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CHAPTER 1

Introduction and main results

1.1. Introduction

1.1.1. Random graphs. Starting with their series of seminal papers [40, 41, 42,
43], Erdős and Rényi studied asymptotic stochastic properties of graphs chosen
according to a certain probability distribution. Their approach laid the founda-
tions for the classical theory of random graphs. The main questions considered by
Erdős, Rényi, and many others are of the following type: consider the so-called
Erdős–Rényi random graph G(n,m), a graph chosen uniformly at random from the
class G(n,m) of all graphs on vertex set [n] := {1, . . . , n} with m = m(n) edges.
What structural properties does G(n,m) have with high probability (commonly ab-
breviated as whp), that is, with probability tending to one as n tends to infinity?

In general, such structural properties are heavily dependent on the parameters
involved and small changes in even one parameter can result in tremendous dif-
ferences in the results. In particular, changing the number m of edges in G(n,m)
minimally can result in very different behaviour. Such a change is called a phase
transition. Since the initial papers of Erdős and Rényi, many such phase transitions
have been observed, for instance in one of the most extensively studied properties
of random graphs: the component structure.

Erdős and Rényi [41] proved that the order (which is the number of vertices)
of the components of G(n,m) undergoes such a phase transition when m is around
n
2 , i.e. when the average degree is around one. The result of Erdős and Rényi states
that whp:

• if the average degree µ := 2mn of G(n,m) is smaller than one, then all
components have at most logarithmic order;
• if µ = 1, the largest component has order n2/3;
• if µ > 1, then there is a unique component of linear order, while the order

of all other components is at most logarithmic.

This phenomenon became known as the emergence of the giant component and was
considered by Erdős and Rényi to be ‘one of the most striking facts concerning
random graphs’.

While the result of Erdős and Rényi seems to indicate a ‘double jump’ in the or-
der of the largest component from logarithmic to order n2/3 to linear, Bollobás [22]
proved that the phase transition is actually ‘smooth’ when we look more closely
at the range of µ being around one, that is, when s := m − n

2 is sublinear. Bol-
lobás’ result, which was later improved by  Luczak [75], shows that the order of the
largest component changes gradually, depending on whether s has order at most
n2/3 (known as the critical regime) or if s has larger order and s > 0 (the super-
critical regime) or s < 0 (the subcritical regime). Subsequently, Aldous [1] further
improved the result for the critical regime using multiplicative coalescent processes
and inhomogeneous Brownian motion.

In the supercritical regime and in the regime µ > 1, central limit theorems and
local limit theorems provide stronger concentration results for the order and the size
(which is, the number of edges) of the largest component. The methods used for
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these results range from counting techniques [94, 101] over Fourier analysis [5] to
probabilistic methods such as Galton-Watson branching processes [25], two-round
exposure [4], or random walks and martingales [24].

For the order of the largest component of G(n,m), the critical behaviour is de-
scribed by the results of Bollobás [22] and  Luczak [75] mentioned above. In order
to formally state their results, we need to introduce some notation. A connected
graph is called a tree if it has no cycles, unicyclic if it contains precisely one cycle,
and complex (or multicyclic) otherwise. Given a graph G, we enumerate its compo-
nents as Hi = Hi(G), i = 1, 2, . . . , in such a way that they are ordered from large
to small, that is, the orders |H1|, |H2|, . . . of the components satisfy |Hi| ≥ |Hj |
whenever i < j. We say that Hi is the i-th-largest component of G.

The results of Bollobás and  Luczak can now be described as follows (for all order
notation in the following, see Definition 2.1.6). If m is smaller than n

2 and satisfies
n
2 −m = ω(n2/3), then whp all components of G(n,m) have order o(n2/3). Once

|n2 −m| = O(n2/3), several components of order Θp(n
2/3) appear simultaneously.

Finally, if m becomes even larger, i.e. m > n
2 and m − n

2 = ω(n2/3), then the

largest component H1 whp has order ω(n2/3), while every other component has
order o(n2/3) whp. If we view this development as a process (increasing m one
at a time), this means that all components of order Θp(n

2/3) that appeared when

|m − n
2 | = O(n2/3) later merge into a single component which is then the unique

component of order ω(n2/3). This component is usually referred to as the giant
component.

Theorem 1.1.1 ([22, 75]). Let m =
(
1 + λn−1/3

)
n
2 , where λ = o(n1/3), and

let Hi = Hi(G), i = 1, 2, . . . , be the i-th-largest component of G = G(n,m).

(i) If λ→ −∞, then for every i ∈ N \ {0} whp Hi is a tree and has order

(2 + o(1)) log
(
|λ|3

)n2/3

λ2 .

(ii) If λ → c for a constant c ∈ R, then the probability that G has complex
components is bounded away both from 0 and 1. For every i ∈ N \ {0}
the order of Hi is

Θp

(
n2/3

)
.

Furthermore, the probability that Hi is complex is bounded away from 0.
(iii) If λ → ∞, then whp the largest component H1 of G is complex and has

order
(2 + o(1))λn2/3.

For i ≥ 2, whp Hi is a tree of order o(n2/3).

Even more exact structural properties of G(n,m) in the critical regime have
been shown by  Luczak, Pittel, and Wierman [79]. For an overview on further
properties, see e.g. [23, 64].

Since the pioneering work of Erdős and Rényi, various random graph models
have been introduced and studied, for example the binomial random graph model
G(n, p), where each edge is present with probability p. In this thesis, we focus on
another very interesting model, that is, on random planar graphs or, more generally,
random graphs that are embeddable on a fixed two-dimensional orientable surface.

1.1.2. Random graphs on surfaces. Frieze [70] was arguably the first to ask
about properties of random planar graphs. Analogously to the Erdős–Rényi random
graph G(n,m), we denote by Gg(n,m) a graph chosen uniformly at random among
all graphs from the class Gg(n,m) of graphs embeddable on the orientable surface
of genus g with vertex set [n] and m edges. In particular, a random planar graph is
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denoted by G0(n,m). An important part of studying random embeddable graphs is
enumerating them. Determining the numbers of graphs embeddable on surfaces and
maps, which are graphs embedded on surfaces, have been one of the main objectives
of enumerative combinatorics for the last 60 years. Compared to that, the use of
enumerative results for random embeddable graphs is comparably recent.

Starting from the enumeration of planar maps by Tutte [104], various types
of maps on the sphere were counted. Planar cubic maps were counted by Gao and
Wormald [54]. Additionally, Tutte’s methods were generalised to enumerate maps
on surfaces of higher genus, in particular by Bender and Canfield [7, 8] and Bender
and Wormald [13].

An important subclass of maps are triangulations, that is, maps where each
face is a triangle. Brown [29] determined the number of triangulations of a disc,
and Tutte enumerated planar triangulations [103]. Triangulations on other surfaces
have since been considered as well. Gao enumerated 2-connected triangulations on
the projective plane [50] as well as connected [51], 2-connected [52] and 3-connected
[53] triangulations on surfaces of arbitrary genus.

In addition, planar graphs were also studied, although they are arguably harder
to enumerate. A first breakthrough result was achieved by McDiarmid, Steger, and
Welsh proving the existence of a growth constant [82] for the class G0(n) of planar
graphs with vertex set [n]. That is, they proved that the limit

lim
n→∞

(
|G0(n)|
n!

)1/n

exists and is finite. Giménez and Noy [59] then calculated this growth constant and
proved various local and global limit laws, for example for the number of planar
graphs with a given number of vertices and edges, obtaining the number of graphs
in G0(n,m) when m = bµn2 c with µ ∈ (2, 6). These results were generalised to
arbitrary non-negative genus g by Chapuy, Fusy, Giménez, Mohar and Noy [30]
and independently by Bender and Gao [9].

An interesting subclass of planar graphs is the class of cubic planar graphs,
which were counted by Bodirsky, Kang, Löffler and McDiarmid [20]. Cubic planar
graphs occur as substructures of sparse planar graphs and were thus one of the
essential ingredients in the study of sparse random planar graphs by Kang and
 Luczak [66]. One main result of this thesis is to determine the number of cubic
graphs embeddable on a surface of genus g (see Theorem 1.3.1).

Maps and embeddable graphs also have various applications in other fields.
For example in algebra and geometry (see e.g. [74] for an overview) and statistical
physics [27, 65, 72]. In some of these applications (e.g. [72]) phase transitions
play a crucial role, thus it is of interest to consider random graphs embeddable on
surfaces.

Returning to random embeddable graphs, Kang and  Luczak [66] proved that
the random planar graph G0(n,m) features a similar phase transition to G(n,m),
that is, the giant component emerges at m = n

2 +O(n2/3).

Theorem 1.1.2 ([66]). Let m =
(
1 + λn−1/3

)
n
2 , where λ = λ(n) = o(n1/3),

and let Hi = Hi(G), i = 1, 2, . . . , be the i-th-largest component of G = G0(n,m).
For every i ∈ N \ {0} whp

|Hi| =


(2 + o(1)) log

(
|λ|3

)
n2/3

λ2 if λ→ −∞,
Θ
(
n2/3

)
if λ→ c ∈ R,

(1 + o(1))λn2/3 if λ→∞ and i = 1,

Θ(n2/3) if λ→∞ and i ≥ 2.
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The main difference to the Erdős–Rényi random graph lies in the case λ →
∞. In this regime, the largest component of G0(n,m) is roughly half as large as
the largest component of G(n,m). In contrast, the order of the second largest
component (or more generally, of the i-th-largest component for every fixed i ≥ 2)
is much larger in G0(n,m) than in G(n,m).

This behaviour, however, is not the most surprising feature of random planar
graphs. Indeed, Kang and  Luczak [66] discovered that there is a second phase
transition at m = n + O(n3/5), which occurs when the giant component covers
almost all vertices. Such a behaviour is not observed for Erdős–Rényi random
graphs, where the number of vertices outside the giant component is linear in n as
long as m is linear.

Theorem 1.1.3 ([66]). Let m =
(
2 + ζ n−2/5

)
n
2 , where ζ = ζ(n) = o(n2/5).

Then whp the largest component H1 of G0(n,m) is complex and

n− |H1| =


(1 + o(1))|ζ|n3/5 if ζ → −∞,
Θ
(
n3/5

)
if ζ → c ∈ R,

Θ
(
ζ−3/2 n3/5

)
if ζ →∞ and ζ = o(n1/15).

Given that this second phase transition has only been observed for random
planar graphs, the fundamental question that is raised by Theorem 1.1.3 is whether
this is an intrinsic phenomenon of planar graphs or whether this phenomenon can
be observed elsewhere as well.

For m even larger, i.e. m = bµn2 c with µ ∈ (2, 6), Giménez and Noy [59] showed,
among several other results, that whp G0(n,m) has a component that covers all
but a constant number of vertices. Observe that Theorem 1.1.3 leaves a gap of
order Θ(n1/3) to the ‘dense’ regime considered by Giménez and Noy. Subsequently,
Chapuy, Fusy, Giménez, Mohar, and Noy [30] and independently Bender and Gao
[9] proved analogous results in the dense regime for Gg(n,m).

In this thesis, we derive results analogous to Theorems 1.1.2 and 1.1.3 for gen-
eral (constant) genus g. We shall prove that Gg(n,m) features two phase transitions
similar to the planar case, improving the results of Kang and  Luczak [66] at vari-
ous places. In particular, we reduce the gap of Θ(n1/3) between Theorem 1.1.3 and
results of Giménez and Noy [59], Chapuy, Fusy, Giménez, Mohar, and Noy [30],
and Bender and Gao [9].

1.1.3. Cubic graphs. In the study of component structures of random graphs,
cubic graphs emerge at various points as important substructures. Enumerating
various classes of graphs and multigraphs has been a main topic of enumerative
combinatorics for a long time [21, 59, 61, 84, 85, 96, 97]. In particular, the
problem of enumerating all cubic graphs was successfully solved in 1978 by Bender
and Canfield [6] and it was shown that for the class S(2n) of cubic graphs with 2n
vertices and 3n edges we have

|S(2n)| = (e−2 + o(1))(6n)!

288n(3n!)
=

(
1

e2
√

2π
+ o(1)

)(
3

2e

)n
(2n)!nn−1/2. (1.1)

Furthermore, they showed that the probability of a cubic multigraph being simple is
positive. As we will see in Section 2.2.2, the number of weighted cubic multigraphs
is also an important tool for enumerating general graphs and determining their
structure.

Introducing the additional condition that the graph is also planar makes the
enumeration more complicated. Results for planar cubic graphs were first presented
by Bodirsky, Kang, Löffler, and McDiarmid [20], proving that

|S0(2n)| = (c0 + o(1))n−7/2γnS(2n)!. (1.2)
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Later, Noy, Requilé, and Rué [88] extended these results to the class V0(2n) of cubic
planar multigraphs, showing a similar formula with a different constant γV > γS .
In particular, this proves that cubic planar multigraphs are with high probability
not simple, in contrast to the general case.

1.2. Two phase transitions

The first group of main results of this thesis concerns the order and structure
of the components of Gg(n,m) for ( 1

2 − o(1))n ≤ m ≤ (1 + o(1))n. We prove
the existence of two phase transitions, the first being the emergence of the giant
component and the second being that the number of vertices outside the giant
component changes from linear to sublinear. We thus extend the corresponding
results for random planar graphs [66]. Additionally, we improve the error bounds
of the planar case and show more precise bounds regarding the order and size of
the components in a slightly larger regime. Furthermore, we prove that for g ≥ 1
the giant component is the unique non-planar component and is not embeddable
on a surface of smaller genus. This section is split into three different parts, each
dealing with a different regime of m = m(n).

Section 1.2.1 deals with the case m = ( 1
2 + o(1))n, i.e. the analogue of The-

orem 1.1.1 for random embeddable graphs Gg(n,m). The special case g = 0 was
already shown by Kang and  Luczak (see Theorem 1.1.2). We show that for em-
beddable graphs there are various differences in the behaviour to G(n,m), most
notably that the giant component is only half as large and that, in order to com-
pensate for this difference, the second largest component (and even the k-th-largest
component for any fixed k ≥ 2) is of larger order than in G(n,m). Additionally, we
show that for positive genus g, the giant component is not only complex, but is also
the unique non-planar component, which clearly distinguishes the case of positive
genus from the planar case.

Section 1.2.2 focuses on the regime m = (1 + o(1))n. In this regime, Kang and
 Luczak [66] observed a second phase transition for G0(n,m). They showed that
in contrast to G(n,m), G0(n,m) admits yet another phase transition after which
the number of vertices outside the giant component is sublinear. While it is known
that in G(n,m), as long as m is linear in n, the number of vertices outside the giant
component will remain linear, this is not the case for planar graphs. For m = bµn2 c
with µ ∈ (2, 6), it was shown by Giménez and Noy [59] that only a constant number
of vertices remain outside the giant component. This bound (µ = 2) was shown
by Kang and  Luczak to be the point of the phase transition for the number of
vertices outside the giant component. The second main result of this thesis is that
the second phase transition occurs for arbitrary constant genus g. Furthermore, we
improve the error terms given in [66].

Section 1.2.3 closes the gap left by the previous two regimes and focuses on
Gg(n,m) when m = bµ n

2 c with µ ∈ (1, 2). We show that the behaviour of Gg(n,m)
with respect to the order and the structure of the components coincides at both
ends of the interval with the respective behaviour in the first two main results.
Thus we prove a ’smooth’ transition between the different phases.

1.2.1. The first phase transition. For this section, suppose that m is given as
m = (1+λn−1/3)n2 with λ = o(n1/3). For m in this regime various phase transitions
in G(n,m) have been observed, the most well-known is the emergence of the giant
component (see Theorem 1.1.1). That is the order of the largest component changes
from o(n2/3) for λ → −∞ to (2 + o(1))λn2/3 for λ → ∞. Additionally, all other
components are of smaller order. Moreover, the giant component H1 is whp the
unique complex component. In comparison, for planar graphs (see Theorem 1.1.2)
H1 is with positive probability not the unique complex component, but still whp
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by a factor of λ larger than the second-largest component. The first result of this
thesis states that for constant genus these differences to G(n,m) still occur.

Theorem 1.2.1. Let m =
(
1 + λn−1/3

)
n
2 , where λ = λ(n) = o(n1/3), and

denote by Hi = Hi(G), i = 1, 2, . . . , the i-th-largest component of G = Gg(n,m).

(i) If λ→ −∞, then for every i ≥ 1 whp Hi is a tree of order

(2 + o(1)) log
(
|λ|3

)n2/3

λ2 .

(ii) If λ → c for a constant c ∈ R, then the probability that G has com-
plex components is bounded away both from 0 and 1. The i-th-largest
component has order

Θp

(
n2/3

)
.

(iii) If λ→∞, then whp H1 is complex and has order

λn2/3 +Op(n
2/3).

The rest G \ H1 of the graph has Op(1) complex components, each of

which has order Op(n
2/3).

For i ≥ 2, we have |Hi| = Θp(n
2/3). The probability that G has at

least i complex components is bounded away both from 0 and 1.

This theorem states that the order of the giant component in Gg(n,m) develops
in the same way as for G0(n,m). This also means that the differences to G(n,m)
regarding the order of the components still occurs for any fixed positive genus.
Comparing to Theorem 1.1.1(iii), the order of H1 is still only half as large, whereas
the order of further components is larger. On the other hand, we also show distinctly
more that in the planar case. Not only are we giving estimates on the order of the
giant component, but we also determine the genus of the components.

Theorem 1.2.2. Let m =
(
1 + λn−1/3

)
n
2 , where λ = λ(n) = o(n1/3) and

λ → ∞. Then, for g ≥ 1, whp H1 is not embeddable on Sg−1, while all other
components of G are planar.

In some sense this theorem can be seen as a bridge between G0(n,m) and
G(n,m), as while the giant component is still not the unique complex component,
it is at least the unique non-planar component and there is a way of identifying
the giant component without comparing its order to that of other components.
Such a method exists for G(n,m) (the giant component is the unique complex
component), but does not exist for planar graphs (with positive probability there
are multiple complex components and it is not clear, a priori, which of them is the
giant component without comparing orders).

We prove Theorems 1.2.1 and 1.2.2 in Chapter 3.

1.2.2. The second phase transition. When Kang and  Luczak first published
their result on random planar graphs [66], they described a new phase transition
not observed in the Erdős-Rényi random graph model G(n,m). While in G(n,m)
the number of vertices outside the giant component remains linear in n as long as
m = bµn2 c, µ ∈ R, this is not the case for planar graphs. In particular, it was shown
by Giménez and Noy [59] that the number of vertices outside the giant component
is O(1) for m =

⌊
µn2
⌋

with µ > 2. The bound µ > 2 was due to their methods, as
for smaller µ, their error terms grew too fast. Kang and  Luczak showed that this
is not just a problem in the method, but G0(n,m) indeed behaves differently at
m = (1+o(1))n. More precisely, the number of vertices outside the giant component
undergoes a phase transition from there being Θ(n) vertices outside when µ < 2 to
sublinearly many vertices when µ = 2 (see Theorem 1.1.3).
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With the methods used, there still remained the gap for m between m =
n+ o(n2/3) and m = n+ o(n) where no result was known. In addition to extending
the result to arbitrary positive genus, we improve on this gap. We extend the
results of Theorem 1.1.3 for the random graph Gg(n,m) of arbitrary genus to all

m = n + o
(
(log n)−2/3n

)
. Additionally, we derive estimates for the i-th-largest

component for any fixed i ≥ 2.

Theorem 1.2.3. Let m =
(
2 + ζ n−2/5

)
n
2 , where ζ = ζ(n) = o(n2/5). Then

whp the largest component H1 = H1(G) of G = Gg(n,m) is complex and

n− |H1| =


(1 + o(1))|ζ|n3/5 if ζ → −∞,
Θ
(
n3/5

)
if ζ → c ∈ R,

Θ
(
ζ−3/2 n3/5

)
if ζ →∞, but ζ = o((log n)−2/3n2/5).

For i ≥ 2, we have

|Hi| =


Θp

(
|ζ|2/3n2/5

)
if ζ → −∞,

Θp

(
n2/5

)
if ζ → c ∈ R,

Θp

(
ζ−1 n2/5

)
if ζ →∞, but ζ = o((log n)−2/3n2/5).

Observe that these results are stronger than the results by Kang and  Luczak
for the planar case (see Theorem 1.1.3). Not only hold our results for a wider range
of ζ (up to ζ = o

(
(log n)−2/3n2/5

)
instead of ζ = o

(
n1/15

)
), but we also improve

on the order of the i-th-largest component for all i ≥ 2.
As in the planar case, corresponding results for m = bµ n

2 c with µ > 2 were
already shown by Bender and Gao [9] and by Chapuy, Fusy, Giménez, Mohar, and
Noy [30]. In this case it is known that, as in the planar case, the number of vertices
outside the giant component is O(1). Also, as in the first phase transition, we can
determine the genus of the components.

Theorem 1.2.4. Let m =
(
2 + ζ n−2/5

)
n
2 , where ζ = ζ(n) = o(n2/5) and if

λ → ∞ then ζ = o((log n)−2/3n2/5). Then, for g ≥ 1, whp H1 is not embeddable
on Sg−1, while all other components of G are planar.

That is, as in the first phase transition, the genus of Gg(n,m) is concentrated
on the giant component and it is the unique non-planar component.

We prove Theorems 1.2.3 and 1.2.4 in Chapter 3.

1.2.3. Between the phase transitions. Considering the previous two sections,
there are three regimes left when m = bµ n

2 c, i.e. µ < 1, 1 < µ < 2, and µ > 2.
For µ < 1, it was already shown by Erdős and Rényi [40] that for such m,

G(n,m) is planar with high probability and thus all results for G(n,m) also hold
in this regime.

For µ > 2, Chapuy, Fusy, Giménez, Mohar, and Noy [30] proved local and
global limit laws showing that all but a constant number of vertices are in the giant
component, that the giant component is not embeddable on Sg−1, and that the
probability that Gg(n,m) is connected is bounded away from zero and one.

The case 1 < µ < 2 was shown for the planar case by Kang and  Luczak. We
extend this to arbitrary genus g.

Theorem 1.2.5. Let m = bµ n
2 c, where µ = µ(n) converges to a constant in

(1, 2), and let Hi = Hi(G), i = 1, 2, . . . , be the i-th-largest component of G =
Gg(n,m). Then whp H1 is complex and has order

|H1| = (µ−1)n+Op

(
n2/3

)
.

For i ≥ 2, we have |Hi| = Θp(n
2/3).
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Theorem 1.2.5 covers the ground between the supercritical regime of Theo-
rem 1.2.1 and the subcritical regime of Theorem 1.2.3 in a ‘smooth’ manner in the
sense that

• if we set µ = 1 + λn−1/3 in Theorem 1.2.5, the order of H1 coincides
with the supercritical case of Theorem 1.2.1;
• for µ = 2 + ζ n−2/5 in Theorem 1.2.5, we get the same value for n− |H1|

as in the subcritical case of Theorem 1.2.3.

As in Theorems 1.2.2 and 1.2.4, we also show that the giant component uses
the complete genus.

Theorem 1.2.6. Let m = bµ n
2 c. Then, for g ≥ 1, whp H1 is not embeddable

on Sg−1, while all other components of G are planar.

Thus, we have determined the order of the largest component for all m (except
for the small gap in the second supercritical phase). In Figure 1.1, we compare this
order with the order of the largest component of G(n,m).

µ

|H1|/n

G(n,m)

0 1 2 3
0

0.5

1

µ

|H1|/n

Gg(n,m)

0 1 2 3
0

0.5

1

Figure 1.1. Rescaled order of the largest component of G(n,m)
and of Gg(n,m).

Whereas the graph for Gg(n,m) is a piecewise linear function, this is not the
case for G(n,m). For m = bµ n

2 c with µ > 1, the giant component of G(n,m) whp
has order (1 + o(1))βn, where β is the unique positive solution of the equation

1− β = e−µβ .

This formula forG(n,m) corresponds to the survival probability in a related Galton-
Watson process (see e.g. [64]). In particular, as long as µ > 1 is a constant, the
largest component of G(n,m) will leave a linear number of vertices uncovered, see
Figure 3.1.

We prove Theorem 1.2.5 in Chapter 3.

1.3. Enumeration of cubic graphs

The second set of main results of this thesis concerns cubic graphs. We derive
the number of cubic graphs embeddable on orientable surfaces of arbitrary genus.
When the genus is constant, we prove asymptotic values for the number of cubic
graphs and multigraphs. For the non-constant genus case, we prove coarser bounds
and show at which growth rates of the genus major changes in the enumeration
formula occur, in particular, for which growth rate of the genus the class of cubic
graphs no longer has a growth constant.

More precisely, in the constant genus case (Section 1.3.1), we provide enumer-
ative and structural results on cubic graphs and multigraphs embeddable on the
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surface Sg for general g. The number of all cubic graphs and multigraphs has been
shown by Bender and Canfield [6]. Bodirsky, Kang, Löffler, and McDiarmid [20]
showed the number of planar cubic graphs, and Kang and  Luczak [66] obtained the
number of weighted cubic multigraphs. We extend these results to arbitrary genus.
This result is a main ingredient in the proof of the phase transitions in Section 1.2.

When g = g(n) is allowed to be a function in the number of vertices of the graph
(Section 1.3.2), we provide upper and lower bounds for the number of cubic graphs
embeddable on the corresponding surface. These bounds will show a transition for
the number of cubic graphs on Sg from behaving like in the constant genus case

from the previous main result (for g = o((log n)
−2
n)) to behaving like the general

cubic graph case provided by Bender and Canfield [6] (for linear genus).

1.3.1. Constant genus. When comparing the number of planar cubic graphs (1.2)
and general cubic graphs (1.1), we observe a wide discrepancy between these values.
In the first main result of this section, we prove that the number of cubic graphs
embeddable on a fixed orientable surface is much closer to the planar case than the
general case.

Theorem 1.3.1. Let g be fixed. Then the number of cubic graphs embeddable
on the orientable surface of genus g is given by

|Sg(2n)| = (cg + o(1))n(5g−7)/2γnS(2n)!, (1.3)

where cg is a constant only depending on g and γS is an algebraic constant with
first digits 3.133.

Interestingly, the constant γS does not depend on the genus and is the same
constant as for the planar case. We derive the number of cubic multigraphs in a
similar fashion.

Theorem 1.3.2. Let g be fixed. Then the number of cubic multigraphs embed-
dable on the orientable surface of genus g is given by

|Vg(2n)| = (dg + o(1))n(5g−7)/2γnV (2n)!, (1.4)

where dg is a constant only depending on g and γV is an algebraic constant with
first digits 3.986.

Again, the constant γV does not depend on the genus.
As a key intermediate step for the proofs of Theorems 1.2.1, 1.2.3 and 1.2.5,

we need weighted cubic multigraphs. That is, we want to enumerate the class
of cubic multigraphs, weighted by their compensation factor. The compensation
factor of a graph was first introduced by Janson, Knuth,  Luczak and Pittel [62].
This factor is defined as the number of ways to orient and order all edges of the
multigraph divided by 2rr!, which is equal to the number of such oriented orderings
if all edges were distinguishable. For example, a double edge results in a factor 1

2
and simple graphs are the only multigraphs with compensation factor one. For an
exact definition, see Definition 2.1.1.

Theorem 1.3.3. Let g be fixed. Then the number of cubic multigraphs embed-
dable on the orientable surface of genus g weighted by their compensation factor is
given by

|Wg(2n)| = (eg + o(1))n(5g−7)/2γnW (2n)!, (1.5)

where eg is a constant only depending on g and γW = 793/4

541/2 ≈ 3.606.

The constants cg, dg, and eg from Theorems 1.3.1 to 1.3.3 can be obtained with
arbitrary precision starting from the recursion (with respect to the genus) given by
Bender, Gao, and Richmond [11] for the corresponding constant for simple maps.
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Furthermore, the results on enumeration imply some interesting structural re-
sults as well.

Theorem 1.3.4. Let G be a graph chosen uniformly at random from all cubic
(multi)graphs with 2n vertices embeddable on Sg.

(i) The probability that G is connected is bounded away from both zero and
one.

(ii) The largest component H1 of G has order 2n−Op(1).
(iii) For g ≥ 1, whp H1 is not embeddable on Sg−1, while G \H1 is planar.

This result is in contrast to the fact that a graph chosen uniformly at random
from S(2n) is connected with high probability, as proved by Wormald [107]. An-
other difference between S(2n) and embeddable graphs Sg(2n) is that the latter
has a growth constant whereas S(2n) does not. All theorems in this section are
proved in Chapter 4.

1.3.2. Growing genus. Comparing the formula (1.1) for general cubic graphs with
the formula (1.3) for cubic graphs embeddable on Sg, we observe that the number
of general cubic graphs is larger by a factor of order nn and this does not change
for any fixed genus g. We prove bounds on the number of cubic graphs on vertex
set [2n] embeddable on a surface of genus g = g(n) for any growing function. These
bounds give a characterisation of how fast the genus has to grow in order to deduce
formulas similar either to the constant genus case or the unrestricted case.

Theorem 1.3.5. Let g = g(n) and let Sg(2n) be the class of cubic graphs
embeddable on the surface Sg(n). Then the following statements hold.

(i) If g = o((log n)−2n), Sg(2n) has the same growth constant γS as S0(2n),
i.e.

lim
n→∞

(∣∣Sg(n)(2n)
∣∣

(2n)!

) 1
2n

= γS

(ii) for g ≤ n−1
2 , there exist constants 0 < α1 ≤ α2 such that

αn1n
2g(2n)! ≤ |Sg(2n)| ≤ αn2 g−4gn6g(2n)!.

(iii) If g > n−1
2 all graphs are embeddable and |Sg(2n)| = |S(2n)|.

Moreover, Sg(2n) does not have a growth constant if g = ω
(
(log n)−1n

)
.

We see from these results that as long as g = o((log n)−2n), the number of
cubic graphs is closely related to the planar case. On the other hand, for g close to
n
2 , the results of Theorem 1.3.5(ii) coincide up to a factor αn with the general case.

The proof of this theorem is provided in Chapter 5.

1.4. Overview

The main results of the thesis were stated in Sections 1.2 and 1.3. In Chapter 2
we provide some general definitions and introduce the methods utilised to prove
the various results. Chapter 3 is based on [67, 68], proving the results stated in
Section 1.2. Chapter 4 is based on [44, 45], proving the results on the constant
genus case stated in Section 1.3. The proofs for non-constant genus are in Chapter 5,
which will lead to results on component structures of random graphs on surfaces
of non-constant genus [34]. The initial ideas for this proof stem from the author’s
research stay at the University of Oxford.
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CHAPTER 2

Preliminaries and methods

2.1. Definitions and notations

A graph G is simple if it does not contain loops or multi-edges and is a multi-
graph otherwise. If in a multigraph there are more than two edges connecting the
same pair of vertices, we call each pair of those edges a double edge. Therefore,
every multi-edge consisting of r edges between the same two vertices contains

(
r
2

)
double edges. If e is a loop incident to a vertex v, we say that v is the base of e.
Similarly, we say that e is based at v. An edge that is neither a loop nor part of
a double edge is a single edge. An edge e of a connected multigraph G is called a
bridge if deleting e disconnects G.

A multigraph is called cubic if each vertex has degree three. By convention, we
count a loop twice in the degree of its base. By Φ we denote the cubic multigraph
with two vertices u, v and three edges between u and v (i.e. a triple edge). At
various points, we will work with multigraphs weighted by the compensation factor
introduced by Janson, Knuth,  Luczak, and Pittel [62], which is defined as follows.

Definition 2.1.1 (Compensation factor). Given a multigraph M and an integer
i ≥ 1, denote by ei(M) the number of (unordered) pairs {u, v} of vertices for which
there are exactly i edges between u and v. Analogously, let `i(M) denote the
number of vertices x for which there are precisely i loops based at x. Finally, let
`(M) =

∑
i i`i(M) be the number of loops of M . The compensation factor of M is

defined to be

w(M) := 2−`(M)
∞∏
i=1

(i!)−ei(M)−`i(M). (2.1)

The compensation factor of a general graph is the product of the compensation
factors of its connected components.

Given a connected cubic multigraph G, the compensation factor reduces to

w(G) =

{
1
6 if G = Φ,

2−(e2(G)+`(G)) otherwise.

This is used to avoid double counting in the construction in Section 2.2.2.

Definition 2.1.2 (Complex part, core, kernel, excess, deficiency). Let H be a
connected graph. We say that H is unicyclic if it contains precisely one cycle and
we call H complex (also known as multicyclic) if it contains at least two cycles; the
latter is the case if and only if H has more edges than vertices. If H is complex,
we call

ex(H) := |E(H)| − |V (H)|
the excess of H. For a non-connected graph G, we define ex(G) to be the sum of
the excesses of its complex components (and set ex(G) = 0 as a convention if G has
no complex components). G is called complex if all its components are complex.

Let G be any graph. The union QG of all complex components of G is called
the complex part of G. The core CG of G is defined as the maximal subgraph of QG
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of minimum degree at least two and the kernel KG of G is a multigraph constructed
from the core CG by replacing all vertices of degree two in the following way. Every
maximal path P in CG consisting of vertices of degree two is replaced by an edge
between the vertices of degree at least three that are adjacent to the end vertices
of P . Given a graph G with n vertices, we denote the number of vertices of the
complex part QG, the core CG, and the kernel KG by nQ, nC , and nK , respectively.

The deficiency of G is defined as

d(G) := 2|E(KG)| − 3nK = 2 ex(G)− nK .

Definition 2.1.3 (Embeddings, genus of a graph, planarising and separating sets).
Let N be the set of non-negative integers. For g ∈ N, we denote by Sg the orientable
surface of genus g. An embedding of a multigraph G on Sg is a drawing of G on
Sg without crossing edges. We consider G as a subset of Sg, and therefore Sg \ G
consists of connected components called faces. An embedding where additionally
all faces are homeomorphic to open discs, or equivalently, where all faces are simply
connected, is called a 2-cell embedding. Multigraphs that have an embedding are
called embeddable on Sg and multigraphs that have a 2-cell embedding are called
strongly embeddable.

By the genus of a given graph G we denote the smallest g ∈ N for which G is
embeddable on Sg. Graphs with genus zero are also called planar. For a graph G,
we call a set E′ ⊆ E(G) such that G′ = (V (G), E(G) \ E′) is planar a planarising
edge set.

A 2-cell embedding of a strongly embeddable multigraph is also called a map.
A triangulation is a map where each face is bounded by a triangle. These triangles
might be degenerate, i.e., three loops with the same base, or a double edge and a
loop based at one of the end vertices of the double edge, or a loop and an edge from
the base of the loop to a vertex of degree one.

If S is the disjoint union of Sg1 , . . . ,Sgr for non-negative integers g1, . . . , gr and
Mi is a 2-cell embedding of a graph Gi on Sgi for each i = 1, . . . , r, then the induced
function N : (G1 ∪ · · · ∪ Gn) → S is called a map on S. Triangulations on S are
defined analogously. We denote by V (M), E(M), and F (M) the set of all vertices,
edges, and faces of an embedding M , respectively.

We call a set E′ ⊆ E(M) separating, if the map M ′ = (V (M), E′) has at least
two faces, i.e. if M ′ separates the surface.

Definition 2.1.4 (Dual maps, rooting a map, facewidth). Let M be a map on
a surface S. We construct the dual map of M by first putting a vertex in each
face of M , then for each edge e in M we draw an edge between the two (possibly
coincident) vertices inside the faces on both sides of e while crossing e exactly once
(and do not cross any other edges of M). The newly drawn edges should only
intersect at their end points. Note that the dual map has multi-edges if two faces
of the original (primal) map have more than one edge in common. It is well known
that the dual of a map is also a map, see e.g. [86].

For each vertex v ∈ V (M) of a map M , the edges and faces incident to v
have a canonical cyclic order e0, f0, e1, f1, . . . , ed−1, fd−1 according to the way they
are arranged around v (in counterclockwise direction). Note that faces can appear
multiple times here and that a loop based at v will appear twice in this sequence. To
avoid ambiguities, we distinguish the two ends of the loop in this sequence (e.g. by
using half-edges or by orienting each loop). A triple (v, ei, e(i+1) mod d) of a vertex
v and two consecutive edges ei, ei+1 mod d in the cyclic sequence is called a corner
(at v). We also say that (v, ei, e(i+1) mod d) is a corner of the face fi. When we
enumerate maps, we always work with maps with one distinguished corner, called
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the root of the map. If (v, ei, ei+1) is the root corner, we will call v the root vertex,
ei the root edge, and fi the root face.

An essential circle on Sg is a circle that is not contractible to a point on Sg.
Let M be an embedding of a multigraph on Sg. An essential cycle of M is a cycle
of M which is an essential circle on the surface. The facewidth fw(M) of M is the
minimal number of intersections of M with an essential circle on Sg. The edgewidth
ew(M) of M is defined as the minimal number of edges of an essential cycle of
M . If g = 0, there are neither essential circles nor essential cycles and we use the
convention fw(M) = ew(M) =∞. The facewidth fwg(G) of a multigraph G which
is embeddable on Sg is defined as the maximal facewidth of all its embeddings on
Sg. If the genus is clear from the context we omit it and write fw(G). When we
count multigraphs with restrictions on their facewidth we indicate the restriction
by a superscript to the corresponding generating function, e.g. Gfw≥2(x) for the
generating function of all multigraphs with facewidth at least two.

Definition 2.1.5 (Notations for special classes). Throughout the thesis various
classes of graphs and maps will appear at various points. These classes are defined
here. For the proofs of Theorems 1.2.1, 1.2.3 and 1.2.5 in Chapter 3 we use:

• Gg the class of all graphs embeddable on Sg;
• Qg the class of all complex graphs in Gg;
• Cg the class of all cores of graphs in Gg;
• Kg the class of all kernels of graphs in Gg;
• U the class of all graphs without complex components.

In other words, Qg is the class of all complex graphs embeddable on Sg; Cg consists
of all complex graphs embeddable on Sg with minimum degree at least two; and
Kg comprises all (weighted) multigraphs embeddable on Sg with minimum degree
at least three. The empty graph lies in all the classes above by convention.

In the sections concerning cubic graphs and multigraphs, we use the following
notations:

• Sg(n) the class of vertex-labelled cubic graphs on n vertices and m edges
embeddable on Sg;

• Vg(n) the class of vertex-labelled cubic multigraphs on n vertices and m
edges embeddable on Sg;

• Wg(n) the class of vertex-labelled weighted cubic multigraphs on n ver-
tices and m edges embeddable on Sg.

For a class A of (multi)graphs, we denote by A the subclass of A of connected
(multi)graphs.

In order to express orders of components in a random graph when n tends
to infinity, we use the following notation. Recall that an event holds with high
probability, or whp for short, if it holds with probability tending to one as n tends
to infinity.

Definition 2.1.6 (Landau notation). Let X = (Xn)n∈N be a sequence of random
variables and let f : N → R≥0 be a function. For c ∈ R+ and n ∈ N, consider the
inequalities

|Xn| ≤ cf(n), (2.2)

|Xn| ≥ cf(n). (2.3)

We say that

(i) Xn = O(f) whp, if there exists c ∈ R+ such that (2.2) holds whp;
(ii) Xn = o(f) whp, if for every c ∈ R+, (2.2) holds whp;

(iii) Xn = Ω(f) whp, if there exists c ∈ R+ such that (2.3) holds whp;
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(iv) Xn = ω(f) whp, if for every c ∈ R+, (2.3) holds whp;
(v) Xn = Θ(f) whp, if both Xn = O(f) and Xn = Ω(f) whp;
(vi) Xn = Op(f), if for every δ > 0, there exist cδ ∈ R+ and Nδ ∈ N such

that (2.2) holds for c = cδ and n ≥ Nδ with probability at least 1− δ;
(vii) Xn = Θp(f), if for every δ > 0, there exist c+δ , c

−
δ ∈ R+ and Nδ ∈ N

such that for n ≥ Nδ with probability at least 1− δ, both (2.2) holds for
c = c+δ and (2.3) holds for c = c−δ .

The special case of X = Op(1) is also known as X being bounded in probability.

Definition 2.1.7 (Generating functions, dominant singularities, ∆-analyticity). If
A is a class of maps, we write A(m) for the subclass of A containing all maps with
exactly m edges. The generating function

∑
m |A(m)|ym will be denoted by A(y).

If B is a class of (multi)graphs, we write B(n) for the subclass of B containing all

(multi)graphs with exactly n vertices. The generating function
∑
n
|B(n)|
n! xn will be

denoted by B(x). For an ordinary generating function F (z) =
∑
n fnz

n, we use the

notation [zn]F (z) := fn. For an exponential generating function H(z) =
∑ hn

n! z
n,

we write [zn]H(z) := hn
n! .

If two generating functions F (z), H(z) satisfy 0 ≤ [zn]F (z) ≤ [zn]H(z) for all
n, we say that F is coefficient-wise smaller than H, denoted by F � H. The
singularities of F (z) with the smallest modulus are called dominant singularities
of F (z). As every generating function we consider in this paper always has non-
negative coefficients [zn]F (z), there is a dominant singularity located on the positive
real axis by Pringsheim’s Theorem [102, pp. 214 ff.]. We denote this dominant
singularity by ρF . If an arbitrary function F : C → C has a unique singularity
with smallest modulus and this singularity lies on the positive real axis, then we
also denote it by ρF . The function F converges on the open disc of radius ρF
and thus corresponds to a holomorphic function on this disc. In many cases, this
function can be holomorphically extended to a larger domain. Given ρ,R ∈ R with
0 < ρ < R and θ ∈ (0, π/2),

∆(ρ,R, θ) := {z ∈ C | |z| < R ∧ | arg(z − ρ)| > θ}

is called a ∆-domain. Here, arg(z) denotes the argument of a complex number,
i.e. arg(0) := 0 and arg(reit) := t for r > 0 and t ∈ (−π, π]. We say that F is
∆-analytic if it is holomorphically extendable to some ∆-domain ∆(ρF , R, θ).

Definition 2.1.8 (Dominant terms and functions). A function F is subdominant

to a function H if either ρF > ρH or ρF = ρH and limz→ρG
F (z)
H(z) = 0. In the latter

case, if both F and H are ∆-analytic, then in the above limit, z is taken from
some fixed ∆-domain to which both F and H are holomorphically extendable. If
F is subdominant to H, we also write F (z) = o(H(z)). Analogously we write

F (z) = O(H(z)) if either ρF > ρG or ρF = ρG and lim supz→ρG
|F (z)|
|H(z)| <∞.

Given a function F (z) with a dominant singularity ρF , we say that a function

H(z) = c
(
1− ρ−1

F z
)−α

with α ∈ R \ Z≤0, c ∈ R \ {0} or H(z) = c log
(
1− ρ−1

F z
)

is
the dominant term of F if there is a decomposition

F (z) = P (z) +H(z) + o(H(z)),

where P (z) is a polynomial. The dominant term, if it exists, is uniquely defined
and ∆-analytic. If H(z) = c(1− ρ−1

F z)−α, the exponent −α is called the dominant

exponent of F . If H(z) = c log
(
1− ρ−1

F z
)
, then we say that F has the dominant

exponent 0.

If we are counting rooted maps or multigraphs, the roots will be counted in the
generating function unless stated otherwise. We will often mark vertices or edges of
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multigraphs or maps, which corresponds to applying the differential operator z d
dz

to the generating functions (with z = x if vertices are marked and z = y if edges
are marked). To simplify notation we write δz for z d

dz and δnz for applying the

operator z d
dz repeatedly n times, which corresponds to marking n vertices or edges,

while allowing multiple marks. We use the notation F ′(z) = dF
dz for the standard

differential operator. Vice versa, we say that F is a primitive of F ′.

2.2. Methods

To prove the main results stated in Sections 1.2 and 1.3 we utilise a variety of
methods. In particular, we use combinatoric methods like double counting argu-
ments and constructive decompositions, analytic methods (e.g. singularity analysis),
maximising techniques, and probabilistic arguments (e.g. first moment method and
Chernoff bounds).

More precisely, the main idea of the proofs of Theorems 1.2.1 and 1.2.3 is to
enumerate all graphs embeddable on the surface Sg and determine the order of
various parameters along the way. In order to enumerate Gg(n,m) we will give a
constructive decomposition to cubic graphs. Starting from Theorem 1.3.1, we use
maximising techniques (Section 2.2.4) and concentration results from probability
theory (Section 2.2.5) to derive bounds for various parameters occurring in the
decomposition. With the help of these parameters, the theorems are proved by
double counting arguments (Section 2.2.1).

To show Theorem 1.3.1, we also use a constructive decomposition in order
to relate cubic graphs to a special class of triangulations. These triangulations are
enumerated via singularity analysis and the quadratic method. Singularity analysis
is also used to prove parts of Theorem 1.3.1.

2.2.1. Double counting. Let A and B be combinatorial classes. Double counting
is a method to prove bounds on |A| in terms of |B|. In general, this is done in two
steps. First, we provide a (family of) construction(s) from an element A ∈ A to at
least a elements B ∈ B. Second, we provide a construction in the reverse direction,
showing that every element B ∈ B is obtained at most from b elements in A. Then
one can conclude that

|A| ≤ b

a
|B|.

By exchanging the roles of A and B in the constructions, we also derive lower
bounds for |A|.

This basic idea is a very powerful tool and can be applied in various different
ways. Throughout the thesis, we use it mainly in two different ways. The first is
to show that |A| is of smaller order than |B|, by giving such constructions with
b
a = o(1). The other is to show upper and lower bounds for |A| which are close
together. This yields good bounds on the exact value of |A|.

One can also argue that the constructive decompositions in Section 2.2.2 are
a special case of double counting. In that case we have exact values for a and b
instead of upper and lower bounds resulting in

|A| = b

a
|B|. (2.4)

For examples of this, see Section 2.2.2.
Proving properties from enumeration results. When proving the phase transi-

tions for embeddable graphs, we use double counting arguments to prove various
structural results throughout the second phase transition. As input, we use the
enumerative and concentration results for the number of vertices and edges in the

15



complex part, the core, and the kernel deduced by the maximising techniques dis-
cussed in Section 2.2.4. With these values, we prove tight bounds on the number of
bad graphs, which are graphs not having the property we want, showing that whp
a random graph is not bad. The specifics differ slightly for each property (seen in
more detail in the proofs in Chapter 3). In the following, let B be the class of bad
graphs (the details differ from case to case). The main construction from a graph
B ∈ B to Gg is as follows.

(i) Delete an edge in the non-complex part U of B;
(ii) add an edge between the largest component and one other component

(chosen by some specific rules).

For the reverse direction we

(iii) delete a bridge;
(iv) add an edge between any two vertices outside the complex part.

The exact rules on the choice in step (ii) and thus also the estimates in step
(iii) change for the different uses, but the main construction is used multiple times
for various claims in the second phase transition. Thus, for the remainder of this
argument let m = (2 + n−2/5 ζ)n2 .

The first and most important application of this double counting scheme is to
show the existence and size of the giant component. That is, we prove that the
number of vertices outside the largest component is of the same order as the number
nU of vertices outside the complex part in the graph. In other words, the number
of vertices that are in complex components but not in the giant component, is of at
most the same order as the number of vertices outside the complex part. Together
with the number of vertices outside the complex part, derived in Theorem 3.5.2,
this will show the existence of the giant component.

We determine the order of vertices outside the largest component by the above
double counting argument. Let α = α(n) such that α = ω(nU ), but α = o(n), and
let B be the class of graphs where the largest component is too small, i.e. where
|H1| ≤ n − α. We use the above scheme. In step (ii) we connect the largest
component to any other component. There are a ≥ mUα(n − α) possibilities for
the construction from B to Gg. For the reverse direction we delete any bridge from
H1. As all bridges are part of a spanning tree of H1, there are at most b = nn2

U

choices for the reverse direction. Therefore, with double counting we deduce that

|B| ≤ n2
Un

mUα(n− α)
|Gg(n,m)|.

Because α = ω(nU ), we have

|B| = o(|Gg(n,m)|)

and thus the order of the giant component follows.
The second application of the scheme is to show that throughout the second

phase transition in G = Gg(n,m) all components except the giant component are
planar whp.

To show this, let B be the class of graphs G ∈ Gg(n,m) where G \ H1(G) is
not planar. When inserting the edge between the giant component and another
component in step (ii) in the construction above, we choose the edge in such a way
that it connects a vertex in the giant component with a vertex in a non-planar two-
connected component. Because of this, there are only at most g possible bridges to
choose to delete in step (iii) instead of n as before. With this improved factor we
deduce strong enough bounds to show that

|B| ≤ gn2
U

mUnUn
|Gg(n,m)| = o(|Gg(n,m)|),
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proving that indeed all components except the giant component are planar.
With this knowledge we use the third application of the scheme to show that

the giant component indeed has genus g. To achieve this, we choose the class B
of bad graphs to be graphs where the giant component does not have genus g,
i.e. where the giant component is embeddable on Sg−1, and where the rest of the
graph is planar. In this case, we insert the edge in step (ii) between any two vertices
of the giant component. Since by adding one edge, the genus increases by at most
one, this construction is feasible. In step (iii) we now delete any edge in the giant
component that is not a bridge. There are still at most m = (1+o(1))n such edges.
We thus have

|B| ≤ mn2
U

mU (n−O(nU ))2
|Gg(n,m)| = o(|Gg(n,m)|),

proving that the giant component indeed has genus g.
Kernels and cubic kernels. Relating general kernels and cubic kernels is one of

the central arguments of the proof. By two double counting arguments, we provide
upper and lower bounds for the number of kernels (Lemma 3.4.5).

Let l, d ∈ N and let Kg(2l − d, 3l − d) be the class of all kernels with 2l − d
vertices and 3l − d edges. Then

|Kg(2l − d, 3l − d)|
|Kg(2l, 3l)|

≤ 6d

d!
.

If in addition d ≤ 2
7 l, then also

|Kg(2l − d, 3l − d)|
|Kg(2l, 3l)|

≥ 1

216dd!
.

For the exact details of the proof, see Section 3.7.1. Here is an overview of the
construction.

For the upper bound we start with a cubic multigraph K ∈ Kg(2l, 3l). To
construct a kernel in Kg(2l− d, 3l− d), we iteratively contract d edges of K. That
is, we iteratively choose and delete an edge and identify its two end vertices. For
the reverse construction, we iteratively take vertices of degree larger than three,
split them into two vertices, add an edge between those vertices and distribute the
edges to the new vertices in such a way that the graph is still embeddable on the
same surface. The addition of the d new vertices is responsible for the factor d!.
All other bounds can be shown to be of the form αd, proving the upper bound.

The lower bound is a bit more intricate. For this construction we give construc-
tions only between Kg(2l, 3l) and the subclass of Kg(2l− d, 3l− d) consisting of all
graphs with maximal degree four. The construction of all cubic kernels from this
subclass is achieved by splitting all vertices of degree four into two vertices of degree
three, as for the upper bound. The upper bound on the degree is necessary in order
to prove a bound on the change in the compensation factor in this construction.
For the reverse direction we still contract edges. In order for the resulting graph to
have maximal degree at most four, the chosen edges have to be a matching. Thus
we need a bound on the number of such matchings, but again, we deduce such
bounds showing the claimed result.

Cubic graphs with non-constant genus. All of the bounds in Chapter 5 are
proved by double counting between various classes of graphs and maps. The main
idea is to start with a class with a known number of elements and compare that class
to the goal. In our case, this goal is the class of cubic graphs (or multigraphs) with
2n vertices embeddable on a surface of genus g = g(n). We use two such starting
points. On the one hand, we compare Sg(n)(2n, 3n) with planar cubic graphs. This
works while the genus is not growing too fast and results in tight bounds. For a
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genus growing faster than this, we compare to the class of unicellular maps with
given degree sequence enumerated by Walsh and Lehman [105]. The advantage of
this class is that it is even enumerated for non-constant genus. Comparing cubic
graphs to this class requires various intermediate steps which in turn results in
weaker bounds than the first construction, but for a larger range of the genus.

With these initial classes and constructions between these classes and cubic
graphs, we derive the claimed bounds for cubic graphs with the help of (2.4) by
plugging in the corresponding values.

2.2.2. Constructive decomposition. Let A and B1,B2, . . . ,Bk be combinatorial
classes. A constructive decomposition between A and the classes B1, . . . ,Bk is a
reversible construction from elements A ∈ A to elements B ∈ B1 × · · · × Bk. In
general, with such constructions, either one of two things might be derived – either
we derive an equation relating the generating functions A(z) and Bi(z) of A and
Bi, respectively, or an equation directly relating |A(n)| and |Bi(n)|. We use both
possibilities, the first to enumerate cubic multigraphs, and the second to derive the
number of all graphs from cubic multigraphs.

One can argue that a constructive decomposition is a special case of double
counting. By providing constructions in a double counting argument such that
equality holds in (2.4), the double counting argument becomes a constructive de-
composition. Nonetheless, we treat it as two separate methods, as they are in
general used for different things and the arguments change slightly depending on
whether the goal is (asymptotic) equality or not.

Cubic graphs and triangulations. The constructive decomposition used to de-
rive equations for the generating function of cubic graphs has already been used
multiple times. The idea is to use Whitney’s Theorem (or a variation of it) to
relate 3-connected graphs to corresponding maps. Whitney’s Theorem states that
a 3-connected planar graph has a unique embedding on the sphere up to orientation
(see [106]). That is, there is a 1-to-2 relation between 3-connected planar graphs
and 3-connected maps. As additionally the dual maps of 3-connected maps on the
sphere are exactly the simple triangulations of the sphere, this step is very easy
in the planar case. In the non-planar case, Whitney’s Theorem does not hold and
thus additional constraints are required. The construction therefore consists of the
following steps:

(i) Construct all graphs as a set of connected graphs;
(ii) Construct all connected graphs from 2-connected blocks;

(iii) Construct 2-connected graphs from 3-connected graphs;
(iv) Relate 3-connected graphs and 3-connected maps.

In [20], this construction was used in order to enumerate planar cubic graphs.
In order to adapt this scheme for arbitrary (constant) genus, every step of the con-
struction has to be altered. In step (i), we have to consider that the resulting graph
has as genus the sum of the genera of all its connected components. Thus we have
to sum over all possible genus partitions on the connected components, which in
turn relate to integer partitions of all integers g′ ≤ g. Doing the calculations shows
also that the dominant term in this sum is from the graphs where one component
has genus g and all other components are planar (see Section 4.4.4).

For the other steps in the construction we use the facewidth of a graph as an
additional parameter. There are various helpful results regarding the structure of
embeddable graphs with respect to their facewidth. In step (ii), we use the fact
that if the facewidth of a connected (non-planar) graph is not too small, it has a
unique non-planar 2-connected component (see Lemma 4.2.8, [99]). Together with
the fact that almost all graphs have large facewidth (see Lemma 4.4.7), we infer a
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valid construction, namely taking this one 2-connected component of genus g and
replacing its edges by a sequence of pendant planar connected components (see
Figure 4.3). These planar components are already known and equations for their
generating functions are given in Proposition 4.4.9.

Similarly, for step (iii), we have a theorem stating that if the facewidth of a
2-connected graph is too large, it has a unique non-planar 3-connected component.
Again almost all cubic graphs have large enough facewidth (Lemma 4.4.7) and we
construct 2-connected graphs by replacing the edges in a 3-connected graph of genus
g by 2-connected planar networks (see Lemma 4.4.4).

Step (iv) is a bit more intricate. We use an extension of Whitney’s Theorem by
Robertson and Vitray stating that there exists a unique embedding (up to orienta-
tion) of a 3-connected graph on Sg if its facewidth is at least 2g+ 3 (Lemma 4.2.8).
Again we show that almost all graphs satisfy this condition (see Section 4.4.1). In
order to enumerate the resulting cubic maps, we use their dual map, which is a
triangulation. In contrast to the planar case, these triangulations are not (just) all
simple triangulations. Nonetheless, a simple description of these triangulations is
possible, see Proposition 4.3.1. Enumerating these triangulations is done by a mix-
ture of decompositions, singularity analysis and the quadratic method (for details,
see Section 4.5), following the approach of Bender and Canfield for enumerating
simple triangulations on surfaces of arbitrary genus [7].

Reducing graphs to cubic multigraphs. The first part of the construction reduces
a graphG ∈ Gg(n,m) to its kernel. This is done via the following intermediate steps:

(B1) Divide G into its complex components QG and its tree and unicyclic
components UG;

(B2) recursively delete vertices of degree one from QG to obtain the 2-core CG
of G;

(B3) remove vertices of degree two in CG, i.e. replace paths where all internal
vertices have degree two by a single edge to obtain the kernel KG of G.

Comparing general kernels and cubic kernels is done by a double counting argument
(see Section 2.2.1).

Vice versa, we can construct a graph on Sg by performing the reverse construc-
tions.

(C1) Pick a kernel, i.e. a multigraph with minimum degree at least three that
is embeddable on Sg, and subdivide its edges to obtain a core;

(C2) to every vertex v of the core, attach a rooted tree Tv (possibly only
consisting of one vertex) by identifying v with the root of Tv, so as to
obtain a complex graph;

(C3) add trees and unicyclic components to obtain a general graph embeddable
on Sg.

The steps (C2) and (C3) are exactly reversing the steps (B2) and (B1), respec-
tively, and we thus derive exact equations. In the third step we have to account for
overcounting. This happens when the construction yields loops or multiple edges,
as there are multiple ways in the reverse direction to end up at the same result. To
avoid this overcounting, we use multigraphs weighted by the compensation factor
given in Definition 2.1.1. Recall that for a multigraph M the compensation factor
of M is defined to be

w(M) := 2−`(M)
∞∏
i=1

(i!)−ei(M)−`i(M),

where ei(M) denotes the number of pairs {u, v} of vertices for which there are
exactly i edges between u and v, `i(M) denotes the number of vertices x for which
there are precisely i loops at x, and `(M) =

∑
i i`i(M) denotes the number of
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loops of M . In (B3), the compensation factor enables us to distinguish multiple
edges and loops at the same vertex (because of the factors 1/i!) as well as the
different orientations of loops (because of the factor 2−`(M)). This fact ensures
that there is no overcounting in (B3). Indeed, if a core C has kernel K, then C can
be constructed from K by subdividing edges in precisely 1

w(K) different ways; thus,

assigning weight w(K) to K prevents overcounting.
The construction of graphs in Gg from their kernel via the core and complex part

as described in (C1)–(C3) can be translated to relations between the numbers of
graphs in the previously defined classes. Starting from Gg(n,m), (C3) immediately
gives rise to the identity

|Gg(n,m)| =
∑
nQ,l

(
n

nQ

)
|Qg(nQ, nQ + l)| · |U(nU ,mU )|, (2.5)

where nU = n − nQ and mU = m − nQ − l. Indeed, for each fixed number nQ of
vertices in the complex part and each fixed excess l,

• the binomial coefficient counts the possibilities for which vertices lie in
the complex part,
• |Qg(nQ, nQ + l)| counts the complex part s with nQ vertices and nQ + l

edges, and
• |U(nU ,mU )| counts all possible arrangements of non-complex compo-

nents.

If |Qg(nQ, nQ + l)| and |U(nU ,mU )| are known, then we can use (2.5) to deter-
mine |Gg(n,m)|. Determining |Qg(nQ, nQ + l)| turns out to be quite a challenging
task, to which we devote a substantial part of this thesis. The number |U(nU ,mU )|,
on the other hand, can be determined using known results (see Lemma 3.3.1).

2.2.3. Generating functions. Let A be a class of combinatorial objects, A(n) its
subclass of all elements of size n, and an = |A(n)|. The generating function A(z) =∑
ai
zi

i! of A is a useful tool for finding asymptotic values of an. Methods to derive
these asymptotics include e.g. singularity analysis, the quadratic method, both used
in this thesis, the saddle-point method (as an alternative to singularity analysis; see
e.g. [47] for a general overview or [3] for an application in map enumeration), or local
and global limit theorems (used to enumerate Gg(n,m) in the case m = (1 + µ)n;
see e.g. [59]).

Triangulations and the quadratic method. From the constructive decomposition
in Section 2.2.2 we see that in order to enumerate cubic multigraphs, we first want
to derive the number of triangulations in the class Mg(n) of triangulations on Sg
with no separating double edge and no separating pair of loops. Indeed, we show
in Proposition 4.3.4 that

Mg(z) ∼= cg
(
1− ρ−1

M z
)−5g/2+3/2

+O
((

1− ρ−1
M z
)−5g/2+7/4

)
.

We prove this in Section 4.5 for simple triangulations and triangulations with-
out separating loops and double edges. The statement for Mg(z) then follows, as
it is sandwiched between the other two classes. In order to prove these results, we
follow an idea of Bender and Canfield [7], who showed an asymptotic enumeration
result for simple triangulations, albeit not in the form stated here.

The main idea is to add additional classes of maps and connect them using
equations deduced by decomposing maps into one another. For these additional
classes, we allow markings in some faces and we allow one face (the root face)
to not necessarily be a triangle (see Section 4.5.2 for the exact definitions). In
order to keep track of this, we also use additional parameters and thus additional
variables in the generating function. Then we use induction on the genus g to prove
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asymptotic results for the generating functions. In order to do this, we inductively
plug in asymptotic properties we already know, and determine which terms in the
equations contribute significantly and which do not. That is, we determine the
terms that are dominating and derive the desired asymptotic properties for these.
For the base case of g = 0 we use what is known as the quadratic method (see
e.g. [60]).

Suppose one has two generating functions A(z), B(z, u) with

(f1(z, u,A(z))B(z, u) + f2(z, u,A(z)))
2

= f3(z, u,A(z)),

where f1, f2, f3 are given functions. Then the quadratic method is a way to prove
asymptotic estimates for the coefficients of A(z) and B(z, u). The idea is to choose
u = u(z) in such a way that f3(z, u(z), A(z)) = 0. As the left hand side is a square,
that means that also ∂

∂uf3(z, u(z), A(z)) = 0. From these two equations, one then
determines the functions u(z) and A(z) (with methods depending on the function
f3) and from there also B(z, u). We use this in Lemma 4.5.2 on the generating
functions of simple planar triangulations and planar quasi-triangulations, where
the second variable is the number of vertices on the root face.

Cubic graphs and singularity analysis. Singularity analysis is a method to de-
rive asymptotic estimates on an from A(z), even if A(z) is given implicitly (e.g. in
Flajolet and Sedgewick [47]) or as one function in a system of equations for various
generating functions simultaneously (e.g. shown by Drmota [35]). The central the-
orem of the method is the so-called transfer theorem, which allows the evaluation
of coefficients of generating functions.

Theorem 2.2.1 ([46, 47]). Let A(z) be a ∆-analytic generating function and
let α, β ∈ R such that

A(z) = O

((
log

1

1− z

)β
(1− z)−α

)
.

Then

[zn]A(z) = O
(

(log n)
β
nα−1

)
.

The same statement is also true when replacing O by o throughout the theorem.

This statement holds, when the dominant singularity of A(z) is one. Otherwise
this theorem can be used after rescaling the function (B(z) = A(ρz) and [zn]A(z) =
ρ−n[zn]B(z), where ρ is the dominant singularity of A(z)).

We use a refined version of this method given in Theorem 4.2.3 in order to deal
with the generating functions of various graph classes used in the construction from
triangulations to cubic graphs. Additionally, we also use methods of dealing with
additionally differentiated or integrated functions (see Lemma 4.2.4). For more
details on these methods, see e.g. [36, 47].

The constructive decomposition described in Section 2.2.2 results in equations
for the generating function of cubic multigraphs embeddable on Sg in terms of the
corresponding generating functions for 2- and 3-connected multigraphs, which in
turn are given by equations containing the generating functions for triangulations.
From the quadratic method and the results in Section 4.3, we deduce important
properties of the generating functions of triangulations and thus of 3-connected
maps on Sg. We then work backwards step-by-step through the construction de-
scribed in Section 2.2.2 to transfer the properties from maps via 3- and 2-connected
graphs to connected and general cubic graphs. We describe all these construction
steps in terms of generating functions (for the exact details, see Section 4.4.2). From
those equations, we use singularity analysis to derive the results of Theorem 1.3.1.
Analogous arguments also work for Theorems 1.3.2 and 1.3.3.
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2.2.4. Maximising techniques. Suppose we have a sum A(n) =
∑
i∈I ai(n) of

non-negative values ai(n) and we want to prove good upper and lower bounds on
this sum. We use the following method. Let i0 = i0(n) ∈ I be the index at which
ai(n) is maximised. This value is calculated (approximately) by deriving a root of
the derivative of ai(n) with respect to i. Thus we provide a first trivial bound:

ai0(n) ≤ A(n) ≤ |I|ai0(n).

In some cases, these bounds are already very good, in particular when |I| is small.
Otherwise, we reparametrise i = i0 + r and write

A(n) = ai0(n)
∑
r∈I′

ar+i0(n)

ai0(n)
, (2.6)

where I ′ = {i : i + i0 ∈ I}, and analyse this sum. This analysis is different from
case to case, but in general it is possible to derive bounds by splitting the sum into
two parts. One part I1 ⊆ I ′ consists of summands far away from the optimum,
such that

|I1|
∑
r∈I1

ar+i0(n)

ai0(n)
= o(1).

Then this part only contributes a factor (1 + o(1)) to the total result.
For the second part I2 = I ′ \I1, ar+i0(n) and ai0(n) are in general close to each

other. Thus we write

ar+i0(n)

ai0(n)
= 1− br(n) = exp(log(1− br(n)))

and then use a Taylor expansion on log(1 − br(n)). By the choice of i0 as the
maximal value, the linear term in this expansion will be negligible. Additionally,
as the br(n) are close to 0, the error bounds are good and the sum only depends
on the leading exponent α in the expansion (in our case two or three). Therefore,
it remains to bound a sum of the form∑

r∈I2

exp(−rα),

which is very well known. This method is in a way a discrete version of the saddle-
point method for integrals.

In this thesis, the constructive decomposition of graphs in Sg(n,m) to cubic
kernels (see Section 2.2.2) results in a quadruple sum, the parameters being the
number of vertices in the complex part, the number of vertices in the core, the
excess and the deficiency (nQ, nC , l, and d, respectively). For these sums, the
above method is used for nC (see Lemma 3.4.8) and l (see Lemma 3.4.15) directly
with α = 2. nQ uses the same general idea, but as we calculate that α = 3, the
details are a bit more intricate (see Lemmas 3.4.13 and 3.4.14). Finally, for the
sum over d this method is not necessary, as we bound the sum over d directly by
binomial sums for which explicit formulas are known (see Lemma 3.4.9).

2.2.5. Probabilistic bounds. In this thesis, arguments from probability theory
are used in two different ways. First, we use first moment methods in order to extend
properties known for the kernel to general graphs. Secondly, we use concentration
results on various probability distributions in order to derive good bounds for the
sums during the maximisation process described in Section 2.2.4.
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First moment method. The first moment method is a simple but powerful
method using probability theory to show the existence or non-existence of com-
binatorial objects. The main idea is to define a probability distribution on the set
of all possible objects (in our case the uniform model on all embeddable graphs),
calculating the expectation of the property we want and then using Markov’s in-
equality to show the (non)-existence of that property. This is one of the initial
methods used in what is nowadays known as the probabilistic method first used by
Erdős [39].

Markov’s inequality states that for a random variable X only taking non-
negative values, the probability that X is large is bounded from above

P [X ≥ a] ≤ E [X]

a
. (2.7)

Suppose now we have a sequence Xn of such random variables with expectations
E [Xn] = f(n). Then (2.7) shows immediately that Xn = Op(f(n)). Indeed, for
a = cδf(n), (2.7) shows that P [X ≥ cδf(n)] ≤ 1

cδ
and thus the definition of Op is

satisfied with δ = 1
cδ

. We will use this fact throughout the thesis.
The main use of this method in our case is in the first supercritical regime and

in the regime between the two phase transitions. There we use it to derive estimates
for the order of the giant component of the core and the complex part of the graph.
From the results shown in Chapter 4, we already know that cubic kernels have
one giant component of genus g and all other components are planar. Throughout
the first phase transition and the intermediate regime we know that the kernel of
an embeddable graph is cubic with positive probability (with high probability in
the first supercritical regime), see Theorem 3.5.1. Thus we know that with high
probability the kernel of Gg(n,m) has one component of order nK−O(1) and genus
g, where nK is the number of vertices in the kernel. In order to derive bounds for
the order of the largest component of the core and the complex part, we use a
random construction and then the bounds from Markov’s inequality above. We
construct the core from the kernel by adding vertices at random to the edges in
the kernel. We show in Theorem 3.5.4 that this does indeed yield a valid core.

Then all of the nC − nK new vertices have a probability of O
(

1
nK

)
of not lying in

the largest component. Therefore, the expected combined order of all components
except the largest component is nC−nK

nK
. By Markov’s inequality and the above

argument, this leads to the claimed order of the core. Similarly, by constructing
the complex part from the core by attaching a random forest to the vertices in the
core, we deduce the claimed order of the complex part in the same way. For more
details, see Theorem 3.5.4.

Concentration. Returning to the four sums discussed in Section 2.2.4, we not
only want to calculate the value of the sum, but also the indices giving the main
contribution to the corresponding sums. That is, for a sum

∑
i∈I ai(n) we want to

find an index set I ′ ⊆ I (as small as possible) such that

∑
i∈I′

ai(n) = (1− o(1))
∑
i∈I

ai(n).

That is, we want to find the part of the sum where the sum is concentrated. We do
this by using known concentration results from various probability distributions, in
particular the normal distribution and the binomial distribution. The correspond-
ing inequalities are known as Chernoff bounds (e.g. [2]).
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Lemma 2.2.2. Let X be a Gaussian random variable with expectation E [X] and
variance σ2, then

P
[∣∣X − E [X]

∣∣ ≥ t] ≤ 2 exp

(
− t2

2σ2

)
.

If X is a Binomial random variable, then

P
[∣∣X − E [X]

∣∣ ≥ t] ≤ 2 exp

(
− t2

2
(
E [X] + t

3

)).
The first of these bounds is used to derive concentration results for the sum

over nC and the second bound for the sum over d.
As discussed already in Section 2.2.4, we reduce the sum over nC to a sum of

the form ∑
nC∈I

a(n;nC) = a(n;nC)
∑
nC∈I

exp
(
−α(nC − nC)2

)
.

Normalising this sum results in an integral over a density function of a Gaussian
random variable. Thus the corresponding Chernoff bound shows that the contri-
bution of summands far from the mean is negligible (see Lemma 3.4.8(iii) for more
details).

Similarly, the sum over all possible deficiencies is bounded from above and
below by sums of the form∑

d

(
2l

d

)
α1(l, n)d ≤

∑
d

sd(l, n) ≤
∑
d

(
2l

d

)
α2(l, n)d.

Normalising results in this sum over the density function of a binomial random vari-
able and again the stated Chernoff bound proves the range of the main contribution
(see Lemma 3.4.9(iii)).

The main contributions of the other sums are derived by directly comparing
upper and lower bounds without the help of probability density functions.
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CHAPTER 3

Phase transitions

3.1. Introduction and results

3.1.1. Background and motivation. In their seminal work [40, 41], Erdős and
Rényi introduced the uniform random graph model G(n,m) (often called Erdős–
Rényi random graph), thus laying the foundations for the classical theory of random
graphs. Amongst other results, Erdős and Rényi described the emergence of the
giant component in G(n,m), a phenomenon that subsequently became one of the
most extensively studied properties of random graphs. Erdős and Rényi [41] proved
that for constant average degree µ, the largest component of G(n, µ n

2 ) has logarith-

mically many vertices for µ < 1, order n2/3 vertices when µ = 1, and linearly many
vertices when µ > 1. Erdős and Rényi interpreted this behaviour as a ‘double jump’
of the order (that is, the number of vertices in) the largest component of G(n, µ n

2 )
as the average degree increases from µ < 1 to µ = 1 and further to µ > 1. This
phenomenon was considered by Erdős and Rényi to be ‘one of the most striking
facts concerning random graphs’.

Bollobás [22] refined the result of Erdős and Rényi by considering the range
‘close to’ the point of the phase transition, that is, when s := m − n

2 is sublinear.
Bollobás’ result, which was later improved by  Luczak [75], shows that the order
of the largest component changes gradually, depending on whether s has order at
most n2/3 (known as the critical regime) or if s has larger order and s > 0 (the
supercritical regime) or s < 0 (the subcritical regime). In the subcritical regime,
whp (that is, with probability tending to 1 as n → ∞) all components of G(n,m)
have order o(n2/3). In the critical regime, several components of order Θp(n

2/3)
appear simultaneously (see Definition 2.1.6 for a definition of Θp). Finally, in the

supercritical regime, a giant component of order ω(n2/3) appears, and every other
component has order o(n2/3).

In addition to the order of connected components, the results of Bollobás [22]
and  Luczak [75] also state whether these components are trees, unicyclic, or com-
plex. Here, a connected graph is called complex (or multicyclic) if it contains at
least two cycles.

Theorem 3.1.1 ([22, 75]). Let m =
(
1 + λn−1/3

)
n
2 , where λ = o(n1/3), and

let Hi = Hi(G), i = 1, 2, . . . , be the i-th largest component of G = G(n,m).

(i) If λ→ −∞, then for every i ≥ 1 whp Hi is a tree and has order

(2 + o(1))
n2/3

λ2 log
(
−λ3

)
.

(ii) If λ → c for a constant c ∈ R, then the probability that G has complex
components is bounded away both from 0 and 1. For every i ≥ 1 the order
of Hi is

Θp

(
n2/3

)
.

Furthermore, the probability that Hi is complex is bounded away both from
0 and 1.
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(iii) If λ → ∞, then whp the largest component H1 of G is complex and has
order

(2 + o(1))λn2/3.

For i ≥ 2, whp Hi is a tree of order o(n2/3).

Subsequently, Aldous [1] further improved the result for the critical regime
using multiplicative coalescent processes and inhomogeneous Brownian motion. In
the supercritical regime and in the regime µ > 1, central limit theorems and local
limit theorems provide stronger concentration results for the order and the size
(that is, the number of edges) of the largest component. The methods used for
these results range from counting techniques [94, 101] over Fourier analysis [5] to
probabilistic methods such as Galton-Watson branching processes [25], two-round
exposure [4], or random walks and martingales [24].

Since the pioneering work of Erdős and Rényi, various random graph models
have been introduced and studied. A particularly interesting model are random
planar graphs or, more generally, random graphs that are embeddable on a fixed
two-dimensional surface. Here, a graph G is called embeddable on a surface S if G
can be drawn on S without crossing edges.

Graphs embeddable on a surface and graphs embedded on a surface—also known
as maps—have been studied extensively since the pioneering work of Tutte (see
e.g. [104]) in view of asymptotic properties [15, 19, 20, 30, 37, 38, 48, 55, 56,
57, 59, 66, 80, 81, 82, 90, 91], random sampling [16, 17, 18, 19, 49, 100], and
enumeration [30, 59, 82].

We call a graph planar if it is embeddable on the sphere and denote by P (n,m)
the graph chosen uniformly at random from the class P(n,m) of all planar graphs
with vertex set [n] = {1, . . . , n} and m edges. Kang and  Luczak [66] proved that
P (n,m) features a similar phase transition as G(n,m), that is, the giant component
emerges at m = n

2 +O(n2/3).

Theorem 3.1.2 ([66]). Let m =
(
1 + λn−1/3

)
n
2 , where λ = λ(n) = o(n1/3),

and let Hi = Hi(G), i = 1, 2, . . . , be the i-th largest component of G = P (n,m).
For every i = 1, 2, . . . whp

|Hi| =


(2 + o(1))n

2/3

λ2 log
(
−λ3

)
if λ→ −∞,

Θ
(
n2/3

)
if λ→ c ∈ R,

(1 + o(1))λn2/3 if λ→∞ and i = 1,

Θ(n2/3) if λ→∞ and i ≥ 2.

The main difference to the Erdős–Rényi random graph lies in the case λ→∞.
In this regime, the largest component of P (n,m) is roughly half as large as the
largest component of G(n,m). On the other hand, the order of the second largest
component (or more generally, of the i-th largest component for every fixed i ≥ 2)
is much larger in P (n,m) than in G(n,m).

This behaviour, however, is not the most surprising feature of random planar
graphs. In fact, Kang and  Luczak [66] discovered that there is a second phase
transition at m = n + O(n3/5), which is when the giant component covers almost
all vertices. Such a behaviour is not observed for Erdős–Rényi random graphs,
where the number of vertices outside the giant component is linear in n as long as
m is linear.
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Theorem 3.1.3 ([66]). Let m =
(
2 + ζ n−2/5

)
n
2 , where ζ = ζ(n) = o(n2/5).

Then whp the largest component H1 of P (n,m) is complex and

n− |H1| =


(1 + o(1))|ζ|n3/5 if ζ → −∞,
Θ
(
n3/5

)
if ζ → c ∈ R,

Θ
(
ζ−3/2 n3/5

)
if ζ →∞ and ζ = o(n1/15).

Given that this second phase transition has only been observed for random
planar graphs, the fundamental question that is raised by Theorem 3.1.3 is whether
this is an intrinsic phenomenon of planar graphs.

Question 3.1.4. Which other classes of graphs feature a phase transition analogous
to Theorem 3.1.3?

Canonical candidates for classes that lie ‘between’ P(n,m) and G(n,m) are
graphs that are embeddable on a surface of fixed positive genus. In this chapter,
we consider graphs embeddable on the orientable surface Sg with genus g ≥ 0. Let
Gg(n,m) be the class of graphs with vertex set [n] and m edges that are embeddable
on Sg. (Of course, G0(n,m) = P(n,m).) One of the main results of this chapter is
that for every fixed g, the answer to Question 3.1.4 is positive for the class Gg(n,m).

For m =
⌊
µn2
⌋

with µ ∈ (2, 6), that is, when the average degree is bounded away
both from 2 and 6, Giménez and Noy [59] showed, among several other results, that
whp P (n,m) has a component that covers all but finitely many vertices. Observe
that Theorem 3.1.3 leaves a gap of order Θ(n1/3) to the ‘dense’ regime considered
by Giménez and Noy. Subsequently, Chapuy, Fusy, Giménez, Mohar, and Noy [30]
proved analogous results in the dense regime for Gg(n,m).

3.1.2. Main results. In this chapter we determine the component structure of
Gg(n,m) for arbitrary g ≥ 0 in the ‘sparse’ regime m ≤ (1 + o(1))n. In terms of
phase transitions, the component structure of Gg(n,m) features particularly inter-
esting phenomena in this regime, similar to P (n,m). To derive these phenomena,
we use a wide range of complementary methods from various fields (see Section 3.1.4
for more details).

The main results of this chapter are fourfold. We determine the order and
structure of the largest components of a graphGg(n,m) chosen uniformly at random
from Gg(n,m), where the number m of edges is a) around n

2 , b) around n, or
c) in between the previous two regimes. Lastly, similar to the ‘symmetry rule’
for G(n,m), we derive d) the relation between the numbers of edges and vertices
outside the giant component.

Our first main result describes the appearance of the unique giant component
in Gg(n,m) when the average degree is around one. Similar to various random
graph models including Erdős–Rényi random graphs and random planar graphs
(see Theorems 3.1.1 and 3.1.2), the critical range for the number of edges for the
appearance of the giant component is m = n

2 + O(n2/3). Below this range, the

i-th largest component (for each i ≥ 1) of Gg(n,m) whp is a tree of order o(n2/3).

In the critical range, several components of order Θp(n
2/3) appear simultaneously.

After the critical range, Gg(n,m) whp has a unique component of order ω(n2/3)
which in addition is complex and has genus g, that is, it is embeddable on Sg, but
not on Sg−1.

Theorem 3.1.5. Let m =
(
1 + λn−1/3

)
n
2 , where λ = λ(n) = o(n1/3), and

denote by Hi = Hi(G), i = 1, 2, . . . , the i-th largest component of G = Gg(n,m).
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(i) If λ→ −∞, then for every i ≥ 1 whp Hi is a tree of order

(2 + o(1))
n2/3

λ2 log
(
−λ3

)
.

(ii) If λ → c for a constant c ∈ R, then the probability that G has com-
plex components is bounded away both from 0 and 1. The i-th largest
component has order

Θp

(
n2/3

)
.

(iii) If λ→∞, then whp H1 has genus g, is complex, and has order

λn2/3 +Op(n
2/3).

The rest G \H1 of the graph is planar whp and has Op(1) complex com-

ponents, each of which has order Op(n
2/3).

For i ≥ 2, we have |Hi| = Θp(n
2/3). The probability that G has at

least i complex components is bounded away both from 0 and 1.

Comparing the special case of g = 0 in Theorem 3.1.5 with Theorem 3.1.2, the
following discrepancies are apparent. Firstly, in the critical regime λ → c ∈ R,
Theorem 3.1.5(ii) yields components of order Θp(n

2/3) compared to Θ(n2/3) in
Theorem 3.1.2. The same holds for the orders of Hi for i ≥ 2 in the supercritical
regime λ → ∞. Both points are due to minor mistakes in [66]; the proofs given
there in fact give order Θp(n

2/3) instead of the claimed Θ(n2/3). Secondly, the error
term in the order of the giant component given in Theorem 3.1.5(iii) is stronger than
the one from Theorem 3.1.2. Finally, Theorem 3.1.5(iii) tells us that for positive
genus, the giant component is not only the unique largest component but also the
unique non-planar one.

Our second main result describes the time when the giant component covers
almost all vertices. This happens when the average degree is around two; or more
precisely, when the number of edges is m = n + O(n3/5). Here, the number of
vertices outside the giant component changes from ω(n3/5) for m below the critical
range to Θ(n3/5) within the critical range to o(n3/5) beyond the critical range.

Theorem 3.1.6. Let m =
(
2 + ζ n−2/5

)
n
2 , where ζ = ζ(n) = o(n2/5). Then

whp the largest component H1 = H1(G) of G = Gg(n,m) has genus g, is complex,
and

n− |H1| =


(1 + o(1))|ζ|n3/5 if ζ → −∞,
Θ
(
n3/5

)
if ζ → c ∈ R,

Θ
(
ζ−3/2 n3/5

)
if ζ →∞, but ζ = o((log n)−2/3n2/5).

Whp all other components of G are planar. For i ≥ 2, we have

|Hi| =


Θp

(
|ζ|2/3n2/5

)
if ζ → −∞,

Θp

(
n2/5

)
if ζ → c ∈ R,

Θp

(
ζ−1 n2/5

)
if ζ →∞, but ζ = o((log n)−2/3n2/5).

The main improvement of Theorem 3.1.6 in comparison to Theorem 3.1.3 (the
corresponding result for g = 0) is that Theorem 3.1.3 only deals with the case
ζ = o(n1/15) and therefore leaves a gap to the dense regimem = bµnc with µ ∈ (1, 3)
that has been covered in [30, 59]. Theorem 3.1.6 closes this gap up to a factor
(log n)2/3. Moreover, we show that the giant component is the unique non-planar
component (in fact, it even has the maximal possible genus) and derive the order
of the i-th largest component.
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Additionally, Theorem 3.1.6 provides a correction of the proof given in [66]
for the number of vertices outside the giant component. In [66], the upper bound
on this number was obtained with the help of an intermediate result (Theorem
2(iv) in [66]) about the structure of the complex part (see Definition 2.1.2 for a
definition). However, this intermediate result does not apply in the regime m ∼ n.

In the dense regime, that is, when the average degree is strictly larger than two,
the giant component covers all but finitely many vertices [30, 59]. This coincides
with Theorem 3.1.6 when ζ → n2/5.

Our third main result covers the case when the number of edges is between
the regimes of the two phase transitions, that is, the average degree of the graph
is between one and two. In this ‘intermediate’ regime, the largest component is
complex, has genus g, and its order is linear both in n and in the average degree of
the graph.

Theorem 3.1.7. Let m = µ n
2 , where µ = µ(n) converges to a constant in (1, 2),

and let Hi = Hi(G), i = 1, 2, . . . , be the i-th largest component of G = Gg(n,m).
Then whp H1 has genus g, is complex, and has order

|H1| = (µ−1)n+Op

(
n2/3

)
.

Whp all other components of G are planar. For i ≥ 2, we have |Hi| = Θp(n
2/3).

Theorem 3.1.7 covers the ground between the supercritical regime of Theo-
rem 3.1.5 and the subcritical regime of Theorem 3.1.6 in a ‘smooth’ manner in
the sense that (a) if we set µ = 1 + λn−1/3 in Theorem 3.1.7, the order of H1

coincides with the supercritical case of Theorem 3.1.5 and (b) for µ = 2 + ζ n−2/5

in Theorem 3.1.7, we get the same value for n − |H1| as in the subcritical case of
Theorem 3.1.6.

In the intermediate regime, or more generally, for m = µ n
2 with µ > 1, the

classical Erdős–Rényi random graph G(n,m) whp has a largest component of order
(1 + o(1))βn, where β is the unique positive solution of the equation

1− β = e−αβ .

In particular, as long as µ > 1 is a constant, the largest component of G(n,m) will
leave a linear number of vertices uncovered, see Figure 3.1. Indeed, Karp [71] proved
that the components of G(n,m) can be explored via a Galton-Watson branching
process with offspring distribution Po(µ); the survival property of such a process is
given by β above, yielding order (1 + o(1))βn of the largest component. For graphs
on surfaces, however, there is no such simple approach to explore components.

µ

|H1|/n

G(n,m)

0 1 2 3
0

0.5

1

µ

|H1|/n

Gg(n,m)

0 1 2 3
0

0.5

1

Figure 3.1. Rescaled order of the largest component of G(n,m)
and of Gg(n,m).
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Another well-known phenomenon in terms of the emergence of the giant com-
ponent is the so-called symmetry rule. This rule states that for G = G(n,m) in
the supercritical regime m =

(
1 + λn−1/3

)
n
2 with λ → ∞ (but λ = o

(
n1/3

)
), the

graph R(G) = G \ H1(G) obtained by deleting the giant component behaves like

G(nR,mR) with mR =
(

1 + λR n
−1/3
R

)
nR
2 , where λR → −∞, that is, like in the

subcritical regime. For even larger m, the fraction mR/nR is bounded by a constant
smaller than 1

2 .
For G = Gg(n,m), such a result does not hold. In fact, throughout the ranges

covered by Theorems 3.1.5 to 3.1.7, the graph R(G) behaves like in the critical
regime of Theorem 3.1.5. Roughly speaking, the fraction of edges that could not
be ‘inserted’ into the giant component due to the embeddability causes yet another
interesting phenomenon outside the giant component, resulting in making R(G)
‘critical’.

Theorem 3.1.8. Suppose that

n

2
+O

(
n2/3

)
≤ m ≤ n+ o

(
(log n)−2/3n

)
(i.e. m is at least as big as in the critical regime of Theorem 3.1.5 and at most as
big as in Theorem 3.1.6). For G = Gg(n,m), we denote by nR and mR the number
of vertices and edges in R(G) = G \H1(G), respectively. Then

mR =
nR
2

+Op

(
n

2/3
R

)
.

A central ingredient in the proof of Theorem 3.1.8 will be the size of the gi-
ant component (that is, the number of its edges), which we determine in Corol-
lary 3.5.8. At the same time, we shall derive in Section 3.5 various other parameters
of Gg(n,m), such as the order of its complex part, core, and kernel, as well as its
excess and deficiency. See Section 3.2.2 for definitions of these concepts.

3.1.3. Related work. The order of the largest component of the Erdős–Rényi
random graph G(n,m) at the time of the phase transition has been extensively
studied [22, 24, 75, 79, 94]. Most of the results have been proved using purely
probabilistic arguments (e.g. random walks, martingales, Galton-Watson branching
processes), leading to even stronger results than the ones stated in Theorem 3.1.1,
e.g. about the limiting distribution of the order and size of the largest component [4,
5, 24, 26]. In the case of Gg(n,m), the additional condition of the graph being
embeddable on Sg makes it virtually impossible to use the same techniques in order
to derive such strong results.

In the case of G(n,m), several results have been proved via the random graph
process that adds one new edge at a time. In the case of Gg(n,m), a similar
process can be defined that ‘rejects’ prospective new edges if adding them violates
embeddability (see [58] for the planar case). However, the probability distribution
of the graphs appearing in this process differs from that of Gg(n,m); for instance,
the planar graph process is connected whp for m = (1 + ε)n, while G0(n,m) has a
positive probability to be disconnected.

Comparing Theorems 3.1.1 and 3.1.5, the main differences appear when the
giant component arises in the supercritical regime, that is, when λ → ∞. Firstly,
the order of the giant component is only about half as large in Gg(n,m) as it is
in G(n,m). Secondly, the i-th largest component Hi for fixed i ≥ 2 is much larger
in Gg(n,m) than in G(n,m). These two differences are closely related for the
following reason. In G(n,m), the number nR of vertices and mR of edges outside
the giant component lie in the subcritical regime due to the symmetry rule; thus
G(nR,mR) only has small components. In Gg(n,m) on the other hand, the smaller
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order (and size) of the giant component enforces mR to be in the critical regime by
Theorem 3.1.8, thus resulting in larger orders for Hi with i ≥ 2. Lastly, while each
such Hi is a tree whp for the Erdős–Rényi random graph, this is not necessarily
the case for Gg(n,m).

Planar graphs and graphs embeddable on Sg have been investigated separately
for the ‘sparse’ regime m ≤ n+ o(n) [66] and for the ‘dense’ regime m = bµnc with
µ ∈ (1, 3) [30, 59]. From a random graph point of view, in particular when the giant
component is considered, the sparse regime is more interesting. In this regime, Kang
and  Luczak [66] supplied new resourceful proof methods—some of which we apply
in a somewhat similar fashion in this chapter—combining probabilistic and graph
theoretic methods with techniques from enumerative and analytic combinatorics.
On the other hand, minor mistakes in [66] led to results that featured order terms
that claimed to be stronger than what has actually been proved. One contribution
of this chapter is to correct and strengthen these results from [66].

In the dense regime, Giménez and Noy [59] and Chapuy, Fusy, Giménez, Mohar,
and Noy [30] use techniques from analytic combinatorics to prove various limit laws
for graphs embeddable on Sg, e.g. regarding the number of components, the order
of the largest component, and the chromatic and list-chromatic number. Their
main method is to define a generating function that describes the graph parameter
in question and to apply so-called Quasi-powers theorems (see [47, Chapter IX]
for an overview) to these functions in order to prove that the random variable
corresponding to the graph parameter converges in distribution to a Poisson or to
a Gaussian random variable.

The advantage of this technique is that it can be applied to derive limit laws
for various graph parameters. However, this particular technique is limited to a)
the class Gg(n) of n-vertex graphs embeddable on Sg, in other words, graphs with n
vertices and an arbitrary number of edges, and b) the class Gg(n, bµnc), where µ is
a constant (and µ > 1 in [30, 59]). A random graph chosen from the class Gg(n) is
averaged over all graphs with an arbitrary number of edges and thus not appropriate
when we look at a specific range of m.1 Furthermore, the class Gg(n, bµnc) scales
the number bµnc of edges as a linear function in n—this is not fine enough in
order to capture the changes that take place within the critical windows, which
have length Θ(n2/3) for Theorem 3.1.5 and Θ(n3/5) for Theorem 3.1.6. In terms of
critical behaviour these techniques are therefore not applicable.

3.1.4. Proof techniques and outline. The techniques used in this chapter are
novel in comparison to the vast majority of papers on random graphs. Classical
random graph results are usually proved with the help of probabilistic arguments
such as first and second moment methods, independence of random variables, or
martingales. On the other hand, papers about random graphs on surfaces, e.g. [30,
59], use singularity analysis of generating functions. In contrast, we combine various
complementary methods to prove our results.

The starting point of our proofs are constructive decompositions of graphs, a
method mostly used in enumerative combinatorics. Every graph in Gg(n,m) can
be decomposed into its complex components and non-complex components, which
then can further be decomposed into smaller parts. The most important structures
occurring in this decomposition are the so-called core and kernel of the graph. The
decomposition is constructive in the sense that every graph can be constructed in
a unique way starting from its kernel via its core and complex components (see
Section 3.3.1).

1In fact, the properties of a random graph chosen from Gg(n) are dominated by the graphs

whose edge density is quite large, more precisely, when µ ≈ 2.21 [30, 59].
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We interpret the aforementioned constructive decomposition in terms of com-
binatorial counting, in other words, we represent the number of graphs in the class
Gg(n,m) as a sum of subclasses that are involved in the decomposition. We proceed
by determining the main contributions to the sum using a combinatorial variant
of Laplace’s method from complex analysis, a technique to derive asymptotic esti-
mates of integrals that depend on a parameter n tending to infinity. To illustrate
how we apply this approach, assume that we want to analyse a sum of the form

A(n) =
∑
i∈I

B(i)C(n− i),

where i is a parameter related to one of the substructures occurring in the con-
structive decomposition, e.g. the order of the core, say. We rewrite A(n) as

A(n) =
∑
i∈I

exp(f(i))

with f(i) = log(B(i)C(n − i)) and then estimate the exponent f(i) in order to
determine the main contribution to A(n) in the following sense. We determine a
set J ⊂ I so that the partial sum over all i ∈ I \ J (the tail of the sum) is of
smaller order than the total sum (see Definition 3.3.3 for a formal definition). The
probabilistic interpretation of this main contribution is that Gg(n,m) whp has its
corresponding parameter i in the set J . In our example, this will tell us the ‘typical’
order of the core of Gg(n,m).

The exact method how we estimate the value of the tail and compare it to
the total value of the sum will differ from case to case. In some cases, rough
bounds provided by maximising techniques will suffice; in other cases, we need
better bounds, which we derive by using Chernoff bounds or by bounding the sums
via integrals. Systematic applications of these techniques enable us to derive the
exact ranges of the main contributions. From the main contributions, we deduce
the orders of components, component structure, and other structural properties of
Gg(n,m) by applying both combinatorial methods (e.g. double counting) and basic
probabilistic techniques (e.g. Markov’s inequality).

This chapter is organised as follows. After presenting the necessary notation
and definitions in Section 3.2, we give an overview of the proof strategy in Sec-
tion 3.3; in particular, we derive the aforementioned representation of |Gg(n,m)| as
a sum. In Section 3.4, we determine the main contributions to this sum using the
techniques mentioned above. From these results, we derive structural properties
of Gg(n,m) in Section 3.5. Sections 3.6 and 3.7 are devoted to the proofs of the
main results and the auxiliary results, respectively. Finally, we discuss various open
questions in Section 3.8.

3.2. Preliminaries

3.2.1. Graphs on surfaces. Given a graph G, we denote its vertex set and its
edge set by V (G) and E(G), respectively, and call |V (G)| its order and |E(G)| its
size. All graphs in this chapter are vertex-labelled, that is, V (G) = [n] for some
n ∈ N. Let g ∈ N be fixed. An embedding of a graph G on Sg, the orientable surface
of genus g, is a drawing of G on Sg without crossing edges. If G has an embedding
on Sg, we call G embeddable on Sg. Clearly, embeddability is monotone in g, i.e.
every graph that is embeddable on Sg is also embeddable on Sg+1. By the genus
of a given graph G we denote the smallest g ∈ N for which G is embeddable on Sg.
Graphs with genus zero are also called planar.

Let H be a connected graph embeddable on Sg. We say that H is unicyclic if
it contains precisely one cycle and we call H complex (also known as multicyclic)
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if it contains at least two cycles; the latter is the case if and only if H has more
edges than vertices. If H is complex, we call

ex(H) := |E(H)| − |V (H)|

the excess of H. For a non-connected graph G, we define ex(G) to be the sum of
the excesses of its complex components (and set ex(G) = 0 as a convention if G has
no complex components). G is called complex if all its components are complex.

3.2.2. Complex part, core, and kernel. Let G be any graph. The union QG of
all complex components of G is called the complex part of G. The core CG of G
is defined as the maximal subgraph of minimum degree at least two of QG. The
core can also be obtained from the complex part by recursively deleting vertices of
degree one (in an arbitrary order). Vice versa, the complex part can be constructed
from the core by attaching trees to the vertices of the core. Finally, the kernel KG

of G is constructed from the core CG by replacing all vertices of degree two in the
following way. Every maximal path P in CG consisting of vertices of degree two is
replaced by an edge between the vertices of degree at least three that are adjacent
to the end vertices of P . By this construction, loops and multiple edges can occur.
Reversing the construction, the core arises from the kernel by subdividing edges.

It is important to note that KG is non-empty as soon as QG is, because each
component of the complex graph QG contains a non-empty core with at least one
vertex of degree at least three. Furthermore, KG has minimum degree at least three
and might contain loops and multiple edges. Observe that G is embeddable on Sg
if and only if KG is. In particular, G and KG have the same genus. Also observe
that ex(G) = ex(QG) by definition and ex(KG) = ex(CG) = ex(QG), because
subdividing edges and attaching trees changes the number of vertices and edges by
the same amount.

Given a graph G with n vertices, we denote the number of vertices of the
complex part QG, the core CG, and the kernel KG by nQ, nC , and nK , respectively.
The number of edges of QG, CG, and KG satisfy

|E(QG)| = nQ + ex(G), |E(CG)| = nC + ex(G), |E(KG)| = nK + ex(G).

The kernel has minimum degree at least three by definition and thus has at least
3
2nK edges. A kernel is called cubic if all its vertices have degree three; in that case,

it has precisely 3
2nK edges. The deficiency of G is defined as

d(G) := 2|E(KG)| − 3nK = 2 ex(G)− nK .

Clearly, the deficiency is always non-negative and d(G) = 0 if and only if the kernel
KG is either empty or cubic. The definition of the excess and deficiency of a graph
immediately implies the following relation between the deficiency, the excess, and
the number of vertices and edges of the kernel.

Lemma 3.2.1. Given a graph G, the numbers nK of vertices and mK of edges in
the kernel KG of G are

nK = 2 ex(G)− d(G) and mK = 3 ex(G)− d(G).

�
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3.2.3. Useful bounds. We will frequently use the following widely known formu-
las.

1 + x = exp

(
x− x2

2
+
x3

3
+O(x4)

)
if x = o(1), (3.1)

1 + x ≤ exp(x), (3.2)

1 + x ≥ exp

(
x− x2

2

)
if x ≥ 0, (3.3)

To derive bounds for the factorial n! and the falling factorial (k)i := k!/(k − i)! we
shall use the inequalities

√
2πn

(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n
, (3.4)

ki exp

(
− i2

2(k − i)

)
≤ (k)i ≤ ki exp

(
− i(i− 1)

2k

)
. (3.5)

For 1 ≤ k ≤ n − 1 we will also use refined bounds for the binomial coefficient
obtained by applying (3.4) thrice.

√
2πnn+1/2

e2kk+1/2(n− k)n−k+1/2
≤
(
n

k

)
≤ enn+1/2

2πkk+1/2(n− k)n−k+1/2
. (3.6)

We shall also use the inequality

1

a+ b
≥ 1

a
− b

a2
if a 6= 0, a+ b > 0. (3.7)

Finally, we need some well known inequalities from probability theory. Given a
random variable X, we denote by E [X] its expectation and by σ2 its variance. For
a non-negative random variable X and any t > 0, Markov’s inequality states that

P [X ≥ t] ≤ E [X]

t
. (3.8)

In terms of Chernoff bounds, we shall need the two special cases of normal distri-
butions and binomial distributions. For a Gaussian random variable X, we have,
for any given t > 0,

P
[
|X − E [X]| ≥ t

]
≤ 2 exp

(
− t2

2σ2

)
. (3.9)

If X is a binomial random variable, then

P
[
|X − E [X]| ≥ t

]
≤ 2 exp

(
− t2

2
(
E [X] + t

3

)). (3.10)

3.3. Proof strategy

3.3.1. Decomposition and construction. Throughout the chapter, let g ∈ N be
fixed. We have seen in Section 3.2.2 that any graph that is embeddable on Sg can
be decomposed into a) its complex part and b) trees and unicyclic components.
The complex part can then further be decomposed so as to obtain the core and
the kernel. Vice versa, we can construct a graph on Sg by performing the reverse
constructions.

Construction. The following steps construct every graph embeddable on Sg.
(C1) Pick a kernel, i.e. a multigraph with minimum degree at least three that

is embeddable on Sg and subdivide its edges to obtain a core;
(C2) to every vertex v of the core, attach a rooted tree Tv (possibly only

consisting of one vertex) by identifying v with the root of Tv, so as to
obtain a complex graph;
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(C3) add trees and unicyclic components to obtain a general graph embeddable
on Sg.

To avoid overcounting in (C1) if the kernel has loops or multiple edges, multi-
graphs will always be weighted by the compensation factor introduced by Janson,
Knuth,  Luczak, and Pittel [62], which is defined as follows. Given a multigraph
M and an integer i ≥ 1, denote by ei(M) the number of (unordered) pairs {u, v}
of vertices for which there are exactly i edges between u and v. Analogously, let
`i(M) denote the number of vertices x for which there are precisely i loops at x.
Finally, let `(M) =

∑
i i`i(M) be the number of loops of M . The compensation

factor of M is defined to be

w(M) := 2−`(M)
∞∏
i=1

(i!)−ei(M)−`i(M). (3.11)

In (C1), the compensation factor enables us to distinguish multiple edges and loops
at the same vertex (because of the factors 1/i!) as well as the different orientations of
loops (because of the factor 2−`(M)). This fact ensures that there is no overcounting
in (C1). Indeed, if a core C has kernel K, then C can be constructed from K by
subdividing edges in precisely 1

w(K) different ways; thus, assigning weight w(K) to

K prevents overcounting.
We denote by

• Gg the class of all graphs embeddable on Sg;
• Qg the class of all complex parts of graphs in Gg;
• Cg the class of all cores of graphs in Gg;
• Kg the class of all kernels of graphs in Gg;
• U the class of all graphs without complex components.

In other words, Qg is the class of all complex graphs embeddable on Sg; Cg consists
of all complex graphs embeddable on Sg with minimum degree at least two; and
Kg comprises all (weighted) multigraphs embeddable on Sg with minimum degree
at least three. The empty graph lies in all the classes above by convention.

If n,m ∈ N are fixed, we write Gg(n,m) for the subclass of Gg containing
all graphs with exactly n vertices and m edges. By Gg(n,m) we denote a graph
chosen uniformly at random from all graphs in Gg(n,m). We use the corresponding
notation also for the other classes defined above.

The construction of graphs in Gg from their kernel via the core and complex part
as described in (C1)–(C3) can be translated to relations between the numbers of
graphs in the previously defined classes. Starting from Gg(n,m), (C3) immediately
gives rise to the identity

|Gg(n,m)| =
∑
nQ,l

(
n

nQ

)
|Qg(nQ, nQ + l)| · |U(nU ,mU )|, (3.12)

where nU = n − nQ and mU = m − nQ − l. Indeed, for each fixed number nQ of
vertices in the complex part and each fixed excess l

• the binomial coefficient counts the possibilities which vertices lie in the
complex part,
• |Qg(nQ, nQ + l)| counts the complex parts with nQ vertices and nQ + l

edges, and
• |U(nU ,mU )| counts all possible arrangements of non-complex compo-

nents.
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If |Qg(nQ, nQ + l)| and |U(nU ,mU )| are known, then we can use (3.12) to
determine |Gg(n,m)|. Determining |Qg(nQ, nQ + l)| turns out to be quite a chal-
lenging task, to which we devote a substantial part of this chapter. The number
|U(nU ,mU )|, on the other hand, can be determined using known results.

3.3.2. Graphs without complex components. The class U of graphs without
complex components (i.e. each component is either a tree or unicyclic) has been
studied by Britikov [28] and by Janson, Knuth,  Luczak, and Pittel [62], who de-
termined the number of graphs in U(n,m) for different regimes of m.

Lemma 3.3.1. Let m = (1 + λn−1/3)n2 with λ = λ(n) < n1/3 and let ρ(n,m) be
such that

|U(n,m)| =
((n

2

)
m

)
ρ(n,m).

There exists a constant c > 0 such that for

f(n,m) = c

(
2

e

)2m−n
mm+1/2nn−2m+1/2

(n−m)n−m+1/2
,

we have

(i) ρ(n,m) = 1 + o(1), if λ→ −∞;
(ii) for each a ∈ R, there exists a constant b = b(a) > 0 such that ρ(n,m) ≥ b

whenever λ ≤ a;
(iii) ρ(n,m) ≤ n−1/2f(n,m) if λ > 0 and λ = o(n1/12);
(iv) ρ(n,m) ≤ f(n,m) if λ > 0.

Lemma 3.3.1(i), (ii), and (iii) are proven in [28] and [62], but (iv) is a slight
extension of the results in [62] which we prove in Section 3.7 along the following
lines. Inspired by the proof of (iii) in [62], we bound ρ(n,m) by a contour integral
and prove that this integral has value at most f(n,m) for all λ > 0.

Clearly, every graph in U is planar and thus also embeddable on Sg. This fact,
together with Lemma 3.3.1 and Theorem 3.1.1(i) and (ii) will be enough to prove
Theorem 3.1.5(i) and (ii). For all other regimes, Lemma 3.3.1 will provide a very
useful way to bound the number |U(n,m)| in (3.12).

3.3.3. Complex parts. For the number |Qg(nQ, nQ + l)|, we analyse (C1)–(C2)
in order to derive an identity similar to (3.12). Firstly, we need to sum over all
possible numbers nC of vertices in the core; the number of edges in the core is then
given by nC + l. For fixed nQ, nC , and l, we have

•
(
nQ
nC

)
choices for which vertices of the complex part lie in the core,

• |Cg(nC , nC + l)| ways to choose a core, and

• nCn
nQ−nC−1
Q possibilities to attach nC rooted trees with nQ vertices in

total to the vertices of the core.

By (C2), we thus deduce that

|Qg(nQ, nQ + l)| =
∑
nC

(
nQ
nC

)
|Cg(nC , nC + l)|nCn

nQ−nC−1
Q . (3.13)

In order to determine |Cg(nC , nC + l)|, recall that by Lemma 3.2.1, the number
of vertices and edges in the kernel depend only on the excess and deficiency of the
graph. Thus, we choose the deficiency d as the summation index. The number of
ways to construct a core from a kernel according to (C1) cannot be described in
an easy fashion like the constructions in (C2) and (C3). We will investigate this
construction step in more detail in Lemma 3.4.9. For a kernel K ∈ Kg(2l−d, 3l−d),
consider the number of different ways to subdivide its edges that result in a core
with nC vertices and nC + l edges. Denote by ϕnC ,l,d the average of this number,
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taken over all kernels in Kg(2l−d, 3l−d). With this notation, we deduce from (C1)
that

|Cg(nC , nC + l)| =
∑
d

(
nC

2l − d

)
|Kg(2l − d, 3l − d)|ϕnC ,l,d. (3.14)

Recall that the multigraphs in Kg are weighted. Accordingly, |Kg(2l − d, 3l − d)|
does not denote the number of these multigraphs, but the sum of their weights.

3.3.4. Analysing the sums. In each of (3.12), (3.13), and (3.14), we may assume
that the parameters nQ, nC , l, d of the sums only take those values for which the
summands are non-zero.

Definition 3.3.2. We call values for a parameter (or a set of parameters) admis-
sible, if there exists at least one graph satisfying these values for the corresponding
parameters.

The definition of the parameters, together with Lemma 3.2.1, directly yield the
following necessary conditions for admissibility.

(A1) 0 ≤ nQ ≤ n;
(A2) 0 ≤ nC ≤ nQ;
(A3) 0 ≤ l ≤ m− nQ;
(A4) l = 0 if and only if nQ = 0;
(A5) l ≤ 2nC + 6(g − 1);
(A6) 0 ≤ d ≤ 2l.

Inequality (A5) is due to Euler’s formula applied to the core. These bounds will
frequently be used; if we use other bounds, we will state them explicitly.

On the first glance, the sole application of (3.12), (3.13), and (3.14) seems to be
to determine the number of graphs with given numbers of vertices and edges in the
classes Gg, Qg, and Cg. However, we shall use these sums to derive typical structural
properties of graphs chosen uniformly at random from one of these classes.

Our plan to derive such properties from the sums (3.12), (3.13), and (3.14) is
as follows. Once we have determined the values |Kg(2l − d, 3l − d)| and ϕnC ,l,d,
we consider the parameters nQ, nC , l, d of the sums one after another. For each
parameter i, we seek to determine which range for i provides the ‘most important’
summands. To make this more precise, let us introduce the following notation.

Definition 3.3.3. For every n ∈ N, let I(n), I0(n) ⊂ N be finite index sets with
I0(n) ⊆ I(n). For each i ∈ I(n), let Ai(n) ≥ 0. We say that I0(n) provides the
main contribution to the sum ∑

i∈I(n)

Ai(n)

if ∑
i∈I(n)\I0(n)

Ai(n) = o

 ∑
i∈I(n)

Ai(n)

,
where n→∞. The sum over i ∈ I(n) \ I0(n) is then called the tail of

∑
Ai(n).

We shall determine index sets IQ(n), IC(n), Il(n), Id(n) that provide the main
contributions to the sums in (3.12)–(3.14) over nQ, nC , l, and d, respectively. This
will yield statements about the size of these values in the following way. For fixed
m = m(n), the index set IC(n), for example, will be of the type [c1f(n), c2f(n)] for
certain constants 0 < c1 < c2 and a certain function f = f(n). This implies that if
G = Gg(n,m), then whp nC ∈ IC(n) and thus nC = Θ(f).

The main challenge is to find the ‘optimal’ intervals IQ(n), IC(n), Il(n), Id(n)
in view of Definition 3.3.3 in the sense that they should be a) large enough so
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as to provide the main contribution and b) as small as possible so as to yield
stronger concentration results. To achieve these two antipodal goals is a difficult
task whose solution will differ from case to case. In order to prove that a given
interval indeed provides the main contribution to a sum, we bound the tail of
the sum using various complementary methods including maximising techniques
(e.g. Lemmas 3.4.8, 3.4.13, 3.4.16 and 3.4.17), Chernoff bounds (Lemmas 3.4.8
and 3.4.9), and approximations by integrals (Lemmas 3.4.14 and 3.4.19).

Determining the main contributions to (3.12), (3.13), and (3.14) will yield
structural statements like the typical order of the complex part, the core, and
the kernel of G = Gg(n,m). In order to derive the component structure of G, we
further apply combinatorial techniques like double counting (e.g. Theorem 3.1.6
and Lemma 3.4.5) and probabilistic methods such as Markov’s inequality (Theo-
rem 3.5.4).

3.4. Kernels, cores, and complex parts

For the remainder of the chapter, let n,m, nQ, nC , l, d ∈ N be such that m =
m(n) ≤ (1 + o(1))n and such that nQ, nC , l, and d are admissible (in terms of
Definition 3.3.2). Furthermore, set nU = n− nQ and mU = m− nQ − l.

The aim of this section is to determine the main contributions (in the sense of
Definition 3.3.3) to the sums in (3.12), (3.13), and (3.14). In other words, we derive
the typical orders of the complex part and the core of G = Gg(n,m), as well as the
excess and the deficiency of G. These orders will be the main ingredients for the
proofs of Theorems 3.1.5–3.1.7. For all results in this section, we defer the proofs
to Section 3.7.

3.4.1. Kernels. Throughout this section, we assume l ≥ 1. As a basis of our
analysis of (3.12), (3.13), and (3.14), we first have to determine the sum |Kg(2l −
d, 3l−d)| of weights of the multigraphs in Kg(2l−d, 3l−d). We start with the case
when the kernel is cubic (or equivalently, d = 0). The number of cubic kernels was
determined in [45] by Fang, Kang, Sprüssel, and the author of this thesis.

Theorem 3.4.1 ([45]). The number of cubic multigraphs with 2l vertices and
3l edges embeddable on Sg, weighted by their compensation factor, is given by

|Kg(2l, 3l)| =
(

1 +O
(
l−1/4

))
egl

5g/2−7/2γ2l
K(2l)! ,

where γK = 793/4

541/2 ≈ 3.606 and eg > 0 is a constant depending only on g.

The number of connected cubic kernels will be of interest as well.

Theorem 3.4.2 ([45]). The number of connected multigraphs in Kg(2l, 3l),
weighted by their compensation factor, is(

1 +O
(
l−1/4

))
cgl

5g/2−7/2γ2l
K(2l)! ,

where γK is as in Theorem 3.4.1 and cg > 0 is a constant depending only on g.

In particular, Theorems 3.4.1 and 3.4.2 imply that Kg(2l, 3l) is connected with
probability tending to

cg
eg
> 0; in other words, the probability that a random cubic

(planar) kernel is connected is bounded away from zero, in contrast to the well-
known fact that a random cubic general (not necessarily planar) kernel is connected
whp (see e.g. [77, Lemma 1(i)]).

Before we consider kernels with non-zero deficiency, we shall look at the struc-
ture of cubic kernels. We aim to find the giant component of Gg(n,m) and prove
that it is complex, hence finding the giant component of the kernel would be a
basis for a complex giant component in Gg(n,m). Moreover, we would like this
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giant component to have genus g. The following result from [45] provides us with
a component of genus g in a cubic kernel.

Lemma 3.4.3 ([45]). If g ≥ 1, then Kg(2l, 3l) whp has one component of genus g
and all its other components are planar.

Intuitively, the non-planar component provided by Lemma 3.4.3 should be the
largest component of the kernel, ideally even large enough to be the giant com-
ponent. The following result shows that this component indeed covers almost all
vertices in the kernel.

Lemma 3.4.4. Let g ≥ 1. Denote by pl(G) the subgraph of G = Kg(2l, 3l) consist-
ing of all planar components. Then |pl(G)| = Op(1). Furthermore, |pl(G)| is even
and there exist constants c+, c− ∈ R+ such that for every fixed integer i ≥ 1 and
sufficiently large l,

c−i−7/2

(
1− i

l

)5g/2−7/2

≤ P [|pl(G)| = 2i] ≤ c+i−7/2

(
1− i

l

)5g/2−7/2

. (3.15)

For the case g = 0, [66, Lemma 2] provides an analogous statement to (3.15)
for the number of vertices outside the giant component of K0(2l, 3l).

Let us now look at general (not necessarily cubic) kernels. For such kernels,
we are not able to give a precise formula for their number, but we can bound their
number by comparing them to cubic kernels via a double counting argument.

Lemma 3.4.5. Let k ∈ N be fixed. For K ∈ Kg, denote by

(i) P1 the property that K has precisely k components;
(ii) P2 the property that, if g ≥ 1, then each component of K has genus

strictly smaller than g.

For i = 1, 2, denote by Kg(nK ,mK ;Pi) the subclass of Kg(nK ,mK) of kernels that
have property Pi. Then

|Kg(2l − d, 3l − d)|
|Kg(2l, 3l)|

≤ 6d

d!
and

|Kg(2l − d, 3l − d;Pi)|
|Kg(2l, 3l;Pi)|

≤ 6d

d!
for i = 1, 2.

If in addition d ≤ 2
7 l, then also

|Kg(2l − d, 3l − d)|
|Kg(2l, 3l)|

≥ 1

216dd!
and

|Kg(2l − d, 3l − d;Pi)|
|Kg(2l, 3l;Pi)|

≥ 1

216dd!
for i = 1, 2.

Lemma 3.4.5 has two main applications. On one hand, together with Theo-
rem 3.4.1, Lemma 3.4.5 provides a way to bound the value |Kg(2l − d, 3l − d)| in
(3.14). On the other hand, Lemma 3.4.5 will also enable us to extend the structural
results from Lemmas 3.4.3 and 3.4.4 to kernels with a fixed constant deficiency d
(see Theorem 3.5.4).

3.4.2. Core and deficiency. We first determine the main contributions to the
sums in (3.13) and (3.14). By definition, |Qg(0, 0)| = 1. Thus, throughout this
section we will assume that both nQ ≥ 1 and l ≥ 1 (recall that l = 0 if and only if
nQ = 0). Observe that (3.13), (3.14), and the identity(

nQ
nC

)(
nC

2l − d

)
=

(nQ)nC
(2l − d)!(nC − 2l + d)!

imply that

|Qg(nQ, nQ + l)| =
∑
nC ,d

(nQ)nC |Kg(2l − d, 3l − d)|ϕnC ,l,d nCn
nQ−nC−1
Q

(2l − d)!(nC − 2l + d)!
. (3.16)
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The factor |Kg(2l − d, 3l − d)| in (3.16) can be bounded using Theorem 3.4.1
and Lemma 3.4.5. The term ϕnC ,l,d, however, is still unknown. Recall that this
value denotes the average number, over all K ∈ Kg(2l− d, 3l− d), of different ways
to subdivide the edges of K that result in a core with nC vertices and nC + l edges.

Lemma 3.4.6. There exists a function ν = ν(nC , l, d) such that

ϕnC ,l,d = (nC − 2l + d)!

(
nC + νl − 1

3l − d− 1

)
and −5 ≤ ν ≤ 1.

Let us now determine the value of the sum in (3.16) over nC , as well as its
main contribution. To this end, we apply Lemmas 3.4.5 and 3.4.6 to (3.16), gather
all parts of the equation that depend on nC , and denote the sum over these values
by ΣC .

Lemma 3.4.7. There exists a function τ = τ(l, d) such that

(i) 1
216 ≤ τ ≤ 6 for all 0 ≤ d ≤

⌊
2l
7

⌋
;

(ii) 0 ≤ τ ≤ 6 for all
⌊

2l
7

⌋
< d ≤ 2l;

and

|Qg(nQ, nQ + l)| = n
nQ−1
Q

|Kg(2l, 3l)|
(2l)!

2l∑
d=0

(
2l

d

)
τd

(3l − d− 1)!
ΣC , (3.17)

where

ΣC = ΣC(nQ, l, d) :=
∑
nC

(nQ)nC
nnCQ

nC(nC + νl − 1)3l−d−1. (3.18)

The strategy to determine the main contribution to ΣC is roughly as follows.
Using inequalities from Section 3.2.3, we bound ΣC(nQ, l, d) from above by a sum
of the type ∑

nC

exp(A(nQ, nC , l, d)).

The derivative of A(nQ, nC , l, d) with respect to nC will show to have a zero at
nC = (1 + o(1))nC , where

nC =
√
nQ(3l − d).

We then substitute nC = nC + r and prove that the resulting sum—up to a scaling
factor—corresponds to a normally distributed random variable to which the Cher-
noff bound (3.9) applies. Finally, for nC from the range of the main contribution
to the upper bound, we derive a similar lower bound, which will enable us to derive
the main contribution to ΣC .

Lemma 3.4.8. Let fC = fC(nQ, l, d) be such that

ΣC(nQ, l, d) =
√
nQ

(
nQ(3l − d)

e

)(3l−d)/2

exp(fC). (3.19)

(i) There exist constants a+
C , b

+
C ∈ R such that

fC ≤ a+
C + b+C

√
l3

nQ
.

(ii) For every function ε(nQ) = o(1), there exist constants NQ ∈ N, a−C , b
−
C ∈

R such that whenever nQ ≥ NQ and 7
2d ≤ l ≤ εnQ, then

fC ≥ a−C + b−C

√
l3

nQ
.
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(iii) For every 0 < δ < 1
2 , whenever nQ, l → ∞ and 7

2d ≤ l ≤ εnQ, where
ε = ε(nQ) = o(1) is given, the main contribution to ΣC is provided by

IδC(nQ, l, d) :=
{
k ∈ N

∣∣ |k − nC | < δnC
}
.

Our next aim is to analyse the sum over d in (3.17). To this end, observe that
for

Σd = Σd(nQ, l) :=
∑
d

(
2l

d

)
(3l − d)(3l−d+2)/2ed/2τd

(3l − d)!n
d/2
Q

exp(fC), (3.20)

(3.17) and (3.19) yield

|Qg(nQ, nQ + l)| =
n
nQ+3l/2−1/2
Q |Kg(2l, 3l)|

e3l/2(2l)!
Σd. (3.21)

We determine the value of Σd, as well as its main contribution, in a similar
fashion as for ΣC .

Lemma 3.4.9. Let fd = fd(nQ, l) be such that

Σd = (3l)−(3l−1)/2e3l exp(fd). (3.22)

(i) There exist constants a+
d ∈ R and b+d ∈ R such that

fd ≤ a+
d + b+d

√
l3

nQ
.

(ii) For every function ε(nQ) = o(1), there exist constants NQ ∈ N and
a−d , b

−
d ∈ R such that

fd ≥ a−d + b−d

√
l3

nQ
,

whenever nQ ≥ NQ and l ≤ εnQ.
(iii) There exists a constant β+

d ∈ R+ such that for nQ, l→∞ and l = o(nQ),
the main contribution to Σd is provided by

(a) Id(nQ, l) := {0} if l = o(n
1/3
Q );

(b) Ihd (nQ, l) := {k ∈ N | k ≤ h(nQ)} for any fixed function h =

h(nQ) = ω(1) if l = Θ(n
1/3
Q );

(c) Id(nQ, l) :=
{
k ∈ N | k ≤ β+

d

√
l3

nQ

}
if l = ω(n

1/3
Q ).

Interpreted in a probabilistic sense, Lemmas 3.4.8 and 3.4.9 immediately yield
the typical order of a core of a complex graph, as well as the typical deficiency.

Corollary 3.4.10. For every function ε(nQ) = o(1), if nQ, l → ∞ and l ≤ εnQ,

then whp Q = Qg(nQ, nQ+l) has a core with
√

3nQl(1+o(1)) vertices. Furthermore,
the deficiency of Q is given by

d(Q) =


0 whp if l = o(n

1/3
Q ),

Op(1) if l = Θ(n
1/3
Q ),

O
(√

l3

nQ

)
whp if l = ω(n

1/3
Q ).

Observe that Corollary 3.4.10 requires nQ and l to be growing and l to be of
smaller order than nQ. We shall later see that this will whp be the case for the
complex part of Gg(n,m).

In addition to Corollary 3.4.10, which tells us the deficiency and the order of
the core of Qg(nQ, nQ + l), Lemma 3.4.9 also enables us to express the number of
complex graphs that are embeddable on Sg.
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Corollary 3.4.11. For all positive admissible values nQ, l, we have

|Qg(nQ, nQ + l)| =
n
nQ+3l/2−1/2
Q |Kg(2l, 3l)|e3l/2

(3l)(3l−1)/2(2l)!
exp(fd).

This finalises our analysis of (3.13) and (3.14).

3.4.3. Complex part and excess. In this section we derive the main contribution
to the double sum (3.12) (with respect to the summation indices nQ and l). In
the previous section, we had to distinguish the cases nQ = 0 and nQ > 0 in
order to determine the number of complex graphs. Similarly, it will turn out that
our asymptotic formulas will be quite different depending on whether the number
mU = m − nQ − l of edges outside the complex part is zero or not. In order to
keep expressions simple, we will deal with the special cases nQ = 0 and mU = 0
separately.

To this end, define G∗g (n,m) to be the subclass of Gg(n,m) consisting of all
graphs for which the complex part is non-empty and the non-complex part has at
least one edge. After bounding |G∗g (n,m)|, we shall see that the two special cases
nQ = 0 and mU = 0 are ‘rare’ in the sense that almost all graphs in Gg(n,m) are
also in G∗g (n,m).

Lemma 3.4.12. For every m = m(n) as in Theorem 3.1.5(iii), Theorem 3.1.6, or
Theorem 3.1.7 we have

|Gg(n,m) \ G∗g (n,m)| = o
(
|G∗g (n,m)|

)
.

By Lemma 3.4.12, we can determine the main contribution to (3.12) by deriving
the main contribution to the corresponding sum for |G∗g (n,m)|, namely

|G∗g (n,m)| =
∑
nQ,l

(
n

nQ

)
|Qg(nQ, nQ + l)| · |U(nU ,mU )|, (3.23)

where nQ and l take all admissible values with nQ > 0 and mU > 0.
In order to analyse (3.23), we derive an upper bound for the sum over nQ and

subsequently also for the sum over l. These upper bounds indicate which intervals
IQ(n) and Il(n) for nQ and l, respectively, ‘should’ provide the main contribution
to (3.23). For nQ and l from these intervals, we then derive lower bounds and prove
that the lower bound for the sum over nQ ∈ IQ(n) and l ∈ Il(n) is much larger than
the tails of the upper bound, thus proving that the main contribution to (3.23) is
indeed provided by IQ(n) and Il(n).

Applying (3.6), Corollary 3.4.11, Lemma 3.3.1, and Theorem 3.4.1 to (3.23),
we have

|G∗g (n,m)| = Θ(1)nn+ 1
2

(e
2

)m∑
l

l
5g
2 −3− 3l

2 φl
∑
nQ

ρ(nU ,mU )ψ(nQ, l), (3.24)

where φ = 2
√
eγ2
K3−

3
2 and

ψ(nQ, l) =

(
2

e

)nQ
n

3l
2 −1

Q n
2mU−nU− 1

2

U m
−mU− 1

2

U exp(fd). (3.25)

Consider the sum

ΣQ = ΣQ(n,m, l) :=
∑
nQ

ρ(nU ,mU )ψ(nQ, l),

where we sum over all values of nQ that are admissible in G∗g (n,m). We shall see in
Lemma 3.4.19 that for fixed l > 0, the main contribution to ΣQ is centred around

nQ = 2m− n− 2l.
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The corresponding numbers of vertices and edges in the non-complex components
are given by

nU = 2(n−m+ l) and mU = n−m+ l.

The bounds for ΣQ will depend on whether l is ‘small’ or ‘large’, more precisely,
whether

9m2
U

(
3l

2
− 1

)
≤ n3

Q (3.26)

is satisfied (if so, l is considered small) or not (if so, l is large).

Lemma 3.4.13. Define MQ = MQ(n,m, l) by

MQ =


(

2

e

)2m−n

n
3l
2 −1

Q m−mU−1
U if (3.26) holds,(

2

e

)2m−n

l
l
2−

1
3m
−mU+l− 5

3

U otherwise.

Then

ΣQ ≤ n
3
2 exp(O(l))MQ. (3.27)

Furthermore, for every fixed positive valued function ε = ε(n) = o(1) and every
δ > 0, there exists N ∈ N such that for all n ≥ N

ΣQ ≤ Θ(1)n
3
2

(e
2

)2l

(1 + δ)lMQ, (3.28)

whenever

9m2
U

(
3l

2
− 1

)
≤ εn3

Q. (3.29)

For the case that m is larger than n
2 by only a small margin, we prove a stronger

bound with the help of Lemma 3.3.1(iii) and a more careful analysis of the sums
involved.

Lemma 3.4.14. Let m = (1 + λn−1/3)n2 with λ = o(n1/12) and λ→∞. Then we
have

ΣQ ≤ λn
2
3 exp(O(l))MQ. (3.30)

In Lemmas 3.4.13 and 3.4.14, the exact bound depends on whether (3.26) is
satisfied or violated. Correspondingly, we set

Σl :=
∑
l

l
5g
2 −3− 3l

2 φlΣQ(n,m, l),

where l takes all admissible values for which (3.26) holds, and

Σ̃l :=
∑
l

l
5g
2 −3− 3l

2 φlΣQ(n,m, l),

where l takes all admissible values for which (3.26) is violated. Heuristically, Σl
should be the larger of the two sums, because l−

3l
2 should be the dominating term

and this term is small when l is large (which is the case when (3.26) is violated).

We shall see in Lemma 3.4.17 that Σ̃l is indeed negligible.
Accordingly, we focus on Σl for the moment. Applying the bound (3.27), we

have Σl ≤ Σ+
l , where

Σ+
l =

(
2

e

)2m−n∑
l

l
5g
2 −3− 3l

2 φln
3l
2 −1

Q m−mUU exp(O(l)).

The main contribution to Σ+
l should be centred around its largest summand. We

approximate the largest summand by ignoring polynomial terms and replacing the
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term exp(O(l)) by (e/2)2l (which we saw in Lemma 3.4.13 to be a good approxi-
mation when (3.29) holds). The remaining terms attain their largest value at the
unique solution l0 of the equation

l0 =
φ2/3(2m− n− 2l0)

e1/324/3(n−m+ l0)2/3
, m− n < l0 < m− n

2
. (3.31)

Before we proceed to prove that the main contribution to |G∗g (n,m)| is indeed
provided by l ‘close to’ l0 (and thus the ‘typical excess’ of a graph in G∗g (n,m) is
close to l0), let us take a closer look at the value l0. We introduce the following
notation for the seven different cases of m(n) from our main results.

1Sub: m(n) = (1 + λn−1/3)n2 with λ = λ(n) = o(n1/3) and λ → −∞, the first
subcritical regime;

1Crit: m(n) = (1 + λn−1/3)n2 with λ→ cλ ∈ R, the first critical regime;

1Sup: m(n) = (1 + λn−1/3)n2 with λ = o(n1/3) and λ→∞, the first supercrit-
ical regime;

Int: m(n) = µ n
2 with µ = µ(n)→ cµ ∈ (1, 2), the intermediate regime;

2Sub: m(n) = (2+ζ n−2/5)n2 with ζ = ζ(n) = o(n2/5) and ζ → −∞, the second
subcritical regime;

2Crit: m(n) = (2 + ζ n−2/5)n2 with ζ → cζ ∈ R, the second critical regime;

2Sup: m(n) = (2 + ζ n−2/5)n2 with ζ = o((log n)−2/3n2/5) and ζ → ∞, the
second supercritical regime.

The union of the first three cases will also be referred to as the first phase tran-
sition, while the union of the last three cases is called the second phase transition.
In 1Sub and 1Crit, our main results will follow from well-known results. Thus,
for the rest of this section, we assume that we are in one of the other five cases.

The definition of l0 immediately yields its asymptotic order.

Lemma 3.4.15. The value l0 defined in (3.31) is positive and whp satisfies

l0 =



Θ(λ) in 1Sup,

Θ(n1/3) in Int,

Θ
(
|ζ|−2/3n3/5

)
in 2Sub,

Θ(n3/5) in 2Crit,
1
2 ζ n

3/5 + Θ
(
ζ−3/2 n3/5

)
in 2Sup.

Furthermore, in 2Crit, we have 0 < l0 − 1
2 ζ n

3/5 = Θ
(
n3/5

)
.

In general, l0 will not be an integer and thus in particular not admissible. Set

l1 := dl0e .
Now (3.31) and Lemma 3.4.15 yield

l1 = (1 + o(1))
φ2/3(2m− n− 2l1)

e1/324/3(n−m+ l1)2/3
. (3.32)

From Lemma 3.4.15 we deduce that all l ‘close to’ l1 are admissible and use this
fact to derive a lower bound on |G∗g (n,m)|.

Lemma 3.4.16. Let c > 1 be given and suppose that l ∈ N with l0
c ≤ l ≤ c l0 and

0 < mU =

{
Θ(n3/5) in 2Crit,

Θ
(
ζ−3/2 n3/5

)
in 2Sup.

Then l is admissible. Furthermore, there exists

ñQ = nQ +O
(
m

2/3
U

)
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such that

ΣQ(n,m, l) ≥ Θ(1)
(e

2

)2l

m
2
3

U exp(fd(ñQ, l))MQ(n,m, l).

In particular, for every δ > 0 and n large enough,

|G∗g (n,m)| ≥ Θ(1)nn+ 1
2

(e
2

)m+2l1
l
− 3l1

2
1 φl1(n−m+ l1)

2
3 (1− δ)l1MQ(l1, n,m).

The bound in Lemma 3.4.16 enables us to show that Σ̃l is negligible.

Lemma 3.4.17. For n→∞, we have

nn+ 1
2

(e
2

)m
Σ̃l = o

(
|G∗g (n,m)|

)
.

Lemma 3.4.17 implies that the main contribution to |G∗g (n,m)| is provided by
the same intervals that provide the main contribution to Σl. After determining
lower bounds for the summands in (3.23), our aim is to determine the ‘optimal’
intervals in view of Definition 3.3.3. In other words, we are looking for intervals
IQ(n) and Il(n) such that a) the lower bound, summed over IQ(n) and Il(n), is
much larger than the ‘tail’ of the upper bound and b) IQ(n) and Il(n) are as small
as possible. To that end, in the second phase transition, we need an auxiliary result
that tells us that fd (defined in Lemma 3.4.9) does not change ‘too much’ if we fix
l and change nQ by a small fraction.

Lemma 3.4.18. Suppose that m(n) lies in 2Sub, 2Crit, or 2Sup. Let positive
valued functions h = h(n) = ω(1) and ε = ε(n) = o(1) satisfying hε = ω(1) be given.
Then for all δ > 0, there exists N ∈ N such that for all n > N , nQ = (1 + o(1))n,
and h ≤ l ≤ nQ

h , we have

|fd((1− ε)nQ, l)− fd(nQ, l)| ≤ δεl.

With this auxiliary result, we can now determine the desired intervals IQ(n)
and Il(n) that provide the main contribution to |G∗g (n,m)|.

Lemma 3.4.19. There exist constants β+
l , β

−
l ∈ R+ and functions ϑ+

l , ϑ
−
l : R →

R+, and η+
l , η

−
l : (1, 2)→ R+ with

β+
l > β−l , η+

l (x) > η−l (x), ϑ+
l (x) > ϑ−l (x) >

x

2

for all x ∈ R such that the following holds.
For every fixed function h = h(n) = ω(1), the main contribution to (3.24) is

provided by Il(n) (for the sum over l) and IhQ(n, l) (for the sum over nQ), where

Il(n) :=



{
k ∈ N | β−l λ ≤ k ≤ β

+
l λ
}

in 1Sup,{
k ∈ N | η−l (cµ)n1/3 ≤ k ≤ η+

l (cµ)n1/3
}

in Int,{
k ∈ N | β−l |ζ|−2/3n3/5 ≤ k ≤ β+

l |ζ|−2/3n3/5
}

in 2Sub,{
k ∈ N | ϑ−l (cζ)n

3/5 ≤ k ≤ ϑ+
l (cζ)n

3/5
}

in 2Crit,{
k ∈ N | β−l ζ

−3/2 n3/5 ≤ k − 1
2 ζ n

3/5 ≤ β+
l ζ
−3/2 n3/5

}
in 2Sup,

and

IhQ(n, l) :=
{
k ∈ N | |k − nQ| ≤ hm2/3

U

}
.
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3.5. Internal structure

In the Section 3.4, we have determined the main contributions to |G∗g (n,m)|
and thus, by Lemma 3.4.12, also the main contributions to |Gg(n,m)|. Interpreting
these results in a probabilistic sense, we deduce the typical orders nQ, nC of the
complex part and the core of G = Gg(n,m), respectively, as well as its typical excess
ex(G) and deficiency d(G). All results in this section are proved in Section 3.6.

The complex part, for instance, grows from order λn2/3 in the first supercritical
regime to linear order in the intermediate regime. The number mU of edges outside
the complex part is about half the number nU of vertices outside the complex part.

Theorem 3.5.1. Let G = Gg(n,m). Then nQ, nC , ex(G), and d(G) whp lie
in the following ranges.

nQ nC ex(G) d(G)

1Sup λn2/3 +Op(n
2/3) Θ

(
λn1/3

)
Θ(λ) 0

Int (µ−1)n+Op
(
n2/3

)
Θ
(
n2/3

)
Θ
(
n1/3

)
Op(1)

Furthermore,

mU =
nU
2

+Op(n
2/3
U ).

Observe that the ranges for nQ, nC , and ex(G) in 1Sup can be translated to the

ones in Int by the substitution λ = (µ−1)n1/3 (or, equivalently, µ = 1 + λn−1/3).
In the second phase transition, the complex part covers almost all vertices and

thus, it is more convenient to consider the parameter nU = n− nQ instead of nQ.

Theorem 3.5.2. Let G = Gg(n,m). Then nC , ex(G), and d(G) whp lie in the
following ranges.

nC ex(G) d(G)

2Sub Θ
(
|ζ|−1/3n4/5

)
Θ
(
|ζ|−2/3n3/5

)
O
(
|ζ|−1n2/5

)
2Crit Θ

(
n4/5

)
Θ
(
n3/5

)
O
(
n2/5

)
2Sup Θ

(
ζ1/2 n4/5

)
1
2 ζ n

3/5 + Θ
(
ζ−3/2 n3/5

)
O
(
ζ3/2 n2/5

)
Furthermore, we have

nU = 2 ex(G)− ζ n3/5 +Op

((
2 ex(G)− ζ n3/5

)2/3
)

=


|ζ|n3/5 + Θ

(
|ζ|−2/3n3/5

)
+Op

(
|ζ|2/3n2/5

)
in 2Sub,

Θ
(
n3/5

)
in 2Crit,

Θ
(
ζ−3/2 n3/5

)
in 2Sup,

and
mU =

nU
2

+Op(n
2/3
U ).

More generally than stated in Theorem 3.5.2, the formula

nU = 2(n−m+ ex(G)) +Op

(
(n−m+ ex(G))2/3

)
,

which corresponds to the first expression for nU in Theorem 3.5.2, holds for all
ranges of m. In 1Sup, Int, and 2Sub, this formula for nU consists of the main
term 2(n−m), a shift by a lower order term 2 ex(G), and an error term. In 1Sup
and Int, the excess is much smaller than the error term, which is why we could omit
the corresponding summand in Theorem 3.5.1. In 2Sub, the excess becomes larger
than the error term when ζ = o

(
n3/20

)
(or, equivalently, for m = n− o

(
n3/4

)
). For

the same reason, the error term is negligible in 2Crit and 2Sup.
Observe that if we substitute ζ by a constant in the cases 2Sub and 2Sup

of Theorem 3.5.2, we obtain the corresponding ranges in 2Crit. Moreover, the
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ranges in the case 2Sub can be translated to those in Int (see Theorem 3.5.1) by
the substitution ζ = (µ−2)n2/5 (or, equivalently, µ = 2 + ζ n−2/5).

As an immediate corollary of Theorems 3.5.1 and 3.5.2, we deduce the typical
order and size of the kernel of G = Gg(n,m).

Corollary 3.5.3. The number nK of vertices and mK = 3
2nK + 1

2 d(G) of edges of
the kernel of G = Gg(n,m) lie in the following ranges whp.

nK d(G)
1Sup Θ(λ) 0
Int Θ(n1/3) Op(1)
2Sub Θ

(
|ζ|−2/3n3/5

)
O
(
|ζ|−1n2/5

)
2Crit Θ

(
n3/5

)
O
(
n2/5

)
2Sup ζ n3/5 + Θ

(
ζ−3/2 n3/5

)
+O

(
ζ3/2 n2/5

)
O
(
ζ3/2 n2/5

)
Theorems 3.5.1 and 3.5.2 and Corollary 3.5.3 tell us the orders of the complex

part, the core, and the kernel. What we are ultimately looking for, however, are
orders of components. Lemmas 3.4.3 and 3.4.4 cover the case of cubic kernels, which
are precisely the kernels of Gg(n,m) in 1Sup. However, we are not interested in
the properties a kernel has if we pick it uniformly at random from the class of all
kernels. We are rather looking for properties of the kernel of Gg(n,m), where the
randomness lies in Gg(n,m). Clearly, we cannot expect the probability distribution
on the class of kernels given by this construction to be uniform.

However, by a double counting argument, we prove that the aforementioned
probability distribution does not differ ‘too much’ from the uniform distribution
if we are in 1Sup or Int. From this, we use Markov’s inequality (3.8) to deduce
that in these regimes, the kernel KG, the core CG, and the complex part QG of
G = Gg(n,m) have a component of genus g that covers almost all vertices, while all
other components are planar. Recall thatHi(G

′) denotes the i-th largest component
of a graph G′. Denote by R(G′) the graph G′ \H1(G′).

Theorem 3.5.4. Let G = Gg(n,m), where m = m(n) lies in 1Sup or Int.

(i) KG, CG, and QG have the same number k = Op(1) of components;
(ii) for every i ≥ 2, the probability that KG, CG, and QG have at least i

components is bounded away both from 0 and 1;
(iii) whp H1(KG) is the kernel of H1(CG), which in turn is the core of H1(QG),

and all three have genus g;
(iv) whp R(KG), R(CG), and R(QG) are planar;
(v) |R(KG)| = Op(1);

(vi) |R(CG)| = Op(n
1/3);

(vii) |R(QG)| = Op(n
2/3).

From Theorem 3.5.4, we deduce the typical order of the largest components of
the complex part, the core, and the kernel of Gg(n,m), respectively.

Corollary 3.5.5. For G = Gg(n,m), the largest components of the complex part
QG, the core CG, and the kernel KG, respectively, have the following order.

|H1(QG)| |H1(CG)| |H1(KG)|
1Sup λn2/3 +Op

(
n2/3

)
Θ
(
λn1/3

)
Θ(λ)

Int (µ−1)n+Op
(
n2/3

)
Θ
(
n2/3

)
Θ
(
n1/3

)
For the second phase transition, the proof method of Theorem 3.5.4 fails. For

these cases, we prove the existence of the giant component by using double counting
arguments.

Theorem 3.5.6. Let G = Gg(n,m), where m = m(n) lies in 2Sub, 2Crit, or
2Sup.
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(i) The number of vertices in H1(QG) is

|H1(QG)| = nQ −Op
(
n

2/3
U

)
= nQ −


Op
(
|ζ|2/3n2/5

)
in 2Sub,

Op
(
n2/5

)
in 2Crit,

Op
(
ζ−1 n2/5

)
in 2Sup;

(ii) whp H1(QG) has genus g, while all other complex components are planar.

In addition to the order of H1(QG), we can also determine its size, which plays
a key role in the proof of Theorem 3.1.8. In the first phase transition and in the
intermediate regime, this is an easy corollary of Theorems 3.5.1 and 3.5.4. In the
second phase transition, we need an additional double counting argument.

Corollary 3.5.7. For G = Gg(n,m), the size of the largest complex component
H1(QG) is

|H1(QG)|+ ex(G)− r(G),

where r(G) ≥ 0 and whp

r(G) = o(ex(G)) and r(G) = Op

(
n

2/3
U

)
.

By definition, the excess of a graph is the difference between the size and the
order of its complex part. Consequently, one would expect the excess r(G) of R(QG)
to be around

|R(QG)|
nQ

ex(G),

which is Op(1) in all regimes. In 1Sup and Int, Theorem 3.5.4 indeed yields this
expected bound r(G) = Op(1). In the second phase transition, our proof method
only provides the weaker bounds from Corollary 3.5.7. However, together with
the fact that H1(QG) is indeed the giant component of G (which will follow from
Theorems 3.1.5 to 3.1.7), these weaker bounds suffice to derive the size of H1(G).

Corollary 3.5.8. For G = Gg(n,m), the size of the giant component H1(G) is

|H1(G)|+



Θ(λ) in 1Sup,

Θ
(
n1/3

)
in Int,

Θ
(
|ζ|−2/3n3/5

)
in 2Sub,

Θ
(
n3/5

)
in 2Crit,

1
2 ζ n

3/5 + Θ
(
ζ−3/2 n3/5

)
in 2Sup.

3.6. Proofs of main results

In this section, we prove the main results (Theorems 3.1.5 to 3.1.8) of this
chapter, as well as the structural results from Section 3.5.

3.6.1. Proof of Theorem 3.1.5. In 1Sub, i.e. m = (1 + λn−1/3)n2 with λ =

o(n1/3) and λ → −∞, the Erdős–Rényi random graph G(n,m) whp is embed-
dable on Sg by Lemma 3.3.1. Thus, Theorem 3.1.5(i) follows immediately from
Theorem 3.1.1(i).

In 1Crit, i.e. λ → cλ ∈ R, Lemma 3.3.1(ii) implies that G(n,m) has no
complex components with positive probability. Thus, Theorem 3.1.1(ii) yields the
second statement of Theorem 3.1.5(ii). By [79, Theorem 5], the probability that
G(n,m) is planar, and thus in particular embeddable on Sg, is larger than the
probability that G(n,m) has no complex components. Hence the first statement of
Theorem 3.1.5(ii) follows as well.

Finally, consider 1Sup, i.e. λ = o(n1/3) and λ → ∞. By Corollary 3.5.5,
the largest component H1(QG) of the complex part of G = Gg(n,m) has order
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λn2/3+Op(n
2/3). Moreover, by Theorem 3.5.4(iii), (iv), and (vii), H1(QG) whp has

genus g, while all other complex components are planar and have order Op(n
2/3).

By Theorem 3.5.4(i) and (ii), it remains to show that for each k ≥ 1, the k-th
largest non-complex component has order Θp

(
n2/3

)
. By Lemma 3.3.1(ii) and the

fact that mU = nU
2 + Op

(
n

2/3
U

)
by Theorem 3.5.1, there is a positive probability

that G(nU ,mU ) has no complex component and therefore the claim follows from
Theorem 3.1.1(ii). �

3.6.2. Proof of Theorem 3.1.6. All statements about H1 (i.e. that it has genus
g, is complex, and has the claimed order), as well as the planarity of all other
components, follow directly from Theorems 3.5.2 and 3.5.6. For the order of Hi,
i ≥ 2, observe that

mU =
nU
2

+Op

(
n

2/3
U

)
(by Theorem 3.5.2) and Theorem 3.1.1(ii) imply that the k-th largest non-complex

component (for fixed k ≥ 1) has order Θp

(
n

2/3
U

)
. Now all complex components

apart from H1 have order Op

(
n

2/3
U

)
by Theorem 3.5.6(i) and thus, the claimed

order of Hi follows by inserting the value of nU from Theorem 3.5.2. �

3.6.3. Proof of Theorem 3.1.7. Analogously to the proof of the case 1Sup of
Theorem 3.1.5, Theorem 3.1.7 follows from Theorem 3.1.1(ii), Lemma 3.3.1(ii),
Theorem 3.5.4, and Corollary 3.5.5. �

Proof of Theorem 3.1.8. In 1Crit (that is, m =
(
1 + λn−1/3

)
n
2 with λ→ cλ ∈

R), the claim follows from the fact that

mR =
nR
2

+Op

(
n

2/3
R

)
holds for G(n,m), because G(n,m) is embeddable on Sg with positive probability
(see Theorem 3.1.1(ii)).

For all other regimes, Theorem 3.1.8 follows from the order of H1(G) given in
Theorems 3.1.5 to 3.1.7, the bound for its size in Corollary 3.5.7, and the values of
ex(G) and nU from Theorems 3.5.1 and 3.5.2. �

3.6.4. Proof of Theorems 3.5.1 and 3.5.2. The results on the excess and the
order of the complex part follow from Lemma 3.4.19. Observe that ex(G) = o(nQ)
for all regimes and thus Corollary 3.4.10 is applicable, yielding the order nC of the
core and the deficiency d(G). Finally, by Lemma 3.4.19 we know that

nU = 2(n−m+ ex(G)) +Op

(
(n−m+ ex(G))2/3

)
and

mU = n−m+ ex(G) +Op

(
(n−m+ ex(G))2/3

)
,

which yields the last statements of Theorems 3.5.1 and 3.5.2. �

Proof of Corollary 3.5.3. Corollary 3.5.3 follows directly from Lemma 3.2.1 and
the values of ex(G) and d(G) stated in Theorems 3.5.1 and 3.5.2. �
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Proof of Theorem 3.5.4. Given a fixed kernel K, call a subdivision of K good
if it is a simple graph (and thus a valid core). We first prove that the fraction of
good subdivisions among all subdivisions of K is bounded away from zero.

To this end, suppose that K is a kernel with 2l−d vertices and 3l−d edges and
that we want to subdivide its edges k times (with k ≥ 6l−2d) in order to construct
a core C with k + 2l − d vertices. We subdivide K in the following way. First,
decide which labels the vertices of K should have in C; there are

(
k+2l−d

2l−d
)

choices
for this. Let I be the set of the remaining k labels. We recursively subdivide edges
of K and assign the smallest remaining label in I to the new vertex. The number
of choices increases by one in each recursion step and thus we have (k+ 3l−d−1)k
choices in total. This way, we construct each subdivision precisely once. Hence the
total number of subdivisions of K is(

2l − d+ k

2l − d

)
(k + 3l − d− 1)k .

In order to give a lower bound on the number of good subdivisions, we change our
construction slightly by introducing a preliminary step. After choosing the labels
for the vertices in K, we subdivide each edge of K twice and then choose labels
from I for the new vertices; there are (k)6l−2d choices for this. After this step, we
proceed as before, with the additional rule that an edge may only be subdivided
if none of its end vertices is a vertex of K. Similar to our first construction, there
are (k − 3l + d − 1)k−6l+2d choices for this part of the construction. Every graph
obtained by this type of subdivision is simple and no graph is constructed more
than once. Thus, the total number of good subdivisions is at least(

2l − d+ k

2l − d

)
(k)6l−2d(k − 3l + d− 1)k−6l+2d .

The fraction of good subdivisions among all subdivisions of K is thus at least

(k)6l−2d(k − 3l + d− 1)k−6l+2d

(k + 3l − d− 1)k
≥
(
k − 3l + d

k − 6l + 2d

)−6l+2d (3.2)

≥ exp

(
− 2(3l − d)2

k − 6l + 2d

)
.

Substituting l = ex(G), d = d(G), and k = nC − 3l + d from Theorem 3.5.1 (and
observing that these values satisfy k ≥ 6l−2d whp) yields that the fraction of good
subdivisions is bounded away from zero.

To make this more precise, denote by s(KG) the proportion of subdivisions of
KG that lie in Cg(nC , nC + l). We have shown that for every δ > 0 there exists an
ε > 0 such that

1− δ ≤ s(KG) ≤ 1 whp in 1Sup,

ε ≤ s(KG) ≤ 1 with probability at least 1− δ in Int.
(3.33)

Recall the construction steps (C1)–(C3): the core CG is constructed from KG by
subdividing edges; the complex part QG is obtained from CG by attaching rooted
trees to all vertices; adding trees and unicyclic components to QG yields G. Let X
be an event that depends on the choice of K ∈ Kg. From the above construction,
(3.33), and the fact that the kernel of G = Gg(n,m) has a growing number of
vertices by Theorem 3.5.1, we deduce that

ε ≤ P [X holds for K = KG]

P [X holds for K = Kg(2l − d, 3l − d)]
≤ 1

ε
, (3.34)

provided that the denominator is non-zero.
To prove (i), observe that the kernel, the core, and the complex part of a graph

have the same number k of components by construction. Lemmas 3.4.3 and 3.4.4
(for g ≥ 1) and [66, Lemma 2] (for g = 0) tell us that the cubic kernel Kg(2l, 3l)
has Op(1) components. Thus by (3.34), we have k = Op(1) if the kernel is cubic,
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which is the case whp in 1Sup by Theorem 3.5.1. In Int, we have d(G) = Op(1).
Thus, we apply Lemma 3.4.5 and deduce that k = Op(1). By analogous arguments,
we deduce (ii), (v), and the genus statements about KG from (iii) and (iv).

The observation that subdividing edges (when constructing CG) and attaching
trees (constructing QG) does not change the genus of any component proves the
remaining statements of (iv).

In order to prove (iii), (vi) and (vii), let AK be any fixed component of KG.
Denote by AC and AQ the corresponding components of CG and QG, respectively.
Observe that

• in a random (not necessarily good) subdivision of the kernel, the expected
number of subdivisions of any given edge e is nC

nK
− 1;

• if we attach a rooted forest to the core in order to construct the complex
part, the expected order of the tree attached to any given vertex v is

nQ
nC

.

By Theorem 3.5.1, we have nC
nK

= Θ(n1/3) and
nQ
nC

= Θ(n1/3) whp. Therefore,

(3.33) and Markov’s inequality (3.8), applied to the random variables |AC | and
|AQ|, imply that

|AC | = Op(n
1/3)|AK | and |AQ| = Op(n

1/3)|AC |
for every fixed component AK . On the other hand, there are Op(1) components,
which proves (vi) and (vii). Together with the observation that AK , AC , and AQ
have the same genus, (iii) follows as well. �

Proof of Corollary 3.5.5. Corollary 3.5.5 is an immediate consequence of The-
orems 3.5.1 and 3.5.4. �

Proof of Theorem 3.5.6. Let m(n) be a function from the second phase tran-
sition, that is, m(n) = (2 + ζ n−2/5)n2 with ζ = ζ(n) = o(n2/5). As usual, we
denote the number n − nQ of vertices outside the complex part of a given graph
G ∈ Gg(n,m) by nU and the number of edges outside the complex part by mU .

We first prove (i). To that end, for every δ > 0, we need to find a constant cδ
so that nQ − |H1(QG)| ≤ cδn2/3

U with probability greater than 1− δ for sufficiently
large n. Fix δ > 0 and denote by E1(n,m) the subclass of Gg(n,m) of those graphs

G for which nQ − |H1(QG)| > cδn
2/3
U with some (sufficiently large) cδ. We have to

prove that |E1(n,m)| < δ|Gg(n,m)| for sufficiently large n.
Suppose that there exists an infinite set I ⊂ N such that |E1(n,m)| ≥ δ|Gg(n,m)|

for all n ∈ I. We use double counting in order to derive a contradiction from this
assumption. Let n ∈ I be fixed and pick a graph G ∈ E1(n,m). Theorem 3.5.2
together with the assumption |E1(n,m)| ≥ δ|Gg(n,m)| yields that

mU = m−mQ =
nU
2

+Op

(
n

2/3
U

)
. (3.35)

By definition, |H1(QG)| < nQ − cδn2/3
U . Thus, there is a partition (A,B) of the

vertices in QG such that each component is contained either in A or in B and that

|A| ≥ nQ
2 and |B| ≥ cδn

2/3
U . Now we perform the following operation. We delete

one edge from the non-complex components and instead add an edge between some
vertex a ∈ A and a vertex b ∈ B. The resulting graph G′ is still embeddable on Sg
and thus lies in Gg(n,m). The number of choices for this construction is therefore

mU |A| · |B| ≥ (1 + o(1))
cδ
4
n

5/3
U nQ.

Observe that the core CG′ of G′ is obtained from the core CG of G by adding ab and
paths from a and b to CG, respectively. In order to determine the number of vertices
added to CG, recall that the complex part of G is obtained from the core of G by
attaching a rooted forest with nQ vertices and nC components. By [92, Theorem 3],
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which is applicable since nC = o(nQ) and nQ = o(n2
C) by Theorem 3.5.2, we know

that a random forest with this many vertices and components has height (that is,
the maximum distance of a vertex from the root of the tree it is contained in)

η = Op

 log
(

2n2
C

nQ−nC

)
log
(

1 + nC
nQ−nC

)
 = Op

(
nQ
nC

log

(
n2
C

nQ

))
. (3.36)

From Theorem 3.5.2, we deduce that in particular η = o(nC) whp. Therefore, we
have |CG′ | = nC + o(nC).

The reverse construction is to delete the edge ab (which lies in the core) and
add an edge outside the complex part (not creating any new complex components).
There are at most (1 + o(1))nC choices for ab. Thus, there are less than n2

UnC
possibilities for the reverse direction, yielding

(1 + o(1))
cδ
4
n

5/3
U nQ|E1(n,m)| < n2

UnC |Gg(n,m)|

and thus

|E1(n,m)| < (1 + o(1))
4n

1/3
U nC
cδnQ

|Gg(n,m)|.

Now
n
1/3
U nC
nQ

= Θ(1) by Theorem 3.5.2 and thus we can choose cδ so that

|E1(n,m)| < δ|Gg(n,m)|

for sufficiently large n ∈ I, a contradiction. This finishes the proof of (i).
In order to prove (ii), we first show that QG − H1(QG) is planar whp. We

already know that G whp satisfies (i) as well as (3.35). In particular, we have
|H1(QG)| > n

2 and mU > nU
3 whp. Denote by E2(n,m) the class of graphs G with

these two properties for which G−H1(QG) is not planar. We use a double counting
argument to show that |E2(n,m)| = o(|Gg(n,m|).

To that end, suppose that G ∈ E2(n,m) and let H 6= H1(QG) be a non-planar
(and thus in particular complex) component of G. We construct a new graph from
G by deleting an edge outside the complex part and inserting an edge between an
arbitrary vertex u in H1(QG) and a vertex v in a maximal non-planar 2-connected
subgraph H ′ of H. The number of choices for this construction is larger than

mU |H1(QG)| > nnU
6

.

The reverse construction is to delete an edge uv from the largest complex
component that separates u and v and add an edge outside the complex part (not
creating any new complex components). Moreover, the edge uv has to be chosen
in such a way so that a) v lies in a maximal non-planar 2-connected subgraph H ′

and b) the component (after deleting uv) containing u has more than n
2 vertices.

It is well known that the genus of a graph is the sum of genera of its maximal
2-connected subgraphs and thus, there are at most g choices for H ′. Given H ′,
there might be several edges uv with v ∈ H ′ and u /∈ H ′, and each such edge will
separate u and v. However, for at most one such edge, its deletion can result in the
component containing u having more than n

2 vertices, because these components
are pairwise disjoint for different choices for uv. Thus, there are at most g edges
that satisfy both a) and b) above. In total, there are at most gn2

U choices for the
reverse construction. Therefore, we conclude that

|E2(n,m)| ≤ 6gn2
U

nnU
|Gg(n,m)|

and thus |E2(n,m)| = o(|Gg(n,m)|), since nU = o(n).
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We thus know that QG − H1(QG) is planar whp. Now let E3(n,m) denote
the class of graphs G ∈ Gg(n,m) for which |H1(QG)| > n

2 and mU > nU
3 hold,

QG − H1(QG) is planar, but H1(QG) has genus smaller than g. Given a graph
G ∈ E3(n,m), delete an edge outside the complex part and add an edge between
two non-adjacent vertices in H1(QG) to obtain a graph G′. Observe that adding
this edge cannot increase the genus by more than one and thus, G′ ∈ Gg(n,m).
The number of choices for this construction is at least

mU

((
|H1(QG)|

2

)
−m

)
= Θ(nUn

2).

For the reverse direction, we delete an edge from the largest component (at most
m = Θ(n) possibilities) and add an edge outside the complex part (less than n2

U

possibilities) without creating any new complex components. Therefore,

|E3(n,m)| = O
(nU
n

)
|Gg(n,m)|,

implying that H1(QG) has genus g whp. This finishes the proof of Theorem 3.5.6.
�

Proof of Corollary 3.5.7. The size of the complex part is nQ + ex(G) and thus
H1(QG) has size

|H1(QG)|+ ex(G)− r(G),

where r(G) is the difference between the size and the order of R(QG) = QG −
H1(QG), which is non-negative by the definition of a complex graph (and zero only
if R(QG) is empty).

The property

r(G) = Op

(
n

2/3
U

)
follows immediately from Theorem 3.5.4 and the fact that nU = Θ(n) in 1Sup and
Int, and from Theorem 3.5.6(i) in 2Sub, 2Crit, and 2Sup.

Denote by KR the kernel of R(QG) = QG − H1(QG). By construction, r(G)
equals the difference between the size and the order of KR and thus by the Euler
formula

r(G) ≤ 2|KR|+ 2(g − 1).

In 1Sup and Int, we have |KR| = Op(1) by Theorem 3.5.4(iii) and (v), while
ex(G) = ω(1) by Theorem 3.5.1. Thus, r(G) = o(ex(G)) in these regimes.

It remains to show that r(G) = o(ex(G)) also holds in the second phase tran-

sition. In 2Crit and 2Sup, we have n
2/3
U = o(ex(G)) by Theorem 3.5.2 and thus

r(G) = o(ex(G)) follows from r(G) = Op

(
n

2/3
U

)
. We may thus assume that m

lies in 2Sub. For fixed ε > 0, let Fε(n,m) denote the class of all G ∈ Gg(n,m)
for which r(G) ≥ ε ex(G). We shall prove by a double counting argument that
|Fε(n,m)| = o(|Gg(n,m)|).

Suppose, for contradiction, that |Fε(n,m)| ≥ δ|Gg(n,m)| for some δ > 0
and arbitrarily large n. Let G ∈ Fε(n,m) be fixed. First observe that we have

|R(QG)| = Op

(
n

2/3
U

)
by Theorem 3.5.6(i) and mU = nU

2 + Op

(
n

2/3
U

)
by Theo-

rem 3.5.2 and hence there exists a constant c > 0 such that

|R(QG)| ≤ cn2/3
U and |mU −

nU
2
| ≤ cn2/3

U (3.37)

with probability at least 3
4 . Suppose that mU lies in that range. Then G(nU ,mU )

has no complex components with positive probability. On the other hand, the

largest unicyclic component of G(nU ,mU ) has order Θp

(
n

2/3
U

)
(see e.g. [78]). Thus,

we may assume that the constant c above is large enough such that G satisfies

53



(3.37) and its largest unicyclic component has order between 1
cn

2/3
U and cn

2/3
U with

probability at least 1
2 .

Delete an edge from R(QG) that does not separate its component; there are at
least r(G) ≥ ε ex(G) choices for this edge. Then we add an edge between H1(QG)

and a component in R(QG) or a unicyclic component. Let k ≥ 1
cn

2/3
U be the number

of vertices in R(QG) and all unicyclic components. Then the number of possibilities
for this construction is at least

(1 + o(1))ε ex(G)knQ,

because |H1(QG)| = (1 + o(1))nQ by Theorem 3.5.6.
Observe that by Theorem 3.1.1(ii) and Theorem 3.5.2, the largest non-complex

component has order Θp

(
n

2/3
U

)
. Analogously to the proof of Theorem 3.5.6, using

n
2/3
U = o(nC), we see that the core CG′ of the resulting graph G′ contains the edge
uv and has order (1 + o(1))nC .

For the reverse direction, we delete a separating edge from the core of the

largest complex component, cutting off a component of order at most cn
2/3
U (at

most (1 + o(1))nC possibilities), and add an edge uv between two vertices in a
complex or unicyclic component (but not in the largest complex component). In
order to bound the number of possibilities for uv, observe that the total number of
vertices in such components is at most

k + cn
2/3
U ≤ (c2 + 1)k.

We thus have at most (c2 + 1)k possibilities to choose u. The component that

contains u has at most cn
2/3
U vertices, implying that we have at most

(1 + o(1))(c2 + 1)cn
2/3
U knC

possibilities for the reverse direction. In total, this yields that

|Fε(n,m)| ≤ (1 + o(1))
2(c2 + 1)cn

2/3
U nC

ε ex(G)nQ
|Gg(n,m)|.

By Theorem 3.5.2, we have

n
2/3
U nC

ex(G)nQ
= Θ

(
|ζ|
n2/5

)
= o(1),

contracting |Fε(n,m)| ≥ δ|Gg(n,m)|, as desired. �

Proof of Corollary 3.5.8. By Theorems 3.1.5 to 3.1.7, the largest component
H1(QG) of the complex part of G is the giant component H1(G) of G. Now the
statement follows directly from Theorems 3.5.1 and 3.5.2, and Corollary 3.5.7. �

3.7. Proofs of auxiliary results

In this section we prove all results from Sections 3.3 and 3.4.

3.7.1. Proof of Lemma 3.3.1. It remains to prove (iv). From Lemma 3, (10.11),
and (10.12) in [62], we deduce that

ρ(n,m) =
22m−nenm!n!

(n−m)!n2m2πi

∮ √
1− z exp(nk(z))

dz

z
,

where the contour of the integral is a closed curve around the origin with |z| ≤ 1
and

k(z) = z − 1− m

n
log(z) +

(
1− m

n

)
log(2− z).
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We use the contour consisting of a) the line segment from 1 to i, b) the semicircle
of radius one with negative real value, and c) the line segment from −i to 1. Along
this contour we have |exp(k(z))| ≤ 1 and thus

ρ(n,m) ≤ 22m−nenm!n!

(n−m)!n2m2π
|
∮ √

1− z
z

dz|

(3.6)

≤ e2(π + 2
√

2)√
2π

3
2

(
2

e

)2m−n
mm+1/2nn−2m+1/2

(n−m)n−m+1/2
,

proving the lemma. �

Proof of Lemma 3.4.4. We abbreviate the class of cubic kernels embeddable on
Sg by Ag and the subclass of Ag of connected cubic kernels by Bg. Clearly, every
graph in Ag has an even number of vertices. We first prove (3.15).

By Theorems 3.4.1 and 3.4.2 there exist positive constants a−g , a
+
g , b
−
g , b

+
g such

that for all l

a−g ≤
|Ag(2l)|

(2l)5g/2−7/2γ2l
K(2l)!

≤ a+
g and b−g ≤

|Bg(2l)|
(2l)5g/2−7/2γ2l

K(2l)!
≤ b+g .

By Lemma 3.4.3, the elements of Ag(2l) whp have a unique non-planar com-
ponent. Therefore the probability that pl(G) has exactly 2i vertices is given by

P [|pl(G)| = 2i] = (1 + o(1))

(
2l

2i

)
|Bg(2l − 2i)| · |A0(2i)|

|Ag(2l)|
and we can therefore conclude that (3.15) holds.

It remains to show that for every δ > 0 there exists a constant cδ such that
P [|pl(G)| > 2cδ] < δ for sufficiently large l. By Lemma 3.4.3, (3.15), and the fact
that g ≥ 1, we have for any cδ ∈ N>0

P [|pl(G)| > 2cδ] ≤ (1 + o(1))

l−3∑
i=cδ+1

c+g i
−7/2

(
1− i

l

)−1

.

The summand (as a function in i) has a unique minimum at i = 7l
9 . Therefore,

P [|pl(G)| ≥ 2cδ] ≤ (1 + o(1))c+g

∫ l−2

cδ

x−7/2
(

1− x

l

)−1

dx

=

(
2

5
+ o(1)

)
c+g c
−5/2
δ (1 +O(l−1/2)) < δ

for cδ and l large enough, as desired. �

Proof of Lemma 3.4.5. For K ∈ Kg(2l, 3l) and K ∈ Kg(2l − d, 3l − d), we say

that K contracts to K if for each vertex in K with label i ∈ {2l − d + 1, . . . , 2l}
we can choose an edge ei = {i, vi} so that contracting these edges results in
K (the contracted vertices obtain the smaller of the two labels). We say that
e2l−d+1, . . . , e2l are the contracted edges. Denote by K∆=4

g (2l − d, 3l − d) the sub-
class of Kg(2l−d, 3l−d) consisting of multigraphs with maximum degree four. We

say that a contraction of K to K has degree four if K ∈ K∆=4
g (2l − d, 3l − d).

If K contracts to K, then the compensation factor defined in (2.1) satisfies

w(K) ≤ w(K) ≤ 6dw(K). (3.38)

Each K ∈ Kg(2l, 3l) contracts in at most 3d ways, because K is cubic and
hence there are at most 3d choices for the edges e2l−d+1, . . . , e2l. Vice versa, we
claim that every fixed K ∈ Kg(2l − d, 3l − d) is obtained by at least d!2−d different

contractions from graphs in Kg(2l, 3l). By recursively splitting vertices of K of
degree at least four into two new adjacent vertices of degree at least three each,
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not increasing the genus throughout the process, we obtain a weighted multigraph
K ∈ Kg(2l, 3l) that contracts to K. The new vertices can be labelled in d! ways,
of which at least 2−dd! result in distinct multigraphs in Kg(2l, 3l). Together with
(3.38), this proves the upper bound

|Kg(2l − d, 3l − d)|
|Kg(2l, 3l)|

≤ 6d

d!
.

The corresponding bound for |Kg(2l − d, 3l − d;Pi)| follows analogously observing
that the two constructions above do neither change the number of components nor
increase the genus of any component.

For the lower bound, we claim that the elements of Kg(2l, 3l) have at least 6−d

contractions of degree four on average. Indeed, first observe that K ∈ Kg(2l, 3l)
contracts to K ∈ K∆=4

g (2l − d, 3l − d) if and only if the contracted edges form a
matching in K. By choosing the edges of the matching recursively, we see that K

contains at least
(
2dd!

)−1∏d−1
j=0(2l − 6j) matchings of size d.

Denote by A(K) the class of all weighted multigraphs that are isomorphic to
K. If we choose A ∈ A(K) and a matching M of size d in A uniformly at random,
then the probability that every edge in M has precisely one end vertex with label in

{2l− d+ 1, . . . , 2l} is 2d

(2l
d)

. Therefore, the average number of contractions of degree

four of graphs in A(K) is at least∏d−1
j=0(2l − 6j)

2dd!
· 2d(

2l
d

) ≥ (2l − 6d

2l − d

)d
≥ 6−d,

where the last inequality uses the fact that d ≤ 2l−d
6 . The fact that the classes

A(K) partition Kg(2l, 3l) proves that K ∈ Kg(2l, 3l) has at least 6−d contractions
of degree four on average.

Vice versa, let K ∈ K∆=4
g (2l − d, 3l − d). By recursively splitting the d vertices

of degree four in K, we see that K can be obtained by at most
(

4
2

)d
d! = 6dd!

contractions of degree four. Together with (3.38), we deduce that

|Kg(2l − d, 3l − d)|
|Kg(2l, 3l)|

≥ 1

216dd!
.

The corresponding bound for |Kg(2l − d, 3l − d;Pi)| follows analogously. �

3.7.2. Remark. Observe that the proof of Lemma 3.4.5 applies to any class F of
(multi-) graphs that is a) closed under taking minors and b) weakly addable, that
is, if G is obtained by adding an edge between two distinct components of F ∈ F ,
then also G ∈ F . For more details, see Section 3.8.

Proof of Lemma 3.4.6. Let K ∈ Kg(2l − d, 3l − d). We subdivide the edges of
K by inserting nC − 2l + d vertices and then assign labels to these new vertices in
one of (nC − 2l + d)! possible ways so as to obtain a core with nC vertices.

Call a distribution of nC − 2l + d new vertices to the edges of K feasible if
the resulting graph has no loops or multiple edges. The number

(
nC+l−1
3l−d−1

)
of all

distributions is clearly an upper bound for the number of feasible distributions. On
the other hand, a distribution is feasible if and only if each loop is subdivided at
least twice and for every multiple edge, at most one of its edges is not subdivided.
Denote by sK the minimal number of times that we need to subdivide the edges of
K in order to obtain a simple graph. Then

(
nC+l−sK−1

3l−d−1

)
is a lower bound on the

number of feasible distributions.
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By construction, sK ≤ 2(3l − d) ≤ 6l and we thus deduce that

min
−5≤ν≤1

(
(nC − 2l + d)!

(
nC + νl − 1

3l − d− 1

))
≤ ϕnC ,l,d ≤ (nC − 2l + d)!

(
nC + l − 1

3l − d− 1

)
.

Now the lemma follows from the intermediate value theorem and the fact that the
function

(
x
k

)
for fixed k ∈ N is continuous for x ∈ R. �

Proof of Lemma 3.4.7. Lemma 3.4.7 follows directly from (3.16), Lemmas 3.4.5
and 3.4.6, the intermediate value theorem, and the fact that xd is continuous. �

Proof of Lemma 3.4.8. We first derive an upper bound for ΣC , as well as the
main contribution to this upper bound. We substitute nC = nC + r (recall that

nC =
√
nQ(3l − d)). Applying (3.5) to (3.18), and then using (3.2) and (3.7) we

deduce that

ΣC ≤ Σ+
C :=

∑
r

exp

(
− r2

2nQ
+ rA1 +A2

)
, (3.39)

where

A1 =
1− 2nC

2nQ
+

3l − d− 1

nC
+

(3l − d− 1)(3l − d− 2)

2(nC + l − 1)2
,

A2 =(3l − d)

(
log(nC)− 1

2

)
+

√
3l − d
4nQ

+ (3l − d− 1)

(
l − 1

nC
− 3l − d− 2

2(nC + l − 1)

)
.

Evaluating the ‘Gaussian’ sum in (3.39) we obtain

Σ+
C ≤

√
2πnQ exp

(
A2 +

nQA
2
1

2

)
.

The existence of the constants a+
C , b

+
C from (i) now follows from

exp(A2) ≤
(
nQ(3l − d)

e

)(3l−d)/2

exp

(
O

(√
l3

nQ

))

and the observation that nQA
2
1 = O

(
l2

nQ

)
, which is O

(√
l3

nQ

)
, because l = O(nQ).

In order to prove (ii), suppose that 7
2d ≤ l ≤ εnQ = o(nQ); then also l = o(nC).

In (3.18), we set nC = nC − νl+ 1 + s. If we let the parameter s = r + νl− 1 take
only values for which nC ∈ IδC(nQ, l, d) with fixed 0 < δ < 1

2 , then

ΣC ≥
∑
s

(nQ)nC
nnCQ

nC(nC + s)3l−d−1.

The interval IδC(nQ, l, d) has length 2δnC > 2δ
√
nQ and hence we can choose for s

an interval Is of length δ
√
nQ in which |s| < δnC holds.

We use (3.5) for both falling factorials and obtain

ΣC ≥ n3l−d
C

∑
s

(
1 +

s

nC

)3l−d−1(
1 +

s+ 1 + νl

nC

)
exp(B1), (3.40)

where

B1 = − (nC − νl + 1 + s)
2

2(nQ − nC + νl − 1− s)
− (3l − d− 1)2

2(nC − 3l + d+ 1 + s)
.

Observe that 1 + s
nC

= Θ(1) and 1 + s+1+νl
nC

= Θ(1). Using (3.3), we deduce that(
1 +

s

nC

)3l−d

exp(B1) ≥ exp

(
−3l − d

2
+O

(√
l3

nQ

)
+O(1)

)
. (3.41)

Now (3.40) and (3.41), together with |Is| = δ
√
nQ prove (ii).
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It remains to prove (iii). First observe that if we take the sum (3.39) over
all r ∈ Z and normalise, we obtain a Gaussian random variable X with mean
nQA1 = O(l) and variance nQ. Applying the Chernoff bound (3.9) to X, we
deduce ∑

|r−nQA1|> δ
2nC

exp

(
− r2

2nQ
+ rA1 +A2

)
≤ 2 exp

(
−δ2 3l − d

8

)
Σ+
C .

Note that |r−nQA1| < δ
2nC implies that nC ∈ IδC(nQ, l, d) for sufficiently large nQ

and l = o(nQ), because then nQA1 = o(nQ). Therefore,∑
nC /∈IδC

(nQ)nC
nnCQ

nC(nC + νl − 1)3l−d−1

∑
nC∈IδC

(nQ)nC
nnCQ

nC(nC + νl − 1)3l−d−1

≤ exp

(
−δ2 3l − d

8
+ Θ(1) + Θ

(√
l3

nQ

))
.

Now δ2 3l−d
8 = Θ(l),

√
l3

nQ
= o(l), and the fact that l → ∞ finish the proof of

(iii). �

Proof of Lemma 3.4.9. We start by proving (i). We apply

(3l − d)(3l−d+2)/2

(3l − d)!

(3.4)

≤ e3l−d
√

2π
(3l − d)−

3l−d−1
2

(3.2)

≤ e3l− d2
√

2π
(3l)−

3l−d−1
2

and Lemmas 3.4.7 and 3.4.8 to deduce that

Σd ≤
exp
(
a+
C + b+C

√
l3

nQ

)
√

2π
e3l(3l)−

3l−1
2

2l∑
d=0

(
2l

d

)(
108l

nQ

) d
2

,

proving (i) with a+
d = a+

C −
1
2 log(2π) and b+d = b+C + 2

√
108.

For (ii), first note that we have a lower bound for Σd if we restrict the sum
(3.20) to 0 ≤ d ≤

⌊
2l
7

⌋
. By analogous arguments as for the upper bound, we deduce

that

Σd ≥
exp
(
a−C + b−C

√
l3

nQ

)
e

e3l(3l)−
3l−1

2

2l
7∑

d=0

(
2l

d

)(
3l

2162enQ

) d
2

.

The sum above can be extended to a sum Y =
∑2l
d=0

(
2l
d

)
yd with y = o(1). Normal-

ising this sum results in a binomial random variable X = Bi(2l, p) with p = y
1+y and

E [X] = Θ
(√

l3/nQ

)
. If E [X] → 0, then the main contribution to Y is provided

by the index d = 0. Otherwise, the Chernoff bound (3.10) yields that the main
contribution to X—and thus also to Y—is provided by an interval contained in the
range 0 ≤ d ≤ 2l

7 . Thus, with (3.3) we deduce that

Σd ≥
exp
(
a−C + b−C

√
l3

nQ

)
e(1 + o(1))

e3l(3l)−
3l−1

2 exp

( √
3

108
√
e

√
l3

nQ
−

√
3l2

216
√
enQ

)
.

Observing that l2/nQ = o(
√
l3/nQ), we have thus proved (ii) for any choice of

a−d < a−C − 1 and b−d < b−C +
√

3
108
√
e
.

In order to prove (iii), it remains to show that the tail of Σd has smaller order
than its total value, that is

e
b+d

√
l3

nQ
∑
d6∈Id

(
2l

d

)(
6
√

3l
√
nQ

)d
= o

(
e
b−d

√
l3

nQ

)
. (3.42)
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Write

Z =

2l∑
d=0

(
2l

d

)(
6
√

3l
√
nQ

)d
.

For
√

l3

nQ
→ 0, the exponential terms in (3.42) are both 1 + o(1) and the sum on

the left hand side is o(1), because its range does not include the main contribution
to the binomial sum Z, which is located at d = 0.

If
√

l3

nQ
→ c ∈ R+, then both exponential terms in (3.42) are Θ(1). For any

fixed h = h(nQ) = ω(1), we deduce from (3.10), applied to the normalised sum Z,

∑
d>h

(
2l

d

)(
6
√

3l
√
nQ

)d
≤ exp(−ch)

for some constant c > 0, which proves (3.42).

Finally, if
√

l3

nQ
→∞, we can choose β+

d sufficiently large so that (3.10) yields

∑
d>β+

d

√
l3

nQ

(
2l

d

)(
6
√

3l
√
nQ

)d
≤ exp

(
−(b+d − b

−
d + 1)

√
l3

nQ

)
,

which proves (3.42) also in this last case. �

Proof of Corollary 3.4.10. The typical range for d(G) follows directly from
Lemma 3.4.9(iii). Substituting this deficiency in the formulas for the main contri-
bution for nC from Lemma 3.4.8 yields the typical order of the core. �

Proof of Corollary 3.4.11. This follows directly from (3.21) and (3.22). �

Proof of Lemma 3.4.12. We prove Lemma 3.4.12 using the lower bound on
|G∗g (n,m)| from Lemma 3.4.16. It is important to note that vice versa, the proof of
Lemma 3.4.16 does not rely on Lemma 3.4.12.

Suppose first nQ = 0, i.e. the complex part is empty and the graph only consists
of trees and unicyclic components. In this case Lemma 3.3.1(iv) implies that the
number of such graphs satisfies

|U(n,m)| ≤ Θ(1)nm2m−nen−
m2

n .

Comparing this to the lower bound from Lemma 3.4.16 shows that

|U(n,m)|
|G∗g (n,m)|

≤ e−l1 = o(1).

The remaining case is mU = 0, i.e. m = nQ + l ≥ nQ + 1 (recall that nQ > 0
implies l > 0). The number of such graphs is given by∑

nQ≤m−1

(
n

nQ

)
|Qg(nQ,m)|.

The case nQ = m − 1 in the sum above is of smaller order than the lower bound
for |G∗g (n,m)| from Lemma 3.4.16. For every nQ < m− 1, Corollary 3.4.11 implies
that (

n
nQ

)
|Qg(nQ,m)|(

n
nQ

)
|Qg(nQ,m− 1)|

(
n−nQ

2

) = Θ(1)n
3
2

Q(m− nQ)−
3
2 (n− nQ)−2. (3.43)
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In 1Sup and Int, the right hand side of (3.43) is O(n−1/2). Observing that the
denominator is a summand of |G∗g (n,m)|, we deduce that∑

nQ≤m−1

(
n

nQ

)
|Qg(nQ,m)| = o

(
|G∗g (n,m)|

)
in 1Sup and Int.

Suppose now that we are in the second phase transition and write Il = [pl, ql]. For
nQ < m− pl, the right hand side of (3.43) is o(1) and thus∑

nQ<m−pl

(
n

nQ

)
|Qg(nQ,m)| = o

(
|G∗g (n,m)|

)
.

For nQ ≥ m− pl, or equivalently l ≤ pl, we have

m−2∑
nQ=m−pl

(
n

nQ

)
|Qg(nQ,m− 1)|

(
n− nQ

2

)
≤ exp(−f(n))|G∗g (n,m)|,

where f = ω(log n) is a positive valued function. From this, we deduce that

m−2∑
nQ=m−pl

(
n

nQ

)
|Qg(nQ,m)|

(3.43)

≤ Θ
(
n

3
2

)
exp(−f(n))|G∗g (n,m)| = o

(
|G∗g (n,m)|

)
.

This concludes the proof of Lemma 3.4.12. �

Proof of Lemma 3.4.13. In ΣQ =
∑
nQ
ρψ (see (3.25) for the definition of ψ),

we substitute nQ = nQ + r. We then have nU = n − nQ = nU − r and mU =
m− nQ − l = mU − r.

With this substitution, we obtain

ψ =

(
2

e

)nQ+r

(nQ + r)
3l
2 −1(nU − r)−r−

1
2 (mU − r)−mU+r− 1

2 exp(fd).

Because nQ, l are admissible, we have l = O(nQ) and thus

fd ≤ a+
d + b+d

√
l3

nQ
= O(l). (3.44)

If in addition (3.29) holds, then l = o(nQ) and thus, for every fixed h(n) = ω(1),

fd ≤ a+
d + o(1)l, (3.45)

whenever r ≥ −nQ + hl. In either case, we distinguish whether r > 0 or r ≤ 0.
Let Σr>0 be the part of ΣQ consisting of the summands with r > 0. We bound

ρ(nU ,mU ) from above by 1. Additionally we claim that(
2

e

)r
(nU − r)−r(mU − r)−mU+r < m−mUU exp

(
− r3

24m2
U

)
. (3.46)

Indeed, for r ≥ 0, the quotient of the two sides in (3.46) has a unique maximum at
r = 0, where we have equality. Furthermore, there exists a constant c > 0 with

(nU − r)−
1
2 (mU − r)−

1
2 ≤ cm−1

U exp

(
r3

216m2
U

)
. (3.47)

Now (3.44), (3.46), and (3.47) yield

Σr>0 ≤
(

2

e

)nQ
m−mU−1
U exp(O(l))

∑
r

(nQ + r)
3l
2 −1 exp

(
− r3

27m2
U

)
. (3.48)
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If in addition (3.29) holds, we can replace exp(O(l)) by (1 + o(1))l. The summand
above is maximised at the (not necessarily integral) unique positive solution r0 of

r3
0 + r2

0nQ = 9m2
U

(
3l

2
− 1

)
.

Suppose first that (3.26) holds, that is, n3
Q ≥ 9m2

U

(
3l
2 − 1

)
. Then

1

2

√
9m2

U

(
3l
2 − 1

)
nQ

≤ r0 ≤

√
9m2

U

(
3l
2 − 1

)
nQ

(3.49)

and thus

(nQ + r0)
3l
2 −1 exp

(
− r3

0

27m2
U

)
(3.2)

≤ n
3l
2 −1

Q exp

(
r0

(
3l
2 − 1

)
nQ

− r3
0

27m2
U

)
(3.26),(3.49)

≤ n
3l
2 −1

Q exp(O(l)).

Summing over 1 ≤ r ≤ mU − 1, we deduce that

Σr>0 ≤
(

2

e

)nQ
n

3l
2 −1

Q m−mUU exp(O(l)),

which proves (3.27) for Σr>0 if (3.26) holds. If the stronger condition (3.29) is
satisfied, the factor exp(O(l)) improves to exp(O(

√
εl)) = exp(o(1)l), proving (3.28)

for Σr>0.
Now consider the case n3

Q < 9m2
U

(
3l
2 − 1

)
. Then

1

2
3

√
9m2

U

(
3l

2
− 1

)
≤ r0 ≤ 2 3

√
9m2

U

(
3l

2
− 1

)
(3.50)

and hence

(nQ + r0)
3l
2 −1 exp

(
− r3

0

27m2
U

)
≤ (3r0)

3l
2 −1 exp(O(l)).

Summing over less than mU values for r, we deduce that

Σr>0 ≤
(

2

e

)nQ
r

3l
2 −1

0 m−mUU exp(O(l)).

Together with (3.50), this proves (3.27) for Σr>0 in the case that (3.26) is violated.
Finally, consider the part Σr≤0 of ΣQ consisting of the summands with r ≤ 0.

Observe that −nQ + 1 ≤ r ≤ 0; in particular, the case r ≤ 0 only occurs if nQ > 0.
We use Lemma 3.3.1(iv) as an upper bound for ρ = ρ(nU − r,mU − r) to deduce

ρψ ≤ c
(

2

e

)nQ
(nQ + r)

3l
2 −1m

−mU− 1
2

U exp(fd). (3.51)

We bound the factor exp(fd) by (3.44). Furthermore, (nQ+r)
3l
2 −1 ≤ n

3l
2 −1

Q , because
r ≤ 0. Summing over r, we deduce that

Σr≤0 ≤ c
(

2

e

)nQ
n

3l
2

Qm
−mU− 1

2

U exp(O(l)).

This proves (3.27) for Σr≤0, independent of whether (3.26) is satisfied.
Finally, suppose that (3.29) holds. Then in (3.51), we bound the factor exp(fd)

by (3.45) for r ≥ r1 := −nQ+hl and deduce by analogous arguments as above that

0∑
r=r1

ρψ ≤ Θ(1)

(
2

e

)nQ
n

3l
2

Qm
−mU− 1

2

U (1 + o(1))l.
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For r < r1, observe that Euler’s formula yields r ≥ r2 := −nQ+Θ(l). In this range,
the summand ρψ is maximised at the upper bound r = r1 − 1; this yields

r1−1∑
r=r2

ρψ ≤ Θ(1)

(
2

e

)nQ
(hl)

3l
2 m
−mU− 1

2

U (1 + o(1))l.

If we choose h to be growing slowly enough so that hl = o(nQ), then this proves
(3.28) for Σr<0.

The trivial observation ΣQ = Σr>0 + Σr≤0 finishes the proof. �

Proof of Lemma 3.4.14. Like in the proof of Lemma 3.4.13, we distinguish the
cases r > 0 and r ≤ 0 as well as whether (3.26) holds or not.

First consider Σr>0 when (3.26) holds. Then (3.49) implies r0 ≤ nQ, which
yields

nQ∑
r=1

(nQ + r)
3l
2 −1

exp

(
− r3

27m2
U

)
≤ n

3l
2

Q

(
1 +

r0

nQ

) 3l
2 −1

exp

(
− r3

0

27m2
U

)
≤ n

3l
2

Q exp(O(l)).

The sum over the remaining values for r is bounded by the integral∫ ∞
nQ

(2r)
3l
2 −1

exp

(
− r3

27m2
U

)
dr ≤ ml

UΓ

(
l

2

)
exp(O(l)) = ml

U l
l
2 exp(O(l)).

Now (3.26), (3.48), and the fact that nQ = 2m − n − 2l < λn2/3 prove (3.30) for
Σr>0.

If (3.26) is violated, we split Σr>0 into the sums for 1 ≤ r ≤ r0 and r0 < r.
Observe that (3.50) implies nQ < 2r0. Thus, the sum for 1 ≤ r ≤ r0 is smaller than

ml
U l

l
2 exp(O(l)), while the sum for r0 < r is bounded by the integral∫ ∞
r0

(3r)
3l
2 −1

exp

(
− r3

27m2
U

)
dr ≤ ml

U l
l
2 exp(O(l)) < ml

U l
l
2−

1
3 exp(O(l)).

Now (3.30) for Σr>0 follows from (3.48) and the trivial fact that mU = O(n).
For r ≤ 0, observe that mU = nU

2 −
r
2 . Furthermore, we have nQ ≤ nQ =

O(λn2/3) and thus

r = O(λn2/3) and nU = (1 + o(1))n.

By the assumption λ = o(n1/12), Lemma 3.3.1(iii) applies to ρ(nU ,mU ) and sum-
ming over −nQ + 1 ≤ r ≤ 0 yields

Σr≤0 ≤ c
(

2

e

)nQ
n

3l
2

Q n
− 1

2

U m
−mU− 1

2

U exp(O(l)).

Now (3.30) follows for Σr≤0 analogously to the proof of Lemma 3.4.13, with the

additional fact nQ = O(λn2/3). �

Proof of Lemma 3.4.15. By (3.31), l0 is positive. We prove the order of l0
separately for each of the five regimes.

1Sup: In this regime, we have

l0 =
φ2/3(λn2/3 − 2l0)

e1/324/3
(
n
2 − λn2/3 + l0

)2/3 .
The denominator is of order Θ(n2/3). Thus, in order for the equality to be true,
the numerator must be of order λn2/3 and thus l0 = Θ(λ).

Int: Here, the denominator is still of order n2/3 and the numerator is of order
Θ(n) and thus l0 = Θ(n1/3).
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2Sub: The numerator is of order Θ(n) and thus

l0 =
Θ(n)

(l0 − 1
2 ζ n

3/5)2/3
.

If l0 = Ω(|ζ|n3/5), then we have l0 = Θ

(
n

l
2/3
0

)
and thus l0 = Θ(n3/5) = o(|ζ|n3/5),

a contradiction. Therefore, l0 = o(|ζ|n3/5) and

l0 = Θ

(
n

(|ζ|n3/5)2/3

)
= Θ

(
|ζ|−2/3n3/5

)
.

2Crit: The numerator has order Θ(n). For the denominator we have a con-
tradiction similar to the previous case if l0 is not Θ(n3/5). Furthermore, the de-
nominator has order Θ

(
n3/5

)
.

2Sup: The numerator is Θ(n) and we obtain a contradiction if there is no
cancellation in the denominator. Thus we set l0 = 1

2 ζ n
3/5 + r with r = o(ζ n3/5)

and deduce that r = Θ
(
ζ−3/2 n3/5

)
. �

Proof of Lemma 3.4.16. By Lemma 3.4.15, we have 0 < l = o(nQ) and 0 < nQ <
n. Thus, nU and mU are also positive. Therefore, we have Qg(nQ, nQ + l) 6= ∅ and
U(nU ,mU ) 6= ∅, showing that the given value l and nQ = nQ are admissible. Recall
that

ΣQ =
∑
nQ

ρ(nU ,mU )ψ(nQ, l).

Observe that (at least) all nQ with nQ ≤ nQ ≤ nQ +mU − 1 are admissible in this
sum. For each such nQ, we have mU ≤ nU

2 and thus Lemma 3.3.1(ii) yields

ΣQ ≥ Θ(1)

nQ+mU−1∑
nQ=nQ

ψ(nQ, l).

Set nQ = nQ + r. There exists a c > 0 such that

ψ(nQ + r, l) ≥
(

2

e

)nQ
(nQ + r)

3l
2 −1

m−mU−1
U exp

(
fd −

r3

12m2
U

)
holds for 0 ≤ r ≤ cmU . The factor (nQ + r)

3l
2 −1

exp
(
− r3

12m2
U

)
is increasing until

the unique positive solution r0 of

r3
0 + r2

0nQ = 4m2
U

(
3l

2
− 1

)
.

The assumptions on the size of l imply that l satisfies (3.26), which in turn yields

r0 = Θ
(
m

2/3
U

)
. Therefore, for 1 ≤ r ≤ r0, we have

ψ(nQ + r, l) ≥
(

2

e

)nQ
n

3l
2 −1

Q m−mU−1
U exp

(
fd(nQ + r, l)− 1

12m2
U

)
.

Let ñQ = nQ + r be the value that minimises fd(nQ + r, l) for 1 ≤ r ≤ r0; then

ñQ = nQ +O(m
2/3
U ), since r ≤ r0. This proves the lower bound for ΣQ. The lower

bound for |G∗g (n,m)| follows directly from (3.24), the bound for ΣQ, and the fact
that l1 is admissible. �
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Proof of Lemma 3.4.17. First observe that there exists lb > 0 such that (3.26) is
violated precisely when l ≥ lb. In the first supercritical regime, we have lb = Θ

(
λ3
)
,

in all other regimes lb = Θ(n).
By Lemma 3.4.13, we have

Σ̃l ≤
∑
l

n
3
2 l−l+

5g
2 −

10
3 (n−m+ l)m−n−

5
3 exp(O(l)),

where the sum is taken over all l ≥ lb. The sum on the right hand side is bounded
from above by a geometric sum

∑
l exp(−cl) with c > 0 and thus

Σ̃l ≤ (1 + o(1))n
3
2 l
−lb+ 5g

2 −
10
3

b (n−m+ lb)
m−n− 5

3 exp(O(lb)).

Comparing this with the lower bound for |G∗g (n,m)| from Lemma 3.4.16 and im-
plementing (3.32), we deduce that

nn+1/2
(
e
2

)m
Σ̃l

|G∗g (n,m)|
≤ (2m− n− 2l1)n

1
6 l
−lb+ 5g

2 −
10
3

b

(
n−m+ lb
n−m+ l1

)m−n
exp(O(lb)).

The right hand side is o(1), unless we are in the first supercritical regime and λ

(and thus also lb) is too small for the term l−lbb to compensate the polynomial terms

in n. For this to be the case, we would in particular have λ = o
(
n1/12

)
. For such

λ, we have the stronger upper bound for Σ̃l provided by Lemma 3.4.14, which is
smaller than the one from Lemma 3.4.13 by a factor of λ−1 n5/6. Thus, for these
λ, we have

nn+1/2
(
e
2

)m
Σ̃l

|G∗g (n,m)|
≤ λ(2m− n− 2l1)n−

2
3 l
−lb+ 5g

2 −
10
3

b

(
n−m+ lb
n−m+ l1

)m−n
exp(O(lb))

≤ λ2 l−lbb exp(O(lb)),

which is o(1), because lb = Θ
(
λ3
)
. �

Proof of Lemma 3.4.18. We first show that for d = o(l) we have

|fC(d, (1− ε)nQ, l)− fC(nQ, l, d)| = o(εl). (3.52)

By (3.19), we have

ΣC(d, (1− ε)nQ, l)
ΣC(nQ, l, d)

= (1− ε)
3l−d+1

2 exp(fC(d, (1− ε)nQ, l)− fC(nQ, l, d)). (3.53)

We can also compare the summands of the two terms ΣC(d, (1 − ε)nQ, l) and
ΣC(nQ, l, d) separately. Denote the summands by

s(nC , d, nQ, l) =
(nQ)nC
nnCQ

nC(nC + νl − 1)3l−d−1 .

Then we have for 1 ≤ nC = o(nQ)

s(nC , d, (1− ε)nQ, l)
s(nC , d, nQ, l)

=

(
(1−ε)nQ
nC

)
(1− ε)nC

(
nQ
nC

)
(3.6)
= Θ(1)

(
1 +

εnC
(1− ε)nQ − nC

)(1−ε)nQ−nC(
1− nC

nQ

)εnQ
(3.1)
= Θ(1) exp

(
−(1 + o(1))

εn2
C

2nQ

)
.
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There exists an interval I that contains the ranges of the main contribution to both
ΣC(nQ, l, d) and ΣC(d, (1 − ε)nQ, l), such that nC = (1 + o(1))

√
nQ(3l − d), and

thus in particular nC = o(nQ), for all nC ∈ I. Then for nC ∈ I and d = o(l),

s(nC , d, (1− ε)nQ, l)
s(nC , d, nQ, l)

= Θ(1) exp

(
−
(

3

2
+ o(1)

)
εl

)
.

Summing over nC ∈ I, we deduce that

ΣC(d, (1− ε)nQ, l) = Θ(1) exp

(
−
(

3

2
+ o(1)

)
εl

)
ΣC(nQ, l, d).

Combining this with (3.53) and the condition εl = ω(1) yields (3.52).
Lemma 3.4.9 yields

Σd((1− ε)nQ, l)
Σd(nQ, l)

= exp(fd((1− ε)nQ, l)− fd(nQ, l)). (3.54)

Suppose that J is an interval that contains the ranges of the main contributions to
both Σd(nQ, l) and Σd((1− ε)nQ, l), such that d ≤ d0 = o(l) for all d ∈ J . Denote
the summands of Σd(nQ, l) by

sd(nQ, l) =

(
2l

d

)
(3l − d)(3l−d+2)/2ed/2τd

(3l − d)!n
d/2
Q

exp(fC(nQ, l, d)).

Recall that τ = τ(d, l) does not depend on nQ. With (3.52), we have

sd((1− ε)nQ, l)
sd(nQ, l)

= (1− ε)− d2 exp(o(εl))

for d ∈ J . Summing over J and comparing with (3.54) proves the lemma. �

Proof of Lemma 3.4.19. Let us write Il(n) = [pl(n), ql(n)] and IhQ(n, l) =

[pQ(n, l), qQ(n, l)]. Without loss of generality pl < l1 < ql. We first prove that
the main contribution to the sum over l is provided by Il(n). To that end, we
bound the tail of the sum (the part with l /∈ Il(n)) from above and prove that this
upper bound has smaller order than the lower bound from Lemma 3.4.16.

Observe that for l ∈ Il(n), we have

lm
2/3
U

nQ
= Θ(1). (3.55)

For this proof, let sl(n,m) be the summand of the sum Σl, i.e. Σl =
∑
l sl(n,m),

and sQ(n,m, l) be the summand of ΣQ =
∑
nQ
sQ(n,m, l). We need to show that

T := nn+ 1
2

(e
2

)m ∑
l 6∈Il(n)

sl(n,m) = o
(
|G∗g (n,m)|

)
.

By Lemma 3.4.17, we may take our sum only over l that satisfy (3.26). If l2
denotes the index where sl(n,m) takes its maximal value outside Il(n), then∑

l 6∈Il(n)

sl(n,m) ≤ nsl2(n,m). (3.56)

In 1Sup, (3.26) is violated for all l ≥ lb = Θ(λ3) and thus we have the stronger
bound ∑

l 6∈Il(n)

sl(n,m) ≤ Θ(λ3)sl2(n,m). (3.57)

By Lemma 3.4.13, there exists a constant α > 1 such that

sl(n,m) ≤ n 3
2

(
2

e

)2m−n

M(l, n,m;α), (3.58)
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where

M(l, n,m;α) = l−
3l
2

(
e2φ

4

)l
(2m− n+ 2l)

3l
2 −1

(n−m+ l)
m−n−l−1

αl.

By choosing β−l (respectively η−l or ϑ−l ) small enough and β+
l (respectively η+

l

or ϑ+
l ) large enough, we may assume that M(l, n,m;α) is strictly increasing (with

respect to l) for l ≤ pl and strictly decreasing for l ≥ ql. For l ≤ pl, (3.29) is satisfied
and thus (3.58) holds for every α = 1 + δ, where δ > 0 is any given constant. Thus,

sl2(n,m) ≤ n 3
2

(
2

e

)2m−n

max{M(pl, n,m; 1 + δ),M(ql, n,m;α)}. (3.59)

In 1Sup, when λ = o
(
n1/12

)
, Lemma 3.4.14 together with analogous arguments

gives us an upper bound

sl2(n,m) ≤ λn 2
3

(
2

e

)2m−n

max{M(pl, n,m;α),M(ql, n,m;α)}. (3.60)

If m is such that (3.60) applies and if the maximum in (3.60) is M(ql, n,m;α),
then (3.57) and (3.60) yield (for large enough β+

l )

T

|G∗g (n,m)|
≤ λ4 e−l1 ,

which is o(1) by Lemma 3.4.15 and the fact that λ→∞. If (3.60) does not apply
and the maximum in (3.59) is M(ql, n,m, α), then (3.56), (3.59), and Lemma 3.4.16
imply that if we choose β+

l , η+
l , or ϑ+

l large enough, respectively, then

T

|G∗g (n,m)|
≤ n 5

2 e−l1 ,

which is o(1).
If the maximum in (3.59) or (3.60) is M(pl, n,m, 1 + δ) or M(pl, n,m, α), re-

spectively, then analogous considerations show that we can choose β−l , η−l , and ϑ−l
so that for every m = m(n) there exists a constant c > 0 such that

T

|G∗g (n,m)|
≤


λ4 exp(−cl1) in 1Sup for λ = o(n1/12),

n
5
2 exp

(
−c ζ−3/2 n3/5

)
in 2Sup,

n
5
2 exp(−cl1) otherwise.

In 2Crit and 2Sup, the fact that we have α = 1 + δ is essential for deducing
the above bound. In all regimes—using that ζ = o

(
(log n)−2/3n3/5

)
in 2Sup—we

deduce that this upper bound is o(1). This proves that the main contribution to
Σl is indeed provided by Il(n).

It remains to prove that for each l ∈ Il(n), the main contribution to ΣQ is
provided by IhQ(n,m, l). We substitute nQ = nQ + r.

First consider the case nQ < pQ = nQ − hm2/3
U , i.e. r < −hm2/3

U . We shall

split the sum into the three parts −vm2/3
U ≤ r ≤ −hm2/3

U , −wm2/3
U ≤ r ≤ −vm2/3

U ,

and r ≤ −wm2/3
U , where

v := m
1/24
U and w :=

{
λ1/2 in 1Sup,

lm
−2/9
U otherwise.
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Observe that the interval −wm2/3
U ≤ r ≤ −vm2/3

U is empty in 1Sup if λ < m
1/12
U .

Furthermore,

w = ω

(√
l3

nQ

)
and w = o

(
nQ

m
2/3
U

)
(3.55)

= o(l). (3.61)

By (3.51) and Lemma 3.4.16, in each of the three intervals,∑
ρψ

ΣQ(n,m, l)
≤ Θ(1)m

− 1
6

U

∑
sr(n,m, l) (3.62)

with

sr(n,m, l) =

(
1 +

r

nQ

) 3l
2 −1

exp(fd(nQ + r, l)− fd(ñQ, l)).

Recall that for (3.51), Lemma 3.3.1(iv) was used to bound ρ. Observe that for

−vm2/3
U ≤ r ≤ −hm2/3

U , Lemma 3.3.1(iii) is applicable and thus (3.62) holds with a

factor ofm
− 2

3

U instead ofm
− 1

6

U . Furthermore, we claim that fd(nQ+r, l)−fd(ñQ, l) =

o
(
rl
nQ

)
. Indeed, in 1Sup and Int, the left hand side is O(1) and the claim follows

by observing that rl
nQ

= Ω(h) by (3.55). In the second phase transition, such r

satisfy the conditions of Lemma 3.4.18 with ε = Θ
(

r
nQ

)
and thus the claim follows.

Therefore, there exists a constant c > 0 such that∑−hm2/3
U

r=−vm2/3
U

ρψ

ΣQ(n,m, l)
≤ Θ(1)m

− 2
3

U

−hm2/3
U∑

r=−vm2/3
U

exp

((
3

2
− o(1)

)
rl

nQ

)
(3.55)

≤ Θ(1)

∫ ∞
h

e−cx dx = Θ(1) exp(−ch) = o(1).

Observe that in 1Sup, if λ = o(n1/24), then r > −nQ > −vm2/3
U and thus the

interval −vm2/3
U ≤ r ≤ −hm2/3

U covers all cases for negative r. From now on, we

may thus assume that λ = Ω(n1/24), which implies w = Ω(n1/48).

Now consider the interval −wm2/3
U ≤ r ≤ −vm2/3

U . In this regime, we still have

fd(nQ + r, l)− fd(ñQ, l) = o
(
rl
nQ

)
and thus

∑−vm2/3
U

r=−wm2/3
U

ρψ

ΣQ(n,m, l)
≤ Θ(1)m

1/2
U exp(−cv) = o(1).

Finally, suppose that r ≤ −wm2/3
U . In this regime,

sr ≤ exp

((
3l

2
− 1

)
log

(
1 +

r

nQ

)
+ c1

√
l3

nQ + r
− c2

√
l3

ñQ

)
.

The right hand side has its maximum (with respect to r) at r = −wm2/3
U . For

this r, the first summand is negative and has order w by (3.55). The other two
summands are o(w) by (3.61). Thus, there exists a constant c > 0 such that∑

r≤−wm2/3
U

ρψ

ΣQ(n,m, l)
≤ Θ(1)n exp(−cw),

which is o(1), because w = Ω(n1/48). This finishes the proof for r < 0.
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Suppose now that nQ > qQ = nQ + hm
2/3
U , i.e. r > hm

2/3
U . By (3.46), (3.47),

and Lemma 3.4.16 we conclude that∑
ρψ

ΣQ(n,m, l)
≤ Θ(1)m

− 2
3

U

∑
r>hm

2/3
U

exp

(
3lr

2nQ
+ fd(nQ + r, l)− fd(ñQ, l)−

r3

27m2
U

)
.

Note that for all r in this sum, rl
nQ

= o
(
r3

m2
U

)
. We claim that additionally

fd(nQ + r, l)− fd(ñQ, l) = o

(
r3

m2
U

)
.

Indeed, this difference is O(1) in 1Sup and Int, while r3

m2
U
≥ h3 = ω(1). In the

second phase transition, the claim follows immediately if r ≥
√
lm

2/3
U . If hm

2/3
U <

r <
√
lm

2/3
U , the conditions of Lemma 3.4.18 are satisfied with ε = Θ

(
r
nQ

)
and

thus fd(nQ + r, l)− fd(ñQ, l) = o
(
rl
nQ

)
= o
(
r3

m2
U

)
. Therefore, we deduce that∑

ρψ

ΣQ(n,m, l)
≤ Θ(1)m

− 2
3

U

∑
r>hm

2/3
U

exp

(
− r3

30m2
U

)

≤ Θ(1)

∫ ∞
h

exp
(
−x3

)
dx ≤ Θ(1) exp(−h).

This finishes the proof also for r > 0. �

3.8. Discussion and open problems

Comparing the range for m that we cover in Theorems 3.1.5–3.1.8 with the
‘dense’ regime m = bµnc for 1 < µ < 3 considered in [30, 59], a gap of order
(log n)2/3 becomes apparent—a significant improvement of [66], where the gap

had order n1/3. The order term ζ−3/2 n3/5 in Theorems 3.1.6 and 3.1.8 becomes
constant when ζ = Θ(n2/5), which matches the results from [30, 59] that the giant
component covers all but finitely many vertices in the dense regime. Therefore, we
expect Theorems 3.1.6 and 3.1.8 to hold for all m = (1 + o(1))n.

The gap of order (log n)2/3 originates from the fact that we can only determine
the number of cores up to an exponential error term in the second phase transition.
This error term has two causes. On one hand, the bounds for the number of kernels
differ by an exponential factor (see Lemma 3.4.5). On the other hand, a second
exponential error term appears when we construct the core from the kernel by
subdividing edges (see Lemma 3.4.6). We thus believe that the key to closing the
gap would be to determine the number of cores more precisely.

Problem 3.8.1. Find the exact value of |Cg(nC , nC + l)| for any nC , l ∈ N.

Solving Problem 3.8.1 would pave the way to prove Theorem 3.1.6 for all m =
(1+o(1))n. Moreover, it might open the possibility to prove an analogous version of
Theorem 3.5.4 in the second phase transition, thus rendering the additional double
counting argument in the proof of Theorem 3.1.6 unnecessary.

Conjecture 3.8.2. Let m =
(
2 + ζ n−2/5

)
n
2 , where ζ = ζ(n) = o(n2/5) tends to

∞ with n. Then whp the largest component H1 of Gg(n,m) is complex, has genus
g, and satisfies

n− |H1| = Θ
(
ζ−3/2 n3/5

)
.
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It is important to note that the results in this chapter apply to more general
graph classes than Gg(n,m). Indeed, the constructive decomposition that yields
(3.12), (3.13), and (3.14) relies on the fact that a graph is in Gg if and only if its
kernel is in the corresponding class Kg of multigraphs. The only other ingredients of
the proof that are specifically tailored for graphs on Sg are Theorems 3.4.1 and 3.4.2,
and Lemmas 3.4.3 to 3.4.5. Recall that we saw in Section 3.7.2 that Lemma 3.4.5
holds for any class of multigraphs that is weakly addable (that is, closed under
adding an edge between two components; see e.g. [83] for some results) and closed
under taking minors.

Remark 3.8.3. Let X be a graph class and Y be a class of (weighted) multigraphs
of minimum degree at least three. Suppose that

(i) a graph lies in X if and only if its kernel is in Y;
(ii) there are constants c, γ > 0 and k ∈ R such that

|Y(2l, 3l)| = (1 + o(1))c lkγ2l(2l)!;

(iii) there is a constant 0 < q ≤ 1 with

P [Y (2l, 3l) is connected ]
l→∞−→ q;

(iv) |H1(Y (2l, 3l))| = 2l−Op(1) and for each fixed i ∈ N\{0}, the probability
that |H1(Y (2l, 3l))| = 2l − 2i is bounded away from both 0 and 1;

(v) Y is weakly addable and closed under taking minors.

Then analogous statements to Theorems 3.1.5–3.1.8 hold for X .

Obvious candidates for the classes X and Y would be (multi)graphs on non-
orientable surfaces. For such classes, (i) and (v) in Remark 3.8.3 are automatically
satisfied, (ii) and (iii) would follow if Theorems 3.4.1 and 3.4.2 also hold for non-
orientable surfaces, and (iv) holds if Lemma 3.4.3 is true for non-orientable surfaces.

Problem 3.8.4. Prove analogous versions of Theorems 3.4.1 and 3.4.2 as well as
Lemma 3.4.3 for non-orientable surfaces.

One striking difference between Gg(n,m) and G(n,m) is the order and the
structure of the i-th largest component for i ≥ 2. In Gg(n,m), the second largest
component is much larger than in G(n,m); in 1Sup for instance, the order is
Θp(n

2/3) versus o(n2/3). Moreover, the i-th largest component of G(n,m) is a tree

whp. In contrast, the largest tree components of Gg(n,m) have order Θp(n
2/3), and

it can also contain complex components of that order. It would thus be interesting
to know whether there is a hierarchy in the size of the largest tree component and
the second largest complex component.

Question 3.8.5. Given i ≥ 2, what is the probability that the i-th largest component
of Gg(n,m) is a tree?

For G(n,m), the giant component is in fact far better understood than it is
stated in Theorem 3.1.1. Central and local limit theorems provide much stronger
concentration results about the order (i.e. the number of vertices) and the size (i.e.
the number of edges) of the giant component [4, 5, 24, 25, 94, 101] and give more
insight into the global and local structure of the giant component and its core.

Problem 3.8.6. Derive central and local limit theorems for the giant component
of Gg(n,m).

As mentioned in Section 3.1, the component structure of G(n,m) is closely
related to a Galton-Watson branching process. More precisely, the local structure
of G(n, αn2 ) converges to that of a Galton-Watson tree with offspring distribution
Po(α) in the sense of Benjamini-Schramm local weak convergence [14, 71]. For
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Gg(n,m), the additional constraint of the graph being embeddable on Sg, explo-
ration via a simple Galton-Watson type process is not possible. This naturally
raises the question if the local structure of Gg(n,m) can be described in terms of
the Benjamini-Schramm local weak convergence.

Question 3.8.7. What is the limit of the local structure of Gg(n,m) in the sense
of the Benjamini-Schramm local weak convergence?

The core, which plays a central role in our constructive decomposition, is also
known as the 2-core. More generally, given k ≥ 2, the k-core of a graph G is the
largest subgraph of G of minimum degree at least k. Like the core, the k-core
can be constructed by a peeling process that recursively removes vertices of degree
less than k. The order and size of the k-core of G(n,m) has been determined in
a seminal paper by Pittel, Spencer, and Wormald [93]. Following Pittel, Spencer,
and Wormald, the k-core has been extensively studied [31, 32, 63, 73, 76, 98].
The most striking results in this area are the astonishing theorem by  Luczak [76]
that the k-core for k ≥ 3 jumps to linear order at the very moment it becomes
non-empty, the central limit theorem by Janson and Luczak [63], and the local
limit theorem by Coja-Oghlan, Cooley, Kang, and Skubch [31] that described—in
addition to the order and size—several other parameters of the k-core of G(n,m).
In [32], the same authors used a 5-type branching process in order to determine
the local structure of the k-core. In terms of global structure, [31] provides a
randomised algorithm that constructs a random graph with given order and size of
the k-core.

Question 3.8.8. What are the local and global structure of the k-core of Gg(n,m)?

One of the main difficulties regarding Gg(n,m) is that while graph properties
such as having a component of a certain order are monotone for G(n,m) (that is,
for every fixed n, the probability that G(n,m) has this property is monotone for
0 ≤ m ≤

(
n
2

)
), this is not necessarily the case for Gg(n,m). Indeed, monotonicity

of graph properties in G(n,m) usually follows immediately from the equivalence
between G(n,m) and the random graph process, where we add one random edge
at a time. For graphs on surfaces, however, not all edges are allowed to be added
in the corresponding process. Thus, the process is fundamentally different from
Gg(n,m). For instance, in the dense regime m = bµnc with µ > 1, we know by [59]
that the probability that P (n,m) is connected is bounded away from both 0 and 1.
The planar graph process, however, is connected whp in that regime [58]. Know-
ing which graph properties are monotone for Gg(n,m) would yield a significant
improvement to the complexity of the arguments.

Question 3.8.9. Which graph properties are monotone for Gg(n,m)?

The constructive decomposition and generating functions of cubic planar graphs
and their relation to the core of sparse planar graphs by Kang and  Luczak [66] have
been strengthened by Noy, Ravelomanana, and Rué [87] to yield an answer to a
challenging open question of Erdős and Rényi [41] about the limiting probability of
G(n,m) being planar at the critical phase 1Crit, that is, for every constant λ ∈ R,
the limit p(λ) of the probability that G

(
n,
(
1 + λn−1/3

)
n
2

)
is planar. For graphs

embeddable on a surface of positive genus, they gave a general strategy of how to
determine the corresponding probability. However, determining the exact limiting
probability for g ≥ 1 is still an open problem.

Furthermore, for m beyond 1Crit, we know that G(n,m) whp is not embed-
dable on any surface of fixed genus. This immediately raises the question what
genus g we need in order to embed G(n,m) on Sg.

Question 3.8.10. Let m = m(n) and g = g(n) be given.
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(i) When is the limiting probability of G(n,m) being embeddable on Sg posi-
tive?

(ii) When is G(n,m) embeddable on Sg whp?
(iii) What is the expected genus of G(n,m)?

Another interesting direction, which might provide insight into the answer of
Question 3.8.10, is to consider Gg(n,m) for genus g = g(n) that tends to infinity
with n. If g grows ‘fast enough’ (e.g. as

(
n
2

)
), then Gg(n,m) will coincide with

G(n,m) and will thus exhibit the emergence of the giant component, but not the
second phase transition described in Theorem 3.1.6. For ‘slowly’ growing g, on the
other hand, it is to be expected that the second phase transition does take place.

Question 3.8.11. For which functions g = g(n) does Gg(n,m) feature two phase
transitions analogous to Theorems 3.1.5 and 3.1.6?
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CHAPTER 4

Cubic graphs with constant genus

4.1. Introduction

Determining the numbers of maps and graphs embeddable on surfaces have
been one of the main objectives of enumerative combinatorics for the last 50 years.
Starting from the enumeration of planar maps by Tutte [104] various types of maps
on the sphere were counted, e.g. planar cubic maps by Gao and Wormald [54].
Furthermore, Tutte’s methods were generalised to enumerate maps on surfaces of
higher genus [7, 8, 13].

An important subclass of maps are triangulations. Brown [29] determined the
number of triangulations of a disc, and Tutte [103] enumerated planar triangula-
tions. Later, Rathie [95] enumerated simple planar triangulations. Triangulations
on other surfaces have been considered as well. Gao enumerated 2-connected tri-
angulations on the projective plane [50] as well as connected [51], 2-connected [52]
and 3-connected [53] triangulations on surfaces of arbitrary genus.

Frieze [70] was arguably the first to ask about properties of random planar
graphs. McDiarmid, Steger, and Welsh [82] showed the existence of an exponential
growth constant for the number of vertex-labelled planar graphs with n vertices.
This growth constant and the asymptotic number of planar graphs were determined
by Giménezand Noy [59], while the corresponding results for the higher genus case
were derived by Chapuy, Fusy, Giménez, Mohar and Noy [30] and independently
by Bender and Gao [9]. Since then various other classes of planar graphs were
counted [12, 19, 20, 64, 66, 69, 89].

An interesting subclass of planar graphs is the class of cubic planar graphs,
which have been counted by Bodirsky, Kang, Löffler and McDiarmid [20]. Cubic
planar graphs occur as substructures of sparse planar graphs and have thus been
one of the essential ingredients in the study of sparse random planar graphs [66].
For surfaces of higher genus, the number of embeddable cubic graphs has not been
studied.

Throughout the paper, let g be a fixed non-negative integer and let Sg be the
orientable1 surface of genus g. In this paper, we study cubic graphs embeddable
on Sg, in particular their asymptotic number. Similar to the case of planar graphs,
cubic graphs embeddable on Sg appear as essential substructures of sparse graphs
embeddable on Sg. Therefore, the results of this paper pave the way to the study
of sparse random graphs embeddable on Sg [67].

4.1.1. Main results. The main contributions of this paper are fourfold. We de-
termine the asymptotic number of cubic multigraphs embeddable on Sg. We also
determine the asymptotic number of weighted cubic multigraphs and cubic simple
graphs embeddable on Sg. Finally we prove that almost all (multi)graphs from
either of the three classes have exactly one non-planar component.

The first main result provides the exact asymptotic expression of the number
of cubic multigraphs embeddable on Sg.

1We believe that one can also prove the main results for multigraphs embeddable on non-

orientable surfaces, but with considerably more effort and case distinctions.
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Theorem 4.1.1. The number mg(n) of vertex-labelled cubic multigraphs em-
beddable on Sg with 2n vertices is given by

mg(n) =
(

1 +O
(
n−1/4

))
dgn

5g/2−7/2γ2n
1 (2n)! ,

where γ1 is an algebraic constant independent of the genus g and dg is a constant
depending only on g. The first digits of γ1 are 3.986.

Our next main result concerns multigraphs weighted by the so-called compen-
sation factor introduced by Janson, Knuth,  Luczak and Pittel [62]. This factor
is defined as the number of ways to orient and order all edges of the multigraph
divided by 2rr!, which is equal to the number of such oriented orderings if all edges
were distinguishable. For example, a double edge results in a factor 1

2 and simple
graphs are the only multigraphs with compensation factor one.

Theorem 4.1.2. The number wg(n) of vertex-labelled cubic multigraphs em-
beddable on Sg with 2n vertices weighted by their compensation factor is given by

wg(n) =
(

1 +O
(
n−1/4

))
egn

5g/2−7/2γ2n
2 (2n)! ,

where γ2 = 793/4

541/2 and eg is a constant depending only on the genus g. The first
digits of γ2 are 3.606

Theorem 4.1.2 can be used to derive the asymptotic number and structural
properties of graphs embeddable on Sg [67]. Planar cubic multigraphs weighted by
the compensation factor were counted by Kang and  Luczak [66]. The discrepancy
to their exponential growth constant γ ≈ 3.38 is due to incorrect initial conditions
in [66], as pointed out by Noy, Ravelomanana and Rué [87]. While the explicit
value of the correct exponential growth constant γ was not determined in [87], the
implicit equations given there yield the same exponential growth constant γ2 as in
Theorem 4.1.2.

Our methods also allow us to count cubic simple graphs (graphs without loops
and multi-edges) embeddable on Sg.

Theorem 4.1.3. The number sg(n) of vertex-labelled cubic simple graphs em-
beddable on Sg with 2n vertices is given by

sg(n) =
(

1 +O
(
n−1/4

))
fgn

5g/2−7/2γ2n
3 (2n)! ,

where γ3 is an algebraic constant independent of the genus g and fg is a constant
depending only on g. The first digits of γ3 are 3.133.

The exponential growth constant γ3 coincides with the growth constant calcu-
lated for vertex-labelled cubic simple planar graphs by Bodirsky, Kang, Löffler and
McDiarmid [20].

The final result describes the structure of cubic multigraphs embeddable on Sg.

Theorem 4.1.4. Let g ≥ 1 and let G be a graph chosen uniformly at random
from the class of vertex-labelled cubic multigraphs, cubic weighted multigraphs, or
cubic simple graphs embeddable on Sg with n vertices, respectively. Then with prob-
ability 1−O(n−2), G has one component that is embeddable on Sg, but not on Sg−1,
while all other components of G are planar.

4.1.2. Proof techniques. To derive our results we will use topological manipu-
lations of surfaces called surgeryies, constructive decomposition of graphs along
connectivity, and singularity analysis of generating functions.

More precisely, in order to enumerate cubic multigraphs we apply constructive
decompositions along connectivity. The basic building blocks in the decomposition
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are 3-connected cubic graphs, which we will then relate to their corresponding cubic
maps. Note that, due to Whitney’s Theorem [106], 3-connected planar graphs have
a unique embedding on the sphere. Therefore, we can directly relate 3-connected
planar graphs to the corresponding maps. For surfaces of positive genus, however,
embeddings of 3-connected graphs are not unique. Following an idea from [30], we
circumvent this problem by using the concept of the facewidth of a graph and by
applying results of Robertson and Vitray [99] which relate 3-connected graphs and
maps.

Counting 3-connected cubic maps on Sg is a challenging task. We shall use
the dual of cubic maps, triangulations, in order to overcome this challenge. In
fact, Gao [50, 52, 53] enumerated triangulations on Sg with various restrictions
on the existence of loops and multi-edges. However, it turns out that the duals
of 3-connected cubic maps on Sg have very specific constraints that have not been
considered by Gao. In this paper we therefore investigate such triangulations by
relating them to simple triangulations counted by Gao [52] (see Propositions 4.3.2
to 4.3.4). We strengthen Gao’s result and derive very precise singular expansions
of generating functions. These expansions are obtained from recursive formulas
for the generating functions, which we derive by applying surgeries to the surfaces
on which the respective triangulations are embedded. This enables us to apply
singularity analysis to the generating functions of these triangulations, as well as
to the generating functions of all other classes of maps and graphs considered in
this paper.

This paper is organised as follows. In Section 4.2 we introduce some basic no-
tions and notations. In Section 4.3 we enumerate the triangulations that are duals
of 3-connected cubic maps and in Section 4.4 we prove the main results (Theo-
rems 4.1.1 to 4.1.4) after giving a constructive decomposition along connectivity.
Our strengthening of Gao’s results and proofs, as well as other proofs for similar
theorems from Section 4.3, are given in the appendix.

4.2. Preliminaries

A graph G is simple if it does not contain loops or multi-edges. If in a multi-
graph there are more than two edges connecting the same pair of vertices, we call
each pair of those edges a double edge. Therefore, every multi-edge consisting of r
edges between the same two vertices contains

(
r
2

)
double edges. If e is a loop and

incident to a vertex v, we say that v is the base of e. Similarly, we say that e is
based at its base. An edge that is neither a loop nor part of a double edge is a
single edge. An edge e of a connected multigraph G is called a bridge if deleting e
disconnects G.

A multigraph is called cubic if each vertex has degree three. We adopt the
convention that a loop counts as two in the degree of its base. By Φ we denote the
cubic multigraph with two distinguished vertices u, v and three edges between u
and v (i.e. a triple edge). Given a connected cubic multigraph G, let k and l denote
the number of double edges and loops of G, respectively. We define the weight of
G to be

W (G) =

{
1
6 if G = Φ,

2−(k+l) otherwise.

If G is not connected, we define W (G) as the product of weights of its components.
For cubic multigraphs, this weight coincides with the compensation factor intro-
duced in [62]. Throughout this paper, when we refer to a weighted cubic multigraph
G, the weight in consideration will always be W (G).
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Definition 4.2.1. An embedding of a multigraph G on Sg is a drawing of G on
Sg without crossing edges. We consider G as a subset of Sg, and therefore Sg \ G
consists of connected components called faces. An embedding where additionally
all faces are homeomorphic to open discs, or equivalently, where all faces are simply
connected, is called a 2-cell embedding. Multigraphs that have an embedding are
called embeddable on Sg and multigraphs that have a 2-cell embedding are called
strongly embeddable.

A 2-cell embedding of a strongly embeddable multigraph is also called map. A
triangulation is a map where each face is bounded by a triangle. These triangles
might be degenerated, i.e., being three loops with the same base, or a double edge
and a loop based at one of the end vertices of the double edge, or a loop and an
edge from the base of the loop to a vertex of degree one.

If S is the disjoint union of Sg1 , . . . ,Sgr for non-negative integers g1, . . . , gr and
Mi is a 2-cell embedding of a graph Gi on Sgi for each i = 1, . . . , r, then the induced
function N : (G1 ∪ · · · ∪ Gn) → S is called a map on S. Triangulations on S are
defined analogously. We denote by V (M), E(M), and F (M) the set of all vertices,
edges, and faces of an embedding M , respectively.

We call a set E′ ⊆ E(M) separating, if the map M ′ = (V (M), E′) has at least
two faces, i.e. if M ′ separates the surface.

From results of Mohar and Thomassen [86] we obtain some initial properties
of embeddable graphs.

Proposition 4.2.2. [86] Let G be a multigraph.

(i) If G is connected and g is minimal such that G is embeddable on Sg, then
every embedding of G on Sg is a 2-cell embedding. In particular, G is
strongly embeddable on Sg.

(ii) G is embeddable on Sg if and only if each connected component Ci of G
is strongly embeddable on a surface Sgi such that

∑
i gi ≤ g.

Let M be a map on a surface S. We construct the dual map of M by first
putting a vertex in each face of M , then for each edge e in M , we draw an edge
between the two (possibly coincident) vertices inside the faces on both side of e
while crossing e exactly once. The newly drawn edges should only intersect at their
end points. Note that the dual map has multi-edges if two faces of the original
(primal) map have more than one edge in common. It is well known that the dual
of a map is again a map, see e.g. [86].

For each vertex v ∈ V (M) of a map M , the edges and faces incident to v have
a canonical cyclic order e0, f0, e1, f1, . . . , ed−1, fd−1 by the way they are arranged
around v (in counterclockwise direction). Note that faces can appear multiple
times here and that a loop based at v will appear twice in this sequence. To avoid
ambiguities, we distinguish the two ends of the loop in this sequence (e.g. by using
half-edges or by orienting each loop). A triple (v, ei, e(i+1) mod d) of a vertex v and
two consecutive edges ei, ei+1 mod d in the cyclic sequence is called a corner (at v).
We also say that (v, ei, e(i+1) mod d) is a corner of the face fi. When we enumerate
maps, we always work with maps with one distinguished corner, called the root of
the map. If (v, ei, ei+1) is the root corner, we will call v the root vertex, ei the root
edge, and fi the root face.

4.2.1. Generating functions and singularity analysis. We will use generating
functions to enumerate the various classes of maps, graphs and multigraphs we
consider. Unless stated otherwise, the formal variables x and y will always mark
vertices and edges respectively. Generating functions for classes of maps will be
ordinary unless stated otherwise. Generating functions for multigraphs will be
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exponential in x, because we always consider vertex-labelled multigraphs. If A is a
class of maps, we write A(m) for the subclass of A containing all maps with exactly
m edges. The generating function

∑
m |A(m)|ym will be denoted by A(y). If B is a

class of multigraphs, we write B(n) for the subclass of B containing all multigraphs

with exactly n vertices. The generating function
∑
n
|B(n)|
n! xn will be denoted by

B(x). For an ordinary generating function F (z) =
∑
n fnz

n, we use the notation
[zn]F (z) := fn. For an exponential generating function G(z) =

∑ gn
n! z

n, we write
[zn]G(z) := gn

n! .
If two generating functions F (z), G(z) satisfy 0 ≤ [zn]F (z) ≤ [zn]G(z) for all

n, we say that F is coefficient-wise smaller than G, denoted by F � G. The
singularities of F (z) with the smallest modulus are called dominant singularities
of F (z). Because every generating function we consider in this paper always has
non-negative coefficients [zn]F (z), there is a dominant singularity located on the
positive real axis by Pringsheim’s Theorem [102, pp. 214 ff.]. We denote this
dominant singularity by ρF . If an arbitrary function F : C → C has a unique
singularity with smallest modulus and this singularity lies on the positive real axis,
then we also denote it by ρF . The function F converges on the open disc of radius
ρF and thus corresponds to a holomorphic function on this disc. In many cases,
this function can be holomorphically extended to a larger domain. Given ρ,R ∈ R
with 0 < ρ < R and θ ∈ (0, π/2),

∆(ρ,R, θ) := {z ∈ C | |z| < R ∧ | arg(z − ρ)| > θ}

is called a ∆-domain. Here, arg(z) denotes the argument of a complex number,
i.e. arg(0) := 0 and arg(reit) := t for r > 0 and t ∈ (−π, π]. We say that F is
∆-analytic if it is holomorphically extendable to some ∆-domain ∆(ρF , R, θ).

A function F is subdominant to a function G if either ρF > ρG or ρF = ρG
and limz→ρG

F (z)
G(z) = 0. In the latter case, if both F and G are ∆-analytic, then

in the above limit, z is taken from some fixed ∆-domain to which both F and G
are holomorphically extendable. If F is subdominant to G, we also write F (z) =
o(G(z)). Analogously we write F (z) = O(G(z)) if either ρF > ρG or ρF = ρG and

lim supz→ρG
|F (z)|
|G(z)| <∞.

Given a function F (z) with a dominant singularity ρF , we say that a function

G(z) = c
(
1− ρ−1

F z
)−α

with α ∈ R \ Z≤0, c ∈ R \ {0} or G(z) = c log
(
1− ρ−1

F z
)

is
the dominant term of F if there is a decomposition

F (z) = P (z) +G(z) + o(G(z)),

where P (z) is a polynomial. The dominant term, if it exists, is uniquely defined
and ∆-analytic. If G(z) = c(1− ρ−1

F z)−α, the exponent −α is called the dominant

exponent of F . If G(z) = c log
(
1− ρ−1

F z
)
, then we say that F has the dominant

exponent 0.
The number of edges in cubic multigraphs and triangulations is always a mul-

tiple of three. In terms of generating functions, this is reflected by the existence
of three different dominant singularities, all of which differ only by a third root of
unity. The corresponding dominant terms will also be the same up to a third root
of unity. Analogously, the number of vertices in cubic multigraphs is always even,
resulting in two dominant singularities ρF and −ρF . Again, the dominant terms
differ only by a factor of −1. In either case, the terms for the coefficients coming
from the different dominant singularities will also differ only by the corresponding
root of unity. Therefore, we will state our results only for the singularity ρF . With
a slight abuse of notation, we will also refer to ρF as the dominant singularity.

Singularity analysis allows us to derive an asymptotic expression for the coeffi-
cients of a generating function F (z) with help of the dominant singularity and the

76



dominant term of F (z). We state the well-known ‘transfer theorem’ for the specific
cases we will need.

Theorem 4.2.3 ([46]). Let A(z) be a ∆-analytic generating function.

(i) If

A(z) = P (z) + c
(
1− ρ−1

A z
)−α

+O
((

1− ρ−1
A z
)1/4−α)

with a polynomial P (z) and constants c 6= 0, α ∈ R \ Z≤0, then

[zn]A(z) =
(

1 +O
(
n−1/4

)) c

Γ(α)
nα−1ρ−nA .

Here, Γ(α) :=
∫∞

0
zα−1e−z dz is the gamma function.

(ii) If

A(z) = P (z) + c · log
(
1− ρ−1

A z
)

+O
((

1− ρ−1
A z
)1/4)

,

then

[zn]A(z) =
(

1 +O
(
n−1/4

))
(−c)n−1ρ−nA .

We use the standard notation γA = ρ−1
A for the exponential growth constant of

[zn]A(z). If we are counting rooted maps or multigraphs, the roots will be counted
in the generating function unless stated otherwise. We will often mark vertices
or edges of multigraphs or maps, which corresponds to applying the differential
operator z d

dz to the generating functions (with z = x if vertices are marked and

z = y if edges are marked). To simplify notation we write δz for z d
dz and δnz for

repeatedly applying n times the operator z d
dz , which corresponds to marking n

vertices or edges, while allowing multiple marks. We use the notation F ′(z) = dF
dz

for the standard differential operator.Vice versa, we say that F is a primitive of F ′.
The dominant terms of derivatives and primitives of ∆-analytic functions can

be determined using Theorems VI.8 and VI.9 from [47]. Again, we state these
results in a slightly different way tailored for our specific needs.

Lemma 4.2.4 ([47]). Let A(z) be a ∆-analytic generating function with the dom-
inant term Ad(z). Suppose that there exists β ∈ R with

A(z) = P (z) +Ad(z) +O
((

1− ρ−1
A z
)−β)

,

where P (z) is a polynomial and
(
1− ρ−1

A z
)−β

= o(Ad(z)).

(i) We have

A′(z) = P ′(z) +A′d(z) +O
((

1− ρ−1
A z
)−β−1

)
.

(ii) If in addition Ad(z) = c
(
1− ρ−1

A z
)−α

for some α ∈ R\Z≤0, then for any
primitive A(z) of A(z) there exists a primitive P(z) of P (z) such that

A(z) = P(z) + Ad(z) +O(R(z))

with

Ad(z) =

{
cρA
α−1

(
1− ρ−1

A z
)−α+1

if α 6= 1,

−cρA log
(
1− ρ−1

A z
)

if α = 1,

and

R(z) =

{(
1− ρ−1

A z
)−β+1

if β 6= 1,

log
(
1− ρ−1

A z
)

if β = 1.
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Theorem 4.2.3 and Lemma 4.2.4 are very helpful when the generating functions
in question are ∆-analytic. However, for many of our generating functions we will
not be able to guarantee ∆-analyticity. In order to utilise the results of this section
also for generating functions that are not necessarily ∆-analytic, we introduce the
following concept and notation.

Definition 4.2.5. Given a generating function F (z) and ∆-analytic functions A(z)
and B(z), we say that F (z) is congruent to A(z) +O(B(z)) and write

F (z) ∼= A(z) +O(B(z))

if there exist ∆-analytic functions F+(z), F−(z) and polynomials P+(z), P−(z)
such that

• F− � F � F+;
• F+(z) = P+(z) +A(z) +O(B(z));
• F−(z) = P−(z) +A(z) +O(B(z)).

Here we allow A(z) ≡ 0.

With Definition 4.2.5, we are able to apply the transfer theorem even if F
itself is not ∆-analytic. The following lemma is an immediate consequence of The-
orem 4.2.3 and the fact that F− � F � F+.

Lemma 4.2.6. If F (z) ∼= A(z), where A(z) is as in Theorem 4.2.3, then

[xn]F (z) =
(

1 +O
(
n−1/4

))
[zn]A(z).

In this paper we will often encounter sums, products, differentials and integrals
of generating functions. The following lemma states that these operations are com-
patible with the notion of congruence. We will frequently use this lemma without
explicitly mentioning it.

Lemma 4.2.7. Let A,A1, A2, B1, B2 be ∆-analytic functions with finitely many
negative coefficients. Let F1, F2 be generating functions such that

F1(z) ∼= A1(z) +O(B1(z)) and F2(z) ∼= A2(z) +O(B2(z))

and let F (z) be a generating function with

F (z) ∼= A(z) +O
((

1− ρ−1
F z
)−β)

,

where β ∈ R and the dominant term Ad(z) of A(z) satisfies
(
1− ρ−1

F z
)−β

=
o(Ad(z)). Then the following holds.

F1(z)± F2(z) ∼= A1(z)±A2(z) +O
(
B1(z)) +O(B2(z)

)
,

F1(z)F2(z) ∼= A1(z)A2(z) +O
(
A1(z)B2(z) +B1(z)A2(z) +B1(z)B2(z)

)
,

F ′(z) ∼= A′(z) +O
((

1− ρ−1
F z
)−β−1

)
.

Furthermore, if Ad(z) = c
(
1− ρ−1

F z
)−α

for α ∈ R \ Z≤0, then for any primitive
F(z) of F (z) we have

F(z) ∼= Ad(z) +O(R(z)),

where Ad and R are as in Lemma 4.2.4(ii).

Proof. The first congruence follows immediately from

F−1 + F−2 � F1 + F2 � F+
1 + F+

2 and F−1 − F
+
2 � F1 − F2 � F+

1 − F
−
2 .
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For the product F1(z)·F2(z), we may assume that F−1 and F−2 have nonnegative
coefficients, since A1 and A2 have only finitely many negative coefficients. Hence

F−1 · F
−
2 � F1 · F2 � F+

1 · F
+
2

and the second congruence follows.
The last two congruences follow from Lemma 4.2.4 and the fact that

(F−)′ � F ′ � (F+)′ and F− � F � F+,

where F−,F+ are primitives of F−, F+, respectively, with F−(0) ≤ F(0) ≤ F+(0).
�

4.2.2. Maps with large facewidth. An essential circle on Sg is a circle that is
not contractible to a point on Sg. Let M be an embedding of a multigraph on Sg.
An essential cycle of M is a cycle of M that is an essential circle on the surface.
The facewidth fw(M) of M is the minimal number of intersections of M with an
essential circle on Sg. The edgewidth ew(M) of M is defined as the minimal number
of edges of an essential cycle of M . If g = 0, there are neither essential circles nor
essential cycles and we use the convention fw(M) = ew(M) = ∞. Observe that if
M is connected and not a 2-cell embedding, then fw(M) = 0, as an essential circle
can be found in any face that is not simply connected. The facewidth fwg(G) of
a multigraph G that is embeddable on Sg is defined as the maximal facewidth of
all its embeddings on Sg. If the genus is clear from the context, we omit it and
write fw(G). When we count multigraphs with restrictions to their facewidth, we
indicate the restriction by a superscript to the corresponding generating function,
e.g. Gfw≥2(x) for the generating function of all multigraphs with facewidth at least
two.

Having large facewidth proves to be a very helpful property, because it allows us
to derive a constructive decomposition along connectivity as well as the existence of
a unique embedding for 3-connected multigraphs. The following lemma was applied
in a similar way in [30] as later in this paper.

Lemma 4.2.8. [99] Let g > 0 and let M be an embedding of a connected multigraph
G on Sg.

(i) M has facewidth fw(M) = k ≥ 2 if and only if M has a unique 2-
connected component embedded on Sg with facewidth k and all other 2-
connected components of M are planar.

(ii) If G is 2-connected, M has facewidth fw(M) = k ≥ 3 if and only if M
has a unique 3-connected component embedded on Sg with facewidth k
and all other 3-connected components of M are planar.

(iii) Let M1, M2 be embeddings of a 3-connected multigraph on Sg and suppose
that fw(M1) ≥ 2g + 3. Then there is a homeomorphism of Sg that maps
M1 to M2.

Lemma 4.2.8(iii) is a generalisation of Whitney’s theorem [106] that all 3-
connected planar multigraphs have a unique embedding up to orientation on the
sphere. Because we will need Lemma 4.2.8 for multigraphs rather than for embed-
dings, we shall use the following easy corollary.

Corollary 4.2.9. Let g > 0 and let G be a non-planar connected multigraph
strongly embeddable on Sg.

(i) If fwg(G) ≥ 2, then G has a unique 2-connected non-planar compo-
nent strongly embeddable on Sg with facewidth fwg(G) and all other 2-
connected components are planar.
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(ii) If G is 2-connected and fwg(G) ≥ 3, then G has a unique 3-connected
non-planar component strongly embeddable on Sg with facewidth fwg(G)
and all other 3-connected components are planar.

(iii) If G is 3-connected and fwg(G) ≥ 2g + 3, then G has a unique 2-cell
embedding on Sg up to orientation.

Proof. By Lemma 4.2.8(i), for any fixed embedding of G all but one compo-
nents are planar. As G itself is not planar, that exceptional component has to be
non-planar. As the component structure is the same for all embeddings, the non-
planar component I is independent of the embedding. Therefore, I is the unique
component described in (i). Part (ii) is proved analogously and (iii) is a direct
consequence of Lemma 4.2.8(iii). �

4.3. Maps and triangulations

The goal of this section is to enumerate cubic 3-connected maps on Sg. The
duals of these maps are triangulations, which are characterised in the following
proposition.

Proposition 4.3.1. Let M be a 2-cell embedding of a cubic multigraph on Sg and
let M∗ be its dual map. Then M is 3-connected if and only if M∗ is a triangulation
with at least six edges and without separating loops, separating double edges, or
separating pairs of loops.

Proof. For cubic graphs with at least four vertices (and thus at least six
edges), 3-connectivity and 3-edge-connectivity coincide. This can be seen by a
simple case analysis. We thus use 3-edge-connectivity hereafter. Since a vertex
in M corresponds to a face in M∗, deleting edges in the primal M has the same
effect as cutting the surface along the dual edges of M∗ (for a formal definition
of “cutting” see Section 4.5.1), and a set of edges is a separator in M if and only
if cutting along the dual edges in M∗ separates the surface. Thus, a bridge in
M corresponds to a separating loop in M∗. A 2-edge-separator in M corresponds
either to a separating double edge or a pair of loops in M∗ which together separate
the surface. �

In order to enumerate the triangulations described in Proposition 4.3.1, we will
relate them to simple triangulations that have been studied by Bender and Canfield
[7]. To this end we will use the following classes of triangulations.

LetMg be the class of triangulations on Sg without separating loops, separating
double edges, and separating pairs of loops and let Mg(y) be its ordinary gener-
ating function. Note that these triangulations are either the duals of 3-connected
cubic maps on Sg by Proposition 4.3.1 or a triangulation with exactly three edges.
Furthermore, let Sg be the class of simple triangulations on Sg (i.e. without loops

or double edges) and let T̂g be the class of triangulations on Sg without separating

loops or separating double edges. Let Tg(y) and T̂g(y) be their generating functions,
respectively.

The starting point in obtaining an asymptotic expansion for Mg(y) will be
results on simple triangulations which were obtained by Gao [51] and (in the planar
case) by Tutte [103]. However, the results obtained by Gao are not strong enough
in order to apply the theory of singularity analysis (developed in Section 4.2.1). We
obtain more refined versions of their results by following the ideas of Bender and
Canfield [7].
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Proposition 4.3.2. The dominant singularity of Tg(y) is given by ρT = 3
28/3 . The

generating function T0(y) is ∆-analytic and satisfies

T0(y) =
1

8
− 9

16

(
1− ρ−1

T y
)

+
3

25/2

(
1− ρ−1

T y
)3/2

+O
((

1− ρ−1
T y

)2)
. (4.1)

For g ≥ 1 we have

Tg(y) ∼= cg
(
1− ρ−1

T y
)−5g/2+3/2

(
1 +O

((
1− ρ−1

T y
)1/4))

, (4.2)

where cg is a constant depending only on g.
Furthermore, for g ≥ 0, the asymptotic number of simple triangulations on Sg

with m edges is given by

|Tg(m)| =
(

1 +O
(
m−1/4

)) cg
Γ(5(g − 1)/2)

m5g/2−5/2ρ−mT ,

where c0 = 3
25/2 .

The exact values of cg can be found in [53].

Along the same lines we obtain similar results for T̂g(y).

Proposition 4.3.3. We have T̂0(y) = T0(y) and for g ≥ 1,

T̂g(y) ∼= cg
(
1− ρ−1

T y
)−5g/2+3/2

(
1 +O

((
1− ρ−1

T y
)1/4))

, (4.3)

where cg is the same constant depending only on g as in Proposition 4.3.2.
Furthermore, for g ≥ 0, the asymptotic number of triangulations without sepa-

rating loops or separating double edges on Sg with m edges is given by∣∣∣Ŝg(m)
∣∣∣ =

(
1 +O

(
m−1/4

)) cg
Γ(5g/2− 5/2))

m5g/2−5/2ρ−mT .

The proofs of Propositions 4.3.2 and 4.3.3 can be found in Section 4.5.
From these two results and the fact that Sg ⊆Mg ⊆ T̂g we obtain immediately

our results for the number of triangulations inMg, i.e. triangulations on Sg without
separating loops, separating double edges, and separating pairs of loops.

Proposition 4.3.4. The dominant singularity of Mg(y) is given by ρM = ρT =
3

28/3 . The generating function M0(y) is ∆-analytic and satisfies

M0(y) =
1

8
− 9

16

(
1− ρ−1

M y
)

+
3

25/2

(
1− ρ−1

M y
)3/2

+O
((

1− ρ−1
M y

)2)
. (4.4)

For g ≥ 1 we have

Mg(y) ∼= cg
(
1− ρ−1

M y
)−5g/2+3/2

(
1 +O

((
1− ρ−1

M y
)1/4))

, (4.5)

where cg is the same constant depending only on g as in Proposition 4.3.2.
Furthermore, for g ≥ 0, the asymptotic number of triangulations in Mg(m) is

given by

|Mg(m)| =
(

1 +O
(
m−1/4

)) cg
Γ(5g/2− 5/2))

m5g/2−5/2ρ−mM .

Observe that from Propositions 4.3.2 and 4.3.4 it follows immediately that the
dual of a cubic map on Sg is simple with high probability, i.e. with probability
tending to one as m tends to infinity.
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4.4. Cubic graphs

Unless stated otherwise, graphs are unrooted. Recall that, in our generating
functions, x marks vertices and y marks edges. Additionally, we will distinguish
whether edges are single edges, double edges or loops because they will be treated
differently when obtaining relations between graph classes. We will use the variable
z to mark double edges and the variable w to mark loops. It is easy to see that
3-connected cubic graphs are simple and that 2-connected cubic multigraphs do
not contain loops. The generating functions for these classes will only feature the
variables of edges that can occur.

In order to derive asymptotic results we shall deal with univariate generating
functions F (v). As cubic (multi)graphs always have 2n vertices and 3n edges, where
n ∈ N, the coefficient (2n)![vn]F (v) will denote the number of graphs (or multi-
graphs or weighted multigraphs) in the corresponding class with 2n vertices and
3n edges. Such a univariate generating function can be obtained by the following
substitution.

Definition 4.4.1. Let F be a class of connected cubic vertex-labelled multigraphs
without triple edges and let

F (x, y, z, w) =
∑

n,m,k,l≥0

fn,m,k,l
n!

xnymzkwl

be its exponential generating function. We define functions F (v), Fu(v), and F s(v)
as follows.

F (v) := F

(
v1/4, v1/6,

v1/3

2
,
v1/6

2

)
,

Fu(v) := F (v1/4, v1/6, v1/3, v1/6),

F s(v) := F (v1/4, v1/6, 0, 0).

If the generating function of F involves only two or three variables, we define F (v),
Fu(v), and F s(v) analogously, only using the substitutions of those variables that
occur.

We claim that (2n)![vn]F (v) is the number of weighted multigraphs in F(2n),
i.e. the sum of W (G) for all G ∈ F with 2n vertices (and thus with 3n edges).
For, if G ∈ F(2n) has k double edges, l loops, and m single edges, then there
are 2k + l + m = 3n edges in total and the substitution transforms the monomial
x2nymzkwl into 2−(k+l)vn/2+m/6+k/3+l/6 = W (G)vn. Similarly, (2n)![vn]Fu(v) is
the number of (unweighted) multigraphs in F(2n). Finally, (2n)![vn]F s(v) is the
number of simple graphs in F(2n), since replacing z and w by 0 ensures that no
graphs with double edges or loops are counted in F s(v).

4.4.1. From maps to graphs. Let Dg be the class of 3-connected cubic vertex-
labelled graphs strongly embeddable on Sg and let Dg(x, y) be its generating func-
tion. In this section we provide some necessary properties of Dg(v). We will use the

auxiliary classes Dg of 3-connected cubic edge-labelled graphs strongly embeddable

on Sg, and Mg of edge-labelled, unrooted triangulations where the triangulations
are in Mg.
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Proposition 4.4.2. The dominant singularity of Dg(v) is ρD = ρ3
T = 27

256 and we
have the following congruences.

D0(v) ∼= c0
(
1− ρ−1

D v
)5/2

+O
((

1− ρ−1
D v

)3)
,

D1(v) ∼= c1 log
(
1− ρ−1

D v
)

+O
((

1− ρ−1
D v

)1/4)
,

Dg(v) ∼= cg
(
1− ρ−1

D v
)−5g/2+5/2

+O
((

1− ρ−1
D v

)−5g/2+11/4
)

for g ≥ 2,

where cg is the same constant depending only on g as in Proposition 4.3.2.

Applying Theorem 4.2.3, we immediately obtain the coefficients of Dg(v).

Corollary 4.4.3. The coefficients of Dg(v) satisfy

[vn]Dg(v) =
(

1 +O
(
n−1/4

))
cgn

5(g−1)/2−1ρ−nD ,

where cg is a constant depending only on g.

Proof of Proposition 4.4.2. First we compare Mg and Mg. For each tri-
angulation M ∈ Mg with m edges, there are m! possibilities of labelling its edges.

Conversely, for a triangulation M ∈ Mg, there are 2m possibilities of rooting.

Therefore, the exponential generating function Mg(y) of Mg satisfies

[ym]Mg(y) = 2m[ym]Mg(y)

and thus
Mg(y) = 2δyMg(y).

Every graph G ∈ Dg has at least two (edge-labelled) 2-cell embeddings. By
Proposition 4.3.1, the maps obtained in this way are precisely the duals of triangu-
lations in Mg. As y marks the number of edges in Mg(v

1/3) and v marks a third

of the number of edges in Dg(v), we obtain

2Dg(v) �Mg(v
1/3).

We claim that, for a cubic map M on Sg, its facewidth fw(M) is exactly the
edgewidth ew(M∗) of the triangulation M∗ that is the dual of M . To see this, we
observe that an essential cycle of M∗ witnessing the edgewidth of M∗ corresponds
to an essential circle on Sg that meets M in ew(M∗) edges and no vertices, resulting
in fw(M) ≤ ew(M∗). On the other hand, any two faces of M that share a vertex
also share an edge, as M is cubic. Thus, there is an essential circle witnessing
the facewidth of M that meets M only at edges. As this circle corresponds to an
essential cycle of M∗, we have fw(M) ≥ ew(M∗).

Since by Lemma 4.2.8(iii) a 3-connected graph embeddable on Sg with facewidth
at least 2g + 3 has exactly two embeddings, we have

2D
fw≥2g+3

g (v) = M
ew≥2g+3

g (v1/3).

As obviously D
fw≥2g+3

g (v) � Dg(v), we obtain the following relations:

M
ew≥2g+3

g (v1/3) = 2D
fw≥2g+3

g (v) � 2Dg(v) �Mg(v
1/3). (4.6)

Since there are no double edges in a 3-connected cubic graph, we know that
the two generating functions Dg(v) and Dg(v) are closely related. To be precise,
(2n)![vn]Dg(v) is the number of vertex-labelled graphs in Dg(2n). Since every such
graph has 3n edges, (3n)!(2n)![vn]Dg(v) is the number of 3-connected cubic graphs
with 2n vertices embeddable on Sg with both vertices and edges labelled. As this

number is equal to (2n)!(3n)![vn]Dg(v) by an analogous argument, we have

[vn]Dg(v) = [vn]Dg(v).
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Therefore, we can replace Dg(v) by Dg(v) in (4.6) to obtain

Dg(v) � 1

2
Mg(v

1/3) =
1

4

∫
t−1Mg(t) dt

∣∣∣∣
t=v1/3

.

By Lemma 4.2.4 we obtain an upper bound for Dg(v) as claimed. To finish the
proof we will show the following claim.

Claim 1. The generating functions Mg(y)ew≥2g+3 and Mg(y) have the same dom-
inant singularity and

Mg(y)−M ew≥2g+3
g (y) ∼= O

((
1− ρ−1

S y
)−5g/2+7/4

)
.

Before we prove the claim, let us note that Proposition 4.4.2 follows immediately
from Claim 1, Lemma 4.2.7, and Proposition 4.3.4.

A statement more general than Claim 1 was proven in [10] for a variety of map
classes. Although we believe that the proof in [10] generalises to Mg, which was
not considered in [10], we give a slightly different proof here for completeness.

The generating function of Mg \ Tg is congruent to O
((

1− ρ−1
S y

)−5g/2+7/4
)

by Propositions 4.3.2 to 4.3.4. It thus suffices to show that

T ew≤2g+2
g

∼= O
((

1− ρ−1
S y

)−5g/2+7/4
)
.

For i ≥ 3, let T C=i
g be the class of triangulations in Tg where one non-contractible

cycle C of length i is marked, and we denote its generating function by TC=i
g (y).

Clearly T ew=i
g (y) � TC=i

g (y). Let M ∈ T C=i
g and let C be the marked cycle of

M . Consider the surface Sg on which M embeds. We cut Sg along the cycle
C, and duplicate the vertices and edges of C so that the map structure in the
neighbourhood on the two sides of C is preserved (for a precise definition of “cut”,
see Section 4.5.1 in the appendix). We then close the two resulting holes by inserting
disks to them in Sg. This operation is also called “cutting along C on Sg”, and a
more general and rigorous definition of such topological surgeries can be found in
Section 4.5. For each of the two disks, we then add a new vertex inside the disk and
use it to triangulate the disk (see Figure 4.1). If C was separating, we mark one of
the corners at the inserted vertex in the component that contains the original root
face of M . For the other component, we choose one of the corners at the inserted
vertex to be its root. If C was not separating, then we mark one corner at each of
the two inserted vertices. In total we add 3i edges to the map. These operations
result in

• two triangulations M (1),M (2), where M (1) contains the original root face
of M and a marked corner;
• or one triangulation M∗ with two marked corners.

All resulting triangulations are in Tg′ for some g′ < g, because the surgery does
not create loops or double edges. Thus, disregarding markings, in the first case
M (1) ∈ Tg1 and M (2) ∈ Tg2 with g1 + g2 = g and g1, g2 ≥ 1, and then in the second
case M∗ ∈ Tg−1.

Since a corner (v0, e, e
′) is uniquely defined once v0 and e are given, mark-

ing a corner is equivalent to marking an edge and choosing one of its end ver-
tices. In terms of generating functions, this corresponds to applying the operator
2δy = 2y ∂

∂y . As in previous proofs, we will mark repeatedly, which will result

in overcounting. Since we added 3i edges to M by our construction, we have to
compensate by a factor of y3i. Therefore, we obtain the relation

y3iTC=i
g (y) � 4δ2

y(Tg−1(y)) +
∑

g1+g2=g
g1,g2≥1

2δy(Tg1(y))Tg2(y).
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C

Figure 4.1. Cutting along C and triangulating the inserted disc.

By Proposition 4.3.2, we know that

4δ2
y(Tg−1(y)) +

∑
g1+g2=g
gj≥1

2δy(Tg1(y))Tg2(y) ∼= O
((

1− ρ−1
S y

)−5g/2+7/4
)
.

Because

T ew≤2g+2
g (y) =

2g+2∑
i=3

T ew=i
g (y) �

2g+2∑
i=3

TC=i
g (y),

we complete the proof of the claim. �

4.4.2. From 3-connected graphs to connected multigraphs. In this section
we derive dominance relations between different classes of cubic multigraphs. In the
end we will relate connected cubic multigraphs via 2-connected cubic multigraphs
to 3-connected cubic graphs enumerated in the previous section.

Denote by Dg, Bg, and Wg the classes of 3-connected, 2-connected, and con-
nected vertex-labelled cubic multigraphs strongly embeddable on Sg, respectively.

Let Dg(x, y) =
∑ dn,m

n! x
nym, Bg(x, y, z) =

∑ bn,m,k
n! xnymzk, and W g(x, y, z, w) =∑ cn,m,k,l

n! xnymzkwl, be the corresponding generating functions. In the generating

function W g(x, y, z, w), the graph Φ consisting of two vertices connected by three
edges will not be taken into account. This graph will be treated separately at the
end.

First we give a relation between a subclass of Dg and a subclass of Bg. To do
this we need the class N of edge-rooted 2-connected vertex-labelled cubic planar
multigraphs, called networks. In the exponential generating function N(x, y, z) of
N we mark the root always with y as a single edge, and with z marking double
edges not including the root edge.

Lemma 4.4.4. For g ≥ 1, the generating functions of Dg and Bg satisfy

Dfw≥3
g (x, y)−D0(x, y) � Bfw≥3

g (x, y, z) � Dfw≥3
g (x, y), (4.7)

where y = y(1 +N(x, y, z)).

Proof. Let B be a multigraph in Bfw≥3
g . We show that it is counted at least

once on the right-hand side and at most once on the left-hand side of (4.7).
First, suppose that B is not planar. Then Corollary 4.2.9(ii) states that B

has a unique 3-connected component T strongly embeddable on Sg with the same
facewidth. T is in Dfw≥3

g and therefore counted once in Dfw≥3
g (x, y). To get B from

T , we have to attach 2-connected components along the edges (see Figure 4.2).
That means, either we leave an edge as it is (obtaining a summand of y) or we
replace it by two edges (obtaining a factor of y2) and one multigraph in N without
its root edge (obtaining a factor of 1

yN). Thus, B is counted exactly once on the

right-hand side of (4.7).
If B is planar, then it might be counted more than once on the right-hand side.

Indeed, in this case the 2-connected components carrying the facewidth might be
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N

N

N

Figure 4.2. Obtaining 2-connected graphs from 3-connected
graphs by substituting edges with networks.

different for different embeddings. Therefore, Dfw≥3
g (x, y+ yN(x, y, z)) is an upper

bound. To get a lower bound we have to subtract all multigraphs we overcounted.
This is achieved by subtracting D0(x, y + yN(x, y, z)), as only planar multigraphs
are overcounted and each such multigraph is subtracted once for each of its 3-
connected components. �

In the same spirit we can relate connected and 2-connected multigraphs, us-
ing the auxiliary class Q of all edge-rooted connected vertex-labelled cubic planar
multigraphs whose root edge is a loop. To simplify the formulas later on, the root
will be marked by y in the generating function Q(x, y, z, w) and only non-root loops
are marked by w.

Lemma 4.4.5. For g ≥ 1 the generating functions of Wg and Bg satisfy the fol-
lowing relation:

Bfw≥2
g (x, y, z)−B0(x, y, z) �W fw≥2

g (x, y, z, w) � Bfw≥2
g (x, y, z), (4.8)

where y = y
1−Q(x,y,z,w) and z = 1

2 ( y
1−Q(x,y,z,w) )2 − y2

2 + z.

Proof. Let C ∈ W fw≥2

g . We shall show that C is counted at least once on the
right-hand side and at most once on the left-hand side of (4.8).

First, suppose that C is not planar. Then Corollary 4.2.9(i) states that C
has a unique 2-connected component B strongly embeddable on Sg with the same
facewidth, i.e., B ∈ Bfw≥2

g . To construct C from B we have to replace each edge
by a sequence of edges and multigraphs in Q, which means we replace one edge
by a sequence of alternating edges and multigraphs in Q without the root, starting
and ending with an edge. Therefore, the replacement leads to the substitution
y 7→ y 1

1−Q(x,y,z,w) (see Figure 4.3).

This results in a 1-to-1 correspondence between the two generating functions

W
fw≥2

g (x, y, z, w) and Bfw≥2
g (x, y, z) for non-planar multigraphs. The replacement

for double edges results from replacing a set of two edges each as above, except
when the two edges are left intact, then they should still be treated as a double

edge instead of two simple edges. We thus have the correction term −y
2

2 + z.
As in Lemma 4.4.4, if C is planar, the above argument does not necessarily

result in a bijection. We thus have to subtract all corresponding planar multigraphs
again in order to avoid overcounting on the left-hand side. Therefore, we get the
claimed result analogously to Lemma 4.4.4. �

Combining Lemmas 4.4.4 and 4.4.5, we have the following upper and lower
bounds for the generating function Cg(x, y, z, w).
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Q

Q

Q

Q

Figure 4.3. Obtaining connected graphs from 2-connected graphs
by substituting edges with sequences of Q-graphs.

Corollary 4.4.6. For g ≥ 1, the generating function Cg(x, y, z, w) satisfies

Dfw≥3
g (x, y (1 +N(x, y, z)))−D0 (x, y (1 +N(x, y, z)))

+Bfw=2
g (x, y, z)−B0(x, y, z) +W

fw=1

g (x, y, z, w)

�W g(x, y, z, w)

� Dfw≥3
g (x, y (1 +N(x, y, z))) +Bfw=2

g (x, y, z) +W
fw=1

g (x, y, z, w),

(4.9)

where y = y
1−Q(x,y,z,w) and z = 1

2

(
y

1−Q(x,y,z,w)

)2

− y2

2 + z as in Lemma 4.4.5.

We note that the upper and lower bounds of W g(x, y, z, w) differ only by terms
involving generating functions of planar graphs. In Section 4.4.3 we will show that
those generating functions are subdominant. Therefore, the two bounds match in
asymptotics. We will also provide the asymptotic expressions for the other terms
in Section 4.4.3. In order to do that, we first establish bounds on the generating
functions for multigraph classes with fixed facewidth.

Lemma 4.4.7. For g ≥ 1 the following relations hold.

Bfw=2
g (x,y, z) � 2

(
y +

z

y

)2(
1

y
+
y

z

)2(
(δy + δz)

2
(
Bfw≥2
g−1 (x, y, z)

)
+

g−1∑
g′=1

(δy + δz)
(
Bfw≥2
g′ (x, y, z)

)
(δy + δz)

(
Bfw≥2
g−g′ (x, y, z)

))
, (4.10)

W
fw=1

g (x,y, z, w) � (xyw)
2

(
1

y
+
y

z

)(
δ2
w

(
W g−1(x, y, z, w)

)
+

g−1∑
g′=1

δw
(
W g′(x, y, z, w)

)
δw
(
W g−g′(x, y, z, w)

))
. (4.11)

Proof. In order to show (4.10), let B be a multigraph in Bfw=2
g . Consider a

fixed 2-cell embedding M of B on Sg with facewidth two and let {e1 = {v1, w1}, e2 =
{v2, w2}} be two edges such that there exists an essential circle C on Sg meeting
M only in e1 and e2. Note that e1, e2 do not share vertices, because otherwise the
facewidth would have been one. Then we delete e1 and e2, cut the surface along
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C and close both holes with a disk2 (see Figure 4.4). By this surgery we either
disconnect the surface or we reduce its genus by one.

C
v1

v2

w1

w2

e1

e2

v1

v2

w1

w2

e3 e4

Figure 4.4. Surgery along an essential circle.

Case 1: Cutting along C disconnects the surface. As C was an essential loop,
both components have genus at least one. Therefore, we obtain two multigraphs
B∗1 and B∗2 , strongly embeddable on Sg1 and Sg2 respectively, with g1, g2 ≥ 1 and
g1 + g2 = g. Without loss of generality, we can assume that v1, v2 ∈ B∗1 and
w1, w2 ∈ B∗2 . Furthermore, {e1, e2} was a 2-edge-separator in B. Thus, B∗1 and B∗2
are connected as B is 2-edge-connected. Let B1 be obtained from B∗1 by adding
an edge e3 = {v1, v2} and marking e3. Note that B1 is also strongly embeddable
on Sg1 . We claim that B1 is 2-connected. Indeed, any path in B between vertices
in B1 gives rise to a path in B1 between the same vertices by replacing any sub-
path in B \ B1 by the edge e3. Thus, B1 is 2-connected as B is. Analogously, we
add the edge e4 = {w1, w2} to B∗2 to obtain a 2-connected multigraph B2 strongly
embeddable on Sg2 . We also mark e4. Furthermore, we claim that both B1 and
B2 cannot have facewidth 1. Indeed, suppose that B1 has facewidth 1 for a certain
embedding M1, then we can perform the reverse direction of the surgery to get an
embedding of B. Since B is of facewidth at least 2, the only possibility is that the
face containing the essential circle of length 1 in M1 is one of those created in the
surgery from B to B1 and B2, which is not possible by construction. Therefore, B1

has facewidth at least 2, and analogously, B2 has facewidth at least two as well.
Therefore, in this case, we can conclude that a multigraph B can be constructed
from a 2-connected multigraph embeddable on Sg′ with one marked edge and a
2-connected multigraph embeddable on Sg−g′ with one marked edge, with both
multigraphs of facewidth at least 2, resulting in the term

g−1∑
g′=1

(δy + δz)
(
Bfw≥2
g′ (x, y, z)

)
(δy + δz)

(
Bfw≥2
g−g′ (x, y, z)

)
.

Note that e3 and e4 might be single edges or part of double edges. Therefore,
differentiating with respect to both possibilities results in an upper bound. The

factor
(

1
y + y

z

)2

accounts for the deletion of e1 and e2, each of which might have

been a single edge or part of a double edge (hence deleting it turns a double edge

into a single edge). The factor
(
y + z

y

)2

represents the insertion of e3 and e4, each

of which either adds a single edge or turns a single edge into a double edge. Both
factors contribute to the the upper bound as they overcount. Furthermore, we
obtain a factor of two for the ways to obtain the original multigraph from B1 and
B2.

Case 2: Cutting along C does not disconnect the surface. As the embedding
after cutting is still a 2-cell embedding, B\{e1, e2} is connected. We can connect v1,

2For a formal definition of this operation see Section 4.5.1
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v2, w1, w2 in B \ {e1, e2} by two edges (without loss of generality e3 = {v1, v2} and
e4 = {w1, w2}) so as to obtain a multigraph B∗. The graph B = B ∪ {e3, e4} has a
2-cell embedding M on Sg such that e1∪e2∪e3∪e4 bounds a face. Indeed, starting
from M , e3 and e4 can be embedded so that they run close to e1, e2, and C. Let M∗

be the embedding of B∗ induced by M . Suppose that B∗ is not 2-connected, that
is, it has a bridge e. Note that e cannot be e3 or e4 as B∗ \ {e3, e4} = B \ {e1, e2}
is connected.

There is a (not necessarily essential) circle C ′ on Sg hitting M∗ only in e. As
e has not been a bridge in B, C ′ has to meet e1 and e2 as well. If it met neither
e1 nor e2, it would either contradict B having facewidth two (if C ′ is essential) or
the 2-connectivity of B (if C ′ is not essential). If it met only one of them, it would
have to meet one of e3, e4, because e1, e2, e3 and e4 bound a disk in M . This
contradicts the fact that C ′ meets M∗ only in e.

We now construct the circle C ′′ as follows. First, we follow C ′ from e to e1

without traversing it. Then, we follow e1 until reaching C and switch to C to reach
e2 without crossing e1 and e2. Finally, we return to C ′ along e2 and then return
to e (see Figure 4.5). C ′′ meets M only in e. Either C ′′ is an essential circle,
contradicting the fact that B has facewidth two, or it is planar, contradicting the
2-connectivity of B. Similarly, we can also prove that B∗ has facewidth at least
2. Thus we conclude that every multigraph B, where the surgery does not result
in disconnecting the surface, can be constructed from a 2-connected multigraph
embeddable on Sg−1 with two marked edges and facewidth at least two, which
results in the term

(δy + δz)
2
Bg−1(x, y, z).

The factor 2
(
y + z

y

)2(
1
y + y

z

)2

follows as in Case 1. We thus conclude (4.10).

CC’

C”v1

v2

w1

w2

e1

e2

Figure 4.5. Finding an essential circle witnessing small facewidth

To prove (4.11), let G be a multigraph inW fw=1

g . We fix a 2-cell embedding M
of G on Sg of facewidth one and let e1 = {v1, v2} be an edge such that there exists
an essential circle C on Sg meeting G only in e1. Then we perform the following
surgery: we delete e1, cut the surface along C, close both holes with a disk, and
attach an edge, an additional vertex and a loop to both v1 and v2. Remark that
the edge deleted may be a single edge or part of a double edge. Thus, we have a

factor of (xyw)2
(

1
y + y

z

)
, overcounting all possibilities. The deleted edge cannot be

a loop, since in cubic maps on orientable surfaces loops are always on the boundary
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of two different faces, and as such cannot be the only intersection of an embedding
of a multigraph with an essential circle. This can easily be seen, as there is only
one other edge at the base of the loop. Thus, the boundary of the face of the
loop without this additional edge consists only of traversing the loop once. By this
surgery, we either disconnect the surface or we reduce its genus by one.

If we separate the surface, we obtain two connected multigraphs each with one
marked loop. These multigraphs are counted by δw(W g′) and by δw(W g−g′), as
the genera of the two parts sum up to g and the embeddings resulting from the
surgery are still 2-cell embeddings.

If the surface is not separated, the resulting embedding is a 2-cell embedding
and hence the multigraph remains connected. Therefore, we obtain a multigraph
counted by δ2

w(W g−1). The factor in front of the generating function is once again
obtained by marking two loops. This proves (4.11). �

In subsequent calculations, it will be more convenient to change the differential
operators to operators with respect to x instead of y, z, and w.

Corollary 4.4.8. For g ≥ 1, we have

Bfw=2
g (x,y, z) � 9

2

(
y +

z

y

)2(
1

y
+
y

z

)2(
δ2
x

(
Bfw≥2
g−1 (x, y, z)

)
+

g−1∑
g′=1

δx

(
Bfw≥2
g′ (x, y, z)

)
δx

(
Bfw≥2
g−g′ (x, y, z)

))
, (4.12)

and

W
fw=1

g (x,y, z, w) � (xyw)
2

(
1

y
+
y

z

)(
δ2
x

(
W g−1(x, y, z, w)

)
+

g−1∑
g′=1

δx
(
W g′(x, y, z, w)

)
δx
(
W g−g′(x, y, z, w)

))
. (4.13)

Proof. Since the generating function Bfw≥2
g counts cubic graphs, it is the

sum of monomials of the form x2ky3k−2`z` for some nonnegative integers k, ` with
2l ≤ 3k. We thus have

δxx
2ky3k−2`z` = 2kx2ky3k−2`z` ≥ 2

3
(3k − `)x2ky3k−2`z` =

2

3
(δy + δz)x

2ky3k−2`z`.

Therefore, we have 3
2δxB

fw≥2
g ≥ (δy + δz)B

fw≥2
g . Combining this with (4.10) proves

(4.12).
To show (4.13), we note that a cubic graph has at most as many loops as

vertices, and thus replacing δw by δx increases each coefficient. Thus, we still have
an upper bound when replacing δw by δx in (4.11). �

Corollary 4.4.8 will be used to show that the number of multigraphs with small
facewidth in Corollary 4.4.6 is negligible. Additionally, we need equations for the
generating functions of the auxiliary classes N and Q. Recall that N is the class
of edge-rooted 2-connected vertex-labelled cubic planar multigraphs, and Q is the
class of all edge-rooted connected vertex-labelled cubic planar multigraphs whose
root edge is a loop.

Proposition 4.4.9. The generating function N(x, y, z) of N satisfies the system
of equations

N(x, y, z) =
u(1− 2u)− x2y(1 +N(x, y, z))(y2 − 2z)

2
,

x2y3(1 +N(x, y, z))3 = u(1− u)3,

(4.14)
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and the generating function Q(x, y, z, w) of Q satisfies

Q =
Q2

2
+
x2y3

2

(
A+Q

)
+ x2y2w,

A = Q+ S + P +H,

S =
A2

A+ 1
,

P =
x2y3

2
A2 + x2y3A+ x2yz,

2H(1 +A) = u(1− 2u)− u(1− u)3,

x2y3A3 = u(1− u)3,

(4.15)

where

Q =


−Q for simple graphs,

0 for weighted multigraphs,

Q for multigraphs.

Proof. We obtain (4.15) by following the lines of Section 3 in [66] or Section
3 in [87]. The only difference is that we account for loops and double edges in the
initial conditions. In order to derive the system for Q, one starts with an edge-
rooted connected cubic planar graph and recursively decomposes it depending on
the placement of the root. One of the following mutually exclusive cases occurs:

(i) the root is a loop;
(ii) the root is a bridge;

(iii) the root is part of a minimal separating edge set of size two;
(iv) the end vertices of the root separate the graph; or
(v) the root is part of a 3-connected component.

In Case (i) we obtain an equation for Q, while Case (ii) results in an equation
that can immediately be eliminated from the system, Case (iii) in the equation
for S, Case (iv) in the equation for P and Case (v) in the parametric equations
for H in terms of u. It is shown in [66] that these cases are indeed exhaustive.
For each of these cases, there is a decomposition of the graph resulting in the
corresponding equation in the system. The difference for the three values of Q
is due to the difference of how to deal with loops and double edges in the three
different weightings. The only difference in the systems of all three weightings
comes from Case (i), when the third edge at the root vertex is incident to a double
edge (see Figure 4.6). While this case cannot happen for simple graphs (and thus
it is not possible to obtain a loop as a root in this case), the difference regarding
weighted and unweighted multigraphs is due to the weighting of 1

2 of the double
edge.

Figure 4.6. The exceptional case which has to be dealt with dif-
ferently for simple graphs, weighted and unweighted multigraphs.

To obtain the equations for N(x, y, z), we start with (4.15). Because N(x, y, z)
enumerates edge-rooted 2-connected planar cubic multigraphs, setting w = 0 and
Q(x, y, z, w) = 0 results in a system of equations for N(x, y, z) = 1 +A. The given
equations follow by eliminating S, P , and H from the new system. �
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4.4.3. Asymptotics. The goal of this section is to obtain asymptotics for W g(v)

via Corollary 4.4.6. The analysis for W
u

g (v) and W
s

g(v) are analogous; we will point
out the differences when they occur.

To use Corollary 4.4.6, we will prove asymptotic formulas for each of the oc-
curring terms. In order to simplify notations, we define

D̃g(x, y, z, w) = Dg (x, y (1 +N(x, y, z))) ,

where

y =
y

1−Q(x, y, z, w)
, and z =

1

2

(
y

1−Q(x, y, z, w)

)2

− y2

2
+ z.

This change of variables comes from Lemma 4.4.5. Facewidth conditions can be
added in the usual way. Additionally, we define

Ñ(x, y, z, w) = N (x, y, z)

B̃g(x, y, z, w) = Bg (x, y, z) .

Furthermore, when writing v as the sole variable, we are always using the corre-
sponding substitution from Definition 4.4.1.

In order to determine the dominant singularity of D̃fw≥3
g (v), one of the sum-

mands in Corollary 4.4.6, we first analyse the dominant singularity of Q(v). The
numerical values of the dominant singularities and other constants are different for
Q(v), Qu(v), and Qs(v), but the analysis works in exactly the same way.

Lemma 4.4.10. The dominant singularity of Q(v) is ρQ = 54
793/2 . Furthermore,

Q(v) is ∆-analytic and

Q(v) ∼= q0(1− ρ−1
Q v)3/2 +O

(
(1− ρ−1

Q v)2
)
,

where q0 is a constant and we have Q(ρQ) = 1− 17
2
√

79
.

Proof. Substituting v as in Definition 4.4.1 in (4.15) and eliminating S, P ,
H, u, and A in this order from (4.15), we get the following implicit equation for Q.

0 =256Q4 − 512Q5 + 384Q6 − 128Q7 + 16Q8

+v(−320Q3 − 224Q4 + 2352Q5 − 3304Q6 + 2008Q7 − 576Q8 + 64Q9)

+v2(144Q2 + 136Q3 − 384Q4 + 210Q5 − 35Q6)

+v3(−28Q+ 42Q2 − 14Q3) + 2v4.

(4.16)

Using standard methods for implicitly defined functions (see for example [47,
VII.7.1]), we determine the dominant singularity to be at ρQ = 54

793/2 and obtain
the stated expression for Q(v) and the value of Q(v) at ρQ. �

This lemma is already strong enough to deal with the planar case. By unrooting
the classes in Lemma 4.4.10, we obtain the asymptotic expansion of W 0(v) as a
corollary.

Corollary 4.4.11. The dominant singularity of the generating function W 0(v) of
planar connected cubic vertex-labelled weighted multigraphs is ρQ = 54

793/2 . Further-

more, the generating function W 0(v) is ∆-analytic and

W 0(v) =a0 + a1

(
1− ρ−1

W
v
)

+ a2

(
1− ρ−1

W
v
)2

+ c0

(
1− ρ−1

W
v
)5/2

+O

((
1− ρ−1

W
v
)3
)
,

where c0, a0, a1, a2 are constants.
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Proof. The class of planar connected cubic multigraphs is given by unrooting
the sum of the classes used in Lemma 4.4.10. It is easy to see that all those classes
have the same dominant singularity as Q(v), see [20, 66, 88] for more details. �

Similar results also hold for unweighted multigraphs and simple graphs with
the same dominant singularities as Qu(v) and Qs(v), respectively.

Next we determine the asymptotic behaviour of networks in Ñ(v). The only

difference to the other two cases are the numerical values of n0 and Ñ(ρN ).

Lemma 4.4.12. The dominant singularity of Ñ(v) occurs at ρN = ρQ = 54
793/2 .

Furthermore, Ñ(v) is ∆-analytic, and

Ñ(v) ∼= n0

(
(1− ρ−1

N v)3/2
)

+O
(
(1− ρ−1

N v)2
)
,

where n0 is a constant and Ñ(ρN ) = 1/16.

Proof. Starting from (4.14), we obtain a system of equations that is satisfied

by Ñ(v) by performing the appropriate substitutions on y and z in (4.14): first
y = y and z = z, then the substitutions from Definition 4.4.1. We thus obtain

a system of two equations involving Ñ(v), u, v and Q(v). We then add (4.16),
relating Q(v) and v, and obtain a determined system. Eliminating Q(v) and u

from this system results in an implicit equation in Ñ(v) and v.
Using standard methods (see for example [47, VII.7.1]) to deal with implicitly

defined functions we determine the dominant singularity to be at ρN = ρQ and

derive the claimed properties of Ñ(v). �

With the help of these two lemmas we obtain the singularity and singular

expansion of the main term D̃fw≥3
g (v) in Corollary 4.4.6.

Lemma 4.4.13. The generating function D̃fw≥3
g (v) has its dominant singularity

at ρD = ρQ = 54
793/2 . Furthermore, we have

D̃0(v) ∼= c0(1− ρQ)5/2 +O
(
(1− ρQ)3

)
,

D̃fw≥3
1 (v) ∼= c1 log(1− ρ−1

Q v) +O
(

(1− ρ−1
Q v)1/4

)
,

D̃fw≥3
g (v) ∼= cg(1− ρ−1

Q v)−5g/2+5/2 +O
(

(1− ρ−1
Q v)−5g/2+11/4

)
for g ≥ 2.

Analogous results to Lemma 4.4.13 also hold for unweighted multigraphs and
simple graphs. The only difference are the numerical values of the constants and the
dominant singularities, where the latter coincide with the dominant singularities of
Qu(v) and Qs(v), respectively.

Proof. The dominant singularity of D̃fw≥3
g (v) is given either by the singularity

ρQ of Q(v) and Ñ(v), or by a solution of v(1+Ñ(v))3

(1−Q(v))3 = ρ3
S , where v(1+Ñ(v))3

(1−Q(v))3 is ob-

tained by substituting v in x2(y(1+N(x, y, z)))3, and ρ3
S is the dominant singularity

of Dg(v). By Proposition 4.3.2 and Lemma 4.4.12 we verify that
ρQ(1+Ñ(ρQ))3

(1−Q(ρQ))3 = ρ3
S .

This is the only solution of this equation, as v(1+Ñ(v))3

(1−Q(v))3 is a power series with posi-

tive coefficients, and thus monotone on the interval [0, ρQ). Therefore, the dominant

singularity of D̃fw≥3
g (v) is ρQ, and the composition is critical (in the sense of [47,

pp. 411ff]). We thus conclude the proof by Proposition 4.4.2, and noting that
Dfw≥3
g (v) has same asymptotic behaviour as Dg(v). �

The next lemma shows the asymptotic behaviour of B̃fw=2
g (v), which is the

next term occurring in the bounds of Corollary 4.4.6.
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Lemma 4.4.14. For g ≥ 1, we have

B̃fw=2
g (v) ∼= O

((
1− ρ−1

N v
)−5g/2+11/4

)
. (4.17)

Proof. First we observe that by Lemmas 4.4.4 and 4.4.13, the generating

function B̃fw≥3
g (v) has its dominant singularity at ρB = ρQ = 54

793/2 . Furthermore,

B̃fw≥3
1 (v) ∼= c1 log(1− ρ−1

Q v) +O
(

(1− ρ−1
Q v)1/4

)
,

B̃fw≥3
g (v) ∼= cg(1− ρ−1

Q v)−5g/2+5/2 +O
(

(1− ρ−1
Q v)−5g/2+11/4

)
for g ≥ 2.

We prove the claim by induction on g. Suppose that our claim is correct for all
g′ < g. By Corollary 4.4.8 and the fact that both y and z are formal power series
with positive coefficients, we have

Bfw=2
g (x, y, z) � 9

2

(
y +

z

y

)2(
1

y
+
y

z

)2(
δ2
xB

fw≥2
g−1 (x, y, z)

)
+

g−1∑
g′=1

δxB
fw≥2
g′ (x, y, z)δxB

fw≥2
g−g′ (x, y, z).

(4.18)

We now perform the substitutions as in Definition 4.4.1. Note that x is substi-
tuted by v1/4, while y and z are formal power series in x, y, z, w, all substituted by
positive powers of v. Therefore, we can replace δx by 4δv while keeping an upper
bound. We thus have

B̃fw=2
g (v) � 648

δ2
v(B̃fw≥2

g−1 (v)) +

g−1∑
g′=1

δv(B̃
fw≥2
g′ (v))δv(B̃

fw≥2
g−g′ (v))

 . (4.19)

The precise coefficient may change for unweighted multigraphs or simple graphs.
By Lemma 4.2.4 and the fact that all generating functions on the right-hand side
of (4.19) are for genus smaller than g, we deduce by induction that

δ2
v(B̃fw≥2

g−1 (v)) ∼= O
((

1− ρ−1
B v

)−5g/2+3
)
,

δv(B̃
fw≥2
g′ (v)) ∼= O

((
1− ρ−1

B v
)−5g′/2+3/2

)
,

δv(B̃
fw≥2
g−g′ (v)) ∼= O

((
1− ρ−1

B v
)−5(g−g′)/2+3/2

)
.

Substituting these congruences into (4.19) results in

B̃fw=2
g (v) � O

((
1− ρ−1

B v
)−5g/2+3

)
,

which immediately implies (4.17).
For the base case g = 1, the computation is the same, except that we have

a term δ2
vB̃0(v), which is δ2

vW 0(v), since B0(x, y, z) = W 0(x, y, z, w). By Corol-
lary 4.4.11, we have

δ2
vB̃0(v) ∼= a2 +O

(
(1− ρBv)1/2

)
,

completing the proof. �

We use the asymptotic results in Corollary 4.4.11 and Lemmas 4.4.13 and 4.4.14
to examine the bounds in Corollary 4.4.6 and determine the dominant term of
connected cubic multigraphs embeddable on Sg.
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Theorem 4.4.15. For g ≥ 1, the dominant singularity of the generating func-
tion W g(v) of connected cubic vertex-labelled weighted multigraphs that are strongly
embeddable on Sg is ρW = ρQ = 54

793/2 . Furthermore, we have

W 1(v) ∼= c1 log
(

1− ρ−1

W
v
)

+O

((
1− ρ−1

W
v
)1/4

)
,

W g(v) ∼= cg

(
1− ρ−1

W
v
)−5g/2+5/2

+O

((
1− ρ−1

W
v
)−5g/2+11/4

)
for g ≥ 2,

where cg is a constant depending only on g.

Proof. We first do the substitution of Definition 4.4.1 in (4.9), which leads to

D̃fw≥3
g (v)− D̃0(v) + B̃fw=2

g (v)− B̃0(v) +W
fw=1

g (v)

�W g(v) � D̃fw≥3
g (v) + B̃fw=2

g (v) +W
fw=1

g (v).

Comparing the terms other than Cfw=1
g (v) in these bounds, we obtain by Corol-

lary 4.4.11, Lemma 4.4.13, and Lemma 4.4.14 that the dominant term is D̃fw≥3
g (v),

which has the claimed singularity and decomposition.
To conclude the proof, it remains to show that

W
fw=1

g
∼= O

((
1− ρ−1

W
v
)−5g/2+11/4

)
. (4.20)

By Corollary 4.4.8 and the fact that by replacing δx by 4δv, the coefficients do not
decrease, we have the relation

W
fw=1

g (v) � 27

4
δ2
v(W g−1(v)) +

27

4

g−1∑
g′=1

δv(W g′(v))δv(W g−g′(v)). (4.21)

By the fact that all generating functions on the right-hand side of (4.21) are
for genus smaller than g, we can use induction on g as in the proof of Lemma 4.4.14
to deduce (4.20), concluding the proof. �

From Theorem 4.4.15 and Lemma 4.2.6, we can immediately evaluate the co-
efficients of W g(v).

Corollary 4.4.16. The asymptotic number of connected cubic vertex-labelled multi-
graphs that are weighted by their compensation factor and are strongly embeddable
on Sg is given by

[vn]W g(v) =
(

1 +O
(
n−1/4

))
cgn

5g/2−7/2ρ−n
W
.

Here ρW = ρQ = 54
79
√

79
and cg is a constant only depending on g.

Again, both Theorem 4.4.15 and Corollary 4.4.16 work analogously for un-
weighted multigraphs and simple graphs with different constants and dominant
singularities of Qu(v) and Qs(v), respectively.

4.4.4. Proof of Theorem 4.1.2. Using the results from Section 4.4.3 we can now
prove Theorem 4.1.2. Recall that a cubic multigraph embeddable on Sg is given by
a set of connected cubic multigraphs embeddable on Sgi such that

∑
gi ≤ g (see

Proposition 4.2.2). Therefore, we have the relation

Gg(v) �
∞∑
k=1

∑
∑
gi≤g

1

k!

k∏
i=1

(
W gi(v) +

v

6

)
. (4.22)
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The summand v
6 accounts for the fact that a component might also be a triple edge,

which is not taken into account in W gi(v) (this additional summand will differ
when proving Theorems 4.1.1 and 4.1.3). We only get an upper bound, because we
overcount if a multigraph is strongly embeddable on surfaces of multiple genera.
Later we will also obtain a lower bound with the same asymptotics to complete the
proof.

If g = 0, the relation (4.22) simplifies to G0 = exp(W 0 + v
6 ), as there is no

overcounting in this case. This coincides with Theorem 1 of [66] and therefore we
can conclude our statement in this case. (Although it is not directly shown there,
the same arguments can be used for unweighted planar cubic multigraphs. For
simple graphs, see [20].)

Now suppose g ≥ 1. The first step to obtain asymptotics from (4.22) is to
rearrange the sum in such a way that all planar components are singled out. This
results in

Gg(v) �
g∑
k=0

∑
∑
gi≤g
gi≥1

1

k!

k∏
i=1

(
W gi(v) +

v

6

) ∞∑
j=0

k!

(k + j)!

(
W 0(v) +

v

6

)j
. (4.23)

By the dominant term and the value of W 0(v) at the singularity ρW from
Corollary 4.4.11, we observe that the last sum contributes only a constant factor.
Thus, it remains to derive the dominant term of 1

k!

∏(
W gi(v) + v

6

)
. As the first sum

consists only of a constant number of summands, the dominant term of the right-
hand side of (4.23) will be the (sum of the) dominant terms from 1

k!

∏(
W gi(v) + v

6

)
up to the constant obtained from the planar components. That is, we shall compute
the dominant term of

A(v) :=
1

k!

k∏
i=1

(
W gi(v) +

v

6

)
,

where the gi are positive and sum up to g′ ≤ g.
For g = 1, either k = g′ = 0 or k = g′ = 1. By Theorem 4.4.15, we have

A(v) = C1(v) +
v

6
∼= c1 log(1− ρ−1

W
v) +

v

6
+O

((
1− ρ−1

W
v
)1/4

)
and thus

A(v) � P1(v) + c1 log(1− ρ−1

W
v) +O

((
1− ρ−1

W
v
)1/4

)
with P1(v) a polynomial and c1 a constant.

Suppose now g ≥ 2. Without loss of generality let g1, . . . , gl = 1 and let
gl+1, . . . , gk > 1. Then

A(v) ∼=
(

1 +O

((
1− ρ−1

W
v
)1/4

))
cl1
k!

(
log
(

1− ρ−1

W
v
))l k∏

i=l+1

cgi

(
1− ρ−1

W
v
) 5(1−gi)

2

∼=
(
c+O

((
1− ρ−1

W
v
)1/4

))(
log
(

1− ρ−1

W
v
))l (

1− ρ−1

W
v
)−5g′/2+5k/2

.

(4.24)

For k = 1 and g′ = g (and hence l = 0) we thus have

1

1!

1∏
g′=1

(
W gi +

v

6

)
∼= cg(1− ρ−1

W
v)−5g/2+5/2 +O

(
(1− ρ−1

W
v)−5g/2+11/4

)
. (4.25)
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For k ≥ 2 or g′ < g, (4.24) yields

1

k!

k∏
i=1

W gi(v) ∼= O
(

(1− ρ−1

W
v)−5g/2+5/2+2

)
(4.26)

and thus

Gg(v) � cg(1− ρ−1

W
v)−5g/2+5/2 +O

(
(1− ρ−1

W
v)−5g/2+11/4

)
.

We derive a lower bound for g ≥ 1 as follows. Let G̃g be the class of graphs in
Gg with one component of genus g and all other components planar. Then

∞∑
j=0

Cg(v)Cj0(v)

(j + 1)!
� G̃g(v) �

∞∑
j=0

Cg(v)Cj0(v)

(j + 1)!
−
∞∑
j=0

(j + 1)Cj+1
0 (v)

(j + 1)!
.

Indeed, if the component of genus g is also planar, then the graph might be counted
up to j+ 1 times (once for each component) on the left-hand side. Substituting the
corresponding summands thus yields a lower bound of Gg(v).

Gg(v) � G̃g(v) �
∞∑
j=0

1

(j + 1)!
W g(v)W

j

0(v)−
∞∑
j=1

j

j!
W

j

0(v). (4.27)

Applying Theorem 4.2.3 to the upper and lower bounds and setting γ2 = ρ−1

W
completes the proof. �

4.4.5. Proofs of Theorems 4.1.1, 4.1.3 and 4.1.4. Theorems 4.1.1 and 4.1.3
can be proven in a similar way as Theorem 4.1.2. We obtain ρ1 = γ−1

1 as the square
root of the smallest positive solution of

0 = 46656− 279936u− 7293760u2 − 513216u3 + 148716u4 − 17469u5 + 729u6

and ρ3 = γ−1
3 as the square root of the smallest positive solution of

0 = 46656 + 279936u− 7293760u2 + 513216u3 + 148716u4 + 17469u5 + 729u6.

Theorem 1.3.3 follows immediately from (4.25), (4.26), and Theorem 4.2.3.
Indeed, (4.25) and Theorem 4.2.3 imply that the number of weighted multigraphs
in Gg(n) that have a unique non-planar component that is not embeddable on Sg−1

is (
1 +O

(
n−1/4

))
egn

5g/2−5/2γ2n
2 (2n)! .

On the other hand, (4.26) and Theorem 4.2.3 imply that the number of weighted
multigraphs in Gg(n) that do not have such a component is

O
(
n5g/2−5/2−2γ2n

2 (2n)!
)
.

Thus, Theorem 4.1.4 follows. Observe that the probability 1−O(n−2) is not sharp.
Indeed, the exponent in (4.26) could be improved to −5g/2 + 5− ε for every ε > 0,
which would yield a probability 1−O(n−5/2+ε). The statements of Theorem 4.1.4
for unweighted multigraphs and simple graphs are proved analogously. �

Remark 4.4.17. Observe that the polynomials p1(u), p3(u) whose smallest pos-
itive zeroes u1 and u3 give rise to the exponential growth constants γ1 for cu-
bic multigraphs and γ3 for simple cubic graphs, respectively, satisfy the relation
p1(u) = p3(−u). It would be interesting to know whether this fact has a combina-
torial meaning.
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4.5. Triangulations

In this appendix, we compute the asymptotic numbers of triangulations in Tg
and T̂g, as stated in Propositions 4.3.2 and 4.3.3, respectively. Our proof follows
the approach of [7].

4.5.1. Surgeries. When dealing with maps on Sg we will perform operations on
the surfaces that are commonly known as cutting and gluing. In the course of
these operations we will encounter surfaces with holes. A surface with k holes is
a surface Sg from which the disjoint interiors D1, . . . , Dk of k closed disks have
been deleted. Each Di is called a hole. Let S be the disjoint union of finitely
many orientable surfaces, at least one of them with holes, and suppose that X and
Y are homeomorphic subsets of the boundary of S. By gluing S along X and Y
we mean the operation of identifying every point x ∈ X with f(x) for any fixed
homeomorphism f : X → Y . The identification of X and Y induces a surjection σ
from S onto the resulting space S̃. We write X̃ for the subset σ(X) = σ(Y ) of S̃.

We will glue along subsets in two particular situations: when X and Y are

(i) disjoint boundaries of holes of S, or
(ii) sub-arcs of the boundary of the same hole that meet precisely in their

endpoints.

For (ii), we shall additionally assume that the homeomorphism f : X → Y induces

the identity on X∩Y . In either case, the space S̃ resulting from gluing along X and
Y is again the disjoint union of finitely many orientable surfaces with holes, with
the number of components being either the same or one less than that for S. The
subset X̃ of S̃ is a circle in Case (i) and homeomorphic to the closed unit interval

in Case (ii). If S has k holes, then S̃ has k − 2 holes in Case (i) and k − 1 holes in
Case (ii). A special case of (i) is when one of the components of S is a disk (i.e. a
sphere with one hole) and Y is its boundary. In this case, we say that we close the
hole bounded by X by inserting a disk.

If in addition we are given a map M on S, then we will glue along X and Y
only if either both of them are contained in a face (not necessarily the same face for
X and Y ) or both are unions of the same number of vertices and the same number
of edges of M . We also assume the homeomorphism f : X → Y to map vertices to
vertices and edges to edges. Under these conditions, we obtain a map M̃ on S̃. The
subset X̃ of S̃ is then either a subgraph of M̃ or a subset of a face of M̃ . Observe
that the surjection σ : S → S̃ induces a bijection between the sets of corners of M
and of corners of M̃ . We will refer to this bijection by saying that every corner of
M corresponds to a corner of M̃ .

If S̃ is obtained from S by gluing along X and Y, we also say that vice versa,
S is obtained from S̃ by cutting along X̃. The operation of cutting along a circle
or interval is well defined in the sense that if S̃ and X̃ are given, then S, X, and
Y are unique up to homeomorphism. If S has more components than S̃, we call X̃
separating. Cutting along a separating circle on Sg and closing the resulting holes
by inserting disks will yield two surfaces Sg1 ,Sg2 with g1 + g2 = g. Cutting along a
non-separating circle and closing the holes by inserting disks reduces the genus by
one.

A combination of cutting and gluing surfaces along some subsets of their bound-
aries is called a surgery. Again, if a map M̃ results from performing surgeries on a
map M , then every corner of M̃ corresponds to a corner of M .

4.5.2. Quasi-triangulations. We begin with some notations. The valency of a
face f in a map is the number of corners of f . We call a rooted map M a quasi-
triangulation if all faces except the root face fr are bounded by triangles. Let Pg be
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the class of simple quasi-triangulations and Pg(y, u) its generating function, where
y marks the number of edges, and u marks the valency of fr. Given an index set I
and an injective function h : I → F (M) \ {fr}, we call M an I-quasi-triangulation
with respect to h if all faces in F (M) \ (h(I) ∪ {fr}) are bounded by triangles. If
in addition fr is also bounded by a triangle, we say that M is an I-triangulation
(with respect to h). Let Tg,I and Pg,I be the classes of simple I-triangulations and
simple I-quasi-triangulations, respectively, with their generating functions denoted
by Tg(y, zI) and Pg(y, u, zI), respectively. Here u again marks the valency of the
root face fr and zI = (zi)i∈I is a set of variables indexed by I, where zi marks the

valency of h(i). Additionally, let P̂g, T̂g,I , and P̂g,I be the analogous classes for

triangulations without separating loops or separating double edges and P̂g(y, u),

T̂g(y, zI), and P̂g(y, u, zI) their generating functions, respectively.
Note that Tg = Tg,∅ and Pg = Pg,∅. In the case I = ∅, we will therefore always

use the generating functions Tg(y) and Pg(y, u) without mentioning variables zi.
To simplify notations, the one-vertex map is put into P0, although it is not a quasi-
triangulation, since it does not have any corners and thus cannot be rooted. We
say that a face f is marked if f ∈ h(I) and that we are marking a face f if we
add a new index i to the set I with h(i) = f . We use the same convention also for
the corresponding classes and generating functions for triangulations without loops
and double edges.

To prove Propositions 4.3.2 and 4.3.3, we first derive a recursive formula relating
Pg,I (and P̂g,I) for different genera and different sizes of the set I. We then prove
Propositions 4.3.2 and 4.3.3 by applying this formula inductively. In order to derive
the recursive formula, we delete the root edge of a given quasi-triangulation and
then perform surgeries that either separate the given surface or decrease its genus.
One part of the reverse operation then consists of adding a new edge to a map.
Let S be a map and c1 = (v1, e

−
1 , e

+
1 ) and c2 = (v2, e

−
2 , e

+
2 ) be two (not necessarily

distinct) corners of the same face f of S. For T is a map with V (T ) = V (S) and
E(T ) = E(S) ∪ {enew}, we say that enew is an edge from c1 to c2 if

• enew is contained in f and its end vertices are v1 and v2;
• in the cyclic order of edges of T at v1, enew is the predecessor of e+

1 ; and
• in the cyclic order of edges of T at v2, enew is the successor of e−2 .

If c1 = c2 =: c, we also say that enew is a loop at c.

4.5.3. The planar case. Before we derive the recursive formula, we study the base
case of planar quasi-triangulations.

Proposition 4.5.1. The generating functions of planar quasi-triangulations satisfy
P̂0(y, u) = P0(y, u) and

P0(y, u) = 1 + yu2P 2
0 (y, u) +

y(P0(y, u)− 1)

u
− y2uP0(y, u)− T0(y)(P0(y, u)− 1).

(4.28)

Proof. As planar quasi-triangulations cannot have non-separating loops or
double edges, P̂0(y, u) = P0(y, u) follows immediately.

The first summand in (4.28) corresponds to the one-vertex map. Let S ∈ P0

be a planar quasi-triangulation with at least one edge. We distinguish two cases.
First, suppose that the root edge er is a bridge; then the only face incident

with er is the root face fr. The union fr ∪ er is not a disk and thus contains a non-
contractible circle C. We delete er, cut along C, and close the two resulting holes
by inserting disks. By this surgery, S is separated into two quasi-triangulations S1,
S2. Let v1 and v2 be the end vertices of er in S1 and S2 respectively. One of these
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two vertices is the root vertex of S; by renaming S1, S2 we may assume that v1 is
the root vertex of S. In the cyclic order of the edges of S at v1, let e−1 and e+

1 be
the predecessor and successor of er respectively. Define e−2 and e+

2 analogously at
v2. We let (v1, e

−
1 , e

+
1 ) and (v2, e

−
2 , e

+
2 ) be the roots of S1 and S2 respectively. We

thus have S1, S2 ∈ P0. Furthermore, S1 and S2 together have one edge less than S
and the sum of the valencies of their root faces is two less than the valency of fr.
Thus, we obtain yu2P 2

0 (x, u), the second term of the right-hand side of (4.28).
Now suppose that er is not a bridge. Then it lies on the boundary of the

root face and of another face, which is bounded by a triangle. In the cyclic order
of edges at the root vertex vr, let e−r and e+

r be the predecessor and successor of
er, respectively. We delete er and obtain a quasi triangulation S′ that we root at
c′r := (vr, e

−
r , e

+
r ). The valency of the root face of S′ is larger by one than the valency

of fr. This is reflected by y
u (P0(y, u) − 1), the third term of the right-hand side

of (4.28), because S′ cannot be the quasi-triangulation consisting only of a single
vertex. However, with this summand we have overcounted. Indeed, the reverse
construction is as follows. Let f ′r be the root face of S′. Then the corners of f ′r can
be ordered by walking along the boundary of f ′r in counterclockwise direction. In
this order, starting from c′r, let c′ = (v, e, e′) be the corner after the next; then S
is obtained from S′ by inserting an edge from c′r to c′. If vr = v this results in a
loop; if vr and v are adjacent, we obtain a double edge (see Figure 4.7).

P0vr = v S0 P0

v

vr

Figure 4.7. Obtaining a loop or a double edge by inserting an edge.

These cases have to be subtracted again in order to obtain a valid formula.
First suppose that vr = v. As we do not have double edges in S′, this is only
possible if the corner between c′r and c′ is at a vertex of degree one. We have to
subtract y2uP0(y, u), i.e. the fourth term of the right-hand side of (4.28), for this
case (we add one vertex and two edges to a quasi-triangulation and increase the
root face valency by one). Now suppose that vr and v are adjacent, i.e. inserting
an edge between them creates a double edge. In this case zipping the double edge
separates the quasi-triangulation into two quasi-triangulations S1, S2. For one of
them, without loss of generality for S1, the root face valency is the same as for S,
while the root face of S2 has valency three. Thus, S1 is in P0 but not the one-vertex
map, while S2 ∈ T0. Summing up we have to subtract T0(y)(P0(y, u)− 1), the fifth
term of the right-hand side of (4.28). �

We can use the quadratic method (see e.g. [60]) to obtain the main result
for planar triangulations from Proposition 4.5.1. Those were already obtained by
Tutte [103] with slightly different parameters.

Lemma 4.5.2. It holds that T̂0(y) = T0(y). The dominant singularity of T0(y) is
ρT = 3

28/3 , T0(y) is ∆-analytic and satisfies

T0(y) =
1

8
− 9

16

(
1− ρ−1

T y
)

+
3

25/2

(
1− ρ−1

T y
)3/2

+O
((

1− ρ−1
T y

)2)
. (4.29)
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Furthermore, for u = f(y) with

f(y) =
t1/3

1 + t
and y = t1/3(1− t),

the equations

P0(y, f(y)) =
5

4
− 3

25/2

(
1− ρ−1

T y
)1/2

+O
(
1− ρ−1

T y
)
,(

∂

∂u
P0(y, u)

)∣∣∣∣
u=f(y)

=
75

213/3
− 125 · 33/4

223/3

(
1− ρ−1

T y
)1/4

+O
((

1− ρ−1
T y

)1/2)
hold and P0(y, f(y)) is ∆-analytic. Let n ≥ 2 be an integer. Then(

∂n

∂un
P0(y, u)

)∣∣∣∣
u=f(y)

= c(n)
(
1− ρ−1

T y
)−n/2+3/4

+O
((

1− ρ−1
T y

)−n/2+1
)
,

where c(n) is a positive constant depending only on n.

Proof. As that planar quasi-triangulations cannot have non-separating loops
or double edges, T̂0(y) = T0(y) follows immediately.

Multiplying (4.28) by 4yu4 and rearranging the terms yields(
2yu3P0(y, u) + q(y, u)

)2
= q(y, u)2 + 4y2u3 − 4yu4 − 4yu4T0(y), (4.30)

where q(x, u) = y − y2u2 − u− uT0(y). Let

Q(y, u) = 2yu3P0(y, u) + q(y, u) and

R(x, u) = q(y, u)2 + 4y2u3 − 4yu4 − 4yu4T0(y).

Then (4.30) reduces to Q2(y, u) = R(y, u). To obtain the claimed asymptotic
behaviour one chooses u = f(y) in such a way that Q(y, f(y)) = 0. This u is a
double zero of Q2(y, u) and therefore both R(y, u) and ∂

∂uR(y, u) are 0 at u = f(y),
giving

0 = q(y, u)2 + 4y2u3 − 4yu4 − 4yu4T0(y),

0 = 2q(y, u)(1 + T0(y) + 2y2u) + 16yu3 + 16yu3T0(y)− 12y2u2.

By eliminating f(y) from this system we obtain the implicit equation

T0(y)4 + 3T0(y)3 + T0(y)2(3 + 8y3) + T0(y)(1− 20y3) = (1− 16y3)y3.

By standard methods for implicitly given functions (e.g. [47, VII.7.1]) we obtain
the dominant singularity and the singular expansion of T0(y) as stated in (4.29).

Conversely, by eliminating T0(y) and substituting y = t1/3(1 − t) we obtain

f(y) = t1/3

1+t = y
1−t2 and T0(y) = t(1 − 2t). Since 1

1−t2 has only nonnegative

coefficients in t and t = t(y) has only nonnegative coefficients by Lagrange Inversion,
f(y) has only nonnegative coefficients as well. From the implicit equation for f(y)
we deduce that

f(y) =
24/3

5
− 211/6

25

(
1− ρ−1

T y
)1/2

+O
(
1− ρ−1

T y
)
. (4.31)

From 2yf(y)3P0(y, f(y)) + q(y, f(y)) = Q(y, f(y)) = 0, (4.29), (4.31), and y =
ρT − ρT (1− ρ−1

T y) we derive the claimed expression

P0(y, f(y)) =
5

4
− 3

25/2

(
1− ρ−1

T y
)1/2

+O
(
1− ρ−1

T y
)
.

Given n ∈ N0, let us write R(n)(y, u) = ∂n

∂unR(y, u). By the choice of f(y) we

know that R(0)(y, f(y)) = R(1)(y, f(y)) = 0. As R(y, u) is a polynomial of degree
four in u, we have R(n)(y, u) = 0 for all n ≥ 5. For n ∈ {2, 3, 4}, we obtain the

101



dominant term of R(n)(y, f(y)) by first differentiating R(y, u) with respect to u and
then substituting u = f(y), (4.29), (4.31), and y = ρT − ρT (1− ρ−1

T y). This yields

R(2)(y, f(y)) =
27

27/2

(
1− ρ−1

T y
)1/2

+O
(
1− ρ−1

T y
)
,

R(3)(y, f(y)) = − 675

216/3
+O

((
1− ρ−1

T y
)1/2)

,

R(4)(y, f(y)) = −10125

223/3
+O

((
1− ρ−1

T y
)1/2)

.

We define Q(n)(y, u) and P
(n)
0 (y, u) analogously to R(n)(y, u). From the facts

that Q(y, f(y)) = 0 and ∂n

∂un

(
Q2(y, u)

)
= R(n)(y, u) we deduce that

2nQ(1)(y, f(y))Q(n−1)(y, f(y)) =R(n)(y, f(y))

−
n−2∑
k=2

(
n

k

)
Q(k)(y, f(y))Q(n−k)(y, f(y))

(4.32)

for every n ∈ N. For n = 2, this implies that

Q(1)(y, f(y)) = c(1− ρ−1
T y)1/4 +O

(
(1− ρ−1

T y)3/4
)
,

where c = ± 33/2

211/4 . By differentiating Q(y, u) = 2yu3P0(y, u) + q(y, u) with respect
to u, we deduce that

P
(1)
0 (y, f(y)) =

75

213/3
+ c

125

259/1233/4

(
1− ρ−1

T y
)1/4

+O
((

1− ρ−1
T y

)1/2)
.

Since P
(1)
0 (y, u) is a generating function of a combinatorial class, its coefficients

[ykul]P
(1)
0 (y, u) are nonnegative. As f(y) has only nonnegative coefficients as well,

all coefficients of P
(1)
0 (y, u)|u=f(y) are nonnegative, implying that c = − 33/2

211/4 .
For n = 3, we deduce from (4.32) that

Q(2)(y, f(y)) = − 675

6c216/3
(1− ρ−1

T y)−1/4 +O
(

(1− ρ−1
T y)1/4

)
.

For n ≥ 4, the term R(n)(y, f(y)) is constant, while the sum on the right-hand side
is nonempty. Since the sum only involves terms Q(j)(y, f(y)) with 2 ≤ j ≤ n − 2,
we deduce by induction that

Q(n)(y, f(y)) = c(n)
(
1− ρ−1

T y
)−n/2+3/4

+O
((

1− ρ−1
T y

)−n/2+5/4
)
, (4.33)

where c(n) is a constant depending only on n and c(n) > 0 for n ≥ 2.

The claimed expressions of P
(n)
0 (y, f(y)) are now obtained by differentiating

Q(y, u) = 2y2u3P0(y, u) + q(y, u)

n times and by (4.29), (4.31), (4.33), and induction.
As all generating functions in this proof are given by a system of algebraic

equations, they are ∆-analytic. �

4.5.4. Recurrence for higher genus. Our next aim is to derive a recursion for-
mula for Pg(y, u, zI) and P̂g(y, u, zI). Using the planar case in Lemma 4.5.2 as
the base case, inductively applying the recursion formula allows us to derive similar
statements as Lemma 4.5.2 for all g and I. In order to derive the recursion formula,
we will perform different surgeries on the surface depending on the placement of
the root. We distinguish four cases.

(A) The root edge er is only incident with the root face fr and is a bridge;
(B) er is only incident with fr and is not a bridge;
(C) er is incident with fr and one marked face; and
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(D) er is incident with fr and one unmarked face.

The recursion formula is then of the form

Pg(y, u, zI) = Ag(y, u, zI) +Bg(y, u, zI) + Cg(y, u, zI) +Dg(y, u, zI), (4.34)

where Ag(y, u, zI), Bg(y, u, zI), Cg(y, u, zI), and Dg(y, u, zI) are the generating
functions of the sub-classes Ag,I , Bg,I , Cg,I , and Dg,I of Pg,I corresponding to the
four cases (A), (B), (C), and (D) respectively. Each of the generating functions can
be further decomposed as

Ag(y, u, zI) = a(y, u)Pg(y, u, zI) +MA(g; y, u, zI)− EA(g; y, u, zI),

Bg(y, u, zI) = b(y, u)Pg(y, u, zI) +MB(g; y, u, zI)− EB(g; y, u, zI),

Cg(y, u, zI) = c(y, u)Pg(y, u, zI) +MC(g; y, u, zI)− EC(g; y, u, zI),

Dg(y, u, zI) = d(y, u)Pg(y, u, zI) +MD(g; y, u, zI)− ED(g; y, u, zI),

(4.35)

where a(y, u), b(y, u), c(y, u), and d(y, u) are functions only involving the generating
functions P0 and S0 of the planar case, while the other functions involve terms of the
type Pg′(y, u, zI′) for g′ < g or I ′ ( I. This will enable us to use (4.34) to recursively
determine the dominant terms of Pg(y, u, zI). In this recursion, the functions MA,
MB , MC , and MD will contribute to the dominant term; the functions EA, EB ,
EC , and ED turn out to be of smaller order.

The classes Âg,I , B̂g,I , Ĉg,I , and D̂g,I together with the functions Âg(y, u, zI),

â(y, u), M̂A(g; y, u, zI), and ÊA(g; y, u, zI) (and similarly for B, C, and D) are
defined analogously.

We start by determining the functions for Case (A). In this case, after deleting
the root edge we can split the map into two maps whose genera add up to g.

Lemma 4.5.3. The three functions a(y, u, zI), MA(g; y, u, zI), and EA(g; y, u, zI)
in (4.35) are given by

a(y, u, zI) = 2yu2P0(y, u),

MA(g; y, u, zI) = yu2
∑
t,J

Pt(y, u, zJ)Pg−t
(
y, u, zI\J

)
,

EA(g; y, u, zI) = 0.

The sum is over t = 0, . . . , g and J ⊆ I such that (t, J) 6= (0, ∅) and (t, J) 6= (g, I).

Proof. Let S be an I-quasi-triangulation in Ag,I , with respect to h : I →
F (S), say. By (A), the union fr ∪ er is not a disk and thus contains a non-
contractible circle C. We delete er, cut along C, and close the two resulting holes
by inserting disks. Since er was a bridge, this surgery results in two components
S1 and S2. We define the roots of S1 and S2 like in Proposition 4.5.1: let v1 and
v2 be the end vertices of er in S1 and S2 respectively. Without loss of generality
we may assume that v1 is the root vertex of S. In the cyclic order of the edges of
S at v1, let e−1 and e+

1 be the predecessor and successor of er, respectively. Define
e−2 and e+

2 analogously at v2. We let (v1, e
−
1 , e

+
1 ) and (v2, e

−
2 , e

+
2 ) be the root of S1

and S2 respectively. Denote the root faces by f1 and f2 respectively. These are the
faces of S1 and S2 into which the disks were inserted.

Since every face in F (S) \ {fr} corresponds to a face in F (S1) \ {f1} or in

F (S2) \ {f2}, h induces a function h̃ : I → (F (S1) ∪ F (S2)) \ {f1, f2}. If we write

J = h̃−1(F (S1)), then S1 is a J-quasi-triangulation on a surface of genus t ≤ g;
consequently, S2 is an (I \ J)-quasi-triangulation on a surface of genus g − t. By
deleting er, we decreased the number of corners of fr by two; the surgery then
distributed the remaining corners of fr to f1 and f2. Therefore, the sum of valencies
of f1 and f2 is smaller by two than the valency of fr. On the other hand, we clearly
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have |E(S1)| + |E(S2)| = |E(S)| − 1. The reverse operation of the surgery is to
delete an open disk from each of f1, f2, glue the surfaces along the boundaries of
these disks, and add an edge from the root corner of S1 to the root corner of S2.
As this operation is uniquely defined, we deduce that

Ag(y, u, zI) = yu2

g∑
t=0

∑
J⊆I

Pt(y, u, zJ)Pg−t
(
y, u, zi\J

)
.

Extracting the terms for (t, J) = (0, ∅) and (t, J) = (g, I) finishes the proof. �

Remark 4.5.4. Analogously to Lemma 4.5.3, we have

â(y, u, zI) = 2yu2P̂0(y, u),

M̂A(g; y, u, zI) = yu2
∑
t,J

P̂t(y, u, zJ)P̂g−t
(
y, u, zI\J

)
,

ÊA(g; y, u, zI) = 0,

where the sum is over t = 0, . . . , g and J ⊆ I such that (t, J) 6= (0, ∅) and (t, J) 6=
(g, I).

This follows by the same proof as for Lemma 4.5.3, because no loops or double
edges occur in that construction.

For Case (B), we will cut the surface along a circle contained in fr∪er and close
the holes by inserting disks. However, because the surface will not be separated by
this surgery, one needs to keep track of where to cut and glue to reverse the surgery.
To this end we have to mark faces. Therefore, the index set I will increase.

Lemma 4.5.5. The three functions b(y, u, zI), MB(g; y, u, zI), and EB(g; y, u, zI)
in (4.35) are given by

b(y, u, zI) = 0,

MB(g; y, u, zI) = yu2δzi0
(
Pg−1(y, u, zI∪{i0})

)∣∣
zi0=u

,

0 � EB(g; y, u, zI) �
(
1 + yu2

)
δu(Pg−1(y, u, zI)).

Proof. Let S be an I-quasi-triangulation in Bg,I , with respect to h : I → F (S).
We use the analogous surgery as in Lemma 4.5.3, with the difference that S is not
separated by cutting along the circle C. Therefore we only obtain one map T . One
of the end vertices of er is the root vertex vr of S. Let e−r and e+

r be the predecessor
and successor of er in the cyclic order of edges of S at vr, respectively. Then we
define the root of T to be (vr, e

−
r , e

+
r ). Denote the root face of T by f ′r; this is one

of the two faces into which we inserted disks to close the holes during our surgery.
Denote the other such face by f2. We mark f2 by adding a new index i0 to the
index set I and extend the function h to I ∪ {i0} by setting h(i0) := f2. Then T is
an (I ∪ {i0})-quasi-triangulation on Sg−1.

To reverse the surgery, we delete an open disk from each of f ′r, f2, glue the
surface along the boundaries of these disks, add a new edge enew from the root
corner of T to a corner c2 of f2, and let (vr, enew, e

+
r ) be the new root corner.

We thus have to mark a corner of f2, which corresponds to applying the operator
δzi0 to the generating function. After gluing, the corners of f2 become corners of
the new root face; we thus have to remove i0 from the index set and replace zi0
by u in the generating function. Like in the previous cases, adding enew increases
the total number of edges by one and the valency of the root face by two, as
enew lies only on the boundary of the new root face. This results in the term
yu2δzi0

(
Pg−1(y, u, zI∪{i0})

)
|zi0=u.
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However, by this construction we have overcounted. If the vertex v of the corner
c2 is adjacent to vr, then enew will be part of a double edge; if v = vr, enew will be
a loop. We want to subtract all resulting maps S̃ for which enew is a loop or part of
a double edge. Suppose first that enew is part of a double edge. Since enew lies only
on the boundary of the root face of S̃, the double edge is not separating. Thus,
zipping it results in an I-quasi-triangulation T̃ on Sg−1. One of the two zipped

edges is the root edge e′r of T̃ , denote the other zipped edge by e′. Both e′r and e′

lie on the boundary of the root face (see Figure 4.8). Let v′r be the root vertex of

T̃ ; then v′r is one of the two copies of vr. If we denote the other copy by v′, then
v′ is an end vertex of e′ and thus there is a corner c′ = (v′, e′′, e′) of the root face

of T̃ . We can reconstruct S̃ from T̃ in the following way: cut along e′r and e′ and
glue the surface along the boundaries of the resulting holes in the unique way that
identifies v′r and v′. Identifying the corner c′ is bounded by marking an arbitrary

corner of the root face of T̃ . This corresponds to applying the operator δu to the
generating function Pg−1(y, u, zI). As zipping a double edge does neither change
the number of edges nor the valencies of faces, δu(Pg−1(y, u, zI)) is an upper bound
in this case.

Suppose now that enew is a loop and recall that (vr, enew, e
+
r ) is the root corner

of S̃. Since enew lies only on the boundary of the root face of S̃, there is a unique
edge e2 6= e+

r such that (vr, enew, e2) is a corner of the root face. We cut along enew,
close the two resulting holes by inserting disks, and delete the two copies of enew.
Again, cutting does not separate the surface. Thus, we obtain a map T̃ on Sg−1

that does not have loops or double edges. Let v′r be the copy of vr in T̃ that is

incident with e+
r and let v′2 be the other copy. Then the root of T̃ is (v′r, e

′, e+
r ) for

some edge e′. Furthermore, the root face of T̃ has a corner (v′2, e
′
2, e2). Now S̃ can

be reconstructed from T̃ in the following way (see Figure 4.8).

(i) Add a loop at each of (v′r, e
′, e+

r ) and (v′2, e
′
2, e2);

(ii) delete the resulting two faces of valency one;
(iii) identify the two loops.

v′r v′

e′r e′ v′r

v′2

Figure 4.8. Deriving an upper bound for EB .

In order to identify the corner (v′2, e
′
2, e2), we mark an arbitrary corner of the

root face, which is again overcounting. Since we have to add one edge to T̃ and
increase the valency of the root face by two to reconstruct S̃, we have an additional
factor of yu2, resulting in the claimed upper bound for EB . �

Similar arguments also show the corresponding result for B̂g.

Lemma 4.5.6. The functions b̂(y, u, zI), M̂B(g; y, u, zI), and ÊB(g; y, u, zI) are
given by

b̂(y, u, zI) = 0,

M̂B(g; y, u, zI) = yu2δzi0

(
P̂g−1(y, u, zI∪{i0})

)∣∣
zi0=u

,

ÊB(g; y, u, zI) = 0.
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The only difference to the proof of Lemma 4.5.5 is that we do not need to
compensate for overcounting in ÊB , as all loops and double edges occurring in the
proof are non-separating and thus allowed.

In Case (C), the root edge is not a bridge. Therefore, we will not be able to
find a circle C like in the previous two cases. On the other hand, deleting the root
edge does not produce any faces that are not disks. Our construction in this case
will thus start without cutting the surface.

Lemma 4.5.7. The three functions c(y, u, zI), MC(g; y, u, zI), and EC(g; y, u, zI)
in (4.35) are given by

c(y, u, zI) = 0,

MC(g; y, u, zI) = y
∑
i∈I

∑
T∈Pg(I\{i})

y|E(T )|
∏
j 6=i

z
βj(T )
j

β(T )+1∑
k=1

ukz
β(T )+2−k
i ,

0 � EC(g; y, u, zI) �
∑
i∈I

(
(1 + yuzi)δzi(Pg−1(y, u, zI))

+ (1 + yuzi)

g∑
t=0

∑
J⊆I\{i}

Pt(y, u, zJ)Pg−t(y, zi, zI\(J∪{i}))

)
,

where β(T ) and βj(T ) denote the valencies of the root face of T and of the face
with index j in T , respectively.

Note that the sum in MC is over all i ∈ I and all I \ {i}-quasi-triangulations.
As such, MC can be written as

MC = y
∑
i∈I

u2ziPg(y, u, zI\{i})− uz2
i Pg(y, zi, zI\{i})

u− zi
.

However, similarly to Lemma 4.5.2, we shall replace u and zi by f(y) in order
to derive the desired asymptotic formulas, which would result in a division by 0.
For that reason we will use MC as stated in Lemma 4.5.7. We will derive a more
convenient formulation in Proposition 4.5.11.

Proof of Lemma 4.5.7. Let S be an I-quasi-triangulation in Cg,I with re-
spect to h : I → F (S). We delete the root edge er, thus obtaining a map T on Sg.
The root of T is defined as follows. Let e−r and e+

r be the predecessor and successor
of er at vr, respectively; then (vr, e

−
r , e

+
r ) is the root of T . By (C), er was incident

with a marked face h(i). The root face of T is f ′r := fr ∪ er ∪ h(i) and T is an
(I \ {i})-quasi-triangulation with respect to h|I\{i}.

Let c be a corner of f ′r and let S̃ be obtained from T by adding an edge enew

from (vr, e
−
r , e

+
r ) to c and let the root of S̃ be

• (vr, enew, e
+
r ) if c 6= (vr, e

−
r , e

+
r ) and

• either (vr, enew, e
+
r ) or (vr, enew, enew) otherwise.

These cases are illustrated in Figure 4.9. Adding enew divides f ′r into two faces.

One of these faces is the root face of S̃; we mark the other face with the index i
and denote the corresponding function I → F (S̃) by h̃. Clearly, there is a unique

choice of c 6= (vr, e
−
r , e

+
r ) such that S̃ = S. If c is a corner at vr (in particular if

c = (vr, e
−
r , e

+
r )), then enew will be a loop. If c is a corner at a vertex adjacent to

vr, then enew will be part of a double edge. In either case, S̃ will not be simple
and thus not an I-quasi triangulation. Although the case c = (vr, e

−
r , e

+
r ) is clearly

one of the cases when S̃ is not simple, it is slightly easier to derive the formulas
including this case.
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vr

e−r

e+
r

enew

h̃(i)

fr

c

vr

e−r

e+
r

enew

Figure 4.9. Adding the edge enew from (vr, e
−
r , e

+
r ) to c to obtain

S̃. If c = (vr, e
−
r , e

+
r ), then each of the two faces can either be the

root face or h̃(i).

As f ′r has valency β(T ), there are β(T ) + 1 choices for S̃. The valency of

the root face of S̃ is one if c = (vr, e
−
r , e

+
r ) and the root face is (vr, enew, enew).

If c = (vr, e
−
r , e

+
r ) and the root face is (vr, enew, e

+
r ), the valency is β(T ) + 1.

Depending on which corner is chosen as c, the valency of the root face can take
any value k between 1 and β(T ) + 1; the face h̃(i) then has valency β(T ) + 2− k.

The generating function of maps that can occur as S̃ from this particular (I \ {i})-
quasi-triangulation T is thus given by

y|E(T )+1|

 ∏
j∈I\{i}

z
βj(T )
j

 β(T )+1∑
k=1

ukz
β(T )+2−k
i .

This holds as the number of edges is increased by one and the valencies of all other
marked faces do not change. After summing over all possible marked faces and all
possible T , we obtain MC .

As already mentioned, we overcount whenever the chosen corner c is at vr or at
a vertex adjacent to vr, making enew a loop or part of a double edge, respectively.
Suppose first that enew is part of a double edge. We zip the double edge. If it does
not separate the surface, we have an upper bound δzi(Pg−1(y, u, zI)) analogous to
Lemma 4.5.5. Indeed, the only difference to the corresponding case in Lemma 4.5.5
is that we mark a corner of (the face corresponding to) h̃(i) instead of a corner of

the root face, because enew was incident with both the root face and h̃(i). If the
double edge separates the surface, we obtain two maps T1 on St for 0 ≤ t ≤ g and
T2 on Sg−t. One of the two maps, without loss of generality T2, contains (the face

corresponding to) h̃(i). As T2 is rooted at a corner of that face and the root face
is never marked, the number of marks decreases by one. Thus, T1 is a J-quasi-
triangulation on St and T2 is a (I \ (J ∪ {i}))-quasi-triangulation on Sg−t, where
J ⊆ I \ {i}. Going back, all corners of the root face of T2 become corners of the
face with index i, meaning that we have to replace u by zi in Pg−t(x, zi, zI\(J∪{i})).
This gives us an upper bound of

g∑
t=0

∑
J⊆I\{i}

Pt(x, u, J)Pg−t(x, zi, zI\(J∪{i})).

If enew is a loop, then we proceed the same way as in Lemma 4.5.5: we cut along
enew, close the two resulting holes by inserting disks, and delete the two copies of
enew. Like in Lemma 4.5.5, the reverse construction yields the same bounds as in
the case of enew being part of a double edge; the additional factor yuzi is due to
the fact that we add one edge and increase the valencies of the root face and of h̃(i)
by one. �

Similar to Lemmas 4.5.5 and 4.5.6, the only difference when using triangulations
without separating loops or separating double edges instead of simple triangulations
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is in the calculation of ÊC . The corresponding results are obtained by only keeping
the terms in which separating loops or separating double edges are involved.

Lemma 4.5.8. The functions ĉ(y, u, zI), M̂C(g; y, u, zI), and ÊC(g; y, u, zI) are
given by

ĉ(y, u, zI) = 0,

M̂C(g; y, u, zI) = y
∑
i∈I

∑
T∈P̂g(I\{i})

y|E(T )|
∏
j 6=i

z
βj(T )
j

β(T )+1∑
k=1

ukz
β(T )+2−k
i ,

0 � ÊC(g; y, u, zI) �
∑
i∈I

2(1 + yuzi)

g∑
t=0

∑
J⊆I\{i}

P̂t(y, u, zJ)P̂g−t(y, zi, zI\(J∪{i})),

where β(T ) and βj(T ) denote the valencies of the root face of T and of the face
with index j in T , respectively.

The difference between Lemma 4.5.7 and Lemma 4.5.8 is that we do not need
to compensate for the case where non-separating loops and double edges appear,
since they are allowed in P̂g,I .

The construction in Case (D) is similar to Case (C). The fact that the second
face incident to er is not marked makes the analysis easier.

Lemma 4.5.9. The functions d(y, u, zI), MD(g; y, u, zI), and ED(g; y, u, zI) in
(4.35) are given by

d(y, u, zI) = yu−1 − y2u− T0(y),

MD(g; y, u, zI) = −Tg(y, zI)P0(y, u),

0 � ED(g; y, u, zI) � 3Pg−1(y, u, zI∪{i0})|zi0=u +
∑
t,J

Tt(y, J)Pg−t(y, u, zI\J),

where the sum is taken over all 0 ≤ t ≤ g and J ⊆ I with (t, J) 6= (0, ∅) and
(t, J) 6= (g, I).

Proof. Let S be an I-quasi-triangulation in Dg,I . We delete er and choose
the root of the resulting map T to be c′r := (vr, e

−
r , e

+
r ) like in Lemma 4.5.7. As the

second face f incident with er is not marked and S is an I-quasi-triangulation, f is
bounded by a triangle. Thus, T is also an I-quasi-triangulation and the valency of
its root face f ′r is larger by one than the valency of fr. For the reverse construction,
consider the ordering of the corners of f ′r in clockwise direction along its boundary
and let c be the corner after the next, starting from c′r. We add an edge enew from

c′r to c and let (vr, enew, e
+
r ) be the root of the resulting I-quasi-triangulation S̃. If

T was obtained from S by deleting er, then S̃ = S. However, if T is an arbitrary
I-quasi-triangulation on Sg, then enew might be a loop or part of a double edge.
Thus,

yu−1Pg(y, u, zI) (4.36)

is only an upper bound for Dg(y, u, zI). Again, we have to subtract the cases when

S̃ is not simple.
The case when enew is a loop yields a term of

−y2uPg(x, u, zI) (4.37)

analogously to Proposition 4.5.1. When enew is part of a double edge, we need to
distinguish whether this double edge separates the surface. If it does separate, we
obtain

−
g∑
t=0

∑
J⊆I

Tt(y, J)Pg−t(y, u, zI\J) (4.38)
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by zipping the double edge, similar to Lemma 4.5.3. The only differences are that
the number of edges and the valencies of the faces do not change and that one of the
two components is a J-triangulation, since its root face is f and thus has valency
three. Finally, if the double edge does not separate, then after zipping it we have
to mark f with a new index i0 like in Lemma 4.5.5. However, since the valency
of f is three, we only have three possible ways to reverse the construction. As the
number of edges and all valencies remain unchanged, we have a summand

−3Pg−1(y, u, zI∪{i0})|zi0=u . (4.39)

Note that (4.39) is overcounting as the reverse construction can lead to additional
loops or double edges.

Combining (4.36), (4.37), and the term from (4.38) with (t, J) = (0, ∅), we de-
duce the claimed expression for d(y, u, zI). The term from (4.38) with (t, J) = (g, I)
yields MD(g; y, u, zI); the remaining terms form the upper bound for ED(g; y, u, zI).

�

Throughout the proof of Lemma 4.5.9, we do not encounter loops or multiple
edges. Thus, the corresponding result for D̂ follows immediately.

Lemma 4.5.10. The functions d̂(y, u, zI), M̂D(g; y, u, zI), and ÊD(g; y, u, zI) are
given by

d̂(y, u, zI) = yu−1 − y2u− T0(y),

M̂D(g; y, u, zI) = −T̂g(y, zI)P̂0(y, u),

0 � ÊD(g; y, u, zI) � 3P̂g−1(y, u, zI∪{i0})|zi0=u +
∑
t,J

T̂t(y, J)P̂g−t(y, u, zI\J),

where the sum is taken over all 0 ≤ t ≤ g and J ⊆ I with (t, J) 6= (0, ∅) and
(t, J) 6= (g, I).

4.5.5. Asymptotics. We now compute the asymptotics of all generating functions
involved. Among the generating functions of all cases, the only one with a different
structure than the others is MC which cannot be easily expressed in terms of
Pg′(y, u, zI′) and Tg′(y, I

′) with some genus g′ and set I ′. From MB and EB we
observe that we need to calculate derivatives with respect to u and zi0 and that
we want to set zi0 = u in the end. We will be interested in the dominant term of
Pg(y, u, zI) when we set u = f(y) and zi = f(y) for all i ∈ I; we will abbreviate this
by u = zI = f(y). Observe that setting u = zI = f(y) does not have any influence
on the functions Tg(y), as they only depend on the variable y.

The following proposition enables us to express arbitrary derivatives of MC

(and M̂C) at u = zI = f(y) in terms of derivatives of Pg (or P̂g).

Proposition 4.5.11. Let |y| < ρT , n ∈ N0, and αi ∈ N0 for all i ∈ I. Write |αI |
for

∑
αi. Then

∂n+|αI |

∂un
∏
i∈I ∂z

αi
i

MC(g; y, u, zI)

∣∣∣∣∣
u=zI=f(y)

(4.40)

= y

(∑
i∈I

n!αi!

(n+ αi + 1)!

∂n+1+|αI |

∂un+1+αi
∏
j∈I\{i} ∂z

αj
j

(
u3Pg(y, u, zI\{i})

))∣∣∣∣∣
u=zI=f(y)

.

Proof. The generating function yu3Pg(y, u, zI\{i}) is given by

yu3Pg(y, u, zI\{i}) = y
∑

T∈Pg(I\{i})

y|E(T )|uβ(T )+3
∏

j∈I\{i}

z
βj(T )
j .
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By comparing this term with the summand in

MC(g; y, u, zI) = y
∑
i∈I

∑
T∈Pg(I\{i})

y|E(T )|
∏
j 6=i

z
βj(T )
j

β(T )+1∑
k=1

ukz
β(T )+2−k
i

for a fixed index i ∈ I, one sees that the difference between them is that the factor

uβ(T )+3 is replaced by
∑β(T )+1
k=1 ukz

β(T )+2−k
i . Taking the derivatives with respect

to u and zi the given number of times and comparing the coefficients yields factors

(β(T ) + 3)!

(β(T ) + 2− n− αi)!
uβ(T )+2−n−αi and

β(T )+2−αi∑
k=n

k!(β(T ) + 2− k)!

(k − n)!(β(T ) + 2− k − αi)!
uβ(T )+2−n−αi ,

respectively, when n+ αi + 1 ≤ β(T ) + 3 and factors 0 otherwise. The quotient of
these two coefficients equals n!αi!

(n+αi+1)! by a binomial identity. Summing over i ∈ I
finishes the proof. �

Remark 4.5.12. With the same proof, the analogous result for M̂C and P̂g holds
as well.

The only other term where differentiating is not straight forward is MB . By
using the chain rule n times we obtain

∂n+|αI |

∂un
∏
i∈I ∂z

αi
i

MB(g; y, u, zI) (4.41)

=
∂n+|αI |

∂un
∏
i∈I ∂z

αi
i

(
yu2

(
zi0

∂

∂zi0
Pg−1

(
y, u, zI∪{i0}

))∣∣∣∣
zi0=u

)

=y

n∑
k=0

(
n

k

)(
∂n−k+|αI |

∂un−k
∏
i∈I ∂z

αi
i

∂k+1

∂zk+1
i0

(
u3Pg−1

(
y, u, zI∪{i0}

)))∣∣∣∣
zi0=u

.

Using (4.40) and (4.41) we can now determine the dominant terms of the deriva-

tives of Tg and Pg (and analogously the derivatives of T̂g and P̂g).

Theorem 4.5.13. Let αi ∈ N0, i ∈ I, and |αI | :=
∑
αi. If (g, I) 6= (0, ∅), then

∂|αI |∏
∂zαii

Tg(y, zI)

∣∣∣∣
zI=f(y)

∼= a0 + cg
(
1− ρ−1

T y
)e1

+O
((

1− ρ−1
T y

)e1+1/4
)
, (4.42)

where a0 and cg = cg(αi, i ∈ I) are positive constants and

e1 = −5g

2
− 5|I|

4
− |αI |

2
+

3

2
.

∂n

∂unP0(y, u)
∣∣
u=f(y)

is given as in Lemma 4.5.2. If (g, I, n) 6= (0, ∅, 0), then

∂n+|αI |

∂un
∏
∂zαii

Pg(y, u, zI)

∣∣∣∣
u=zI=f(y)

∼= c
(
1− ρ−1

T y
)e2

+O
((

1− ρ−1
T y

)e2+1/4
)
, (4.43)

where c = c(g, |I|, n, |αI |) is a positive constant and

e2 = e1 −
n

2
− 3

4
.

Proof. We show Theorem 4.5.13 by induction on (g, |I|, n) in lexicographic
order. Lemma 4.5.2 shows that (4.43) is true for (g, I) = (0, ∅) and n > 0. Note
that |αI | = 0 for I = ∅.

Suppose now that (4.43) is true for all (g, |I|, n) < (g0, |I0|, 0) and (4.42) is
true for all (g, |I|) < (g0, |I0|) with (g, I) 6= (0, ∅). We first prove that (4.42) holds
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for (g0, |I0|). By multiplying (4.34) by u and applying Lemmas 4.5.3, 4.5.5, 4.5.7
and 4.5.9 we obtain

u(1− a− d)Pg0(y, u, zI0) = u(MA +MB +MC)− uTg0(y, zI0)P0(y, u)− uE,

where E = EB + EC + ED. The term

u(1− a− d) = u− 2yu3P0(y, u)− uT0(y)− y + y2u2

is equal to −Q(y, u) in (4.30) and thus

−Q(y, u)Pg0(y, u, zI0) = u(MA +MB +MC)− uTg0(y, zI0)P0(y, u)− uE. (4.44)

Therefore, the left-hand side is zero when replacing u by f(y). As this factor is
independent of zI0 , this does also hold when differentiating the equation αi times
with respect to zi. Thus we obtain

uP0(y, u)
∂|αI0 |Tg0(y, zI0)∏

∂zαii

∣∣∣∣
u=zI0=f(y)

= u
∂|αI0 |(MA +MB +MC − E)∏

∂zαii

∣∣∣∣
u=zI0=f(y)

.

By inspecting the formulas for MA to ED in Lemmas 4.5.3, 4.5.5, 4.5.7 and 4.5.9,
one sees that all occurring terms are lexicographically smaller than (g0, |I0|, 0) ,and
the induction hypothesis can thus be used. Inspection of the exponents of (1−ρ−1

T y)
in all those terms shows the following.

MA: The summands have the form

∂|αI0 |∏
∂zαii

(
Pt(y, u, zJ)Pg0−t

(
y, u, zI0\J

))
for (t, J) 6= (0, ∅) and (t, J) 6= (g0, I0). Thus, for g0 + |I0| ≤ 1, we have
MA = 0. For all other values of (g0, |I0|), each summand is of the form
cA(1− ρ−1

T y)mA +O
(
(1− ρ−1

T y)mA+1/4
)

with

mA = −5t

2
− 5|J |

4
− |αJ |

2
+

3

4
− 5(g0 − t)

2
− 5|I0 \ J |

4
−
|αI0\J |

2
+

3

4
= e1

by induction. Furthermore, all coefficients are positive by induction.
MB : We have MB = yu2δzi0

(
Pg0−1(y, u, zI∪{i0})

)
|zi0=u. Thus, for g0 = 0

we have MB = 0 and MB = cB(1 − ρ−1
T y)mB + O

(
(1− ρ−1

T y)mB+1/4
)

otherwise with

mB = −5(g0 − 1)

2
− 5|I0 ∪ {i0}|

4
− |αI0 |+ 1

2
+

3

4
= e1

by induction. Again, the coefficient is positive by induction.
MC : We determine the expression for MC by Proposition 4.5.11. For g0 = 0

and |I0| = 1 we have MC
∼= cC,1(1− ρ−1

T y)1/4 +O
(
(1− ρ−1

T y)1/2
)
, which

is of the desired order, since e1 = 1/4 in this case. For all other (g0, I0),
induction yields that MC = cC,2(1 − ρ−1

T y)mC + O
(
(1− ρ−1

T y)mC+1/4
)

with

mC = −5g0

2
− 5(|I0| − 1)

4
− |αI0 |

2
− 1

2
+

3

4
= e1 .

Like in the previous cases, the coefficient is positive by induction.
EB : The function EB is bounded from above by

(
yu2 + 1

)
δu(Pg0−1(y, u, zI0)).

For g0 = 0, we thus have EB = 0 and otherwise EB = O
(
(1− ρ−1

T y)eB
)

with

eB = −5(g0 − 1)

2
− 5|I0|

4
− |αI0 |

2
− 1

2
+

3

4
≥ e1 +

1

4
.
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EC : The first summand in the expression of EC from Lemma 4.5.7 is 0 if
g0 = 0 and otherwise O((1− ρ−1

T y)eC,1) with

eC,1 = −5(g0 − 1)

2
− 5|I0|

4
− |αI0 |+ 1

2
+

3

4
≥ e1 +

1

4
.

The second summand is aE + O
(
(1− ρ−1

T y)1/2
)

if g0 = 0 and |I0| = 1.
Suppose (g0, |I0|) 6= (0, 1). Then every term

(1 + yuzi)Pt(y, u, zJ)Pg−t(y, zi, zI\(J∪{i}))

with (t, J) 6= (0, ∅) and (t, J) 6= (g0, I0 \ {i}) is O((1− ρ−1
T y)eC,2) with

eC,2 = −5t

2
− 5|J |

4
− |αJ |

2
+

3

4
− 5(g0 − t)

2
− 5(|I0 \ J | − 1)

4
−
|αI0\J | − αi

2
+

3

4

≥ e1 +
1

4

by induction. The corresponding terms for (t, J) = (0, ∅) and (t, J) =
(g0, I0 \ {i}) are O

(
(1− ρ−1

T y)eC,3
)

with

eC,3 = −5g0

2
− 5(|I0| − 1)

4
− |αI0 | − αi

2
+

3

4
≥ e1 +

1

4
.

In total, we have EC = O
(
(1− ρ−1

T y)e1+1/4
)
.

ED: The first summand in the expression of ED from Lemma 4.5.9 is 0 if
g0 + |I0| ≤ 1 and otherwise each of its summands is O

(
(1− ρ−1

T y)eD,1
)

with

eD,1 = −5t

2
− 5|J |

4
− |αJ |

2
+

3

2
− 5(g0 − t)

2
− 5|I0 \ J |

4
−
|αI0\J |

2
+

3

4

≥ e1 +
1

4

by induction. The second term is 0 for g0 = 0 and O
(
(1− ρ−1

T y)eD,2
)

otherwise with

eD,2 = −5(g0 − 1)

2
− 5(|I0|+ 1)

4
− |αI0 |

2
+

3

4
≥ e1 +

1

4
.

Note that for P̂g the only difference is in the formulas of ÊB and ÊC , both of which
satisfy the same inequalities as EB and EC above. Thus the following conclusions
also hold for P̂g.

Combining these results, we have proved (4.42), where a0 = aM − aE for
g0 = 0 and |I0| = 1. As this constant is the value of the generating function
T0(y, zI0)|zI0=f(y) at its singularity ρT , a0 is positive. For |αI0 | > 0 or (g0, |I0|) 6=
(0, 1), the exponent e1 is negative and (4.42) is thus true with the same value for
a0. Finally, cg is positive, since it is the sum of positive numbers.

To prove (4.43), recall that we assume that (4.43) is true for (g, |I|, n) <
(g0, |I0|, 0) and we have already shown that (4.42) is true for (g, |I|) ≤ (g0, |I0|). Let
n0 ∈ N0 and assume that (4.43) is also true for (g0, |I0|, n) with n < n0. Consider

the derivative ∂n+1

∂un+1 of (4.44) and set u = f(y); as Q(y, f(y)) = 0, this yields

−
n∑
k=0

(
n+ 1

k

)
∂k

∂uk
Pg0(y, u, zI0)

∂n+1−k

∂un+1−kQ(y, u)

∣∣∣∣∣
u=zI0=f(y)
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for the left-hand side of (4.44). For the derivatives of MA, MB , and MC , we obtain

MA = cA(1− ρ−1
T y)mA +O

(
(1− ρ−1

T y)mA+1/4
)
,

MB = cB(1− ρ−1
T y)mB +O

(
(1− ρ−1

T y)mB+1/4
)
,

MC = cC(1− ρ−1
T y)mC +O

(
(1− ρ−1

T y)mC+1/4
)

with positive constants cA, cB , cC and mA = mB = mC = e1 − n+1
2 = e2 + 1

4 . For
the derivatives of EB , EC , and ED, the exponents eB , eC,1, . . . in the considerations
above reduces by n+1

2 as well. By (4.33) and the induction hypothesis, each term

∂k

∂uk
Pg0(y, u, zI0)

∂n+1−k

∂un+1−kQ(y, u)

∣∣∣∣
u=zI0=f(y)

for k < n is of the form c(k)(1 − ρ−1
T y)e1−(n+1)/2 + O

(
(1− ρ−1

T y)e1−(n+1)/2+1/4
)

with c(k) > 0. Since ∂
∂uQ(y, u)|u=f(y) = c(1 − ρ−1

T y)1/4 + O
(
(1− ρ−1

T y)1/2
)

with
c < 0, (4.43) follows. �

An analogous proof yields the corresponding result for T̂g and P̂g, with identical
constants a0, cg, c, e1, e2. By Lemma 4.5.2 and setting I = ∅ in (4.42) we deduce

Proposition 4.3.2 and, from the corresponding result for T̂g, also Proposition 4.3.3.
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CHAPTER 5

Cubic graphs with non-constant genus

In this section we prove Theorem 1.3.5. Therefore, we derive upper and lower
bounds for |Sg(2n)| for general g = g(n) via some double counting arguments.
Throughout this section, let g = g(n) be a function. Theorem 1.3.5 distinguishes
three cases for the range of g:

(i) g > n−1
2 ;

(ii) g ≤ n−1
2 ;

(iii) g = o
(
n log(n)−2

)
.

We will prove the statement in these three regimes in different ways. Throughout
these proofs, we will use Euler’s formula at various points

|V | − |E|+ |F | = 2− 2g, (5.1)

where |V |, |E|, |F | are the vertices, edges, and faces of a map on Sg, respectively.

5.1. Fast-growing genus

We start with the fast growing regime, that is, with g > n−1
2 . In this case we

want to show that all cubic graphs are embeddable on Sg. We even prove a slightly
stronger result. Let Mg(2n) be the class of all cubic maps on Sg. We show that if
the genus is too large, then no such maps exist. Furthermore, we state that in this
case indeed all graphs are embeddable on Sg. Recall that in a map, all faces are
homeomorphic to discs.

Proposition 5.1.1. Suppose that g > n−1
2 . Then Mg+1(2n) = ∅ and all cubic

graphs are embeddable on Sg, i.e. Sg(2n) = S(2n).

Proof. The statement Mg+1(2n) = ∅ is a simple consequence of Euler’s for-
mula (5.1), which states that for a cubic map on Sg+1 with 2n vertices and 3n
edges, we have |F | = n+ 2− 2(g + 1) < 1 faces, which is clearly a contradiction.

For the second statement, let G ∈ S(2n). We have to show that G is em-
beddable on Sg. Let M be any embedding of G on some surface Sg′ (that is,
M ∈ Mg′(2n)). As Mg+k(2n) = ∅ for k ≥ 1 by the first part of the proposition,
we have g′ ≤ g. Therefore G ∈ Sg(2n), proving Proposition 5.1.1. �

5.2. Intermediate regime

Next we prove the intermediate regime g ≤ n−1
2 . In this case, we use double

counting. Via various intermediate steps, we will deduce upper and lower bounds
in terms of unicellular maps. More precisely, we use four different classes of graphs
and maps and prove bounds between them by multiple double counting arguments.

• We show upper and lower bounds for cubic graphs in Sg(2n) in terms of
connected cubic graphs embeddable on the same surface Sg, denoted by

Sg(2n).

• We bound the number of connected cubic graphs in Sg(2n) by cubic maps
on Sg, denoted by Mg(2n).
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• We bound the number of cubic maps in Mg(2n) by maps on Sg with
exactly one face and maximum degree three. We denote this class by
Eg(2n).

The maps in Eg(2n) are also called unicellular maps. For convenience, we will show
the bounds starting from one-faced maps in the reverse order of this list.

As we only bound the maximum degree of maps in Eg(2n), we further subdivide
this class. For a ≥ 0, we denote by Eg(2n, a) the subclass of Eg(2n) with exactly a
vertices of degree three. Note that all maps in Eg(2n, a) have the same number of
vertices of degree two and one.

Lemma 5.2.1. Every graph G ∈ Eg(2n, a) has exactly a− 4g+ 2 vertices of degree
one and 2n− 2a+ 4g − 2 vertices of degree two.

Proof. Let b be the number of vertices of degree one and c be the number of
vertices of degree two. Then

a+ b+ c = 2n and
3a+ b+ 2c

2
= |E(G)|.

Additionally we have by Euler’s formula that

|E(G)| = 2n+ 2g − 1.

Substituting this and solving the linear system of equations for b and c proves the
lemma. �

This lemma gives some bounds on possible values of a, as all of the values a,
a− 4g + 2, and 2n− 2a+ 4g − 2 have to be non negative. We denote by

A := {a ∈ Z : max{0, 4g − 2} ≤ a ≤ n+ 2g − 1}

the set of all possible values of a. Note that for g ≤ n−1
2 , A is not empty. In order

to simplify notation we assume for the remainder of this section that g > 0.
As a starting point, the number of unicellular maps with given degree sequence

was determined by Walsh and Lehman [105]. In our special case with a vertices of
degree three we have the following formula.

Lemma 5.2.2 ([105]). Let a ∈ A. Then the number of unicellular maps in
Eg(2n, a) is given by

|Eg(2n, a)| = 22n−2a+2g−23a−g
(
a

g

)
(2n+ 2g − 2)!. (5.2)

By summing over all possible values for a, where the numbers of vertices of
degree one and two are not negative, we derive bounds for the number of unicellular
maps in Eg(2n).

Lemma 5.2.3. There exist constants bE , cE such that for all a ∈ A, the number of
unicellular maps in Eg(2n) satisfies

bn+g
E (2n+ 2g)! ≤ |Eg(2n, a)| ≤ |Eg(2n)| ≤ cn+g

E (2n+ 2g)!. (5.3)

Proof. As Eg(2n) is the disjoint union of Eg(2n, a) over all a ∈ A, we have

|Eg(2n)| =
∑
a∈A
|Eg(2n, a)|.

Substituting (5.2) and sorting the terms results in

|Eg(2n)| =
(

4

3

)g
4n−1(2n+ 2g − 2)!

∑
a∈A

(
a

g

)(
3

4

)a
.
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Next we calculate bounds for the sum. We use the bounds (3.6) for the binomial
coefficient and derive ∑

a∈A

(
a

g

)(
3

4

)a
= Θ(1)

∑
a∈A

f1(a)f2(a),

where

f1(a) =

√
a

g(a− g)
and f2(a) =

(
3

4

)a(
a− g
g

)g(
a

a− g

)a
.

In order to prove the upper bound, first note that f1(a) is strictly decreasing
for a ∈ A. To derive the maximum of f2(a) we calculate the derivative and observe
that it is zero at a = 4g. In addition, as the second derivative at a = 4g is negative,
this is indeed a maximum. Therefore, we deduce an upper bound for |Eg(2n)| of

|Eg(2n)| = O

((
4

3

)g
4n(2n+ 2g)!|A|f1(4g − 2)f2(4g)

)
.

The claimed upper bound follows by noting that f2(4g) = 3g and choosing suitable
exponential bounds for the polynomial terms.

To show the lower bound, note that for a ≥ 4g − 2, we have a−g
g ≥ 2 and

a
a−g ≥ 1. Therefore, f2(a) ≥

(
3
4

)a
2g and

|Eg(2n, a)| = Ω

(
f1(a)

(2n+ 2g)(2n+ 2g − 1)

(
8

3

)g(
3

4

)a
4n(2n+ 2g)!

)
. (5.4)

Choosing suitable exponential bounds for the fraction and choosing the constants
as in a = n+ 2g − 2 for the exponential terms in (5.4) proves the lemma. �

For the next step, we prove bounds for the class Mg(2n) of all vertex-labelled
cubic maps on Sg.

Lemma 5.2.4. Let g ≤ n−1
2 . Then

2−3n|Eg(2n)| ≤ |Mg(2n)| ≤ d0γ
4n−2+4g
p |Eg(2n)|,

where γp ≈ 5.828 is the growth constant of dissections, i.e. 2-connected outerplanar
graphs, and d0 is a constant.

Proof. We will prove both inequalities by a double counting argument.
For the upper bound, let M ∈Mg(2n). As the map is vertex-labelled, there is

a canonical order on the edges. We go through the edges in order and if the edge is
in the boundary of two different faces we delete it. By this construction we obtain
a unicellular map U . As we did not delete any vertices, U has exactly 2n− 2g + 1
edges by Euler’s formula. For the reverse direction, we need an upper bound for
the number of maps where the construction results in U . First note that both M
and U are labelled, have the same number of vertices and during the construction
no labels change. Therefore the only possible ambiguity in the construction is in
how to delete edges of M in the unique face of U . This has to be done in such a
way that no intersections occur. Therefore we need an upper bound on the number
of ways to insert 2n− 2g+ 1 non-intersecting diagonals into a face with 2n+ 4g− 2
vertices (some vertices are on the face multiple times). This is bounded from above
by the number of dissections of such a polygon and thus bounded from above by
d0γ

2n+4g−2
p .
To show the lower bound we will construct a map in Mg(2n) from a map

N ∈ Eg(2n, 4g − 2). Note that N has no vertices of degree one and, as g ≤ n−1
2 ,

at least four vertices of degree two. We have to construct a cubic map in such a
way that we do not generate any double edges. Therefore we cannot connect two
adjacent vertices of degree two. In order to ensure this, for each vertex v of degree
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two we denote by β(v) the number of vertices of degree two (itself included) that
can be reached from v on a path where all internal vertices have degree two as well.
That is, on a maximal path of vertices of degree two, all vertices have the same
value β(v) and this value is the number of vertices of degree two on this path.

Suppose first there are no vertices v with β(v) = 2. Then we use the following
construction for vertices with β(v) ≥ 3. If β(v) is odd, we iteratively add edges
between the outermost degree two vertices until only one degree two vertex is
left. All these edges are on the same side of the path. Which side is chosen will
be determined later by the edge to the central vertex. If β(v) is even, we again
iteratively add edges between the outermost vertices of degree two until exactly four
vertices are left. All those edges are on the left side of the path. For the final four
vertices we connect the first and third vertex and the second and fourth vertex as
in Figure 5.1 . Finally, we connect all vertices that are left (vertices with β(v) = 1
or central vertices of paths with β(v) odd), to the next one along the boundary of
the one face of N , starting from the root corner.

Figure 5.1. How to connect multiple vertices along a path: β = 4
on the left hand side; β ≥ 3 odd in the centre; β ≥ 6 even on the
right hand side.

Suppose now that we have vertices with β(v) = 2. Then we iteratively reduce
the size of the problem. Let v1, v2 be the lexicographically smallest such pair of
connected vertices of degree two. As the number of vertices is at least four, there
exists another vertex v3, where v3 is adjacent (i.e. the next vertex of degree two,
disregarding possible vertices of degree three in between, see Figure 5.2) to one of
the two copies of v1 along the boundary of the face (if there are two such vertices,
choose the one with smaller label). We connect v3 with v1 along the boundary of
the face where there are on other vertices of degree two. Note that if there are still
pairs of vertices with β(v) = 2 in the newly constructed graph, there are still at
least four vertices of degree two left, as β(v2) = 1 in the new graph and the number
of vertices of degree two has to be even. We now iterate this construction.

As no edge connects neighbouring vertices, the resulting map is simple. We
deduce an upper bound for the number of unicellular maps resulting in the same
map by stating that the underlying graph of the unicellular map has to be a sub-
graph of the underlying graph of the resulting map. As every graph has at most
2|E| many subgraphs, we prove the claimed bound. �

By substituting the bounds of Lemma 5.2.3 in the bounds of Lemma 5.2.4, we
derive bounds on the number of all vertex labelled cubic maps with 2n vertices on
Sg for any g = g(n).
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Figure 5.2. The construction for β = 2.

Corollary 5.2.5. Let g ≤ n−1
2 . Then there exist constants bM , cM such that

bn+g
M (2n+ 2g)! ≤ |Mg(2n)| ≤ cn+g

M (2n+ 2g)!.

�

Next we compare the classesMg(2n) of vertex-labelled cubic maps and Sg(2n)
of connected cubic graphs. As we do not have any analogues to Whitney’s theorem
as in the constant genus case, we only have very general bounds.

Lemma 5.2.6. Let g ≤ n−1
2 . Then

2−2n|Mg(2n)| ≤ |Sg(2n, 3n)| ≤ |Mg(2n+ 4g)|
(4g)!

.

Proof. To prove the lower bound observe first that the underlying graph
of each map in Mg(2n) is in Sg(2n). For a given graph G, all possible 2-cell
embeddings of G can be described using so-called rotation systems (see e.g. [86]).
This means that the embedding is uniquely defined as soon as, for each vertex v, the
cyclic order is fixed in which the three edges incident with v are arranged around
v. For cubic G we have two possibilities for each vertex and thus at most (not all
such choices will result in maps on Sg, the genus may vary) 22n 2-cell embeddings
on Sg.

To show the upper bound we give an injection from Sg(2n) to the class N
of cubic maps on Sg with 2n + 4g vertices, n of which are labelled. Therefore

|N | = |Mg(2n+4g)|
(4g)! and the upper bound will follow.

Let G ∈ Sg(2n). We will construct a map in N as follows. Let M be a 2-cell
embedding of G on a surface of genus g0 ≤ g. As G is embeddable on Sg such an
embedding exists. Use a canonical way to choose a root vertex, a root face and
root edge (together defining a root corner) on the vertex-labelled map M . Let Ψ
be one (canonically chosen) map from the class Eg−g0(4(g− g0), 4(g− g0)− 1), that
is, a one-faced map of genus g− g0 with one vertex of degree one and 4(g− g0)− 1
vertices of degree three. Replace the root face with the unique face of Ψ, and insert
the one vertex of degree one in the root edge. That is, we delete the root edge
and instead connect its two end vertices with the vertex of degree one. In this way
we construct a cubic map on the surface Sg with 2n + 4g − 4g0 vertices. In order
to construct a map with 2n + 4g vertices, we subdivide the two non-root edges
attached to the root vertex 2g0 times and connect them in pairs (see Figure 5.3).

This results in a cubic 2-cell embedding on Sg with 2n+4g vertices and thus in
a map in N . This is an injection as G can uniquely be determined from the result
of this construction. Indeed, there are exactly three labelled vertices connected to
the root vertex via a path where all intermediate vertices are unlabelled. These
were the original neighbours of the root vertex. �
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Figure 5.3. Constructing a map with the correct number of ver-
tices and genus.

Again, we derive bounds for |Sg(2n)| from Lemma 5.2.6 and Corollary 5.2.5.

Corollary 5.2.7. Let g ≤ n−1
2 . Then there exist constants bS , cS such that

bn+g

S
(2n+ 2g)! ≤ |Sg(2n, 3n)| ≤ cn+g

S

(2n+ 6g)!

(4g)!
.

�

Finally, we prove bounds for general cubic graphs embeddable on Sg via con-
nected cubic graphs on Sg.

Lemma 5.2.8. Let g ≤ n−1
2 . Then

∣∣Sg(2n, 3n)
∣∣ ≤ |Sg(2n, 3n)| ≤

∣∣Sg(4n− 2, 6n− 3)
∣∣

(2n− 2)!
.

Proof. Let K ∈ Sg(2n, 3n) be a graph and let c be the number of its compo-

nents. To prove Lemma 5.2.8 we construct (2n−2)! graphs in Sg(4n−2, 6n−3) from

K such that for different graphs K,K, all resulting graphs are pairwise different.
We sort the components by the vertex with the smallest label occurring in

each component and call them C1, . . . , Cc. For a component Ci let ei,1 and ei,2 be
the lexicographically smallest and largest edge adjacent to the vertex with smallest
label in Ci, respectively. For 1 ≤ i ≤ c− 2 we subdivide ei,2 and ei+1,1 and connect
the new vertices. Then we subdivide ec−1,2 and ec,1 both n− c times and connect
these vertices in order (see Figure 5.3).

Figure 5.4. Constructing a connected graph from multiple con-
nected components.

Labelling the new vertices from 2n + 1 to 4n − 2 results in (2n − 2)! different
graphs.

Conversely, there is a unique way to reconstruct the original graph from a graph
constructed in this way, completing the proof. �
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5.3. Slowly growing genus

In this section we prove Theorem 1.3.5(i). We do this via a double counting
argument comparing Sg(2n) to cubic planar graphs via planarising edge sets.

Djidjev and Venkatesan [33] proved an upper bound on the size of the smallest
planarising edge set.

Lemma 5.3.1. [33] For any m-edge graph with maximum degree d embeddable on
Sg, there exists a planarising set of at most 4

√
dgm edges.

Deleting such a planarising set will be one direction of the double counting
argument.

Lemma 5.3.2. For g = o((log n)−1n), there exists a constant c such that

|Sg(2n)| ≤ |S0(2n)|clogn
√
ng.

Proof. Let K ∈ Sg(2n) and let E be a minimal planarising edge set of K
with |E| := k ≤ 12

√
gn, which exists by Lemma 5.3.1. We construct a cubic planar

graph from K as follows. First we delete all edges in E to obtain a graph K ′. Note
that K ′ does not have isolated vertices as that would contradict the minimality of
E. Let ψ be the graph in Figure 5.5.

1
4 5

2

3

Figure 5.5. The graph ψ used as a building block in the construction.

We now attach one copy of ψ to each vertex of degree two in K ′ and two
copies of ψ to each vertex of degree one. In this way, we attach two copies of ψ
for each deleted edge and therefore have 10k new vertices. Furthermore, we label
these new vertices with labels 2n + 1 to 2n + 10k (with five consecutive labels in
the correct order for each of the copies of ψ) starting from the neighbouring vertex
with smallest label. In this way, we construct a unique graph in S0(2(n+ 5k)).

Conversely, in order to construct the original graph, we have to delete the
pending copies of ψ with labels 2n+1 to 2n+5k. Then we have to add k new edges
such that all vertices have degree three. An upper bound for this construction is to
add the correct number of half edges at each vertex and choose a perfect matching

among these half edges. There are at most (2k)(2k−2)(2k−4) · · · 2 = (2k)!
2kk!

possible
matchings.

Summing up over all possible values of k results in

|Sg(2n)| ≤
12
√
gn∑

k=0

|S0(2(n+ 5k))| (2k)!

2kk!

≤ 12
√
gn|S0(2n+ 120

√
gn)|

(24
√
gn)!

212
√
gn(12

√
gn)!

,
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as we have∣∣S0(2n+ 120
√
gn)
∣∣

|S0(2n)|
≤ Θ(1)

(
1 + 60

√
g

n

)−7/2

γ
120
√
gn

0

(2n+ 120
√
gn)!

(2n)!

(3.4),(3.2)

≤ exp(α1 log n
√
gn)

and also
(24
√
gn)!

212
√
gn(12

√
gn)!

(3.4),(3.2)

≤ exp(α2 log n
√
gn).

For suitable constants α1, α2, the lemma follows. �

5.4. Proof of the final main result

By Lemma 5.3.2, we know that(
|Sg(2n)|

(2n)!

) 1
2n

≤
(
|S0(2n)|

(2n)!

) 1
2n

c
1
2 logn

√
g
n = (1 + o(1))γ0,

which, together with the trivial fact that S0(2n) ⊆ Sg(2n) proves Theorem 1.3.5(i).
Secondly, Theorem 1.3.5(ii) follows by substituting the bounds of Lemma 5.2.3

in the bounds of Lemma 5.2.4, deducing

bn+g
A (2n+ 2g)! ≤ |Sg(2n, 3n)| ≤ c4n−2+g

A

(4n+ 6g − 2)!

(4g)!(2n− 2)!
.

Using the bounds in (3.4) for the factorials results in the claimed bounds.
Finally, Theorem 1.3.5(iii) follows immediately from Proposition 5.1.1.

121



CHAPTER 6

Discussion

6.1. Comparisons

Let us first compare Gg(n,m) to the Erdős-Rényi random graph G(n,m). In
the first phase transition, the main differences between Theorems 1.1.1 and 1.2.1 are
observed in the supercritical regime, which is when λ→∞. Firstly, the order of the
giant component is only about half as large inGg(n,m) as it is inG(n,m). Secondly,
the i-th-largest component Hi for fixed i ≥ 2 is much larger in Gg(n,m) than in
G(n,m). This second difference is only the outward visible difference stemming
from a much deeper and more interesting distinction. If one deletes the giant
component from G(n,m) in the supercritical regime, the remaining graph behaves
as if it were a graph drawn uniformly at random from the subcritical regime and
thus only small components occur. In contrast, in Gg(n,m), deleting the giant
component results in a graph in the critical regime, thus resulting in larger orders
for Hi with i ≥ 2. Finally, while each such Hi is a tree whp for the Erdős–Rényi
random graph, this is not necessarily the case for Gg(n,m).

The other major difference between Gg(n,m) and G(n,m) is the appearance
of the second phase transition. While for G(n,m), the number of vertices outside
the giant component remains linear as long as m is linear, this is not the case
for Gg(n,m) for any fixed g. To understand this phenomenon better, even larger
classes of graphs have to be studied, for example classes with non-constant genus.

Comparing the results of this thesis with the results on G0(n,m) by Kang and
 Luczak[66], the main improvement is in the second phase transition. Whereas Kang
and  Luczak only proved their results up to m = n + O(n2/3), we improved that
bound to m = n+O

(
n(log n)−2/3

)
. Additionally, in this thesis we improved on the

order and structure of the i-th-largest component (i ≥ 2) and showed that the giant
component is also the unique non-planar component and cannot be embedded on
a surface of smaller genus.

6.2. Two phase transitions

Although we obtained a multitude of results regarding the component structure
of sparse random graphs embeddable on orientable surfaces in Theorems 1.2.1, 1.2.3
and 1.2.5, there are still many unsolved problems.

Even in the first critical regime, that is, for m = (1 + λn−1/3)n2 with constant
λ ∈ R, there are still open questions. Noy, Ravelomanana, and Rué [87] answered
a challenging open question of Erdős and Rényi [41] about the limiting probability
of G(n,m) being planar at the critical phase 1Crit, the limit p(λ) of the proba-
bility that G

(
n,
(
1 + λn−1/3

)
n
2

)
is planar. For graphs embeddable on a surface of

positive genus, they gave a general strategy for how to determine the corresponding
probability up to a given error. However, determining the exact limiting probability
for g ≥ 1 is still an open problem.

Other open questions appear in the second phase transition. Comparing the
range for m that we cover in Theorem 1.2.3 with the ‘dense’ regime m = bµnc for
1 < µ < 3 considered in [30, 59], a gap of order (log n)2/3 becomes apparent—a
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significant improvement over the planar case in [66], where the gap had order n1/3.

The order term ζ−3/2 n3/5 in Theorem 1.2.3 becomes constant when ζ = Θ(n2/5),
which matches the results from [30, 59] that the giant component covers all but
finitely many vertices in the dense regime. Therefore, we expect Theorem 1.2.3 to
hold for all m = (1 + o(1))n.

The gap of order (log n)2/3 originates from the fact that we can only determine
the number of cores up to an exponential error term in the second phase transition.
The cause of this gap is the fact that we determine the number of cores of embed-
dable graphs only up to an exponential error (see Lemma 3.4.5 and Lemma 3.4.6).
Obtaining better bounds for the number of cores should therefore close this gap
and the results of Theorem 1.2.3 should hold for all m = (1 + o(1))n. Moreover,
such better enumeration results could show a similar strong relation between the
complex part and the kernel of the graph, as in the first phase transition and the
intermediate regime. It might therefore open the possibility of proving an analo-
gous version of Theorem 3.5.4 in the second phase transition. This would further
improve the understanding of the second phase transition.

6.3. Changing the model

Throughout this thesis, we have always considered graphs embeddable on ori-
entable surfaces, as a way to understand the differences between planar graphs and
the Erdős-Rényi random graphs. This is by far not the only feasible graph class. An
obvious generalisation is the class of graphs embeddable on non-orientable surfaces.
The calculations done in Chapter 3 would still work even for that case, provided we
obtain an analogous result to Theorem 1.3.3 for weighted multigraphs embeddable
on non-orientable surfaces. The main problem is that there is no easy analogue to
Whitney’s theorem or Lemma 4.2.8 for non-orientable surfaces. Thus, connecting
embeddable graphs and maps is much harder.

Another possible expansion of the model is to let the genus also be dependent
on n. As seen when comparing Theorem 1.1.1 and Theorems 1.2.1 and 1.2.3,
there are various differences in the behaviour of graphs in G(n,m) and Gg(n,m).
Investigating graphs embeddable on surfaces where the genus may depend on n
is one idea to deduce the reason. Those classes are intermediate steps between
G(n,m) and Gg(n,m). Intuitively, the faster the genus is allowed to grow, the more
the graph will behave like a graph from G(n,m). Indeed, as soon as the genus
is bigger than the expected excess in G(n,m), such graphs are embeddable with
high probability. This is due to the fact that any graph has the same genus as its
kernel. If the genus is larger than the number of edges in the kernel, such a graph
is therefore embeddable.

On the other hand, heuristically, if the genus is so small that the kernel of
G(n,m) is not embeddable on Sg, there should not be much difference between
growing and non-growing genus. The methods provided in this thesis should also
work for the case of non-constant genus. The main starting point for this is the
number of cubic graphs embeddable on a surface of growing genus. We proved
first results in this direction in Chapter 5. The results in Theorem 1.3.5 about
cubic graphs are relatively weak compared to the results of the constant genus case
in Theorem 1.3.1. Nonetheless, we believe that they are strong enough to prove
phase transition results for graphs embeddable on surfaces with non-constant genus
similar to the results in this thesis. On the other hand, more exact enumeration
results for cubic graphs would be of interest in themselves, as, until now, very few
classes of graphs or maps on surfaces of non-constant genus have been studied.

Another interesting problem emerges for m beyond 1Crit. There we know that
whp G(n,m) is not embeddable on any surface of fixed genus. This immediately
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raises the question of what genus g = g(n) is needed in order to embed G(n,m) on
Sg. That is, given m = m(n), for what functions g = g(n) is G(n,m) embeddable
on Sg with high probability? Or given m = m(n), what is the expected genus of
G(n,m)?

Another interesting direction, which might provide insight into the behaviour
of G(n,m), is to reverse these questions. Suppose we are given g = g(n) that tends
to infinity with n. Does Gg(n,m) admit a second phase transition? Is its behaviour
more closely related to the constant genus case or to G(n,m)?

Heuristically, if g grows ‘fast enough’ (e.g. as
(
n
2

)
), then Gg(n,m) will coincide

with G(n,m) and will therefore not exhibit the second phase transition described in
Theorem 1.2.3. For ‘slowly’ growing g, on the other hand, it is to be expected that
the second phase transition does take place. The interesting question therefore is,
where this change takes place and whether there is a ‘phase transition phenomenon’
occurring for the appearance of the second phase transition.

124



CHAPTER 7

Acknowledgements

I want to thank my supervisor, Mihyun Kang, for supporting me throughout
my Ph.D. and for always providing very helpful comments and suggestions for my
studies. I appreciate her honesty and patience in guiding me towards this thesis.

I also want to thank my colleagues and collaborators for providing a friendly
and productive environment in which to do research. In particular, I want to thank
my mentor, Philipp Sprüssel, for his help and advice while working on this thesis.

Furthermore, I want to thank the TU Graz and the doctoral school ’Discrete
Mathematics’ for providing me with great opportunities throughout my Ph.D. stud-
ies, such as a research stay at the University of Oxford and the chance to participate
at various renowned conferences.

Finally, I am deeply grateful to my family and friends for supporting and mo-
tivating me throughout the production of this thesis.

125



Bibliography

[1] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent.
Ann. Probab., 25(2):812–854, 1997.

[2] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.

[3] C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria. Random maps, coalescing saddles,
singularity analysis, and Airy phenomena. Random Structures Algorithms, 19(3-4):194–246,

2001.

[4] M. Behrisch, A. Coja-Oghlan, and M. Kang. The order of the giant component of random
hypergraphs. Random Structures Algorithms, 36(2):149–184, 2010.

[5] M. Behrisch, A. Coja-Oghlan, and M. Kang. Local limit theorems for the giant component

of random hypergraphs. Combin. Probab. Comput., 23(3):331–366, 2014.
[6] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with given

degree sequences. J. Combin. Theory Ser. A, 24(3):296–307, 1978.

[7] E. A. Bender and E. R. Canfield. The asymptotic number of rooted maps on a surface. J.
Combin. Theory Ser. A, 43(2):244–257, 1986.

[8] E. A. Bender, E. R. Canfield, and L. B. Richmond. The asymptotic number of rooted maps
on a surface. II. Enumeration by vertices and faces. J. Combin. Theory Ser. A, 63(2):318–

329, 1993.

[9] E. A. Bender and Z. Gao. Asymptotic enumeration of labelled graphs by genus. Electron.
J. Combin., 18(1):#P13, 2011.

[10] E. A. Bender, Z. Gao, and L. B. Richmond. Almost all rooted maps have large representa-

tivity. J. Graph Theory, 18(6):545–555, 1994.
[11] E. A. Bender, Z. Gao, and L. B. Richmond. The map asymptotics constant tg . Electron. J.

Combin., 15(1):#R51, 2008.

[12] E. A. Bender, Z. Gao, and N. C. Wormald. The number of labeled 2-connected planar
graphs. Electron. J. Combin., 9(1):#R43, 2002.

[13] E. A. Bender and N. C. Wormald. The asymptotic number of rooted nonseparable maps on

a surface. J. Combin. Theory Ser. A, 49(2):370–380, 1988.
[14] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs.

Electron. J. Probab., 6:#P23, 2001.
[15] N. Bernasconi, K. Panagiotou, and A. Steger. On the degree sequences of random outer-

planar and series-parallel graphs. In Approximation, randomization and combinatorial op-

timization, volume 5171 of Lecture Notes in Comput. Sci., pages 303–316. Springer, Berlin,
2008.

[16] N. Bernasconi, K. Panagiotou, and A. Steger. On properties of random dissections and

triangulations. Combinatorica, 30(6):627–654, 2010.
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[18] M. Bodirsky, C. Gröpl, and M. Kang. Generating labeled planar graphs uniformly at random.

Theoret. Comput. Sci., 379(3):377–386, 2007.
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