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Abstract

Today’s search engines are tailored towards the information need of the
average user. This leads to the problem that valuable sources of informa-
tion that are highly specialized towards a subject can be underrepresented
since in general search engines optimize towards returning most popular
results. One possible solution to approach this problem is the development
of a system that allows integrating such sources in one single framework;
typically called a federated search engine. Since just returning all the infor-
mation from all sources back to the user might not full-fill the user’s specific
information need or reflect the subject-specific knowledge of the user per-
sonalisation is required. This could be achieved by adapting algorithms
from the field of recommender engines. Ideally, such a system should detect
the users need of support from the context without having her explicitly
taking actions.
Based on the initial question, how to create such a system that automatically
detects the information need of its user and returns personalised result lists,
four research questions were formalised. First, it was necessary to identify
the needed means to extract topics out of the textual context.
Second, the challenges arising from automatically generated queries needed
to be identified, and potential methods to overcome those challenges. Addi-
tionally, which query processing steps are beneficial in this setting?
Third, if and how the collection representation can be further optimised
especially in volatile uncooperative settings.
Fourth, how distributed document retrieval can be personalised, in particu-
lar when highly precise results are of lesser importance. Furthermore, which
aggregation techniques are beneficial in this setting.
Based upon these questions a total of six experiments were conducted re-
sulting in six publications in conferences and workshops. The results of this
work shows that the framework of a federated search engine can be altered
towards a federated recommender system that allows recommending items
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to users automatically; tailored towards the user’s information need and
context.

viii



Contents

Abstract v

1 Introduction 1

2 Related Work 7
2.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Collaborative recommendation . . . . . . . . . . . . . . 8

2.1.2 Content-based recommendation . . . . . . . . . . . . . 10

2.1.3 Knowledge-based recommendation . . . . . . . . . . . 11

2.1.4 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Federated Search . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Collection Selection . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Collection Representation . . . . . . . . . . . . . . . . . 19

2.2.3 Result Merging . . . . . . . . . . . . . . . . . . . . . . . 21

3 Context Driven Federated Recommender 25
3.1 Context Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Source Selection and Probing . . . . . . . . . . . . . . . . . . . 29

3.3 Query Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Result Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Experiments 33
4.1 KNOW At The Social Book Search Lab 2016 Mining Track . . 33

4.2 Query Splitting for Context-Driven Federated Recommenda-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Evaluation of Pseudo Relevance Feedback Techniques for
Cross Vertical Aggregated Search . . . . . . . . . . . . . . . . . 43

4.4 Do Ambiguous Words Improve Probing for Federated Search 49

ix



Contents

4.5 Efficient Search Result Diversification via Query Expansion
Using Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Evaluation of Contextualization and Diversification Approaches
in Aggregated Search . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusion 67

Bibliography 69

x



1 Introduction

Recommender systems and search solutions are nowadays common tools for
all kinds of online platforms to raise attractiveness to their user and increase
revenue. Since the volume of data has increased dramatically in recent
years the traditional system architecture of one single instance that handles
all request is not always feasible anymore. Even further it’s not always
reasonable to replicate all data that could be helpful for the underlying task.
Thus, federated systems in these areas are more frequently needed.

The common goal of recommender systems and search machines is to
present items or information to the user which is of her potential inter-
est [15]. Whereby both often try to guide the user in a personalised fash-
ion towards them. Often these systems analyses either the content of the
providers, for example, the products in on-line stores, or the data produced
by the users, e.g. which products are typically bought together or help the
user by filtering the information [62]. Self-evidently these systems are not
limited to only these approaches, and a vast amount of different approaches
has been developed over time.
In general, a basic resemblance between the goals of recommender systems
and search engines can be seen. Although, the main purpose for a search
engine, on the most basic level, is to find relevant information towards a
search query from a vast amount of information. Typically, a traditional
search engine asks the user to state his information need. Therefore the
user has to trigger the system to produce results intentionally. Based on
this information some kind of similarity measure is applied to the user’s
query and the items where as all the matching results within the collection
are rank and the top elements returned; an information retrieval task. In
contrast, many recommender systems are triggered implicitly by the users’
action or history. For example by selecting an item of the user’s interest
from the collection and matching similar items towards it; an information
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1 Introduction

filtering task. But again an emerging subfield of search tries to integrate
this automatic triggering of the system into the field information retrieval
as well. This process of pro-actively reacting upon the users need is called
Just-In-Time Information Retrieval [58].
One other typical characteristics of Recommender Systems is the usage of
other implicit information like information that is obtained by analysing
similarities between users, information that is provided by the provider or
the users’ history. But looking at today’s major search engine making use of
such information to improve results and better cover the users intend it is
no unique characteristic to recommender engines anymore. For example,
the integration of information from different sources like news or images
into typical text-based results is often based on typical user behaviour
which could be seen as recommendation approach as well. These examples
show that the boundaries between search and recommendation seemed to
dissolve. At least one could find that search engines are often improved
by incorporating techniques from the field of recommender engines. Still,
automatically retrieving items purely through the users’ action and context
is not applied often.
The biggest dissimilarities of this two fields could potentially be found in the
main problems which they are facing. Recommender systems typically try
to resolve problems like data sparsity, the cold start problem and typically
handle vast but often well-described data.
Search engines, on the other hand, generally try to resolve problems like
processing of natural language, efficient extracting and indexing of data
and effective ranking of result sets typically measured in precision and
recall. The federated setting even leads to further challenges like collec-
tion representation and selection or result merging. Some of these can be
resolved with techniques of the field of cross vertical aggregated search.
Which allows integrating different types of sources into one set of for exam-
ple textual results (e.g news, videos). Although it is a common feature in
most major search engines today [41], this technique does not necessarily
resolve all issues arising. Through the mass of content available today often
only the most popular or prominent content reaches the users which might
not cover the information need in the full extend [32]. There is a huge
amount of different pieces of information that might be too specialized for
some users but would be beneficial for others. Therefore, to promote more
specialized content of potentially helpful niche sources, systems that are
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capable of retrieving these items can be applied, for example Federated
Search Engines [17, 71]. Therefore Federated Recommendation Engines
could be implemented as a synergy of both, using approaches of both fields;
recommender engines and federated search.
One of the challenge in fusing these two fields is the automatic query and
user profile generation. The final automated query has to cover several
aspects of the users’ information need and context. The information need
can not only be extracted from the user’s context but should, at least to a
certain degree, incorporates the user’s history. Further, it could be used to
enrich the user’s profile. For example the level of expertise of the user in
a certain field. This can be done either by relying on specific terms in the
query itself or certain indicators in the according user profile [58]. Today
major search engines track the users’ behaviour over time and generate the
user profile based on the stored information. But from a users point of view,
this action can be seen as an invasion of the users’ privacy. An alternative
could be a client side solution that leaves ma user in charge what he wants
to share with the system.
This thesis covers an overview of recommender system approaches, feder-
ated and aggregated search, a brief description of a system that incorporates
ideas of the field of federated search uncooperative setting and recom-
mender systems and finally experiments that were conducted.

The main question is how to create a system that automatically responds in
a personalised way to an information need of the user while relying on a
vast amount of diverse collections of knowledge. This main question lead to
the following research questions this work aims to answer:

Context Detection Which means are necessary to extract topics out of the
textual context?

Query Processing What challenges arise from automatically generated queries
and what are potential methods to master those? Additionally, which
query processing steps are beneficial in this setting?

Collection Representation Can collection representation be further opti-
mised especially for uncooperative settings?

Personalized Result Aggregation How can distributed document retrieval
be personalised, in particular when highly precise results are of lesser

3



1 Introduction

importance? Furthermore, which aggregation techniques are beneficial
in this setting?

In the attempt of answering this questions several experiments were con-
ducted which resulted in six publications:

a) ”KNOW at the Social Book Search Lab 2016 Mining Track” [85]
Hermann Ziak, Andi Rexha, Roman Kern
The paper describes ans approach for automatic assistance request
detection of users in unstructured text.
Personal Contribution: System design, feature engineering, data pro-
cessing and execution of the experiments. Scientific supervision by
Roman Kern.

b) ”Query Splitting for Context-Driven Federated Recommendations” [83]
Hermann Ziak, Roman Kern
The presented system described an approach to split continuous
queries covering various topics through the usage of word embed-
dings.
Personal Contribution: Experimental design, feature engineering, dataset
generation, processing and execution of the experiments. Scientific
supervision by Roman Kern.

c) ”Do Ambiguous Words Improve Probing for Federated Search” [76]
Günter Urak, Hermann Ziak, Roman Kern
This work describes a novel knowledge based approach for source
selection in federated search with the additional goal of promoting
highly specialized collections. Further, it describes an improvement for
query set generation in query based probing. Personal Contribution:
Dataset preparation and general supervision and assistance. Scientific
supervision by Roman Kern.

d) ”Efficient Search Result Diversification via Query Expansion Using
Knowledge Bases” [61]
Raoul Rubien, Hermann Ziak, Roman Kern
The paper describes an approach to diversify result sets efficiently by
altering the input query via pseudo relevance feedback. The proposed
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approach is evaluated against state of the art approaches.
Personal Contribution: Dataset preparation and general supervision
and assistance. Scientific supervision by Roman Kern.

e) ”Evaluation of Pseudo Relevance Feedback Techniques for Cross Verti-
cal Aggregated Search” [82]
Hermann Ziak, Roman Kern
This work describes the design and setup of a framework to conduct
a user based evaluation for cross vertical aggregated search. Further-
more, it presents results of a conducted evaluation in this setting
including a general guideline for such evaluations
Personal Contribution: System design, data processing and execution
of the experiments. Scientific supervision by Roman Kern.

f) ”Evaluation of Contextualization and Diversification Approaches in
Aggregated Search” [84]
Hermann Ziak, Roman Kern
This paper describes an evaluation conducted on a crowd sourcing
platform to compare block ranking and interleaving techniques in the
setting of personalized search.
Personal Contribution: System design, data processing and generation
as execution of the experiments. Scientific supervision by Roman Kern.
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2 Related Work

2.1 Recommender Systems

In the following section an overview of common recommendation tech-
niques will be given. Due to the great diversity of approaches within this
area only the most prominent and relevant will be briefly addressed in this
section. Although, some of these approaches might not be applicable in a
federated setting where the data of the collections, and therefore the set
of recommendable items, might not be as consistent as usual. A federate
recommendation engine might not even have access to all possible items
within the source and might even have to rely on a limited amount of ad hoc
retrieved content. Recommender systems often use collected information
of their users, acquired either explicitly, by users stating their preferences
for example on a rating from one to five like a Likert scale, or implicitly,
inferred by their interaction with the system. Aside from these kinds of data,
that can be used by applying statistical methods and similarity measures,
different kinds of other information can be exploited as well. For example;
demographic, social, item based or context based information [30].
There are several possibilities how a user can express her information need
which represents the desire or need of a certain information. I) Through a
query, a user might be able to give precise information about the expected
specifications of the item of interest. For example the expected amount of
mega-pixel of a digital camera. II) By giving certain constraints the user can
further narrow down a number of items. Sticking to the camera example,
this could be perhaps the maximum amount of money the customer wants
to spend. III) The customer could give further preferences that might not be
hard constraints. For example, if she prefers to stick to a particular brand
of camera manufacturers if another offer is not significantly better. IV) A
fourth source of information that a recommender engine might want to take
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into account is the context of the user. For example in the case where a user
intends to purchase the item in a camera supply store close to her location,
the system should rank the best offers nearby.

To allow the recommendation engine to filter the results a lot of content
knowledge is needed of the items which can be categorised into groups.

Attributes of the item Attributes of the item like the price or weight can
be applied as filter.

Contextual information of the item Similar like the location of the user
can be used to recommend items in a particular proximity contextual
information can be utilized as well.

Domain knowledge To a certain extend knowledge of the given domain of
the products recommended can be used.

2.1.1 Collaborative recommendation

Aside from our own preferences and experiences, humans tend to be influ-
enced by the opinion and knowledge of others to make decisions. Collabo-
rative Filtering (CF) is one approach to mimic this typical human behaviour.
The concept of homophily, the general tendency of people to share similar
characteristics in groups, is utilised to group people in the system by the
expressed interests of the users. For example, the explicit or implicit rating
of the users for certain elements (e.g. books, movies, songs) can be used to
calculate a similarity score. By relying on this similarities, items or users
can be clustered. The knowledge gathered from the resulting similar users
within the cluster can then be used to recommend new items to the current
user. Today this similarity is often calculated by making use of the k Nearest
Neighbours (kNN) algorithm; in earlier times measures like the Pearson
correlation or cosine similarity were proposed as well [39].
The collaborative recommendation approach can be further separated into
two subgroups. I) User-Based: Here users with similar preferences are se-
lected and highly rated items within this set of users are recommended
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to the initial user. II) Item-Based: Whereas in contrast to the User-Based
approach the similarity is calculated between all items and the currently
presented item.

Cold Start Problem

On of the biggest challenges of the CF approach is the so-called cold-
start problem. For a newly introduced system, or when introducing a new
user, the rating matrix is going to be empty or sparse. This implies that
it is not directly possible to apply similarity measures between items or
users with decent results. According to Bobadilla et al. [11] the general
cold-start problem can be further partitions into three subproblems. I)
The “new community” problem, where after starting up the new system
no ratings are given, and the rating matrix is empty. II) The “new item”
problem refers to the situation when a new item is introduced into the
recommendation engine, and no ratings are available for that particular
item. III) The “new user” problem where a new user is registered in the
system and no information about her preferences is available by that time.
When a collaborative filtering based recommender system is initially started
it will lack the needed data in the rating matrix to calculate similarities
between users or items [11].
One possibility to resolve this problem faster is to design the system in a
way where users are initially steered towards rating items. The new item
problem, where a newly introduced item is unrated, leads to the issue that
the users might not get aware of it since it is never recommended. This can
lead to the point where an entire section of the collection is never noticed
by the users. One option to resolve this issue is that newly introduced
items are presented to a particular user group who are willing to rate these
items. To resolve this issues, several approaches were proposed in literature.
For example, one option, presented by Brees et al [13] proposes a default
value for items where only one user has stated his preference. Another
algorithm by Huang et al [37] tackles this issue by the transformation of the
rating matrix into a bipartite graph where within this graph an exploration
algorithm is used for the analysis. A further possibility to circumvent this
problem was presented by Wang et al [78]. Here a hybrid of user and item
based similarities is used to improve the prediction accuracy.
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2.1.2 Content-based recommendation

Collaborative filtering techniques rely on ratings from users which have
to be gathered by the system in production. In contrast a content-based
recommendation approach can use data that is acquired beforehand and
does not suffer from the cold start problem. Categorical data of movies
or similar like genre, actors or directors can be gathered and used to rec-
ommend those to users with similar interested stated in their profile. For
example, if a user states her interests in several science fiction movies, there
is a high probability satisfying recommendations should contain movies
in this genre as well. Although the preparation and maintenance of such
meta-data is a lot of effort, it has the benefit that the new item problem
does not arise. Though, one problematic issue is that the usefulness of the
meta-data depends on the underlying document set. The given example
with movies will have another set of the main features than, for instance,
plain text documents, books or music. In the simplest setting, a content-
based recommender engine maintains one list of these features that are
assigned both to the users, e.g. the interests, and the items. These interests
of the user have not necessarily to be stated by the user explicitly. They can
also be implicitly gathered by letting the user select items she has already
consumed. For example, combined with an indication of how much they
liked the item. The recommended item set is then generated through pairing
the user’s interests with the information available from the items.
In this setting recommender system might reuse ideas from information
retrieval to improve the restrictive information given only by features like
the author.
One example could be to use a list of keywords extracted from purely
textual items. This could be used with a very simple boolean model. (e.g.
The searched keyword is either in the document, or it is not, and therefore
the item is either relevant or not relevant. Therefore a ranking of the items
is not given.) Though, there are several drawbacks to the simple boolean
approach. First, it does not take the length of the document into account
which would lead to the promotion of longer documents. Second, each
term is considered equally relevant what is typically not the case in natural
language. Another more sophisticated approach is making use of the vector
space model which is usually used in search engines. This is often achieved
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by the use of the TF-IDF measure. It uses the term frequency of the query
term within the documents. This frequency is later multiplied by the inverse
document frequency. The inverse document frequency represents the inverse
occurrence of the term in the corpus. The final result is the relevance of the
term in relation to the corpus. To produce then needed information for this
task at indexing time each term in the documents is analysed. The resulting
data structure can be seen as a vector space, where the size of the dimension
aligns with the number of keywords in the documents [59]. Alternatively
similarities measures can be applied to obtain sets of similar items, similar
to the collaborative filtering approaches. For example, the kNN method can
be used, which is relatively simple to implement. Further improvements
can be made by focusing on recently rated items as short-term recommen-
dation set and the rest to cover long term interests. That way the system can
comprise the current interests of the user more suitable and also reduced
computational effort. To combine long and short term predictions, one could
consider using long-term predictions if there are not enough similar items
retrieved through the short term prediction step. Alternatively, it would be
possible to calculate the short-term prediction in an on-line fashion. The
computational expensive long term predictions could be calculated when
system loads are low and processing power is not an obstacle.

2.1.3 Knowledge-based recommendation

Although collaborative filtering and content-based recommendations have
shown to be effective in many applications and are widely used they both
have their weaknesses in certain situations. The most prominent arise in
situations when irregular purchased items should be selected. Relying in
this case on the item or user similarities might not produce satisfactory
results. Furthermore relying on users ratings for such item would have the
drawback that they might get obsolete over time and the collected data might
already be outdated. With today’s pace of technology, a good rated two year
old Smart-phones will not have features consumers today would expect
in modern technology. Such items, for example, could be Smart-phones,
TVs or Computers. In such situations, knowledge-based approaches can be
used. Distinguishing feature from collaborative filtering and content-based
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recommendations is that knowledge-based recommender engines tend to
have a highly interactive process of narrowing down the potential results to a
subset of interesting items. Therefore they are considered as “conversational
systems” [15]. Typically the process to generate interesting items for the user
is too narrow down the result set by defining requirements. If no results fit
the given restrictions, the user has to reduce this requirement. A step that
can be supported by the system through recommending items which do not
meet all the restrictions or suggestions for relaxation of the constrains [39]. In
this field different basic types can be distinguished, constraint-based [30] and
case-based [14] , query based [40], ontology based [48] or social knowledge
based [21].

Constrains-based

Constrains-based recommendation approaches can be applied in situations
where highly specific requirement have to be met. [30] This approach re-
quires a quite exact definition of the user’s preferences and an extensive
knowledge base in regards to the items. Though, a so-called constraints
network is built upon the constraints and two sets of variables [30]. One
set of variables can be described as the customer’s properties (U) the other
one describes the features of the product (P). The constraints group again
consists of three subgroups; product, filter and compatibility constraints.
Compatibility constraints limit the item set through factors that have to be
met to suit the user’s application. For example, if the user needs a camera
for taking pictures at sports events a fast auto-focus will be required.

Case-based

In a case-based recommender system, the main goal is to find similar
items towards the item the user has in mind. In this case, the similarity
will often be measured by the use of external knowledge, in particular,
domain-specific knowledge. The whole process is based on the case-based
reasoning methodology. Here a problem is approached through looking
back at already resolved similar problems. The already known solutions to
the problems are used to approach the current problem. These problems and
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their solutions together determine the cases in case-based recommenders.
In its most basic form, a case and an item are identical. To gather the
recommendations the user states her preferences. Upon this preferences and
the item set, a similarity measure is applied to retrieve a set of products
which are presented to the user. Typically these recommendations include
an explanation and allows the user, by the help of the user interface, to alter
the stated requirements [44].

Query-Based

A constraints based solution can also rely on conjunction queries in databases [39].
Here the item selection problem can be seen as filtering task. For example,
a query can be constructed that contains information like the price, the
brand and other features of a product that conjunct in one SQL statement
which returns only items that fall into this constraints. These constraints
do not have to be formulated directly by the user but can also be derived
from auxiliary information given. Jannach et al. [39] gives the example of a
camera for the purpose of printing posters. This implies that the resolution
of the item should at least exceed a certain minimum value.

2.1.4 Context

To only take users and items relationships into account is often not sufficient
in many applications. For travelling, recommendations further contextual
information could improve the recommendations significantly. For example,
the location of the user could be substantially relevant in the context of
sightseeing or the season of the year could influence the location of the trip
significantly. These two examples already give a small insight of the broad
spectrum of possible context that can be taken into account. Though, in
literature context awareness for recommender systems has no unambiguous
definition. Some definition only takes into account the users surrounding
like in ubiquitous computing. Other definitions include almost any informa-
tion in respect to the underlying domain [39]. Shilit et al. [64] defined to be
the most important context of the users in recommender systems with the
three questions. Who you are with, where and what is your surrounding.
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A more extensive definition of the user’s context categories is given by
Ranganathan et al. [57]:

• physical contexts (e.g. location, time)
• environmental contexts (e.g. weather, light)
• informational context (e.g. sport scores)
• personal context (e.g. mood, activity)
• social context (e.g. group activities)
• application contexts (e.g. email, visited websites)
• system contexts (e.g network traffic)

Typically these context related pieces of information are accumulated in
a user model, or user profile, that is used in the recommendation process.
Never the less this information has to be handled with care. On one hand,
the usefulness of contextual information can change over time, and this
timespan might even be brief. A user that is searching for presents for the
whole family could go directly from children’s books to historical novels.
On the other hand not every contextual information is relevant in every
situation. A comprehensive discussion of this topic is given by Dourish et
al. [28].

2.2 Federated Search

Classical information retrieval typically model search under the precondition
of one centralised index [4], or at least a distributed index with combined
statistical information about the content of the indexed collection. The
alternative, to search in a distributed manner, to amalgamate different data
sources, a technique called federated search or distributed information
retrieval can be applied [7]. Figure 2.1 show the typical architecture of a
federated search engine with its components. Three major steps can be
outlined in a typical federated search engine [66]; First queries are sent from
one client to the federated search engine or broker. Often this system then
selects based on the content of the query and other information a subset
of the available collections. For example, the queries can be categorised by
the users intend or potential domain [72]. In the next step, it transforms
the request into a query that the selected source can process and triggers a
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2.2 Federated Search

Figure 2.1: This figure shows the typical main components of a federated search engine.
The ”Collection Selection” which has the task to reduce the amount of col-
lections registered to the system to a smaller set. This module makes use of
the ”Collection Representation” module which has the purpose to gather all
the needed information of the connected collections for the collection selection
process and store this information. And finally the result merging component
processes all the received results from the collections to generated one unified
response to the client.
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search request. Finally, returned result have to be converted into a unified
item list and based on this list a final result list is composed. This process
of composing the result list involves the identification of best matching
items and posturing of different kinds of verticals. These so-called verticals
are describing type-sets of retrieved items from a search engine like text,
pictures, videos, news. In contrast to traditional retrieval, since the statistical
information is already processed by the collection, little information about
the collections is needed to retrieve items. Typical traditional search engines
have an own component, the crawler, which extracts the data from web
pages to be indexed by regularly revisiting the pages to monitor changes.
This process includes information that is already indexed by specialised
search engines. In federated search already indexed data does not have to
be duplicated to retrieve items and a federated search engine is not in need
of monitoring minor changes within the sources collection. In general, a
federated search engine has no need to store or index documents at all. This
allows even to integrate systems that can be categorised as uncooperative. In
this setting, an uncooperative source is one that does not provide statistics
or meta-data that describes their contents by them self. Though, for the
selection of these collections, the federated search system is still in need
of some sort of statistical information. Therefore, if the information is not
provided by the API, there has to be a mechanism in the broker that gathers
data which represents the collection’s content of the source. Federated search
also has some other benefits compared to the traditional search model. First,
indexing the hidden web, e.g. the not directly accessible content of a search
engine, is a hard task for search engines [56]. Second, the crawling process
is expensive regarding processing and storage, especially with today’s rate
of changing content on the web [66]. Still, the process of federated search,
as already described, does not come without its own set of challenges. Thus,
literature discusses three main challenges [67, 45]:

collection selection The process of matching the query or user profile to a
source.

collection representation The task of getting uniform statistical and lexical
information of each source in the broker.

result merging The incorporation of the retrieved items into one single
result list that can be presented to the user.
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2.2.1 Collection Selection

The first step in federated search is collection or source selection. Here the
broker has to decide which collections fit the query or user profile best. This
step is mainly important for two reasons. Not only does it allow to provide
more relevant content to the user. Even further, with the precondition that
statistical and meta-data data of the source is given, it allows to reduce
the traffic passing through the system and reduces the load. This allows
the system to adapt to temporary performance issues as well. If one of the
collections is down for maintenance or faces high-traffic, the broker can take
this into account and might down rank the importance of the source for
a period of time. Since in general the performance of the federated search
engine is determined not only by its limitation of processing the requests
but mainly by the response time of the underlying collections. Basically, it
can not respond faster to a request than the slowest source selected for the
query. Through recent years several different approaches where suggested.
For example, lexicon based, document-surrogate based or classification
based [67], which will be presented in the following paragraphs.

Lexicon Based

In lexicon based collection selection approaches lexical statistics of the
collections are generated or retrieved to compile a representation of their
language model. This representation can be used to rank the collections
according to the query. When these kinds of statistics are not given by the
collection directly, they can be created by sampling. This approach found a
lot of applications and is widely researched [67]. Further, it has the benefit
to work with cooperative and uncooperative collections. In recent decades
different approaches have been proposed. For example, like the bGLOSS
method [43], which relies solely on term frequencies, or later vGLOSS
which uses a Cosine similarity of document vectors and the query [33].
Finally, the similarities are summed up to calculate the usefulness of the
source towards the query. Another example could be the collection retrieval
inference network or CORI net [16]. In this inference network the leaves
represent the collections and the nodes represent the terms in the collection.
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The needed probabilities for the edges can be calculated analogue to the
term frequency (tf) and inverse document frequency (idf).

Document-Surrogate Based

Document-Surrogate methods try to rank queries to a collection but also
take information of the single documents into account [67]. One of the most
prominent examples is the ReDDE algorithm [70]. This method uses the
content similarity in the source selection process but as well tries to estimate
the database size through sampling. So in comparison to CORI, through
taking the database size into account, the document ranking could be
improved. Further, smaller highly specialised databases have a better chance
to be selected. This approach estimates the size of the collections through
the sample-resample method. In this method, a query from the resource
description is created and send to the collection. Typically retrieval systems
return the full amount of potential matches within the response. This
amount is used to estimate the potential size of the collection. Additional
one-term queries are sent to the database to approximate the size further.
These methods can be applied when the collection gives the potential query
terms through a resources description (e.g. the most significant unique
terms of the collection), but it is also applicable when such information
is not available. A similar approach is followed in the centralized-rank
collection selection method (CRCS) [66]. The main difference to ReDDE
is the integration of a further source of information; the actual rank of
the document in the retrieved list from a centralised index. In their work
they propose two possibilities to calculate the actual weight. One is a
linear descending weight according to the position in the list. Since, as
stated in their work, the importance of documents to users have a negative
exponential relation the second is calculated as exponential descending
weight. The authors report that, depending on the used collection, CRCS
outperforms ReDDE in most cases in its precision, especially when no linear
weights are calculated.
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Classification Based

According to Arguello et al. [4] three main group of features can be identified
to classify collections.

i Features based on categorization of the query.
ii Features based on the corpus or metadata of the corpus. Extracted for

example by the use of methods like ReDDE.
iii Features based on click-through information captured by the system

through monitoring the user’s behaviour.

A system relying on the first group is described by Centitas et al. [22] in
the qSim method. It is based on the assumption that there is a tendency of
many similar queries in federated search [22]. Though; classification could
be used to learn similarities to training queries. In this approach, the subset
of collections is selected through comparing past queries to the current
query. The collections are ranked through their average performance for
past similar queries. To calculate the performance of the collections a the
ranking of documents in a centralised index is used.

Arguello et al. [4] proposed an approach which applies a logistic regression
model to the problem. In an initial step, it makes use of all proposed sets of
features to produce binary predictions for each collection. They concluded
that their multi-stage classification approach either performed at a similar
level or significantly better than others like CORI or ReDDE.

2.2.2 Collection Representation

Traditional search engines rely on statistics of the indexed corpora. Through
this very process, a statistical relationship between the query and the in-
dexed documents can be calculated. In federated search these statistics are
typically not accessible, therefore a comparison between documents and
sets of documents from the connected collection is more challenging. In
a cooperative environment meta-data and further information would be
given by the system itself. Some algorithms like CORI or gGloss rely on
this assumption. Unfortunately, it is typically not the case [67] that public
APIs of search engines provide this information. In such an uncooperative
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setting the needed data has to be gathered by the system itself to support
the collection selection process. This also allows overcoming the potential
risks off provided data from search engines on the web. (Like the lack of
incentive of the content provider, the potential misrepresentation of the
content to achieve higher rankings [8, 18] or the potential variety of data
provided by such services [18].) A further issue is the estimation of the size
of the collection in question. Some collections might only contain a small
number of documents which are still highly relevant for certain queries.
Bigger collections, depending on the selection algorithm, could dominate
these small collections by their sheer size. Therefore, this information can
be highly valuable for the selection algorithm. Unfortunately, not only is the
information not available directly, many public APIs return only a certain
maximum of documents to a particular query [8].
In general, it can be assumed that the aggregation of comprehensive infor-
mation of the underlying collections before a source is integrated into the
selection process is beneficial. Though, earlier algorithms were proposed
retrieving information ad-hoc through sending an initial query towards each
source shortly before the actual query is sent to calculate a ranking based
on this initial documents. However, in a setting where a vast number of
collections is present this approach leads potentially to a far longer response
time. Even further, potentially valuable information about the size and con-
tent of the collection can hardly be estimated this way. The most prominent
approach for creating a representation of the content of the collection is
query based sampling [19].

Query Based Sampling

Query based sampling was initially introduced by Callan et al. [19] for
searchable text databases. The process is based on the assumption that it is
sufficient to send a certain amount of queries to a search engine to create,
out of the resulting documents, a description of the content of the collection
similar to a description created with full access. Callan and Connel [18]
state in their evaluation of the approach that the amount of queries and
documents needed is an open question although they suggest about 300-500

unique documents. This suggestion was rebutted by Shokouhi et al. [69].
They conclude that an approach relying on a number of new unique terms
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within the result set is more reliable, especially with bigger collections,
instead of a fixed amount of documents. For the set of queries, there is still
no optimal solution. Although, in literature, it is a widely accepted method
to draw random queries for this purpose [69]. Since just sending random
queries to the search engine might not return uniform document sets Bar-
Yossef and Gurevich [8] presented a graph-based solution that should
potentially resolve this issue. The graph is built upon the documents and
their connection through the query. If a query returns the same documents,
which represent the nodes, they are connected by an edge. Upon this graph,
the algorithm performs a random walk. When a node matches a new query
this query is sent to the search engine. Afterwards, out of the new result set
a new document is selected. Another approach to mainly estimate the size
and overlap of search engines was introduced by Bharat and Broder [10]
and can be used for random sampling of documents from a search engine.
Through a preselected keyword set of an existing corpus, sorted by their
frequency, the algorithm constructs multi-term conjunction and disjunction
queries. The conjunction queries are constructed out of two query terms and
selected to return between 1 and 100 results. The disjunction queries are
constructed out of four query terms. From the results of the send queries, a
random result is picked. By this randomly selected results, they estimate
the size of two search engines through their intersection. Given that 1/2 of
the samples of one search engine is also present in the second search engine
and 1/6 of the samples in the second search engine is present in the first
search engine one could estimate that the second search engine is about 3

times bigger in size than the first. Although, this approach can only be used
for size estimation if it can be expected that the indexed corpus is supposed
to contain the same content the approach could be still applied to gather a
uniform result set. In 2007 Thomas and Hawking improved this technique
further [74] to achieve better estimations.

2.2.3 Result Merging

One of the main challenges in federated search is how the results of the
different collections or verticals can be represented to the user to optimal suit
the ”information need”. The simplest solution to present several collections
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to one user would be representation in separated taps. It can be argued that
presenting results from all available collections is beneficial for the users.
A strong argument was brought forward by Sushmita et al.[72]. In their
analysis of query result logs, they conclude that restricting the user’s view
to strongly filtered results might lead to withholding valuable information.
Nevertheless, in a federated search setting where one can assume that there
might be a high amount of verticals or collections it might not be feasible to
present all collections.

According to Arguello et al.[3] over time three main concepts emerged to
aggregate several results list or verticals in a combined result representation.
Although these approaches are typically used purely for combining verticals
in an aggregated search environment, their concepts can be transferred to
federated search as well.

i A set of verticals is chosen which has a high probability to be related
to the query.
Then compared with the main result list a preview of the top results
for these verticals is presented in complimentary to the main result list.
This technique can frequently be seen in web-search engines where it
might be most suitable.

ii An alternative approach is blocking and interleaving. In the blocking
method, the top results of each vertical are taken and stacked. Here
it would be reasonable to rank the verticals beforehand according
to their relevance. Alternatively, for instance, when all verticals are
considered to be of similar importance, these block could be arranged
in a perpendicular manner. Aside from the possibility of blocking
results from different collections can be interleaved. In a simple imple-
mentation from each source, the top item is integrated into the final
list item by item. Several different algorithms to improve interleaving
where proposed over time. A comparative analysis based on click-
through data of several interleaving methods was reported by Chuklin
et al. [24]. Typically these approaches can be applied in the federated
search setting as well [16]. According to Arguello et al. [3] a direct
comparison between interleaving and blocking was not performed
until today. Another open issue is still the weighting of the verticals to
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determine the ranking from which vertical to pick items first.

iii Third, a so called aggregated search result page (SERP) [3] can be
created. Typically the task of creating a SERP can be separated into
two stages. First; the task of selecting the right vertical in relation to
the query. For example results from verticals that can be considered
irrelevant can be excluded from the final result list. Second; the pro-
cess of deciding the sequence of the verticals in the final result list.
Alternatively, if no vertical should or can be dismissed, there is also
the option to present highest ranked collections results in predefined
spots but still, present the user the full set of retrieved results.

Over the last decades, in the field of federated search, several systems were
proposed to resolve the result merging problem. In CORI Callan et al. [16]
try to calculate a new score of the document out of the retrieved document
score. Here they rely on the score of the collection produced by the system
and the document score from the collection. To achieve comparable values,
the scores are normalised through a heuristic.
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3 Context Driven Federated
Recommender

A context driven federated recommender system can be seen as a powerful
combination of a federated search engine and several techniques commonly
used in recommender systems. Figure 3.1 shows an illustration of the
potential architecture of such a system.
In the case where one would like to promote content that is typically
under-represented in major search engines, like highly specialized culture
or historic content, and simultaneously support user in creative processes
like authoring documents to certain topics a federated recommendation
approach appears to be promising. In such a system the recommendation
approaches can be applied on multiple modules to improve the general
performance and to tailor the results towards the users information need.
The main components of a federated search engine mostly derive from their
challenges described in 2.2. For example the source selection module can be
seen as typical filtering task. Given that contextual information of the user
is existing, one might want to filter potential collections by techniques used
in knowledge-based filtering 2.1.3. Still there is a difference in the process.
The given constrains are potentially not directly defined by the user but
automatically inferred by the users actions or context and therefore can not
be handled that strict. For example the selected sources can be limited to
collection that contain only a certain type of meta-data. Another example
can be the result aggregation module. Here the task is more a re-ranking of
given items instead of a filtering task. In this case similarity measures like
in content-based recommendation approaches, discussed in 2.1.2, could be
applied.
To get an overview of the needed processes and modules in a federated
recommendation approach the potential work-flow of such a system can
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Figure 3.1: Similar to figure 2.1, the architecture of federated search, this figure shows the
main components of a federated recommender engine. The simple client is
replaced by an intelligent agent, the ”Context Detection”, which represents a
separated entity to the system and runs on the client. Furthermore the ”Collec-
tion Selection” is preceded by the ”Query Topic Categorization and Processing”
module. Finally, the results are personalised and merged in the last mod-
ule using information from the preceding processes including the ”Context
Detection”.
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be used as basis. The first step in the work-flow of the system would be
the identification of the information need of the user. The context of the
user’s current working environment could be used to generate the main
topic on which the user is currently working on. Further the history of the
user can be used as valuable additional context. For example, when a user
plans to write an article about ancient Egypt, potentially a art student might
have another underlying focus or main topic on the article then a student of
architecture. Although the context used in this example is just the current
information that is presented to the user and the short term users history
but also the definition of context used in recommender systems, discussed in
section 2.1.4, can be of value. For example even the location of the user might
add further valuable information. When all the information is gathered it
has to be analyzed to identify the actual task of the user in which the
system should support her. Creating the results just purely on the gathered
information might not lead to adequate item recommendations. Writing a
review of Egypt’s history could lead to similar information collected than
creating an illustrated book. Though the later should result in other verticals
being preferred in the finally recommended item list. As next step the
most appropriate sources that fit the underlying task and information need
should be selected and ranked. This process that is typically represented
in federated or aggregated search, discussed in section 2.2.1, has to be
adopted to include the additional information from the user’s context. In
a federated environment it might even be the case that sources represent
only one certain type of vertical at a time. This could also be taken into
consideration in the selection process. For example when it can be assumed
that the user is primary interested in images, source not holding images
can be given lower weights or even be excluded from the results at all. The
preselection is crucial specially for systems with vast amounts of connected
sources. Without this step each request would have to be forwarded to each
single source in the selection. This would not only increase the amount of
traffic and load on the service but might even lead to less relevant results
in the finally rendered list of recommended items. This leads also to the
conclusion that it might not be feasible, as some of the source selection
approaches suggest, to forward the request to all sources for gathering the
statistical information for the selection process at query time. Therefore
every time a source is connected to the federated recommender engine
statistical information about its content has to be provided or gathered.
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After the list of potential sources is selected for each of these sources a
request has to be formulated to retrieve the data. Within this formulation
process all the information that is send by the context detection component
has to be adopted to meat the sources specific API. Finally the request can be
forwarded to the target sources. To be comparable to each other in the next
step the returned result lists has to be transformed into a generalized format.
Afterwards the transformed result lists have to be aggregated. Here again
the aggregation approaches in federated search, discussed in section 2.2.3
can be used or adopted for this purpose. Further several techniques of
recommender engines like collaborative filtering, discussed in section 2.1.1,
content-based recommendation algorithms, discussed in section 2.1.2 or
knowledge based filtering, discussed in section 2.1.3 can be used in this step.
In the final step the composed result list can be returned to the user. In the
following the single components are discussed in detail. The design of such
a system can be divided manly by their tasks into several components that
allows the system to be highly modular.

3.1 Context Detection

To gather information of the user that could be used to personalize the
retrieval process two main sources of information can be used. I) The
history of the user, through logs from the system, or a potential front-end,
like the browser history of the user. II) The current context of the user. For
example the system can estimate the users intent automatically by analyzing
the information the user is currently reading or actions that are taken by
the user. All that gathered information can be composed in a profile of
the user which can then be send to the federated recommendation engine.
The whole context detection component can be designed as completely
autonomous module that can be executed directly on the users machine.
This approach has several potential benefits. Not only will it reduce the
load on the back-end system, it allows also to process more information
gathered through the human computer interaction which can finally send to
the recommender engine in a condensed form. The possibility to tailor the
context detection module towards the environment promotes the adaption
to different goals and use-cases. For example in a static environment like a
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work place the information of the current location of the user might not be
as valuable as in an mobile setting. A further benefit of this approach is that
it allows the user to be in charge of the information he is willing to share
with the system to improve and personalize recommendations. Even further
this option enables the user to circumvent a filter bubble effect [51].

3.2 Source Selection and Probing

As described in section 2.2 in uncooperative settings a preliminary prob-
ing phase is needed before adequate sources can be selected. The probing
process itself does not necessarily have to differ from probing in federated
search. There might be a need of additional extracted or derived informa-
tion (e.g. meta data or statistical data) from the sampled data that would
typically be required. Hence, for example, query based sampling, described
in section 2.2.2, can be used as an approach to gather the needed data.
The general approach in query based sampling is to send each query of a
predefined set of queries to the source. A certain amount of the resulting
documents are then analysed to estimate the entire content. Since the system
design of the federated recommender engine allows the sources to register
it self automatically the probing has to start immediately after the source
connected for the first time. The result and details of this initial probing
can then be stored for the source selection process. After a certain amount
of time, this process has to be repeated to reflect potential changes within
the sources dataset. The query set which was used to probe the collections
the first time can be reused and extended by keywords extracted from the
gathered data. By doing so, the query set should also cover potential trends.
Alternatively, the query set could be compiled of highly ambiguous terms
to create a similar effect. For select of the set of sources, several approaches
can be used in this setting. For example, like described in section 2.2.1,
approaches based on lexical statistics can be applied in particular in a com-
bination with the actual query terms. In general information extracted from
the content of the sources can be used to reduce the amount of used source.
For example sources that primarily contain certain media types (e.g. Images)
can be filtered out or prioritised. Furthermore, classification based methods,
like described in section 2.2.1, can be utilised to render a set of sources out of
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the pool. For example, out of the query, even when generated automatically,
a general topic can be derived. This topic can be matched against specialized
collections or more comprehensive knowledge-bases like encyclopaedias.
Another possibility to limit the amount of sources and improve precision
is to take the users history into account. Based on the preceded request of
a specific user personal preferences can be extracted and utilized for this
purpose.
The source selection module is further one of the locations where unsuitable
content can be filtered beforehand. For example, depending on the language
level of a user, certain latent attributes can be derived. One possibility would
be the estimation a level of expertise of the user in context to the topic of the
currently crafted document. For instance recommending scientific literature
to a sophomores might be overwhelming but would be appropriate for a
professor. Furthermore, a flag for content unappropriated for minors could
be set that allows to filter inappropriate content.

3.3 Query Formulation

A new challenge that is arising in the federated recommender setting is
the generation and altering of the query to personalize the results. It is
generated, adopted and processed in several stages and finally contributes
a major part to the quality of the final result list. In the first step the query
has to be generated. This can either just happen out of the users context and
habits, like daily routines which the context detection module could learn
over time, or out of textual information the user is either creating or looking
at. The main challenge to extract the needed information out of the text is to
detect which terms or concepts are of the most importance. Though, even
when assumed that this process works well and only the most important
terms are found, there is a high chance that the underlying documents or
these terms cover not only one main concepts but several. For the federated
recommender system this might lead to problems. When formulating the
final query some collections might react to unrelated query terms unfore-
seeable. For some collections it could lead to a query drift and unrelated
results, others could end up not returning results at all. Consequently the
core system should be capable of detecting and separating various concepts.
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In the case when the system detects multiple concepts it could sent each
separated to the collections and merge the results in a later stage.
Another arising problem is owed to the recommendation setting. Depend-
ing of the level of knowledge of the user in most cases, for example when
crafting a document, returning well-known and obvious information is most
probably not the best strategy and will not be helpful to the user. Often it
could be the case that topically more diverse results might be more helpful.
In other cases the prior knowledge of the user about certain topics could
be helpful to in cooperate as well. Therefore it might not be enough to
return results with high precision but rather incorporate a certain degree
of diversity and serendipity. This can be achieved over several way within
such a system of which one is the query itself. For example to achieve such
and effect, a diversification of the results, it has to be somehow assured
that the most prominent potential intends are covered. Typical example for
queries with multiple intends are ’Jaguar’, which could either mean the car
manufacturer brand or the wildcat, or ’Java’ with which the programming
language, the island or the coffee could be meant. So, to diversify the results,
the system should be able to alter the query in a way which in the end
allows to cover the main intends.
Serendipity is usually defined as a discovery that can be described as ’pleas-
ant surprise’. To generate such an effect artificially the system could again
alter the query to take the users prior knowledge into account. Concurrently,
to create an serendipity effect the system could incorporate the users history
which it could get provided by the context detection agent. To do so there
are several possibilities, how the users history could be covered. First of all
the user should have the option to state his interests, potentially including
a level of expertise, directly. Obviously this would be the easiest solution
but it may turn out that user potentially would not do so since the connec-
tion between improving the results and stating her own interests could be
hard to explain. Therefore, the system should also be able to extract similar
information just by using the users history, for example the visited pages
in a web-browser. In the final step the system should somehow be able to
reflect this information within the query. Since it’s most probably not possi-
ble to generate one single query that is producing precise, diversified and
serendipitous results at once the system has to send these queries separately
to the collections. The results for each collection and each query type would
have to be aggregate afterwards.
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3.4 Result Aggregation

As discussed in 2.2.3 typically on of the main challenges in federated search
is the result aggregation process. Since the items are retrieved from different
collections the individual result-lists have to be unified and presented to
the user. This can either happen by showing only a preview of each of
this result sets and let the user explore interesting sets further on his own.
Another approach is blocking or interleaving where the results are added
either in blocks or item by item. A third option is the aggregated search
result page where in a first step most relevant verticals are selected and
then in the second stage the sequence of the verticals is determined. In
federated recommendation engines the aggregation process will be even
more complex. First, the aggregation process offers most opportunities to
personalize the final result-set for the user. Second, not only results from
different collections and verticals have to be aggregated but also results
of the same source when several differently formulated queries are send
to the collection. This aggregation processes do not necessarily need to
happen in the same module. In a first step in the main aggregation process
the retrieved items from the collections could be aggregated to one single
result list. This could for example happen in a blocked or in interleaved
manner as described in chapter 2.2.3. The possibilities of personalizing
the result-set by the query is limited to a certain degree. Nevertheless, the
context of the user and previously gathered preferences can be used to
re-rank the already retrieved results. For example favoured vertical types,
like images, could be assigned a higher weight. This information could be
extracted as implicit feedback from the users interaction with the system in
the context detection module. Further this step allows to filter content that
is inappropriate in some way, e.g. not suitable for minors, if the information
is available or can be extracted from the items. Before the final aggregation
step can be applied a further aggregation has to take place. Since the system
might send multiple queries to the collections the returned result lists for
these query can also be aggregated. This process of generating the modified
queries and aggregating the according results can be done in the specific
collection module. This has the advantage that in a federated setting where
the collection module could be operated on premise the retrieval time can
be reduced and the computational load could be distributed.
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4 Experiments

4.1 KNOW At The Social Book Search Lab 2016
Mining Track

In automatic query generation and topic extraction typically several sub-
processes are involved. For example, in an initial step, the system can try to
identify the potential need for assistance of the user. One scientific challenge
that covers this topic is the Social Book Search Lab, which was a track at the
CLEF 2016 conference. The goal of the first task of this lab was to identify
book recommendation requests in postings on Reddit1 and LibraryThing2.
Here users requested assistance from other users to find similar books as
described in the posting or the title of a book which they could not recall
anymore. The second task within this lab was to identify and link references
to books within the text and assign the according ISBN (International Stan-
dard Book Number).
The organisers generated three datasets for this task. One containing a total
of 4,000 postings from the LibraryThing book requests where about 10

percent were labelled as positive examples. The second one, a total of 250

threads, was extracted from Reddit, more specific from the Subreddits ”sug-
gestmeabook”, as positive examples, and ”books”, as negative examples.
The third provided dataset, for the second task, was again taken from Li-
braryThing containing about 200 initial entries with fifty replies each. The
goal was not directly to identify the exact title but assign the correct ISBN
numbers of the books to the threads.

1www.reddit.com
2www.librarything.com
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Additionally, the organisers provided a dataset containing book data collec-
tions from Amazon and LibraryThing with a total of 2.7 million books. As
initial step to gain quick access to the data, it was parsed and indexed into
the open source search engine Apache Solr3.

For the first task, the classification task, the only preprocessing step that
was applied on the data was stopword removal. In the second step several
sets of features were extracted: First, typical feature based on the textual
statistics like the frequency of top n-grams within the samples. Second, tags
extracted from the provided book dataset were used to produce further
features. Finally, based on the assumption that people asking for book
recommendations are more literate and might therefore make less spelling
errors in texts the normalized count of spelling errors was added as feature.
Additionally, this feature penalizes the postings that contain no decent text.
This set of features was used to train three different classification algorithms.
A Decision Tree, a Random Forest and a Naive Bayes classifier. A fourth
approach, based on the idea of a Veto-Veto [?] classifier, was as well reported
in the final results. Here, a majority voting schema based on the three
trained models was implemented. The parameters of the single classification
algorithms were manually optimized.

To approach the second task of this lab, the book linking task, a different
initial approach was chosen. Within the dataset one could observed that
the titles of the books usually were stated quite precise, sometimes even
with the according author’s name. This is probably based on the nature of
the dataset produced by users that value books. Based on this observation
an simple algorithm was implemented. In an initial step, the provided 500

threads and related replies were preprocessed. (e.g. stop-word removal,
normalization and removal of special chars) From the indexed data the title
and parts of the meta-data like the authors and creators were extracted.
This data was preprocessed in the same way as the postings. Finally, the
generated data produced a lookup table which also linked to the according
ISBN numbers that had to be reported. A simple string matching algorithm
was used to find the book titles within the text. One of the major drawbacks
of this approach is the high number of false-positive results. Mostly this is

3http://lucene.apache.org/solr/
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Table 4.1: Results of the first run with only a small validation dataset created out of the
training data. The results represent the accuracy on the combined datasets of
”LibraryThing” and ”Reddit”.

Naive Bayes Decision Tree Random Forest Vote-Veto

Accuracy 84.10 78.12 84.09 83.21

Table 4.2: Official results on the testing data. The accuracy on the ”Reddit” and ”Library-
Thing” data are reported separately.

Naive Bayes Decision Tree Random Forest Vote-Veto
LibraryThing 91.59 83.38 74.82 90.63

Reddit 82.02 76.40 74.16 76.40

based on the fact that some book titles are short, especially when stop words
are removed, and contain very general terms. Several strategies to resolve
this issue were evaluated although not are applied on the final results.
Still, they are reported for the purpose of completeness. The first simple
improvement was to remove extremely short book titles, especially titles
that contained very general terms which is often the case for books that can
be considered to be in the field of life advice. Another possibility is to rank
candidates based on certain indicators and put a weight on each candidate.
Candidates not reaching a certain weight can be removed. For example, one
thing that can increase the weight of a candidate is the co-occurrence of
the author’s name next to the title. Users often mention the author either
before, like ”Stephen King’s The Dark Tower” , or after the books titles, like
”The Dark Tower by Stephen King”. Furthermore, a classifier was trained to
identify sentences that potentially contain a book title. Here, a supervised
approach was used based on a set of labelled sentences in the dataset. Upon
this labelled sentences the same feature extraction pipeline used in the
classification tasks was applied. Both, authors name based and sentence
classification, this approaches may appear to be valid but the results do
not reflect them for two reasons. First, the absence of the author’s name
is a too weak indicator to remove a candidate from the list. Second, the
classification accuracy for sentences mentioning book titles was too low to
come to conclusions (between 60-65 percent accuracy).

The first figures in table 4.1 shows the results of the first task produced by
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Table 4.3: Official results on the baseline versus our approach. The baseline provided used
4-grams as features classified by Linear Support Vector classifier and a Naive
Bayes classifier.

Naive Bayes KNOW Naive Bayes Baseline 4-
gram

Linear SVC Baseline 4-
gram

LibraryThing 91.59 87.59 94.17

Reddit 82.02 76.40 78.65

Table 4.4: Official results on the testing data for the linking task.
Accuracy Recall Precision F-score

Linking Task
KNOW

41.14 41.14 28.26 33.50

Linking Task
LSIS

26.99 26.99 38.23 31.64

the system on a small test set created out of the training dataset from Reddit
and LibraryThing combined. Here the Naive Base and the Random Forrest
approach perform best on similar level.
In table 4.2 the results of the official test run are presented. The two test sets,
LibraryThing and Reddit, were evaluated separately in the official run. For
both datasets the Naive Base classifier rendered the best results. In general,
the system ranked on place three directly below two baseline approaches
provided by the organizers 4. Table 4.3 shows the official results of the
Naive Base classification approach compared to the baseline.

The final Table 4.4 shows the results of the linking task. Here the competing
systems were judged upon the F-score. With a score of 33.50 it ranked in
the first place.

In context driven federated recommender systems one main component is
the context detection model. One main function of such a component is to
detect when the user is in need of assistance. The presented experiment
shows that, at least in narrowed fields, it is possible to identify a request for
assistance in written text with very high precision. Still, in future work, it
has to be proven that this kind of approach is generalizable to cover also
different and multiple fields.

4http://social-book-search.humanities.uva.nl/#/mining16
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A more comprehensive description of this experiment can be found in [85].
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4.2 Query Splitting for Context-Driven Federated
Recommendations

In general, the performance of document-based retrieval systems is mainly
determined by the quality of the query and its overlap with the actual
information need of the user. Though, systems that generate such requests
automatically as described in section 3.1 face the challenge to identify the
main topic of the underlying work. For example from textual content the
user is processing at the moment. Although the algorithms might improve
over time it can not be expected that this main topic extraction works al-
ways flawless. In such cases, multiple intents might end up in one single
query. Furthermore, literature suggests that in certain situations covering
multiple potential intents is beneficial if when an exact determination is not
possible [58]. Unfortunately not all retrieval systems might respond well to
such multi-topic queries especially if they are unusually long. Potentially
the retrieval performance suffers in general or the system might not return
results at all. This is particularly problematic in a federated retrieval setting
where the overall performance relies on the performance of the single col-
lections.
Query splitting in the field of Natural Language Processing is not extensively
researched yet. The algorithms rely usually on the usage of query logs or on
retrieving initial documents to perform a topical separation. One example
of the later is proposed by Yu et al. [81]. In their work they propose three
different approaches: ’Relevance-Feedback-Based Clustering’, ’Term-Based
Clustering’ and ’Document- Based Clustering’. ’Relevance-Feedback-Based
Clustering’ uses a method to group upfront retrieved documents to the
initial query terms. The top unique terms of this documents are then again
used to create sets of sub-queries. The ’Term-Based Clustering’ makes use
of Rocchio’s query expansion algorithm to assign the documents to each
query. Through the cosine correlation the terms are clustered in an agglom-
erative hierarchical cluster. Finally, the resulting tree is used to build the
query term groups. Alternative approaches that rely on query-logs and the
identification of latent topics can be found in the work of Ye et al. [80] and
He at al. [36].
The in this work presented approach is making use of two recently de-
veloped algorithms to generate word embeddings; namely Word2Vec [49]
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and GloVe [53]. Both approaches are creating word embeddings whereas
Word2Vec is using a predictive model and GloVe is based on a count base
model. The approaches as well as the baseline in this experiment do not
address the estimation of the amount of topics but rely on prior knowledge.
For estimating the amount of subtopics in a query one can refer to the work
of Tibshirani et al. [75] or Pham et al. [54].
To create a suitable dataset for this experiment the already well studied
Webis-QSeC-10 [34] training set was used. This training set contains 5000

queries extracted from query-logs. Out of this dataset, a new set of mixed
topic queries was created where N queries were joined. Here N ranged from
2 to 4.
The first evaluation setup covers the case where for example a system might
accidentally identifies two paragraphs containing unrelated topics as one
and therefore construct a query with this two topics but in the correct
sequence. The second evaluation setup covers the case where the topically
related order is not given anymore. This could be the case when extracted
terms were first weighted by there importance before they were sent to the
system.

Baseline: To gain insights of the complexity of the task and the performance
of the word embedding approaches a simple baseline was defined that
should render near-optimal results. This approach simply splits the com-
posed query string into k equally sized chunks. Since most queries have the
tendency to be between three to five terms [2] this approach should render
good results in the first evaluation setup. However, in the second evaluation
setup, the results are expected to be of low quality.

Word Embedding Based Classification: The algorithms either used the vec-
tors of a pre-trained Word2Vec model, from the Google News dataset, or
from a pre-trained GloVe model, a Wikipedia dump of 2014 combined with
the English Gigaword Fifth Edition newswire text corpora. This vectors
where then used to group the query terms with the clustering algorithm
K-means. Here k, the number of clusters, was set to the number of merged
queries.

Two measures were chosen to report the clustering performance: V-measure [60]
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Table 4.5: Rand Index results of the two splitting approaches within the first scenario
where the position is taken into account. The values descent from iteration to
iteration for each of the approaches.

Two Queries Three Queries Four Queries
Word2Vec Kmeans Rand Index 0.710 0.643 0.595

GloVe Kmeans Rand Index 0.729 0.697 0.648
Split Approach Rand Index 0.717 0.664 0.631

Table 4.6: V-Measure results of the two splitting approaches within the first scenario where
the position is taken into account. The V-Measure values seem to be almost
independent of the number of mixed queries.

Two Queries Three Queries Four Queries
Word2Vec Kmeans V-Measure 0.770 0.770 0.769

GloVe Kmeans V-Measure 0.788 0.806 0.780

Split Approach V-Measure 0.775 0.781 0.789

and Rand Index [38]. V-measure represents the harmonic mean between
homogeneity and completeness of two clusters. The returned figures are
between 0 and 1; higher values are better. The Rand Index returns the simi-
larity of two clusters through all the pairs of samples. It returns values from
-1 to 1 where 0 represents randomness, 1 full correlation and -1 negative
correlation.

Table 4.5 and table 4.6 show the results in the first scenario where the
sequence of the query tokens are in the correct topical order. In general, the
GloVe K-means approach rendered the best results, although figures of all
approaches are nearly on a similar level.

Table 4.7 and table 4.8 show the Rand Index and V-Measure results for the
second scenario where the position is not taken into account. As expected
the result of the splitting approach, the baseline, are low in general and

Table 4.7: Results of the two splitting approaches within the second scenario where the
position is not taken into account. The Rand index seems to decline with each
iteration. The highest values are achieved by the GloVe based approach. The
Rand Index results of the splitting approach indicate a random assignment to
the clusters as expected.

Two Queries Three Queries Four Queries
Word2Vec Kmeans Rand Index 0.088 0.071 0.056

GloVe Kmeans Rand Index 0.281 0.232 0.199
Split Approach Rand Index 0.008 0.003 0.000
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Table 4.8: Results of the two splitting approaches within the second scenario where the
position is not taken into account. Here highest values are produced by the Glove
based approach, which even raises by each iteration. For the Word2Vec based
approach, the values seem to be almost stable, independent from the number of
mixed queries. The lowest results are achieved by the splitting approach.

Two Queries Three Queries Four Queries
Word2Vec Kmeans V-Measure 0.373 0.341 0.373

GloVe Kmeans V-Measure 0.427 0.477 0.502
Split Approach V-Measure 0.278 0.267 0.236

the Rand Index results indicate random behaviour. The Word2Vec based
approach already creates better results, but again the GloVe based algorithm
renders best results for both measures by far.

The results of the first scenario indicate that there is one major factor. As
expected the average query length seems to the dominant factor which
explains why the basic splitting approach renders decent results in this
scenario. Since the query length is mostly similar on average splitting might
just be off by one in many cases. Even in that scenario the GloVe based
approach outperforms the others slightly.
However, in the second scenario the splitting approach, as expected as well,
generated random assignments to the term groups. Here the Word2Vec
approach generates better results. Though, the GloVe based approach pro-
duces the most reasonable results.
In general, it could be expected that using a dedicated Word2Vec or Glove
model could improve performance further when trained on query log
datasets. Furthermore, other classification algorithms, for example, deep
learning based approaches, could be beneficial as well which could be
evaluated in future work.

Preprocessing an automatically generated query is an important task in a
service based federated recommendation framework. Not only is it necessary
to understand the user’s intend, it’s also important to identify potential
errors introduced by the context extraction process like the generation of
multi-topic queries. For example, through this process the results returned
to the user can be improved by covering several different topics on one single
result list. Furthermore, it can prevent that system that cannot cope well
with multi-topic queries do not reply at all. Which could lead to valuable
information not reaching the user at all.
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A more comprehensive description of this experiment can be found in [83].
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4.3 Evaluation of Pseudo Relevance Feedback
Techniques for Cross Vertical Aggregated
Search

One of the underlying challenges of cross-vertical aggregated search and
therefore likewise for query-based federated recommendation systems is
the presentation of aggregated result lists to the user. Though, evaluations
in this setting are complex. Evaluations in information retrieval often follow
the Cranfield paradigm [26]. It relies on a crafted data set of items or
documents where the relevance or importance of the documents according
to a query is judged by humans. Thus, one can judge the performance of
a retrieval system through measures like mean average precision(MAP),
normalized discounted cumulative gain (NDCG) and others in an offline
manner. Although this approach has been proven to be valuable, there are
certain limitations to it. An extensive discussion of this topic can be found in
the work of Voorhees [77]. One of this limitations is that for certain aspects
that are valuable in some situations this approach does not seem to be
applicable. An example would be settings where aspects like diversity and
serendipity play a role which could be considered of higher importance in
recommender like system. Particularly for serendipity, it would be hard to
gather ground truth data and measure the performance of an algorithm
since this effect depends on the personal experience of the single individual.
The first goal of the in this work presented experiment was to create an
experimental setup that allows evaluating algorithms in a federated search
setting where the Cranfield paradigm cannot be applied easily. The second
goal was to get information about type and amount of sources used in
federated retrieval when pseudo-relevance feedback should be applied.
Pseudo-relevance feedback is a technique to improve the relevance of the
retrieved documents by appending terms to the original queries. To do
that, the initial query is send a first time to the collection. Out of the top
search hits of the result set of this initial search query term, candidates
are selected. This query term candidates are finally appended to the initial
query and, after a second retrieval step, the final result set is returned to
the user. This technique is of interest in our setting since the query the
system receives will be auto-generated. Hence, there is a possibility that the
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query does not cover the information need of the user optimally. According
to literature one option to resolve such a problem is result diversification
with the means of query reformulation [63]. Hence, for the reformulation
process, pseudo-relevance feedback algorithms were used to expand the
query and create a query drift towards most common topics. Query drift
denotes the effect when a query is altered to an extent that it causes a
semantic drift within the result set [42]. Other parameters to take into
account are the amount of retrieved items to consider for the key term
extraction process and the number of query terms used to add to the
query. For the first parameter Montgomery et al. [50] suggest using the
top ten documents. The second parameter, the amount of added query
terms, should be limited to a maximum as well since precision drops after
exceeding a certain amount [35]. For this experiment, an upper limit of
twenty unique query terms was chosen. In a federated setting Shokouhi et
al. [68] demonstrated that only using a set of predefined sources instead of
all available sources could be beneficial. On the other hand, Lynam et al.[46]
stated that the suitability of a source for other sources could be estimated
by the performance impact when used on itself. This might also imply that
a single source for the expansion process, for example, a comprehensive
knowledge-base, could be a viable option. Finally, this led to the three
different strategies that competed against the basic unaltered result list.

No Query Expansion As baseline, the query was sent unexpanded to the
sources.

Multiple Sources This setting takes all sources into account. Here the query
was sent first to all the sources. The top documents of all the sources
were the basis to for the selection of the expansion terms. Finally, the
expanded query is sent to all sources.

Single Source Although similar to the multiple sources approach, this takes
only one single preselected source into consideration. The source was
selected based on its performance when queried with its own ex-
panded terms like described previously.

External Knowledge Base The last setting is making use of a knowledge
base as expansion source, namely Wikipedia. The knowledge base
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itself is not part of the finally queried sources.

To generate the expanded query a simple strategy was used. The original
query terms were conjunct while the expansion terms were added in a
disjunctive manner.
Although there are several different options [41, 6] to aggregate results from
different sources a simple interleaving algorithm was chosen to not create a
potential bias. Therefore the results were combined by picking the top result
of each list in a fixed sequence ascending.
For this initial experiment, a dedicated evaluation tool was created to have
full control of all parameters. One of the lesser goals was also to gain in-
sights how to design such an evaluation to be conducted on crowd-sourcing
platforms. This tool presented a fixed query to the user, optionally a short
description of the query, and the four result sets according to the four
strategies. The order of the results lists were randomized to avoid a bias.
The user could grade each of this result sets from one, the best result, to
four, the least fitting result, by clicking onto the result list.

The actual task of the user was to compare the presented search results and
rank them accordingly. Once the sequence was selected, the user got a new
query with associated result sets. The used query and result dataset were
composed beforehand since it had to be ensured that the system works in a
deterministic manner. All the users evaluated exactly the same queries with
the same result lists. The basis for the queries was the AOL query log [52]
from which top queries were extracted and further individually selected.
Each of the final 20 test subjects was instructed personally, and notes about
comments and feedback were taken during the evaluation. Interested in-
dividuals were given a short background of the system, but no hints were
given by which means the search results should be rated. Figure 4.1 shows
the dedicated evaluation tool.

The result of this evaluation can be utilized in several ways. First, from
the recordings of the tool a qualitative and quantitative evaluation of the
approach can be made. Second, the notes taken during the session can be
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Figure 4.1: The figure shows the dedicated tool for the evaluation. The tool presented the
query, a description of the query and the four result set randomized to avoid
bias.
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Expansion Method Overall Score Entity-Centric Queries Topical Queries
No QE 431 103 328

Multiple Sources 466 129 337

Selected Source 427 143 284

Wikipedia 426 155 271

Table 4.9: Results for all four query expansion strategies, where the number indicates the
accumulated rank, thus lower values are better. Results are also separated into
entity-centric queries and topical queries, where the first type of query refers to
individuals, organisation, and other types of entities.

used to render a guideline for evaluation setups in the future.

Users reported that it was often hard to render a decision based on the given
result lists since results were often quite similar. This is also reflected by the
Krippendorff’s Alpha measure of disagreement which lies between 0.66-0.78.
This value can only be considered as ’fair’ agreement. This outcome was
probably affected by several factors. Some participant only considered the
top results while others measured the overall result-set performance. This is
also reflected by the evaluation times per query of about one to five minutes.
Furthermore, since the queries were always presented in the same order
and not randomized a fatigue towards the end of the evaluation can be
assumed.
Table 4.9 shows the quantitative results of the experiment. The given figures
represent the accumulated rank of the user’s decision, therefore lower
values indicate a preference towards the given approach. The expansion
methods based on Wikipedia and the preselected sources yield slightly
better results in general than the baseline with no expansion at all. Though,
when inspecting the query types more closely, there seems to be a tendency
that topical queries seem to benefit most from the query expansion. Entity-
centric queries, queries where one would expect one single Wikipedia page
like ”Michelle Obama”, seem to perform better with no expansion at all. In
conclusion, the expansion process using one single knowledge base, in this
case, Wikipedia, seems to be the most beneficial. However, in certain cases
like entity-centric queries, it should be considered to have no expansion or
have a mixed approach with unexpanded top results and expanded results
aggregated in the lower ranks.
Finally, the observed behaviour of the participants allowed to derive a set of
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criteria to design such a user study on a large setting like on crowd-sourcing
platforms:

• The rating strategy how to evaluate the results should be defined and
explained clearly. (e.g. full set versus top results)
• A maximum of two sets of lists should be compared against each other

to facilitate rendering a decision.
• When diversity and serendipity in results set should be evaluated the

full result set has to be compared.
• The amount of queries judged per user should be selected carefully to

avoid fatigue.
• A further measures to reduce the consumed time and needed attention

could be to present only the title of the items and no snipped.
• A short questionnaire at the end of each task could improve the overall

quality and allows to gain further insights into the decision rendering
process.

This experiment gives first insights how to render result lists in the set-
ting of federated recommender engines in an efficient manner. Furthermore,
it provides insights for larger user based studies like described in section 4.6.

A more comprehensive description of this experiment can be found in [82].
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4.4 Do Ambiguous Words Improve Probing for
Federated Search

One of the most crucial steps in the whole federated search process is the
source selection step. The task of finding matching sources towards a user
request, a query. To facilitate this, typically detailed information is a neces-
sity. For example information such as meta-data and statistical information
of the collections corpus. Federated search in an uncooperative setting, were
detailed insights into the corpus are not available and documents can only
be retrieved by a potentially restrictive API, faces the challenge of collection
representation. This is the case especially when the system is designed in a
freely accessible way, and collections can be added and removed dynami-
cally at runtime. In recent years, to face this challenge, the most common
approach, in this case, is called ”query-based sampling”. Further details
can be found in chapter 2.2.2. In query-based sampling the system sends
requests to the collections and gathers the needed information from the
results returned. In such a dynamic system the goal would be to make the
collection available as fast as possible after the first connection to the system.
Though, an ideal solution should send only a very small set of queries to
the collection to get a realistic image of the underlying information.
Although, several proposals were made, as discussed in section 2.2.2, how
the query set should be created a method relying on ambiguous words
hasn’t been explored yet.

The here presented work tried to assess possibilities for a new category
based source selection approach while reducing the amount of needed
probing attempts to a minimum. The collection selection approach used
for this evaluation setup is based on a category mapping algorithm. This
algorithm takes a set of terms (t), a query (q) or a document (ds) from a
source (s) of all sources (S), and maps it to a set of categories (C).

f ({t}) = {< c, wc > |c ∈ C} (4.1)

To each category c there is a weight wc applied to rank the candidates
afterwards.
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Input Terms Output Categories
battle of trafalgar { military, history }
women wage gap { economy }
world cup football { sport }
java 8 features { computer science, food }
dinosaur t-rex { animals }
sentimental tears emotions { psychological features }
kittens for sale { animals, commerce }
department of justice { administration }

Table 4.10: Queries given to the algorithm to assign domains. In general the results seem
to meet the expectations.

Through this ranking, it is finally possible to compare different mappings
and render multiple sets of documents.

As source of the used categories was extracted from WordNet Domains 5 [47,
9] WordNet contains most English terms organized in sunsets which are
normally assigned to domains in WordNet Domains. This Domains model
a tree-like hierarchy containing a total of 164 nodes. Additionally, WordNet
Domains has the concept of factotums which represent synsets with a
high number of categories. The algorithm is making use of this dataset
by extracting these categories for each given term. Further, in the initial
step, each term gets the same weight assigned. In a second step, the weight
is propagated to its parent notes through a decay function of 1/n with n
giving through the distance from the leaf note to the parent note. Through
aggregating the weights over the input a set of domains for this input is
created. The top 5 domains are finally chosen to represent the categories of
the input. Example results can be seen in table 4.10.

One dataset that is dedicated to Federated Search research is the ”FedWeb
greatest hits” dataset [27] consisting of about 800 GB crawled HTML pages
from about 200 different collections. Through an analysis of the FedWeb
dataset, it became apparent that in general sources could be categorized

5http://wndomains.fbk.eu/
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into two major groups. Encyclopedic sources, which cover a wide variety of
content, and niche sources, covering specific thematic content. For example,
containing exclusively documents about biology.
Since one hypothesis was that choosing ambiguous terms for the probing
process to improve the process four different query selection strategies were
developed.

Factotum Queries
These queries were produced through extracting so-called factotums,
multi-domain word, from the WordNet synsets.

Ambiguous Queries
Similar to the factotum queries these queries were constructed from
multidomain words but with the minimal limit of three domains.

Random Queries
Queries constructed by randomly drawing from WordNet.

Random Queries without retainment
Here the words were not retained between consecutive probing at-
tempts.

To conduct the evaluation three main questions were addressed. First, the
question if the algorithm detects all domains. Second, is the algorithm
producing stable domain sets results? Third, is it really applicable to sources
where the domains are not known beforehand.
To address the first question a small dataset consisting of 3 blocks with 20

documents where each block was coming one from a specific domain. These
selected domains were mathematics, religion and health. Finally, the dataset
was passed to the algorithm. The results are presented in Figure 4.2.

The algorithm identifies the domains mathematics and religion correctly.
The domain health is missing, although the third top domain in the results is
medicine. In this case, it might be due to the WordNet Domains. In general,
as long as this mapping is consistent it should not interfere with the results
of the source selection approach.

To address the second question, if the domain set produced by the al-
gorithms stabilize over time, the FedWeb Dataset was utilized. The most
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Figure 4.2: The plot shows the results that were detected on the constructed dataset. Except
for the domain medicine which replaced the domain health the assignment of
the domains seem to work as expected.

fitting measure for this task seemed to be the ”rank biased overlap” [79].
This measure employs the hyper-parameter p, reflecting the importance
of the top results, which was set to 0.8. The algorithm was applied to this
dataset following our four query drawing strategies. Drawing from 100 to
2,000 queries in steps of 100s. Figure 4.3 shows the results of this approach.
Like described before, two groups of the sources could be seen in the

dataset, niche and encyclopedic sources. Since it was of interest to which
extend the observed behaviour of the algorithm changes in comparison to
a random baseline the dataset was split into these two groups. Figure 4.4
shows the results of this evaluation with the mean and standard deviation
between the curves of this two groups.
To address the third question, the final verification of the algorithm, the

last experiment was conducted. For this experiment, another source was
taken, in particular, ZBW 6, a collection of scientific economic literature. As
comparison dataset from 100 queries, the top ten documents were manually
assigned to sets of domains. Results can be seen in Figure ??. All algorithms
agree on the top domain, economy. In the rest of the domain sets, overlaps
can be spotted but not with the same rank.

6http://www.zbw.eu/
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Figure 4.3: The upper plot an example graph on a niche source called ”CERN Documents”.
The upper graph shows the results from a niche source ”CERN Documents”. The
second one is the result of an encyclopedic source,”WordPress”, in comparison.
In general, the approaches yielded stable results faster on niche sources. As
expected the lowest and most unstable results are given by the ”random without
retainment” approach.
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Figure 4.4: The plots show the results of the different query generation methods. Each plot
represents the mean performance of the single generation process separated on
the niche and encyclopedic sources. In general, the factotum, the ambiguous and
random query generation processes show a similar performance, only random
without reattainment has a high deviation from the mean.
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For a federated recommender engine, one important factor to bring benefit
for the user is the amount of connected collections. It can be assumed that a
high number of available resources allows the system to tailor the results
better towards the user’s information need. That means in an ideal setting
connecting to the core of the system should be of low effort. This also im-
plies that getting standardised statistics about the joining collection directly
from the collection itself is most properly unrealistic. Hence, it can also be
assumed that in such a system collections join an drop out frequently. The
more often new collections join, and the more systems are registered, the
more important is an efficient probing approach. In this context, the results
of this experiment are highly relevant for the system. Still, in that regard,
more experiments would be needed.
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4.5 Efficient Search Result Diversification via
Query Expansion Using Knowledge Bases

As described in section 3.3 and section 3.4 one step towards a federated
recommendation engine is to incorporate diversified results in the final
result set instead of returning solely highly precise results.
Usually, queries sent by users to a search engine tend to be short and am-
biguous [20, 55]. A search engine receiving this queries therefore might
want to cover every potential interpretation of the query to cover the user’s
information need. One possibility to cover all these meanings is diversifica-
tion of the search results. A comprehensive overview is given by Drosou
et al. [29]. In their work, they identified three major groups of approaches.
Content-based, novelty-based and coverage-based where in all these cat-
egories a subset of results is selected with the aim to maximize diversity.
Usually, this restructuring is performed as a greedy approximation.
One downside of this algorithms is that the retrieved result list has to be
significantly larger than the amount of returned result to cover all potential
interpretations. This is especially a drawback when the search engine is
located remotely due to higher response times for longer document lists.
Further, processing and re-ranking these items can be computationally ex-
pensive. Therefore, it would be beneficial if this process could be simplified
or avoided. But in the case when the search engine is not directly modifiable
this steps can not be avoided when diversification is achieved through result
list re-ranking. The only feasible alternative is to alter the query before it is
sent to the system. One example of such an alteration of the query would
be query expansion. Here the query is extended with terms that are related
or are synonyms of the original query terms. In their work Clark et al. [25]
described that diversity increased through pseudo-relevance feedback which
is a related technique. Simplified and in brief, a query is sent to a search
engine. The top results are retrieved and analyzed, and the top terms in
this results are added to the query. Therefore, query expansion seems to
be a feasible option. Still, it is an open question to which level diversified
results can be achieved through this process. Furthermore, how to surrogate
the retrieval process of the top documents which again would add retrieval
time and computational effort.
Latency and computational effort can only be reduced in a federated search
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system when pseudo-relevance feedback based query expansion is per-
formed on a local search engine instead of an external collection. Therefore,
a dedicated index containing content of the English version of the Wikipedia
was created. With the help of this search index, a list of expansion terms
was crafted by sending the unexpanded query to this search engine and
extracting expansion terms out of the top results. Details to the indexing
and term extraction process can be found in [61].
Finally, the extracted expansion terms were added to the original query in a
disjunct manner. All expansion terms where added as a single query clause
to avoid a too distinct query drift:

OrigQueryTerms OR (ExpTerm1 OR ... OR ExpTermn)

The queries generated in this way were then finally sent to the underlying
collection.
As dataset for the initial queries a dataset extracted from query logs con-
tributed by Seifert at al. [65] was used. Out of this dataset, 70 queries were
hand selected to gain a clean query-set.

As baseline against the query expansion approach the well known IA-
Select [1] algorithm was chosen. IA-Select requires every query and every
document to be assigned to a list of categories. To full-fill this requirement
categories given trough the Wikipedia category graph7 and DBPedia 8 were
used. Each query got manually assigned to appropriate categories while
for the documents the already defined categories were used. Since the
Wikipedia category graph is extensive a mapping schema towards the main
Wikipedia categories was applied.
To assess the level of diversity of the result lists the NDCG-IA (Normalized
Discounted Cumulative Gain - Intend Aware) [1] measure was used which
is the intend aware version of NDCG.

One major parameter in this evaluation is the amount of added expansion
terms to the query. For the first results, presented in Figure 4.5, the amount

7http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/skos_

categories_en.nt.bz2
8http://www.dbpedia.org
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Figure 4.5: Raw results of IA-Select and the query expansion algorithm with their respective
NDCG-IA@10 values for each query. Although in most cases the NDCG-IA
results appear to be similar, in some queries the two values disagree.

of expansion terms was set to 10. The figure presents the values of the
NDCG-IA@10 for both, the IA-Select and the query expansion algorithms.
Here, most results are similar, but for some queries, the algorithms disagree.

Figure 4.7 shows the results of the two algorithms as scatter plot for
NDCG-IA@10 with ten expansion terms for the query expansion approach.
In general, the two distributions seem to be positively correlated.

One of the relevant questions is the optimal amount of needed expansion
term to reach a certain degree of diversity. Figure 4.6 shows correlation
between IA-Select and the query expansion method from 5 to 20 expansion
terms. The provided correlation measure results are Pearson’s r, Spearman’s
rho and Kendall’s tau. The highest Pearson’s r correlation can be observed
at 20 expansion terms. For Spearman’s rho and Kendall’s tau the highest
correlation can be seen at ten expansion terms.

In general, it seems to be the case that query expansion based on an unre-
lated knowledge base can be used to diversify results on a similar level than
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Figure 4.6: Correlation values of the NDCG-IA@10 for the query expansion and IA-Select
approach in relation to the count of the query expansion terms. The highest
Pearson correlation occurs at term expansion numExpTerms = 20 with r = 0.60.
Altogether the coefficients indicate a better correlation for the query expansion
with 10 terms.
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Figure 4.7: Scatter plot of NDCG-IA@10 for the two diversification methods. Each occur-
rence o is defined as o = (NDCG IA@10(RQE(q′i)), NDCG IA@10(RIA(qi)))
with q′i = QExp(qi, 10). The two distributions appear to be positively correlated.

IA-Select. Though, the amount of expanded terms is a key factor for the
performance of the approach. According to the results, it can be assumed
that the best choice diversity wise and performance wise is at about 10

expansion terms when added to the original query in a disjunct manner.

For a federated recommender system, these insights are relevant on several
levels. First, it allows diversifying the results without retrieving more data
from the connected collections then necessary which avoids higher response
times. Second, since for diversification altering the query is beneficial, it
can be assumed that a similar method can also be utilized to create other
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effects. One example could be result list personalization which is discussed
in section 4.6.

A more comprehensive description of this experiment can be found in [61].
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4.6 Evaluation of Contextualization and
Diversification Approaches in Aggregated
Search

As described in section 2.2.3 there are several approaches to resultlist ag-
gregation. All these approaches can be categorized into three major groups:
”Non Blended”, ”Blended” [73] and ”Composite Retrieval” [12]. The ”Non-
Blended” approach show for each collection an own separated view. In
contrast, the ”Blended” approach takes all the results from all collections
and returns one single result set to the user. While ”Composite Retrieval” is
a mixture of ”Non-Blended” and ”Blended” approaches.
In the setting were the system should present diverse and serendipitous
together with unaltered results the most sensible approach seems to be the
Blended approach. Still, there are several options how to blend different
result list into one single set. Two of the most prominent methods, when it
comes to highly diverse content in regards to media types or vast amounts
of different collections to be aggregated, is arranging the results of the
different collections in blocks [5] or as interleaved list [23]. These two are of
special relevance when ranking values are not given or are not comparable
to each other. Still, according to Arguello et al. [3] there is no user study
that compares these two approaches yet.
In a previous study [61], described in section 4.5, an approach for diversifi-
cation on query level by the use of a pseudo-relevance feedback technique
was evaluated. To generated serendipitous results a similar approach was
used. From a query log set of the EEXCESS 9 project [65] with the according
to users web history user profiles were extracted. By using the according
web-pages as a result set for our pseudo relevance keyword generation
process, it was possible were able to extract top keywords representing the
user’s history. These keywords where added to the query in a conjunctive
manner to generated an artificial query drift towards this topics.
An example of these two query formulation approaches can be seen in
figure 4.8.

Based on the insights of a previous user study [82] an evaluation on a crowd-

9http://eexcess.eu/
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Figure 4.8: In this figure two queries are presented. The top row shows a query aiming for
serendipitous results. The expanded terms form a disjunction with each other
and are conjunct with the original query terms to produce an intentional query
drift. The lower row shows query that aims to produce diversified results. Here
the expansion terms are disjunct as well to boots under-represented topics.

sourcing platform CrowdFlower10 was conducted with over 300 workers
participated producing more than 1500 judgments.
The previously described user profiles with the according to queries and
the user’s history was finally used to render three results sets: the basic
unaltered result set, the diversified result set and the serendipitous result
set. With the help of this three query datasets a total of five evaluation result
sets were created which were finally used in the evaluation:

Basic The baseline; containing only the items returned by the system for
the unaltered query.

Interleaved A result list where the top results of the basic, the diversified
and serendipitous results were interleaved one by one.

Blocked In the blocked list the first block contained the top results of the
basic list, the second block the top results of the diversified list and
the third block the results of the serendipitous list. All results were
de-duplicated against the already selected results in the final result
set.

Diverse Like the blocked list but leaving out serendipitous results as the
third block.

Serendipitous Similar like the diverse list but containing only basic and
serendipitous results.

These evaluation-sets were the basis to gain insights in the following research
questions:

• How does the block ranking perform against the basic result list?
• How does the interleaved list perform against the basic result list?

10https://www.crowdflower.com/
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• How do both approaches perform compared directly against each
other?
• Can serendipitous results be achieved by query reformulation on a

similar level than diversification?

To answer this questions a total of three evaluation setups on the crowd-
sourcing platform CrowdFlower were created. In each of this setups, the
workers got several pieces of information to perform the task. A compre-
hensive instruction and how to evaluate the given results, the query, a link
to google for background information of the query, information about the
history of the user, the two result lists that had to be compared and two
question two the workers. The first, asking which list the worker found
more suiting for this setting. The second, asking about the confidence level
of the user. This setup was the result of a short pretest on the platform was
the feedback given by workers was incorporated to improve the evaluation.
(e.g. the feedback about the comprehensibility of the introduction) The
previously mentioned five evaluation-datasets were used to create a total of
three evaluation scenarios:

Scenario 1 This scenario aimed to get a basic understanding of the accep-
tance of blocked or interleaved results. Here, the workers got either to
compare the unaltered result list against the block or the interleaved
result list.

Scenario 2 In this scenario the workers had to compare the shortened basic
list against a diversity blocked list or a serendipity blocked list. Here,
the main goal was to see if one of the two approaches has a severe
adverse effect on the other.

Scenario 3 Here, the blocked results were directly compared to the inter-
leaved results. The goal of this scenario was to eliminate the possibility
that it proves to be too difficult for the workers to get into the mindset
of potential users. The results of this scenario should allow to still
draw conclusions about the performance of this approaches.

In such setting typically measures like Fleiss’ κ [31] for inter-rater agreement
is not applicable since the there only a small set of overlap from users and
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Item Agree-
ment

Decision
Percentage

Interleaved 0.692 0.358

Blocked 0.721 0.355

Table 4.11: Results for the interleaving and blocking approach. Reported values are results
of the arithmetic mean agreement on item level and the decision percentage
towards the stated approach within the corresponding row.

queries. Though, the reported data is the agreement on item level with the
arithmetic mean of the percentage of the biggest agreement. See equation 4.2
as illustration. S is the set of tasks, and ai and bi are the sums of votes
towards one of the algorithms while ai is bigger than bi.

f (x) =
∑i∈S (

ai
ai+bi
|ai ≥ bi)

|S| (4.2)

The goal of scenario #1 was to gain insights into the general acceptance
level of the interleaved and blocking approach. Table 4.11 shows the direct
comparison between the basic lists and the interleaved or blocked lists. The
worker’s agreement is at about 70 percent for each of the approaches. While
analyzing the queries, it came apparent that only one query was present
in both sets. Though, it seems that both approaches are justifiable but do
yield different user satisfaction. The decision percentage is on the same level
for both approaches at about 35 percent. Since the given query and users
history did not reflect the workers, personal information need this results
can be considered as sufficient.
In scenario #two the potential adverse effect of the diversity and serendipity
approach on each other was assessed. The results in table 4.12 on the item
agreement and decision percentage indicate that both algorithms work on
similar levels. Further, it can be concluded that the approach to generate
serendipitous result list seems to be as feasible as using pseudo-relevance
feedback for diversification.
The goal of scenario #3 was to eliminate the possibility that the workers

find it to be difficult to get into the user’s mindset by comparing the two
approaches directly. Table 4.6 show that there is a slight tendency towards
the blocking approach. Although, this could also be the result of the nature
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Item Agree-
ment

Decision
Percentage

Diverse 0.769 0.307

Serendipitous 0.746 0.31

Table 4.12: Results for the shorter blocked lists containing either only diversified and
basic results or serendipitous and basic results. Both approaches have similar
agreements and decision percentage.

Item Agree-
ment

Decision
Percentage

Blocked vs
Interleaved

0.647 0.532

Table 4.13: Results for the interleaving approach compared directly against the blocking
approach. Both approaches obtain similar result, though a slight tendency
towards the block ranking approach seems to exist.

of the blocking approach which takes as first block the top results of the
original result lists.
Finally, table 4.14 reports the confidence level of the workers after rendering
their decision.

In a Federated Recommender Engine where the goal is not only to return
highly precise results but also diversified results while taking the users
history into account the aggregation process of the results is a key factor for
user satisfaction. The results of this experiment indicate that the decision to
use interleaving or blocking approaches might depend on the preferences
of the user and on the query that is sent to the system. The approach to

InterleavedBlocked Seren. Diverse Blocked
vs In-
ter.

Very
Conf.

30.0 34.0 47.5 42.5 27.0

Confident 52.0 47.0 38.0 41.5 59.0
Hard 18.0 19.0 14.5 16.0 18.0

Table 4.14: Results of the feedback of the users how confident they were with their decision
between the pair of lists in percent. Each user had to state his confidence for
each task.
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create a serendipity effect by query expansion based on the users browsing
history appears to be sensible but more research on this topic is needed.

A more comprehensive description of this experiment can be found in [84].
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This work aimed to answer the question how to create a system that tries
to auto-respond in a personalised way to an information need of the user
while relying on a vast amount of diverse sources. To answer this initial
general problem several research questions were formulated:

1. Which means are necessary to extract topics out of the textual context?
2. What challenges arise from automatically generated queries and what

are potential methods to master those? Additionally, which query
processing steps are beneficial in this setting?

3. Can collection representation be further optimised especially for unco-
operative settings?

4. How can distributed document retrieval be personalised, in particular
when highly precise results are of lesser importance? Furthermore,
which aggregation techniques are beneficial in this setting?

According to these open problems, six experiments were conducted result-
ing in one publication each.

The participation in the social book search lab was aiming to answer the first
question. The results of this lab indicate that detecting the situation when
users are in need of assistance is possible with high accuracy. Although the
lab aims just to detect one specific situation, it is likely that the approach
could be used applied in a more general setting.
While working on question two it became apparent that one of the challenges
in automatic query generation are the multi-topic queries potentially created
by an automated generation process. In a federated recommender system
where collections might not respond well to such queries an approach
would be needed to disjoin those queries topically. To identify multi-topic
queries an approach utilising word embeddings seems to be feasible. Still,
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the approach can very likely be further improved by relying on more com-
plex classification algorithms an dedicated word embedding models. This
query splitting can be done in an own module in the system. Within this
module additional processing steps can be included as well. For example,
a duplicate of the original query can be expanded to diversify the results
or terms extracted from the browsing history of the user can be added to
create a serendipity effect in the final result list.
Collection representation in such an uncooperative setting was evaluated in
two ways. First, with the help of WordNet Domains, an efficient approach
for collection selection can be implemented. Here, the main challenge is to
identify encyclopedic sources early where the assignment of domains varies
strongly even after several probing attempts. Second, choosing ambiguous
or so-called factotum queries does not necessarily reduce the number of
queries needed in the probing process.
Relying on the users browsing history and pseudo-relevance feedback are
means that can be utilised to improve and personalise results in such a
setting efficiently. According to the conducted crowd-sourcing evaluation in
this setting block ranking based aggregation seems to the most beneficial
although in some instances interleaving of the result items is a good alter-
native.
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