEPOLE. The Type-II and Type-III characteristics given in
Table 1 are constrained with respect to a capacity of 254 bits (due to padding,
256 bits are not observable), as defined for ICEPOLE-128 and ICEPOLE-128a.
In the case of ICEPOLE, we do not have an immediate output of a ciphertext
block right after the 12 rounds of the initialization. Before this happens, there is
the option to process a secret message number and at least an empty associated
data block is processed. Hence, 6 or even another 12 additional rounds have to
be passed before an output suitable for our Type-II characteristic is accessible.
Thus—in the worst case—our key-stream distinguisher using Type-II character-
istics works for round-reduced versions of ICEPOLE-128, where the initialization
plus the following processing is reduced to 5 out of 24 rounds with a complexity
of about 2120.

Type-III characteristics can be used to create distinguishers that target the
processing of the plaintext. Here, every version of ICEPOLE uses the 6 round
version of the ICEPOLE permutation. Thus, by using the Type-III characteristic
in Table 1, the key-stream produced by round-reduced variants of ICEPOLE-128,

86

where the permutation used in the plaintext processing is reduced to 4 (out of
6), rounds can be distinguished from a perfect randomly generated key-stream
with a complexity of about 288. The bias of the 5-round Type-III characteristic
is 2−87.08 and hence, the complexity of a resulting key-stream distinguisher can-
not harm the 128-bit security of ICEPOLE-128. ICEPOLE-256a, on the other
hand, claims a security level of 256 bits regarding the confidentiality. However,
it has a higher capacity of 318 bits and therefore, the characteristics given in
Table 1 cannot be used directly. Taking the higher capacity of ICEPOLE-256a
into account, we get the Type-III characteristic (bias 2−89.49) shown in Table 9a,
which can be used to distinguish the key-stream of a round-reduced variant of
ICEPOLE-256a, where the permutation used during the encryption is reduced
to 5 (out of 6 rounds). Note that ICEPOLE-256a limits the number of blocks
encrypted under a single key by 262. However, this type of key-stream distin-
guishers exploit relations between ciphertext block Ci and the key-stream used to
generate the following ciphertext block Ci+1. Thus, distinguishers using Type-III
characteristics in this way do not rely on the fact that always the same key is
used.

Table 1 contains the results with the best bias, but not necessarily the mini-
mal number of active S-boxes we found. For example, for 6 rounds, we also found
a Type-I characteristic with only 103 active S-boxes, but a bias of 2−133.49 (com-
pared to 104 active S-boxes with bias 2−126.32 as in the table).

4.4 Minalpher

Brief description of Minalpher. Minalpher is designed by Sasaki et al. [22].
In contrast to the previous 3 candidates, Minalpher is no sponge-based design.
Instead, the permutation is applied in a new tweakable block cipher construction,
called tweakable Even-Mansour. For this construction, the permutation size only
needs to be twice the security level, so for 128-bit security, Minalpher has the
smallest of all investigated permutation sizes with only 256 bits. This small state
is further divided into two halves, whose only interaction in each of the 17.5
rounds is that one half is once xored to the other half, and the two halves swap
places. Besides the interaction between the halves and some nibble reordering,
the linear layer features a near-MDS matrix multiplication over F24 . The S-box
size of 4 bits is also nibble-oriented.

For Minalpher’s construction, only Type-I characteristics are useful. We un-
derstand our results as an analysis of the underlying permutation. However,
since Minalpher claims security in nonce misuse settings and under unverified
plaintext release, the Type-I characteristics could also be useful for attacks on
the cipher. In particular, for a fixed nonce, the construction allows to control
the entire permutation input (at least differentially, due to the Even-Mansour
construction, which xors a key- and nonce-dependent value before and after the
permutation) and observe the entire output (again, differentially).

The designers analyze the minimum number of active S-boxes (for differential
cryptanalysis) theoretically, and prove a minimum number of 22 S-boxes for 4
rounds. For up to 7 rounds, they extend the bounds with the help of mixed integer

87

linear programming (MILP). The bounds obtained this way for the numbers of
rounds r also covered by this work are 22 (r = 4), 41 (r = 5), and 58 (r = 6).
The designers claim that the same bounds apply for linear cryptanalysis.

Results for Minalpher. The existing bounds serve as a kind of benchmark
for our tool to check its capabilities. As shown in Table 1, we were able to match
the given bounds for up to 6 rounds. For better comparability, we included our
results with the minimal number of active S-boxes, but not necessarily the best
bias, in the table. For example, for 6 rounds, we also found a Type-I characteristic
with a smaller bias of 2−61, but with 60 active S-boxes (compared to 58 active
S-boxes with bias 2−62 in the table).

4.5 Prøst

Brief description of Prøst. Prøst, designed by Kavun et al. [13], offers
both a sponge-based mode and two block-cipher-based modes, where the latter
use the Prøst permutation in a single-key Even-Mansour construction. Each of
the three modes offers two security levels: one based on the 256-bit Prøst-128
permutation, and one based on the 512-bit Prøst-256 permutation. The state
is stored as 4 × 4 words of 16 or 32 bits, respectively. Both the 4-bit S-box
(row-wise) and the 16-bit linear mixing function (MDS over F24 are applied in a
bit-sliced way (using 1 bit of each word). Then, each word is rotated. The number
of rounds per permutation call is r = 16 (Prøst-128) or r = 18 (Prøst-256),
respectively.

We focus our analysis on Prøst-256 (formally offering 128-bit security). Like
Minalpher, Prøst comes with a MILP-based proof for the minimum number of
active S-boxes for differential and linear characteristics. For Prøst-256, the
bounds for different round numbers are 25 (r = 4), 41 (r = 5), 105 (r = 6), and
169 (r = 7).

Results for Prøst. Again, we used the existing bounds as benchmarks for
our linear tool. The tool is able to match each bound, mostly with optimal or
near-optimal bias (2−26 for r = 4, 2−42 for r = 5, 2−107 for r = 6, and 2−175 for
r = 7).

88

Table 1: Results for Keyak, Ascon, ICEPOLE, Minalpher, and Prøst.

Cipher Type Rounds Active S-boxes Bias Reference

Keyak
I

3 13 2−14 Table 2a
4 33 2−34 Table 2b

II
3* 12 2−13 Table 3a

4* 43 2−49 Table 3b

Ascon

I
3 13 2−15 Table 4a
4 43 2−50 Table 4b
5 67 2−94 Table 4c

II
2 6 2−8 Table 5a
3 23 2−30 Table 5b
4 61 2−83 Table 5c

ICEPOLE

I
5 38 2−55.08 Table 6a
6 104 2−126.32 Table 6b

II
4 22 2−30.42 Table 7a
5 38 2−59.49 Table 7b

III
3 10 2−16.66 Table 8a
4 22 2−43.25 Table 8b
5 42 2−87.08 Table 8c

Minalpher I
4 22 2−23 Table 10a
5 41 2−42 Table 10b
6 58 2−62 Table 10c

Prøst-256 I

4 25 2−26 Table 11a
5 41 2−42 Table 11b
6 105 2−107 Table 11c
7 169 2−175 Table 11d

* Last S-box layer inverted.

5 Conclusion

We presented a dedicated tool for the automatic linear cryptanalysis of substitu-
tion-permutation networks. The goal of the tool is to identify linear characteris-
tics for a cryptographic function, which can subsequently be used by the crypt-
analyst to mount key-recovery or distinguishing attacks. The heuristic search is
based on an efficient guess-and-determine approach, which has previously been
proven successful for searching differential characteristics. We described how to
perform efficient propagation of linear masks in linear and non-linear building
blocks of a cipher.

From the cryptanalyst’s perspective, the tool is simple to use, flexible, and
easy to extend with regard to search strategies and target ciphers. The open-

89

source tool will be freely available to help analyze CAESAR candidates and other
symmetric cryptographic primitives. We hope that our work will be a valuable
contribution to get a better understanding of the security of these ciphers re-
garding linear cryptanalysis. In particular, we hope to encourage experiments
with alternative, sophisticated search strategies optimized for different target
ciphers.

We demonstrated the efficiency of our tool by applying it to several CAESAR
candidates. The results obtained by searching for linear characteristics for the
Minalpher and Prøst-256 permutation show that the presented heuristic search
tool can keep pace with MILP-based approaches. However, due to the heuristic
nature, we are not capable of providing bounds on the minimum number of
active S-boxes.

On the other side, when looking at the results obtained for Ascon, ICEPOLE
and Keyak– all designs with weak alignment – we have been able to find new
linear characteristics with a good bias that might be used in a key-recovery or
distinguishing attack on round-reduced versions of the ciphers in the future.
One highlight are the Type-III characteristics for round-reduced versions of
ICEPOLE, which can be used to distinguish the key-stream of ICEPOLE in
a nonce-respecting scenario.

Our results show that the existence of a publicly available analysis tool for lin-
ear characteristics will be of great help in the design of symmetric cryptographic
primitives, in order to evaluate the resistance against linear attacks already in
an early stage of the design. Thus, we think that this tool will facilitate new de-
signs which are more balanced in their resistance against linear and differential
attacks than some of today’s designs.

Acknowledgments. The work has been supported in part by the Austrian
Science Fund (project P26494-N15) and by the Austrian Research Promotion
Agency (FFG) and the Styrian Business Promotion Agency (SFG) under grant
number 836628 (SeCoS).

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On alignment in Keccak.
http://keccak.noekeon.org/KeccakAlignment.pdf

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: Single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) Selected Areas in Cryptography – SAC 2011. LNCS, vol. 7118, pp. 320–337.
Springer (2011)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: KeccakTools software.
http://keccak.noekeon.org/ (2014)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak. Sub-
mission to the CAESAR competition: http://competitions.cr.yp.to/round1/
keyakv1.pdf (2014)

5. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) Topics in Cryptology – CT-RSA 2014. LNCS, vol. 8366, pp.
227–250. Springer (2014)

90

6. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization framework for collision
attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) Advances in
Cryptology – ASIACRYPT 2009. LNCS, vol. 5912, pp. 560–577. Springer (2009)

7. Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In: Knudsen,
L.R. (ed.) Advances in Cryptology – EUROCRYPT 2002. LNCS, vol. 2332, pp.
108–109. Springer (2002)

8. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In: Lai, X., Chen, K. (eds.) Advances in Cryptology – ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer (2006)

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission
to the CAESAR competition: http://competitions.cr.yp.to/round1/asconv1.
pdf (2014)

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of Ascon.
In: Nyberg, K. (ed.) Topics in Cryptology – CT-RSA 2015. LNCS, vol. 9048, pp.
371–387. Springer (2015)

11. Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE.
In: Leander, G. (ed.) Fast Software Encryption – FSE 2015. LNCS, vol. 9054, pp.
243–263. Springer (2015)

12. Indesteege, S., Preneel, B.: Practical collisions for EnRUPT. In: Dunkelman, O.
(ed.) Fast Software Encryption – FSE 2009. LNCS, vol. 5665, pp. 246–259. Springer
(2009)

13. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın,
T.: Prøst. Submission to the CAESAR competition: http://competitions.cr.

yp.to/round1/proestv11.pdf (2014)

14. Leurent, G.: Construction of differential characteristics in ARX designs: Appli-
cation to Skein. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology –
CRYPTO 2013. LNCS, vol. 8042, pp. 241–258. Springer (2013)

15. Matsui, M.: Linear cryptoanalysis method for DES cipher. In: Helleseth, T. (ed.)
Advances in Cryptology – EUROCRYPT ’93. LNCS, vol. 765, pp. 386–397.
Springer (1993)

16. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology – ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer (2011)

17. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: New attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology
– EUROCRYPT 2013. LNCS, vol. 7881, pp. 262–278. Springer (2013)

18. Minaud, B.: Linear biases in AEGIS keystream. In: Joux, A., Youssef, A.M. (eds.)
Selected Areas in Cryptography – SAC 2014. LNCS, vol. 8781, pp. 290–305.
Springer (2014)

19. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J., Ro-
gawski, M., Srebrny, M., Wójcik, M.: ICEPOLE. Submission to the CAESAR
competition: http://competitions.cr.yp.to/round1/icepolev1.pdf (2014)

20. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: Application to Salsa20. IACR Cryptology ePrint Archive, Report 2013/328
(2013), http://eprint.iacr.org/2013/328

21. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Information Security and Cryptology – Inscrypt 2011. LNCS, vol. 7537, pp. 57–76.
Springer (2011)

91

22. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Mat-
sui, M., Hirose, S.: Minalpher. Submission to the CAESAR competition: http:

//competitions.cr.yp.to/round1/minalpherv1.pdf (2014)
23. Schläffer, M., Oswald, E.: Searching for differential paths in MD4. In: Robshaw,

M.J.B. (ed.) Fast Software Encryption – FSE 2006. LNCS, vol. 4047, pp. 242–261.
Springer (2006)

24. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L.: Automatic
enumeration of (related-key) differential and linear characteristics with predefined
properties and its applications. IACR Cryptology ePrint Archive, Report 2014/747
(2014), http://eprint.iacr.org/2014/747

25. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In: Feigenbaum, J. (ed.) Advances in Cryptology – CRYPTO ’91. LNCS, vol. 576,
pp. 172–181. Springer (1991)

26. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014), http://competitions.cr.yp.to/

caesar.html

92

A Linear characteristics

In the appendix, we include the linear characteristics for the results of Sect. 4:
Keyak (Type I in Table 2, Type II in Table 3), ICEPOLE (Type I in Table 6,
Type II in Table 7, Type III in Table 8), Ascon (Type I in Table 4, Type II in
Table 5), Minalpher (Type I in Table 10), and Prøst (Type I in Table 11). The
Type-III linear characteristic conforming to the capacity of ICEPOLE-256a is
given in Table 9.

Each table gives the linear input mask (numbered 0) and the linear mask at
the output of each round (numbered 1 to r) in a hexadecimal notation (with - =
0). The representation of our linear characteristics conform to the representation
of the state of the corresponding reference implementations. Usually, the internal
state in the reference implementations is pictured as a 1- or 2-dimensional array
of words. The top left word pictured in one state of our tables corresponds to the
word with the lowest index, the table word on the right bottom to the array word
with the highest index. Additionally, for Type-II and Type-III characteristics,
the bits with additional external constraints (i.e., uncontrollable input bits and
unobservable output bits) are highlighted as -.

Table 2: Type-I linear characteristics for r rounds of the Keyak permutation.

(a) r = 3: 13 active S-boxes, bias 2−14.

Round State

0

-----1---------- -----8---------- ------8--------- ---------------- ----1-----------
-----1---------- -----8---------- ------8--------- ---------------- ----1-----------
-----1---------- -----8---------- ------8--------- ---------------- ----1-----------
----11---------- -----9---------- ------8--------- ---------------- ----1-----------
-----1---------- -----8---------- ------8--------- ---------------- ----1-----------

1

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ----------2----- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ----------2----- ----------------

2

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
------------2--- ---------------- ---------------- ---------------- ------------2---
---------------- ------------1--- ---------------- ---------------- ----------------

3

---------------- -1-------------- ---------------- ---------------- ---------8------
---------------- -------2-------- ---------------- -2-------------- ----------------
------------2--- ---------------- ---------------- ---------------- ----------------
-----1---------- ---------------- ----------4----- ---------------- ----------------
---------------- ---------------- --1------------- --4------------- ----------------

93

(b) r = 4: 33 active S-boxes, bias 2−34.

Round State

0

-----58---4-1--- 1---8428-2----4- 4----64-1---5--- -8--421-4-8-3--1 -----11--4---88-
-----48---4-1-8- 9---84a8-2----4- 4----26-1---5--- -81-421-4-8-2--1 -----11--48-288-
-----49---4-1--- 1---84a822----4- 5----24-1---5--- -8--421-4-8-6--1 -----11--4--2881
-----48---4-1--- 1---84a8-2----4- 4----24-1---5--- -8--421-4-8-2--1 -----11--4--288-
-----48--44-1--- 1---8-a8-2----4- 4---824-1---5--- -81-421-4-8-2--1 -----11-44--288-

1

-----1---------- -----8---------- ------8--------- ---------------- ----1-----------
-----1---------- -----8---------- ------8--------- ---------------- ----1-----------
-----1---------- -----8---------- ------8--------- ---------------- ----1-----------
----11---------- -----9---------- ------8--------- ---------------- ----1-----------
-----1---------- -----8---------- ------8--------- ---------------- ----1-----------

2

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ----------2----- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ----------2----- ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
------------2--- ---------------- ---------------- ---------------- ------------2---
---------------- ------------1--- ---------------- ---------------- ----------------

4

---------------- -1-------------- ---------------- ---------------- ---------8------
---------------- -------2-------- ---------------- -2-------------- ----------------
------------2--- ---------------- ---------------- ---------------- ----------------
-----1---------- ---------------- ----------4----- ---------------- ----------------
---------------- ---------------- --1------------- --4------------- ----------------

Table 3: Type-II linear characteristics for r rounds of the Keyak permutation.

(a) r = 3: 12 active S-boxes, bias 2−13 (without last-round S-boxes).

Round State

0

-----------8---3 8--------4-8---- ------1----4---- ------1----4---4 -------8-8-----1
---------8-8---2 8--------4------ ------1----4---- -----------4---4 -------8-8-----1
-----------8---2 8--------4-8---- ------1----4---- -----------4---4 -------8-8-----1
-----------8---2 8--------4-8---- ------1----4---- -----------4---4 -------8-8-----1
-----------8---2 8--------4-8---- ------1----c---- -----------4---4 -------8-8-----5

1

---------------1 8--------------- ---------------- ---------------- -----------1----
---------------1 ---------------- ---------------- ---------------- -----------1----
---------------- ---------------- ---------------- ---------------- ----------------
---------------- 8--------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

2

---------------1 ---------------- ---------------- ---------------- ----------------
---------------- ------1--------- ---------------- ----1----------- ----1-----------
---------------1 ---------------- ---------------- ---------------- ----------------
-----8---------- ------1--------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

3

-----8---------1 -----------1---- ---------------- ---------------2 ----------------
-------------1-- ---------------1 ----4----------8 -----------2---- ----------------
---------------- ---------------- --------------2- ---------------- 2---------------
---------------- ------------8--- ---------------- ---------------- ------1---------
---------------- ---------------- ---------------- ---------------- ----------------

94

(b) r = 4: 43 active S-boxes, bias 2−49 (without last-round S-boxes).

Round State

0

4---86-8a-2--c28 2---c21c-3--2-24 2-9-83-4481-22-- 1--1e--86-4-1-52 --494418-6-8-84-
4---8618a-2--468 6---c21c13--2424 2-9-8314481--2-- 1--96--86-4-1-52 --484418-648-84-
4---82-8a-2--428 2---c214-3--2424 2-9-83-4481--2-4 1--16--86-5-1-52 --484418-6-8-8--
4---86--a-2--428 2---c21c83--2424 --9-83-4481--2-- 1-816--86-4-1-52 --484418-6-8-85-
4---86-8a62--428 2---c41c-3--2424 2-9-43-4481--2-- 1-196--86-4-1-52 --48441866-8-84-

1

-------------8-- -----4-------9-- ----2----------- ----2-------1--- ----18------1---
-------------8-- -----4-------8-- ----2----------- ------------1--- ----18------1---
-------------8-- -----4-------8-- ----2----------- ------------1--- ----18------1---
-----8------18-- -----4-------9-- ----2----------- ------------1--- ----18----------
-------------8-- -----4-------8-- ----2----------- ------------1--- ----18------1---

2

---------------- ---------------- ---------------- ---------------- ----------------
-------------2-- ---------------- ---------------- --2------------- ----------------
-------------2-- ---------------- ---------------- ----------1----- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --2-------1----- ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ------------1--- ------------1--- ---------------- ------------1---
----2----------- ----2----------- ----2----------- ----2----------- ----2-----------
---------------- ----2-------1--- ----2-------1--- ----2----------- ------------1---
---------------- ----1----------- ---------------- ---------------- ----------------

4

---------------- -1-------1------ ---------------- ---------------4 -8--------------
---------------- -------1-------2 ---1------------ -2-------6------ ----------------
----2----------- -----------4---- --------------4- --2-------1----- ----------------
---------8---1-- ---------------- --c------8------ 1--------8------ ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Table 4: Type-I linear characteristics for r rounds of the Ascon permutation.

(a) r = 3: 13 active S-boxes, bias 2−15.

Round State

0 ------------4--- -4-8-2---1---48- -4-8-2---1---481 -----------44--- -----------4----

1 ---------------- ---------------- ---------------- -----2--------81 -----2--------81

2 ---------------- ---------------- ---------------- ---------------- ---------------1

3 ---------------- ---------------- fc1-c53d1c96ecd5 a423953bbde612d6 ----------------

(b) r = 4: 43 active S-boxes, bias 2−50.

Round State

0 ---4-4-----1--1- --1-3-2--4-8---- --1-3-28-c-8-2-- ---4-4-4---11-1- -------4----1---

1 ---------------- ---------------- ---------------- -------8-8---2-- -------8-8---2--

2 8-4----8-------- ---------------- ---------------- ---------------- ----------------

3 -------8-------- ---------------- 2fc-----218a7a39 ---------------- ----------------

4 e4b766afe-8629e8 766572e7eeeed3b9 e4b766afe-8629e8 ef3-96b5211ca9dd -3256--4-4df2ab1

95

(c) r = 5: 67 active S-boxes, bias 2−94.

Round State

0 ---4---4---11-1- --1-3-2--4-8---- --1-3-28-c-8-2-- ---4-4-4---11-1- -----4----------

1 ---------------- ---------------- ---------------- -------8-8---2-- -------8-8---2--

2 8-4----8-------- ---------------- ---------------- ---------------- ----------------

3 -------8-------- ---------------- 2fc-----218a7a39 ---------------- ----------------

4 -9--2-9-2-12---- 844--8d--1b21-13 2d4-------821-21 254------------4 -c4-4-1--1--1-24

5 7d-1-1cda6c3f826 d94bc8bbde-4c573 6ecd5e-a7abb7629 56ef77b8fa68bc84 fe23b6e797a3fc66

Table 5: Type-II linear characteristics for r rounds of the Ascon-128 permuta-
tion.

(a) r = 2: 6 active S-boxes, bias 2−8.

Round State

0 ---------------- -----------2-4-- -----------2-4-1 -----2--------8- -----2--------8-

1 ---------------- ---------------- ---------------- ---------------1 ---------------1

2 9224b6d24b6eda49 ---------------- ---------------- ---------------- ----------------

(b) r = 3: 23 active S-boxes, bias 2−30.

Round State

0 -1-2-------2---- -4-8-2---181-842 -4-8-2---185-8c2 -------------4-1 -1-2--------4---

1 ---------------- -----------2-4-- -----------2-4-1 -----2--------81 -----2--------81

2 ---------------- ---------------- ---------------- ---------------1 ---------------1

3 9224b6d24b6eda49 ---------------- ---------------- ---------------- ----------------

(c) r = 4: 61 active S-boxes, bias 2−83.

Round State

0 ---d234--4b-2d4a -21-8--243-a---- -61-84--634a---- -1-2--------4--4 89-521----a-615a

1 -5-2--------44-- -4-a-2---181-cc2 -4-8-2---187-c43 ---2------------ -1-2------------

2 ---------------- -----------2-4-- -----------2-4-1 -----2--------8- -----2--------81

3 ---------------- ---------------- ---------------- ---------------1 ---------------1

4 9224b6d24b6eda49 ---------------- ---------------- ---------------- ----------------

96

Table 6: Type-I linear characteristics for r rounds of the ICEPOLE permutation.

(a) r = 5: 38 active S-boxes, bias 2−55.08.

Round State

0

2-------8-84-4-- -6-----9-----4-- -8-4-------a22-- -2--2--1--8----- d2-----8--------
5------1-------- -c------8-86---- -2-42--8--8----- 82---------822-- 28-----1---2----
34-----------4-- -------1--842--- -e-----8---2-4-- 4--42-----88-2-- 82-----18---24--
94-----18------- 2--4------84---- -------9----2--- -8---------a-2-- 4--42--1--8-----

1

---4------------ 1--4------------ ---------------- ------4--------- ----------------
18-------------- ---------------- 1--------------- -84------------- --4---4---------
1-4------------- ---------------- ---------------- -8-------------- -84---4---------
-844------------ 1--------------- ---4------------ --4------------- -8-4--4---------

2

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

4

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

5

---------8-----1 ---------------- ---------------- ---------------- ---------8------
2--------------- 2--------------- ---------------- ----2----------- ----2-----------
--22--------1--- ---2--------1--8 ---------------8 ---------------- --2-------------
------------8--- ------------8--- ----------8----- ----------8----- ----------------

97

(b) r = 6: 104 active S-boxes, bias 2−126.32.

Round State

0

2-------8-84-4-- -6-----------42- -8-4----1--822-- -2--2-81--82---- 52--------------
5-------------2- -c------8-84---- -2-42---1-8---2- -2---------822-- 28----81---2----
34-----------42- ----------842--- -e----8----2-4-- 4--42---1-88-2-- -2-----18---24--
14------8------- 2--4----1-84--2- ------------2--- -8----8----a-2-- 4--42--11-8-----

1

---4------------ 1--4------------ ---------------- ------4--------- ----------------
18-------------- ---------------- 1--------------- -84------------- --4---4---------
1-4------------- ---------------- ---------------- -8-------------- -84---4---------
-844------------ 1--------------- ---4------------ --4------------- -8-4--4---------

2

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

4

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

5

---------8------ ---------------1 ---------------1 ---------------- ---------8-----1
2--------------- 2--------------- ---------------- ----2----------- ----2-----------
---2--------1--- --2------------8 --2---------1--- ---------------8 --2-------------
----------8-8--- ---------------- ----------8-8--- ------------8--- ----------8-8---

6

-----4-2---4---8 2------2--8-1--8 24--11----8-1-4- ----1--1------44 ----24-14------4
1----1--4-4-9-51 9-8-8---4---d--1 --c-8-------6--- --49--8-----2--- ---8-18---4---4-
-81-8---46----c9 --1-----442--4-d ---4--------1--4 ---c-8------1--- -8-888-2-2----8-
-----9-22------8 -88-----2------8 --8--2--44-----1 --2-----44----81 --28-9-------28-

98

Table 7: Type-II linear characteristics for r rounds of the ICEPOLE permutation.

(a) r = 4: 22 active S-boxes, bias 2−30.42.

Round State

0

-4a-------8-8--- 1--1------------ ----4----4--81-- ------48-------- -941------------
198------------- ----------8-81-- 1--14----------- ---------4--8--- -46---48-----1--
156------------- --8------4--8--- ---1---8-----1-- -8--4-------8--- ------4--48-----
-1--------8----- 142-4-------8--- ---1-----4------ --4----8----81-- -88-4-4---------

1

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

2

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

3

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

4

---------------1 ---------------- ---------8------ ---------------- ----------------
2--------------- 2--------------- ---------------- ----2----------- ----------------
---2--------1--- ---2--------1--8 --2------------8 ---------------- ----------------
------------8--- ------------8--- ----------8----- ----------8----- ----------------

99

(b) r = 5: 38 active S-boxes, bias 2−59.49

Round State

0

2-------8-84-4-- -6-----9-----4-- -8-4-------a22-- -2--2--1--8----- d2-----8--------
5------1-------- -c------8-86---- -2-42--8--8----- 82---------822-- 28-----1---2----
34-----------4-- -------1--842--- -e-----8---2-4-- 4--42-----88-2-- 82-----18---24--
94-----18------- 2--4------84---- -------9----2--- -8---------a-2-- 4--42--1--8-----

1

---4------------ 1--4------------ ---------------- ------4--------- ----------------
18-------------- ---------------- 1--------------- -84------------- --4---4---------
1-4------------- ---------------- ---------------- -8-------------- -84---4---------
-844------------ 1--------------- ---4------------ --4------------- -8-4--4---------

2

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

4

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

5

---------8-----1 ---------------- ---------------- ---------------- ----------------
2--------------- 2--------------- ---------------- ----2----------- ----------------
--22--------1--- ---2--------1--8 ---------------8 ---------------- ----------------
------------8--- ------------8--- ----------8----- ----------8----- ----------------

Table 8: Type-III linear characteristics for r rounds of the ICEPOLE permuta-
tion.

(a) r = 3: 10 active S-boxes, bias 2−16.66.

Round State

0

-----2---------- -------2--4----- ------1--------- ---------------- ----------------
----------4----- -----2-2-------- ----------4----- ------1--------- ----------------
-------2--4----- -----2---------- -------2-------- ------1--------- ----------------
-------2-------- -----2----4----- ---------------- ------1--------- ----------------

1

---------------- ---------------- ---------------- ------------2--- ----------------
---------------- ---------------- ---------------- ------------2--- ----------------
---------------- ---------------- ---------------- ---------------- ------------2---
---------------- ---------------- ------------2--- ---------------- ----------------

2

-4-------------- ---------------- ---------------- ---------------- -4--------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

3

---------------- ---------------- ---2------------ ---2------------ ----------------
---------------- ---------------- ---------------- --------4------- ----------------
2--------------- 2--------------- ------4--------- ---------------- ----------------
---------------1 ---------------1 ---------------- ---------------- ----------------

100

(b) r = 4: 22 active S-boxes, bias 2−43.25.

Round State

0

----------1-8--- 1---2-------1-82 ------------8--- ---------------- ----------------
1---2----------2 ----------1-9-8- 1--------------2 ------------8--- ----------------
1-----------1-82 ----2-----1-8--- ------------1-8- ------------8--- ----------------
----2-------1-8- 1---------1-8--2 ----2----------- ------------8--- ----------------

1

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

2

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

3

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

4

---------8-----1 ---------------- ---------------- ---------------- ----------------
2--------------- 2--------------- ---------------- ----2----------- ----------------
--22--------1--- ---2--------1--8 ---------------8 ---------------- ----------------
------------8--- ------------8--- ----------8----- ----------8----- ----------------

(c) r = 5: 42 active S-boxes, bias 2−87.08.

Round State

0

----------8---2- ---4---a484-8-9- --3--------4-22- --1------------- ----------------
--24---9484---9- --2----2--8-8-2- ---4----4-4---1- --2----1---4-22- ----------------
--24---34-4-8-1- --3----9-88---a- --2----24---8--- --2--------4-2-- ----------------
-------a48--8-a- ---4---1--c---1- --2----948----a- --2--------4-2-- ----------------

1

---4------------ ---4------------ -----2------2--- -----2-24------- -8--------------
---------------- ------------2--- ---------------- -8-------------- -------24---2---
---------------- ---------------- --------4---2--- ---------------- -8-----2--------
-8-4------------ -----2---------- ---4------------ --------4---2--- ---4---2--------

2

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

4

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

5

---------------1 ---------------- ---------------- ---------8------ ----------------
2--------------- 2--------------- ---------------- ----2----------- ----------------
--22--------1--- ---2--------1--8 ---------------8 ---------------- ----------------
------------8--- ------------8--- ----------8----- ----------8----- ----------------

101

Table 9: Type-III linear characteristics for r rounds of the ICEPOLE-256a per-
mutation.

(a) r = 5: 42 active S-boxes, bias 2−89.49.

Round State

0

----------8---2- ---41--a494-8-9- --1-----------2- --1------------- ----------------
--241--9494---9- --2----2--8-8-2- ---4----4-4---1- -------1------2- ----------------
--24---34-4-8-1- --3-1--9-98---a- --2----24---8--- ---------------- ----------------
----1--a49--8-a- ---4---1--c---1- --2-1--949----a- ---------------- ----------------

1

---4------------ ---4------------ -----2------2--- -----2-24------- -8--------------
---------------- ------------2--- ---------------- -8-------------- -------24---2---
---------------- ---------------- --------4---2--- ---------------- -8-----2--------
-8-4------------ -----2---------- ---4------------ --------4---2--- ---4---2--------

2

-1-------------- ---------------- ---8------------ ---------------- ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------
---------------- -1-------------- ---------------- ---8------------ ----------------

3

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- --------1------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- --------1------- ---------------- --------1-------

4

-------------2-- ----4----------- ----4----------- ---------------- ----4--------2--
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

5

---------------1 ---------------- ---------------- ---------8------ ----------------
2--------------- 2--------------- ---------------- ----2----------- ----------------
---2--------1--- --22--------1--8 ---------------8 ---------------- ----------------
------------8--- ------------8--- ----------8----- ---------------- ----------------

102

Table 10: Type-I linear characteristics for r rounds of the Minalpher permutation.

(a) r = 4: 22 active S-boxes, bias 2−23

Round State

0 ---------1------ ------------1-1- ---------1------ --------1--1----

1 -------1-------- ---------------- --1------------- ----------------

2 -1-------1------ ---------------- -1-------1------ ----------------

3 --1----1--1----- ----------1----1 --1----1-------1 ----------1----1

4 1--1--1--1--1--- 1--111------11-- 1--1111--1---1-- -----11-----11--

(b) r = 5: 41 active S-boxes, bias 2−42.

Round State

0 ---1------------ ---------1----1- -------1-1------ -1------1-----1-

1 ---------------- -----1---------- --1------------- -------------1--

2 ---------1------ ---------------- -1-------------- ---------1------

3 ---1---1-------- ---------------1 ---1---1-------1 ---1-----------1

4 ---111-------1-- 1--1----11------ 1--111--11---1-- 11--1---1-------

5 ---1-111--1-1-11 1-111--11--1-1-- 1-----111--1111- 1-111--11-111---

(c) r = 6: 58 active S-boxes and bias 2−62.

Round State

0 ------1-8--1-1-- --1-----1--1---- ---1----1-1---11 --1--1------1--1

1 -1-1--3--------- ------2-------1- ---11----------- -1----2-1-----1-

2 1-------1----1-- --1------------- 1----1--1------- -----1----1-----

3 -----------1---- ------1--------- -----------1--1- ----------------

4 1----1-------1-- -------------1-- 1------------1-- -----1----------

5 -------1---1--11 -----------1--11 ------11-------- -----------1---1

6 1-11-1-1-1------ 1-11-----1--11-- -111-1-1----11-- 11--1--1-1--11--

103

Table 11: Type-I linear characteristics for r rounds of the Prøst-256 permuta-
tion.

(a) r = 4: 25 active S-boxes, bias 2−26

Round State

0

-4-----1 -------- -------- -------1
-------- -4-----1 -------- --------
-------- -4-----1 -------- --------
-4-----1 -------- -------- -4------

1

-------1 -------1 -------- --------
-------- -------- -------- --------
-------- -------- -------- --------
-------1 -------1 -------- --------

2

8------- -------- -------- --------
-----1-- -------- -----1-- --------
-------- -------- -------- --------
-------2 -------2 -------- --------

3

-----1-2 -------2 8------2 -----1-2
------1- 28------ -------- --------
1-28---- ---8---- 1-2----- 1-2-----
------a- -------- ----4--- ------8-

4

48142-9- -81----8 14-42-41 -81-2-8-
-8-12-8- -8--22-- --419--- 2--18-b8
--1--48- -8--488e -a----24 -21-2---
2-4-8325 7-5--32- 5-1--241 -----2-1

(b) r = 5: 41 active S-boxes, bias 2−42

Round State

0

-11----- -1--4--1 -------- --------
----4--1 ----4--- -11----- --1-----
--1----1 -11----- -1--4--- ----4--1
-1--4--- --1----1 -------- --------

1

-------- --1----- --1----- --------
--1----- -------- -------- --------
--1----- --1----- -------- --------
-------- --1----- --1----- --------

2

-------- -------- -------- --------
-------- -------- -------- --------
-------- -------- -------- --------
--2----- -------- -------- --------

3

--2----- -------- -------- --------
---2---- ---2---- -------- --------
-------- -----2-- -------- --------
-------- -------- -8------ --------

4

-4-1---- -----1-- -411-1-- -4-1----
-2------ 2--2---- -------8 -2------
-88----2 -88----- --8----- --8-8--2
1-4----- ---4---- -----4-- --------

5

12d--5-8 -c858--- 26-384-2 -2---4-a
81ed1-1- -1c458-- 2-8-4-4- -2a12-1-
4-a-e-1- --23643- 1-8-294- 4-8-e-18
-4-14--2 a-8----8 14a-42-e -54-4-83

104

(c) r = 6: 105 active S-boxes, bias 2−107

Round State

0

---214b5 c--8-682 85---a-2 -------5
c--8-222 ----148- ----1-84 -5-2-a31
c----c22 85---825 -5-812-4 ---a--92
45-21415 -4-8-82- 8-----82 41--16--

1

------81 ------21 4-----2- 4-----8-
4-----2- ------8- -------- ------21
------81 4-----8- 4------- ------2-
4-----a1 -------- -------- 4------1

2

------4- ------4- -------- --------
-------- -------- ------4- --------
-------- ------4- ------4- --------
-------- -------- ------4- --------

3

-------- -------- -------- --------
-------4 -------- -------- --------
-------- -------- -------- --------
-------- -------- -------- --------

4

-------- -------2 -------- --------
-------- -------- -----4-- --------
-----1-- -------- -------- --------
-------8 -------8 -------- --------

5

-----5-8 -----1-8 -------8 -----4-a
------5- 8------- 2------- --------
4-8----- --2----- 5-a----- 4-8-----
-----2-- ----4-8- ---1---- -----2--

6

3-4-828- 2-4-2269 481-81-4 3-4-8-8-
2--1-23- --4-88-- 2143d-1- a--7--d-
-84-16-c 2---423- 2-112-18 --418-88
a142-6b4 81---6a1 4----a-1 2-4-83-4

(d) r = 7: 169 active S-boxes, bias 2−175

Round State

0

---8725- 1-2-1--9 14---88e -----21-
1-2---8d ----3244 -----21- -4-84882
1---18cd -4-8481a -42---12 1-2-224-
-4-87-52 --2--884 1----28c -4--1--3

1

-----284 -------- -------- -----2-1
-------1 ------8- -------4 -----2-4
-----2-- -----2-1 -------1 ------84
-----285 -------- -------- ------81

2

-----1-- -----1-- -------- --------
-------- -------- -----1-- --------
-------- -------- -------- -----1--
-----1-- -----1-- -------- --------

3

-------- -------- -------- --------
-------- -------- -------- --------
1------- 1------- 1------- 1-------
-------- -------- -------- --------

4

-8------ -8------ -------- --------
------1- -------- -------- --------
-------- -------- -------4 --------
-------- 2------- -------- --------

5

28-----4 28----14 -------- -8------
42------ -------- -28----1 --8-----
-1------ ---28--- --42---- ----8---
-----4-- -----5-2 -------a -------8

6

11c--2-6 a-8--281 -421-2-9 11--42-f
428--623 8--51--8 42-1156- 428--c2-
b-81-6d2 --2--18a c--1448- a--1--8-
d-85-82e c2----3a 44-----c 4184-a-c

7

12a4179c 6-a54fc6 c46-4f2- 24-419e6
7a521179 63-65-51 1-5--4-b 874a444-
56565c55 2847144- 926a6a51 44776a55
d9-2-2a8 a1411f7c 61441299 694-86e9

105

Forgery Attacks on Round-Reduced
ICEPOLE-128

Publication Data

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Forgery Attacks
on Round-Reduced ICEPOLE-128”. In: Selected Areas in Cryptography – SAC
2015. Ed. by Orr Dunkelman and Liam Keliher. Vol. 9566. LNCS. Springer,
2016, pp. 479–492. url: https://doi.org/10.1007/978-3-319-31301-6_27

The appended paper is an author-created version available at https://eprint.
iacr.org/2015/392.

Contributions

• One of the main authors.

107

https://doi.org/10.1007/978-3-319-31301-6_27
https://eprint.iacr.org/2015/392
https://eprint.iacr.org/2015/392

Forgery Attacks on Round-Reduced
ICEPOLE-128

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

IAIK, Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. ICEPOLE is a family of authenticated encryptions schemes
submitted to the ongoing CAESAR competition and in addition pre-
sented at CHES 2014. To justify the use of ICEPOLE, or to point out po-
tential weaknesses, third-party cryptanalysis is needed. In this work, we
evaluate the resistance of ICEPOLE-128 against forgery attacks. By us-
ing differential cryptanalysis, we are able to create forgeries from a known
ciphertext-tag pair with a probability of 2−60.3 for a round-reduced ver-
sion of ICEPOLE-128, where the last permutation is reduced to 4 (out
of 6) rounds. This is a noticeable advantage compared to simply guess-
ing the right tag, which works with a probability of 2−128. As far as we
know, this is the first published attack in a nonce-respecting setting on
round-reduced versions of ICEPOLE-128.

Keywords: CAESAR, ICEPOLE, forgery, differential cryptanalysis

1 Introduction

ICEPOLE is a family of authenticated encryption schemes, which has been pre-
sented at CHES 2014 [17] and submitted to CAESAR [16]. CAESAR [18] is
an open cryptographic competition aiming to find a suitable portfolio of au-
thenticated encryption algorithms for many use cases. For the first round, 57
candidates have been submitted. Due to the open nature of CAESAR, those can-
didates have different design goals ranging from high-speed software designs to
designs suitable for compact hardware implementations. This makes comparison
of the submitted ciphers difficult, which is nevertheless necessary to determine
the ciphers for the next rounds. However, all designs have one goal in common:
security. Thus, as much security analysis as possible is needed to sort out weak
CAESAR candidates and get insight in the security of the others.

The goal of authenticated encryption is to provide confidentiality and au-
thenticity. Our attacks focus solely on the authenticity in a forgery attack. The
goal is to manipulate known ciphertext-tag pairs in a way such that they are
valid with a certain probability. For ICEPOLE-128, the intended number of bits
of security with respect to authenticity is 128. Therefore we consider only attacks
with a success probability above the generic 2−128 applicable.

The method of choice for our attacks is differential cryptanalysis [7]. To create
forgeries, we need differential characteristics which hold with a high probability

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-31301-6_27

and fulfill certain constraints explained later. By using this technique, we are
able to attack versions of ICEPOLE-128 where the last permutation is reduced
to 4 out of 6 rounds. As far as we know, no forgery attacks have been performed
on round-reduced versions of ICEPOLE. In addition, we have analyzed the main
building block of ICEPOLE, its permutation. We were able to improve the re-
sults of the designers regarding high-probability characteristics for the ICEPOLE
permutation without any additional constrains. Our results are summarized in
Table 1. Note that we have verified the forgery for 3 rounds practically by using
the reference implementation of ICEPOLE-128 submitted to CAESAR.

Table 1. Results for ICEPOLE.

Type Rounds Probability

ICEPOLE-128 forgery
3/6 2−14.8

4/6 2−60.3

ICEPOLE permutation differential characteristic
5 2−104.5

6 2−258.3

Related work. In the submission document [16], the designers bounded the
minimum number of active S-boxes in a differential characteristic for the ICE-
POLE permutation. They are able to show that for 3 rounds, the minimum
number of active S-boxes is 9, and that there are no characteristics with 13 or
fewer active S-boxes for 4 rounds. In addition, Morawiecki et al. [16] heuristi-
cally searched for differential characteristics. For 5 rounds, their best published
differential characteristic has a probability of 2−186.2, and for 6 rounds 2−555.3.

Recently, Huang et al. [13] presented state-recovery attacks on ICEPOLE in
a nonce-misuse scenario. They show that in this scenario, the internal state of
ICEPOLE-128 and ICEPOLE-128a can be recovered with complexity 246, and
the internal state of ICEPOLE-256a with complexity 260.

Outline. The remainder of the paper is organized as follows. We describe the
design of ICEPOLE in Section 2. Afterwards, we give a high-level overview
about the techniques used to find suitable differential characteristics in Section 3,
followed by our attacks on round-reduced versions of ICEPOLE in Section 4.
Finally, we conclude in Section 5.

2 Description of ICEPOLE

In this section, we give a short description of ICEPOLE-128 as it is specified in
the CAESAR design document [16]. For more details about ICEPOLE-128 and
the other members of the family, we refer to the CAESAR design document [16].

109

In case of disagreement between the specifications of ICEPOLE-128 in the CHES
and CAESAR documents, we always stick to the version submitted to CAESAR
and the available reference implementations of this version.

2.1 Mode of Operation

ICEPOLE uses a duplex-like [5] mode of operation, which operates on an internal
state of 1280 bits. This state S is represented as 20 64-bit words S[0..3][0..4].
Bits on the same position of all 20 words are called slice. The encryption (as well
as the decryption) can be split into the three subsequent phases: initialization,
processing of data, and finalization (tag generation), and is shown in Fig. 1.

P12

σAD
0

P6

IV

IV

Initialization Processing Finalization

key‖nonce σSM

cSM

pad

P6

σAD
m

P6

σP
0

c0

pad

P6

pad pad

σP
n

cn

P6

pad

T

Fig. 1. Encryption of ICEPOLE-128.

Initialization. First, the state S is initialized with a constant value. Afterwards,
the 128-bit key and the 128-bit nonce are xored to the internal state. Then, the
12-round variant P12 of the ICEPOLE permutation is applied.

Processing of Data. For processing, the associated data and the plaintext are
split into 1024-bit blocks, with possibly smaller last blocks. Each of these blocks
is padded to 1026 bits. The padding rule is to append a frame bit, followed by
a single 1 and zeros until 1026 bits are reached.

After the initialization, the padded secret message number σSM is xored
to the internal state and cSM is extracted. Then, 6 rounds of the ICEPOLE
permutation P6 are applied. After the processing of the secret message number,
the associated data blocks σAD

i are padded and injected, separated by the 6-
round ICEPOLE permutation P6. The plaintext blocks σP

i are processed in a
similar way, except that ciphertext blocks ci are extracted. For easier comparison
with other sponge-based [3,4] primitives, we move the last permutation call P6

(after the last plaintext block) to the finalization.

110

Finalization. Since we moved the last permutation call of the processing to
the finalization, the finalization starts with calling P6. Afterwards, the 128-bit
tag T is extracted from the state:

T = S[0][0]‖S[1][0].

2.2 Permutation

Two variants of the ICEPOLE permutation are used: One with 6 rounds, P6, and
one with 12 rounds, P12. Each round R consists of five steps, R = κ◦ψ ◦π ◦ρ◦µ.

– µ: Mixing of every 20-bit slice through an MDS matrix over GF (25).
– ρ: Rotation within all 64-bit words.
– π: Reordering of 64-bit words (words are swapped).
– ψ: Parallel application of 256 identical 5-bit S-boxes.
– κ: Constant addition.

For a detailed description of κ, ψ, π, ρ, and µ, we refer to the CAESAR
design document [16].

3 Search for Differential Characteristics

As we will see later, the existence of differential characteristics holding with
a high probability is crucial for our attacks on round-reduced ICEPOLE-128.
Since ICEPOLE-128 is a bit-oriented construction, automatic search tools are
helpful for finding complex differential characteristics with a high probability.
ICEPOLE-128 has a rather big internal state of 1280 bits involving many oper-
ations per permutation round. Therefore, we have decided to use the guess-and-
determine techniques already used for several attacks on hash functions [12,14,15]
together with a greedy strategy, which has already been used to find differential
characteristics with a high probability for SipHash [10].

We first describe the used concepts for representing differences within the
used automatic search tool and propagating them in Section 3.1. Then, we give
a high-level overview of our search strategy in Section 3.2.

3.1 Generalized Conditions and Propagation

To represent differential characteristics within the search tool, we have chosen
generalized conditions [8]. These conditions are suitable for guess-and-determine-
based searches, since they have a very high level of granularity. For instance,
with a ’?’, it can be represented that no restrictions are given at some point of a
search, or the value of a pair of bits can be completely determined, for instance
by ’1’ denoting that both bits of the pair have to have the value 1. The complete
set of all 16 generalized conditions can be found in Table 2.

111

Table 2. Generalized conditions [8].

x, x′ 0, 0 1, 0 0, 1 1, 1

? X X X X
- X − − X
x − X X −
0 X − − −
u − X − −
n − − X −
1 − − − X
− − − −

x, x′ 0, 0 1, 0 0, 1 1, 1

3 X X − −
5 X − X −
7 X X X −
A − X − X
B X X − X
C − − X X
D X − X X
E − X X X

Apart from the representation, the propagation of differences (or in this case
of the generalized conditions) through the components of the ICEPOLE permu-
tation has to be modeled. Here, we make the distinction between the linear part
of one round, consisting of the application of µ, ρ, and π, and the nonlinear part
ψ, which is the application of 256 5-bit S-boxes. The propagation for each S-box
is done by exhaustively calculating all possible solutions for given input and
output differences (basically look-ups in the difference distribution table). The
propagation of the linear part of each round is modeled by techniques described
in [11].

3.2 Search Strategy

On a high level, our search strategy can be split into the following two phases:

1. Search for a valid characteristic with a low number of active S-boxes.
2. Optimize the probability of the characteristic.

The first phase primarily serves to narrow the search space for the second
phase. In this first phase, we search for truncated differentials with as few dif-
ferentially active S-boxes as possible. In this context, an S-box is called active
if there are differences on its inputs and outputs. The number of active S-boxes
sets an upper bound on the best possible probability of a characteristic, since
the maximum differential probability of the ICEPOLE S-box is 2−2.

In the second phase, we search for the actual characteristic. In fact, just using
the truncated differential and searching for the best assignment does not give us
the best overall result. As we will see later, we search for characteristics having
a special form, where a low number of active S-boxes does not necessarily give
the best characteristic. Thus, we only fix the truncated differential for one or
two rounds, leaving the other rounds completely undetermined, and search for
high-probability characteristics by using the greedy algorithm presented in [10].

In summary, the first phase narrows the search space and gives us a good
starting point for the second phase. Then, in the second phase, the actual char-
acteristic is searched.

112

4 The Attack

The first thing to do when analyzing a cryptographic primitive is to find a
promising point to attack. Thus, we explain the observations that have led to
the attack on the finalization of ICEPOLE-128 using differential cryptanalysis
in Section 4.1. After that, we discuss our first findings regarding forgeries in
Section 4.2, and explain the trick leading to an improvement of the attack in
Section 4.3. Finally, in Section 4.4, we show characteristics for 5 and 6 rounds
of the ICEPOLE permutation which are not suitable for a forgery, but have a
better probability than the best characteristics published by the designers [16].

4.1 Basic Attack Strategy

ICEPOLE uses a sponge-like mode of operation like several other CAESAR can-
didates including Ascon [9], Keyak [6], or NORX [1,2]. When comparing those
Sponge constructions with ICEPOLE, it is noticeable that the last permutation,
which separates the last plaintext injection from the extraction of the tag, has
much fewer rounds in the case of ICEPOLE compared to the others.

For more detail, we have a closer look at the number of permutation rounds
during the three different stages for the proposals of Ascon, ICEPOLE, Keyak,
and NORX, which have the same security level of 128 bits. The number of rounds
in each stage for these four primitives is given in Table 3. We can see that for As-
con and NORX, the number of rounds for data processing is reduced compared
to finalization and initialization and for all three competitors of ICEPOLE, the
finalization is equally strong as the initialization. In the case of ICEPOLE, the
permutation used in the finalization has the same number of rounds as the per-
mutation during the processing of data, and thus just half of the rounds of the
permutation used during the initialization. So it is interesting to evaluate if the
designers of the competitors of ICEPOLE have been overly conservative in the
design of their respective finalization, or if their decision to invest more rounds
can be justified.

Table 3. Permutation rounds for some sponge-like CAESAR candidates.

Initialization Data Processing Finalization

Ascon 12 6 12
ICEPOLE 12 6 6
Keyak 12 12 12
NORX 8 4 8

113

4.2 Creating Forgeries

In this section, we first describe the principles of our attack on a high level.
Afterwards, we discuss our preliminary results regarding suitable characteristics
when just considering the 1024 bits of the ciphertext blocks to inject differences.

Attack Strategy. For creating forgeries with the help of differential charac-
teristics, we have in principle two attack points in sponge-like constructions as
ICEPOLE-128. We can either attack the data processing, or we can perform
the attack on the finalization. In both cases, the key to a successful attack lies
in the search for a suitable differential characteristic which holds with a high
probability.

Fig. 2 shows how a forgery during the processing of the data works. This
approach requires a differential characteristic with differences only in those parts
of the state that can be modified with message blocks, while the rest of the state
has to remain free of differences. In other words, we search for a characteristic
capable of producing collisions on the internal state. If we have found such a
characteristic with input difference ∆0 that holds with probability 2−x, we can
create a forgery which succeeds with probability 2−x as follows: Assume we know
a valid ciphertext-tag pair consisting of two ciphertext blocks (c0‖c1, T). Then,
the ciphertext-tag pair (c0 ⊕ ∆0‖c1, T) is valid with probability 2−x. Thus, a
valid forgery can be created with complexity 2x.

P6

σP
0 ⊕∆0

c0 ⊕∆0

pad

P6

T

P6

σP
1 ⊕∆1c1

pad

Fig. 2. Forgery during data processing.

The second option, attacking the finalization, is pictured in Fig. 3. In contrast
to the previous attack, the requirements on a suitable characteristic can be
relaxed. Here, we do not require a collision. It is sufficient that the difference ∆1

for the tag T is known. The actual difference in the rest of the state does not
matter in this attack. In other words, a forgery can be created from a known
ciphertext-tag (c0‖c1, T) by applying suitable differences to c1 and T to get
(c0‖c1 ⊕∆0, T ⊕∆1).

In case of ICEPOLE, the permutation during the processing of the data and
the finalization is equally strong. The requirements on suitable characteristics are

114

P6

σP
0c0

pad

P6

T ⊕∆1

P6

σP
1 ⊕∆0

c1 ⊕∆0

pad

Fig. 3. Forgery during finalization.

less restrictive when attacking the finalization. Thus, attacks on the finalizations
are easier to achieve. In addition, the fact that the linear layer is located before
the application of the S-boxes comes in handy. ICEPOLE has a state size of 1280
bits. For the generation of the tag, only 128 bits of the 1280 bits are extracted.
The other bits do not influence the tag. Since the S-boxes are located at the end
of the permutation, 128 of the 256 S-boxes of the last round have no influence on
the tag and therefore, do not contribute to the probability of creating a forgery.
Moreover, the other 128 S-boxes of the last round only contribute a single bit,
which also has a positive effect on the total probability.

Suitable Characteristics. As discussed before, we need characteristics with a
good probability, where the input differences lie in the part of the state that can
be controlled by a ciphertext block, and where as many of the active S-boxes as
possible lie in parts which do not contribute to the probability. However, before
we present our results, we describe the findings of the designers [16] and the
results by Huang et al. [13].

The designers of ICEPOLE already searched for differential characteristics
without any special restrictions. They have found characteristics for 3 rounds
with probability 2−18.4, 4 rounds with 2−52.8, 5 rounds with 2−186.2 and 6 rounds
with 2−555.5. Indeed, when considering that the last round of ICEPOLE only
contributes partially to the probability, these results look promising from the
perspective of an attacker. However, as already observed by Huang et al. [13],
these characteristics cannot be used for attacks on the cipher. They showed
that if only 1024 bits of a message block are considered suitable for introducing
differences, it is impossible to find a 3-round path with 9 active S-boxes in the
form 4-1-4. Moreover, they show that the minimum number of active S-boxes in
the first round is 2 in this case.

Our search for suitable characteristics supports their result. If we just con-
sider the 1024 bits of the message block suitable for differences, we can create
forgeries for 3 rounds with probability 2−25.3 and, for 4 rounds with a probability
close to 2−128. However, in the next section, we explain how we improved the
probability for the 4-round attack to 2−60.3 by exploiting the padding rule of the
last processed plaintext block.

115

4.3 Exploiting the Padding

ICEPOLE uses at most 1024-bit message blocks, which are padded to 1026 bits
by appending a frame bit, which is 0 for the last plaintext block, followed by a
single 1 and as many zeros until 1026 bits are reached. So using, for instance, a
1016-bit block and a 1024-bit block (where the last byte fulfills the padding rule
applied to the 1016-bit block) virtually flips a bit in an otherwise unaccessible
part of the state. By using this trick, we are able to use characteristics where
only one S-box is active in the first round.

With these improved differential characteristics, we are able to create forg-
eries for ICEPOLE-128 with the finalization reduced to 3 (out of 6) rounds with
probability 2−14.8, and for 4 rounds (out of 6) with probability 2−60.3. The char-
acteristics for the 3-round attack can be found in Table 4, and for the 4-round
attack in Table 5 of Appendix A.

The 3-round attack on ICEPOLE-128 has been verified using the reference
implementation ICEPOLE128v1 submitted to CAESAR with a modified number
of rounds for permutation P6. We fixed a random key at the beginning and
encrypted random 1024-bit messages (last byte of messages has to be equal to
the padding 0x2) with random nonces to get 1024-bit ciphertexts. The forgeries
are created by applying the difference shown in Table 4 to ciphertext and tag
and discarding the last byte of the ciphertext. Removing the last byte of the
ciphertext introduces a difference at bit 1026. Backed up by our experiments
(228 message-tag pairs), a forgery for round-reduced ICEPOLE-128, where the
finalization is reduced to 3 out of 6 rounds, can be created with probability 2−11.7.
For the 4-round attack, the probability is too low to be verified experimentally.
However, parts of the used characteristic which have a high probability have
been verified.

To introduce differences with the help of the padding, we can either extend
or truncate known ciphertexts. As already discussed before, creating forgeries
by truncating the last byte of the ciphertext only works if the last byte of the
message before encryption equals the padding. Extending 1016-bit ciphertexts
requires to guess 8 bits of the internal state correctly and hence decreases the
probability by 2−8. In the case of messages consisting of a fractional number of
bytes, 1022-bit ciphertexts can be extended, leading to a decrease of 2−2.

4.4 Characteristics for the Permutation

We also considered characteristics without any special restrictions. We have been
able to improve the results published in the design documents. We have found
a 5-round characteristic with an estimated probability of 2−104.5 and a 6-round
characteristic with an estimated complexity of 2−258.4. The characteristics are
given in Table 6 and Table 7 of Appendix A. Both characteristics are a percep-
tible improvement over the characteristics given in the design document [16],
which have a probability of 2−186.2 and 2−555.3, respectively.

116

5 Conclusion

In this work, we have analyzed the resistance of ICEPOLE-128 against forgery
attacks. Our attacks work for versions of ICEPOLE-128 where the permutation
used during the finalization is reduced to 4 (out of 6) rounds. This means that
ICEPOLE-128 has a security margin of 2 rounds, which is lower than the 3
rounds expected by the designers [16].

Acknowledgments. The work has been supported in part by the Austrian
Science Fund (project P26494-N15) and by the Austrian Research Promotion
Agency (FFG) and the Styrian Business Promotion Agency (SFG) under grant
number 836628 (SeCoS).

References

1. Aumasson, J., Jovanovic, P., Neves, S.: NORX. Submission to the CAESAR com-
petition: http://competitions.cr.yp.to/round1/norxv1.pdf (2014)

2. Aumasson, J., Jovanovic, P., Neves, S.: NORX: Parallel and Scalable AEAD. In:
Kutylowski, M., Vaidya, J. (eds.) Computer Security – ESORICS 2014, Part II.
LNCS, vol. 8713, pp. 19–36. Springer (2014)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. ECRYPT
Hash Workshop 2007 (May 2007)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: Smart, N.P. (ed.) Advances in Cryptology – EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer (2008)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) Selected Areas in Cryptography – SAC 2011. LNCS, vol. 7118, pp.
320–337. Springer (2011)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak. Sub-
mission to the CAESAR competition: http://competitions.cr.yp.to/round1/
keyakv1.pdf (2014)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

8. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) Advances in Cryptology – ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer (2006)

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission
to the CAESAR competition: http://competitions.cr.yp.to/round1/asconv1.
pdf (2014)

10. Dobraunig, C., Mendel, F., Schläffer, M.: Differential Cryptanalysis of SipHash.
In: Joux, A., Youssef, A.M. (eds.) Selected Areas in Cryptography – SAC 2014.
LNCS, vol. 8781, pp. 165–182. Springer (2014)

11. Eichlseder, M., Mendel, F., Nad, T., Rijmen, V., Schläffer, M.: Linear Propagation
in Efficient Guess-and-Determine Attacks. In: Lilya Budaghyan, Tor Helleseth,
M.G.P. (ed.) International Workshop on Coding and Cryptography. pp. 193–202
(2013)

117

12. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential colli-
sion search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) Fast
Software Encryption – FSE 2014. LNCS, vol. 8540, pp. 473–488. Springer (2014)

13. Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE.
In: Leander, G. (ed.) Fast Software Encryption – FSE 2015. LNCS, vol. 9054, pp.
243–263. Springer (2015)

14. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology – ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer (2011)

15. Mendel, F., Nad, T., Schläffer, M.: Improving Local Collisions: New Attacks on
Reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology
– EUROCRYPT 2013. LNCS, vol. 7881, pp. 262–278. Springer (2013)

16. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J., Ro-
gawski, M., Srebrny, M., Wójcik, M.: ICEPOLE. Submission to the CAESAR
competition: http://competitions.cr.yp.to/round1/icepolev1.pdf (2014)

17. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J., Ro-
gawski, M., Srebrny, M., Wójcik, M.: ICEPOLE: High-Speed, Hardware-Oriented
Authenticated Encryption. In: Batina, L., Robshaw, M. (eds.) Cryptographic Hard-
ware and Embedded Systems – CHES 2014. LNCS, vol. 8731, pp. 392–413. Springer
(2014)

18. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014), http://competitions.cr.yp.to/

caesar.html

118

A Differential Characteristics

Table 4. 3-round characteristic suitable for forgery with probability 2−14.8.

S[0][0]0 --x-

S[0][1]0 --

S[0][2]0 --x-

S[0][3]0 --

S[0][4]0 --x-

S[1][0]0 --

S[1][1]0 --x-

S[1][2]0 --x-

S[1][3]0 --x-

S[1][4]0 --

S[2][0]0 --

S[2][1]0 --x-

S[2][2]0 --x-

S[2][3]0 --x-

S[2][4]0 --

S[3][0]0 --

S[3][1]0 --x-

S[3][2]0 --x-

S[3][3]0 --x-

S[3][4]0 --

S[0][0]1 --0-

S[0][1]1 --x-

S[0][2]1 --

S[0][3]1 --

S[0][4]1 --

S[1][0]1 --

S[1][1]1 --

S[1][2]1 --

S[1][3]1 --

S[1][4]1 --

S[2][0]1 --

S[2][1]1 --

S[2][2]1 --

S[2][3]1 --

S[2][4]1 --

S[3][0]1 --

S[3][1]1 --

S[3][2]1 --

S[3][3]1 --

S[3][4]1 --

S[0][0]2 --

S[0][1]2 -------1--

S[0][2]2 -------x--

S[0][3]2 --

S[0][4]2 --

S[1][0]2 --

S[1][1]2 --

S[1][2]2 --

S[1][3]2 --

S[1][4]2 --

S[2][0]2 ---x----

S[2][1]2 --

S[2][2]2 --

S[2][3]2 ------------------1---

S[2][4]2 ------------------x--1----

S[3][0]2 --x-------

S[3][1]2 --

S[3][2]2 --

S[3][3]2 --

S[3][4]2 --1-------

S[0][0]3 x---

S[0][1]3 ----E-----------------------?---------------------------7--7----

S[0][2]3 ----E-----------------------?--------?------------------?--?----

S[0][3]3 ?---?-----------------------x--------?------------------?--?----

S[0][4]3 ?---?--------------------------------x------------------?--?----

S[1][0]3 --

S[1][1]3 ---7------

S[1][2]3 --?----------7------

S[1][3]3 --?----------?------

S[1][4]3 --x----------?------

S[2][0]3 ------------?--?-----?-------------------------------------?-?--

S[2][1]3 ------------?--?-----?-------------------------------------?-?--

S[2][2]3 ------------?--?-----?-------------------------------------?-?--

S[2][3]3 ------------?--?-----?-------------------------------------?-?--

S[2][4]3 ------------?--?-----?-------------------------------------?-?--

S[3][0]3 ----------------------------?-?-------------------?---?------?--

S[3][1]3 ----------------------------?-?-------------------?---?------?--

S[3][2]3 ----------------------------?-?-------------------?---?------?--

S[3][3]3 ----------------------------?-?-------------------?---?------?--

S[3][4]3 ----------------------------?-?-------------------?---?------?--

119

Table 5. 4-round characteristic suitable for forgery with probability 2−60.3.

S[0][0]0 --x-

S[0][1]0 --

S[0][2]0 --x-

S[0][3]0 --

S[0][4]0 --x-

S[1][0]0 --

S[1][1]0 --x-

S[1][2]0 --x-

S[1][3]0 --x-

S[1][4]0 --

S[2][0]0 --

S[2][1]0 --x-

S[2][2]0 --x-

S[2][3]0 --x-

S[2][4]0 --

S[3][0]0 --

S[3][1]0 --x-

S[3][2]0 --x-

S[3][3]0 --x-

S[3][4]0 --

S[0][0]1 --0-

S[0][1]1 --x-

S[0][2]1 --

S[0][3]1 --

S[0][4]1 --

S[1][0]1 --

S[1][1]1 --

S[1][2]1 --

S[1][3]1 --

S[1][4]1 --

S[2][0]1 --

S[2][1]1 --

S[2][2]1 --

S[2][3]1 --

S[2][4]1 --

S[3][0]1 --

S[3][1]1 --

S[3][2]1 --

S[3][3]1 --

S[3][4]1 --

S[0][0]2 --

S[0][1]2 -------1--

S[0][2]2 -------x--

S[0][3]2 --

S[0][4]2 --

S[1][0]2 --

S[1][1]2 --

S[1][2]2 --

S[1][3]2 --

S[1][4]2 --

S[2][0]2 ---x----

S[2][1]2 --

S[2][2]2 --

S[2][3]2 ------------------1---

S[2][4]2 ------------------x--1----

S[3][0]2 --x-------

S[3][1]2 --

S[3][2]2 --

S[3][3]2 --

S[3][4]2 --1-------

S[0][0]3 x---0--x----

S[0][1]3 ----1-----------------------x---------------------------x--x----

S[0][2]3 ----x-----------------------x-----------------------------------

S[0][3]3 ----------------------------x--------1--------------------------

S[0][4]3 1------------------------------------x---------------------x----

S[1][0]3 ---0------

S[1][1]3 ---x------

S[1][2]3 ---0------

S[1][3]3 --1----------1------

S[1][4]3 --x-----------------

S[2][0]3 ---x----

S[2][1]3 ---------------------1-------------------------------------x----

S[2][2]3 ---------------------x-------------------------------------x-1--

S[2][3]3 ------------1--1---x--

S[2][4]3 ------------x--x--

S[3][0]3 --x----------1--

S[3][1]3 ------------------------------1------------------------------x--

S[3][2]3 ------------------------------x---------------------------------

S[3][3]3 ----------------------------1-------------------------1---------

S[3][4]3 ----------------------------x---------------------1---x---------

S[0][0]4 ----------------------------x-------xx--------------------x--x--

S[0][1]4 -E-?--E-------?-?--------?-----------?----?------?7-------------

S[0][2]4 -E-?--E-------?-?--------?-----?--?--?----?----?-??-------------

S[0][3]4 -?-x--?-------x-x--------x--?--?--?-??----x----?-??-------?--?--

S[0][4]4 -?----?---------------------?--x--x-??---------x-x?-------?--?--

S[1][0]4 ---------------------------------------x------x-----------------

S[1][1]4 ---------------------?---?-E?------7--------7--------E---------E

S[1][2]4 ---?-?---------------?---?-E?-----??-------??------?-E?--------E

S[1][3]4 ---?-?---------------x---x-?x-----??---?---??-?----?-??--------?

S[1][4]4 ---x-x---------------------?------x?---?---x?-?----x-?x--------?

S[2][0]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][1]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][2]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][3]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][4]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[3][0]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][1]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][2]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][3]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][4]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

120

Table 6. 5-round characteristic with probability 2−104.5.

S[0][0]0 x------x---xx---------x--x--------------------x----------------x

S[0][1]0 x---x-x----xx-----x--xx------------------x-------------------x--

S[0][2]0 ----x-----x-------x------xx--------------x----x--------x-------x

S[0][3]0 x---x--x--x-x-----x---x--xx-------------------x--------x-------x

S[0][4]0 x------x--x-x--------xx--xx-------------------x--------x-------x

S[1][0]0 x------x---x-------------xx-------------------------------------

S[1][1]0 x------x----x---------x-----------------------x----------------x

S[1][2]0 x---x--x---xx-----x--x---xx------------------x------------------

S[1][3]0 -------x--xxx--------xx---x----x--------------x--------x-----x-x

S[1][4]0 ------xx---xx-----x--x---x---------------x---xx--------x-----x-x

S[2][0]0 ------xx----x--------x---------------------------------x-----x--

S[2][1]0 x------x---xx---------x--x---------------x---x------------------

S[2][2]0 ----x-xx----x-----x---x------------------x-------------x-----x--

S[2][3]0 x---x--x--x-----------x--xx----x---------x---x---------x--------

S[2][4]0 ------xx--x-----------x--x-----x--------------x--------------x-x

S[3][0]0 ------xx--xx----------x-----------------------x--------------x-x

S[3][1]0 x------x----x---------x------------------x---x------------------

S[3][2]0 x---x-xx--x-------x--xx----------------------xx----------------x

S[3][3]0 x------x--xxx-----x--x----x--------------x---x---------x--------

S[3][4]0 x---x--x---x---------x---xx----x---------x---xx----------------x

S[0][0]1 1-------------------x---------0---------------------------------

S[0][1]1 x--x----------------x---------x---------------------------------

S[0][2]1 x--x----------------x---------x---------------------------------

S[0][3]1 x--x----------------0---------x---------------------------------

S[0][4]1 1-------------------x---------1---------------------------------

S[1][0]1 --------------------x---------1---------------------------------

S[1][1]1 ---1----------------x---------0---------------------------------

S[1][2]1 x--x----------------0---------x---------------------------------

S[1][3]1 0-------------------x---------x---------------------------------

S[1][4]1 x-------------------x---------0---------------------------------

S[2][0]1 ---1----------------x---

S[2][1]1 1--0----------------x---

S[2][2]1 x--x----------------1---------x---------------------------------

S[2][3]1 ---x----------------x---------0---------------------------------

S[2][4]1 ---0----------------x---------x---------------------------------

S[3][0]1 1-------------------x---

S[3][1]1 0-------------------x---------1---------------------------------

S[3][2]1 x--x--------------------------x---------------------------------

S[3][3]1 x--0----------------x---

S[3][4]1 0--x----------------x---

S[0][0]2 --0---

S[0][1]2 --x---

S[0][2]2 --x---

S[0][3]2 --x---

S[0][4]2 --0---

S[1][0]2 --

S[1][1]2 --1---

S[1][2]2 --x---

S[1][3]2 --

S[1][4]2 --

S[2][0]2 --

S[2][1]2 --

S[2][2]2 --x---

S[2][3]2 --x---

S[2][4]2 --

S[3][0]2 --

S[3][1]2 --

S[3][2]2 --x---

S[3][3]2 --0---

S[3][4]2 --x---

S[0][0]3 --

S[0][1]3 --

S[0][2]3 --

S[0][3]3 --

S[0][4]3 --

S[1][0]3 --

S[1][1]3 -1--

S[1][2]3 -x--

S[1][3]3 --

S[1][4]3 --

S[2][0]3 --

S[2][1]3 --

S[2][2]3 --

S[2][3]3 --

S[2][4]3 --

S[3][0]3 --

S[3][1]3 --

S[3][2]3 --

S[3][3]3 --

S[3][4]3 --

S[0][0]4 --

S[0][1]4 ----------1---

S[0][2]4 ----------x---

S[0][3]4 --

S[0][4]4 --

S[1][0]4 --x-------------

S[1][1]4 --

S[1][2]4 --

S[1][3]4 --

S[1][4]4 --1-------------

S[2][0]4 --x-

S[2][1]4 --

S[2][2]4 --

S[2][3]4 --

S[2][4]4 --1-

S[3][0]4 ---1--------

S[3][1]4 ---x--------

S[3][2]4 --

S[3][3]4 --

S[3][4]4 --

S[0][0]5 --1-----------0-

S[0][1]5 1------1--x--------1--x-

S[0][2]5 x------x-----------------------1---------------------------x----

S[0][3]5 -------------------------------x--------------------------------

S[0][4]5 --

S[1][0]5 ---0----------1---

S[1][1]5 ---1----------x---

S[1][2]5 -------------------1--

S[1][3]5 -------------------x-----------------------------0--------------

S[1][4]5 ---x--------------

S[2][0]5 --

S[2][1]5 --

S[2][2]5 1--1------

S[2][3]5 x-----------------1--------------------------------------x------

S[2][4]5 ------------------x---

S[3][0]5 1---x1------------------

S[3][1]5 x--------------------------------1-----------x------------------

S[3][2]5 ---------------------------------x------------------------1-----

S[3][3]5 --x-----

S[3][4]5 --1-------------------

121

Table 7. 6-round characteristic with probability 2−258.3.

S[0][0]0 x------x--xxx---------x--x--------------------x----------------x

S[0][1]0 x---x-x----xx-----x--xx------------------x-------------------x--

S[0][2]0 ----x-------------x------xx--------------x----x--------x-------x

S[0][3]0 x---x--x----x-----x---x--xx-------------------x--------x-------x

S[0][4]0 x------x----x--------xx--xx-------------------x--------x-------x

S[1][0]0 x------x---x-------------xx-------------------------------------

S[1][1]0 x------x----x---------x-----------------------x----------------x

S[1][2]0 x---x--x---xx-----x--x---xx------------------x------------------

S[1][3]0 -------x--xxx--------xx---x----x--------------x--------x-----x-x

S[1][4]0 ------xx--xxx-----x--x---x---------------x---xx--------x-----x-x

S[2][0]0 ------xx--x-x--------x---------------------------------x-----x--

S[2][1]0 x------x---xx---------x--x---------------x---x------------------

S[2][2]0 ----x-xx--x-x-----x---x------------------x-------------x-----x--

S[2][3]0 x---x--x--x-----------x--xx----x---------x---x---------x--------

S[2][4]0 ------xx--------------x--x-----x--------------x--------------x-x

S[3][0]0 ------xx--xx----------x-----------------------x--------------x-x

S[3][1]0 x------x--x-x---------x------------------x---x------------------

S[3][2]0 x---x-xx--x-------x--xx----------------------xx----------------x

S[3][3]0 x------x---xx-----x--x----x--------------x---x---------x--------

S[3][4]0 x---x--x--xx---------x---xx----x---------x---xx----------------x

S[0][0]1 1-------------------x---------0---------------------------------

S[0][1]1 x--x----------------x---------x---------------------------------

S[0][2]1 x--x----------------x---------x---------------------------------

S[0][3]1 x--x----------------0---------x---------------------------------

S[0][4]1 1-------------------x---------1---------------------------------

S[1][0]1 --------------------x---------1---------------------------------

S[1][1]1 ---1----------------x---------0---------------------------------

S[1][2]1 x--x----------------0---------x---------------------------------

S[1][3]1 0-------------------x---------x---------------------------------

S[1][4]1 x-------------------x---------0---------------------------------

S[2][0]1 ---1----------------x---

S[2][1]1 1--0----------------x---

S[2][2]1 x--x----------------1---------x---------------------------------

S[2][3]1 ---x----------------x---------0---------------------------------

S[2][4]1 ---0----------------x---------x---------------------------------

S[3][0]1 1-------------------x---

S[3][1]1 0-------------------x---------1---------------------------------

S[3][2]1 x--x--------------------------x---------------------------------

S[3][3]1 x--0----------------x---

S[3][4]1 0--x----------------x---

S[0][0]2 --0---

S[0][1]2 --x---

S[0][2]2 --x---

S[0][3]2 --x---

S[0][4]2 --0---

S[1][0]2 --

S[1][1]2 --1---

S[1][2]2 --x---

S[1][3]2 --

S[1][4]2 --

S[2][0]2 --

S[2][1]2 --

S[2][2]2 --x---

S[2][3]2 --x---

S[2][4]2 --

S[3][0]2 --

S[3][1]2 --

S[3][2]2 --x---

S[3][3]2 --0---

S[3][4]2 --x---

S[0][0]3 --

S[0][1]3 --

S[0][2]3 --

S[0][3]3 --

S[0][4]3 --

S[1][0]3 --

S[1][1]3 -1--

S[1][2]3 -x--

S[1][3]3 --

S[1][4]3 --

S[2][0]3 --

S[2][1]3 --

S[2][2]3 --

S[2][3]3 --

S[2][4]3 --

S[3][0]3 --

S[3][1]3 --

S[3][2]3 --

S[3][3]3 --

S[3][4]3 --

S[0][0]4 --

S[0][1]4 ----------1---

S[0][2]4 ----------x---

S[0][3]4 --

S[0][4]4 --

S[1][0]4 --x-------------

S[1][1]4 --

S[1][2]4 --

S[1][3]4 --

S[1][4]4 --1-------------

S[2][0]4 --x-

S[2][1]4 --

S[2][2]4 --

S[2][3]4 --

S[2][4]4 --1-

S[3][0]4 ---1--------

S[3][1]4 ---x--------

S[3][2]4 --

S[3][3]4 --

S[3][4]4 --

S[0][0]5 x---1-----------0-

S[0][1]5 x------1--x--------1--x-

S[0][2]5 x------x-----------------------1---------------------------x----

S[0][3]5 -------------------------------x--------------------------------

S[0][4]5 --

S[1][0]5 ---0----------1---

S[1][1]5 ---1----------x---

S[1][2]5 -------------------1--

S[1][3]5 -------------------x-----------------------------0--------------

S[1][4]5 ---x--------------

S[2][0]5 ------------------x---

S[2][1]5 x-----------------x---

S[2][2]5 0-----------------x--------------------------------------1------

S[2][3]5 x-----------------0--------------------------------------x------

S[2][4]5 ------------------0---

S[3][0]5 1---x1------------x-----

S[3][1]5 x--------------------------------1-----------x------------1-----

S[3][2]5 ---------------------------------x------------------------x-----

S[3][3]5 --1-----

S[3][4]5 --1-------------x-----

S[0][0]6 -------------x----1------------x--------x---1-------------0-----

S[0][1]6 -------1----------x--------1----------------x---------1---x1----

S[0][2]6 ------1x--------11---1-----x1----------1--------------x----x----

S[0][3]6 ------x------x--xx---x------x---------1x----------1-1-----------

S[0][4]6 -------------0-----------------1------x-1---------x-x-----------

S[1][0]6 ----------------0-------------------------xx---1-x-------1------

S[1][1]6 ----------------x1-----------------------------x---------1------

S[1][2]6 ---------1-------x------1---1-----------------x-----------------

S[1][3]6 --------1x--------------x---x----11-----------0----------x1-----

S[1][4]6 --------x-------x----------------xx-------11--x--1-------xx-----

S[2][0]6 ----------1----x------------1-x------------------------x---x-1--

S[2][1]6 ----------x-----------1-----x------------------x-------------0--

S[2][2]6 --------------------x-x------------------------x---1---------x--

S[2][3]6 1-----1-------1-1-1-0------------------------------x---------1--

S[2][4]6 x-----x-------x1x-x-x---------1----------------0-------1---1-1--

S[3][0]6 ------------x---0----------x--0----1--x-----x--111----1-x----1--

S[3][1]6 ----------------1-1-----------1----x------1----xxx----x------x--

S[3][2]6 -11-----1---------x-----------------------x---------------------

S[3][3]6 -xx-----x-------0-------------0-1---1---------------------------

S[3][4]6 ------------1---x----------1--x-x---x-1-----1-----------1-------

122

Cryptanalysis of Ascon

Publication Data

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
“Cryptanalysis of Ascon”. In: Topics in Cryptology – CT-RSA 2015. Ed. by
Kaisa Nyberg. Vol. 9048. LNCS. Springer, 2015, pp. 371–387. url: https:
//doi.org/10.1007/978-3-319-16715-2_20

The appended paper is an author-created version available at https://eprint.
iacr.org/2015/030.

Contributions

• Technical: Contributed to cube-like attacks, differential forgery attacks,
and differential-linear attacks. Performed practical experiments for cube-like
attacks, differential forgery attacks, and differential-linear attacks (except
key recovery for differential-linear attacks). Performed heuristic search
for linear characteristics. No contributions to the search for differential
characteristics, providing linear and differential bounds, and improvement
of zero-sum distinguishers using Walsh spectrum analysis.

• Writing: Contributions to the writing of Sections 3, 4, 5.2, 5.3, and 5.4.

123

https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-16715-2_20
https://eprint.iacr.org/2015/030
https://eprint.iacr.org/2015/030

Cryptanalysis of Ascon

Christoph Dobraunig1, Maria Eichlseder1, Florian Mendel1, and Martin
Schläffer2

1 IAIK, Graz University of Technology, Austria
firstname.lastname@iaik.tugraz.at
2 Infineon Technologies AG, Austria

martin.schlaeffer@gmail.com

Abstract. We present a detailed security analysis of the CAESAR can-
didate Ascon. Amongst others, cube-like, differential and linear crypt-
analysis are used to evaluate the security of Ascon. Our results are
practical key-recovery attacks on round-reduced versions of Ascon-128,
where the initialization is reduced to 5 out of 12 rounds. Theoretical key-
recovery attacks are possible for up to 6 rounds of initialization. More-
over, we present a practical forgery attack for 3 rounds of the finalization,
a theoretical forgery attack for 4 rounds finalization and zero-sum distin-
guishers for the full 12-round Ascon permutation. Besides, we present
the first results regarding linear cryptanalysis of Ascon, improve upon
the results of the designers regarding differential cryptanalysis, and prove
bounds on the minimum number of (linearly and differentially) active S-
boxes for the Ascon permutation.

Keywords: Ascon, CAESAR initiative, cryptanalysis, authenticated
encryption

1 Introduction

The CAESAR competition [20] is an ongoing cryptographic competition, where
numerous authenticated encryption schemes are challenging each other with the
goal of finding a portfolio of ciphers, suitable for different use-cases. Currently,
more than 45 ciphers are still participating in the competition. In the near fu-
ture, this portfolio will be further reduced to focus the attention of the crypto
community on a few candidates. Therefore, analyzing the security of the can-
didate ciphers is of great importance to enable the committee to judge them
adequately.

Ascon is a submission by Dobraunig et al. [11] to the CAESAR competition.
In the submission document, the designers discuss the design rationale for the
cipher and give first cryptanalytic results, in particular on the differential prop-
erties of the Ascon permutation. Since the cipher was only recently presented,
results of external cryptanalysis are scarce so far. Jovanovic et al. [15] prove
the security of Ascon’s mode of operation under idealness assumptions for the
permutation.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-16715-2_20

Our contribution. We present a detailed security analysis of the CAESAR
candidate Ascon-128. Based on the low algebraic degree of Ascon, we are able
to construct a zero-sum distinguisher with complexity 2130 for the full 12-round
Ascon permutation in Section 3. In Section 4, we use similar algebraic prop-
erties to construct a distinguisher based on cube testers. We also use cube-like
techniques to obtain a key-recovery attack for a round-reduced version of Ascon
with 5-round initialization with practical complexity. Theoretical key-recovery
attacks are possible for up to 6 rounds of initialization. Moreover, in Section 5,
we present the first results on linear cryptanalysis, and improve the results by
the designers on differential cryptanalysis. Our results include linear and differ-
ential characteristics obtained with heuristic search, as well as a computer-aided
proof of security bounds against linear and differential cryptanalysis (minimum
number of active S-boxes). Using our results on linear-differential analysis, we
present a practical forgery attack for 3 rounds of the finalization and a theoretical
forgery attack for 4-round finalization. Our results are summarized in Table 1.

Table 1. Results for Ascon-128. Attacks performed on the initialization or finalization.

type rounds time method source

permutation distinguisher 12 / 12 2130 zero-sum Section 3

key recovery

6 / 12 266

cube-like Section 4.4
5 / 12 235

5 / 12 236

differential-linear Section 5.4
4 / 12 218

forgery
4 / 12 2101

differential Section 5.3
3 / 12 233

2 Ascon

Ascon is a submission by Dobraunig et al. [11] to the ongoing CAESAR com-
petition. It is based on a sponge-like construction with a state size of 320 bits
(consisting of five 64-bit words x0, . . . , x4). Ascon comes in two flavors, Ascon-
128 and Ascon-96, with different security levels and parameters, as summarized
in Table 2. The analysis in this paper is focused on Ascon-128. In the following,
we give a brief overview about the mode of operation and the permutation of
Ascon. For a complete description, we refer to the design document [11].

Mode of operation. Ascon’s mode of operation is based on MonkeyDu-
plex [8]. As illustrated in Fig. 1, the encryption is partitioned into four phases:
initialization, processing associated data, processing the plaintext, and final-
ization. Those phases use two different permutations pa and pb. The stronger

125

Table 2. Parameters for Ascon [11].

name
bit size of rounds

key nonce tag data block pa pb

Ascon-128 128 128 128 64 12 6
Ascon-96 96 96 96 128 12 8

variant pa is used for initialization and finalization, while pb is used in the data
processing phases.

const

K‖N

r

c

pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Fig. 1. The encryption of Ascon [11].

The initialization takes as input the secret keyK and the public nonceN . The
initialization ensures that we start with a random-looking state at the beginning
of the data procession phase for every new nonce. In the subsequent processing
of the associated data, r-bit blocks are absorbed by xoring them to the state,
separated by invocations of pb. If no associated data needs to be processed,
the whole phase can be omitted. Plaintext is processed in r-bit blocks in a
similar manner, with ciphertext blocks extracted from the state right after adding
the plaintext. For domain separation between associated data and plaintext,
a constant is xored to the secret part of the internal state. After all data is
processed, the finalization starts and the k-bit tag T is returned.

Table 3. The S-box of Ascon [11].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

126

Permutation. Ascon uses the two permutations pa and pb. Both iteratively
apply the same round function p: a rounds for pa, and b rounds for pb. The
round transformation p consists of a constant addition to x2, followed by the
application of a nonlinear substitution layer and a linear layer.

The substitution layer uses a 5-bit S-box (Table 3), which is affine equivalent
to the Keccak [2] χ mapping. The Ascon S-box is applied 64 times in parallel
on the state. Each bit of the 5 64-bit words (x0, . . . , x4) contributes one bit to
each of the 64 S-boxes, where x0 always serves as most significant bit.

The linear layer is derived from the Σ-function of SHA-2 [19]. The Σ-function
is applied to each of the 5 state-words and uses different rotation values for each
word:

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

3 Zero-sum distinguishers

In this section, we apply zero-sum distinguishers used in the analysis of Kec-
cak [1,6,7] to Ascon. Zero-sum distinguishers have been used to show non-ideal
properties of round-reduced versions for the Keccak permutation. With the help
of zero-sum distinguishers, Boura et al. have have been able to distinguish the
full 24-round Keccak permutation from a random permutation. Since the core
of the Ascon S-box corresponds to the Keccak S-box, we are able to construct
distinguishers for the full 12 rounds (or up to 20 rounds) of the Ascon permu-
tation.

Algebraic model of Ascon. As the name zero-sum distinguishers suggests,
we search for a set of inputs and corresponding outputs of an n-bit permutation
which sum to zero over Fn

2 . To create this set of input-output pairs, we start in the
middle of the permutation and compute outwards. Furthermore, we keep a set of
320−d bits constant and vary the other d bits through all possible assignments.
Thus, we get 2d possible intermediate states. For all these 2d intermediate states,
we calculate the respective outputs. If the degree of the function determining
the output bits is strictly smaller than d, the resulting outputs will sum to zero
over Fn

2 [1,6]. After that, we calculate the input values of the permutation using
the 2d intermediate states. Again, if the degree of the inverse function is smaller
than d, the inputs sum to zero over Fn

2 . The result is a zero-sum distinguisher,
or rather, a family of zero-sum distinguishers.

To apply the technique to Ascon, we have to bound the degree of multiple
rounds of the Ascon permutation and its inverse. The algebraic degree of one

127

Ascon S-box is 2, with respect to F2, and can be easily determined from its
algebraic normal form (ANF):

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

Here, x0, x1, x2, x3, x4, and y0, y1, y2, y3, y4 represent the input, and output
of an S-box, with x0/y0 representing the most significant bit. The S-boxes in one
substitution layer are applied in parallel to the state, and the linear layer and
constant addition do not increase the algebraic degree. Consequently, the overall
degree of one Ascon permutation round is 2, and the degree of r rounds is at
most 2r.

To determine the degree of the inverse permutation, we use the ANF of the
inverse Ascon S-box:

x0 = y4y3y2 + y4y3y1 + y4y3y0 + y3y2y0 + y3y2 + y3 + y2 + y1y0 + y1 + 1

x1 = y4y2y0 + y4 + y3y2 + y2y0 + y1 + y0

x2 = y4y3y1 + y4y3 + y4y2y1 + y4y2 + y3y1y0 + y3y1 + y2y1y0

+ y2y1 + y2 + 1 + x1

x3 = y4y2y1 + y4y2y0 + y4y2 + y4y1 + y4 + y3 + y2y1 + y2y0 + y1

x4 = y4y3y2 + y4y2y1 + y4y2y0 + y4y2 + y3y2y0 + y3y2 + y3

+ y2y1 + y2y0 + y1y0

The algebraic degree of the ANF of the inverse Ascon S-box is 3. Therefore,
the degree for an r-round inverse Ascon permutation is at most 3r.

Basic distinguisher for 12 rounds. To create a zero-sum distinguisher for
the 12-round Ascon permutation that is used for the cipher’s initialization and
finalization, we target the intermediate state after round 5. Thus, we attack
5 backward (inverse) rounds and 7 forward rounds. An upper bound for the
degree of the 7-round permutation is 27 = 128, while for the 5 inverse rounds,
an upper bound is 35 = 243. So we choose d = 244, fix 320 − 244 = 76 bits of
the intermediate state and vary the remaining 244 bits to create a set of 2244

intermediate states. For all these states, we calculate 7 rounds forward and 5
rounds backward. The sum of all the resulting input and output values over Fn

2 is
zero. A similar attack is possible for 11 = 4+7 rounds (with d = max{81, 128}+
1 = 129) and for 13 = 5 + 8 rounds (with d = max{243, 256}+ 1 = 257).

Improvement using Walsh spectrum analysis. The complexity of the 12-
round distinguisher can be further improved by analyzing the permutation’s

128

Walsh spectrum and applying the techniques by Boura and Canteaut [6]: If
the Walsh spectrum of a function F : Fn

2 → Fn
2 is 2`-divisible, then for any

G : Fn
2 → Fn

2 , we have

deg(G ◦ F) ≤ n− `+ deg(G).

As Boura and Canteaut show, the Walsh spectrum of the Keccak S-box is 23-
divisible. The affine linear preprocessing and postprocessing that the Ascon
S-box adds compared to the Keccak S-box does not change this number. The
same holds true for the inverse S-box. The Ascon nonlinear layer applies this
S-box 64 times in parallel. The Walsh spectrum of a parallel composition is the
multiplication of the individual Walsh spectra [6]. Thus, the Walsh spectrum of
the complete nonlinear layer is divisible by 23·64 = 2192. Let p denote one round
of the Ascon permutation, and p−1 its inverse. A closer bound on the degree of
5 rounds of the inverse permutation, p−5, is then obtained by

deg(p−5) = deg(p−4 ◦ p−1) ≤ 320− 192 + deg(p−4) ≤ 320− 192 + 81 = 209.

Thus, d = max{209, 128} + 1 = 210 is sufficient for 12 = 5 + 7 rounds of the
Ascon permutation.

Adding a free round in the middle. Additionally, as Boura and Canteaut [6]
observe, an additional round can be added to the attack (almost) for free as
follows: The original attack requires an intermediate state where n− d bits are
fixed to a constant, while d bits loop through all possible valuations. Now, we
set d to be a multiple of the 5-bit S-box size and furthermore, choose the d
variable bits such that they always include complete S-boxes. Then, the inputs
(and consequently outputs) of some S-boxes are constant, while the other S-
boxes have their inputs (and consequently outputs) loop through all possible
values. If we look at the output of the nonlinear layer after this intermediate
step, we observe it adheres to the same pattern as the input: n − d bits are
fixed and d bits enumerate through all their possible values. We can now use the
original intermediate step as the starting point for the backwards rounds, and the
output of the nonlinear layer as the starting point for the forward rounds (plus
an additional, free linear layer). This way, we can extend the previous attacks
by one round each, with the only additional cost of choosing d as a multiple of
5. We get zero-sum distinguishers on 12, 13, and 14 rounds with d = 130, 210,
and 260, respectively.

More rounds. Finally, the results of Boura et al. [7, Theorem 2] are also directly
applicable to our previous results to distinguish up to 20 permutation rounds
with d = 319 (using 9 backward rounds with degree ≤ 318 and 11 forward rounds
with degree ≤ 317, no free middle round possible).

Using a zero-sum distinguisher, we can show non-random properties for the
full 12-round permutation of Ascon. However, the designers already state [11]

129

that the permutation is not ideal and are aware of such distinguishers. The non-
ideal properties of the permutation do not seem to affect the security of Ascon.
In particular, the complexity of 2130 is above the cipher’s claimed security level.

4 Cube attacks

Recently, Dinur et al. [9] published various cube and cube-like attacks on sev-
eral keyed primitives using the Keccak permutation. Those cube-like attacks
include cube testers, which can serve as distinguishers, and also cube-like at-
tacks to recover the secret key. In this section, we apply two attacks presented
by Dinur et al. [9] to Ascon.

4.1 Brief description of cube attacks

The cube attack is an algebraic attack developed by Dinur and Shamir [10].
This algebraic attack builds on the fact that for most ciphers, each output bit
can be represented as a polynomial over Fn

2 in algebraic normal form (ANF).
The variables xi of this polynomial may be single bits of plaintext, key-bits,
or constants. Dinur and Shamir made the following observation: If a carefully
chosen set of plaintext bits is varied over all possible values and the other bits
are kept constant, the sum of one bit of the output (cube sum) might be the
result of a linear polynomial (called superpoly) consisting solely of bits of the
secret key. By gathering many of these linear polynomials, the secret key can be
found.

To perform such a cube attack on a cipher, two things have to be done. First,
an attacker has to find such cubes (variables to vary and the resulting linear key
relations). This is done in an offline preprocessing phase. Here, the attacker
determines the cubes by selecting the cube variables randomly and check if the
resulting superpoly is linear and contains the key. This preprocessing phase has
to be carried out once for each cipher. In an online phase, the attacker uses the
knowledge of the cubes to recover the secret key of his target. To perform the
attack, the attacker has to be able to choose the plaintext according to his needs
and obtain the corresponding ciphertext outputs.

4.2 Cube attack on Ascon

Now we want to investigate the potential threat of cube attacks to Ascon.
If we look at the different phases of Ascon, the only phase where a nonce-
respecting adversary can easily keep some inputs of the permutation constant
and deterministically influence others is the initialization. In this scenario, the
key is kept secret and the attacker has the ability to choose the nonce according
to his needs.

As evaluated in Section 3, the degree of a 5-round initialization of Ascon is
at most 32. Thus, if we search for cubes of 31 variables, the resulting superpoly
is definitely linear or constant. Considering 6 rounds of the initialization, we

130

have to look for cubes with at most 63 variables, for 7 rounds with at most 127
variables and so on. So it is likely that a practical cube attack on 6 rounds is
already hard to achieve. However, we have not searched for cubes, but instead
performed cube-like attacks on Ascon to recover the secret key in Section 4.4.

4.3 Distinguishers using cube testers

Below, we describe a cube tester for 6 rounds of the Ascon permutation with
the property that the generated output bits sum to zero over F2. Moreover, this
cube tester has a practical complexity of only 233, although the expected degree
for 6 rounds of the Ascon permutation is about 64. To achieve this, we have to
take a closer look at the internal structure of Ascon.

The permutation of Ascon starts with the substitution layer. In this layer,
the 5-bit S-box is applied 64 times in parallel to the internal state of Ascon.
Each of the five 64-bit words of the internal state contributes exactly one bit to
each instantiation of a 5-bit S-box. So if all cube variables lie within the same
word of the state, they do not appear together in one term after the application
of the S-box layer. Hence, after 5 more rounds, at most 32 variables of one state-
word appear together in one term. As a consequence, selecting a cube of 33
variables of the same state-word definitely results in an empty superpoly and all
233 generated outputs sum to zero.

This distinguisher can be used to distinguish the key-stream generated by As-
con-128 in a nonce-misuse scenario, where the attacker can keep the nonce con-
stant while varying the plaintext. For Ascon-128, 64-bit blocks of plaintext are
xored with the state-word x0. Thus, the attacker can vary 33 bits of the first
plaintext block, while keeping the remaining 31 bits and the bits of a second
plaintext block constant. The resulting 233 second ciphertext blocks will sum
to zero. However, the designers of Ascon strictly forbid nonce reuse, and no
security claims are made for such a scenario.

Similar cube testers can be applied to reduced versions of Ascon with only
6 rounds (instead of 12 rounds) of initialization. Then, an attacker with con-
trol over the nonce can observe the first key-stream block. In contrast to the
nonce-misuse scenario, attacks on round-reduced versions of Ascon in a nonce-
respecting scenario give insight in the expected security of Ascon and are there-
fore of more value. Next, we will show how to extend the observations made in
this section to a key-recovery attack on round-reduced versions of Ascon.

4.4 Key recovery using cube-like attacks

Dinur et al. [9] published a key recovery attack where the superpoly does not
necessarily have to be a linear function of the secret key bits, but can also be
non-linear. Such attacks are also possible for round-reduced versions of Ascon,
with the initialization reduced to 5 or 6 out of 12 rounds. The attack on 5 rounds
has practical complexity and has been implemented. We will discuss the working
principle of the attack by means of a 5-round version of Ascon-128. For a 6-
round initialization, the attack works similarly. The attack itself is divided into

131

two steps, each with an online and an offline phase, and relies on the following
two observations.

Observations. The first observation has already been discussed in the context
of cube testers: If all cube variables are located within one state-word, they do
not appear in the same term of the output polynomial after one application of
the substitution layer.

To discuss the second observation, we have to take a look at the ANF of the
S-box and consider the positions of the initial values. During the initialization,
the constant C is written to x0, the first word K1 of the key to x1, the second key
word K2 to x2, the first word N1 of the nonce to x3, and the second nonce word
N2 to x4. We use the ANF of the S-box to get the relations for the state words
x0, . . . , x4 after the first call of the substitution layer. The index i represents the
corresponding bit position of the 64-bit word.

x0[i] = N2[i]K1[i] +N1[i] +K2[i]K1[i] +K2[i] +K1[i]C[i] +K1[i] + C[i]

x1[i] = N2[i] +N1[i](K2[i] +K1[i]) +N1[i] +K2[i]K1[i] +K2[i] +K1[i] + C[i]

x2[i] = N2[i]N1[i] +N2[i] +K2[i] +K1[i] + 1

x3[i] = N2[i]C[i] +N2[i] +N1[i]C[i] +N1[i] +K2[i] +K1[i] + C[i]

x4[i] = N2[i]K1[i] +N2[i] +N1[i] +K1[i]C[i] +K1[i]

Observe that N2[i] is only combined nonlinearly with key bit K1[i], and N1[i]
only with K1[i] and K2[i]. As demonstrated by Dinur et al. [9], we can make use
of this fact to build a so-called borderline cube. For instance, we select N2[0..15]
as our cube variables. The rest of the nonce is kept constant. After round 1, our
cube variables only appear with K1[0..15] in one term and definitely not together
with the other bits of the secret key. After 4 more rounds, all of the cube variables
may appear together in one term, possibly combined with a selection of the key
bits K1[0..15], but never together with the rest of the key bits. Thus, the cube
sum depends on K1[0..15], but it does not depend on K1[16..63], or K2[0..63].
This fact leads to the following attack.

Step 1. In the first step, we recover the key-word K1 in 16-bit chunks. Therefore,
we select 4 different borderline cubes with 16 variables in N2 and probe the online
oracle with each of these 4 sets. So we get 4 sums of key-stream blocks, each
dependent on 16 different key bits of K1. In the upcoming offline phase, we use
the fact that the sum of the outputs (key-stream blocks) only depends on 16 key
bits. So we set the rest of the key bits to a constant and calculate cube sums
for every possible 16-bit key part. If such a cube sum corresponds to the cube
sum received in the online phase, we get a key candidate. In our experiments,
we only received one key candidate per 16-bit block on average. Therefore, we
only have one key candidate on average for K1.

Step 2. In the second step, we recover K2 in 16-bit chunks. To do so, we
use N1[i] to create our borderline cubes. In contrast to the step before, we

132

have a dependency of the output on bits of K1, too. So we have to repeat the
offline phase for every guess of K1 received in the previous step. The rest of the
procedure works in the same manner as for the recovery of K1. Again, we only
received one key guess for K2 on average in our implementation of the attack.

The complexity of the described attack depends on the number of key can-
didates for K1 and K2. Since the attack on 5 rounds is practical and we have
implemented it, we can state that we only have one key candidate on average. So
we estimate that the time complexity is about 8 ·232. The attack works similarly
for reduced versions of Ascon with only 6 initialization rounds. Here, we need
borderline cubes of size 32. If we make the optimistic assumption that we only
have one key guess for each recovered key word, the estimated time complexity
for the 6 round attack is 4 · 264.

5 Differential and linear cryptanalysis

Differential [5] and linear [18] cryptanalysis are two standard tools for cryptanal-
ysis. New designs are typically expected to come with some kind of arguments
of security against these attacks. For this reason, the designers of Ascon pro-
vided security arguments for the individual building blocks (S-box, linear layer),
and included first practical results on the differential analysis of Ascon in the
design document. In this section, we show some improvements over the existing
differential characteristics and present the first linear characteristics for Ascon,
including computer-aided proofs on the minimum number of active S-boxes for
3-round characteristics. In addition, we use the combination of differential and
linear characteristics to perform practical key-recovery attacks on round-reduced
versions of Ascon.

5.1 Linear and differential bounds

Beside using heuristic search techniques to find actual characteristics for Ascon
(see Section 5.2), we have also used complete search tools (MILP and SAT) to
prove bounds on the best possible linear and differential characteristics. The
results are given in this section.

Linear programming. We have first modelled the problem of minimizing the
number of active S-boxes in differential characteristics for round-reduced versions
of the Ascon permutation as a mixed integer linear program (MILP). The model
for R rounds uses the following variables:
– xr,w,b ∈ {0, 1} specifies whether bit b of word w of the S-box input in round r

is different between the two messages, where b = 0, . . . , 63 and w = 0, . . . , 4.
– yr,w,b ∈ {0, 1} specifies whether bit b of word w of the S-box output in round
r is different between the two messages, where b = 0, . . . , 63 and w = 0, . . . , 4.

– dr,b ∈ {0, 1} specifies if S-box b of round r is active, b = 0, . . . , 63.
– ur,w,b ∈ {0, 1, 2} is a helper for the linear layer model in word w of round r.

133

The optimization objective is to minimize the number of active S-boxes,

min

R∑
r=1

63∑
b=0

dr,b.

The S-box is modelled only by specifying its branch number, and linking it with
the S-box activeness for each r = 1, . . . , R and b = 0, . . . , 63:

dr,b≤
63∑

w=0

xr,w,b ≤ 5dr,b,
63∑

w=0

(xr,w,b + yr,w,b) ≥ 3dr,b, dr,b ≤
63∑

w=0

yr,w,b ≤ 5dr,b

The linear layer is modelled explicitly for r = 1, . . . , R and b = 0, . . . , 63:

yr,0,b + yr,0,b+19 + yr,0,b+28 + xr+1,0,b = 2 · ur,0,b
yr,1,b + yr,1,b+61 + yr,1,b+39 + xr+1,1,b = 2 · ur,1,b
yr,2,b + yr,2,b+1 + yr,2,b+6 + xr+1,2,b = 2 · ur,2,b

yr,3,b + yr,3,b+10 + yr,3,b+17 + xr+1,3,b = 2 · ur,3,b
yr,4,b + yr,4,b+7 + yr,4,b+41 + xr+1,4,b = 2 · ur,4,b

Finally, at least one S-box needs to be active:

4∑
w=0

x0,w,0 ≥ 1

The model for linear cryptanalysis is essentially identical, except for different
rotation values. This MILP can then be solved using an off-the-shelf linear op-
timization tool, such as CPLEX. Unfortunately, it turns out that the highly
combinatorial nature of the problem is not well suited for linear solvers, and
that SAT solvers are a better fit for this type of problem.

SAT solvers. For SAT solvers, we can model essentially the same description
by using an extended modelling language, as is used by Satisfiability Modulo
Theory (SMT) solvers. We used the constraint solver STP by Ganesh et al. [13]
to translate a bitvector-based CVC model to conjunctive normal form (CNF).
This CNF model can then be solved using a parallel SAT solver, such as Biere’s
Treengeling [3]. Instead of an optimization problem, the problem has to be
phrased in terms of satisfiability; i.e., the questions is whether solutions below a
specific bound exist.

Modelling the S-box only in terms of its branch number is not very effective
for obtaining tight bounds. As a trade-off between the all-too-simplistic branch
number model and the complex complete differential description of the S-box
(differential distribution table), we chose the following approximation. The lin-
ear preprocessing and postprocessing part of the S-box can easily be modelled

134

exactly for both differential and linear cryptanalysis. The nonlinear core (equiv-
alent to the Keccak S-box) is approximated, i.e., the model allows a few tran-
sitions that are not possible according to the differential or linear distribution
table. For the differential model, we use the following word-wise constraint in
terms of input difference words a0, . . . , a4 ∈ F64

2 and output difference words
b0, . . . , b4 ∈ F64

2 :

bi = ai ⊕ ((ai+1 ∨ ai+2) ∧ ti), ti ∈ F64
2 , i = 0, . . . , 4.

For the linear model with word-wise linear input mask a0, . . . , a4 ∈ F64
2 and

output mask b0, . . . , b4 ∈ F64
2 , the constraints are similar:

ai = bi ⊕ ((bi−1 ∨ bi−2) ∧ ti), ti ∈ F64
2 , i = 0, . . . , 4.

With this model, we can easily prove that the 3-round Ascon permutation has at
least 15 differentially active S-boxes (probability ≤ 2−30), and at least 13 linearly
active S-boxes (bias ≤ 2−14, complexity ≥ 228). The bounds on the number of
active S-boxes are tight, but not necessarily those on the probability. Using
these results, we can prove that the full 12-round initialization or finalization
has at least 60 differentially active S-boxes (probability ≤ 2−120) and at least
52 linearly active S-boxes (bias ≤ 2−53, complexity ≥ 2106). These bounds are
almost certainly not tight, but we were not able to derive bounds for more than
3 rounds using SAT solvers. This motivates the use of heuristic search tools to
find explicit characteristics.

5.2 Differential and linear characteristics

In Table 4, we present an overview of our best differential and linear characteris-
tics for different round numbers of the Ascon permutation. We have been able
to improve the differential characteristic for 4 rounds of the Ascon permutation
compared to the previous best results by the designers [11]. Since the design-
ers included no results on linear cryptanalysis in the submission document, we
provide the first linear analysis. When comparing the best differential character-
istics with the best linear characteristics, we see that for more than two rounds
of the Ascon permutation, the linear characteristics have fewer active S-boxes.
This might indicate that Ascon is more vulnerable to linear cryptanalysis. Nev-
ertheless, for 5 rounds of Ascon, the best found linear characteristic has more
than 64 active S-boxes. Assuming the best possible bias for all active S-boxes,
the attack complexity is already higher than 2128.

5.3 Forgery attack on round-reduced Ascon

Usually, the characteristics from Section 5.2 cannot be directly used in an attack,
since there might be additional requirements that the characteristic has to fulfill.
In the case of an attack on the finalization of Ascon-128, suitable characteristics
may only contain differences in stateword x0 at the input of the permutation.

135

Table 4. Minimum number of active S-boxes for the Ascon permutation.

result rounds differential linear

proof
1 1 1
2 4 4
3 15 13

heuristic
4 44 43

≥ 5 > 64 > 64

The rest of the statewords have to be free of differences. For the output of the
finalization, the only requirement is that there is some fixed difference pattern
in x3 and x4. Knowledge about the expected differences in x0, x1, and x2 at the
output of the permutation is not required.

For round-reduced versions of Ascon, we have found suitable characteristics
for a reduced 3-round finalization with a probability of 2−33 and for 4-round
finalization with a probability of 2−101. The used characteristic for the three
round attack is given in Table 6 and the differential for the four round attack is
given in Table 7 in Appendix A.

5.4 Differential-linear cryptanalysis

In differential-linear cryptanalysis, differential and linear characteristics are used
together in an attack. This kind of analysis was introduced by Langford and
Hellman [17]. Later on, it was demonstrated that this type of analysis is also
suitable for cases where the differential and the linear part have a probability
different from 1 [4,16]. Differential-linear cryptanalysis is especially useful if the
combined success probability of one short differential characteristic and one short
linear characteristic is better than the probability of a longer linear or differential
characteristic. One reason for such a behavior might be a bad diffusion for fewer
rounds. For the attack to work, the individual probabilities of the two used
characteristics have to be relatively high. According to Dunkelman et al. [12],
the bias at the output of such a differential-linear characteristic is about 2pq2,
where q is the bias of the linear part and p the probability of the differential
characteristic. This results in a data complexity of O(p−2q−4).

Outline of the attack. For Ascon-128, we can use differential-linear charac-
teristics as key-stream distinguisher. Like for cube-tester (Section 4.3), we can
target either the initialization in a nonce-respecting scenario, or the processing
of the plaintext in a nonce-misuse scenario. Here, we focus on the initialization.
Therefore, differences are only allowed in the nonce (x3, x4), whereas the linear
active bits have to be observable and therefore must be in x0.

Analysis of the initialization. We start with the analysis of a 4-round ini-
tialization and create a differential-linear characteristic for it. For the differential

136

part, we place two differences in the same S-box of round 1. With probability
2−2, we have one active bit at the output of this S-box. The linear layer ensures
that 3 S-boxes are active in the second round. Those 3 S-boxes have the dif-
ference at the same bit-position of their input. All 3 active S-boxes of round 2
have the same output pattern of 2 active bits with probability 2−3. Due to the
linear layer, we then have differences on 11 S-boxes of round 3. For the linear
characteristic, we use a characteristic with one active S-box in round 4 and 5
active S-boxes in round 3. The bias of the linear characteristic is 2−8. In addi-
tion, we place the S-boxes in a way that the linear active S-boxes in round 3 do
not overlap with the 11 S-boxes that have differences at their inputs. The bias
of the generated differential-linear characteristic is 2pq2 = 2−20. In practice, we
are only interested in the bias of the output bit for the specific differences at the
input. Due to the vast amount of possible combinations of differential and linear
characteristics that achieve these requirements, we expect a much better bias.

Practical evaluation of the bias. In the best case, we place differences in
bit 63 of x3 and x4, and get a bias of 2−2 in bit 9 of x0 on the output of the
substitution layer of round 4. This is much better than the result of 2−20 that we
obtained from the theoretical analysis. It is possible to combine multiple charac-
teristics to also get to a bias of 2−2 in theory. However, we decided to reduce our
differential-linear analysis to statistical tests, where we place differences at the
input and try to measure a bias at the output bits. We think that this method
is sufficient for practical attacks. For a 5-round initialization, we observe a bias
of 2−10 on x0[16] (last substitution layer) for differences in x3[63], and x4[63].
This bias can be improved to 2−9 if we only use nonces with the same sign of
the difference (the concrete pairs for both x3[63] and x4[63] are either (0, 1) or
(1, 0)). In the case of a 6-round initialization, we were not able to observe a bias
by using a set of 236 inputs. The biases were averaged for randomly-chosen keys.

Observing key-dependency of the bias. As shown by Huang et al. [14], the
bias observed at the output depends on the concrete values of secret and con-
stant bits. They used this observation to recover the secret state of ICEPOLE in
a nonce-misuse scenario. So we expect that a similar attack is possible on round-
reduced versions of Ascon-128. In contrast to Huang et al., we want to recover
the secret key directly and attack round-reduced versions of the initialization.
This also transfers the attack to a nonce-respecting scenario. For a reduced ini-
talization of 4 out of 12 rounds, we observed the bias patterns shown in Table 5.
This table shows that the observable bias depends on the concrete values of two
key bits which contribute to the same S-box as the used difference. Moreover,
the bias is completely independent of the concrete value of the constant in x0.
This leads to the following straightforward attack.

Key-recovery attack on round-reduced Ascon. The target of this attack
is a round-reduced version of Ascon-128, where the initialization is reduced to

137

Table 5. Bias of bit x0[i + 1] in the S-box outputs of round 4 for differences in input
bits x3[i] and x4[i] (230 different inputs).

inputs (x1[i], x2[i]) key-bit pair (0, 0) (0, 1) (1, 0) (1, 1)

output x0[i + 1]
sign +1 −1 +1 −1
bias 2−2.68 2−3.68 2−3.30 2−2.30

4 out of 12 rounds. In this setting, the attacker has the ability to choose the
nonce and is able to observe the resulting key stream. The attacker performs
a sufficient amount of queries, with pairs of nonces which have differences in
x3[63] and x4[63], and calculates the bias of x0[0] of the key-stream. With the
help of Table 5, the attacker is able to recover two bits of the key by matching
the expected bias with his calculated bias. Since the characteristics of Ascon
are rotation-invariant within the 64-bit words, the same method can be used to
recover the other key bits by placing differences in bits i and observing the bias
at position i + 1 mod 64. Already 212 samples per bit position i are sufficient
to get stable results. This results in an expected time complexity of 218 for
the key-recovery attack on 4 rounds. However, in practice, we use the bias of
all the bits and compute the correlation with the results of a precomputation
(fingerprinting) phase to get better results. This way, we were also able to mount
a key-recovery attack on the initialization of Ascon-128 reduced to 5 out of 12
rounds. In particular, we can reliably recover all key-bit pairs with values (0, 0)
and (1, 1) with a low complexity of 236. However, we need to brute-force the
other pairs, which results in an additional complexity of 232 on average and
264 in the worst case. Thus, the expected attack complexity is about 236. The
complexities of both attacks on 4 and 5 rounds of the initialization have been
practically verified.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. The work has been supported in
part by the Austrian Science Fund (project P26494-N15) and by the Austrian
Research Promotion Agency (FFG) and the Styrian Business Promotion Agency
(SFG) under grant number 836628 (SeCoS).

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. CHES rump session (2009)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Specifications. Sub-
mission to NIST (Round 3) (2011), http://keccak.noekeon.org

3. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition
2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) SAT Competition
2013. vol. B-2013-1, pp. 51–52 (2013), http://fmv.jku.at/lingeling/

138

4. Biham, E., Dunkelman, O., Keller, N.: Enhancing Differential-Linear Cryptanaly-
sis. In: Zheng, Y. (ed.) Advances in Cryptology – ASIACRYPT 2002. LNCS, vol.
2501, pp. 254–266. Springer (2002)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology – CRYPTO 1990.
LNCS, vol. 537, pp. 2–21. Springer (1990)

6. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with
18 rounds. In: IEEE International Symposium on Information Theory. pp. 2488–
2492. IEEE (2010)

7. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of
keccak and Luffa. In: Joux, A. (ed.) Fast Software Encryption – FSE 2011. LNCS,
vol. 6733, pp. 252–269. Springer (2011)

8. Daemen, J.: Permutation-based Encryption, Authentication and Authenticated
Encryption. DIAC – Directions in Authenticated Ciphers (2012)

9. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube Attacks
and Cube-attack-like Cryptanalysis on the Round-reduced Keccak Sponge Func-
tion. IACR Cryptology ePrint Archive 2014, 736 (2014), http://eprint.iacr.

org/2014/736

10. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
Joux, A. (ed.) Advances in Cryptology – EUROCRYPT 2009. LNCS, vol. 5479,
pp. 278–299. Springer (2009)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the
CAESAR competition: http://ascon.iaik.tugraz.at (2014)

12. Dunkelman, O., Indesteege, S., Keller, N.: A Differential-Linear Attack on 12-
Round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) Progress in Cryp-
tology – INDOCRYPT 2008. LNCS, vol. 5365, pp. 308–321. Springer (2008)

13. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Com-
puter Aided Verification (CAV ’07). Springer (2007), https://sites.google.com/
site/stpfastprover/

14. Huang, T., Wu, H., Tjuawinata, I.: Practical State Recovery Attack on ICEPOLE,
http://www3.ntu.edu.sg/home/huangtao/icepole/icepole_attack.pdf

15. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. In: Sarkar, P., Iwata, T. (eds.) Advances in
Cryptology - ASIACRYPT 2014. LNCS, vol. 8873, pp. 85–104. Springer (2014),
http://dx.doi.org/10.1007/978-3-662-45611-8_5

16. Langford, S.K.: Differential-linear cryptanalysis and threshold signatures. Ph.D.
thesis, Stanford University (1995)

17. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt,
Y. (ed.) Advances in Cryptology – CRYPTO 1994. LNCS, vol. 839, pp. 17–25.
Springer (1994)

18. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) Advances in Cryptology – EUROCRYPT 1992.
LNCS, vol. 658, pp. 81–91. Springer (1992)

19. National Institute of Standards and Technology: FIPS PUB 180-4: Secure Hash
Standard. Federal Information Processing Standards Publication 180-4, U.S. De-
partment of Commerce (March 2012), http://csrc.nist.gov/publications/

fips/fips180-4/fips-180-4.pdf

20. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014), http://competitions.cr.yp.to/

caesar.html

139

A Differentials to create forgery

Table 6 contains the differential characteristic and Table 7 contains the differen-
tial used for the forgery attacks of Section 5.3. One column corresponds to the
five 64-bit words of the state, and the xor differences are given in hexadecimal
notation (truncated in the last round).

Table 6. Differential characteristic to create forgery for round-reduced Ascon-128
with a 3-round finalization. The differential probability is 2−33.

input difference after 1 round after 2 rounds after 3 rounds

x0 8000000000000000 8000100800000000 8000000002000080 ????????????????

x1 0000000000000000 8000000001000004 9002904800000000 ????????????????

x2 0000000000000000 → 0000000000000000 → d200000001840006 → ????????????????

x3 0000000000000000 0000000000000000 0102000001004084 4291316c5aa02140

x4 0000000000000000 0000000000000000 0000000000000000 090280200302c084

Table 7. Differential to create forgery for round-reduced Ascon-128 with a 4-round
finalization. The differential probability is 2−101.

input difference after 4 rounds

x0 8000000000000000 ????????????????

x1 0000000000000000 ????????????????

x2 0000000000000000 → ????????????????

x3 0000000000000000 280380ec6a0e9024

x4 0000000000000000 eb2541b2a0e438b0

B Differential-linear key recovery attack on 4 rounds

Fig. 2 illustrates the observed bias in bit x0[i] in the key-stream for the diffe-
rential-linear attack of Section 5.4, grouped by the values of the key-bit pair
(x1[63], x2[63]).

140

-0.4

-0.2

 0

 0.2

 0.4

 0 15 31 47 63

b
ia

s

bits

(a) key (0,0)

-0.4

-0.2

 0

 0.2

 0.4

 0 15 31 47 63

b
ia

s

bits

(b) key (1,1)

-0.4

-0.2

 0

 0.2

 0.4

 0 15 31 47 63

b
ia

s

bits

(c) key (0,1)

-0.4

-0.2

 0

 0.2

 0.4

 0 15 31 47 63

b
ia

s

bits

(d) key (1,0)

Fig. 2. Biases for the differential-linear attack on the initialization of Ascon reduced
to 4 (out of 12) rounds for the key-bit pair values (0, 0), (0, 1), (1, 0), (1, 1).

141

Square Attack on 7-Round Kiasu-BC

Publication Data

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Square Attack
on 7-Round Kiasu-BC”. In: Applied Cryptography and Network Security, ACNS
2016. Ed. by Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Vol. 9696.
LNCS. Springer, 2016, pp. 500–517. url: https://doi.org/10.1007/978-3-319-
39555-5_27

The appended paper is an author-created version available at https://eprint.
iacr.org/2016/326.

Contributions

• One of the main authors.

143

https://doi.org/10.1007/978-3-319-39555-5_27
https://doi.org/10.1007/978-3-319-39555-5_27
https://eprint.iacr.org/2016/326
https://eprint.iacr.org/2016/326

Square Attack on 7-Round Kiasu-BC

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. Kiasu-BC is a tweakable block cipher presented within the
TWEAKEY framework at AsiaCrypt 2014. Kiasu-BC is almost identi-
cal to AES-128, the only difference to AES-128 is the tweak addition,
where the 64-bit tweak is xored to the first two rows of every round-key.
The security analysis of the designers focuses primarily on related-key
related-tweak differential characteristics and meet-in-the-middle attacks.
For other attacks, they conclude that the security level of Kiasu-BC is
similar to AES-128. In this work, we provide the first third-party anal-
ysis of Kiasu-BC. We show that we can mount Square attacks on up to
7-round Kiasu-BC with a complexity of about 248.5 encryptions, which
improves upon the best published 7-round attacks for AES-128. Further-
more, we show that such attacks are applicable to the round-reduced
ΘCB3-like mode of the CAESAR candidate Kiasu. To be specific, we
show a key-recovery attack on 7-round Kiasu 6= with a complexity of
about 282 encryptions.

Keywords: Cryptanalysis · TWEAKEY · Kiasu · Square Attack

1 Introduction

In contrast to standard block ciphers, tweakable block ciphers provide an ad-
ditional input called tweak. This tweak is usually public and is used to select
one specific instance of the block cipher. The concept of tweakable block ciphers
was first formalized by Liskov et al. [15,16]. Since then, tweakable block ciphers
have proven to be a valuable building block of cryptographic schemes for var-
ious applications, like encryption, authentication, or authenticated encryption.
For example, several of the authenticated encryption schemes in the ongoing
CAESAR competition [19] are based on tweakable block ciphers [8, 12,13].

Recently, Jean et al. presented the TWEAKEY framework [10] for design-
ing tweakable block ciphers. The extended version of their paper [11] specifies
three instances: Deoxys-BC, Joltik-BC, and Kiasu-BC. Kiasu-BC is a tweakable
variant of AES-128, accepting a 64-bit tweak T in addition to the 128-bit key
and 128-bit data block. The specification of Kiasu-BC is essentially identical to
AES-128, except that T is xored to the first two rows of every round key. Hence,
Kiasu-BC exactly matches AES-128 if T = 0. This has several advantages. First
of all, it allows easy reuse or updates of existing implementations of AES-128.
Moreover, the trust of the industry and academia in AES-128 has been steadily

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39555-5_27

growing over the past years and it might be easier in practice to promote the
use of AES-128 with slight modifications instead of proposing new tweakable
block ciphers. Another advantage of the similarity of Kiasu-BC and AES-128
is that AES-128 has been very thoroughly analyzed due to its prominence and
widespread adoption. Since Kiasu-BC corresponds to AES-128 if T = 0, exist-
ing and also new analysis results for AES-128 directly carry over to Kiasu-BC.
However, it is not trivial to determine the effects of the tweak on the security
of the design. Therefore, we provide—to the best of our knowledge—the first
third-party analysis of Kiasu-BC.

The existing cryptanalysis of Kiasu-BC by its designers [9,11] focuses mainly
on meet-in-the-middle attacks and related-key related-tweak differential attacks.
The designers argue that the existing meet-in-the-middle attacks for AES-128
also apply to Kiasu-BC. Regarding related-key related-tweak differential char-
acteristics, the designers were able to show that the minimum number of active
S-boxes for 7 rounds of Kiasu-BC is 22 and thus, an upper bound for the probabil-
ity is 2−132. Since this bound is not tight, the designers conclude that Kiasu-BC
suffers at most one round security loss compared to AES [9] in the framework of
related-key related-tweak differential attacks. For the remaining types of attacks,
the designers claim: “As we keep the original round function and key schedule
of AES, we believe that the security level of KIASU-BC against the remaining
types of attacks stays the same” [9]. In Table 1, we have listed some of these
remaining attacks. The best-performing attacks that cover 7 rounds of AES-128
fall into the category of impossible differential and meet-in-the-middle attacks.
Our goal is to find stronger attacks than these.

Table 1. Excerpt of best attacks on AES-128.

Rounds Type Data (CP) Time Ref

6 Partial sum 234.6 244 [6]
7 Partial sum 2128−ε 2120 [6]
7 Collisions 232 2128−ε [7]
7 Impossible differential 2112.2 2117.2 ma [17]
7 Meet-in-the-middle 280 2123 [4]
7 Impossible differential 2106.2 2110.2 [18]
7 Meet-in-the-middle 297 299 [5]

ma – memory accesses

All our attacks are based on the Square attack [1]. In the attack, a so-called
Λ-set of 256 different plaintexts is observed during the encryption. In the case
of AES, it is possible to construct 3-round distinguishers based on the Square
property [2,3]. This leads to efficient 6-round key-recovery attacks on AES-128 by
prepending 1 round and appending 2 rounds to the 3-round distinguisher [6]. To
extend these attacks, we use the additional freedom introduced by the tweak of
Kiasu-BC to create a Square-based distinguisher covering 4 rounds. This leads to

145

7-round attacks on Kiasu-BC (shown in Table 2), which are significantly better
than the best published attacks on 7 rounds of AES-128 (see Table 1 for an
overview of attacks on AES-128). Furthermore, we show that variants of our
Square attack are also applicable to round-reduced variants of an authenticated
encryption mode of the CAESAR candidate Kiasu [9]. To be more specific, we
target a round-reduced variant of Kiasu6=, which uses 7-round Kiasu-BC in a
ΘCB3-like [14] mode of operation. The attacks on round-reduced Kiasu6= are
performed in a nonce-respecting scenario, and also comply with the very low
data complexity limits imposed by Kiasu6=.

Table 2. Dedicated attacks on round-reduced Kiasu-BC and Kiasu6=.

Target Rounds Type Data (CP) Time Ref

Kiasu-BC
7/10 Square 240 282 4.1
7/10 Square 243.6 248.5 4.2

Kiasu 6= 7/10 Square 228 × 216 282 5.2

The remainder of the paper is organized as follows. First, we describe the de-
sign of Kiasu-BC in Section 2. Afterwards, we construct a 4-round distinguisher
based on the Square attack (Section 3), followed by two key-recovery attacks on
7-round Kiasu-BC in Section 4. Next, we demonstrate the applicability of vari-
ants of the key-recovery attacks on the mode of operation Kiasu6= in Section 5.
Finally, we conclude in Section 6.

2 Description of Kiasu-BC

The tweakable block cipher Kiasu-BC was introduced as building block of the
Kiasu authenticated cipher family [9], a candidate in the CAESAR competi-
tion [19]. Kiasu-BC is an instantiation of the TWEAKEY framework [10], a
general construction framework for tweakable block ciphers. For each 128-bit
key and public 64-bit tweak, Kiasu-BC defines a 128-bit permutation.

Kiasu-BC is essentially identical to AES, except that the 64-bit tweak value
is xored to the state in each round after the round-key addition. Thus, like for
AES, the 128-bit Kiasu-BC state S is represented as a 4 × 4 matrix of bytes,
labeled x0, . . . , x15:

S =

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

.

146

In each of Kiasu-BC’s 10 rounds, the round operations SubBytes, ShiftRows,
MixColumns and AddRoundTweakey are applied to the state in turn. Except for
AddRoundTweakey, they are identical to the AES round operations:

– SubBytes: Applies the 8-bit AES S-box S to each of the 16 state bytes.
– ShiftRows: Rotates row i of the state, 0 ≤ i ≤ 3, by i bytes to the left.
– MixColumns: Multiplies each byte column of the state by the MDS-matrix
M over K = F2[α]/(α8 + α4 + α3 + α+ 1),

M =

α α+ 1 1 1
1 α α+ 1 1
1 1 α α+ 1

α+ 1 1 1 α

 =

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

– AddRoundTweakey: In round i, xors the 128-bit round key RKi and the tweak
T to the state, where

RKi =

RKi,0

RKi,1

RKi,2

RKi,3

RKi,4

RKi,5

RKi,6

RKi,7

RKi,8

RKi,9

RKi,10

RKi,11

RKi,12

RKi,13

RKi,14

RKi,15

, T =

T0

T1

T2

T3

T4

T5

T6

T7

.

We omit the details of the AES key schedule that derives the round subkeys
RKi from the key K, since they are not relevant for our attack. Note that
there is no tweak schedule, i.e., the same tweak T is xored in each round. So
for the all-zero tweak T = 0, Kiasu-BC is equivalent to AES-128.

To refer to intermediate states of Kiasu-BC, we denote by Si the state after
i rounds: S0 = P ⊕ T ⊕ RK0, S1, . . . , S10 = C. In addition, the state after
SubBytes of round i is denoted SSB

i , after ShiftRows SSR
i , after MixColumns SMC

i ,
and after AddRoundTweakey SAK

i = Si. So the states of full-round Kiasu-BC are

P
AK−−→ S0

SB−→ SSB
1

SR−→ SSR
1

MC−−→ SMC
1

AK−−→ S1

...

S9
SB−→ SSB

10
SR−→ SSR

10
AK−−→ S10 = C .

3 Distinguisher for 4 rounds of Kiasu-BC

The distinguisher presented in this section is based on the Square attack. This
attack, originally demonstrated for the block cipher Square [1], is also applicable
to AES [2, 3]. As in the Square attack on AES, we will observe a Λ-set of 256
different plaintexts through the encryption. By making use of the tweak input

147

of Kiasu-BC, we show that a distinguisher for 4 rounds can be created. This is
one round more than the distinguisher used in the Square attack on AES. Before
giving the distinguisher, we recall the effect of the round functions of AES on
Λ-sets.

3.1 Preliminaries

For the Square attack, we will make statements about the 256 values for single
byte positions xi of a Λ-set. We index the individual byte value of byte position
i in Λ-set element k as xi[k], where the index k is in the range from 0 to 255.
We call a byte of a Λ-set active (A) if it takes all possible 256 values; constant
(C) if all 256 values are equal; balanced (B) if the sum of all 256 values is 0; or
unknown (?) if we cannot make any statements about the 256 values for this
byte position.

SubBytes. SubBytes affects each byte of the state individually. Therefore, we
can put our focus on the effects of the S-box on our four different byte states:
active, constant, balanced, and unknown. The AES S-box is a permutation.
Hence, if the input of the S-box iterates over all 256 possible values, then so will
the output. Thus, an active byte remains active after SubBytes. Since the AES
S-box is deterministic, a certain value at the input of the S-box will always map
to the same value at the output. This means a constant byte remains constant
after SubBytes. However, a balanced byte becomes unknown, because the S-box
is non-linear. An unknown byte remains, of course, unknown.

ShiftRows. The ShiftRows operation works on byte-level. To be more concrete,
it simply reorders the bytes of the state. Hence, our statements about the bytes
remain the same, just the position differs after ShiftRows.

MixColumns. MixColumns is a linear transformation that mixes the single bytes
of one column. Clearly, an all-constant input set will be mapped to an all-
constant output set. Furthermore, if at least one of the input byte positions
of the set is unknown, the entire output will be unknown.

Since MixColumns is based on an MDS matrix, it has a branch number of
5. This implies that if two input columns differ only in one byte, the output
will differ in all 4 bytes. In particular, if the 4 input byte positions of a set
are all constant except for one active byte, then all output bytes will be active.
(Assume that one byte is not active, but takes one particular value twice. The
corresponding pair of inputs will have a difference in only 1 input byte and at
most 3 output bytes, violating the branch number property.) The same reasoning
also clearly applies for the inverse operation of MixColumns.

AddRoundTweakey. Here, the specific round key as well as the tweak are xored
to the state. Our attacks are performed in the single-key setting, so each key

148

byte is constant. This means that an active byte of the state remains active,
a constant byte constant, a balanced byte balanced (since the constant key is
added an even number of times and cancels out), and an unknown byte remains
unknown.

The situation changes if we take a look at the tweak addition. For the distin-
guisher, we want to use Λ-sets where one byte of the tweak is active, so we have
to consider the following situations. The xor of an active byte with an active
byte definitely results in a balanced byte. If the tweak byte as well as the state
byte are active and Ti[k]⊕ xi[k] = c for each k, the byte gets constant. The xor
of an active byte with a balanced byte results in a balanced byte.

3.2 The 4-round distinguisher

The distinguisher used in the Square attack against AES [2, 3] spans over 3
rounds. It starts with a Λ-set that is active in one byte of the plaintext and
constant in the rest of the state. The distinguisher ends after the key addition of
the third round with an all-balanced state. By introducing an active tweak byte,
we are able to extend the distinguisher by one round. However, the condition we
get after round 4 is slightly more difficult to exploit (see Fig. 1).

AK SB SR MC

AK

SB SR MC

SB SR MC

SB SR MC

A

A A A A

A

A

A

A

A

A

B

A

A

A

? ?

A

A

A

A A A

A A A

A A A

A A A

?

?

?

?

A A A

A A A

A A A

A A A

?

?

?

?

A A A

A A A

A A A

A A A

?

?

?

?

A A A?

?

?

?

A A A

A A A

A A A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S0 SSB
1 SSR

1 SMC
1

S1

AK

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

AK

AK

SSB
2 SSR

2 SMC
2

S2 SSB
3 SSR

3 SMC
3

S3 SSB
4 SSR

4 SMC
4 S4

P

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

Fig. 1. Distinguisher for 4 rounds of Kiasu-BC.

As shown in Fig. 1, we start with a Λ-set of 256 plaintexts P , where one byte
is active and the others remain constant. Additionally, we require that byte T0 of

149

the tweak is active as well. Since always the same tweak is xored to every round
key, every resulting round key xored with the tweak can be described as a Λ-set
that is active at byte 0 and constant in the rest of the bytes. The tweak and
plaintext values have to be chosen in a way that the xor of the tweak and the
plaintext is constant. For instance, T0[k] can always be chosen to be equal to the
first byte of the plaintext x0[k] for all 256 values of k. In this way, it is ensured
that state S0 is constant at every byte position. The state remains constant until
S1, where byte x0 becomes active again due to the addition of the tweak.

The second round of our distinguisher for Kiasu-BC corresponds to the first
round of the distinguisher used in the AES Square attack, except for the addition
of the active tweak byte at the end. Since SubBytes and ShiftRows affect neither
active nor constant bytes, we get to state SSR

2 , where still only the byte at position
0 remains active. The rest of the state is still constant. The next MixColumns
operation leads to an active column in state SMC

2 . In contrast to the first tweak
addition, the tweak addition at the end of round 2 leads to a balanced byte at
position 0. We get a balanced byte here, because we cannot make any assumption
on the concrete ordering of the 256 values of x0 of state SMC

2 .
In the third round, we have one balanced byte before SubBytes. This byte

becomes unknown after the S-box application. The ShiftRows operation shifts the
active bytes away from the first column. So we have at state SSR

3 one unknown,
and three constant bytes in the first column and one active, and 3 constant bytes
in every other column. This leads to one completely unknown first column, and
three completely active columns in state SMC

3 . The next tweak addition does not
change anything.

For the fourth round, we only go with active or unknown bytes through the
S-box layer, thus SubBytes does not influence our knowledge about the Λ-set
at this point. ShiftRows shifts one unknown byte to every column, so we get a
completely unknown state SMC

4 if we only limit our view to single byte positions.
Hence, we have to take a closer look at the MixColumns operation. To do so, we
represent the bytes of SSR

4 as xi and the bytes of SMC
4 as yi. Now, let us take a

look at what happens if we xor y1 with y2:

y1 ⊕ y2 = 01·x0 ⊕ 02·x1 ⊕ 03·x2 ⊕ 01·x3 ⊕ 01·x0 ⊕ 01·x1 ⊕ 02·x2 ⊕ 03·x3

= 03·x1 ⊕ 01·x2 ⊕ 02·x3 (1)

As shown in (1), x0 cancels and thus does not influence y1 ⊕ y2. In the first
column of SSR

4 , x0 is the only byte which is unknown. The rest of the bytes are
active. Since (1) only contains active coefficients, y1 ⊕ y2 is balanced. The next
key and tweak addition is an addition with constant bytes. This addition with
constant values does not influence the balanced property and therefore, also the
xor of byte 1 and 2 of state S4 is balanced.

4 Attacking 7 Rounds of Kiasu-BC

For attacking 7 rounds of Kiasu-BC, we extend the distinguisher by one round
in the backward and two rounds in the forward direction. At first we present a

150

basic version of the attack. Then, we improve the attack by using partial sums
in a similar way as Ferguson et al. [6].

4.1 Basic Square attack

The key-recovery attack is based on a set of plaintexts with differences only on
one of the diagonals of the state, combined with a set of tweaks with differences
only in the top left byte T0. Fig. 2 shows the trail we use to attack 7 rounds
of Kiasu-BC, where rounds 2 to 5 correspond to the distinguisher explained
in Section 3. To perform this attack, we first collect the encryption of all 232

plaintexts P where the diagonal bytes (x0, x5, x10, x15) loop through all possible
values, whereas the remaining 12 bytes are fixed to some constant. Each of these
plaintexts is encrypted under all 28 possible tweaks where all bytes except T0

are fixed to some constant, and T0 loops through all values. Thus, in total, we
require the ciphertext for 28 · 232 = 240 plaintext-tweak combinations.

AK

SB SR MC

AK

SB SR MC

A

A A A

A A A

A A A

A A A

?

?

?

?

A A A

A A A

A A A

A A A

?

?

?

?

A A A?

?

?

?

A A A

A A A

A A A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S0 SSB
1 SSR

1 SMC
1

S1 SSB
2 SSR

2 SMC
2

S4 SSB
5 SSR

5 SMC
5

P

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SB SR MC

A

A

A

A

A

A

A

A

SB SR AKequ

SB SR AK

AK

MC

S5 SSB
6 SSR

6 SAKequ

6

S6 SSB
7 SSR

7 S7

C

C

C

C

C

C

C

C C

C

C

CCCC

C CC

CC

CCC

C

A

A

A

A

CCC

C CC

CC

CCC

C

B

A

A

A

CCC

C CC

CC

CCC

C

4-
ro
u
n
d
d
is
ti
n
gu

is
h
er

Fig. 2. Square attack for 7 rounds of Kiasu-BC.

151

Building Λ-sets. Next, we want to group this data into suitable Λ-sets, so
that the previously introduced distinguisher can be applied to state S1. This
has to be done separately for each possible key guess of the 32 key bits RK0,0,
RK0,5, RK0,10, and RK0,15, which determine the values of the first column of
state SMC

1 . What we want to achieve is that this first column has only 1 active
byte in x0, and that this activity is canceled by AddRoundTweakey. Thus, we
can fix the 3 constant bytes x1, x2, x3 in SMC

1 to some arbitrary value, and set
x0 = T0 for each of the 28 tweaks. If we decrypt these 28 set elements by 1 round,
MixColumns will produce 4 active S-boxes in SSR

1 , which will be shifted to active
S-boxes in x0, x5, x10, x15 in state S0. Depending on the different tweak bytes T0

and the current key guess for the partial first-round key RK0, we get a Λ-set of
28 plaintexts. We can repeat this procedure for a few different constant values
in SMC

1 in order to build 16 Λ-sets for each of the 232 key guesses of RK0. For
the correct key guess, all 16 Λ-sets will follow the 4-round distinguisher from
Section 3.

Applying the distinguisher. We now want to partially decrypt all ciphertexts
of each Λ-set back to state S5, in order to verify the distinguishing property.
Remember that we are interested in computing the xor sum y1⊕y2 of each Λ-set,
marked in black (y1) and gray (y2) in Fig. 2. To do so, we have to calculate all
intermediate values marked in black and gray in Fig. 2. We can do this for the
black and the gray trail separately, requiring to guess 5 byte of key material for
each trail. Note that we swapped the order of MixColumns and AddRoundTweakey
in round 6, so that we only have to guess 1 byte of an equivalent round-key
RKequ

6 = MC−1(RK), rather than 4 bytes of the original RK6.
We end up building two lists L1 and L2 (per key guess of RK0). Each list

has 240 entries of 16-byte length each. For L1, each entry represents the 16 xor
sums of y1 that result when decrypting the 16 Λ-sets for one guess of RK7,3,
RK7,6, RK7,9, RK7,12, and RKequ

6,13. In the case of L2, each entry represents the 16
xor sums of y2 that result when decrypting the 16 Λ-sets for one guess of RK7,2,
RK7,5, RK7,8, RK7,15, and RKequ

6,10.
As explained in Section 3, y1 and y2 of state S5 sum to 0 for the correct key

guess. Hence, we have to search for matching 16-byte entries between lists L1

and L2. A match indicates a key guess combination for the 10 guessed bytes of
RKequ

6 , RK7 that satisfies the distinguishing property for all 16 Λ-sets of one key
guess for 4 bytes of RK0; that is, a candidate for 14 bytes (or 112 bits) of key
material for the correct key. The probability that a wrong key fulfills our 16-byte
distinguisher is 2−128 (distinguishing property is the zero value for 128 bits, all
other values reveal wrong keys). Therefore, we expect that only one candidate
for the correct key bytes remains.

Attack complexity. To determine the overall complexity of this attack, we first
take a look at the complexity per first-round key guess (guess of RK0,0, RK0,5,
RK0,10, and RK0,15). To generate the 16 Λ-sets, we have to partially decrypt
16 · 28 plaintext-tweakey combinations for one round, for one column of the

152

state. This will allow us to select suitable Λ-sets from the 240 chosen-plaintext
queries encrypted under the target key. Then, we have to create our two lists L1

and L2. For creating one list, we have to decrypt 24 · 28 ciphertexts for 240 key
guesses 2 rounds back to one byte at S5. Since we decrypt for 2 rounds to one
byte, we only have to look at one column of the state. Hence, we estimate the
costs for such a partial decryption with half a Kiasu-BC round. So, creating one
list has approximately the complexity of 24 ·28 ·240 = 252 half-round decryptions,
which corresponds to less than 249 7-round Kiasu-BC decryptions. For creating
both lists, we require about 250 7-round Kiasu-BC decryptions. This complexity
dominates both the complexity of 212 one-round encryptions for creating the 16
Λ-sets and the complexity for finding a match between the two lists, which is
approximately 40 · 240 comparison operations for sorting one list and 40 · 240

memory look-ups for finding a match.
Since we have to build the two lists for each of the 232 first-round key guesses,

we end up having a total attack complexity of 282 7-round Kiasu-BC encryptions.
For carrying out this attack, we have to query 28 · 232 = 240 chosen plaintexts.
In addition to the plaintext-ciphertext pairs, we have to store our two lists L1

and L2. One entry of the lists corresponds to the memory complexity of storing
one plaintext. Thus, we have an additional memory requirement of roughly 241

Kiasu-BC states.

4.2 Improvements using partial sums

Ferguson et al. [6] showed that the complexity of the Square attack on AES
can be significantly improved by using the partial sum technique. Their first
observation is that for AES, the effort of guessing the 32 bits of RK0 can be
traded for summing over larger sets (of all 232 plaintexts, rather than only 28

Λ-set messages), thus reducing the complexity by a factor of 28. Then, as a second
improvement, the increased number of operations necessary for evaluating the
distinguisher can be rearranged into partial sums to significantly cut down the
computational complexity. In this section, we will show that a similar reasoning
applies to Kiasu-BC, and that the techniques of Ferguson et al. [6] can be adapted
to improve the complexity of the attack on 7-round Kiasu-BC significantly.

Summing all messages. In the basic attack, we had to guess 4 bytes of the
first round key RK0 in order to select a suitable Λ-set of 28 plaintext-tweak com-
binations and apply the distinguisher. For such a Λ-set, which is characterized
by a single active byte x0 in state SMC

1 and a constant difference between this
byte and tweak byte T0 (e.g., x0 = T0), we know that in S5, the values y1 ⊕ y2

sum to 0. Clearly, the same distinguishing property also applies if we sum not
just over one, but over several Λ-sets.

Now consider again our set of 28 · 232 plaintext-tweak combinations. This
set can actually be grouped into 28 · 224 Λ-sets as follows. For every value of
T0, the state bytes x0, x1, x2, x3 in state SMC

1 take all 232 values. Therefore, for
each of the 224 fixed constant values of x1, x2, x3 and each fixed value x0⊕T0 in

153

state SMC
1 , we can find exactly 28 plaintext-tweak combinations that map to this

state, where x1, x2, x3 and x0⊕T0 are constant. Each of these 28 plaintext-tweak
combinations fulfills our conditions for a Λ-set. Thus, if we sum over all plaintext-
tweak combinations, we actually sum over many Λ-sets, so the distinguishing
property for y1⊕y2 will apply – and we do not have to guess the round key RK0

in order to evaluate it. In other words, we can trade guessing the 32 key bits of
RK0 for summing over 240 instead of 28 messages. Unfortunately, in contrast to
the original attack on AES [6], this first improvement described so far does not,
by itself, decrease the attack complexity, since we have to sum over all values of
T0. However, as we will show next, this modified distinguisher can be evaluated
in an optimized way by reorganizing the order of summation.

Adapting the distinguisher. To evaluate the distinguisher, we now need to
decrypt our 240 ciphertexts back to y1 and y2. To identify valid key candidates,
we calculate the sum in y1 for each key guess of RK7,3, RK7,6, RK7,9, RK7,12, and
RK6,13, storing the result in L1 (indexed by the key guess); and we do the same
for y2 in L2, based on all guesses of RK7,2, RK7,5, RK7,8, RK7,15, and RK6,10.
Since we guess in total 10 bytes of key material, a 1-byte distinguisher is not
enough to filter all wrong key guesses. Hence, we repeat the whole procedure
for a total of 12 collections (of 240 ciphertexts each), so that L1 and L2 are in
the end populated with 12-byte entries (and indexed by 5-byte key guesses). We
expect only one 12-byte match between L1 and L2, providing us with the correct
10 bytes of key material.

We now want to optimize the costs for calculating the entries of L1 and L2,
which dominate the overall runtime by making use of the partial-sum technique
described by Ferguson et al. [6]. They show that the cost for computing the
240 sums (for each key guess) of one byte located 2 AES rounds before the end
(similar to our case, y1 or y2 of State S5), using 232 ciphertexts, can be reduced
to approximately 250 S-box applications. Assuming that one encryption under
a new key is equivalent to 28 S-box applications, the overall cost is only about
242 encryptions. In contrast to the original attack, we actually want to sum over
240 values, and additionally have to consider the tweak input. However, it turns
out that the original partial-sum technique can be adapted to allow this with no
significant computational overhead.

First, observe that in each AddRoundTweakey step, the different values of T0

only influence the first byte x0 of the state; and in the AddRoundTweakeyequ step
that we apply in round 6, T0 modifies the equivalent round key of the first column
(state bytes x0, x1, x2, x3). As illustrated in Fig. 2, neither L1 nor L2 depend on
these state bytes, so we do not need to know T0 in order to partially decrypt.
Second, note that for building L1 (or L2), we are only interested in 32 bits of
each of the 240 encrypted messages (per collection). Thus, instead of decrypting
each message with each key guess, we can count how often each possible 32-bit
value occurs among the encrypted messages, and then only decrypt based on
each 32-bit value once. Furthermore, since the effects of two occurrences of the
same 32-bit value will simply cancel out in the final xor-sum, it is sufficient

154

to count occurrences modulo 2. We can store the counters in a 232-bit vector
δcccc = (δcccc

0 , . . . , δcccc
232−1), indexed by the possible values x = x0‖x1‖x2‖x3.

Equipped with these two observations, we can now directly apply Fergu-
son et al.’s partial-sum technique, which we summarize below.

Ferguson et al.’s partial sums [6]. Consider the byte y1 we need to evaluate
for one entry of L1, i.e., the sum over the 240 messages of one collection. If
we denote the 4 relevant (black) ciphertext bytes of message i in state S7 by
ci,0, . . . , ci,3 and the 5 guessed round-key bytes (after xoring the known tweak)
by k0, . . . , k4, and summarize the inverse SubBytes in round 7 and the constant
multiplications by MixColumns in round 6 in the bytewise functions S0, . . . ,S3,
then the value we want to compute is

σ =
240−1⊕

i=0

S−1[S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1]⊕ S2[ci,2 ⊕ k2]⊕ S3[ci,3 ⊕ k3]⊕ k4]

=

232−1⊕

x=0

δcccc
x · S−1[S0[x0 ⊕ k0]⊕ S1[x1 ⊕ k1]⊕ S2[x2 ⊕ k2]⊕ S3[x3 ⊕ k3]⊕ k4].

To optimize this computation, we first count for every key guess of k0 and k1

the modulo-2 frequency of the values (S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1], ci,2, ci,3) and
store it in the 224-bit vector δscc. This vector can easily be computed from δcccc

as

δscc
x0,x1,x2

=
28−1⊕

s=0

δcccc
s,S−1

1 [x0⊕S0[s⊕k0]]⊕k1,x1,x2
. (2)

Similarly, after guessing k2 and subsequently k3, we can compute the frequency
δsc of (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1] ⊕ S2[ci,2 ⊕ k2], ci,3) (216 entries) and then δs

of (S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1]⊕ S2[ci,2 ⊕ k2]⊕ S3[ci,3 ⊕ k3]) (28 entries) via

δsc
x0,x1

=

28−1⊕

s=0

δscc
s,S−1

2 [x0⊕s]⊕k2,x1
, (3)

δs
x0

=

28−1⊕

s=0

δsc
s,S−1

3 [x0⊕s]⊕k3
. (4)

Finally, we guess k4 and compute the desired result byte via

σ =
28−1⊕

s=0

δs
s · S−1[s⊕ k4]. (5)

The same procedure can be applied to compute the entries of L2, and needs to be
repeated for each of the 12 collections. Afterwards, L1 and L2 can be sorted and
matched as before to identify the correct partial key for 10 bytes of key material.
The remaining 6 bytes of key information can be recovered with a brute-force
approach.

155

Overall complexity. The data complexity for the improved attack is 12 ·240 ≈
243.6 chosen plaintext-tweak combinations. Per list and collection, we have the
following complexity. The original 232-bit vector δcccc can be constructed with
negligible overhead to each chosen-plaintext query. The 224-bit vector δscc is
computed for 216 key guesses, and requires 2 ·28 ·224 = 233 S-box lookups, so the
computations of (2) contribute 249 S-box lookups per list and collection. Simi-
larly, computations (3), (4) and (5) contribute 248 S-box lookups each. Overall,
computing lists L1 and L2 require 2 · 12 · (249 + 3 · 248) ≈ 254.9 S-box lookups,
or roughly 246.9 7-round encryptions.

Sorting the 240 entries of L1 and L2 can be implemented, for example, with
less than 40·240 ≈ 245.3 comparisons (worst-case) and 2·240.1 Kiasu-BC states of
memory per list via MergeSort, or a total of 246.3 comparisons and 241.7 memory
for both lists. Finding all matches between the sorted lists takes a negligible 2·240

comparisons (worst-case).
We expect to find only one match, and guessing the remaining 6 bytes of

key information takes, in the worst case, 248 encryptions (assuming that the
known 10 bytes of key information can be combined efficiently). In total, the
worst-case attack complexity is about 248.5 7-round Kiasu-BC encryptions, and
requires about 241.7 Kiasu-BC states of memory, and 243.6 chosen-plaintext-
tweak queries.

5 Application to Authenticated Cipher Kiasu6=

In this section, we show that variants of the previously presented Square attacks
are applicable when Kiasu-BC is used in a ΘCB3-like [14] mode of operation. To
be specific, we demonstrate the feasibility of a variant of the attack presented
in the previous section on Kiasu 6=. Kiasu 6= is one of two proposed modes of the
CAESAR candidate Kiasu [9], which only claims security when used in a nonce-
respecting way. Thus, the attacks presented in this section follow this restriction
and never require the nonce to be equal for queries on the encryption oracle.
Before describing the attack, we give a short description of Kiasu6=.

5.1 Description of Kiasu6=

Fig. 3 shows the plaintext processing part of the authenticated encryption scheme
Kiasu6=. Here, each plaintext block Pi is encrypted with the help of Kiasu-BC
using always a different value for its tweak. The tweak value is constructed by
concatenating a 3-bit 0, the 32-bit nonce N and a 29-bit value representing the
index i of the plaintext block Pi that is encrypted. To generate the tag T , the
sum of the plaintext blocks is encrypted and xored with Auth, which is derived
from processing the authenticated data.

5.2 A Key-Recovery Attack on Round-Reduced Kiasu 6=

Our attack targets the encryption of the plaintexts blocks. For the attack to
be carried out, we need an encryption oracle that encrypts plaintexts chosen

156

P1 P2 P`

⊕
Pi

E0,N,1
K E0,N,2

K
· · · E0,N,`

K E1,N,`
K

⊕ Auth

C1 C2 C` T

Fig. 3. Plaintext processing for the nonce-respecting mode Kiasu 6= for a multiple of
the block length.

by the attacker. We use the block counter to iterate over the tweak byte T7 to
construct our Λ-sets. Since the least significant byte of the block counter is xored
to byte 13 of the state, we have to use a slightly different distinguisher, which is
shown in Fig. 4. Similar to the attacks presented in Section 4, we prepend one
round to the distinguisher and append two rounds. Then, we can apply a slight
modification of the Square attack described in Section 4.1.

The attack of Section 4.1 can be partitioned in two phases. The first one is the
generation of 16 Λ-sets under a specific guess of 32-bits of RK0, the second part is
the evaluation of the Λ-sets to see if the distinguishing property holds for partial
guesses of RK6 and RK7. While this evaluation of the Λ-sets works equivalent
as in Section 4.1 for the attack on Kiasu6=, we have to change the way we built
our Λ-sets. For building the Λ-sets, the attack of Section 4.1 uses the same 28

tweak values for every Λ-set. This is no longer an option, since the attacks on
round-reduced Kiasu6= are performed in a nonce-respecting setting. Therefore,
we have to build each Λ-set using different tweak values and respecting the data
limits of Kiasu 6=, which limit the number of encrypted blocks per message to
229, and the total number of encrypted messages to 232. Next, we will describe
how to select suitable plaintexts to obtain Λ-sets under these constraints.

Observe that for a single multi-block plaintext message, the tweaks used for
encrypting the individual plaintext blocks will be constant in the first 35 bits,
where 32 bits represent the nonce value. Dependent on the attack model, the
nonce may be known before we make an encryption query (e.g., it is implemented
as a counter, to avoid collisions of the very short nonces), or the oracle picks a
random nonce. Note that one byte of the nonce at tweak position T1 influences
our key guess at RK0,1 in the upcoming attack. Hence, for sake of simplicity, we
assume that the nonce value is known before we make each encryption query
(we discuss the case of unpredictable nonces at the end of this section). The
remaining bits of the tweak represent a 29-bit block counter and are always
known in advance. In our attack we want to use the least significant 8 counter
bits in T7 for the active tweak byte. Since the counter starts with a value of 1,
we actually can only start building Λ-sets from block 256 on. So the first Λ-set
includes blocks 256, . . . , 511, i.e., T6 = 1 and T7 is active. Now, we need to define

157

AK

AK

C

S0 SSB
1 SSR

1 SMC
1P

C

C

C

C

C

C

C

C

C

C

C C

C

A

C

SB SR MC

C

C

C

C

SB SR AKequ

SB SR AK

AK

MC

S5 SSB
6 SSR

6 SAKequ

6

S6 SSB
7 SSR

7 S7

C

C

C

C

C

C

C

C

ACC

A CC

CA

ACC

C

C

C

C

C

ACC

A CC

CA

ACC

C

4-
ro
u
n
d
d
is
ti
n
gu

is
h
er

SB SR MC

AK

SB SR MC

SB SR MC

SB SR MC

C C

C

C

C

A B A

A B A

A B A

A B A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S1 SSB
2 SSR

2 SMC
2

S1

AK

AK

AK

SSB
2 SSR

2 SMC
2

S3 SSB
4 SSR

4 SMC
4

S4 SSB
5 SSR

5 SMC
5

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

A

A

A

A

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C C

C

C

C

A

A

A

A

C

C

A

C C

C

C

C C

C

C

C

A

A

A

A

C

C

A

C C

C

A

C C

C

A

C

C

C

A

A

A

C

C

C A

A

A

A

A B A

A B B

A B A

A B A

A

A

A

A

A ? A

A ? ?

A ? A

A ? A

A

A

A

A

A ? A

? ? A

A A A

A A ?

A

A

?

A

A

A

A

A

C

C

C

C

C

C

C

C

ACC

A AC

CA

ACC

C

Fig. 4. Attack for 7 rounds of Kiasu6=.

158

suitable plaintext blocks to query, so that the ciphertext blocks of one 511-block
message will allow us to evaluate the distinguisher.

Let pi denote the individual state bytes of the plaintext, xi the bytes of
SMC

1 , and zi the bytes of the state right after adding the tweak (but before
adding the round key). We start by choosing some arbitrary constant value for
the bytes z12, z13, z14, z15. Then, we apply the inverse tweak-addition to obtain
x12, . . . , x15, which will add a constant value of T6 = 1 to z12, and an active
T7 = 0, . . . , 255 to z13. The inverse first round will map this column to some set
of states with 4 active bytes in S0. For one key guess of RK0,1, RK0,6, RK0,11, and
RK0,12, we obtain a set of 256 values for (p1, p6, p11, p12). The only other active
byte, p13, needs to be chosen so that the difference p13 ⊕ T7 is fixed, e.g., by
setting p13 = T7. The rest of the state can be chosen as some arbitrary constant.
The resulting plaintext blocks have to be encrypted by the encryption oracle at
block positions P256 to P511 and form a Λ-set for the right guess of RK0,1, RK0,6,
RK0,11, and RK0,12.

The second part of the attack is evaluating the constructed Λ-sets. Since we
changed the position of the active tweak byte from T0 to T7 compared to the
original attack of Section 4.1, we also need to adapt the distinguishing property
and evaluate, for instance, y0 ⊕ y3 in state S5, instead of y1 ⊕ y2. The indices
of the guessed round keys and ciphertext bytes need to be adapted accordingly,
but otherwise, the attack procedure remains the same. This modification also
has no influence on the attack runtime, so the computational complexity is still
a total of 282 encryptions to recover 12 bytes of key information.

Accomodating the data complexity limit. Note that with the above strat-
egy, we would need to encrypt 16 · 232 messages to obtain 16 Λ-sets per 32-bit
guess of RK0. Thus, we would exceed the maximum number of messages that
can be encrypted per key. However, it is possible and necessary to build more
than one Λ-set per message following block 511, so that we do not exceed the
maximum number of possible messages in our attack. Assume we construct 28

Λ-sets per message. This means the first Λ-set covers blocks 256, . . . , 511, so
T6 = 1 and T7 is active, the second Λ-set covers blocks 512, . . . , 767, so T6 = 2
and T7 is active, and so on, until we have 28 Λ-sets. Thus, every message we
query has a length of 216 + 255 blocks. This means we need 228 chosen messages
sent to the encryption oracle, corresponding to 244 + 236 chosen plaintext blocks
for the attack.

Adaptation for unpredictable nonces. For simplicity, we assumed that the
nonce value for each encryption query is predictable, since we needed the value
of the nonce byte at tweak position T1 in order to derive the plaintext values p1

for each key guess of RK0,1. However, the attack can also be adapted for cases
where the nonce is not known as follows. The attacker assumes T1 = 0 and simply
queries one message per guess of RK0. The actual values of T1 will be random,
so for each value of RK0,6,RK0,11,RK0,12, the attacker effectively queried sets
for 28 random values of RK0,1. Due to possible collisions, these queries will, on

159

average, cover a fraction of about 1 − 1
e ≈ 63.2 % of all 28 possible values of

RK0,1. The attack is only successful if the correct value of RK0,1 is among the
covered fraction, so the success probability of the overall attack will be about
63.2 %. This can be improved by asking several queries per key guess, e.g., 4
queries for a success probability of about 1 − 1

e4 ≈ 98.2 %, at the cost of an
increase in data complexity by a factor of 22 (but no increase in computational
complexity).

An alternative, deterministic approach is to query 28 Λ-sets per guess of
RK0,1, one for each possible value of T1. All 28 Λ-sets need to be queried in
one message, to get a constant nonce value and thus definitely cover the correct
guess of T1. Each message now contains 224 +255 blocks, and we query a total of
252+236 blocks. Again, the computational complexity remains at 282 encryptions.

6 Conclusion

In this work, we presented the first third-party analysis of Kiasu-BC. We showed
that the additional tweak input can be exploited to create a distinguisher based
on the Square property spanning 4 rounds. This is one more round compared
to the distinguisher used in Square attacks on AES-128. Hence, we were able
to perform key-recovery attacks on 7-round Kiasu-BC with a computational
complexity of only about 248.5 encryptions, which is faster than the best 7-
round attacks for AES-128. However, we cannot attack more rounds compared
to AES-128 and hence our analysis does not contradict the claim of the designers
that Kiasu-BC has a sufficient security margin.

Variants of the Square attacks on Kiasu-BC are also applicable if Kiasu-BC
is used in one of its recommended modes of operation. We demonstrated this
with a nonce-respecting key-recovery attack on Kiasu6=, a ΘCB3-like mode of
the CAESAR candidate Kiasu. The computational complexity of this attack
is approximately 282 encryptions for 7-round Kiasu-BC, and the attack also
respects the low data query limits.

Acknowledgements
The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 (HECTOR).

Furthermore, this work has been supported in part by the Austrian Science Fund
(project P26494-N15) and by the Austrian Research Promotion Agency (FFG)
under grant number 845589 (SCALAS).

References

1. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) Fast Software Encryption – FSE ’97. LNCS, vol. 1267, pp. 149–165. Springer
(1997)

160

2. Daemen, J., Rijmen, V.: AES proposal: Rijndael. National Institute of Standards
and Technology (1998)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

4. Demirci, H., Taskin, I., Çoban, M., Baysal, A.: Improved meet-in-the-middle at-
tacks on AES. In: Roy, B.K., Sendrier, N. (eds.) Progress in Cryptology – IN-
DOCRYPT 2009. LNCS, vol. 5922, pp. 144–156. Springer (2009)

5. Derbez, P., Fouque, P., Jean, J.: Improved key recovery attacks on reduced-round
AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer (2013)

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.:
Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) Fast Software Encryption
– FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer (2000)

7. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Can-
didate Conference. pp. 230–241 (2000)

8. Grosso, V., Leurent, G., Standaert, F., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round2/screamv3.pdf (2015)

9. Jean, J., Nikolic, I., Peyrin, T.: KIASU. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round1/kiasuv1.pdf (2014)

10. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT
2014, Part II. LNCS, vol. 8874, pp. 274–288. Springer (2014)

11. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. IACR Cryptology ePrint Archive 2014, 831 (2014), http://eprint.
iacr.org/2014/831

12. Jean, J., Nikolic, I., Peyrin, T.: Deoxys. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round2/deoxysv13.pdf (2015)

13. Jean, J., Nikolic, I., Peyrin, T.: Joltik. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round2/joltikv13.pdf (2015)

14. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) Fast Software Encryption – FSE 2011. LNCS, vol. 6733,
pp. 306–327. Springer (2011)

15. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
Advances in Cryptology – CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer
(2002)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptology 24(3),
588–613 (2011)

17. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) Progress in Cryptology –
INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer (2008)

18. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impos-
sible differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C.
(eds.) Progress in Cryptology – INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–
291. Springer (2010)

19. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014), http://competitions.cr.yp.to/

caesar.html

161

ISAP – Towards Side-Channel Secure
Authenticated Encryption

Publication Data

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. “ISAP – Towards Side-Channel Secure Authenticated
Encryption”. In: IACR Transactions on Symmetric Cryptology 2017.1 (2017),
pp. 80–105. url: http://tosc.iacr.org/index.php/ToSC/article/view/585

Contributions

• Technical: Contributed to the idea and design of the mode, the sponge
based instantiations (except the used re-keying functions), the choice of the
parameters, and the analysis. No contributions to the implementations.

• Writing: Contributions to the writing of Sections 3, 4.1, 4.3, 4.5, 4.6, and
5. Minor contributions to the writing of Sections 1, 4.2, and 7.

163

http://tosc.iacr.org/index.php/ToSC/article/view/585

ISAP – Towards Side-Channel Secure
Authenticated Encryption

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard,
Florian Mendel and Thomas Unterluggauer

Graz University of Technology, Austria
firstname.lastname@iaik.tugraz.at

Abstract. Side-channel attacks and in particular differential power analysis (DPA)
attacks pose a serious threat to cryptographic implementations. One approach to
counteract such attacks are cryptographic schemes based on fresh re-keying. In
settings of pre-shared secret keys, such schemes render DPA attacks infeasible by
deriving session keys and by ensuring that the attacker cannot collect side-channel
leakage on the session key during cryptographic operations with different inputs.
While these schemes can be applied to secure standard communication settings,
current re-keying approaches are unable to provide protection in settings where the
same input needs to be processed multiple times.
In this work, we therefore adapt the re-keying approach and present a symmetric
authenticated encryption scheme that is secure against DPA attacks and that does
not have such a usage restriction. This means that our scheme fully complies with
the requirements given in the CAESAR call and hence, can be used like other nonce-
based authenticated encryption schemes without loss of side-channel protection. Its
resistance against side-channel analysis is highly relevant for several applications in
practice, like bulk storage settings in general and the protection of FPGA bitfiles and
firmware images in particular.
Keywords: authenticated encryption · fresh re-keying · passive side-channel attacks ·
sponge construction · permutation-based construction

1 Introduction
Motivation. Passive side-channel attacks and in particular differential power analysis
(DPA) pose a serious threat to the security of cryptographic implementations. These
attacks allow to learn information about the secret key that is processed in a device by
observing physical properties, like the power consumption [KJJ99] or the electromagnetic
(EM) field [QS01]. They are a threat whenever a device performs cryptographic operations
with a key that is not known to the holder of a device. This is the case, for example, when
a sensor device is installed in a non-protected area to communicate data to some backend,
when a manufacturer performs an encrypted firmware update on devices in the field, when
a device working on encrypted data is lost, or when a device is rented by one party to
another.

While passive side-channel attacks have mainly been a threat to ATM and pay TV
cards at the time of their publication, these attacks are now relevant to a wide range of
devices of the Internet of Things (IoT). A recent example is the IoT attack by Ronen et
al. [ROSW16], where adjacent Philips Hue smart lamps infect each other with a worm
that has the potential to control the device. One crucial part of this attack is the recovery
of the global AES-CCM key that is used to encrypt and verify firmware updates with
the help of a sophisticated DPA attack. As another prominent example, the keys for

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2017, No. 1, pp. 80–105
DOI:10.13154/tosc.v2017.i1.80-105

Dobraunig et al. 81

FPGA bitfile encryption of several generations of FPGAs have been revealed by DPA
attacks [MBKP11,MS16].

DPA attacks are the most powerful passive side-channel attacks in practice. They
accumulate information about a cryptographic key by observing multiple en-/decryptions
of different inputs. The fact that different inputs are used allows statistical techniques,
like Bayesian distinguishers [CRR02] or correlation techniques [BCO04], to extract keys
very efficiently.

While these attacks typically require a standard oscilloscope, there are now also open
source projects for attack setups on software implementations [OC14]. Unprotected software
implementations of cryptographic algorithms typically can be broken by observing less
than 100 en- or decryptions with a key [MOP07]. Given the low effort of the attacks, there
is great need for countermeasures.

State of the Art. In order to protect cryptographic keys against side-channel attacks, a
lot of research has been conducted during the last two decades. Today, there essentially
exist two approaches to counteract the attacks. The first approach works by hardening
the implementation of cryptographic algorithms with techniques like hiding [MOP07]
or masking [PR13]. The drawback of this approach is that the overhead for securing
a cryptographic primitive against side-channel attacks is very high and depends on the
cryptographic primitive itself. Therefore, in the past several ciphers have been pro-
posed to reduce this cost. For example, the authenticated ciphers Ascon [DEMS14],
Ketje/Keyak [BDP+14a,BDP+14b], PRIMATES [ABB+14], and SCREAM [GLS+14] of
the ongoing CAESAR competition [CAE14] have all been designed with this goal in mind.
However, the protected implementation of these designs still leads to a significant overhead
and the cost of masking still increases significantly with the protection order [ISW03].

The second approach to counteract side-channel attacks is to change cryptographic
protocols in such a way that certain types of side-channel attacks cannot be performed
at all on the underlying cryptographic primitive. In particular, if the protocol design
inherently prevents DPA attacks, the underlying cryptographic primitive only needs to be
secured against attacks that extract information about the key by observing cryptographic
operations for a single fixed input. Following the definitions in [MOP07], we refer to
the class of attacks that require to observe a device processing the same or a few inputs
as simple power analysis (SPA), whereas we refer to the class of attacks that require
to observe a device processing many different inputs under the same key as differential
power analysis (DPA). A protected implementation of the primitive against SPA attacks
induces a significantly lower overhead than against DPA attacks. An example of such
an approach of inherently preventing DPA attacks is fresh re-keying [MSGR10,MPR+11,
BDH+14,DKM+15] and leakage-resilient cryptography, which brought forth encryption
schemes [Pie09,FPS12], message authentication codes (MACs) [PSV15] and authenticated
encryption schemes [BKP+16].

Schemes with inherent protection against DPA attacks require a side-channel secure
initialization in order to obtain a fresh session key for every cryptographic operation. This
session key is typically derived from a pre-shared master key using a nonce. The purpose of
the secure initialization is to ensure that cryptographic operations for different data inputs
are always done using different keys. Hence, whenever a party encrypts or authenticates
data, a new nonce has to be generated to derive a new session key.

While this effectively prevents DPA attacks on the sender’s encryption or authentication
process, the situation is more challenging for the receivers who perform decryptions or
verifications. While the sender can generate the nonce and thus ensure that session keys
are always fresh, the receiver must process any data he receives, with no control over the
nonce. In order to prevent DPA attacks in these cases, one possible approach is that all
communicating parties contribute to the nonce that is used to derive the session key from

165

82 ISAP – Towards Side-Channel Secure Authenticated Encryption

a pre-shared master key [MPR+11]. This prevents an attacker from collecting side-channel
information for the decryption of several different ciphertexts under the same nonce (and
thus the same session key). However, this approach requires additional communication or
synchronization between parties, which is often not possible in practice.

Our Contribution. We propose Isap, a symmetric authenticated encryption scheme that
is designed to prevent DPA on both encryption and decryption. Isap fulfills all func-
tional requirements for nonce-based authenticated encryption as defined by the CAESAR
call [CAE14] and at the same time provides protection against DPA attacks for all involved
parties. In addition, Isap limits the attack surface against decryption to SPA attacks and
thus might be the first step towards a fully side-channel secure authenticated encryption
scheme, addressing an open research problem mentioned by Pereira et al. [PSV15] and
Berti et al. [BKP+16].

One of the main observations is that verifying authenticity before decryption protects
the decryption procedure from DPA attacks, whereas the verification itself can be protected
by a suitable derivation of the authentication session key. In addition, we show that sponges
provide an elegant way to argue the resistance of permutation-based designs to SPA attacks.
This flexibility motivates the fact that all building bocks of Isap are based on sponges.

The results of our hardware implementation show that the concrete instances Isap-128
and Isap-128a (that are based on 400-bit Keccak permutations) can be implemented in
a straightforward manner with an area of 14 kGE, with the benefit compared to existing
schemes that Isap provides DPA security up to the same order as the used re-keying
function even for multiple decryption.

Open Questions. Isap protects against DPA and is designed to cope with limited SPA
leakage. However, we still require dedicated countermeasures against SPA on implemen-
tation level. Such countermeasures are particularly crucial for the decryption unit, since
the same data can be decrypted multiple times. This may reduce the measurement noise,
making an SPA attack easier. Quantifying the SPA leakage of an implementation remains
an open problem in practice. Another open question concerns the formal verification of
our side-channel assumptions. While a security proof using state-of-the-art concepts of
leakage-resilient cryptography might be out of reach, since Isap allows multiple decryption
of the same data without introducing new randomness, it is still an open question if parts
of our scheme or some specific properties like its resistance against DPA attacks can be
formally proven.

Outline. We first recall the idea and limitations of fresh re-keying in Section 2. In
Section 3, we specify the sponge-based authenticated cipher Isap. We give the design
rationales of Isap in Section 4, and analyze its security in Section 5. Finally, we provide
implementation results in Section 6 and conclude in Section 7.

2 Background to Re-keying
While cryptographic implementations can be protected via mechanisms like hiding or
masking, frequent re-keying is a countermeasure to DPA that can be seen to work on
protocol level. The idea of frequent re-keying is to prevent DPA on the cryptographic
primitive by limiting the number of processed inputs per key. In other words, it limits the
data complexity for each key by a small number q that renders DPA on the key infeasible
(q-limiting [SPY+10]). It is nowadays a common assumption that small data complexities,
i.e., q = 1 and q = 2, have sufficiently small side-channel leakage and do not allow for
successful key recovery from DPA attacks [BDH+14,Pie09,SPY+10,TS15].

166

Dobraunig et al. 83

Frequent re-keying was first proposed for protecting embedded devices such as RFID
tags [MSGR10,Koc03]. On the encryption of every new plaintext P , the block cipher E is
provided with a new session key K∗. This session key K∗ is derived from a pre-shared
master secret K and a nonce N that is randomly generated on the tag. This inherently
prevents DPA on the session key K∗ of the block cipher E. However, for key derivation it
requires a re-keying function g : (K,N) 7→ K∗ that is easy to protect against both SPA
and DPA attacks.

2.1 Secure Re-Keying Function

A secure re-keying function g : (K,N) 7→ K∗ derives a new session key K∗ from a master
key K and a fresh nonce N and needs to be secure against both SPA and DPA attacks.
This security against side-channel attacks can be achieved either on an algorithmic level,
or by countermeasures for implementations. Hence, several options for choosing and
implementing secure re-keying functions have been proposed.

For instance one option is to build g in such a way that it is easy to secure by
classical countermeasures like masking. This is the basic idea of fresh re-keying described
in [MSGR10,MPR+11], which uses a polynomial multiplication of K and N to implement
g. This multiplication can be masked easily. However, as pointed out in [BFG14,BCF+15,
GJ16,PM16], the algebraic structure of a multiplication opens the door to attacks on g and
the encryption. Recently, this issue has been addressed by Dziembowski et al. [DFH+16],
who propose two new schemes based on learning parity with leakage and learning with
rounding.

A second option presented in [SPY+10,FPS12] is based on the classical GGM con-
struction [GGM86]. The GGM construction can be used to mix a secret K with a public
N in a tree-like approach, where on each tree level, exactly one bit of the public N is
absorbed. Starting with s0 = K, the key si+1 is computed by encrypting one of two
predefined plaintexts P0, P1 with the key si, depending on the i-th bit of N . The output
of the last level is then, after postprocessing, used as the session key K∗. In this approach,
an attacker only obtains the leakage for two inputs P0 and P1 to collect information about
each si. The construction is thus 2-limiting and is usually considered to be secure against
DPA.

Another option presented in [MSJ12,BDH+14] also originates from the classical GGM
construction. It follows the idea of [SPY+10] by extending the number of observable
measurements per key and deriving a leakage-resilient pseudo-random function (LR-PRF)
from common block cipher designs to achieve secure re-keying. The main assumption
of this approach is that the attacker is not able to distinguish the leakage of different
hardware components on a chip.

E

g

P

K N

K∗

Tag Reader

C

(a) Protecting one party.

E

g

P

K NA

K∗

A

E

g

P

KNB

K∗

B

C

(b) Protecting both parties.

Figure 1: Re-keying of block ciphers.

167

84 ISAP – Towards Side-Channel Secure Authenticated Encryption

2.2 Limitations and Open Problems
One major problem of re-keying schemes such as in Figure 1a is that the reader remains
vulnerable to DPA attacks. For instance, such a re-keying scheme can successfully prevent
DPA attacks on a device that solely performs encryption or authentication of messages,
i.e., the sender of a message, but fails to protect a device performing decryptions or
verifications, i.e., the receiver of a message. This is caused by the lack of control of a
decryption device on the nonce N and allows attackers to send arbitrary messages to the
decryption device using the same nonce N for all sent messages. This malicious procedure
results in different messages being decrypted using the same session key K∗. As a result,
decryption is vulnerable to DPA, and more concretely, it is the multiple decryption with
the same session key K∗ that causes this DPA vulnerability. This problem of securing
decryption against side-channel attacks was also mentioned by Pereira et al. [PSV15] and
Berti et al. [BKP+16].

In order to prevent this kind of DPA attacks, the receiver either needs to be protected
by other means [MSGR10], or the receiver needs to be stateful in order to prevent
decryption with the same session key twice, or all communication parties are required to
contribute to the nonce that is used to derive the session key from a pre-shared master
key [MPR+11] as shown in Figure 1b. However, the requirement of both sender and
receiver being stateful bears some practical downsides ranging from synchronisation issues
between sender and receiver to potential denial-of-service attacks, e.g., if the nonce is
a counter and the receiver rejects all messages with a nonce smaller than the last valid
nonce which is stored at the receiver. Also the option that all communication parties
are required to contribute to the nonce is impractical in several prominent use cases,
such as unidirectional/broadcast communication and encrypted storage. Recently, the
need for DPA protection in these settings has been pointed out by attacks targeting the
decryption of firmware images [ROSW16], or FPGA bitfiles [MBKP11,MS16]. While it
is impossible to let a receiver contribute to the nonce in unidirectional communication
settings, the additional overhead of letting each receiver contribute to the nonce in a
broadcast setting could potentially make an application unpractical. In encrypted storage,
the receiving device simply cannot contribute to the nonce, but must be able to decrypt
the encrypted data, e.g., an encrypted FPGA bitfile, in all situations and possibly multiple
times. To maintain DPA security in this case, one idea would be to re-encrypt the stored
data whenever it is read. In practice, however, this is often not possible, e.g., due to the
limited number of write operations in flash memory. Moreover, repeated re-encryption can
eventually result in a loss of confidentiality [UWM17]. In the next section, we therefore
present Isap, a new authenticated encryption scheme that is also secure against DPA
attacks in these scenarios.

3 Specification of ISAP
Isap is a family of authenticated ciphers focusing to be secure against passive side-channel
attacks. Its functional interface is the same as specified by the CAESAR competition
for authenticated encryption [CAE14]: Isap encrypts a plaintext P to a ciphertext C.
Additionally, an attached authentication tag T asserts the authenticity of both the plaintext
and any optional (unencrypted) associated data A. Each encryption call requires a unique
nonce N as an additional input to “randomize” the encryption. Corresponding to the
CAESAR call, Isap maintains security no matter how the nonce N is chosen, as long as
the same nonce is never used for encryption with the same secret key twice. In this section,
we define the Isap authenticated cipher (Subsection 3.1) and its building blocks:

• IsapEnc, a cipher that computes the ciphertext C from the plaintext P and nonce
N using the secret key KE (Subsection 3.3).

168

Dobraunig et al. 85

• IsapMac, a message authentication code that computes the authentication tag T
from the ciphertext C, associated data A, and nonce N using the secret key KA

(Subsection 3.2).

• IsapRk, a function used internally by IsapMac to absorb the secret key KA

(Subsection 3.2).

We propose to implement each building block with variants of the sponge construction
using the same permutation size, but different round numbers and rates. We specify several
recommended parameter sets in Subsection 3.4.

3.1 Authenticated Encryption Scheme
Isap is a family of sponge-based authenticated encryption schemes Isapr1,r2,r3

a,b,c -k, where
the key size k defines the security level. Isap is an Encrypt-then-MAC design and uses two
k-bit keysKA andKE (K = KA‖KE) for IsapMac and IsapEnc, respectively. The length
of the tag T and nonce N is also k bits. Each family member is additionally parametrized
by several parameters: different round numbers a, b, and c for the permutations and
different rates r1, r2, and r3.

The inputs for the authenticated encryption algorithm E are the secret keyK = KA‖KE ,
the public nonce N , and associated data A and plaintext P of arbitrary length. Its outputs
are the tag T and the ciphertext C with the exact same length as the plaintext P :

E(K,N,A, P) = (C, T).

The inputs for the authenticated decryption algorithm D are the secret key K = KA‖KE ,
the public nonce N , the tag T , and associated data A and ciphertext C of arbitrary length.
Its outputs are the plaintext P if the verification succeeds, or ⊥ if the verification fails:

D(K,N,A,C, T) ∈ {P,⊥}.

Isap is based on the well-established Encrypt-than-MAC paradigm. Hence, Isap is
composed of an encryption algorithm IsapEncr2,r3

b,c -k and a message authentication code
IsapMacr1,r2

a,b,c -k. The interaction between them is captured in Algorithm 1, where the
authenticated encryption E and authenticated decryption D are specified.

Algorithm 1: Authenticated encryption and decryption procedures.

Auth. Encryption E(K,N,A, P)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Encryption
C ← IsapEncr2,r3

b,c -k(KE , N, P)
Authentication

T ← IsapMacr1,r2
a,b,c -k(KA, N, A, C)

return C, T

Auth. Decryption D(K,N,A,C, T)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
Tag T ∈ {0, 1}k

Output: plaintext P ∈ {0, 1}∗, or ⊥

Verification
T ′ ← IsapMacr1,r2

a,b,c -k(KA, N, A, C)
if T 6= T ′ return ⊥

Decryption
P ← IsapEncr2,r3

b,c -k(KE , N, C)
return P

169

86 ISAP – Towards Side-Channel Secure Authenticated Encryption

3.2 Authentication Part

For our message authentication code IsapMac, we turn a sponge-based hash function into
a suffix-MAC as shown in Figure 2. While the data is absorbed as in a sponge, we use a
duplex-like approach to inject the secret key KA. Here, the k-bit outer part of the state
is processed together with the secret key KA to derive a session key K∗A, which is then
further used as the outer part.

Absorb Squeeze

As

pa pa

N A1

pa

r1

Ct

pa pa

c1

C1

0∗‖1

y

KA

pa

gr1

c1

r1

c1

r1

c1

K∗
A

k k

T

k

IV1

k

Figure 2: IsapMac used for authentication.

Alternatively, IsapMac can be seen as a sponge-based suffix-MAC, which uses a
function g to absorb the secret key KA instead of an XOR operation. Similar to fresh
re-keying schemes [MSGR10], the sole purpose of g is to protect the static master key KA

against various classes of passive side-channel attacks, most prominently differential power
analysis. Hence, we will subsequently call g our re-keying function. In our case, we will
use IsapRk as re-keying function, which is shown in Figure 3.

IsapMac computes the tag T as follows. Both associated data A and ciphertext C
are each padded using a 10∗ padding to a length that is a multiple of the rate r1. The
internal state is initialized with the k-bit nonce N and a constant initial value IV1. Then,
s blocks of associated data A1...s and t blocks of ciphertext C1...t are absorbed using the
a-round permutation pa. Similar to Ascon [DEMS14], the XOR of a single bit ‘1’ to the
inner part of the state serves as domain separation between associated data and ciphertext.
Note that a dedicated domain separation between nonce and associated data is not needed,
since the nonce is of a fixed length of k bits. Finally, the key KA is absorbed via g and
the k-bit tag T is squeezed after a final call of the permutation.

Absorb Squeeze

r2

yw

pb pc
KA

c2

r2

y1

pc

c2

K∗
A

k

pb

r2

y2

c2IV2

k

Figure 3: IsapRk used to process the master key KA.

170

Dobraunig et al. 87

Instead of a plain XOR, the function g(KA, y) = K∗A is used to absorb KA. To evaluate
g, its internal state is initialized with the key KA and a constant IV2, followed by an
application of the c-round permutation pc. The k-bit value y is absorbed using a rate
size r2 and the b-round permutation pb. Finally, the output K∗A is squeezed using a rate
size k and the c-round permutation pc. The details of IsapMac and IsapRk are also
summarized in Algorithm 3 in the appendix. For verification, the tag T ′ is re-computed in
the same way from the received nonce N , associated data A, and ciphertext C.

3.3 Encryption Part
To encrypt the plaintext, we use a sponge-based construction very similar to IsapRk (see
Figure 4). We initialize the internal state with the secret key KE and a constant IV3,
followed by an application of the c-round permutation pc. The k-bit nonce N is absorbed
using a rate of r2 bits and the b-round permutation pb. Then, we squeeze a keystream of
the same length as the plaintext P using a rate of r3 bits and the c-round permutation pc.
The ciphertext C is computed as the XOR of the plaintext P and the keystream.

For decryption, the same keystream is computed from the nonce N and XORed to
the ciphertext C to obtain the plaintext P . The detailed procedures for encryption and
decryption are also given in Algorithm 4 in the appendix.

r2

Nu

c3

pb pc pc pc
KE

Pv−1

Absorb Squeeze

c2

r3 r3r2

N1

pc

c2 c3

P1

C1 Cv−1

Pv

Cv

r3

IV3

k

Figure 4: IsapEnc used for encryption.

3.4 Instantiations and Parameter Values
We propose to instantiate the required permutations pa, pb, and pc from the 400-bit
permutations Keccak-p[400,nr], which are the application of the last nr rounds of
Keccak-f [400] [Nat15]. Hence, the only difference between pa, pb, and pc is the different
number of rounds a, b, and c that is used. A detailed specification of Keccak-p[400,nr],
including the state layout and specification of the inner and outer state parts, can be found
in the submission document of the CAESAR candidate Keyak [BDP+14b].

Table 1 summarizes the recommended parameter sets for Isap. The first, Isap-128, is
based on a conservative choice of the relevant parameters based on our design rationale
and security analysis given in Section 4 and Section 5. Additionally, we also specify a more
aggressive choice of parameters in Isap-128a to encourage further cryptanalysis as well
as side-channel analysis. Both algorithms are designed to achieve 128 bits cryptographic
security and practical security against side-channel attacks assuming an SPA-secure
implementation.

The constant initial values IV1, IV2, IV3, which serve as domain separation between
the different algorithms, are specified in Table 2. They are defined as the concatenated bit

171

88 ISAP – Towards Side-Channel Secure Authenticated Encryption

Table 1: Recommended parameter configurations for Isap.

Name Security level Bit size of Rounds
k r1 r2 r3 a b c

Isap-128 128 144 1 144 20 12 12
Isap-128a 128 144 1 144 16 1 8

values of the used parameter set, plus a different constant for each value, where each entry
occupies 1 byte of space. The initial values are then padded with zeros until they reach
the length of the permutation minus k bits. In the case of Isap-128 and Isap-128a, the
IVs have a length of 272 bits, which is more than needed for the desired security level of
128 bits.

Table 2: Initial values for Isap.

Isapr1,r2,r3
a,b,c -k

IV1 1‖a‖b‖c‖r1‖r2‖r3‖k‖0∗
IV2 2‖a‖b‖c‖r1‖r2‖r3‖k‖0∗
IV3 3‖a‖b‖c‖r1‖r2‖r3‖k‖0∗

Isap-128
IV1 0x01140c0c90019080*

IV2 0x02140c0c90019080*

IV3 0x03140c0c90019080*

Isap-128a
IV1 0x0110010690019080*

IV2 0x0210010690019080*

IV3 0x0310010690019080*

4 Design Rationale
The main goal of Isap is to provide security against passive side-channel attacks by design,
while still providing good performance and a low hardware footprint. While mechanisms
to counteract side-channel attacks and in particular DPA within the cipher itself (e.g.,
masking) lead to significant overheads and increase with the protection order, approaches
based on fresh re-keying lead to much lower overheads. However, state-of-the-art schemes
based on re-keying lack security against DPA in scenarios that require multiple decryption
of the same input (with the same session key). Isap is designed to be secure also in such
scenarios.

4.1 An Authenticated Encryption Mode Secure Against DPA
For discussing the security of our scheme against differential power analysis (DPA), we
prefer to give a more general, high-level view on our mode in Algorithm 2 to better extract
the underlying idea. In contrast to the condensed and interwoven descriptions of IsapMac,
IsapRk, and IsapEnc, the description in Algorithm 2 clearly shows the fresh re-keying
roots of our scheme. Here, we essentially use the same assumptions and requirements as
other re-keying schemes. Namely, we assume g1, g2 to be (DPA and SPA) secure re-keying
functions and assume the implementations of ENC , DEC , and MAC to be secure against
SPA attacks when processing arbitrarily long messages. However, there are no requirements
on the implementation of the hash function H, since it processes only publicly known data.

To achieve security against DPA, our authenticated encryption mode in Algorithm 2
incorporates the re-keying approach discussed in Section 2 in an efficient Encrypt-then-
MAC scheme. While simple re-keying of both a MAC and an encryption scheme can

172

Dobraunig et al. 89

Algorithm 2: Authenticated encryption and decryption procedures.

Auth. Encryption E(K,N,A, P)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Encryption
K∗E = g1(N, KE)
C = ENCN,K∗

E
(P)

Authentication
y = H(N, A, C)
K∗A = g2(y, KA)
T = MACK∗

A
(y)

return C, T

Auth. Decryption D(K,N,A,C, T)
Input: key K = KA‖KE ,

KA ∈ {0, 1}k, KE ∈ {0, 1}k,
Nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
Tag T ∈ {0, 1}k

Output: plaintext P ∈ {0, 1}∗, or ⊥

Verification
y = H(N, A, C)
K∗A = g2(y, KA)
T ′ = MACK∗

A
(y)

if T 6= T ′ return ⊥
Decryption

K∗E = g1(N, KE)
P = DECN,K∗

E
(C)

return P

only provide security for the encryption process, our scheme achieves side-channel security
for multiple decryption as well. Namely, the verification guarantees the security of the
decryption part in case of maliciously modified ciphertexts, while the MAC is protected
by making its session key depend on the authenticated message itself. In the following, we
give a detailed discussion on the DPA security of the two parts encryption/decryption and
authentication/verification.

Encryption/Decryption. The encryption and decryption part is an instance of fresh-
rekeying such as in [MSGR10,MPR+11]. Such schemes for fresh re-keying combine an
SPA-secure encryption scheme ENC with a (DPA and SPA) secure re-keying function
g1 : (KE , N) 7→ K∗E . As the nonce N that is used to derive the session key K∗E must not
be repeated, fresh session keys are guaranteed and DPA on the encryption scheme ENC is
effectively prevented.

However, for decryption, there is the threat that an adversary could exploit multiple
decryptions with the same session key K∗E and induce a DPA setting within the decryption
DEC by using different data, since multiple calls of DEC with the same nonce N are
allowed. To prevent such a DPA scenario in our mode, verification is performed prior
to decryption. Decrypting two different messages (associated data and ciphertext) with
the same K∗E indicates either a collision of g1 for fixed KE (depends on concrete instance
of g1, but usually negligible probability), or two ciphertexts that have been encrypted
using the same nonce N . Since we require unique nonces, the latter implies that either
the ciphertexts are identical, or one ciphertext has been forged. If a cryptographically
secure MAC is used, the probability of a successful forgery is negligible and thus the tag
verification will fail for one of the ciphertexts with overwhelming probability.

Authenticated ciphers require that no decrypted plaintext is released if tag verification
fails. To ensure protection against DPA attacks, we go one step further and require a failed
verification to abort the authenticated decryption process, so that the decryption part
DEC never starts. This ensures that the same session key K∗E is never used to decrypt
distinct ciphertexts with DEC . Therefore, the verification is responsible for precluding
DPA attacks on the decryption.

Authentication/Verification. The authentication/verification shown in Algorithm 2 is
based on a hash-then-MAC paradigm. Here, a session key K∗A is first derived via a

173

90 ISAP – Towards Side-Channel Secure Authenticated Encryption

secure re-keying function g2 from the hash value y that is computed from the nonce N ,
associated data A, and ciphertext C using a cryptographic hash function H. Then, a
message authentication code (MAC) is used to compute the tag T from the hash value
y and the session key K∗A. This is similar to the construction of Pereira et al. [PSV15],
who designed a leakage-resilient MAC based on the hash-then-MAC paradigm as well.
However, the main difference to our approach is that in [PSV15], a random nonce N is
used to derive the session key in the re-keying function. This, however, cannot provide
protection against DPA for multiple verifications. Contrary to that, we use the hash of the
message y = H(N,A,C) to derive the session key K∗A in order to securely allow multiple
verifications while still providing protection against DPA.

In more detail, the MAC in Algorithm 2 computes the tag T using a different session
key K∗A for every distinct message (N , A, and C), because distinct messages result in
distinct hash values in the absence of collisions. Hence, DPA on the MAC is prevented
during the generation of the tag T as the same session key K∗A is never used to authenticate
distinct messages.

While the scheme by Pereira et al. [PSV15] also provides side-channel security during
tag generation by the use of a unique nonce input N to the re-keying function, tag
verification imposes different challenges. In fact, during tag verification one cannot rely on
the uniqueness of the nonce anymore, because an attacker can usually modify the message
(N , A, and C) to provoke multiple verifications with different data under the same nonce
N and thus allowing for a DPA scenario. However, the MAC in Algorithm 2 prevents such
a DPA scenario on the session key K∗A, since K∗A is bound to the data it processes. Namely,
as y depends on the message (N , A, and C), the MAC session key K∗A = g(y,KA) changes
whenever the data changes. Adversaries cannot predictably influence y due to the use of a
cryptographic hash function H. This guarantees that the key K∗A is unique for every new
message as long as there is neither a collision in the hash function H nor in the re-keying
function g2. Thus, DPA on the session key K∗A is effectively prevented during verification.

Note however that collisions in the re-keying function g2 or the hash function H may
result in the same session key K∗A being used in MAC computations of different messages,
thus allowing for a DPA. Yet, collisions in g2 depend on the secret key K∗A and therefore
inputs causing collisions in g2 cannot be calculated off-line. In contrast, collisions in the
hash value y are directly observable and can be calculated off-line. The complexity of
calculating collisions off-line is determined by the size of the hash. The generic complexity
of finding a collision for an m-bit hash function is 2m/2. Hence, the size of the hash needs
to be chosen depending on the potential threat of such an event, which depends on the
concrete choice of functions for MAC and g2.

4.2 Sponges and Side-Channels Leakage
While the mode of Subsection 4.1 ensures protection of the encryption, ENC , decryption
DEC , and message authentication code MAC against DPA, the primitives implementing
ENC , DEC , and MAC still have to withstand SPA attacks. Moreover, SPA protection is
also mandatory for the implementations of g1 and g2, in addition to the requirement that
they provide protection against DPA. Besides dedicated countermeasures like, e.g., shuffling,
the order of the executed instructions, and already the choice of the used algorithms for
encryption/decryption and MAC, play an important role for the resistance of the design
against SPA.

Our choice for sponge-based designs is motivated by their suitability to model SPA
leakage. Namely, the sponge parameters provide a convenient tool to argue on the side-
channel security of keyed sponge constructions given bounded side-channel leakage of the
single permutation.

For illustration, we model the leakage from a permutation p by allowing an adversary
to learn a certain amount of the state between subsequent permutation calls as depicted in

174

Dobraunig et al. 91

p p
c

r r

`i `i+1

(a) Leaking permutations

p p
c′

r r

`i + `i+1

(b) Sponge model

Figure 5: Leakage of information in sponge-based constructions.

Figure 5. Hereby, we use ` to denote the amount of information (in bits) that an attacker
can learn about the state from the collected side-channel information. We do not care
how and where the leakage is created within p, but let the adversary account the learned
information to either the input or the output state of p. Therefore, given two consecutive
permutations p with leakages `i and `i+1, respectively, the maximum an adversary might
learn about the state is `i + `i+1. This means that if each leakage `i, `i+1 is bounded by λ
bits and the adversary can optimally combine these two leakages, the adversary will learn
at most 2λ bits of the state between the respective two permutation calls.

The basic idea now is to use the sponge parameters to express a construction’s capability
to cope with the leakage generated by the permutation. In particular, the sponge parameters
are adjusted according to the amount of information an adversary learned about the secret
state. This means that if the adversary learns 2λ bits of the internal, secret state, the
leaked bits can be considered as an increase of the rate, i.e., r′ = r + 2λ, which results
in a smaller capacity c′ = c− 2λ and thus reduced security. However, a reduced security
level corresponding to a capacity of c− 2λ bits is still guaranteed by the cryptographic
properties of the permutation and the associated constrained-input constrained-output
(CICO) problem [BDPV11a]. Sponge-based constructions can thus be considered to have
bounded security loss for bounded leakage of the permutation.

Clearly, the challenge in practice is to build an implementation that bounds the leakage
of p. Especially if many different types of devices have to use the same cryptographic
algorithm it might be infeasible to make any realistic assumptions about the leakage of p.
Nevertheless, the advantage of the sponge-based construction is that besides standard SPA
countermeasures, like hiding and masking, the capacity is an additional and very natural
security parameter that helps to increase the ability of a design to withstand side-channel
attacks in practice.

While the above modelling and arguing about the leakage is quite useful, it points out
a problem with the absorption of the key. If a key is directly absorbed, the upcoming
permutation call directly leaks information about the key bits via side-channels. This has
a direct effect on the security of the scheme if the used key length matches the security
level. Hence, we propose to store the expanded key, after the application of pc, for IsapRk
and IsapEnc.

Besides giving a useful tool to model and argue about the SPA resistance, sponge-based
constructions provide other significant advantages:

• The sponge construction is well-studied and has been analyzed and proven secure for
different applications in a large amount of publications [JLM14,ADMV15,BDPV11b].

• It allows to implement a wide range of primitives (hash, MAC, cipher).

• Elegant and simple design, obvious state size, no key schedule, key is injected once.

• Little implementation overhead for decryption, since no inverse building blocks
(permutation) are needed.

175

92 ISAP – Towards Side-Channel Secure Authenticated Encryption

4.3 Design of IsapMac
To get more insight into the design rationals behind IsapMac, we first take a look at a
direct instantiation of the authentication/verification described in Algorithm 2. Figure 6
sketches such an instantiation using a sponge-based hash function and suffix MAC. In
contrast to the description in Algorithm 2, the MAC is computed directly using the data
instead of the hash value. This leads to a construction where the data is processed twice.

C1

p

Ct

p p

y

p

K∗
A

TN

IV

IV

C1

p

Ct

p p

N

IV

IV

KA

g

Figure 6: Sketch of authentication/verification using sponge-based hash and suffix MAC.

However, it is possible to omit the hash function and process the key in a manner
that resembles the duplex construction [BDPV11b]. As shown in Figure 7, the outer part
of the state is used to derive a session key K∗A, which is then absorbed. This principle
is further tweaked (e.g., by implicitly assuming that the employed re-keying function
is g(KA, y) ⊕ y to eliminate the XOR used to absorb K∗A) which leads to IsapMac as
presented in Subsection 3.2 (Figure 2). An alternative way of interpreting IsapMac is
to see it as sponge-based suffix-MAC that uses a secure re-keying function g to absorb
the secret key KA instead of an XOR. Due to the simplicity of this description, we have
chosen to stick to it throughout the paper.

Bertoni et al. [BDPV11a] showed that one can always turn a sponge into a MAC by
either putting the key before (prefix-MAC) or after the message (suffix-MAC), as this
always gives a pseudo-random function as long as the sponge itself behaves like a random
oracle. Compared to a “standard” sponge-based suffix-MAC, IsapMac uses a secure
re-keying function g to absorb the secret key KA. While there are several options for
g, e.g., the polynomial multiplication in [MSGR10], we use the function IsapRk as g.

C1

p

Ct

p p

y

p

K∗
A

TN

IV

IV

KA

g

Figure 7: Sketch of authentication/verification just using a sponge-based suffix MAC.

176

Dobraunig et al. 93

Table 3: Complexity for receiving a v-collision for a 128-bit session key k2.
v 2 3 4 5 · · · 34
complexity 264.5 286.2 297.1 2103.8 · · · 2128

Although IsapRk is not a permutation for a fixed key as, e.g., a polynomial multiplication,
we do not expect any negative consequences on the security when absorbing the secret key
via a function that ideally behaves like a pseudo-random function.

Instead of using a distinct padding or frame bits for domain separation between
associated data and ciphertext, we follow the approach of Ascon [DEMS14] and XOR a
single ‘1’ to the inner part of the state. Although this reduces the capacity by one bit in
the worst case, the practical security loss is considered to be negligible.

IsapMac prevents DPA on the tag computation in two ways. First, and as shown in
Figure 2, the MAC session key K∗A is derived from the hash value y and the MAC master
key KA via a secure re-keying function g, thus prohibiting DPA on KA. Second, the design
prevents DPA on the MAC session key K∗A by binding it to the data being processed, thus
leading to different MAC session keys K∗A for different data.

As already mentioned before, a collision in y allows for two side-channel measurements
of the MAC using different data but the same MAC session key K∗A. This holds true
for IsapMac as well. Yet, to perform a successful DPA, usually more than two traces
will be needed to recover one fixed session key K∗A. Such a setting occurs with hash
multi-collisions. The generic complexity for finding a v-collision is v

√
v! · 2m(v−1) [STKT06].

Luckily, the complexity is quite high already for small values of v as shown in Table 3 for
a 128-bit value y.

However, we want to stress that even though a DPA attack exploiting multi-collisions
might be able to recover the session key K∗A of IsapMac, this does not imply a key
recovery attack on the master key KA, since our used re-keying function g (IsapRk) is
hard to invert.

4.4 Design of IsapRk
The re-keying function IsapRk used in IsapMac is a sponge-based design as depicted
in Figure 3. When setting the rate r2 to 1, the design is related to the classical GGM
construction [GGM86] and can be seen as their sponge-based equivalent, similar to [TS14].
The basic idea in IsapRk is to make DPA infeasible by reducing the input data complexity
accordingly. For this purpose, a secret state is constantly updated with small portions of
of public data by repeating two phases, (1) modifying the secret state according to the
public data, and (2) updating the state such that predictions on the future state based on
the absorbed public data become infeasible.

Sponge-based constructions are an ideal choice to implement this basic idea as the
rate directly influences the input data complexity for each permutation. IsapRk follows
this approach and first initializes the internal state by applying the initial permutation pc

to the padded master key KA. Then, IsapRk repeatedly injects r2 nonce bits into the
state, each separated by a permutation call pb. After full absorption of the nonce and
finalization using pc, the session key K∗A is output. This working principle is similar to
sponge instances of a prefix-MAC. While for general MAC computations the absorption
rate can be as big as the state size [BDPV12], IsapRk uses a small absorption rate r2 = 1
to limit the data complexity exploitable in a DPA.

In terms of DPA security, a permutation pb will produce the leakages for two different
public inputs, thus IsapRk is 2-limiting per permutation call. This results in IsapRk
being a secure re-keying function (regarding DPA) under the assumption that the combined
leakage resulting from the processing of two different public inputs is bounded such that

177

94 ISAP – Towards Side-Channel Secure Authenticated Encryption

DPA on the secret state is infeasible. This is a common assumption also used in recent
block-cipher based instantiations of the GGM construction by Faust et al. [FPS12] or the
2PRG primitive by Standaert et al. [SPY+10]. The reason for using a different permutation
pc at the beginning of IsapRk lies in the fact that some of the concrete instances of
IsapRk use a small number of rounds for pb compared to pc and we want to ensure good
diffusion of the key bits across the whole state before the first non-secret bits are absorbed.

4.5 Design of IsapEnc
The encryption algorithm IsapEnc is an instance of fresh re-keying [MSGR10,MPR+11]
that combines the secure re-keying function IsapRk in the initialization phase with a
sponge-based stream cipher in the processing phase. However, for the analysis it is more
natural to see it as an extension of IsapRk with a longer squeezing phase to produce a
keystream of arbitrary length.

As the initialization part is equivalent to IsapRk, it is secure against passive side-
channel attacks in consideration of the same aspects, i.e., a small rate r2 = 1 to inject the
nonce N with low data complexity. To obtain cryptographic security on the processing part
of IsapEnc, the nonce N must not be repeated for different plaintexts. This guarantees
that the key stream is unpredictable and unique for different encryptions. As a consequence,
DPA on the encryption itself is prevented as well. Moreover, as a part of the authenticated
encryption scheme Isap, IsapEnc remains secure against DPA also for multiple decryption
of the same data, since it is guaranteed that this data is always decrypted under the same
nonce. As mentioned before, current schemes lack this functionality and become vulnerable
to DPA if an attacker tampers with the ciphertext or nonce. In IsapEnc, such attack
becomes infeasible by using the generic composition Encrypt-then-MAC, i.e., performing
verification prior to decryption. Namely, the authentication part aborts the process if
tag verification fails, which ensures that the same key is never used to decrypt distinct
ciphertexts. Hence, the authentication part precludes DPA attacks on the decryption part.

4.6 Choice of the Permutation
In the case of sponge-based constructions, minimal suitable bit-sizes for permutations are
tightly coupled with the aimed security level. Both instances Isap-128 and Isap-128a target
128-bit security. Hence, the capacity of IsapMac should be at least 256 bits, since it is a
sponge-based suffix MAC and thus, we have to rely on the results of Bertoni et al. [BDPV08].
If we want to output the tag with one permutation call, while still retaining 256 bits for
the capacity, this implies a minimal permutation size of 384 bits. Since Isap-128 and
Isap-128a are also aimed for lightweight and low-cost applications, while high performance
applications are not the main target, we do not want to increase the rate much and
hence want to stay close to 384 bits. However, there is a lack of well-analyzed 384-bit
permutations. Thus, we opted to use the well established and analyzed Keccak-p[400,nr]
permutations [Nat15].

Parameters for IsapMac. Since we aim for 128-bit security, we use IsapMac for both
instances with a capacity c1 of 256 bits, while allowing the remaining 144 bits as rate r1.
For the conservative choice Isap-128, we choose pa to be the permutation Keccak-f [400]
(Keccak-p[400,20]) that has 20 rounds as specified in the the Keccak SHA-3 submission
(Version 3.0) [BDPV11c]. Since Keccak is the winner of the SHA-3 competition, its
variants have been well analyzed. However, current attacks are far away from threatening
full-round versions of Keccak. Therefore, we use for our aggressive variant Isap-128a
the initial Keccak-p[400,16] with 16 rounds as proposed in the Keccak sponge function
family main document (Version 1.2) [BDPV09].

178

Dobraunig et al. 95

Parameters for IsapRk and IsapEnc. Both IsapRk and IsapEnc are keyed sponge-
based constructions with clearly separated absorbing and squeezing phases. According to
recent results [BDPV12,GPT15,MRV15], we could set the capacity during the absorbing
phase to c2 = 0 and the capacity during the squeezing phase to a minimum of c3 = 128
bits. However, we also have to bear side-channel attacks in mind. Hence, we set the rate
to r1 = 1, making the scheme essentially 2-limiting per permutation call pb, while setting
the rate r3 = 144 bits to match the block size of IsapMac. In terms of our arguments
of Subsection 4.2, this means that an attacker has to learn about 136 bits of information
during invocations of pb and about 64 bits of information via side-channels during the
invocation of pc, before the attacker is able to invert the sponge with a complexity less
than 2128 to recover the secret key.

For the number of rounds for Isap-128, the CAESAR candidate Keyak serves as
orientation. Hence, we use Keccak-p[400,12] for pb and pc. As for Keyak, we expect 12
rounds to be enough to create an unpredictable key-stream during the squeezing phase.
Moreover, 12 rounds provide a clear separation between the single-bit injections during
the absorption, so that partially known/leaked information about the internal secret state
cannot be combined over one permutation call.

The CAESAR candidate Ketje serves as inspiration for the aggressive version Isap-
128a. Similar to Ketje, only one round separates the absorption of the one bit elements
using Keccak-p[400,1] for pb. Note that here the side-channel leakage between single
permutation calls can clearly be combined. For the squeezing phase, we orient the number
of rounds on the “stride” permutation call of Ketje Sr, which has 6 rounds. However,
in contrast to Ketje Sr, we have a higher rate of 144 bits during the squeezing phase.
Hence, we have decided to add an additional security margin of 2 rounds and use the 8
round permutation Keccak-p[400,8] for pc.

5 Security Analysis
Due to the prominence of Keccak [BDPV11c] as winner of the SHA-3 competition [Nat12],
and Keyak [BDP+14b] and Ketje [BDP+14a] as submissions to CAESAR [CAE14], a
plethora of cryptanalytic results for keyed and unkeyed sponge and duplex constructions
using round reduced versions of the Keccak-f permutations, as well as on the permutations
exist. While arguably the majority of the analyses focuses on the 1600-bit variant of the
Keccak-f permutation, the similarity in structure of the permutation usually allows to
apply the same techniques on smaller permutation variants. A good overview on existing
analysis results on Keccak can be found in [JN15]. In this section, we recapitulate the
from our point of view most relevant attacks on Keccak and discuss the applicability to
our schemes. Finally, we conclude this section with a note on the side-channel security of
Isap.

5.1 Permutation
Zero-sum distinguishers [AM09, BC10] are the permutation distinguishers penetrating
the highest number of rounds. They exploit the low algebraic degree of the Keccak-f
permutations creating sets of inputs and outputs, which sum to zero. Guo et al. [GLS16]
present zero-sum distinguishers for 12 rounds of Keccak-f [1600] with a complexity of
265 using a 3-round linear structure in the middle of the permutation, while achieving 282

using a 2-round linear structure. They also claim for the 12-round 400-bit permutation
Keccak-p[400,12] zero-sum distinguishers with a complexity 282 using a 2-round linear
structure, while 3-round structures seem to be inapplicable. However, to mount an attack
using zero-sum distinguishers on sponges, an attacker would have to be able to choose
inputs in the middle of the permutation. Thus, no attacks on Keyak and Ketje with

179

96 ISAP – Towards Side-Channel Secure Authenticated Encryption

the 12-round Keccak-p permutations are known that exploit zero-sum distinguishers.
Therefore, we conclude that the same is true for Isap-128, which also uses 12 rounds for
IsapEnc and IsapRk.

5.2 IsapRk and IsapEnc
IsapRk and IsapEnc are sponge-based constructions where the secret key is injected
during the beginning of the absorption phase, similar to a Keccak prefix-MAC, Keyak,
or Ketje. We refer to such constructions as keyed sponges. The attacks penetrating
the highest number of rounds for keyed sponges exploit the low algebraic degree of the
Keccak-f permutations. This includes the cube-like attacks by Dinur et al. [DMP+15],
who present amongst others a keystream prediction for a Keccak-based stream cipher
which uses 9 rounds of the 1600-bit permutation to achieve 512-bit security with time
complexity 2256. Huang et al. [HWX+17] present conditional cube attacks, including a
key-recovery attack on 8 rounds of Keyak with a time complexity of 274.

In the case of Isap-128, two factors prohibit those attacks. First of all, the permutation
has 12 rounds, whereas the attacks are only capable of penetrating at most 9 rounds.
Second, the nonce N or the hash value y are absorbed bitwise separated by 12 rounds of
the permutation, which significantly reduces the ability of an attacker to exploit cubes
in the first place. For Isap-128a, the number of rounds between the bitwise injections of
the nonce N or the hash value y is reduced to one. Still, this means having at least 128
rounds from the point where the key is introduced up to the point when a part of the state
is leaked. Hence, we expect that conditional cube and cube-like attacks do not work on
Isap-128a.

Another important attack vector are linear and differential attacks. These are especially
relevant in the case of Isap-128a, where only the 1-round permutation is used for absorption
and the 8-round permutation is used for squeezing the sponge. While having, e.g., colliding
differential trails during absorption would also imply problems for Ketje, the situation
changes for the squeezing phase. Due to the increased rate used in Isap-128a compared to
Ketje, an attacker has more freedom. For this reason, we have increased the number of
rounds to 8 for pc.

5.3 IsapMac
Since IsapMac is a suffix-MAC, attacks when unkeyed sponges are used as hash functions
are also of concern. For instance, collision attacks on the hashing part of IsapMac have
the potential to allow for forgeries. For Keccak, collision attacks for up to 5 rounds were
proposed by Dinur et al. [DDS13]. Recently, the 5-round challenges for 1600-bit and 800-bit
permutations of the Keccak crunchy crypto collision contest [BDPV14] have been solved,
while the 5-round challenge for the 400-bit permutation is still open. Regarding pre-image
attacks, attacks for up to 4 rounds for variants of Keccak exist [MPS13,GLS16]. Taking
these results together with the result for keyed sponges of Subsection 5.2, we conclude that
having 20 rounds in the case of Isap-128 and even 16 rounds in the case of Isap-128a
provide a sufficient security margin for IsapMac.

5.4 On the Side-Channel Security of Isap
While Isap has been designed to be secure against DPA attacks, care has do be taken
regarding SPA attacks. Although the single components IsapMac, IsapRk and IsapEnc
of Isap have been designed keeping their resistance against SPA attacks in mind, additional
countermeasures on implementation level for all components might be needed. In particular
for the decryption, where several measurements for the same data are possible, dedicated
countermeasures against SPA attacks are crucial.

180

Dobraunig et al. 97

As already pointed out by Medwed et al. [MSJ12], the concrete security of a construction
against side-channel attacks highly depends on the way it is implemented and on the
platform on which it is executed. For instance, they show that an implementation of
the GGM construction using AES-128 on an 8-bit microcontroller can be broken by
using template attacks. By making assumptions on the implementation, e.g., parallel
execution of the S-boxes, Medwed et al. [MSJ12] and follow-up work [MSNF16] are able to
provide security guarantees with respect to side-channel attacks for their constructions. In
contrast, in this work we do not make any assumption on the way Isap is implemented
and on the countermeasures used to protect the implementations. Clearly, an 8-bit
microcontroller implementation needs more sophisticated SPA countermeasures than a
parallel implementation of the round function. We consider the evaluation of the SPA
resistance of various implementation strategies for Isap to be an interesting topic for
further research.

6 Implementation
We implemented our authenticated encryption scheme Isap in the two configurations
Isap-128 and Isap-128a as presented in Table 1. The actual implementation of both
configurations is the same except for the number of rounds. The implementations employ a
single instance of the 400-bit Keccak permutation that performs one round per cycle. The
number of rounds performed is chosen at runtime depending on the executed algorithm, i.e.,
IsapEnc, IsapMac, or IsapRk. The synthesis results using a 130 nm UMC technology
are shown in Table 4. The choice of 130 nm UMC technology is motivated by the tools
which are available to us.

Table 4: Implementation of the AE modes (130 nm).

Function Area Frequency Initialization Runtime per Block
[kGE] [MHz] [cycles] [µs] [cycles] [µs]

Isap-128 14.0 169 3 401 20.1 36 0.20
Isap-128a 14.0 169 564 3.3 28 0.16

Area. As Isap-128 and Isap-128a use the same implementation design, they each consume
14.0 kGE of chip area. Most of the chip area is due to the Keccak core, which consumes
8.3 kGE. The remaining logic is required for multiplexing and a temporary state register
to hold the hash value within IsapMac when performing the secure re-keying function
IsapRk. A sole implementation of the secure re-keying function IsapRk yields roughly
the same size as the Keccak core itself and is thus slightly smaller than other re-keying
functions like a masked polynomial multiplication [MSGR10] or an implementation of the
GGM tree using an AES core computing 1 round per cycle [SPY+10].

Runtime. The measured runtime is broken down into two parts: the time for performing
initialization, and the time for encrypting and authenticating a 144-bit message block. The
runtime of performing initialization is dominated by performing the re-keying operations in
both IsapEnc and IsapMac and is independent of the length of the message. Its impact
on runtime thus vanishes for long messages. The runtime for processing a single 144-bit
block is also independent of the length of the message, but strongly influences the overall
runtime for long messages.

Compared to the conservative parameterization Isap-128, the more aggressive parame-
ters of Isap-128a yield a speed-up of 83% for initialization and 22% for the processing of
a message block. While the very high speed-up during initialization is highly beneficial

181

98 ISAP – Towards Side-Channel Secure Authenticated Encryption

for short messages, the speed-up observed for encryption and authentication of a 144-bit
message block dominates for long messages.

Comparison. Isap is an efficient authenticated encryption scheme with low hardware
footprint that prevents DPA by design. While Isap is based on a standard implementation
of the 400-bit Keccak permutation and thus only adds a little hardware overhead, a
first-order secure threshold implementation increases the area by a factor of 3–4 [BDN+13].
Similar for AES the area for first-order secure masked implementations [DRB+16,GMK17]
increases accordingly. When higher-order DPA security is required, the hardware overhead
of masking rises even more [GMK17]. Consequently, the implementation cost of standard
authenticated encryption modes for AES such as AES-CCM and AES-GCM secured via
masking rises accordingly.

7 Conclusion and Open Questions

While current authenticated encryption schemes such as the CAESAR candidates Ascon,
Ketje/Keyak, PRIMATES, and SCREAM are designed to reduce the overhead of side-
channel countermeasures like masking on an implementation level, we explored in this
work how side-channel attacks can be tackled on an algorithmic level, while still fulfilling
the functional requirements of the CAESAR call. Probably the most notable resulting
restriction of this is that it is not possible to make any assumptions on the choice of
the nonce, besides the fact that the nonce has to be unique per encryption (e.g. it must
be possible to implement the nonce as simple counter on encryption side). Hence, the
decrypting/verification unit has no influence on the choice of the nonce and thus has to
allow multiple decryptions/verifications of (different) ciphertexts with the same nonce.

As a result, we proposed Isap, an authenticated encryption scheme that incorporates
ideas from fresh re-keying to withstand DPA attacks. In contrast to existing fresh re-keying
schemes, Isap protects the decryption/verification unit against DPA attacks, although the
decryption/verification unit does not contribute to the nonce that is used for encryption.
This feature does not only reduce communication overhead, but it enables several use cases
that are not feasible with current re-keying schemes such as simply storing encrypted data
and decrypting it later multiple times. The results of our hardware implementation show
that the concrete instances Isap-128 and Isap-128a can be implemented in a straightforward
manner with an area of only 14 kGE, while offering security against DPA attacks even for
multiple decryption. Therefore, we think that Isap is a valuable addition to the existing
pool of symmetric authenticated encryptions schemes and hope that its novel underlying
ideas and concepts will stimulate discussion and trigger future work in this direction.

Acknowledgments

The authors would like to thank Mario Werner for many helpful discussions and providing
his hardware description of Keccak.

The research leading to these results has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant
agreement No 644052 (HECTOR) and agreement No 681402 (SOPHIA).

Furthermore, this work has been supported in part by the Austrian Research Promotion
Agency (FFG) under grant number 845589 (SCALAS) and by the Austrian Science Fund
(project P26494-N15).

182

Dobraunig et al. 99

References
[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs.
Submission to the CAESAR competition: http://competitions.cr.yp.to,
2014.

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of keyed sponge constructions using a modular proof approach. In Gregor
Leander, editor, FSE 2015, volume 9054 of LNCS, pages 364–384. Springer,
2015.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. https://131002.
net/data/papers/AM09.pdf, 2009.

[BC10] Christina Boura and Anne Canteaut. A zero-sum property for the KECCAK-f
permutation with 18 rounds. In ISIT 2010, pages 2488–2492. IEEE, 2010.

[BCF+15] Sonia Belaïd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoît Gérard, Jean-
Gabriel Kammerer, and Emmanuel Prouff. Improved side-channel analysis of
finite-field multiplication. In Tim Güneysu and Helena Handschuh, editors,
CHES 2015, volume 9293 of LNCS, pages 395–415. Springer, 2015.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

[BDH+14] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
Towards fresh re-keying with leakage-resilient PRFs: Cipher design principles
and analysis. J. Cryptographic Engineering, 4(3):157–171, 2014.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and first-order DPA resistant implementations
of Keccak. In Aurélien Francillon and Pankaj Rohatgi, editors, CARDIS 2013,
volume 8419 of LNCS, pages 187–199. Springer, 2013.

[BDP+14a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Ketje. Submission to the CAESAR competition: http:
//competitions.cr.yp.to, 2014.

[BDP+14b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Keyak. Submission to the CAESAR competition:
http://competitions.cr.yp.to, 2014.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer, 2008.

[BDPV09] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Kec-
cak sponge function family main document (Version 1.2). http://keccak.
noekeon.org/Keccak-main-1.2.pdf, 2009.

[BDPV11a] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions (Version 0.1). http://sponge.noekeon.org/,
2011.

183

100 ISAP – Towards Side-Channel Secure Authenticated Encryption

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS,
pages 320–337. Springer, 2011.

[BDPV11c] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The
Keccak SHA-3 submission (Version 3.0). http://keccak.noekeon.org/
Keccak-submission-3.pdf, 2011.

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based Encryption, Authentication and Authenticated Encryp-
tion. DIAC Workshop Record (http://www.hyperelliptic.org/djb/diac/
record.pdf), 2012.

[BDPV14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
crunchy crypto collision and pre-image contest. http://keccak.noekeon.
org/crunchy_contest.html, 2014.

[BFG14] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. Side-channel analysis
of multiplications in GF(2128) – Application to AES-GCM. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, volume 8874 of LNCS, pages
306–325. Springer, 2014.

[BKP+16] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Leakage-resilient and misuse-resistant authen-
ticated encryption. Cryptology ePrint Archive, Report 2016/996, 2016.
http://eprint.iacr.org/2016/996.

[CAE14] CAESAR committee. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness. http://competitions.cr.yp.to/,
2014.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES
2002, volume 2523 of LNCS, pages 13–28. Springer, 2002.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision attacks on up to 5
rounds of SHA-3 using generalized internal differentials. In Shiho Moriai,
editor, FSE 2013, volume 8424 of LNCS, pages 219–240. Springer, 2013.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon. Submission to the CAESAR competition: http://competitions.cr.
yp.to, 2014.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, volume 9815 of LNCS, pages 272–301. Springer,
2016.

[DKM+15] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, and
François-Xavier Standaert. Towards fresh and hybrid re-keying schemes with
beyond birthday security. In Naofumi Homma and Marcel Medwed, editors,
CARDIS 2015, volume 9514 of LNCS, pages 225–241. Springer, 2015.

184

Dobraunig et al. 101

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced
Keccak sponge function. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, volume 9056 of LNCS, pages 733–761. Springer, 2015.

[DRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+ 1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 194–212. Springer, 2016.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In Emmanuel Prouff and Patrick Schaumont,
editors, CHES 2012, volume 7428 of LNCS, pages 213–232. Springer, 2012.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GJ16] Qian Guo and Thomas Johansson. A new birthday-type algorithm for attack-
ing the fresh re-keying countermeasure. Cryptology ePrint Archive, Report
2016/225, 2016. http://eprint.iacr.org/2016/225.

[GLS+14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhoff. SCREAM. Submis-
sion to the CAESAR competition: http://competitions.cr.yp.to, 2014.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to
cryptanalysis of round-reduced Keccak. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, volume 10031 of LNCS, pages 249–274,
2016.

[GMK17] Hannes Gross, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected aes implementation with arbitrary protection order. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 95–112.
Springer, 2017.

[GPT15] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security
of truncation: Tight bounds for keyed sponges and truncated CBC. In Rosario
Gennaro and Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of
LNCS, pages 368–387. Springer, 2015.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional cube attack on reduced-round Keccak sponge function. In
EUROCRYPT 2017, 2017. (to appear).

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, volume 8873 of LNCS, pages 85–104.
Springer, 2014.

[JN15] Jérémy Jean and Ivica Nikolic. Internal differential boomerangs: Practical
analysis of the round-reduced Keccak-f permutation. In Gregor Leander,
editor, FSE 2015, volume 9054 of LNCS, pages 537–556. Springer, 2015.

185

102 ISAP – Towards Side-Channel Secure Authenticated Encryption

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO ’99, volume 1666 of LNCS, pages
388–397. Springer, 1999.

[Koc03] Paul Kocher. Leak Resistant Cryptographic Indexed Key Update, US Patent
6539092, 2003.

[MBKP11] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On the
vulnerability of FPGA bitstream encryption against power analysis attacks:
extracting keys from Xilinx Virtex-II FPGAs. In Yan Chen, George Danezis,
and Vitaly Shmatikov, editors, CCS 2011, pages 111–124. ACM, 2011.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
– Revealing the secrets of smart cards. Springer, 2007.

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: Securing multiple parties
against side-channel and fault attacks. In Emmanuel Prouff, editor, CARDIS
2011, volume 7079 of LNCS, pages 115–132. Springer, 2011.

[MPS13] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanal-
ysis of round-reduced Keccak. In Shiho Moriai, editor, FSE 2013, volume
8424 of LNCS, pages 241–262. Springer, 2013.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state
keyed sponge and duplex: Applications to authenticated encryption. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, volume 9453 of LNCS,
pages 465–489. Springer, 2015.

[MS16] Amir Moradi and Tobias Schneider. Improved side-channel analysis attacks on
Xilinx bitstream encryption of 5, 6, and 7 series. In François-Xavier Standaert
and Elisabeth Oswald, editors, COSADE 2016, volume 9689 of LNCS, pages
71–87. Springer, 2016.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh re-keying: Security against side-channel and
fault attacks for low-cost devices. In Daniel J. Bernstein and Tanja Lange, ed-
itors, AFRICACRYPT 2010, volume 6055 of LNCS, pages 279–296. Springer,
2010.

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards
super-exponential side-channel security with efficient leakage-resilient PRFs.
In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume
7428 of LNCS, pages 193–212. Springer, 2012.

[MSNF16] Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov, and Martin
Feldhofer. Unknown-input attacks in the parallel setting: Improving the
security of the CHES 2012 leakage-resilient PRF. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, volume 10031 of LNCS, pages
602–623, 2016.

[Nat12] National Institute of Standards and Technology. SHA-3 competition. http:
//csrc.nist.gov/groups/ST/hash/sha-3/index.html, 2007–2012.

[Nat15] National Institute of Standards and Technology. FIPS PUB 202: SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Federal Information Processing Standards Publication 202, U.S. Department
of Commerce, August 2015.

186

Dobraunig et al. 103

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff,
editor, COSADE 2014, volume 8622 of LNCS, pages 243–260. Springer, 2014.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer,
2009.

[PM16] Peter Pessl and Stefan Mangard. Enhancing side-channel analysis of binary-
field multiplication with bit reliability. In Kazue Sako, editor, CT-RSA 2016,
volume 9610 of LNCS, pages 255–270. Springer, 2016.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, 2013.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic primi-
tives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
CCS 2015, pages 96–108. ACM, 2015.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In Isabelle Attali and
Thomas P. Jensen, editors, E-smart 2001, volume 2140 of LNCS, pages
200–210. Springer, 2001.

[ROSW16] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. IoT goes
nuclear: Creating a ZigBee chain reaction. Cryptology ePrint Archive, Report
2016/1047, 2016. http://eprint.iacr.org/2016/1047.

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice.
In Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-
Intrinsic Security – Foundations and Practice, Information Security and
Cryptography, pages 99–134. Springer, 2010.

[STKT06] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
paradox for multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC 2006, volume 4296 of LNCS, pages 29–40. Springer, 2006.

[TS14] Mostafa M. I. Taha and Patrick Schaumont. Side-channel countermeasure
for SHA-3 at almost-zero area overhead. In HOST 2014, pages 93–96. IEEE
Computer Society, 2014.

[TS15] Mostafa M. I. Taha and Patrick Schaumont. Key updating for leakage resiliency
with application to AES modes of operation. IEEE Trans. Information
Forensics and Security, 10(3):519–528, 2015.

[UWM17] Thomas Unterluggauer, Mario Werner, and Stefan Mangard. Side-channel
plaintext-recovery attacks on leakage-resilient encryption. In DATE 2017,
2017. (to appear).

187

104 ISAP – Towards Side-Channel Secure Authenticated Encryption

A Algorithms

Algorithm 3: Suffix MAC IsapMac and re-keying function IsapRk.

IsapMacr1,r2
a,b,c -k (KA, N , A, C)

Input: key KA ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗

Output: tag T ∈ {0, 1}k

` = |A| mod r1
A1 . . . As ← r1-bit blocks of A ‖ 1 ‖ 0r1−1−`

` = |C| mod r1
C1 . . . Ct ← r1-bit blocks of C ‖ 1 ‖ 0r1−1−`

S ← N ‖ IV1
S ← pa(S)

Absorbing Associated Data
for i = 1, . . . , s do

S ← pa((Sr1 ⊕Ai) ‖Sc1)
S ← S ⊕ (0r1+c1−1 ‖ 1)

Absorbing Ciphertext
for i = 1, . . . , t do

S ← pa((Sr1 ⊕ Ci) ‖Sc1)
Squeezing Tag

K∗A ← IsapRkr2
b,c-k(KA, dSek)

S ← pa(K∗A ‖ bScr1+c1−k)
T ← dSek
return T

IsapRkr2
b,c-k(KA, y)

Input: key KA ∈ {0, 1}k,
y ∈ {0, 1}∗

Output: sessionkey K∗A ∈ {0, 1}k

` = |y| mod r2
if ` = 0 then

y1 . . . yw ← r2-bit blocks of y
else

y1 . . . yw ← r2-bit blocks of y ‖ 0r2−`

S ← KA ‖ IV2
Absorb

S ← pc(S)
S ← (Sr2 ⊕ y1) ‖Sc2

for i = 2, . . . , w do
S ← pb(S)
S ← (Sr2 ⊕ yi) ‖Sc2

Squeeze
S ← pc(S)
K∗A ← dSe

k

return K∗A

188

Dobraunig et al. 105

Algorithm 4: Encryption and decryption functions.

IsapEncr2,r3
b,c -k(KE , N, P)

Input: key KE ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗

` = |N | mod r2
if ` = 0 then

N1 . . . Nu ← r2-bit blocks of N
else

N1 . . . Nu ← r2-bit blocks of N ‖ 0r2−`

` = |P | mod r3
if ` = 0 then

P1 . . . Pv ← r3-bit blocks of P
else

P1 . . . Pv ← r3-bit blocks of P ‖ 0r3−`

S ← KE ‖ IV3
Absorb

S ← pc(S)
S ← (Sr2 ⊕N1) ‖Sc2

for i = 2, . . . , u do
S ← pb(S)
S ← (Sr2 ⊕Ni) ‖Sc2

Squeeze
for i = 1, . . . , v do

S ← pc(S)
Ci ← Sr3 ⊕ Pi

if ` > 0 then Cv ← dCve`
return C1 ‖ . . . ‖Cv

IsapDecr2,r3
b,c -k(KE , N,C)

Input: key KE ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
ciphertext C ∈ {0, 1}∗

Output: plaintext P ∈ {0, 1}∗

` = |N | mod r2
if ` = 0 then

N1 . . . Nu ← r2-bit blocks of N
else

N1 . . . Nu ← r2-bit blocks of N ‖ 0r2−`

` = |C| mod r3
if ` = 0 then

C1 . . . Cv ← r3-bit blocks of C
else

C1 . . . Cv ← r3-bit blocks of C ‖ 0r3−`

S ← KE ‖ IV3
Absorb

S ← pc(S)
S ← (Sr2 ⊕N1) ‖Sc2

for i = 2, . . . , u do
S ← pb(S)
S ← (Sr2 ⊕Ni) ‖Sc2

Squeeze
for i = 1, . . . , v do

S ← pc(S)
Pi ← Sr3 ⊕ Ci

if ` > 0 then Pv ← dPve`
return P1 ‖ . . . ‖Pv

189

Towards Fresh and Hybrid Re-Keying
Schemes with Beyond Birthday Security

Publication Data

Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, and
François-Xavier Standaert. “Towards Fresh and Hybrid Re-Keying Schemes with
Beyond Birthday Security”. In: Smart Card Research and Advanced Applications,
CARDIS 2015. Ed. by Naofumi Homma and Marcel Medwed. Vol. 9514. LNCS.
Springer, 2016, pp. 225–241. url: https://doi.org/10.1007/978-3-319-31271-
2_14

The appended paper is an author-created version.

Contributions

• Technical: Contributed to the design of the re-keying schemes presented
in Section 3, the observations (attack and fix) on the hybrid re-keying
scheme presented in Section 4 and the observations presented in Section 5.
No contributions to all proofs given in this paper.

• Writing: Contributions to the writing of Sections 2.3, 4, and 5. Minor
contributions to the writing of Section 3.2.

191

https://doi.org/10.1007/978-3-319-31271-2_14
https://doi.org/10.1007/978-3-319-31271-2_14

Towards Fresh and Hybrid Re-Keying Schemes
with Beyond Birthday Security

Christoph Dobraunig1, François Koeune2, Stefan Mangard1,
Florian Mendel1, and François-Xavier Standaert2.

1 IAIK, Graz University of Technology, Austria.
2 Université catholique de Louvain – ICTEAM – Crypto Group, Belgium.
christoph.dobraunig@iaik.tugraz.at, francois.koeune@uclouvain.be,

stefan.mangard@tugraz.at,
florian.mendel@iaik.tugraz.at,fstandae@uclouvain.be

Abstract. Fresh re-keying is a type of protocol which aims at split-
ting the task of protecting an encryption/authentication scheme against
side-channel attacks in two parts. One part, a re-keying function, has
to satisfy a minimum set of properties (such as good diffusion), and
is based on an algebraic structure that is easy to protect against side-
channel attacks with countermeasures such as masking. The other part, a
block cipher, brings resistance against mathematical cryptanalysis, and
only has to be secure against single-measurement attacks. Since fresh
re-keying schemes are cheap and stateless, they are convenient to use in
practice and do not require any synchronization between communication
parties. However, it has been shown that their first instantiation (from
Africacrypt 2010) only provides birthday security because of a (math-
ematical only) collision-based key recovery attack recently put forward
by Dobraunig et al. (CARDIS 2014). In this paper, we provide two prov-
ably secure (in the ideal cipher model) solutions to avoid such collision
attacks. The first one is based on classical block ciphers, but does not
achieve beyond-birthday CPA security (i.e. it only provably prevents the
CARDIS 2014 key recovery attack) and requires an additional block ci-
pher execution in the protocol. The second one is based on tweakable
block ciphers and provides tight CPA security while also being more
efficient. As a complement, we also show that our reasoning extends
to hybrid schemes, where the communication party to protect against
side-channel attacks is stateful. We illustrate this claim by describing
a collision attack against an example of a hybrid scheme patented by
Kocher, and presenting a tweak leading to beyond birthday security. We
conclude the paper by discussing the use of fresh/hybrid re-keying for
encryption and authentication, together with a cautionary note on their
side-channel resistance.

1 Introduction

Designing sound and efficient countermeasures against side-channel attacks is a
challenging problem. This is especially true in the context of applications with

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-31271-2_14

strong cost or energy constraints (e.g. RFIDs, sensor networks, pay-TV, auto-
motive, . . .). In such cases, and despite the fact that the devices are likely to
be operated in a hostile environment, the direct protection of (e.g.) standard
block ciphers such as the AES may be too expensive. As an illustration, the im-
plementation of the well-known masking countermeasure for such block ciphers
implies performance overheads that are (at least) quadratic in the security or-
der [11]. Consequently, a new research path has emerged, trying to reduce the
adversary’s capabilities thanks to re-keying. Leakage-resilient cryptography is
the most investigated representative of this trend (see, e.g. [10, 18]). But unfor-
tunately, the concrete guarantees provided by such constructions highly depend
on the primitives. For stateful stream ciphers, leakage-resilience indeed delivers
strong security levels at low cost. By contrast, for stateless PRFs and PRPs,
the situation is less conclusive (essentially due to the fact that the latter prim-
itives bound the number of plaintexts that an adversary can observe, rather
than the number of measurements, and hence allow averaging to get noise-free
measurements) [3]. Since stateless primitives are essential ingredients for the ini-
tialization of an encryption scheme, or for authentication, we are therefore left
with the problem of finding good protection mechanisms in this case.

The fresh re-keying scheme proposed in [16] is a typical attempt in this direc-
tion. Here, the authors start from the observation that requiring both physical
and mathematical security from a single primitive may be too challenging. There-
fore, they suggest an alternative solution, where a stateless re-keying function
that only has to fulfill a limited number of mathematical properties and is easy
to mask is combined with a mathematically strong block cipher. In this context,
hardware engineers essentially have to ensure resistance against multi-trace side-
channel attacks (aka DPA resistance) for the re-keying function, and resistance
against single-trace side-channel attacks (aka SPA resistance) for the block ci-
pher – the latter being an arguably easier task. While such a construction was
indeed interesting from a side-channel attack point-of-view, a recent analysis
by Dobraunig et al. showed that such a fresh re-keying scheme only provides
birthday security against a (mathematical only) chosen-plaintext collision-based
key recovery attack [9]. In this paper, we are therefore interested in improved
re-keying mechanisms that provide beyond birthday security.

Our contributions. We start by describing two new re-keying schemes – one
fresh and one hybrid – with beyond birthday security against the CARDIS 2014
attack. By hybrid, we mean that one communicating party acts like in a stateful
scheme, i.e. the fresh key is based on a secret internal state that is continuously
updated, while the other communicating party acts stateless, i.e. the session key
is always regenerated from the main secret, based on an index value commu-
nicated by the first party. In this way, the first party can be protected against
side-channel analysis (as in fresh re-keying), without requiring the synchroniza-
tion burden of fully stateful schemes (e.g. based on a leakage-resilient PRG). For
the first scheme, we rely on a provably secure re-keying proposed by Abdalla and
Bellare [1], which allows us to prove the security of our (block cipher or hash
function based) re-keying in the ideal cipher model, although the bound is quite

193

loose and does not provide beyond-birthday CPA security (i.e. it only provably
prevents the CARDIS 2014 attack). For the second one, we take advantage of
tweakable block ciphers to design a very efficient solution, which additionally
brings CPA security and benefits from a tight security bound, assuming the
existence of an ideal tweakable block cipher. We also suggest concrete instantia-
tions for the building blocks of these schemes, including a couple of new and very
efficient tweakable block ciphers based on the TWEAKEY framework [12], pro-
posed in the context of the ongoing CAESAR competition (e.g. Deoxys, Jotlik,
KIASU, and Scream) [8].

We complement these new designs with three additional contributions. First,
we put forward that a similar reasoning applies to a hybrid re-keying scheme
patented by Kocher [13]. That is, such a scheme is also vulnerable to collision
attacks (hence only provides birthday security), and can be fixed by taking
advantage of tweakable block ciphers. Second, we discuss the use of fresh/hybrid
re-keying schemes in concrete applications, and underline important differences
between encryption and authentication in this respect. Eventually, we conclude
the paper by recalling the side-channel security guarantees of all the proposed
re-keying schemes, including their grey areas regarding the interaction between
the re-keying function and its underlying block cipher.

Note that resistance against fault attacks is not discussed in this paper, al-
though all the proposed solutions inherit from the good properties of the original
Africacrypt re-keying in this respect, and therefore can probably be used to rule
out differential fault analysis (such as [5] and following works). As in [16], simple
fault attacks (e.g. reducing the number of rounds) are considered out of scope,
and have to be prevented by other means.

2 Background

2.1 The Africacrypt 2010 fresh re-keying scheme

The Africarypt 2010 fresh re-keying scheme [16] is pictured in Fig. 1. It is built
from a block cipher BC and a re-keying function g, and essentially works in
two steps. First, a session key k∗ is produced by running the re-keying function
on the master key k and a random nonce r (selected uniformly at random by
the chip needing to be protected). Second this fresh key k∗ is used to encrypt
a (single) plaintext x with the block cipher. Note that this scheme is trivially
tweaked into a hybrid re-keying by replacing the random nonce r by a counter.

2.2 Properties of the g function

Medwed et al. [16] use g to relax the side-channel protection requirements for a
block cipher. Informally, the idea is that g will be in charge of generating one-
time session keys in a way resistant against side-channel attacks, whereas the
block cipher will provide resistance against classical cryptanalysis, but without
the need to worry about DPA, as each key is used only once. Since we will re-use

194

Fig. 1. Africacrypt 2010 fresh re-keying.

the same “separation of duties” strategy and the same g function in the present
paper, it is worth recalling the requirements for this function:

1. Diffusion. One bit of k∗ shall depend on many bits of k.
2. Stateless Communication. The parties shall not have an inner state,

which has to be kept synchronous.
3. No additional key material. k and k∗ should have the same size.
4. Little hardware overhead and side-channel security. The overhead

caused by the use of g (implemented in a secure way) should be small com-
pared to fully protecting the underlying block cipher against side-channel
attacks. In other words, the structure of g should make it significantly easier
to protect against these attacks (e.g. via masking).

5. Regularity. g should have high regularity to facilitate its implementation
in a full-custom design (or additional protection mechanisms).

2.3 The CARDIS 2014 collision attack

In this section we describe the attack presented at CARDIS 2014 [9] against the
Africacrypt 2010 scheme of Section 2.1. We assume that the generated session
keys are used to key a single block cipher encryption. This encryption is used
for example in a challenge–response protocol, where the attacker is able to select
the challenge x and sees the response yi = BCk∗i (x). The attack can be split into
two steps. The first one is the recovery of one session key k∗i , the second one is
the recovery of the master key k out of this knowledge.

The first step is independent of the generation of the session key and targets
a single block encryption. In this step the attacker precalculates a list, where he
stores pairs of responses (ciphertexts) yi’s and keys k∗i ’s. Those yi’s are encryp-
tions of always the same challenge (plaintext) X for different keys k∗i . Note that
for the creation of the list, all k∗i ’s are chosen by the attacker. Next, in the online
phase, the attacker queries an oracle (his target) for multiple encryptions yi’s
of the same plaintext X. Since this oracle uses a fresh re-keying scheme, X is
encrypted with different keys k∗i ’s and therefore, yi varies. If such a yi matches
with a yi in the precalculated list, the corresponding session key is recovered
with high probability. For this attack, the best overall complexity of 2 · 2n/2 is

195

obtained if a list with 2n/2 entries is used and 2n/2 online queries are made (for
n-bit session keys).

The second step of the attack depends on the concrete re-keying scheme.
In the case of the Africacrypt 2010 proposal, g is a multiplication in a polyno-
mial ring. Since we know one session key k∗, and the corresponding nonce r is
invertible with a high probability, we can calculate k = r−1 · k∗.

3 How to do it right?

A natural approach to prevent the CARDIS 2014 attack would be to change the
instantiation of the g function and to make it non-invertible. For example, one
could use a cryptographic hash function for this purpose. Unfortunately, cryp-
tographic hash functions are not easy to protect against side-channel analysis.
In order to circumvent this problem, and as already mentioned, we will use the
same “separation of duties” strategy as in the Africacrypt re-keying. That is,
we will try to separate the burden of side-channel protection from protection
against classical cryptanalysis, but this time including collision attacks in our
concerns. For this purpose, we present a fresh/hybrid scheme based on a pseudo-
random function (PRF) in Section 3.1, and propose an instantiation thereof that
is provably secure in the ideal cipher model. We then propose a more efficient
solution based on tweakable block ciphers in Section 3.2.

The scenario we focus on in this paper is the case where one communicating
party (e.g. the tag) needs re-keying as an easy and cheap protection against
side-channel attacks, whereas the other (e.g. the reader) is less cost-sensitive and
can be protected through other mechanisms. The re-keying nonce r will thus be
randomly chosen by the cheap device and transmitted to the other party. In [15],
Mewed et al. considered the scenario where multiple parties must be protected
by re-keying and must thus all participate in the selection of r. Their techniques
can be straightforwardly applied to our schemes.

3.1 Fresh/hybrid re-keying from the Abdalla-Bellare re-keying

In [1], Abdalla and Bellare proved the security of a PRF-based re-keying scheme.
They further suggest to instantiate their PRF with a hash function. Interest-
ingly, such a solution is quite directly applicable in our context. We just need
to prove that the combination of g with a well-chosen compression function C is
a PRF (represented by the dotted line in Fig. 2a). As previously, the function
g shall carry the main burden regarding side-channel protection, whereas the
compression function shall prevent collision attacks. Fig. 2a can thus be seen as
an extension of the Africacrypt 2010 scheme. Note that here again, the scheme
will be stateless if r is a random nonce, and hybrid if it is a counter.

Concretely, and since re-keying schemes are typically combined with block
ciphers, we are naturally interested in block cipher-based compression functions.
For this purpose, we will analyze one particular construction for C, referred to as
the compression function 6 in [6], which Black et al. proved to be pre-image and

196

(a) General concept (b) Block cipher based

Fig. 2. Fresh/hybrid Abdalla–Bellare re-keying.

collision resistant in the ideal cipher model. Such a solution is pictured in Fig. 2b.
However, we note that our construction would keep its security properties with
any reasonable instantiation of the PRF in Fig. 2a.

We now prove that, in the ideal cipher model, the generation of k∗ is a PRF
provided g meets a simple requirement, namely that, for any fixed value K of its
first parameter, the function g(K, ·) is one-to-one and, for any fixed value R of
its second parameter, the function g(·, R) is one-to-one (in other words, g(K, ·)
and g(·, R) are permutations of the nonce and key space, respectively). Note that
the following result is independent on whether r is based on fresh nonces or a
counter.

Theorem 1. Let us define F(k, r) := BCg(k,r)(r) ⊕ r ⊕ g(k, r). If g(K, ·) and
g(·, R) are one-to-one for all values of K, R, then the construction F is a PRF
in the ideal cipher model.

Proof (sketch). Consider an adversary A trying to distinguish F(k, ·) from a
random function. A receives access to an oracle O corresponding to the function
to test and to an oracle O′ corresponding to the block cipher. When A starts,
O tosses a coin to decide how it will behave. Depending on the result, on input
ri, O will:

– either output a fresh, random yi;
– or output yi = BCg(k,ri)(ri)⊕ ri⊕g(k, ri), for a fixed value of k. In this case,
O in turn obtains the values BCg(k,ri)(ri) by querying O′.1

1 As usual, we assume that both O and O′ act consistently: when receiving an input
corresponding to a previous query, they simply replay the previous output (when O
implements F, its consistency is a direct consequence of the consistency of O′).

197

In addition, A can directly query O′ with input (k′i, r
′
i) to obtain BCk′i(r

′
i) or

BC−1
k′i

(r′i).

Consider the case where O implements the BC-based construction. When A
ends, O′ will thus have received two sets of (possibly intertwined) queries:

– Queries BCg(k,ri)(ri), through queries to O: we will denote these queries and
the corresponding answers as (ri, yi)1≤i≤v.

– Queries BCk′i(r
′
i) or BC−1

k′i
(r′i), through direct calls: we will denote these

queries and the corresponding answers as (k′i, r
′
i, b
′
i, y
′
i)1≤i≤v′ , where b′i is

a bit equal to 0 (resp. 1) if the request is an encryption (resp. decryption)
query.

The central point of the proof is that two queries to O′ yield randomly and
independently chosen answers provided the corresponding keys are different. We
will now show that this is indeed the case, except with negligible probability.

1. If ri = rj , then it is easy to see that yi = yj (the key is the same, but so is
the plaintext too, and O′ receives twice the same query).

2. If ri 6= rj , then, since g(k, ·) is one-to-one, g(k, ri) 6= g(k, rj), as requested.
3. Since g(·, ri) is one-to-one, k is unknown toA, andA issues only a polynomial

number of requests, the probability to have k′j = g(k, ri) for some (i, j) is
negligible (no value of ri allows reducing the destination space of g(k, ri)).

Summarizing, if O implements F, then the computation of all (fresh) output
values involves an XOR with BCg(k,ri)(ri), which, except with negligible prob-
ability, are chosen randomly and independently by O′. On the other hand, if
O implements a real random function, then all (fresh) output values are chosen
randomly and independently. So, in all cases, all answers received by A are cho-
sen randomly and independently, except with negligible probability, and none of
them allows distinguishing F from a random function.

ut

Remarks:

1. The intuition behind this proof is that, without knowledge of k, A cannot
query O′ with keys corresponding to one of the values w∗ actually used in
the scheme, so that its access to O′ does not help A. Note that the possibility
to query O′ with different, but related, keys is not ruled out by the structure
of the function g (there could for example be a known difference between
g(k, r1) and g(k, r2), no matter the value of k). However, this is not a problem
in the ideal cipher model, where related-key attacks do not apply.

2. A can of course issue direct queries (BCk′i(r
′
i1

),BCk′i(r
′
i2

)), which will not
yield independent answers. However, these will obviously not reveal any in-
formation on F, since, as shown above, they are unrelated to any query made
to F.

198

3. It is worth noting that the properties we require from g are also in line
with a work by Bellare and Kohno. In [4], they propose a formal treatment
of related-key attacks by providing the adversary with the ability to issue
related-key queries such as Eφ(K)(m), i.e. obtain encryptions with a func-
tion φ of the (unknown) target key, for a carefully defined set Φ of allowed
functions. Bellare and Kohno provide some conditions on the set Φ allowing
proving resistance against related-key attacks. Interestingly, our construc-
tion can be related to theirs by defining φi(k) = g(k, ri), and, with the
aforementioned conditions on g, match very well the bounds of [4, Def. 2,
Def. 3, Lemma 1]. As our construction is slightly different, this paper pro-
vides independent proofs. Nevertheless, the fact that our re-keying function
matches independently-defined conditions to avoid related-key attacks is a
probable witness of the consistency of our approach.

Being able to prove that the re-keying scheme is a PRF is already of interest
regarding the CARDIS 2014 collision attack. As a matter of fact, it guarantees
that an attacker cannot distinguish the output of F from a random sequence,
which of course also implies that he cannot recover the key k that generated
this output. As a consequence, this construction is provably resistant against
the collision-based key recovery attack in [9].

In addition, Abdalla and Bellare proved in [1, Theorems 1 and 3] that, if F is
a PRF, SE is an encryption scheme and SE is the associated F-based re-keyed
encryption scheme, then the advantage of an adversary trying to break SE can
be related to that of adversaries trying to break F and SE as follows:

Advind−cpa

SE (t, lm) ≤ Advprf
F (t,m) +m · Advind−cpa

SE (t, l),

where t is the adversary’s maximum running time, m is the maximum number
of keys generated, and l is the maximum number of encryptions performed with
each key (so l = 1 if we use each fresh key only once).

Unfortunately, this theoretical bound does not provide beyond birthday CPA
security. As a matter of fact, an adversary trying 2n/2 keys against one single
block will succeed with probability 2−n/2, so Advind−cpa

SE (2n/2, 1) ≥ 2−n/2. As a
consequence, the above bound for an adversary issuing m = 2n/2 queries and
having computing time t = 2n/2 yields:

Advind−cpa

SE (2n/2, 2n/2) ≤ 1.

Interestingly, this bound is tight, since it corresponds to an attack similar
to the CARDIS 2014 one, but breaking the CPA game rather than recovering
the key. Combined with the observation that the scheme of Figure 2b is also
more expensive than the original fresh re-keying scheme, this motivates us to
investigate how to overcome these drawbacks, using tweakable block ciphers.

3.2 More efficient solution based on a tweakable block cipher

The scheme presented in Section 3.1 has quite a large performance overhead be-
cause of the additional compression/block cipher call needed for a single encryp-

199

tion. A more efficient construction is to replace this combination by a tweakable
block cipher TBC, as shown in Fig. 3. Tweakable block ciphers were introduced
by Liskov et al. in [14] as a generalized version of block ciphers. In addition to
the secret key, a tweakable block cipher accepts a second parameter (that can be
public) called the tweak. Intuitively, “each fixed setting of the tweak gives rise to
a different, apparently independent, family of standard block cipher encryption
operators” and a tweakable block cipher should remain secure even facing an
adversary who has control of the tweak.

In our context, the publicly known nonce (or counter) r is used as tweak,
and k∗ as secret key.

Fig. 3. Fresh/hybrid re–keying with a tweakable block cipher.

This construction again follows the same separation of duties idea as the ones
of Fig. 2a and 2b. Namely, the function g is responsible for side-channel protec-
tion, whereas the tweakable block cipher prevents the CARDIS 2014 collision
attack. Therefore, the requirements for the function g stay the same.

Let us first argue why this construction defeats the aforementioned attacks.
We then show it is in fact provably secure in the ideal cipher model.

First recall that the attacks on the re-keying scheme of Africacrypt 2010
exploit the fact that the same plaintext is encrypted with different session keys
by the same block cipher. Let us now take into account the fact that g(k, ·) is a
permutation. Thus, we get always a different session key k∗ for different nonces
r. Let us also assume that we have a perfect tweakable block cipher. This means
that for every different value of the tweak, we have different and independent
block cipher instances. So, basically, we now just use different block ciphers with
different keys, and none of them is used with multiple keys, which makes the
CARDIS 2014 attack impossible to apply. Taking another viewpoint, an attacker
trying to perform the first step of the attack and precalculating a list would now
need to do it, not for a set of k∗i , but for a set of pairs (ri, k

∗
i). This considerably

increases the size of the list before the birthday paradox provides a non-negligible
chance of success (since this pair has 2n-bit size).

If we translate this “perfect TBC” assumption in the ideal cipher model, it
simply means that each different values of the key or the tweak yields a different,
independent permutation. We now prove that, in this model, the construction

200

depicted on Fig. 3 is indeed a TBC (here too, note that the result is independent
on whether r is based on fresh nonces or a counter).

Theorem 2. Let TBC be an ideal tweakable block cipher, and let us define TBC′

as TBC′k(r,m) = TBCg(k,r)(r,m). If g(K, ·) and g(·, R) are one-to-one for all
values of K, R, then TBC′ is a tweakable block cipher.

Proof (sketch). Consider a distinguisher D trying to distinguish TBC′k from a
family of independent random permutations. At the beginning of the experiment,
an oracle O tosses a coin to decide which construction it will implement.

– In the first case,O chooses a random key k and sets E(r,m) := TBCg(k,r)(r,m)

and E−1(r,m) := TBC−1
g(k,r)(r,m). In this case, O in turn obtains these val-

ues by querying an oracle O′ implementing the ideal tweakable block cipher.
– In the second case, O chooses a family Π(·, ·) of independent random per-

mutations2 and sets E(r,m) := Π(r,m) and E−1(r,m) := Π−1(r,m).

D can then query O to obtain E(ri,mi) or E−1(ri,mi) for values (ri,mi)
of its choice. In addition, D can also directly query O′ to obtain TBCk′i(r

′
i,m

′
i)

or TBC−1
k′i

(r′i,m
′
i) for values (k′i, r

′
i,m

′
i) of its choice. The goal of D is to dis-

cover which construction O implements. We will denote the maximum number
of (direct or indirect) queries D makes to O′ as l.

Consider the case where O implements the TBC-based construction. When D
ends, O′ will thus have received two sets of (possibly intertwined) queries:

– Queries TBCg(k,ri)(ri,mi) or TBC−1
g(k,ri)

(ri,mi), through queries toO: we will

denote these queries and the corresponding answers as (ri,mi, bi, yi)1≤i≤v,
where bi is a bit equal to 0 (resp. 1) if the request is an encryption (resp.
decryption) query.

– Queries TBCk′i(r
′
i,m

′
i) or TBC−1

k′i
(r′i,m

′
i), through direct calls: we will denote

these queries and the corresponding answers as (k′i, r
′
i,m

′
i, b
′
i, y
′
i)1≤i≤v′ , where

b′i is a bit equal to 0 (resp. 1) if the request is an encryption (resp. decryption)
query.

Observe that:

1. If ri 6= rj (resp. r′i 6= r′j and/or k′i 6= k′j), then yi and yj (resp. y′i and y′j) are
chosen randomly and independently by O′.

2. The same is true when ri 6= r′j : O′ is queried on different tweak values and
provides independent random answers.

3. If ri = rj , then yi and yj are chosen randomly and independently, except
that the permutation rule (i.e. different inputs yield different outputs) and
consistency rule (i.e. E(E−1(r,m)) = m) will be respected. Since Π is also
a permutation, none of these limitations helps D guessing the construction
implemented by O.

2 That is, for each T , Π(T, ·) is a random permutation of the message space.

201

4. The same argument applies if (k′i, r
′
i) = (k′j , r

′
j).

5. Finally, if ri = r′j , then, since k is unknown and g(·, ri) is one-to-one, the

probability to have k′j = g(k, ri) is only 1
2n . In all other cases, O′ is queried

on different key values and provides independent random answers. Since O′
received a maximum of l queries, the global probability is bounded by l

2n .

It is easy to see that, in the case where O implements a family of independent
random permutations, O will bear exactly the same behavior, except in one
case. This only exception is that there is no corresponding to case 5 above
(k′j = g(k, ri)). This difference of behavior would help discovering the behaviour

of O, but, as argued above, only occurs with probability l
2n . In all other cases,

answers received by D are always random, independent values consistent with a
permutation.

The distinguishing advantage is thus bounded by:

Pr[DΠ(t, l) = 1]− Pr[DTBC′(t, l) = 1] ≤ l

2n
.

ut

Having proved that our construction is a TBC, we can for example easily
prove that encryption based on it is secure against chosen-plaintext attacks.

Theorem 3. Let TBC be a tweakable block cipher and define Π =< G,E,D >,
where Ek(m) is performed by choosing a random r and returning Ek(m) :=
(r,TBCk(r,m)). In the ideal tweakable cipher model, Π provides indistinguishable
encryption against a chosen-plaintext adversary.

Proof (sketch). Consider an adversary A attacking Π. During the oracle query
phases (both before and after the challenge phase), A can query an encryption
oracle O to obtain the encryption (r′i,TBCk(r′i,m

′
i)) of messages he chooses3,

under an unknown key k chosen uniformly at random. During the challenge
phase, A outputs two messages m0,m1 and receives c = (r,TBCk(r,mb)) from
O. His goal is to discover b. In both cases, O answers by querying a TBC oracle
O′. A can also directly query O′ with values (m′′i , k

′′
i , r
′′
i) of its choice and obtain

E′k′′i (r′′i ,m
′′
i) or E′−1

k′′i
(r′′i ,m

′′
i). We will denote by l the maximum number of

queries (both to O and O′) issued by A.

Observe that:

– As k was chosen uniformly at random, the probability to have k = k′′i for
some i is bounded by l

2n . In all other cases, answers to direct queries to O′
are independent from b (queries on different key values).

– Similarly, the probability to have r = r′i for some i is bounded by l
2n . In

all other cases, answers to queries to O are independent from b (queries on
different tweak values).

3 The tweak r′i, however, is randomly chosen by O.

202

As a consequence,

Advind−cpa
Π (l) ≤ 1

2
+

2l

2n
.

ut

Remarks:

– The proof also holds in the stateful case. The only difference is that the case
r = ri can then never happen, resulting in a slightly better bound, namely
1
2 + l

2n .
– CPA security obviously assumes that the adversary cannot control the ran-

dom nonce r used for encryption. By contrast, it is worth noting that the
construction of Theorem. 1 did not need to prevent this control of r by the
adversary in order to achieve a PRF, and is thus slightly more general.

– Interestingly, we see that the use of a TBC brings the same advantage over
block cipher-based constructions (i.e. natural beyond-birthday security) as
in the context of authenticated encryption [14].

3.3 Concrete instantiations

Instantiating the previous fresh re-keying schemes essentially requires to specify
a block cipher BC, a re-keying function g, and possibly a tweakable block ci-
pher TBC. For the block cipher, a natural choice is the AES. For the re-keying
function, Medwed et al. [16] proposed this polynomial multiplication in F28 [y]
modulo p(y) = y16 + 1:

g : (F28 [y]/p(y))2 → F28 [y]/p(y), (k, r) 7→ k · r.

A polynomial multiplication globally fits our goals. Unfortunately, the choice
p(y) = y16 + 1 is not suitable for our purpose4. As a matter of fact, this polyno-
mial is not irreducible, which implies that the requirement that g(K, ·), g(·, R)
are one-to-one is not strictly satisfied. To meet this requirement, an irreducible
polynomial (e.g. p(y) = y16 + y3 + y + “14”, using the Rijndael notation for
F28 elements) should be used instead. This impacts performance a bit, namely
making shuffling and implementation in protected logic-styles slightly more ex-
pensive than in [16], but this impact is limited, and DPA-protection of this g
function remains cheap. Note that the analysis of the side-channel behaviour of
the polynomial multiplication has only been done for random nonces r by Med-
wed et al. [16]. Thus, the polynomial multiplication should only be used in this
scenario. Finding instances of g that behave well in the hybrid case is an inter-
esting scope for further research. For the tweakable block cipher, we suggest to
use the efficient instances listed in introduction (i.e. Deoxys, Jotlik, KIASU, and
Scream). AES-based solutions can also be exploited, by considering the block
cipher-based constructions in [14]. Mennink also proposes optimal techniques to
build a tweakable block cipher from a block cipher in [17] .

4 The authors thank Marcel Medwed for pointing this out during this paper’s presen-
tation.

203

4 Application to a hybrid scheme by Kocher

We now investigate another alternative to hybrid re-keying that was patented
by Kocher in [13]. We first recall that this scheme can be compromised using the
CARDIS 2014 collision attack. We then describe how to fix it with a tweakable
block cipher.

4.1 The CARDIS 2014 attack against Kocher’s hybrid re-keying

Description of the scheme. In Kocher’s re-keying, and in contrast with the
schemes of Section 2.1, the session key is not derived from a static secret master
key with the help of randomly generated nonces. Instead, the secret itself is
updated, changed, and used as session key. The update is based on the tree
structure that is depicted in Fig. 4.

k

k∗1

k∗2

k∗3 k∗4

k∗5

k∗6 k∗7

k∗8

k∗9 k∗12

A

A

A

A−1

B

k∗10 k∗11 k∗13 k∗14

Fig. 4. Hybrid re-keying patented by Kocher [13].

The root of the tree is the secret master key k and the other vertices represent
session keys k∗i . To traverse through the tree, the functions A, B, A−1, and B−1

are used, where A−1, and B−1 are the inverse functions of A, and B. For instance
if we want to go from k to k∗1 in Fig. 4, we calculate k∗1 = A(k). If we want to
go from k to k∗8 , we calculate k∗8 = B(k). The number of usable session keys k∗i
is determined by the depth of the tree, which has to be fixed in advance.

We assume for this scheme a similar use-case as supposed for the Africacrypt
2010 scheme. Thus, one party (e.g. the tag) needs easy and cheap protection
against side-channel attacks, whereas the other party (e.g. the reader) has to
be protected by other mechanisms. To realize this, the tag strictly follows the
tree, which means that it uses the session keys in the strict order given in Fig. 4
(k∗1 , k

∗
2 , ..k

∗
n). The tag tells the other party (the reader) the index i of the cur-

rently used session key k∗i , and the reader calculates the session key k∗i starting
from the root k.

Note that other variants of this scheme are possible. For instance, session keys
corresponding to internal vertices can be used three times (every time a vertex
is visited). By doing so, the number of transitions for the tag can be limited to

204

one. In other words, this reuse of session keys allows the tag to perform only one
of the operations A, B, A−1, or B−1 per change of the session key.

Collision attack. As already hinted by Dobraunig et al. [9], the CARDIS 2014
collision attack also applies to re-keying schemes like Kocher’s one. For simplicity,
we make the same assumptions as in Section 2.3 (i.e. each session key is used in
a single block cipher execution, and the attacker can choose the plaintext which
is encrypted). In addition, we assume that the concrete instance of Kocher’s
scheme only uses every session key once.

The first step of the CARDIS 2014 attack described in Section 2.3 is to re-
cover one session key: this step goes exactly as before, i.e. building (offline) a
database of encryptions of the same plaintext with various keys, then relying
on the birthday paradox to obtain collisions with (online) encryptions of the
same plaintext. Next, and as far as the second step is concerned, if we addition-
ally assume that the used operations (permutations) A, B, A−1, and B−1 are
publicly known, one recovered session key k∗i and the corresponding index i are
enough to recover the master key k. Note that keeping the A, B, A−1, and B−1

permutations secret would typically mean implementing them as a block cipher
with secret (fixed) key, which would then be a potential target to DPA (i.e. lead
to a chicken and egg problem, essentially).

4.2 Efficient fix based on a tweakable block cipher

To get rid of the CARDIS 2014 attack, we propose a fix for Kocher’s scheme
based on a tweakable block cipher similar to Section 3.2. Here, the session key
k∗i – generated by Kocher’s scheme (Fig. 4) – is used as a secret key for the
tweakable block cipher, and the index i of the key is used as tweak, as illustrated
in Fig. 5. The collision attack does not work in this case, for the same reasons
as described in Section 3.2 (namely, different tweaks, and so virtually different
block ciphers, are used with different keys).

Fig. 5. Hybrid re–keying with a tweakable block cipher.

5 Encryption vs. authentication issues

Our discussion so far dealt with the generic problem of designing a secure and
side-channel resistant re-keying scheme. Since they originally borrow from Ab-
dalla and Bellare, our solutions typically lead to secure encryption per se. How-
ever, it is worth mentioning that additional security issues might arise when

205

dealing with other uses of this re-keying scheme. In particular, although we
ruled out key recovery attacks by ensuring that the master key cannot be recov-
ered from a session key, it should be pointed out that, in some contexts such as
authentication, even the recovery of one single session key might already be a
serious threat.

Consider a simple challenge–response protocol carried out between two par-
ties. In this scenario we have a tag that acts as prover and a reader that acts
as verifier. So in the first step, the reader sends the challenge xi to the tag. The
tag encrypts the challenge and responds with yi = Ek∗i (xi). We assume that a
re-keying scheme is used, which changes the key k∗i for every new call of the
encryption. As before, one of the n-bit session keys k∗ can be recovered with a
complexity of about 2 · 2n/2, regardless of the re-keying scheme actually used.

Now examine the implications of one session key recovery in this scenario,
for actual re-keying schemes. If the Africacrypt 2010 scheme is used to generate
the session key k∗, the tag (prover) decides alone of the nonce value r. So an
attacker does not necessarily need the master key. It is already enough to have
one session key to pass the challenge–response protocol, since the attacker can
force the use of a single recovered session key. Concretely, the attacker would
first select a plaintext value X and build off-line a DB of encryptions of X with
random keys. He would then play the role of a reader and query a genuine tag
with challenge X. Finally, having recovered one session key, he would be able
to impersonate the tag by always using r as nonce. The same attack would also
succeed against the tree-based session key generation scheme of Section 4.1.

This attack cannot be prevented by making g not invertible. In fact, this
attack always applies to every re-keying scheme, as long as a block cipher is
re-keyed for every encryption and the prover can determine the session key to be
used. This means that this attack might be also applicable to schemes where the
CARDIS 2014 attack does not work. Beläıd et al. [2] presented such a scheme,
where the re-keying function g of the Africacrypt 2010 scheme is replaced by
a non-invertible function. However, the applicability of the session key replay
attack depends on the actual method to determine the nonce, which is not
specified by Beläıd et al.

In general, there exist two countermeasures against such a session key re-
play attack. The first one is to have both parties contributing to the selection
process of the session key, as is already done in the CARDIS 2011 scheme [15].
The other one is to prohibit the recovery of the session key in the first place.
Interestingly, the constructions using tweakable block ciphers we propose in Sec-
tions 3.2 and 4.2 do prevent this recovery. Indeed, as discussed in Section 3.2,
changing the value of r will not only result in a different session key k∗, but also
in a different tweak value and hence – assuming a perfect tweakable block cipher
– virtually in a different block cipher. As a consequence, the collision attack to
recover session keys is not applicable any more in this case.

206

6 Conclusion: side-channel security

We conclude this paper with a cautionary note regarding the exact security
improvements brought by fresh re-keying regarding side-channel attacks. For
this purpose, the first positive observation is that if the adversary targets the
re-keying function and the block cipher independently, the resulting security
guarantees are well understood. That is, the implementation will be secure as
long as g resists DPA and BC (or TBC) resists SPA. But quite naturally, security
arguments and proofs also indicate what are the potential weak points of a
construction, and this is clearly the case for fresh re-keying. Looking at Fig. 1, 2a
and 2b, this potential weak point is indeed the interaction between the re-keying
function and the block cipher. That is, if some leakage about k∗ (in Fig. 1)
or w∗ (in Fig. 2a, 2b) is obtained by the adversary (e.g. when recombining
the shares after the masked execution of g), attacks combining mathematical
cryptanalysis and leakage (e.g. the algebraic SPA described in [15]) are likely
to be very powerful to accumulate partial information on the master key k
and finally recover it. This is why fresh re-keying crucially relies on the SPA
security of the block cipher, and a secure implementation should recombine the
shares of the fresh keys in a sufficiently secure, i.e. typically shuffled, manner (as
clearly mentioned in [15] as well). Note that this observation does not annihilate
the interest of fresh re-keying which still significantly reduces the adversary’s
attack paths (compared to the straightforward execution of a block cipher).
Interestingly, a very similar situation can be found for the SPRING primitive
discussed in [7], which also aims at an informal separation between the parts of
the primitive that are easy to mask, and those that are not (and therefore need to
be carefully shuffled). Besides, such an issue does not directly apply to Kocher’s
hybrid scheme which does not make use of a g function. Indeed, combining small
leakage on the session keys would require to go through the permutations A and
B (and their inverses), which may not be easy if they are implemented with
fixed key block ciphers. But this comes at the cost of a slightly more expensive
key update mechanism. Besides, and more importantly, it makes any attempt
to secure both the encrypting/proving and the decrypting/verifying parties of a
protocol much more challenging, since the tree-based construction in Fig. 4 has
to be stateless. In other words, it does not benefit from the malleability of the g
function which is exploited for this purpose in multi-parties fresh re-keying [15],
which gives a typical application of the “no free lunch” theorem.

Acknowledgments. The authors thank Christophe Petit for useful advice.
This work has been supported in part by the Austrian Science Fund (project
P26494-N15), by the Austrian Research Promotion Agency (FFG) under grant
number 845589 (SCALAS), by the Brussels Region Research Funding Agency
through the program Secur’IT and by the European Commission through the
ERC project 280141 (CRASH) and the COST Action CRYPTACUS. F.-X. Stan-
daert is a research associate of the Belgian Fund for Scientific Research (FNRS-
F.R.S.).

207

References

1. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: A comparative analysis
of the security of re-keying techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 546–559. Springer (2000)

2. Beläıd, S., De Santis, F., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J., Stan-
daert, F., Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs: cipher
design principles and analysis. J. Cryptographic Engineering 4(3), 157–171 (2014)

3. Beläıd, S., Grosso, V., Standaert, F.: Masking and leakage-resilient primitives: One,
the other(s) or both? Cryptography and Communications 7(1), 163–184 (2015)

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer (2003)

5. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO ’97. LNCS, vol. 1294, pp. 513–525. Springer (1997)

6. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-
based hash functions from PGV. J. Cryptology 23(4), 519–545 (2010)

7. Brenner, H., Gaspar, L., Leurent, G., Rosen, A., Standaert, F.: FPGA implemen-
tations of SPRING - and their countermeasures against side-channel attacks. In:
Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 414–432. Springer
(2014)

8. CAESAR Competition: http://competitions.cr.yp.to/caesar-submissions.html
9. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F.: On the security of fresh

re-keying to counteract side-channel and fault attacks. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 233–244. Springer (2014)

10. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008. pp.
293–302. IEEE Computer Society (2008)

11. Grosso, V., Standaert, F., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? J. Cryptographic Engineering 4(1), 47–57 (2014)

12. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer (2014)

13. Kocher, P.C.: Leak-resistant cryptographic indexed key update (2003), US Patent
6,539,092

14. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer (2002)

15. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.: Fresh re-keying
II: securing multiple parties against side-channel and fault attacks. In: Prouff, E.
(ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer (2011)

16. Medwed, M., Standaert, F., Großschädl, J., Regazzoni, F.: Fresh re-keying: Security
against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer
(2010)

17. Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.)
Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 9054, pp. 428–448. Springer (2015), http://dx.doi.org/10.1007/

978-3-662-48116-5_21
18. Yu, Y., Standaert, F., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-

random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) CCS
2010. pp. 141–151. ACM (2010)

208

Side-Channel Analysis of Keymill

Publication Data

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, and Florian Mendel.
“Side-Channel Analysis of Keymill”. In: Constructive Side-Channel Analysis
and Secure Design, COSADE 2017. Ed. by Sylvain Guilley. Vol. 10348. LNCS.
Springer, 2017, pp. 138–152. url: https://doi.org/10.1007/978-3-319-64647-
3_9

The appended paper is an author-created version available at https://eprint.
iacr.org/2016/793. This version is a minor revision correcting Figure 5.

Contributions

• Technical: Contributed to idea and concept of the attack. No contributions
to the simulations and the practical evaluation.

• Writing: Contributions to the writing of Sections 1, 2, 3, and 5.

209

https://doi.org/10.1007/978-3-319-64647-3_9
https://doi.org/10.1007/978-3-319-64647-3_9
https://eprint.iacr.org/2016/793
https://eprint.iacr.org/2016/793

Side-Channel Analysis of Keymill

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, and Florian Mendel

Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. One prominent countermeasure against side-channel attacks,
especially differential power analysis (DPA), is fresh re-keying. In such
schemes, the so-called re-keying function takes the burden of protecting
a cryptographic primitive against DPA. To ensure the security of the
scheme against side-channel analysis, the re-keying function has to with-
stand both simple power analysis (SPA) and differential power analysis
(DPA). Recently, at SAC 2016, Taha et al. proposed Keymill, a side-
channel resilient key generator (or re-keying function), which is claimed
to be inherently secure against side-channel attacks. In this work, how-
ever, we present a DPA attack on Keymill, which is based on the dy-
namic power consumption of a digital circuit that is tied to the 0 → 1
and 1 → 0 switches of its logical gates. Hence, the power consumption
of the shift-registers used in Keymill depends on the 0 → 1 and 1 → 0
switches of its internal state. This information is sufficient to obtain the
internal differential pattern (up to a small number of bits, which have
to be brute-forced) of the 4 shift-registers of Keymill after the nonce has
been absorbed. This leads to a practical key-recovery attack on Keymill.

Keywords: side-channel analysis · fresh re-keying · differential power
analysis

1 Introduction

Side-channel attacks like differential power analysis (DPA) pose a serious threat
to devices operating in a hostile environment. Such scenarios quite naturally
appear in our current information infrastructure whenever an entity has physical
access to a device which uses a cryptographic key that must be kept secret from
this entity. Hence, it is necessary to protect such devices against the extraction
of the secret key by means of side-channel analysis like SPA and DPA [7]. In
particular, for resource-constrained or low-cost devices that are used for the
Internet of Things or in RFID applications, the use of protection mechanisms
is not straightforward, since applied protection mechanisms have to be cheap
and efficient. One protection mechanism that suits such applications very well
is fresh re-keying.

Fresh re-keying [9] is an approach for precluding DPA on cryptographic prim-
itives. The resistance against DPA is achieved by a separation-of-duties principle,
where a re-keying function takes the burden of protection against DPA away
from the cryptographic primitive. In this construction, the re-keying function

This article is a minor revision of an article that appears in the proceedings of COSADE 2017. The
final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-64647-3_9.

processes a nonce and master key to compute a fresh session key. This session
key is then used by the cryptographic primitive. The nonce, or initial value
(IV), is generated uniquely for each encryption, and must never be reused for
another encryption. The nonce is considered public information and has to be
transmitted to (or synchronized with) the decrypting recipient together with
the ciphertext. Since the cryptographic primitive is only called once per session
key, DPA attacks are naturally prevented, and only dedicated countermeasures
against SPA are needed. However, the re-keying function has to provide resis-
tance against SPA and DPA attacks, either by its design, or by application of
countermeasures like threshold implementations [10], masking [12], hiding [2],
shuffling [6], etc. The intention behind re-keying schemes is that the re-keying
function itself can be protected more easily against DPA than the cryptographic
scheme, or that it can even be designed to provide inherent security against
DPA. Both options profit from the fact that the re-keying function itself does
not need to fulfill strong cryptographic requirements [9].

Re-keying functions. Medwed et al. [9] proposed polynomial multiplication as
re-keying function, which has further been extended to the multi-user setting [8].
While such a polynomial multiplication lacks inherent protection against DPA,
it is easy to mask and additionally allows easy-to-implement countermeasures
against SPA, such as shuffling [9]. However, Pessl and Mangard [11] showed at
CT-RSA 2016 that this multiplication is vulnerable to side-channel analysis, in
particular at the point where its masks have to be combined and the session
key is used in the cryptographic scheme. Additionally, the original scheme by
Medwed et al. is susceptible to time-memory trade-off attacks [3]. Recently at
Crypto 2016, Dziembowski et al. [4] presented a more formal treatment of re-
keying functions and proposed two schemes. The first is based on learning parity
with leakage, the second on learning with rounding, and both are efficient and
easy to mask.

Keymill. In contrast to designs relying on side-channel countermeasures like
masking for side-channel protection, Keymill [14] claims to be secure against
side-channel analysis inherently by design without requiring any redundant cir-
cuit. Having a re-keying function which provides inherent security against side-
channel analysis is beneficial with respect to implementation metrics. Since such
schemes do not require masking to withstand DPA, no randomness is needed to
create and update masks, and masks do not have to be stored and processed
in the first place. A comparison of a modular multiplication and Keymill by
Taha et al. [14] shows that a hardware implementation of Keymill requires 775
gate equivalents (GE), while an implementation of a modular multiplication with
first-order masking requires 7300 GE [9].

To achieve such low implementation costs, Keymill only uses 4 nonlinear
feedback shift-registers taken from the stream cipher Achterbahn [5]. The shift-
registers are connected via a rotating cross-connect, which shifts the output of
each shift-register’s nonlinear feedback function into another shift-register. This

211

cross-connect joins the function outputs with shift-register inputs cyclically per
clock. For this construction and also for a toy example consisting of two 8-bit
registers involving a similar rotating cross-connect, the authors claim that no
DPA attacks are feasible without constructing a hypothesis for the whole key,
or equivalently for the whole internal state of the four shift-registers, and thus
render DPA attacks infeasible.

Our Contribution. In this work, we present a DPA attack on Keymill. Our
attack shows that the claim of Keymill to be inherently secure against side-
channel attacks without the need of additional circuits does not hold. The basic
idea of the attack is as follows. Instead of making a hypothesis about the exact
values of the internal state bits or the secret key, we target the internal difference
between neighboring bits of the shift-registers. As observed by Burman et al. [1],
and Zadeh and Heys [15], the dynamic power consumption of shift-registers
depends on the number of internal differences of neighboring bits. The more
internal differences we have, the more power the shift-register consumes. We
recover those internal differences bit by bit by comparing the power consumption
of a reference nonce (e.g., 0), with power traces of a modified nonce where a single
bit has been flipped. Knowing these internal differences allows to recover the full
state and consequently the master key by guessing a few additional bits.

Our attack requires the attacker to obtain traces for related (partially chosen)
pairs of nonce values, but without violating the single-use requirement for nonces.
This scenario is explicitly covered by the security claim of Keymill, although
similar to chosen-plaintext attacks, it might not be easy to collect such data
in a practical application. We verified the validity and robustness of the attack
both for simulated data and for measurements from an FPGA implementation
of Keymill.

Outline. In Sect. 2, we give a brief background on fresh re-keying and restate the
specification of Keymill. Then, we describe the side-channel attack on Keymill
and on a variant of Toy Model II given in the Keymill specification in Sect. 3.
Sect. 4 gives experiments for our attack and discusses the influence of different
levels of noise. Finally, we conclude in Sect. 5.

2 Background

In this section, we first give a brief introduction to the concept of fresh re-
keying, where we restate the requirements on re-keying functions. Then, we
briefly summarize the specification of Keymill and finally, discuss time-memory
trade-off attacks on such re-keying schemes.

2.1 Fresh Re-Keying

Fresh re-keying has been proposed by Medwed et al. [9] as a countermeasure
against side-channel and fault attacks for low-cost devices. A typical scenario

212

where fresh re-keying can be applied is the communication of an RFID tag with
an RFID reader. Typically, RFID tags are low-cost devices that additionally
have strict requirements regarding power consumption, not allowing costly pro-
tection mechanisms against side-channel and fault attacks of the implemented
cryptographic primitives. This stands in contrast to the more expensive RFID
readers, where costly protection mechanisms like masking are usually affordable.

Fig. 1 shows the working principle of fresh re-keying in a communication
scenario between an RFID reader and an RFID tag. For sending a message, the
tag generates a nonce and derives a session key k∗ by using a re-keying function
g. This session key is then used by the block cipher E to encrypt the message
m. The ciphertext c together with the nonce is sent to the reader, where it can
be decrypted.

g

E

n

k

m

k∗

Tag

g

E−1

k

k∗

Reader

m
c

Fig. 1. Fresh re-keying scheme of Medwed et al. [9].

Since the nonce is generated by the tag, the tag can ensure that the block
cipher E is always used with a new session key k∗, which will preclude DPA
on the block cipher. However, in the case of the reader, having a unique nonce
cannot be ensured, because the nonce is received over the communication channel
and thus, might be chosen by an attacker. Therefore, the implementation of the
block cipher E of the reader has to be protected against DPA by other means.
Apart from that, the implementation of g for both entities has to withstand
DPA, because here, the master key k is processed with a different nonce. On
the designer’s side, the challenge is to find a suitable re-keying function g which
fulfills the following six properties given by Medwed et al. [9]:

1. Good diffusion of the master key k.

2. No synchronization between parties. Hence, g should be stateless.

3. No need for additional key material.

4. Little hardware overhead. Total costs lower than protecting E alone.

5. Easy protection against side-channel attacks.

6. Regularity.

213

One option for a re-keying function is the polynomial multiplication in F28 [y]
modulo p(y) proposed by Medwed et al. [9]:

g : (F28 [y]/p(y))2 → F28 [y]/p(y), (k, n) 7→ k · n.

2.2 Brief Description of Keymill

Keymill [14] is a new keystream generator recently proposed by Taha et al. at
SAC 2016. In contrast to the fresh re-keying scheme by Medwed et al. discussed
in Sect. 2.1, Keymill does not only provide one session key k∗, instead it provides
a keystream. As indicated in Fig. 2, this is particularly useful when encrypting
longer messages that require several block cipher calls. The nonce n is required
to be unique, but is otherwise public.

Keystream Generator

E

n

k

m

k∗1

E

k∗2

E

k∗3

E

k∗4

c

Fig. 2. Re-keying using a keystream generator as shown in [14].

Keymill operates on an internal state of 128 bits, composed of 4 NLFSRs
as shown in Fig. 3. Shift-register R0 has 31 bits, shift-registers R1 and R2 have
32 bits, and shift-register R3 has 33 bits. The feedback functions F0, F1, F2 and
F3 are selected from the set of feedback functions used for the stream cipher
Achterbahn [5]:

F0(S) = s0 + s2 + s5 + s6 + s15 + s17 + s18 + s20 + s25 + s8s18 + s8s20

+ s12s21 + s14s19 + s17s21 + s20s22 + s4s12s22 + s4s19s22

+ s7s20s21 + s8s18s22 + s8s20s22 + s12s19s22 + s20s21s22

+ s4s7s12s21 + s4s7s19s21 + s4s12s21s22 + s4s19s21s22

+ s7s8s18s21 + s7s8s20s21 + s7s12s19s21 + s8s18s21s22

+ s8s20s21s22 + s12s19s21s22

F1(S) = F2(S) = s0 + s3 + s17 + s22 + s28 + s2s13 + s5s19 + s7s19

+ s8s12 + s8s13 + s13s15 + s2s12s13 + s7s8s12 + s7s8s14

+ s8s12s13 + s2s7s12s13 + s2s7s13s14 + s4s11s12s24

+ s7s8s12s13 + s7s8s13s14 + s4s7s11s12s24 + s4s7s11s14s24

214

F3(S) = s0 + s2 + s7 + s9 + s10 + s15 + s23 + s25 + s30 + s8s15 + s12s16

+ s13s15 + s13s25 + s1s8s14 + s1s8s18 + s8s12s16 + s8s14s18

+ s8s15s16 + s8s15s17 + s15s17s24 + s1s8s14s17 + s1s8s17s18

+ s1s14s17s24 + s1s17s18s24 + s8s12s16s17 + s8s14s17s18

+ s8s15s16s17 + s12s16s17s24 + s14s17s18s24 + s15s16s17s24

Note that all feedback functions are nonsingular and additionally do not depend
on the first bit s`−1 of each `-bit register, that is, they are of the form

Fj(S) = Fj(s0, . . . , s`−1) = s0 + F ′j(s1, . . . , s`−2).

The outputs of the feedback functions are then mixed via a rotating cross-
connect, depending on the current clock cycle index i:

Fj → Rj+i (mod 4) for j = 0, 1, 2, 3.

F1

k4i+1

IV4i+1

R1

F2

k4i+2

IV4i+2

R2

F3

k4i+3

IV4i+3

R3

F0

k4i

IV4i

R0

Fig. 3. Structure of Keymill

After loading the 128-bit secret key into the internal state, 4 bits of the
128-bit nonce that can be monitored (or controlled) by the attacker are added

215

to the feedback functions of the shift-registers in each clock cycle. After absorbing
the nonce in 32 clock cycles, the internal state is clocked 33 more times before
producing any output. Afterwards 4 bits of output are generated (one from each
shift-register) in each clock cycle. We refer to the specification of Keymill [14]
for a more detailed description.

The designers claim that this construction “expands the size of any useful key
hypothesis to the full entropy” [14]. More specifically, they claim that the SCA-
security (“the minimum size of a key hypothesis (in bits) such that the leakage-
model using the correct key correlates to the measured leakage significantly
higher than the leakage-model using any other key” [14]) is about 128 bits.

2.3 Remark on Time-Memory Trade-Off Attacks

As elaborated in [3], the re-keying scheme proposed by Medwed et al. [9] is sus-
ceptible to time-memory trade-off attacks dependent on the used re-keying func-
tion. For instance, if a polynomial multiplication is used together with AES-128,
the master key can be recovered with a complexity of 265 [3]. Since Keymill
has an internal state-size of 128-bits, similar attacks are possible on the scheme
shown in Fig. 2.

3 Side-Channel Attack on Keymill

In this section, we will present side-channel attacks on Keymill. First, we dis-
cuss the power consumption of shift-registers following the work of Zadeh and
Heys [15] and show how this power consumption can be used to recover the dif-
ferences of neighboring shift-register bits. This and the fact that the first bits of
the shift-registers are not used in the feedback functions of Keymill allows us to
mount a side-channel attack. For simplicity, we first demonstrate the attack on
a variant of Toy Model II given in the Keymill specification [14] and afterwards
discuss the application to Keymill.

3.1 Power Consumption of a Shift-Register

In all our attacks, we exploit the dynamic power consumption of the shift-
registers at the triggering edge of the clock (i.e., positive edge). More specifi-
cally, we observe the dynamic power consumption of the building blocks of the
shift-registers, the D-flip-flops. As shown by Zadeh and Heys [15], the dynamic
power consumption of a D-flip-flop at the triggering edge depends on whether
its state changes or not. If the state of the D-flip-flop changes, more power is
consumed than if it remains the same. As an example, Zadeh and Heys [15] ana-
lyze a D-flip-flop constructed out of 6 NAND gates. For such a flip-flop, 3 gates
change if the flip-flop changes its state, whereas only one gate changes if not.

Next, we have a look at the power consumption of a shift-register. For sim-
plicity, consider a 4-bit shift-register consisting of 4 flip-flops D0, D1, D2, and
D3. In the following, we assume that D4 is the input of our shift-register, which

216

is shifted towards D0. For instance, let us consider the power consumption of
the change from state S0 = 01102 to state S1 = 11012. For this transition,
D0 changes its state, D1 keeps its state, D2 changes its state, and D3 changes
its state. Since the power consumption of the flip-flops is higher if they change
their state, the power consumption of the shift-register is correlated with the
Hamming weight of S0⊕S1 (= 10112). In this example, 3 flip-flops change their
state.

Now, we want to consider a state change from S0 to S′1, where we shift in a 0

instead of a 1 as before. So we observe the power consumption for the change from
state S0 = 01102 to state S′1 = 11002. If this transition happens, only two flip-
flops change their state. Thus, we observe for the transition S0 → S′1 a smaller
power consumption than for S0 → S1. This allows us to derive information about
the difference of the bits stored in D4 and D3 of S′1 and S1, respectively. In more
detail, we know that they are equal for S′1 and different for S1. We will use this
observation in our side-channel attack on a variant of Toy Model II and Keymill
itself in the following sections.

3.2 Attack on Toy Model II

For the sake of simplicity, we first describe the working principle of our attack on
a slightly modified variant of Toy Model II given in the Keymill specification [14],
which has only two 8-bit shift-registers. In the attack, we assume that similar
to Keymill, the output of the first flip-flop of each shift-register is not connected
to the feedback function, as shown in Fig. 4. Besides nonsingularity, this is the
only assumption on the feedback function that is necessary to mount our attack.
We do not rely on any other specific properties of the feedback functions. The
shift-register is preinitialized with the secret key. After that, the 16-bit nonce is
absorbed, 2 bits per clock cycle. Our goal is to recover all internal differences of
both shift-registers after the nonce (e.g., n = 000016) has been absorbed.

F0

R0 IV2i

F1

R1IV2i+1

Fig. 4. Structure of modified Toy Model II

First, we collect two power traces, one for a nonce starting with 002 and one
for a nonce starting with 102. We look at the power consumption when the first
two bits of the nonce are absorbed in the first cycle. Here, we have a difference
in n0 for R0, but equal values in n1 for R1. Since the first flip-flop of each shift-
register is not connected to the feedback function, the circuit processes the same

217

information for both initial values, except for the first flip-flop of the left shift-
register R0. As already discussed in Sect. 3.1, this gives us information about
the difference of the first two bits of R0 after absorbing the first two bits of the
nonce. If the power consumption when absorbing 002 is higher than in the 102

case, we know that the first two bits of R0 are different after 002 is absorbed. If
the power consumption is lower, then they are equal.

Next, we use two initial values starting with 002 and 012. This allows us to
learn the internal difference of the first two bits of the shift-register R1 after 002 is
absorbed. Then, we use 00002 and 00102 to learn information of the difference of
the first two bits after 00002 has been absorbed, still preserving the information
of the difference of the now second and third bits of both shift-registers learned
in the steps before. By continuing in this way, we can learn the differences of all
neighboring bits of R0 and R1 after the nonce 000016 has been absorbed.

Now, guessing one bit in each shift-register determines the other 7 bits in
each shift-register. Hence, we are left with only 4 possible internal states. From
this states on, we can invert Toy Model II step by step until we get 4 key
candidates in total. Note that inversion of a fully known state is trivial due to
the nonsingularity of the feedback functions, which allows to recover the previous
last bit s0 from the known feedback output and the known values of the other
taps. Overall, if we are able to obtain noiseless measurements for about 16 chosen
nonces (one per bit of the state), we can recover the entire key k.

3.3 Attack on Keymill

Compared to Toy Model II, Keymill is essentially the same, except everything
is larger. As described in Sect. 2.2, we have 4 shift-registers: one 31-bit shift-
register, two 32-bit shift-registers, and one 33-bit shift-register. The 128-bit
nonce is absorbed in 32 cycles, each cycle taking 4 bits. Furthermore, the 4
feedback functions of Keymill do not consider the outputs of the first flip-flop of
each shift-register. As mentioned before, this fact is exploited in our side-channel
attack. Again, we want to recover the internal differential pattern of the used
shift-registers after a certain nonce, e.g., n = 0 · · · 0 has been absorbed. Please
note that the all 0 nonce is just an example taken for simplicity. The attack
works for every other choice of the nonce.

The attack proceeds in a similar way as described in Sect. 3.2. First, we
record a power trace for a nonce starting with 00002 and a second trace for
a nonce starting with 10002. We compare the power consumption for the two
traces at the time the first nibble of the nonce is absorbed. At this time, for
both traces, the processed values are equal except for the inputs of shift-register
R0. Since the output of the first flip-flop of R0 is not fed back into the feedback
function, the power consumption differs only because of the state changes of this
flip-flop. As discussed in Sect. 3.1, this is sufficient to recover the difference of
the first two bits of shift-register R0. The power traces of nonces starting with
01002, 00102, and 00012 can be used to learn the difference of shift-registers R1,
R2 and R3, respectively.

218

When the second nibble of the nonce is absorbed, those differences are shifted
by one position, but are still known, if the first nibble of the nonce starts
with 00002. Hence, we can use nonces starting with 0000 00002, 0000 10002,
0000 01002, 0000 00102, and 0000 00012 and learn the differences of the first
two bits of each shift-register, while retaining the knowledge of the differences
between the second and the third bits. Proceeding this way, we can learn at most
32 differences of neighboring bits per shift-register.

This means that we can learn all internal differences of all 4 shift-registers,
since one shift-register has 31 bits, two have 32 bits and one has 33 bits. So,
at most 30, two times 31, and 32 differences have to be learned. Since we know
all internal differences of each shift-register, a guess of one state bit in each
shift-register determines all others. Thus, guessing 4 bits in total leads to 16
different states we recover. From these states, we can invert Keymill, resulting
in 16 possible key candidates in total.

Summarizing, if we can obtain noiseless measurements for about 128 chosen
nonces, then we can recover the full internal state and consequently the secret key
k. In particular, we recover the internal state bit by bit by making a hypothesis
on 1 bit of “equivalent key information”, instead of an actual key bit value: The
xor difference of two neighboring state bits.

3.4 A Note on Filtering the Noise

The success of our attacks crucially depends on the ability to distinguish power
consumption changes for a change of the input values. This means that the noise
level has to be small enough to reliably identify these changes. If the attacker
is allowed to repeat nonces, averaging the traces and filtering the noise is no
problem. Even if the nonce is required to be unique (as usually the case), this
can easily be done, since the state of the shift-registers only depends on bits of
the nonce that have already been absorbed. Hence, we can use all the remaining
nonce bits after the relation we want to recover to average the power consumption
for this cycle. For Keymill, we can average over up to 16 power traces even if
we recover bit relations in the penultimate nonce-absorbing cycle. Dependent on
the noise level, it might happen that the last few internal differences of the state
cannot be recovered anymore, since there are too few traces to filter the noise.
So these bits might have to be guessed additionally at the end of the attack.

4 Practical Evaluation

In order to show the practicability of the attacks discussed in Sect. 3, we present
two experiments. First, we run the attack based on simulated leakage traces to
analyze the impact of noise on the success of the attack. For the second evalua-
tion, we use power measurements from an FPGA implementation of Keymill to
evaluate the practicability of the attack targeting real hardware.

First, we simulate the described attack targeting the proposed Keymill design
as shown in Fig. 3. Therefore, the four registers R0 . . . R3 and the corresponding

219

feedback functions F0 . . . F3, which compose the four NLFSRs, have been mod-
elled in software. At the start of the simulation, the registers are initialized with
the secret key. Then, for every clock cycle, the simulation returns the Hamming
distance produced by the shift registers. The current Hamming distance depends
on the values in the shift register, the results of the feedback functions F0 . . . F3

and the nonce.
Gaussian noise with zero mean (µnoise = 0) and varying standard devi-

ation σnoise can be added to the noise-free Hamming-distance measurements
(HDnoisefree) in order to simulate measurements captured from real hardware,
i.e. HDmeas (see Equation 1). In order to minimize the influence of the noise it
is possible to repeat the simulation with a similar nonce t times for calculating
the mean of the measurements.

HDmeas = HDnoisefree + noise, where noise← N (0, σnoise). (1)

For every setting (specific σnoise and specific t), we performed Nfull = 500 ex-
periments with randomly chosen initial states of the four shift-registers R0 . . . R3

to calculate the success rate SR of the attack,

SR =
Nsuccess

Nfull
,

where Nsuccess is the number of successful state recoveries. Fig. 5 depicts the
results of this simulation. It is clearly visible that SR decreases with increasing
noise. This effect can be compensated by repeating the attack with the same
nonce t times and calculate the mean of the measurements. For t = 1, the
success rate starts to decrease for noise levels above σnoise = 0.1. For t = 50, the
success rate remains 1 up to a noise level of σnoise = 1.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

σnoise

S
R

t = 1
t = 5
t = 10
t = 15
t = 20
t = 50

Fig. 5. Success rate (SR) for increasing noise levels (σnoise). For the graphs different
numbers (1–50) of Hamming-distance measurements have been used for calculating the
mean Hamming distance.

220

Fig. 6 shows the influence of σnoise on the Hamming-distance measurements
(HDmeas). For this specific plot, HDnoisefree = 64 has been selected. The ‘+’
markers represent single HD measurements. In the noise-free scenario, i.e. σnoise =
0, all HD measurements have the value 64. For a high noise level, i.e. σnoise = 2,
the HD measurements are in the range between 58 and 70.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

56

60

64

68

72

σnoise

H
D

m
e
a
s

Fig. 6. Hamming distance measurements for increasing σnoise, HDnoisefree = 64.

In a final experiment, Keymill is evaluated on real hardware. We chose the
Sakura G board [13], which is the reference platform for side-channel evalua-
tions of cryptographic hardware designs on FPGAs. The main FPGA (Xilinx
Spartan-6 LX75) has been configured with the Keymill design and the power
consumption during the initialization (i.e. the first 33 clock cycles where the bits
of the nonce are shifted into the shift registers, four bits per clock cycle) has
been measured with an oscilloscope. For every bit position of the nonce, two
trace sets have been recorded, one with the corresponding bit set to ‘0’ and one
with the corresponding bit set to ‘1’. In order to evaluate the number of traces
required for reaching a specific success rate, 10 000 traces have been recorded
for every nonce. The results of the evaluations are depicted in Fig. 7. It shows
that for the given FPGA implementation, at least 220 measurements for every
nonce are required for reaching a success rate of 1. In scenarios where repeated
measurements of the same nonce are prohibited, iterating over the last 8 bits of
the nonce can be done to average the measurements. This leads to 256 traces
per fixed 120 bits that can be used to filter the noise.

Comparing the means of the two trace sets allows to distinguish between the
Hamming distances. The higher amount of traces required for reaching a success
rate of 1 indicates that the noise on real hardware is significantly larger than
the noise during previously performed simulations. For the sake of completeness
we have performed the simulations for t = 220 and larger noise levels. The
results show that for σnoise ≥ 3.6 the success rate starts to decrease for t =

221

220. Experiments on the real hardware reveal that for recovering the whole
initial state, approximately 220 · 128 = 28 160 measurements are required in
total. The applied measurement setup allows us to collect the required amount
of measurements for reaching a success rate of 1 within an hour. With some
improvements of the setup the measurement time could be reduced to a few
minutes, but this was not the goal of this work.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of traces for mean

S
R

Fig. 7. Evolution of the success rate (SR) for the attack on the FPGA with increasing
number of traces for calculating the mean.

5 Conclusion

In this work, we showed that a DPA attack on Keymill is feasible. In contrast to
the DPA attacks that are claimed to be thwarted by the specification of Keymill,
we do not make hypotheses on the actual values of Keymill’s key or internal
state. Instead, we first recover the internal differences of neighboring bits step by
step from side-channel measurements, and then take advantage of the resulting
entropy reduction to recover the actual values. Our attack violates the claim by
the designers that Keymill is inherently secure against side-channel attacks by
design. Indeed, we show that Keymill needs dedicated countermeasures against
DPA attacks exploiting internal differences.

Our attack requires the ability of an attacker to choose the nonces. Therefore,
guaranteeing that only random nonces can be used seems to be an efficient
countermeasure. Although this prevents a straightforward application of our
attack to recover all differences between state-bits, the recovery of just a fraction
of the differences of the first few bits still remains possible. Hence, it is part
of future work to evaluate if extensions of the presented attack concept are
applicable for random nonces.

222

Acknowledgments. This work has been supported in part by the Austrian
Science Fund (project P26494-N15) and by the Austrian Research Promotion
Agency (FFG) under grant number 845589 (SCALAS).

References

1. Burman, S., Mukhopadhyay, D., Veezhinathan, K.: LFSR based stream ciphers
are vulnerable to power attacks. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 384–392. Springer (2007)

2. Clavier, C., Coron, J.S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer (2000)

3. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F.: On the security of fresh
re-keying to counteract side-channel and fault attacks. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 233–244. Springer (2014)

4. Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.X.:
Towards sound fresh re-keying with hard (physical) learning problems. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 272–301. Springer
(2016)

5. Gammel, B.M., Göttfert, R., Kniffler, O.: Achterbahn-128/80. eSTREAM,
ECRYPT Stream Cipher Project (2006)

6. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252 (2006)

7. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO ’99. LNCS, vol. 1666, pp. 388–397. Springer (1999)

8. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.X.: Fresh re-
keying II: Securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer (2011)

9. Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh re-keying: Secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer
(2010)

10. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer (2008)

11. Pessl, P., Mangard, S.: Enhancing side-channel analysis of binary-field multiplica-
tion with bit reliability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp.
255–270. Springer (2016)

12. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer (2013)

13. Sakura-G – Side-Channel Evaluation Board. http://satoh.cs.uec.ac.jp/

SAKURA/hardware/SAKURA-G.html, accessed: 2016-11-28
14. Taha, M., Reyhani-Masoleh, A., Schaumont, P.: Keymill: Side-channel resilient key

generator. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, Springer (2016), (to
appear). eprint version: http://eprint.iacr.org/2016/710

15. Zadeh, A.A., Heys, H.M.: Simple power analysis applied to nonlinear feedback shift
registers. IET Information Security 8(3), 188–198 (2014)

223

Statistical Fault Attacks on Nonce-Based
Authenticated Encryption Schemes

Publication Data

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. “Statistical Fault Attacks on Nonce-Based Authenticated En-
cryption Schemes”. In: Advances in Cryptology – ASIACRYPT 2016. Ed. by
Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 369–395.
url: https://doi.org/10.1007/978-3-662-53887-6_14

The appended paper is an author-created extended version available at https:
//eprint.iacr.org/2016/616. This extended version has adapted text in Sections
2.1, and 4 and provides a new Appendix B.

Contributions

• Technical: Contributed to the concept of the attacks, the simulation of
the attacks, and the code for performing the key recovery. No contributions
to the practical execution/implementation of the attacks.

• Writing: Contributions to the writing of Sections 2.3, and 3. Minor
contributions to the writing of Section 1.

225

https://doi.org/10.1007/978-3-662-53887-6_14
https://eprint.iacr.org/2016/616
https://eprint.iacr.org/2016/616

Statistical Fault Attacks on Nonce-Based
Authenticated Encryption Schemes

Christoph Dobraunig1, Maria Eichlseder1, Thomas Korak1,
Victor Lomné2, and Florian Mendel1

1 Graz University of Technology, Graz, Austria
firstname.lastname@iaik.tugraz.at

2 ANSSI, Paris, France
victor.lomne@ssi.gouv.fr

Abstract. Since the first demonstration of fault attacks by Boneh et al.
on RSA, a multitude of fault attack techniques on various cryptosystems
have been proposed. Most of these techniques, like Differential Fault
Analysis, Safe Error Attacks, and Collision Fault Analysis, have the
requirement to process two inputs that are either identical or related,
in order to generate pairs of correct/faulty ciphertexts. However, when
targeting authenticated encryption schemes, this is in practice usually
precluded by the unique nonce required by most of these schemes.
In this work, we present the first practical fault attacks on several nonce-
based authenticated encryption modes for AES. This includes attacks
on the ISO/IEC standards GCM, CCM, EAX, and OCB, as well as
several second-round candidates of the ongoing CAESAR competition.
All attacks are based on the Statistical Fault Attacks by Fuhr et al.,
which use a biased fault model and just operate on collections of faulty
ciphertexts. Hereby, we put effort in reducing the assumptions made
regarding the capabilities of an attacker as much as possible. In the
attacks, we only assume that we are able to influence some byte (or a
larger structure) of the internal AES state before the last application of
MixColumns, so that the value of this byte is afterwards non-uniformly
distributed.
In order to show the practical relevance of Statistical Fault Attacks and
for evaluating our assumptions on the capabilities of an attacker, we
perform several fault-injection experiments targeting real hardware. For
instance, laser fault injections targeting an AES co-processor of a smart-
card microcontroller, which is used to implement modes like GCM or
CCM, show that 4 bytes (resp. all 16 bytes) of the last round key can be
revealed with a small number of faulty ciphertexts.

Keywords: fault attacks · authenticated encryption · CAESAR · Dif-
ferential Fault Attacks (DFA) · Statistical Fault Attacks (SFA)

1 Introduction

Fault attacks pose a serious threat for cryptographic implementations. For this
kind of attacks, the analyzed device is operated outside its defined operating

c© IACR 2016. This article is a minor revision of the version published by Springer-Verlag available
at http://dx.doi.org/10.1007/978-3-662-53887-6_14.

conditions, which can lead to erroneous outputs. By analyzing the erroneous
output data, secret information can be revealed. In the worst case, a single fault
can reveal the entire secret key of a block cipher like AES, which has been shown
to be feasible by many researchers in the last decade [7,33]. Popular techniques to
inject faults include modifications of the power supply [50] or the clock source [6]
by injecting glitches. Other methods, such as laser fault injection [45], have been
proven even more powerful, because they additionally allow a precise localization
of the fault injection.

While fault attacks on block ciphers and stream ciphers have received a
great deal of attention from the scientific community, authenticated ciphers have
been arguably less popular targets among researchers. At the same time, they
describe an important class of cryptographic algorithms with many applications
in information security. Authenticated encryption provides both confidentiality
and authentication of data to two parties communicating via an insecure channel.
This is essential for many applications such as SSL/TLS, IPSEC, SSH, or hard-
disk encryption. In most applications, there is not much value in keeping the
data secret without ensuring that it has not been intentionally or unintentionally
modified. For this reason, in practical applications, block ciphers like AES are
typically used mainly as a building block for an authenticated encryption scheme.

An authenticated encryption scheme is usually modeled as a function with
four inputs: a unique nonce N , associated data A, plaintext P , and secret key
K. It generates two outputs: the ciphertext C, and the authentication tag T :

E(K,N,A, P) = (C, T).

The corresponding decryption algorithm takes the secret key K, nonce N , au-
thenticated data A, ciphertext C, and tag T , and either outputs the plaintext
P if the verification tag is correct, or ⊥ if the verification of the tag failed:

D(K,N,A,C, T) ∈ {P,⊥}.

It is usually assumed (and typically essential for the security of the authenticated
encryption scheme) that nonces never repeat for encryptions E under the same
key K. We refer to such schemes as nonce-based authenticated encryption. While
some schemes claim a certain level of robustness even in misuse settings (such as
repeated nonces, or release of unverified plaintext), this does not mean that they
are intended to be intentionally misused in practical implementations: repeating
nonces always incurs a certain loss of security.

An interesting consequence of the unique nonce in the encryption proce-
dure is the implicitly provided protection against several classes of fault at-
tacks [11,12,49]. In particular, Differential Fault Analysis (DFA) [11] is rendered
almost impossible, since an attacker is unable to observe both the correct and
the faulty output for the same input, if the attacker cannot fix the value of the
nonce. Moreover, in contrast to nonce-based (but unauthenticated) encryption
schemes (such as CBC, CTR, etc.), where the decryption procedure (with a fixed
nonce) is still susceptible to DFA, this is not the case for nonce-based authen-
ticated encryption schemes that only return the plaintext if the tag is correct.

227

For this reason, all published fault attacks on authenticated encryption schemes
so far are in settings where either the nonce is repeated, or unverified plaintext
is released [42,43].

These observations might lead to the impression that nonce-based authen-
ticated encryption schemes are not susceptible to fault attacks and thus, no
dedicated fault attack countermeasures might be necessary to protect the im-
plemented scheme against these attacks. However, in this work, we show that
this assumption is not true, and present the first fault attacks on authenticated
encryption schemes that are not performed in some kind of misuse scenario. We
show that countermeasures against fault attacks are essential for implementa-
tions of authenticated encryption schemes operating in hostile environments.

Our Contribution. We present fault attacks for a wide range of authenticated
encryption schemes. Our attacks do not require any misuse scenario, such as
nonce reuse or release of unverified plaintext. We focus our discussion on various
AES-based schemes, including the ISO/IEC standards CCM [48], GCM [32],
EAX [9], and OCB [40], as well as several second-round CAESAR [46] candidates.
However, our analysis is applicable to a broader range of constructions and is
not limited to AES-based schemes.

All our attacks are based on an enhancement of the Statistical Fault Attack
(SFA) presented by Fuhr et al. [18], which requires only very limited assumptions
about the attacker’s capabilities: the ability to induce a fault that leads to a
biased (non-uniform) distribution in certain bytes. In case of AES, we assume
that the attacker is able to influence some byte (or a larger structure) of the
internal state of AES before the last application of MixColumns, so that the
value of this byte is non-uniformly distributed. Particularly, we do not have to
rely on the exact position of a fault, the number of faults injected during a single
encryption, or even the knowledge that a certain fault has happened at all in an
individual encryption. All we need to do is to collect ciphertexts and estimate
the distribution of a single byte for various key guesses.

In order to evaluate the assumptions on the capabilities of an attacker, we also
perform fault-injection experiments targeting three different hardware platforms.
In the first setting, clock glitch attacks on a GCM software implementation
executed on an 8-bit microcontroller are performed. In addition, we evaluate
implementations using AES co-processors on a smartcard chip and a general-
purpose microcontroller by means of laser fault injection and clock tampering,
respectively. In all three settings, 4 bytes of the last round key of AES could be
successfully recovered with 30, 16, and 1 200 faulty ciphertexts, respectively. In
all practical scenarios, the attack has to be repeated three more times to recover
the full last round key (in case of AES-128).

Outline. The remainder of the paper is organized as follows. In Sect. 2, we
give some background on fault attacks in general, recapitulate the work of
Fuhr et al. [18] on SFA, and introduce our attack model. In Sect. 3, we show how

228

SFA can be applied to various AES-based authenticated encryption schemes. Fi-
nally, we present practical experiments and verify the practicality of SFA on
three different hardware platforms in Sect. 4.

2 Background

In this section, we revisit the Statistical Fault Attacks on AES underlying our
attacks. We start with a general overview of different types of fault attacks, and
briefly describe the biased fault model in the attack of Fuhr et al. [18]. Finally,
we discuss the modified, much more general biased fault model we use in this
paper, and how to identify the best key candidates.

2.1 Fault Attacks

The fault attacks of Boneh et al. [13] demonstrate the vulnerability of unpro-
tected implementations of asymmetric cryptographic primitives like RSA. Later,
also attacks on Elliptic Curve Cryptography [10] have been shown. Those attacks
point out that faults induced during the execution of an cryptographic primitive
can be used to extract the secret of a device. In this work, we will use either
clock glitches, or a laser to induce the faults, however, numerous other ways exist
to perform fault attacks like electro-magnetic pulses, or variation in the supply
voltage [7, 31,45].

Biham and Shamir [11] introduced several fault attacks on symmetric cryp-
tographic primitives, amongst others Differential Fault Analysis (DFA). DFA
works by collecting pairs of faulty and fault-free ciphertexts, where the fault has
been induced in the last few rounds of the computation and an example of a
DFA has been shown on DES [11]. Here, knowledge about the difference induced
combined with the knowledge about the differences of the cipheretexts can be
used to retrieve information on the secret key. DFA is not limited to DES or
Feistel Structures and can be applied to other schemes like AES [37].

In contrast to DFA, Collision Fault Analysis (CFA) [12] exploits faults in-
duced in the first rounds of a cryptographic primitive. For CFA, an attacker
encrypts related plaintexts and uses a fault in an attempt to cancel the dif-
ferences caused by the plaintexts. In this attack, the knowledge of a successful
collision can then be used to get information about the secret key. In a Safe Error
Attack (SEA) [49], the knowledge whether a fault has an effect on the outcome
of a computation or not is exploited.

As we have seen, most fault attacks require the ability of an attacker to
perform an encryption twice with the same inputs, or even to be able to choose
the relation of inputs. Conditions that are usually hard to fulfill in nonce-based
authenticated encryption schemes. However, this is not the case for the Statistical
Fault Attack (SFA) [18] that works with random unknown plaintexts. A short
introduction to SFA is provided in the next section.

229

2.2 Statistical Fault Attacks

In 2013, Fuhr et al. proposed a new type of fault attack, called Statistical Fault
Attack (SFA) [18]. In contrast to most previous attacks, the adversary only
requires a collection of faulty ciphertexts encrypted with the same key. Hence,
SFA works with random and unknown plaintexts.

Fault Model. Unlike most traditional fault attacks, SFA requires a slightly
different fault model. Assuming that intermediate variables get uniformly dis-
tributed towards the last rounds for secure cryptographic primitives like AES,
an attacker has to be able to induce faults which change the distribution of some
intermediate values to be non-uniform. In particular, Fuhr et al. considered the
following three fault models:

(a) the stuck-at-0 fault model with probability 1,
(b) the stuck-at-0 fault model with probability 1/2,
(c) the stuck-at model to an unknown and random value e with probability 1.

Using these non-uniform fault models, Fuhr et al. were able to show several
attacks on AES based on simulations. Their attacks target the last 4 rounds
with a small number of faulty ciphertexts and practical complexity.

Description of the AES. AES is a byte-oriented block cipher following the
wide-trail design strategy. It operates on a state of 4 × 4 bytes and updates
it in 10, 12, or 14 rounds, depending on the key size of 128, 192, or 256 bits.
In each round (except the last one with no MixColumns), the following four
transformations are applied.

SubBytes (SB): This step is the only non-linear transformation of the cipher. It
is a permutation consisting of an S-box S applied to each byte of the state.

ShiftRows (SR): This step is a byte transposition that cyclically shifts each row
of the state by different offsets. Row j is shifted right by j byte positions.

MixColumns (MC): This step is a permutation operating on the state column
by column. To be more precise, it is a left-multiplication by a 4× 4 circular
MDS matrix M over F28 .

AddRoundKey (AK): In this transformation, the state is modified by combining
it with a round key with a bitwise xor operation.

Attack Procedure and Complexity. While Fuhr et al. proposed several at-
tack variants, we will focus only on the attack that targets the 9th round of AES.
When changing the distribution of one byte of AES before the last MixColumns,
they showed that with these fault models, 4 bytes of the last round key could be
recovered with high probability using the Squared Euclidean Imbalance (SEI)
distinguisher with only 6, 14, and 80 faulty ciphertexts, respectively. We briefly
recount the attack below, but refer to [18] for a more detailed description.

230

If we denote our target state before the last MixColumns in the encryption to
the ith ciphertext by S̃i9, we can express one byte of this state as a function of
the ciphertext C̃i, 4 bytes of the last round key K10, and one byte of MC−1(K9),
as follows. Our target state is

S̃i9 = MC−1(SB−1 ◦ SR−1(C̃i ⊕K10)⊕K9)

= MC−1(SB−1 ◦ SR−1(C̃i ⊕K10))⊕MC−1(K9).

Each byte of S̃i9 can therefore be deduced using one hypothesis on 4 bytes of
K10 and on one particular byte of MC−1(K9). As shown by Fuhr et al., the xor
with MC−1(K9) does not modify the distance of the biased distribution from
uniform. Hence, it can be omitted in the attack. In other words, this allows to
mount the attack on a modified S̃i9

′:

S̃i9
′ = MC−1 ◦ SB−1 ◦ SR−1(C̃i ⊕K10).

This allows us to recover 4 bytes of the last round key K10 by making 232

hypotheses on their value and predicting one byte of S̃i9
′. By repeating the attack

4 times, one can recover the complete last round key K10.

2.3 A Generalized Fault Model

In this work, we want to go beyond specific fault models like in Sect. 2.2. The
only assumption we make is that the attacker is able to influence some byte
(or a larger structure) of the internal state of AES before the last MixColumns
such that this value becomes clearly non-uniformly distributed. We make no
assumptions about the details of this non-uniformity, nor do we require that the
attacker knows the new distribution. To exploit this type of fault, the attacker
will collect faulty (biased) ciphertexts, compute backwards to the target byte
for different key guesses, and try to reject wrong key guesses that would result
in an approximately uniform measured distribution of the biased target byte.
In the remainder of this section, we discuss how to identify the non-uniform
distribution for the wrong key guesses.

We do not consider the distribution on bit-level, but for example on byte-
level. Exploiting such non-uniform distributions of multi-bit values (more specif-
ically, distributions of several sums of single bits) has already been investigated
in the context of multidimensional linear cryptanalysis [21]. However, the distri-
butions in this context are typically very close to uniform, unlike the distribu-
tions we expect in the case of SFA. Unfortunately, as noted by Samajder and
Sarkar [44], the state-of-the-art framework for multidimensional linear cryptanal-
ysis is not suitable for handling distributions which are significantly different
from uniform. On the positive side, testing the closeness of discrete distribu-
tions [41] is a well-established field of research. Here, the central challenge is
to determine whether two discrete distributions are the same (or close to each
other) with the help of as few samples as possible. In our case, we want to
determine whether our given samples are distributed uniformly or not.

231

The algorithms needing the fewest samples to perform this task are based
on an idea of Goldreich and Ron [19]. Their algorithm makes use of collisions
between sampled values to test for uniformity, since the expected number of
collisions is lowest for uniformly distributed samples. Hence, the further a dis-
tribution deviates from the uniform distribution, the more collisions and multi-
collisions we expect.

Of course, it is possible to directly base the testing of the key hypothesis
on uniformity testing. For instance, Batu et al. [8] present a test which requires
O
(
ε−4 ·

√
2s · log(1/γ)

)
samples for distributions over 2s-element sets. Their test

accepts with probability 1− γ if the samples come from a distribution with `1-
norm distance smaller than ε/

√
3 · 2s to the uniform distribution. It rejects with

probability 1 − γ if the samples come from a distribution which is more than ε
away from the uniform distribution.

However, for our use-case, an approach that ranks keys according to some
metric, like the number of collisions, is more suitable than a binary decision
whether the measured distribution is uniform or not. Significantly more samples
are needed to clearly separate the distribution for the right key hypothesis from
the wrong ones to enforce a binary decision, whereas for the ranking, it is usually
sufficient if the right key is ranked somewhere among the top candidates. Since
the uniformity tests of Batu et al. [8] and Paninski [36] are actually based on
counting collisions, they also provide us with a starting point for a ranking
algorithm. This algorithm ranks the key hypothesis according to the number of
collisions, and gives multi-collisions a higher weight. In our experiments, this
ranking algorithm performs as good as ranking based on the SEI.

Interestingly, the key ranking mechanism based on the SEI used in [18, 38]
can also be linked to counting collisions. Let s be the bitsize of our biased
intermediate value Si = f−1(K̂, C̃i), computed from the faulty ciphertext C̃i
under the key hypothesis K̂. Assuming that we have N faulty ciphertexts, the
SEI d is calculated as

d(K̂) =
2s−1∑
δ=0

(
#{i | f−1(K̂, C̃i) = δ}

N
− 1

2s

)2

.

This distinguisher assigns high values to key hypotheses K̂ that lead to distri-
butions of intermediate values Si with many collisions. For instance, consider a
sample size of N = 2s samples. Then, the SEI is essentially counting collisions,
since only events that occur exactly once do not increase d. Moreover, since
the deviation from uniform is squared, a greater deviation, or in our sense a
multi-collision, contributes more to d.

To sum up, it turned out that the SEI cannot be outperformed in practice by
a new ranking algorithm based on counting collisions, since the SEI is actually
doing that. Hence, we decided to stick to the more common SEI to measure if
the distribution of one byte value becomes clearly non-uniformly distributed. So
for AES, the 4-byte key guesses of the last round key are ranked according to
the resulting SEI of one byte before the last MixColums when decrypting faulty
ciphertexts for one round. To be able to observe non-uniformness and to evaluate

232

the SEI, we require the input to the block cipher to be different for each fault
and the block cipher output to be known.

3 Statistical Fault Attacks on Authenticated Encryption

In this section, we evaluate the applicability of the Statistical Fault Attack to
several authenticated encryption modes for AES. This includes the widely-used
ISO/IEC-standardized modes like CCM [48], EAX [9], GCM [32] and OCB [40],
as well as new authenticated encryption modes proposed in the CAESAR ini-
tiative [46]. For evaluating the applicability of the fault attacks to these authen-
ticated encryption schemes, we only need very limited assumptions. As already
stated in Sect. 2, we assume that the attacker is able to influence some byte
(or a larger structure) of the internal state of AES before the last MixColumns
operation in a way that this value becomes clearly non-uniformly distributed.

We classify the investigated authenticated encryption modes into three cat-
egories, as illustrated in Fig. 1:

rand

Ek

C

(a) Basic Construction

rand

∆k ⊕

Ek

∆k ⊕

C

(b) XEX-like Construction

rand

Et
k

C

(c) Tweakable Block Cipher

Fig. 1. Classification of AES-based authenticated encryption schemes.

Basic Construction. The schemes in this category allow to directly observe
the output of the block cipher. This includes schemes based on classical
encryption schemes such as CTR [15], CBC [17], CFB [17], etc., but also
schemes based on the XE construction [39], which masks the input of the
block cipher using secret masks ∆k. More generally, we assume that the input
to the block cipher is a secret random value, but the output is observable to
the attacker.

XEX-like Construction. This construction is similar to XE, but unlike XE,
both the input and the output of the block cipher are masked using se-
cret, nonce-dependent masks ∆k. Constructions following the XEX con-
struction [39] include for instance IAPM [28], OCB [40], and several of the
CAESAR candidates.

Tweakable Block Cipher. The third category covers schemes that use a de-
dicated tweakable block cipher, which depends on a (typically nonce-depend-
ent) tweak in addition to the secret key. Since the focus of this work is on

233

AES-based modes, we will restrict ourselves to constructions using the AES
round function and following the TWEAKEY framework [27], such as for
instance the CAESAR candidates KIASU [26] and Deoxys [24].

In the remainder of this section, we will discuss the applicability of Statistical
Fault Attacks to schemes of these three categories in turn.

3.1 Application to the Basic Construction

In this construction, the output of the block cipher is directly known to the
attacker, or can trivially be recovered by, say, xoring observable values with
public values or constants. It is easy to see that in this case, the Statistical Fault
Attack described in Sect. 2 can be applied in a straight-forward way to recover
the secret key k. As an example, we discuss the application of Statistical Fault
Attacks on AES in counter (CTR) modes as used in GCM, CCM and EAX (all
standardized by ISO/IEC).

Statistical Fault Attack on CCM, EAX and GCM. As a representative
example for the three modes, we will discuss the attack on CCM, which is shown
in Fig. 2. As its name implies, the CTR-with-CBC-MAC mode (CCM) can be
split into an encryption part using AES in counter mode to encrypt the plaintext
P and an authentication part using CBC-MAC to authenticate the nonce N ,
associated data A, and plaintext P , which generates the tag T . For clarity, we
have substituted the first part of the CBC-MAC, where the associated data is
processed, with its outcome V in Fig. 2. Since the fault attack is solely performed
on the encryption part, the following observations also hold for EAX and GCM
that both use AES in CTR mode for encryption.

N‖CTR0 � CTR1 · · · � CTRd

1 1
Ek Ek Ek

S P1 ⊕ · · · Pd ⊕

C1 · · · Cd S

V ⊕ · · · ⊕ ⊕

Ek Ek
trunc

T

Fig. 2. The counter with CBC-MAC mode.

234

For the sake of simplicity, we restrict our fault attack to the encryption Ek
of the first plaintext block (marked by the dashed rectangle in Fig. 2). Let us
recall the conditions of Sect. 2 that are necessary for the Statistical Fault Attack
to work:

1. The inputs of the block cipher need to be different for each fault.
2. The block cipher output needs to be known.

Condition 1 is always fulfilled, since it is required that the nonce N changes
for each encryption and thus, the input to Ek changes as well. Condition 2
is fulfilled assuming a known plaintext attack, where the plaintext block P1 is
known to the attacker. Then, one can compute the keystream part for encrypting
this plaintext block by xoring it with C1. The resulting keystream is the output
of the block cipher Ek. To sum up, we are able to observe outputs of the block
cipher Ek for various inputs. Thus, we have the same preconditions as for the
fault attack on plain AES described in Sect. 2. Hence, the attack can be applied
to CCM (and any other scheme based on CTR mode) in a straight-forward
way. We want to stress that the attacker does not require to know the input of
the block cipher, it is just necessary that it changes. Therefore, the attack also
applies to modes where the value of the counter is unknown, such as EAX.

Statistical Fault Attack on OCB. Although ISO/IEC-standard OCB is
based on the XEX construction, we show that it is also vulnerable to the attack
on the basic construction. The reason for this is that if the last plaintext block
is incomplete, it is instead processed using the XE construction, as shown in
Fig. 3. Therefore, the knowledge of this incomplete last plaintext and ciphertext
block allows an attacker to compute the output of the block cipher Ek and thus,
the Statistical Fault Attack is again applicable.

P1

∆1 ⊕

Ek

∆1 ⊕

C1

P2

∆2 ⊕

Ek

∆2 ⊕

C2

Pd−1

∆d−1 ⊕

Ek

∆d−1 ⊕

Cd−1

. . .

. . .

. . .

Pd‖0∗

∆∗

Ek

⊕

Cd

∑
Mj

∆$ ⊕

Ek

V ⊕

T

Fig. 3. Encryption in OCB.

Application to Other Modes. Besides CCM, EAX, GCM, and OCB, the fault
attack discussed in this section also applies to several other authenticated en-
cryption modes. For instance, to the CAESAR candidates Cloc [22] and Silc [23],

235

which are based on cipher-feed-back mode (CFB), where the ciphertext is the
xor of the output of a block cipher Ek and the plaintext blocks. Another ex-
ample is AES-OTR [34], which uses a balanced two-round Feistel network for
encryption. The round function of this network is AES in an XE mode. Since
the balanced Feistel network has only two rounds, knowledge of the plaintext
and ciphertext implies knowledge of the block cipher output. Thus, again, the
Statistical Fault Attack is directly applicable.

3.2 Application to XEX-like Constructions

In this construction, the output of the block cipher is masked with a secret value
∆k, which prevents a straightforward application of the basic attack. However,
depending on how ∆k is computed, the Statistical Fault Attack may nevertheless
be applicable. In the simplest case, ∆k is not nonce-dependent. This allows to
repeatedly observe ciphertexts masked with a secret, but constant value ∆k.
We demonstrate how to exploit this in an attack on the CAESAR candidate
AES-COPA [4].

Statistical Fault Attack on AES-COPA. AES-COPA uses an XEX-like
construction for encrypting the plaintext, which is shown in Fig. 4. The input
V of the plaintext processing is the result of a PMAC-like processing of the
associated data A and the nonce N . Thus, V will change for different nonce
values. Each processed ciphertext block requires two invocations of the block
cipher Ek. AES-COPA masks both the input of the block cipher processing the
plaintext blocks Pj , and the output of the block cipher that generate ciphertext
blocks Cj . The masks are based on a secret value L = Ek(0). We focus our
attack on the block cipher call that generates C1, as marked in Fig. 4.

P1 P2 Pd

∑
Pj

3L ⊕ 2 · 3L ⊕ 2d−13L ⊕ 2d−132L ⊕

Ek Ek Ek Ek

V ⊕ ⊕ · · · ⊕ ⊕

L
Ek Ek Ek Ek

2L ⊕ 22L ⊕ 2dL ⊕ 2d7L ⊕

C1 C2 Cd T

Fig. 4. Plaintext processing of AES-COPA, L = Ek(0).

236

So far, only one of our two prerequisites for the SFA from Sect. 2 is fulfilled.
We can vary the input of the block cipher calls by changing, for example, the
nonce, associated data, or plaintext. However, the output of the block cipher
is unknown, since it is masked with the secret value ∆k = 2 · Ek(0) to get C1.
To overcome this obstacle and since ∆k solely depends on the secret key k, we
consider ∆k as a part of the key schedule to compute the last round key. Thus,
instead of the last round key K10 of AES, we get K ′10 := K10 ⊕ (2 · Ek(0)) as
the last round key.

Hence, instead of recovering the last round key K10 of AES as in the attacks
before, we now can recover K ′10 by using SFA as described in Sect. 2. For re-
covering K ′10, the complexity and the needed numbers of faults are the same as
for the attack on AES itself. However, the knowledge of K ′10 does not directly
lead to a key recovery attack of the master key k. Therefore, we need to perform
the Statistical Fault Attack a second time. One option is to target again the
first plaintext block and use our knowledge of K ′10 to now target the AES round
key K9. Alternatively, we repeat the attack for the second plaintext block to
recover K10⊕ (4 ·Ek(0)) and thus get K10 by solving the resulting linear system.
In both cases, the master key can then easily be recovered from K9 and K10,
respectively.

Application to Other Modes. Besides COPA, other schemes that use a
nonce-independent ∆k and allow the Statistical Fault Attack include ELmD [14]
and Shell [47]. In contrast, some schemes, such as IAPM, OCB, or some CAESAR
candidates, also include the nonce in the computation of ∆k. All these schemes
have in common that ∆k changes unpredictably for each block cipher call, which
prevents a straight-forward application of Statistical Fault Attacks.

Instead of relying on misuse settings like repeated nonces, we will have a
closer look at how these schemes typically compute ∆k. In many cases, ∆k

can be decomposed into two values: a known, nonce-dependent part δN , and a
secret, key-dependent part δk, which are then for example combined with a linear
function to produce ∆k. In this case, we can adapt our attack as follows, similar
to the COPA case. First, we recover the modified last round key K ′10 = K10⊕δk.
Depending on the key schedule and the function δk, this may already be sufficient
to recover the master key (e.g., if δk and the key schedule are linear). Otherwise,
we repeat the attack a second time to the round before to recover K9 as described
before.

3.3 Application to Modes Based on Tweakable Block Ciphers

In this construction, the authenticated encryption scheme uses a tweakable block
cipher Etk instead of a regular block cipher as basic building block. In this case,
the Statistical Fault Attack is not generally applicable. However, for some tweak-
able block ciphers such as the ones presented within the TWEAKEY frame-
work [27], we can adapt our attack. In particular, this is possible if the last
subkeys of the tweakable block cipher can be described by the composition of

237

two values, δt ⊕ δk. We illustrate the working principle of the attack for the
CAESAR candidate Deoxys [24], but the same attack is also applicable to KI-
ASU [26], where the tweak t is only xored to each round-key.

Statistical Fault Attack on Deoxys. Deoxys offers two modes of operation,
both using two variants of the underlying tweakable block cipher Deoxys-BC.
We focus on Deoxys6=-128-128, which uses Deoxys-BC-256 as underlying tweak-
able block cipher. As shown in Fig. 5, Deoxys6= encrypts the individual plaintext
blocks Pj in an ΘCB3-like [30] way. This ensures both the variation of the tweak-
able block cipher inputs, and knowledge of the outputs. However, since the tweak
is partly defined by the nonce, we have to determine the influence of this nonce
on the last round key that we want to recover using SFA. Thus, we have to have
a closer look at the definition of the tweakable block cipher Deoxys-BC-256.

P1 P2 Pd

∑
Pj

E0,N,0
k E0,N,1

k
· · · E0,N,d−1

k E1,N,d−1
k

⊕ V

C1 C2 Cd T

Fig. 5. Plaintext processing for Deoxys 6=.

Fig. 6 shows how Deoxys-BC-256 uses the round function f of the AES, but
computes different round keys Ki based on the master key k and tweak t. Here,
Ki is the xor sum of three values: a key-dependent round key Kk

i , a tweak-
dependent round tweak Kt

i , and a round constant ci. The values are updated
using a simple byte permutation h. For instance, Kk

0 = k, Kt
0 = t, Kk

1 = 2h(k),
Kt

1 = h(t), Kk
r = 2h(2h(. . . 2h(k) . . .)), and Kt

r = h(h(. . . h(t) . . .)).

Kk
0 Kk

1 Kk
13 Kk

14
k h 2 h · · · h 2

t h h · · · h

Kt
0 ⊕ c0 Kt

1 ⊕ c1 Kt
13 ⊕ c13 Kt

14 ⊕ c14

K0 K1 K13 K14

P ⊕ f ⊕ f · · · ⊕ f ⊕ C

Fig. 6. Block cipher Deoxys-BC-256.

238

Since the value of the tweak used for encryption is publicly known, the varying
part Kt

i of the round keys Ki can be easily calculated. The unknown parts Kk
i

of the round key are constant for multiple calls of the block cipher under the
same key k. Hence, the last round key Kk

14 can be recovered with the SFA on
AES described in Sect. 2.

3.4 Summary and Discussion of Results

We demonstrated in the previous sections that several authenticated encryption
modes for AES are susceptible to Statistical Fault Attacks. A summary of the
results is given in Table 1. However, Statistical Fault Attacks are applicable to a
broader range of authenticated encryption schemes, and are not limited to AES-
based modes. Natural targets for the attack include, for instance, the CAESAR
candidates Joltik [25] and Scream [20], which also follow the TWEAKEY frame-
work [27], or Prøst [29], which applies the modes of COPA [5] and OTR [35] to
an Even-Mansour block cipher.

Moreover, the attack is not limited to block cipher based constructions. For
instance, the APE construction [3] uses a secret key in the finalization for tag
generation, making it a natural target for the attack. Also the sponge-based
CAESAR candidates Ascon [16] and PRIMATEs [2] both employ a keyed final-
ization, with similar effects. However, the fact that large parts of the internal
state are truncated to generate the authentication tag might complicate the
attack.

Table 1. Statistical fault attacks on AES-based authenticated encryption modes in
the nonce-respecting setting.

Primitive Classification Comments Reference

CCM basic CTR 3.1
GCM basic CTR 3.1
EAX basic CTR 3.1
OCB basic XE (incomplete blocks) 3.1
Cloc/Silc∗ basic CFB 3.1
OTR∗ basic XE 3.1

COPA∗ XEX 3.2
ELmD∗ XEX 3.2
SHELL∗ XEX 3.2

KIASU∗ TBC TWEAKEY 3.3
Deoxys∗ TBC TWEAKEY 3.3
∗ CAESAR candidates

239

4 Practical Verification/Implementation of the Attacks

In order to demonstrate the practical relevance of Statistical Fault Attacks and
to validate the assumptions from previous sections, we performed three fault-
injection experiments targeting real hardware.

An AES-GCM implementation executed on an off-the-shelf microcontroller
served as target for the first experiment. In this context we used the ASM AES
version from [1] to realize the block cipher. Due to the lack of embedded plat-
forms implementing GCM or CCM completely in hardware, we put the focus
of the following analysis on hardware AES co-processors available on a smart-
card microcontroller and on a general-purpose microcontroller, respectively. The
remaining parts for realizing the authenticated encryption modes are then im-
plemented in software.

In all settings, the fault injections aim to induce a bias on at least one byte
of the AES state before the last MixColumns transformation, and allow to reveal
32 bits of the last AES round key. For full key recovery, the attack has to be
repeated three more times. The following list provides an overview of the fault-
injection methods and the attack results for the three settings:

1. Clock tampering has been used to disturb the execution of the AES software
implementation running on an ATxmega 256A3 general-purpose microcon-
troller. This setting allowed to reveal 4 bytes of the last round key with less
than 30 faulted ciphertexts.

2. Laser fault injections on an AES co-processor on a smartcard microcon-
troller. Our experiments show that less than 16 faulty ciphertexts are suffi-
cient to reveal 4 bytes of the last round key.

3. Clock tampering on a hardware AES co-processor implemented on a general-
purpose microcontroller. In this setting, we need approximately 1 200 faulted
ciphertexts for recovering 4 bytes of the last round key.

For all attacks, 4 bytes of the last round key can be recovered out of the
faulted ciphertexts in less than one hour using an Intel Core i7 3770K. In the
following, we give a detailed description and summary of the practical fault-
injection attacks. For the extended version of the paper, we have performed ad-
ditional experiments targeting the AES co-processor of an 8-bit microcontroller
using a single clock glitch (Fig. 12) and 20 consecutive clock glitches (Fig. 13)
which are given in Appendix B.

4.1 AES Software Implementation on an 8-bit Microcontroller

In the following setting, we used clock glitches to provoke faults during an AES
computation implemented in software on an 8-bit microcontroller. In particular,
we used the ASM AES version from [1] for realizing the GCM AE mode.

For the clock-glitch experiments, a nominal clock frequency of 24 MHz (Tclk =
41.7 ns) was used. According to [1], one 128-bit encryption requires 2 555 clock
cycles. For simplicity, we used one general-purpose I/O pin of the microcontroller

240

for indicating the start of the AES encryption. This trigger pin together with
the knowledge of the length of the AES encryption procedure allows to find
the correct time interval for inserting the clock glitch. Next to that, our results
show that faults in consecutive clock cycles also lead to successful key recovery.
As a consequence, this behavior allows to relax the precision prerequisite of the
trigger information.

With the found parameters, we collected two sets, each containing 80 faulty
ciphertexts. For the first set, a single clock glitch was inserted. For the second
set, clock glitches in 50 consecutive clock cycles were inserted. Next, we per-
formed SFA attacks using an increasing number of faulty ciphertexts on both
sets individually. The results containing the set size N , the SEI value for the
correct subkey (SEIc), and the maximum SEI value of the wrong subkey guesses
(SEIw) were stored in two separate lists (one list for each set) in the format
[N, SEIc,max(SEIw)]. For this attack scenario, we started with N = 4 and in-
creased N in every iteration by 4.

Fig. 7 displays the evolution of the SEI values for increasing number of ci-
phertexts in the single clock glitch setting. Values corresponding to the correct
subkey are plotted in red, the maximum SEI values of the wrong subkey guesses
are plotted in blue. With 30 faulty ciphertexts, SEIc exceeds max(SEIw), which
allows to reveal the correct subkey value.

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 7. SEI values for correct key (SEIc) plotted against best SEI for a wrong key
(max(SEIw)) for increasing number of faulty encryptions. Setup: AES software imple-
mentation, single clock glitch.

Fig. 8 displays the evolution of the SEI values for an increasing number of
ciphertexts for the setting with 50 consecutive clock glitches. In this setting, 24
ciphertexts are sufficient for SEIc to exceed max(SEIw), which allows to reveal
the correct subkey value.

241

Results of the fault attacks targeting the AES software implementations using
clock glitches show that with 30 faulty ciphertexts, it is possible to reveal the
32-bit subkey if a single clock glitch is inserted. Furthermore, if the clock glitch
is inserted in 50 consecutive clock cycles, approximately 25 faulty ciphertexts
are sufficient for subkey recovery. We did not further investigate the approach
of inserting the clock glitch in consecutive clock cycles because this is out of
scope of the current work. Nevertheless, by carefully trimming the fault injection
parameters, the number of faulty ciphertexts for successful subkey recovery could
probably be further decreased.

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 8. Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES software implementation, multiple clock glitches.

4.2 AES Hardware Co-Processor of a Smartcard Microcontroller

In this experiment, we used a laser fault injection system to induce faults during
encryptions of an AES Hardware co-processor of a smartcard microcontroller.
This co-processor can easily be used as building block for realizing authenticated
encryption modes like GCM or CCM on the smartcard.

The laser fault injection system consists of an infrared laser diode module
and a microscope allowing to focus the laser spot depending on the microscope
objective used. Here an objective with a 10× magnification is used. The whole
system is mounted on a motorized X-Y-Z stage.

As the smartcard microcontroller runs its own operating system, the only
signal available for triggering the laser injection system is the sending of the
encryption command through APDU command. Therefore, a temporal delay
is added to postpone the laser injection during the AES encryption thanks to
a remotely controllable pulse generator. Furthermore, as the smartcard micro-
controller runs on its own internal clock network, an inherent temporal jitter

242

is present due to the asynchronism between the laser injection system and the
smartcard microcontroller clock network. These experimental conditions are very
close to the ones present in real world scenarios.

By applying a spatial fault injection cartography, we have been able to find
a spatial position where only one byte of the AES state is faulted. Furthermore,
by trying different delays, we found a spatio-temporal setting where only 4 bytes
of the ciphertext were faulted with a high reliability. By studying the indices of
the faulted ciphertext bytes, we concluded that we successfully induced a fault
on one byte of the AES state just before the last MixColumns. The fact that the
hardware AES module can also be used outside of the context of authenticated
encryption, i.e., for encrypting single plaintext blocks, simplified this profiling.
However, if the stand-alone usage of the AES co-processor is not possible on the
attacked platform, the search for the right fault injection parameters becomes
more complicated, but is still feasible.

With the found parameters, we collected again 80 faulty ciphertexts. With
the collected faulty ciphertexts, the same evaluation as in the previous section
was conducted. We started again with an initial attack set size N = 4 and
increased the size of the attack set by 4 in every iteration. The evolution of the
SEI values with increasing set size is depicted in Fig. 9. Values corresponding
to the correct subkey are plotted in red, the maximum SEI values of the wrong
subkey guesses are plotted in blue.

As depicted on Fig. 9, SEIc already exceeds max(SEIw) with only N = 16
ciphertexts. Therefore, this number of ciphertexts allows to retrieve 4 bytes of
the correct last round key. This result validates the practicability of the fault
model and even shows that laser-based fault injection systems are well suitable
for this kind of attacks.

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 9. Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES hardware co-processor of a smartcard microcontroller, laser.

243

4.3 AES Co-Processor on a General-Purpose Microcontroller

In this setting, we use clock glitches to inject faults during the encryption pro-
cedure of an AES co-processor integrated on a general-purpose microcontroller.
This co-processor can on the one hand be used as stand-alone block cipher to
encrypt plaintext blocks, on the other hand it can be used in the context of AE
for realizing a mode of operation like GCM or CCM. The co-processor in stand-
alone mode allows profiling the hardware in order to find suitable fault-injection
parameters. The target of the fault injection is the output of the byte substi-
tution (SubBytes) in the 9th AES round. The AES co-processor implements the
SubBytes function with pure combinational logic. Since one column of the state
is processed in a single clock cycle, this allows to create faults in 4 bytes of the
state with a single clock glitch.

We define with Tglitch the time interval between two subsequent positive clock
edges in case of a clock glitch. This value is smaller compared to the nominal
clock period Tclk, as illustrated in Fig. 10. If Tglitch is smaller than the path
delay of the combinational SubBytes block, the output value of this block has
not settled to its correct, stable value. As a result, a wrong value is sampled by
the registers at the output of the block, which leads to faults in the ciphertext.

clk Tglitch

Tclk

Fig. 10. Clock signal with intentionally inserted additional positive clock edge.

For the clock glitch experiments, we used a nominal clock frequency of
10 MHz (Tclk = 100 ns). Preliminary fault experiments allowed to find the cor-
rect clock cycle (i.e., the delay between the start of the encryption and the
targeted instruction) to disturb the SubBytes operation in the 9th round before
the MixColumns step. With Tglitch = 10.2 ns, we achieved a fault probability of
99.5 %.

With these parameters, we executed the AES encryption to receive 2 000
faulty ciphertexts. The increased number of ciphertexts was required because
preliminary experiments revealed that the bias introduced with the clock glitch
was significantly smaller compared to the bias introduced by the laser attack.
With the collected faulty ciphertexts, the same evaluation as in the previous
section was conducted. Due to a smaller bias, we started with an initial attack set
size N = 32 and increased the size of the attack set by 32 in every iteration. The
evolution of the SEI values with increasing set size is depicted in Fig. 11. Values
corresponding to the correct subkey are again plotted in red, the maximum SEI
values of the wrong subkey guesses are plotted in blue.

As depicted on Fig. 11, starting at 1 200 ciphertexts, SEIc exceeds max(SEIw).
This allows to reveal the correct subkey in an attack setting. Compared to the

244

results presented in the previous section, the number of required ciphertexts is
nearly 100 times higher, but the number is still practical and this amount of
ciphertexts can be collected within minutes. However, the effort for performing
clock-glitch attacks compared to laser fault attacks (e.g., preparing the fault-
injection environment, finding good fault-injection parameters) is significantly
smaller, which has to be taken into account.

600 800 1 000 1 200 1 400 1 600 1 800

2−10

2−9

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 11. Evolution of the SEI values with increasing number of faulty encryptions.
Setup: AES co-processor on a general-purpose microcontroller, clock glitch.

4.4 Discussion and Remarks

The goal of the attacks presented in this section is a feasibility study proving
that the assumed biased fault model is indeed valid on different platforms using
different fault-injection mechanisms.

For the software implementation, a general-purpose I/O pin indicating the
start of the AES encryption has been used, which allowed a precise fault injection
using clock glitches. Real-world scenarios, like the second experiment targeting
the smartcard microcontroller, typically do not allow the usage of a trigger pin.
In such scenarios, other sources for synchronizing the fault-injection procedure
can be applied, like spying the communication or the power profile. This can
decrease the precision of the fault injections.

But it is important to note that the outcome of the SFA attack does not
strictly rely on a precise fault injection. If only a subset of the received ciphertexts
are affected by the expected fault pattern, the remaining ciphertexts (fault-free
or fault hitting another location during the cipher rounds) are treated as noise.
A more reliable fault injection process however minimizes the number of required
ciphertexts for successful key recovery.

Furthermore, when the attacked platform allows the usage of the AES co-
processor for stand-alone encryption (e.g., as in the previous experiments), one

245

can easily perform a profiling step which simplifies the search for appropriate
fault injection parameters. Nevertheless, if the AES co-processor can only be
used in the context of the authenticated encryption mode, it is still possible
to find the appropriate fault injection parameters. Of course, the number of
attempts and the search space for the parameters increase, resulting in a more
time-consuming setup phase for the fault injection.

With the practical results presented in this section, we showed that imple-
mentations of AES-based authenticated encryption modes on different hardware
platforms are vulnerable to the proposed fault attacks introduced in this work.

5 Conclusion

In this work, we demonstrate for the first time that a wide range of nonce-based
authenticated encryption schemes, including the widely used ISO/IEC standards
CCM, GCM, EAX, and OCB, are susceptible to fault attacks. All our attacks
need only very limited assumptions about the attacker’s capabilities. To confirm
these assumptions and to show the practical relevance of the attacks, we perform
several fault-injection experiments targeting real hardware. This highlights the
need for dedicated fault attack countermeasures for authenticated encryption
schemes. Although our analysis focus only on AES-based constructions, we want
to note that it is applicable to a broader range of authenticated encryption
schemes. This is part of future work.

Acknowledgments

The authors would like to thank the organizers and participants of ASK 2015
that initiated this work and the anonymous reviewers for useful comments.

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 (HECTOR).

Furthermore, this work has been supported in part by the Austrian Research
Promotion Agency (FFG) under grant number 845589, by the Austrian Science
Fund (project P26494-N15) and by the French ANR-14-CE28-0015 project.

246

A Data of Practical Verification/Implementation

Table 2. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES software im-
plementation, single clock glitch (left) and multiple clock glitches (right).

N SEIc max(SEIw)

4 0.25 1.00
8 0.12 0.43

12 0.13 0.30
16 0.11 0.22
20 0.09 0.16
24 0.09 0.12
28 0.10 0.09
32 0.10 0.09
36 0.09 0.07
40 0.08 0.06
44 0.09 0.05
48 0.08 0.05
52 0.08 0.05
56 0.09 0.04
60 0.09 0.04
64 0.08 0.04
68 0.08 0.03
72 0.08 0.03
76 0.08 0.03
80 0.09 0.03

N SEIc max(SEIw)

4 0.25 1.00
8 0.18 0.46

12 0.15 0.29
16 0.14 0.18
20 0.14 0.15
24 0.16 0.12
28 0.13 0.09
32 0.13 0.08
36 0.13 0.07
40 0.13 0.06
44 0.13 0.05
48 0.13 0.05
52 0.14 0.04
56 0.13 0.04
60 0.14 0.04
64 0.14 0.03
68 0.14 0.03
72 0.15 0.03
76 0.14 0.03
80 0.14 0.02

247

Table 3. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES hardware
co-processor of a smartcard microcontroller, laser.

N SEIc max(SEIw)

4 0.62 1.00
8 0.31 0.46

12 0.29 0.29
16 0.22 0.18
20 0.23 0.14
24 0.19 0.11
28 0.17 0.09
32 0.18 0.08
36 0.19 0.07
40 0.17 0.07
44 0.20 0.06
48 0.19 0.05
52 0.16 0.04
56 0.17 0.04
60 0.17 0.03
64 0.17 0.03
68 0.19 0.03
72 0.19 0.03
76 0.21 0.03
80 0.21 0.02

248

Table 4. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES co-processor
on a general-purpose microcontroller, clock glitch.

N SEIc max(SEIw)

32 0.02930 0.08203
64 0.01514 0.03369
96 0.01020 0.02040

128 0.00769 0.01489
160 0.00625 0.01125
192 0.00521 0.00971
224 0.00474 0.00817
256 0.00430 0.00693
288 0.00398 0.00620
320 0.00355 0.00535
352 0.00341 0.00492
384 0.00304 0.00448
416 0.00284 0.00416
448 0.00271 0.00388
480 0.00266 0.00359
512 0.00247 0.00330
544 0.00241 0.00315
576 0.00240 0.00297
608 0.00233 0.00280
640 0.00231 0.00264
672 0.00229 0.00250
704 0.00213 0.00238
736 0.00206 0.00227
768 0.00195 0.00219
800 0.00188 0.00215
832 0.00182 0.00202
864 0.00180 0.00195
896 0.00181 0.00190
928 0.00178 0.00180
960 0.00171 0.00173
992 0.00168 0.00172

N SEIc max(SEIw)

1 024 0.00165 0.00164
1 056 0.00162 0.00162
1 088 0.00155 0.00154
1 120 0.00150 0.00151
1 152 0.00147 0.00145
1 184 0.00145 0.00140
1 216 0.00143 0.00136
1 248 0.00138 0.00137
1 280 0.00135 0.00130
1 312 0.00131 0.00128
1 344 0.00131 0.00125
1 376 0.00130 0.00122
1 408 0.00129 0.00120
1 440 0.00127 0.00117
1 472 0.00122 0.00113
1 504 0.00124 0.00111
1 536 0.00125 0.00107
1 568 0.00126 0.00106
1 600 0.00124 0.00104
1 632 0.00123 0.00103
1 664 0.00123 0.00101
1 696 0.00123 0.00100
1 728 0.00123 0.00098
1 760 0.00119 0.00097
1 792 0.00120 0.00095
1 824 0.00117 0.00093
1 856 0.00116 0.00089
1 888 0.00114 0.00087
1 920 0.00113 0.00088
1 952 0.00113 0.00087
1 984 0.00113 0.00084

249

B AES Co-processor of an 8-bit Microcontroller

10 20 30 40 50 60 70 80

2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 12. SEI values for correct key (SEIc) plotted against best SEI for a wrong key
(max(SEIw)) for increasing number of faulty encryptions. Setup: AES co-processor of
an 8-bit microcontroller, single clock glitch.

10 20 30 40 50 60 70 80
2−5

2−4

2−3

2−2

2−1

number of faulty encryptions

S
E

I

correct key

wrong keys

Fig. 13. Evolution of the SEI values with increasing number of faulty encryptions.
Setup: AES co-processor of an 8-bit microcontroller, multiple clock glitches.

250

Table 5. Evolution of the SEI values for correct key (SEIc) and the best wrong key
(max(SEIw)) for increasing number of faulty encryptions N . Setup: AES co-processor
of an 8-bit microcontroller single clock glitch (left) and multiple clock glitches (right).

N SEIc max(SEIw)

4 0.25 1.00
8 0.21 0.46

12 0.22 0.29
16 0.28 0.19
20 0.19 0.16
24 0.20 0.12
28 0.23 0.10
32 0.19 0.08
36 0.17 0.07
40 0.16 0.06
44 0.15 0.05
48 0.15 0.05
52 0.14 0.04
56 0.15 0.04
60 0.17 0.04
64 0.17 0.04
68 0.18 0.03
72 0.18 0.03
76 0.18 0.03
80 0.18 0.03

N SEIc max(SEIw)

4 0.62 1.00
8 0.31 0.43

12 0.37 0.29
16 0.29 0.19
20 0.24 0.16
24 0.22 0.11
28 0.25 0.09
32 0.25 0.08
36 0.22 0.07
40 0.21 0.06
44 0.21 0.05
48 0.22 0.05
52 0.22 0.04
56 0.25 0.04
60 0.25 0.04
64 0.25 0.03
68 0.25 0.03
72 0.25 0.03
76 0.25 0.03
80 0.26 0.03

251

References

1. AVR crypto lib. http://avrcryptolib.das-labor.org, accessed: 2016/01/13

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs. Submission to the CAESAR Com-
petition (Round 2), http://competitions.cr.yp.to/round2/primatesv102.pdf

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Ya-
suda, K.: APE: authenticated permutation-based encryption for lightweight cryp-
tography. In: Cid, C., Rechberger, C. (eds.) Fast Software Encryption – FSE 2014.
LNCS, vol. 8540, pp. 168–186. Springer (2014)

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA. Submission to the CAESAR Competition (Round 2), http://

competitions.cr.yp.to/round2/aescopav2.pdf

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer
(2013)

6. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box charac-
terization of the effects of clock glitches on 8-bit MCUs. In: Fault Diagnosis and
Tolerance in Cryptography – FDTC 2011. pp. 105–114. IEEE (2011)

7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s ap-
prentice guide to fault attacks. In: Fault Diagnosis and Tolerance in Cryptography
– FDTC 2004. pp. 330–342 (2004)

8. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing closeness of
discrete distributions. J. ACM 60(1), 4 (2013)

9. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.K.,
Meier, W. (eds.) Fast Software Encryption – FSE 2004. LNCS, vol. 3017, pp. 389–
407. Springer (2004)

10. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) Advances in Cryptology – CRYPTO 2000. LNCS,
vol. 1880, pp. 131–146. Springer (2000)

11. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) Advances in Cryptology – CRYPTO ’97. LNCS, vol. 1294,
pp. 513–525. Springer (1997)

12. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri,
L., Koren, I., Naccache, D., Seifert, J. (eds.) Fault Diagnosis and Tolerance in
Cryptography – FDTC 2006. LNCS, vol. 4236, pp. 106–120. Springer (2006)

13. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) Advances in
Cryptology – EUROCRYPT ’97. LNCS, vol. 1233, pp. 37–51. Springer (1997)

14. Datta, N., Nandi, M.: ELmD. Submission to the CAESAR Competition (Round 2),
http://competitions.cr.yp.to/round2/elmdv20.pdf

15. Diffie, W., Hellman, M.E.: Privacy and authentication: An introduction to cryp-
tography. Proceedings of the IEEE 67(3), 397–427 (1979)

16. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to
the CAESAR Competition (Round 2), http://competitions.cr.yp.to/round2/
asconv11.pdf

17. Dworkin, M.: Recommendation for block cipher modes of operation. NIST special
publication 800(38A), 1–59 (2001)

252

18. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J. (eds.) Fault Diagnosis and Tolerance
in Cryptography – FDTC 2013. pp. 108–118. IEEE Computer Society (2013)

19. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC) 7(20) (2000)

20. Grosso, V., Leurent, G.L., Standaert, F., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM. Submission to the CAESAR Competition
(Round 2), http://competitions.cr.yp.to/round2/screamv3.pdf

21. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of matsui’s al-
gorithm 2. In: Dunkelman, O. (ed.) Fast Software Encryption – FSE 2009. LNCS,
vol. 5665, pp. 209–227. Springer (2009)

22. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC. Submis-
sion to the CAESAR Competition (Round 2), http://competitions.cr.yp.to/
round2/clocv2.pdf

23. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC. Submission to
the CAESAR Competition (Round 2), http://competitions.cr.yp.to/round2/
silcv2.pdf

24. Jean, J., Nikolic, I., Peyrin, T.: Deoxys. Submission to the CAESAR Competition
(Round 2), http://competitions.cr.yp.to/round2/deoxysv13.pdf

25. Jean, J., Nikolic, I., Peyrin, T.: Joltik. Submission to the CAESAR Competition
(Round 2), http://competitions.cr.yp.to/round2/joltikv13.pdf

26. Jean, J., Nikolic, I., Peyrin, T.: KIASU. Submission to the CAESAR Competition
(Round 1), http://competitions.cr.yp.to/round1/kiasuv1.pdf

27. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT
2014. LNCS, vol. 8874, pp. 274–288. Springer (2014)

28. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) Advances in Cryptology – EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–
544. Springer (2001)

29. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P.,
Yalçin, T.: Prøst. Submission to the CAESAR Competition (Round 1), http:

//competitions.cr.yp.to/round1/proestv11.pdf
30. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption

modes. In: Joux, A. (ed.) Fast Software Encryption – FSE 2011. LNCS, vol. 6733,
pp. 306–327. Springer (2011)

31. Maurine, P.: Techniques for EM fault injection: Equipments and experimental re-
sults. In: Bertoni, G., Gierlichs, B. (eds.) Fault Diagnosis and Tolerance in Cryp-
tography – FDTC 2012. pp. 3–4. IEEE Computer Society (2012)

32. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) Progress in
Cryptology – INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer (2004)

33. Michael, T., Mukhopadhyay, D., Ali, S.: Differential Fault Analysis of the Advanced
Encryption Standard using a single fault. In: Information Security Theory and
Practice, pp. 224–233. Springer (2011)

34. Minematsu, K.: AES-OTR. Submission to the CAESAR Competition (Round 2),
http://competitions.cr.yp.to/round2/aesotrv2.pdf

35. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 275–292. Springer (2014)

36. Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Transactions on Information Theory 54(10), 4750–4755 (2008)

253

37. Piret, G., Quisquater, J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2003.
LNCS, vol. 2779, pp. 77–88. Springer (2003)

38. Rivain, M.: Differential fault analysis on DES middle rounds. In: Clavier, C., Gaj,
K. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2009. LNCS,
vol. 5747, pp. 457–469. Springer (2009)

39. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) Advances in Cryptology – ASIACRYPT
2004. LNCS, vol. 3329, pp. 16–31. Springer (2004)

40. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

41. Rubinfeld, R.: Taming big probability distributions. ACM Crossroads 19(1), 24–28
(2012)

42. Saha, D., Chowdhury, D.R.: Scope: On the side channel vulnerability of releas-
ing unverified plaintexts. In: Dunkelman, O., Keliher, L. (eds.) Selected Areas in
Cryptography – SAC 2015. LNCS, Springer (2015), in press

43. Saha, D., Kuila, S., Chowdhury, D.R.: Escape: Diagonal fault analysis of APE.
In: Meier, W., Mukhopadhyay, D. (eds.) Progress in Cryptology – INDOCRYPT
2014. LNCS, vol. 8885, pp. 197–216. Springer (2014)

44. Samajder, S., Sarkar, P.: Another look at normal approximations in cryptanalysis.
Cryptology ePrint Archive, Report 2015/679 (2015), http://ia.cr/2015/679

45. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems
– CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer (2002)

46. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014), http://competitions.cr.yp.to/

caesar.html

47. Wang, L.: Shell. Submission to the CAESAR Competition (Round 2), http://

competitions.cr.yp.to/round2/shellv20.pdf

48. Whiting, D., Ferguson, N., Housley, R.: Counter with CBC-MAC (CCM).
RFC 3610 (2003)

49. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Computers 49(9), 967–970 (2000), http://dx.doi.

org/10.1109/12.869328

50. Zussa, L., Dutertre, J.M., Clediere, J., Tria, A.: Power supply glitch induced faults
on FPGA: An in-depth analysis of the injection mechanism. In: On-Line Testing
Symposium – IOLTS 2013. pp. 110–115. IEEE (2013)

254

	Title Page
	Preface
	Abstract
	Table of Contents
	I Background
	Introduction
	Designing Authenticated Encryption Schemes
	Generic Composition
	(Tweakable) Blockcipher-based Designs
	Sponge-based Designs
	Sponge Construction
	Duplex Construction
	Variants

	Designing Building Blocks

	Cryptanalysis
	On Security Claims and Goals
	Differential and Linear Cryptanalysis
	A Short Introduction to Differential Cryptanalysis and Linear Cryptanalysis
	Searching for Characteristics

	Cube and Cube-like Attacks
	Integral Attacks

	Side-Channel Attacks
	Timing Attacks
	Power Analysis Attacks
	Simple Power Analysis
	Differential Power Analysis

	Masking
	Re-keying
	The Concept of Fresh Re-keying
	Time-Memory Trade-off Attacks on Re-keying
	Side-channel Aspects of Re-keying
	Re-keying and Authenticated Encryption

	Fault Attacks
	Differential Fault Analysis
	Statistical Fault Attacks
	Other Fault Attack Techniques
	Fault Attacks on Authenticated Encryption

	Bibliography

	II Publications
	List of Publications
	Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates
	Forgery Attacks on Round-Reduced ICEPOLE-128
	Cryptanalysis of Ascon
	Square Attack on 7-Round Kiasu-BC
	ISAP – Towards Side-Channel Secure Authenticated Encryption
	Towards Fresh and Hybrid Re-Keying Schemes with Beyond Birthday Security
	Side-Channel Analysis of Keymill
	Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes

