
Georg Neubauer, BSc.

A Multi-GPU Implementation of the
Discrete Element Method

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl-Ing. Dr. techn. Christian Steger

Institute for Technical Informatics

 Diplom-Ingenieur

Supervisor

Advisor: Ass.Prof. Dipl-Ing. Dr. techn. Christian Steger

In cooperation with
Research Center of Pharmaceutical Engineering GmbH

Graz, February 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which

has been quoted either literally or by content from the sources used. The text document

uploaded to TUGRAZonline is identical to the present master‘s thesis dissertation.

.............................. ...

date (signature)

I

Kurzfassung

Ursprünglich von Cundall im Jahre 1971 konzipiert ist die Diskrete-Elemente-Methode

(DEM) heutzutage eine der Standardmethoden zur numerischen Bestimmung von Teilchen-

bewegungen in Simulationen. Grundlegend ist es für diese Methode zu erkennen ob und

wann Partikel miteinander kollidieren und aus der dadurch resultierenden Kraftwirkung

die neuen Bewegungsparameter (Richtung, Geschwindigkeit, Rotation) pro Teilchen zu

errechnen.

Bei der Abbildung von realen Prozessen müssen oft große Partikelsysteme, mit rel-

ativ kleinen Partikeln (z.B.: Schüttgut, Puder, etc.) simuliert werden. Um das Simula-

tionsergebnis so akkurat wie möglich zu machen benötigt die DEM jedoch sehr kleine

Zeitschritte, wodurch die Berechnungsdauer oft jegliche vernünftige Zeitspanne übersteigt.

Aufgrund der zugrundeliegenden Methodik der Diskretisierung wird jedes Partikel für sich

separat betrachtet. Dies führt zu einem hohen Grad an Parallelisierbarkeit. Anfangs oft

auf CPUs berechnet, werden heutzutage geeignetere Plattformen (z.B.: GPUs, CUDA R©,

Vektor-Rechner) verwendet um die benötigte Ausführungszeit zu senken.

Ziel dieser Arbeit ist es nun, die bereits im bestehenden Programm (XPS) vorhandene

Algorithmik dahingehend zu erweitern, dass durch die Verwendung von mehreren GPUs

eine höhere Stufe von Parallelität erreicht wird. Zudem soll im bestehenden Programm

die Möglichkeit geschaffen werden die Simulation in Echtzeit zu überwachen ohne dadurch

zu viel Prozesszeit zu verschwenden. Nach der Beschreibung der notwendigen Änderungen

und der Implementierung wird anhand von Testfällen gezeigt, dass ein deutlicher Speedup

erreicht wurde. Zudem wird auch noch darauf hingewiesen, dass durch die Verwendung

von mehreren GPUs die abbildbare Problemgröße gesteigert werden kann.

Schlüsselwörter

Diskrete-Elemente-Methode, Partikelsimulation, CUDA R©, Multi GPU, Shared memory

II

Abstract

Invented by Cundall in the year 1971, the Discrete-Element-Method (DEM) is a standard

method for numerical determination particle motions in simulations. A fundamental as-

pect for this method is to determine if and when particles will collide with each other. By

giving the resulting contact force the new motion parameter (like direction, velocity and

rotation) can be calculated for each particle separably.

To illustrate real-world processes huge particle sets, consisting of relatively small par-

ticles (e.g. bulk solids, powders, etc.), have to be simulated. While getting the simulation

outcome as accurate as possible the DEM needs rather small time-step sizes. This leads to

unreasonable long total simulation times. The method itself is looking on the particles in

a discrete way. With this it is possible to look at each discretization separately, leading to

a high degree of parallelism. Modern vectorizing architectures (e.g. GPUs, CUDA) pro-

vide many advantages on simulating huge particle systems over the CPUs used formerly,

resulting in much faster simulations.

The goal of this thesis is to extend an already existing simulation software (XPS)

by introducing new algorithmic features. This is mostly enabling multi-GPU support to

achieve a higher level of parallelism. Additionally a method should be invented to observe

the simulation in real-time by not wasting to much of it’s process’s time. After describing

the necessary changes and the implementation a result section will show some test cases.

It will be shown there how the simulation data can now be shared and which significant

speed-ups can be observed. Last but not least, it will be mentioned that the maximum

illustratable problem size was increased.

Keywords

Discrete-Element-Method, particle simulation, CUDA R©, multi GPU, shared memory

III

Acknowledgment

This master thesis was carried out during the years 2015 to 2018 on the Institute for

Technical Informatics at Graz University of Technology.

First, I want to thank Mr. Christian Steger for the possibility to write my master thesis

at the Institute for Technical Informatics.

I also want to express my special gratitude to Charles Radeke, who supported me with all

of his possibilities over the whole time of this thesis.

A thank goes to Hermann Kureck, Eva Siegmann, Dalibor Jajcevic, Eyke Slama and all

of my former colleagues from RCPE which supported me to finish the work.

Special thanks go to my wife Margit, who supported me with some graphical stuff, my

daughter Eva and my son Tobias for their excitation.

Last but not least I want do thank my parents, my parents-in-law and all of my siblings

and friends, who supported me throughout my student time and I am sure that they will

support me in my future.

Graz, February 2018 Georg Neubauer, BSc.

IV

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 XPS - eXtended Particle System . 3

1.4 Outline . 5

2 Theory 6

2.1 Discrete Element Method (DEM) . 6

2.2 Compute Unified Device Architecture . 7

2.2.1 Programming Model . 8

2.2.2 Hardware Implementation . 13

2.2.3 Multi-GPU . 15

2.2.4 Thrust . 16

2.2.5 CUDA Profiling Tools . 18

2.3 Inter-process Communication (IPC) . 18

2.3.1 Shared Memory . 18

2.3.2 Resource Locking . 19

2.3.3 Message-Passing Interface (MPI) . 22

2.4 Program Libraries . 22

2.4.1 Static Linking . 23

2.4.2 Dynamic Linking . 23

2.4.3 The BOOST C++ Libraries . 24

2.5 XPS - eXtended Particle System . 25

2.5.1 Overview . 25

2.5.2 Current Implementation . 26

2.5.3 Implemented DEM Algorithmic . 27

V

3 Shared Simulation Data 34

3.1 Design . 34

3.1.1 Pipes . 34

3.1.2 Streams . 34

3.1.3 Shared Memory . 35

3.1.4 Actual Design . 35

3.2 Implementation . 36

3.2.1 Define data to be shared . 36

3.2.2 The data sharing infrastructure . 37

3.2.3 View and update simulation data . 39

3.2.4 Deploy as program library . 40

3.2.5 Command line arguments . 40

3.3 Results . 40

3.3.1 Usage . 41

3.3.2 Example . 41

4 Multi-GPU DEM - Design 43

4.1 Subdividing the simulation world . 43

4.1.1 Choosing a reasonable sub-division 43

4.1.2 Subdivision overlap and halo distribution 45

4.2 Hiding GPU memory transfers . 46

4.3 Load balancing . 47

4.4 Possible implementations . 50

4.4.1 Single-Threaded Multi-GPU (ST-MGPU) 52

4.4.2 Multi-Threaded Multi-GPU (MT-MGPU) 52

4.4.3 Multi-Process Multi-GPU (MP-MGPU) 52

5 MultiGPU DEM - Implementation 53

5.1 Preliminary work and re-factoring of the existing code 53

5.2 Top-Down view . 54

5.2.1 Algorithm solvers . 54

5.3 Multi-Threaded implementation . 57

5.4 Optimizing execution speed . 58

5.5 Load balancing . 59

VI

6 Multi-GPU DEM - Results 60

6.1 The Test System . 60

6.2 The Test Case . 61

6.2.1 Evaluation Of Memory Usage . 61

6.2.2 Test Case Variations . 63

6.3 Test 1: Performance Gain . 65

6.3.1 Expectations . 66

6.3.2 Results . 67

6.3.3 Discussion . 71

6.4 Test 2: Reaching The Test System’s Limits 72

7 Conclusion and Outlook 75

7.1 Future Work . 75

A Acronyms and Glossaries 76

Bibliography 79

VII

List of Figures

1.1 Simulation of a pharmaceutical mixing device in labor/academic scale . . . 3

1.2 Simulation of a pharmaceutical coating device in labor/academic scale . . . 4

2.1 Grid of two-dimensional thread blocks organized in a two-dimensional grid . 10

2.2 CUDA memory hierarchy . 12

2.3 CUDA stream concurrency . 14

2.4 Dynamic thread-block assignment to available Streaming Multiprocessors . 15

2.5 Example views of the NVIDIA Visual Profiler 17

2.6 Multiple processes map to same shared memory region 19

2.7 Race condition, two threads using same memory resource 20

2.8 Static vs. dynamic linking for the Linux operating system. 24

2.9 The XPS Logo . 25

2.10 Particle shapes available in XPS . 27

2.11 Spherical objects sorted into a uniformed grid 28

2.12 DEM Preparation phase: From particles in cellspace to cellstart vector . . . 29

2.13 DEM Collision phase - neighbor search via uniform grid 31

2.14 The spring/damper model that is used for particle collisions 32

3.1 Connect Live Simulation . 41

3.2 Left internal deprecated viewer, right external live viewer 42

4.1 Splitting a 2D domain along an arbitrary path of cell boundaries 44

4.2 Splitting a 2D domain along vertical and horizontal planes 44

4.3 Splitting a 2D domain along vertical or horizontal planes 45

4.4 The boundary between two sub-domains on grid cell layer, with the halo

highlighted in red. 46

4.5 A single particle traveling to another GPU domain 47

4.6 Example of load balancing by particle number, of a setup with GPUs of

different speed. 48

VIII

4.7 Example of load balancing by execution time, of a setup with GPUs of

different speed. 49

4.8 Simplified flow-chart for a Discrete Element Method (DEM) implementation

computed on n Graphics Processing Units (GPUs). 51

5.1 Class diagram of the minimal Simulator interface. 53

5.2 Collaboration diagram of the multi-GPU implementation of the DEM. . . . 55

5.3 Class diagram of the minimal DEMSolver interface. 55

5.4 Dedicated footsteps for the multi-GPU based DEM. 56

5.5 Detailed flow chart with marks for needed synchronization points between

workers . 58

6.1 A view on the test system as used to evaluate the Multi-GPU implementation 61

6.2 Particles falling into a box test case . 62

6.3 Test 1: Sub-domain division for the 1 million particles example 66

6.4 Test 1: Evolution of processed simulation steps per seconds over the process

time for 1 million particles. 68

6.5 Test 1: Evolution of processed simulation steps per seconds over the process

time for 10 million particles. 68

6.6 Test 1: Evolution of processed simulation steps per seconds over the process

time for 50 million particles. 69

6.7 Test 1: Evolution of processed simulation steps per seconds over the process

time for 100 million particles. 69

6.8 Test 1: Evolution of processed simulation steps per seconds over the process

time for 230 and 300 million particles. 70

6.9 Test 1: Performance gain in percent compared from using 1 GPU to 2, 3

and 4 GPUs. 72

6.10 Test 1: Kernel schedule analysis for the 100 million particles example run-

ning on three GPUs . 72

6.11 Test 1: Kernel schedule analysis for the 100 million particles example run-

ning on four GPUs . 73

IX

List of Tables

2.1 Currently available CUDA R©compute capabilities (as of 2016) 8

3.1 Description of data that needs to be shared between simulation and any

observing process . 36

6.1 Specifications of the test system as used to evaluate the Multi-GPU imple-

mentation. 60

6.2 Minimum GPU memory consumption per particle. 63

6.3 Test case variations. 64

6.4 Test 1: Mapping number of particles examples on number of GPUs. 65

6.5 Test 1: Average simulation steps per second. 70

6.6 Test 1: Wall clock times. 70

X

Chapter 1

Introduction

This chapter is intended to give a short overview of this master thesis, which was carried

out in cooperation with the Research Center Pharmaceutical Engineering (RCPE) and

the Institute for Technical Informatics of the Graz University of Technology.

This introduction starts with some words about the motivation and objectives of this

thesis. Adjacent I will give a short explanation of the XPS Project from which this thesis

arises from. At the end of this chapter you will find an outline of the structure of this

master thesis.

1.1 Motivation

Many industrial fields are confronted with the optimization of their production processes.

Especially companies operating in the fast growing market of pharmaceutical, cosmetic

and food industries invest plenty of time and funds in process and prototype development.

Common problems in these areas occur with the need for mostly specialized devices. Such

devices might be used for mixing raw materials (e.g. powders), coating pills with active

and inactive fluids and materials, tablet production (pressing), capsule filling and many

other things.

Over the last centuries computer aided simulations were taking up an important role

in the development stage of such industrial devices. Not only that simulations are able to

vastly improve the development speed of new processes, but they will give also a deeper

understanding on well known methods. A very potent simulation method is the DEM.

The DEM [Cun71], [CS79] is suitable to calculate the overall behavior of arbitrary

particle flows providing really accurate results. Designed to work with discrete elements it

basically acts on all forces emerging from any collisions a single element undergoes. As long

as all major forces from different sources, like gravity, particle collisions or wall collision,

1

CHAPTER 1. INTRODUCTION 2

considered, this method is indeed capable of handling a large number of concrete elements.

Elements can be chunks of any kind, like single well-shaped particles, clumps of particles

but also more or less of abstract type, like used by Smoothed Particle Hydrodynamics

(SPH). The algorithm itself does not care about chunk sizes. So the process will work for

small scale (like in powders) as good as for large ones (like rocks).

Existing commercial solutions are acting mostly on Central Processing Units (CPUs).

Due to the enormous computation effort needed for the simulation of high amounts of

particles, such solutions will reach their reasonable limits in the sub-million range (even

on mid-sized clusters). Other solutions follow a different approach. They use a technology

introduced a few years ago by NVIDIA where massive parallel processors embedded into

commercially available graphic cards can be used to perform miscellaneous computation

tasks. This technology is called Compute Unified Device Architecture (CUDA R©). You’ll

find an introduction about this technology in section 2.2.

However plain particle simulations are often not enough to take account of all industrial

processes. For example, a common production task in pharmaceuticals is to stream fluids

into the treated powders. Therefore, more complex simulations are needed. The good

news is that the DEM can be extended by considering any forces targeting the particles.

So, it is even possible that the introduced forces arose even from other simulations. Such

a simulation using different input sources for their calculations is called coupled.

The RCPE invented a solver using CUDA R© within their academic software eXtended

Particle System (XPS). Although this programs main business is performing particle sim-

ulations on capable graphic cards, it also supports the coupling with a Computational

Fluid Dynamics (CFD) simulation provided by AVL FIRE R©. An introduction about

XPS is given in section 1.3. Additionally, you will find a detailed explanation about XPS

in section 2.5.

1.2 Objectives

The intention behind this thesis is to extend the existing XPS functionality. The first

goal is to provide a procedure to share its simulation outcome with other programs in a

quick and easy-to-use way. Once provided, the technique should enable the use of external

programs providing an online view and analysis of the current internal simulation states.

As a second goal of this work a new DEM solver which utilizes more than one GPU by

time was developed. This method is commonly known by the term Multi-GPU. On the one

hand, this extends the maximal number of particles usable in one single simulation run.

On the other hand, the total calculation time will be decreased for a certain number of

CHAPTER 1. INTRODUCTION 3

particles. As a drawback, massive synchronization issues must be solved and will produce

timing overheads.

Figure 1.1: Simulation of a pharmaceutical mixing device in labor/academic scale. The
blades are rotating with 40 revolutions per minute. Filled in particles are color tagged to
allow a visible evaluation of the mixing quality. Upper-left is the initial state at t = 0s.
From left to right and up to down are snapshots at t = 1s, t = 2s and t = 3s, respectively.
(Source: RCPE GmbH)

1.3 XPS - eXtended Particle System

In 2011 the RCPE started with the development of a software prototype named XPS

within a joint research project together with some industrial partners. The program

acts as a simulation framework embedding DEM based methodologies for usage with

miscellaneous sized particles and varying characteristics. By utilizing CUDA R© compatible

CHAPTER 1. INTRODUCTION 4

graphic cards of the newest generations, with a compute compatibility of 2.0 or higher,

this software takes advantage of cutting edge technology. Real world geometries can be

processed and may act as impenetrable walls. As shown in figure 1.1, allowing single parts

of the geometries to move (e.g. translate or rotate) special devices can be simulated as

well. Furthermore XPS supports coupling possibilities between a running simulation with

the output of a fluid simulation, shown in figure 1.2. The fluid calculation is provided by

AVL FIRE R© which is a dedicated CFD software.

Figure 1.2: Simulation of a pharmaceutical coating device in labor/academic scale, a so-
called Wurster-Coater. The particles get fluidized through the inner tube. Usually there
sits a coating nozzle on the top of the tube - which is neglected here. Filled in particles
are color tagged to allow a visible evaluation of the mixing quality. Upper-left is the initial
state at t = 0s. From left to right and up to down are snapshots as time goes on. (Source:
RCPE GmbH)

CHAPTER 1. INTRODUCTION 5

1.4 Outline

A short overview of the chapters and structure of this thesis is shown here. The first part

is about theory in chapter 2. It shows current state of the art, explaining the DEM and

CUDA R©. Since the implementation part of this thesis heavily depends on them, some

background about Inter-process Communication (IPC) and Program Libraries are given.

A short overview about BOOST C++ libraries (BOOST) is given as well. The theory

chapter ends with an introduction to the simulation framework XPS, showing the current

implementation at start of this work. Especially the implemented DEM methodology is

outlined.

Starting with the first objective (shared simulation data), described in chapter 3, possi-

ble designs are shown and evaluated. Afterwards, the evidently best method is nominated

and a possible implementation is shown. At the end of that chapter the results of this

work is presented. This is done by explaining by the usage and showing some use cases.

The design of the second objective (Multi-GPU DEM) is presented in chapter 4, giving

some background basics and explaining design decisions. Afterward, the implementation

is shown in chapter 5. Test cases and their results are shown, evaluated and discussed

in chapter 6. Finally, discussion about future development and a conclusion are given in

chapter 7.

Chapter 2

Theory

2.1 Discrete Element Method (DEM)

The DEM is a numerical method for computing the stresses and motions of a large quantity

of chunks in a limited space. It was originally designed by Cundall in 1971 [Cun71],

[CS79] for two dimensional spaces only and was adopted to the third dimension later on.

The algorithmic main idea is to handle materials consisting of a set of separate discrete

elements. Those elements exist in a limited volume and get handled by the calculation

method individually, meaning all contacts, impact forces and displacements are calculated

for each particle separately. Mostly all chunks within the simulation space are simplified

as regular spherical particles, but the calculation scheme can be extended to various kinds

of other shaped elements [GWKE14]. Possible shapes as currently available within XPS

are shown in figure 2.10.

The calculation steps are triggered on a time-step based approach successively. All

forces the chunks are exposed to get calculated in each single step. The emerging position

and velocity changes are integrated by a numerical integration scheme solving Newton’s

equations of motion. ~Fi donates the total Force and ~Mi the total torque affecting the

particle i. In addition ~pi and ~Li names the translational and angular momentum of

particle i.

~Fi =
d~pi
dt

~Mi =
d~Li

dt

(2.1)

The time step size depends on the set of particles, used materials and overall properties.

These are for instance the size, shape, stiffness, damping or maximum amount of velocity.

6

CHAPTER 2. THEORY 7

A value of around Tstep = 10−5s might be useful for particle sizes in the millimeter range.

For bigger sized particles a working time step value might be much bigger. In any case a

trade-off between accuracy and calculation speed must be taken. Assume having a value of

Tstep = 10−5s and processing a single step takes 0.1s then calculating a reasonable process

time of 10s will take more than one day (105s).

On initialization time all particles must be positioned in the simulation domain giving

an initial velocity and rotation information if desired. It is advisable that there are no

overlaps between particles in the basic arrangement. Starting from this initial condition

the time-step based method calculates all kinds of forces exposed to the particles. Except

from collision impacts also other influences can be considered, like gravitation or a fluid

surrounding the particles.

As the number of particles increases the complexity of neighbor search used for the

collision detection increases. A trivial algorithm will loop over all particles trying to detect

any existing overlaps by any two particles. Although such an approach might be fine for

low particle numbers (e.g. <1000), it will suffer in terms of speed for larger simulations, as

it shows a time complexity of Θ(n2). Therefore using a feasible neighbor search algorithm

gets important. The approach to increase this limit as followed by XPS is shown in section

2.5.

2.2 Compute Unified Device Architecture

Introduced by NVIDIA in 2006, the CUDA R© is a general purpose massive parallel com-

puting architecture. It enables access to the new computational features of any modern

GPU developed by NVIDIA. Thus software developers can use implementations of this

architecture to solve complex computational problems in a much more efficient way than

on CPUs. CUDA R© imposes new instruction sets and a new programming model to well

known computer languages. The Application Programming Interface (API) extends well

known programming languages by some special functionality and new keywords. In this

section only the binding to the C/C++ programming language will be shown since the

concrete practical part of this thesis uses this language. Anyway nearly all assumptions

on the bindings can be transferred to all other programming languages supported (e.g.

Fortran, JAVA, Matlab or .NET). Since GPUs are currently subject of heavy research and

development efforts, the hardware architectures and CUDA R© are evolving quickly. There-

fore NVIDIA releases new computational capabilities on a regular basis, introducing more

architectural features, like more sophisticated on-device scheduling and parallelism. Table

2.1 shows available architectures and their corresponding computational capabilities.

CHAPTER 2. THEORY 8

Name Compute capability

Tesla

1.0
1.1
1.2
1.3

Fermi
2.0
2.1

Kepler

3.0
3.2
3.5
3.7

Maxwell
5.0
5.2
5.3

Pascal
6.0
6.1

Volta 7.0

Table 2.1: Currently available CUDA R©compute capabilities (as of 2016) (Source:
[NVI18])

2.2.1 Programming Model

The CUDA C Programming Guide [NVI18] defines CUDA R© as a scalable programming

model. Enabling development of application software that transparently scales its paral-

lelism with the increasing number of computation cores. Furthermore CUDA R© keeps the

leaning curve for already experienced C and C++ developers low. Therefore the three key

abstractions (thread group hierarchies, shared memory and barrier synchronization) are

integrated into the C/C++ language. Developers simply have to use newly introduced

keywords to invoke CUDA R© related operations.

Kernels

For the C/C++ programming language CUDA R© allows the software developer to de-

fine some specialized functions. Those are called kernels. A kernel is defined using the

global declaration specifier. When a kernel is called it gets executed N times in par-

allel by N different CUDA R© threads. In difference to a normal C function which would

only be executed once. Beside the global also device and host spec-

ifiers exist. The device keyword determines solely device sided callable functions

which can be called from a kernel only. Beside that, the host keyword determines

functions callable from CPU threads only.

CHAPTER 2. THEORY 9

By using a special execution configuration syntax (<<<. . .>>>) the developer can

specify the number of blocks, the thread count (N) per block, the size of shared memory

and a CUDA R© stream the kernel should be executed on. For convenience only the first

two parameters are mandatory. If not given the shared memory size will default to zero

and the stream to be used is the default stream.

Listing 2.1 illustrates a simple kernel call. Two vectors A and B of size N are added

together by N different threads. Each thread is given a unique thread ID that is accessible

within the kernel through the built-in threadIdx variable. This ID is used to determine

the elements a thread should work with. The output is stored into the vector C.

1 // The ke rne l : each thread execute s one pair−wise add i t i on

2 g l o b a l void VecAdd(f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C) {
3 // Get cur rent index

4 i n t i = threadIdx . x ;

5 C[i] = A[i] + B[i] ;

6 }
7

8 i n t main () {
9 // Create data ar rays on GPU and prepare data

10 . . .

11 // Execute the kerne l , N times us ing one s i n g l e b lock

12 VecAdd<<<1, N>>>(A, B, C) ;

13 . . .

14 }

Listing 2.1: Simple CUDA C kernel

Thread and Block Hierarchy

In the CUDA R© programming model threads are defined as independent run-able instances

utilizing exact one single core within a Streaming Multiprocessor (SM, SMX). This is

analogous to the programming model on the host sided CPU core. A single thread is

always bounded into a so called thread block. Blocks can be arranged in one-, two- or

three-dimensional matters. Therefore the threadIdx is a 3-component vector identifying

the explicit position of a thread within its block. A natural way of invoking computation

across different shaped structures, such as a vectors, matrix or volume is achieved by doing

so.

For a one-dimensional block the thread ID is given by the x component of the threa-

dIdx vector. For a two-dimensional block of size (Dx, Dy), the thread ID of a thread

with index (x, y) is given by (x + yDx) and for three dimensions (Dx, Dy, Dz) by

(x + yDx + zDyDx) respectively.

CHAPTER 2. THEORY 10

Since all threads of a block reside on the same processor core sharing the limited

processor resources, the maximum number of threads per block is bound by architecture

details. Currently available GPUs support up to 1024 threads per block. Anyway, a kernel

can be executed by multiple equally-shaped thread blocks. Therefore the total number of

executable threads equals the number of blocks multiplied by the number of threads per

block. Thread blocks are organized within one-, two- or three-dimensional grids as shown

in figure 2.1

Figure 2.1: Grid of two-dimensional thread blocks organized in a two-dimensional grid
(Source: [NVI18])

CHAPTER 2. THEORY 11

CUDA Thread Synchronization

Within a single thread block threads can cooperate with each other. This is done by

sharing data through a special shared memory block. Therefore the programmer can

specify explicit synchronization points within the kernel by calling the syncthreads()

intrinsic function. This acts as a barrier at which all threads in a block have to wait until

all others have reached this point. The shared memory is expected to be of low-latency

near each processor core.

Memory Hierarchy

In CUDA R© different memory regions are defined which can be accessed by threads either

in a read-write or a read-only manner, as shown in figure 2.2. Each thread has its own

register set and some local memory with private access only. Every thread block shares a

general purpose memory along all of his threads. This is the shared memory region. On

the most recent architecture in 2015, the implementation year of this work, this region

had a size of 96kB per block. This was compute capability 5.x (Maxwell).

The global memory region is the biggest memory block on the GPU. This region is

globally accessible from every thread belonging to any block. Recent graphics cards, e.g.

the Titan X, have global memory resources of 12GB or more.

Beside the read-write-able memory also two read-only memory regions exist. Those

are the constant and texture memory spaces. As the name suggests, constant data should

be placed into the constant space. Those might be pointers to huge data structures

residing in the global space or various steady configuration variables. Through the texture

cache read-only requests to the global memory can be accelerated. Additionally textures

provide addressing calculations, e.g. transparent interpolation, are offered for arrays.

Global, constant and texture regions are persistent across kernel launches by the same

application.

Streams and Events

To enable more concurrency within the execution progress the CUDA R© programming

model introduces so called Streams. A Stream is defined as a sequence of operations that

execute in the same order as they are issued, similar to a pipeline. Usually all operations

issued to a CUDA R© capable card are scheduled in a special Stream, known as the NULL

Stream or Default Stream. The architecture allows to schedule a set of Streams to do

multiple things in parallel, as long as the required resources are available. By default

a single card can execute a device kernel and run up to two memory copy processes

CHAPTER 2. THEORY 12

Figure 2.2: CUDA memory hierarchy (Source: [NVI18])

in parallel. One copying data from host to device and the second from device to host.

However, since the introduction of compute capability 2.0+ (FERMI) streams may also

be used to address concurrency between kernel executions, as long as there are unused

resources. So, in theory it is possible to utilize a single card completely, nowadays. Listing

2.2 shows such an example. Figure 2.3 shows a possible execution order as well, as the

situation would look like if stream concurrency is not used.

CHAPTER 2. THEORY 13

1 // Assume we have two host s ided ve c t o r s ∗h a∗ and ∗h b∗ and two

2 // dev i c e s ided once ∗d a∗ and ∗d b ∗ . We now want to make a H2D copy from

3 // ∗h a∗ to ∗d a∗ and a concurrent D2H copy from ∗d b∗ to ∗h b ∗ .
4 // Also , we w i l l address concurrency f o r our two ke rn e l s .

5 // There fore we use four cuda streams ∗ s1 ∗ , ∗ s2 ∗ , ∗ s3 ∗ and ∗ s4 ∗ .
6 // Assume there i s no (!) data dependency .

7

8 // t r i g g e r H2D copy async (s1)

9 cudaMemcpyAsync (h a , d a , s i z e o f (h a) , cudaMemcpyHostToDevice , s1) ;

10

11 // t r i g g e r ke rne l execut i ons async (s2)

12 ke rne l 1 <<< gr id , block , smem, s2 >>> () ;

13 ke rne l 2 <<< gr id , block , smem, s3 >>> () ;

14

15 // t r i g g e r H2D copy async (s4)

16 cudaMemcpyAsync (d b , h b , s i z e o f (d b) , cudaMemcpyDeviceToHost , s4) ;

Listing 2.2: Using Multiple CUDA Streams

As a special feature the default stream is always guaranteed to be synchronized with

all other streams. Therefore, it is advisable to disclaim the use of the default stream

if one wants to exploit stream concurrency. In contrast there is absolutely no implicit

synchronization between all other streams. To circumvent this situation CUDA R© defines

some explicit synchronization methods. The first is cudaDeviceSynchronize. This

function blocks host execution until all work in every used stream is finished, preventing

the host program to issue more work to any stream. Another, not so restrictive, method is

cudaStreamSynchronize which blocks host execution until all work in a specific stream

is done. It can be said that both methods act as barriers for the host side only.

To use more convenient synchronization methods, CUDA R© implements so called

Events. Applications can record events to any stream, to keep track of progress within that

certain stream. All events work by writing a shared memory location when all previous

submitted work on the stream is done. By querying the event (cudaEventQuery) one

can introduce specific synchronization points within streams. Furthermore, events can also

be used to measure GPU execution time of work portions. Therefore, events use a high res-

olution in device’s hardware to store a trigger time stamp. The elapsed time between the

triggering of two events can be elected through by the use of cudaEventElapsedTime.

[NVI18], [Neu13], [Wil13], [Ren11], [Har12]

2.2.2 Hardware Implementation

In general a CUDA R© capable GPU is built around a certain number of SMs. A SM uses the

little-endian representation. If a kernel is called for a specific grid size, all execution blocks

CHAPTER 2. THEORY 14

Figure 2.3: CUDA stream concurrency, possible device side execution sequence in case
of sequenced execution (Serial) compared to concurrent execution (with multiple streams)
(Source: RCPE GmbH)

are enumerated and distributed to the multiprocessors with free execution capacity. All

threads of a thread block execute concurrently on the same multiprocessor. Also, multiple

thread blocks can execute on the same multiprocessor in parallel. Once thread blocks

finish work new ones will be launched on the abandoned processors. Therefore a GPU

containing more SMs will often execute a program faster than one having less computing

units. Figure 2.4 shows how a multithreaded program is split into a set of thread-blocks

and distributed to all available SMs.

Single-Instruction Multiple-Thread (SIMT)

Since a multiprocessor is designed to run hundreds of threads in parallel it is built on a

unique architecture called Single-Instruction Multiple-Thread. Every SM creates, man-

ages, schedules and executes threads in groups of 32. This is called a thread warp, which

is the smallest execution unit in CUDA R©. All threads within a warp start together at the

same program address and they are constrained to execute the same low level operation

at the same time. But each thread has its own instruction address counter and register

state. Therefore they are free to branch and execute independently. As a warp executes

the same instruction for all of its threads, full efficiency is realized only if all of its 32

threads agree on their execution path. Therefore branching inside single thread warps will

cause stalls which will decrease computation speed directly. [Kre11], [NVI18], [Wil13]

CHAPTER 2. THEORY 15

Figure 2.4: Dynamic thread-block assignment to available SMs (Source: [NVI18])

2.2.3 Multi-GPU

CUDA R© has always supported multiple GPUs. Systems with several GPUs generally

contain motherboards with two or more GPUs plugged in. There are also special GPUs,

implementing a PCI Express bridge chip featuring multiple GPUs on the same board (e.g.

GeForce GTX 690, GeForce Titan Z). Furthermore, a multi-GPU experience might also

be exploited by having concrete computer nodes containing its own GPUs.

Single-Threaded Multi-GPU (ST-MGPU)

Till the release of CUDA R© 4.0 each GPU has to be controlled by a separate CPU thread.

For workloads that require a lot of CPU power, this was never very onerous. However, for

programs that do not require multiple CPU threads at all this fact adds additional, mostly

unwanted, IPC duties. So, by using a modern CUDA R© runtime, a single thread can drive

multiple GPUs. Therefore, it has to keep track of the currently used GPU and needs to

switch between the GPUs as needed. This is done by calling the cudaSetDevice function.

The most important advantage of this method is that one does not need to keep an eye on

pitfalls which can occur in a multi-threaded/process environment. This includes locking

and race condition issues. As a drawback it has to be stated that managing multiple GPUs

CHAPTER 2. THEORY 16

in one single thread will cause the program code to get much more complicated.

Multi-Threaded Multi-GPU (MT-MGPU)

As already said, workloads that require a lot of CPU power can also utilize a set of GPUs in

separate CPU threads. So, the full power of modern multi-core processors can be unlocked

through multi-threading. As for the single threaded approach each thread has to be sure

that its GPU is currently set as active device. That requires some inter-thread locking

methodologies. Finally spoken, multi-threading just for driving multiple GPUs might add

tremendous locking and inter-thread communication issues, but it might simplify the code

base and reduce controlling overheads.

Multi-Process Multi-GPU (MP-MGPU)

As for the multithreaded approach it is as well possible to use multiple GPUs within

a program splitting its work on several CPU processes. Like for normal multi-process

programs one has to implement interprocess communication, such as Massage-Passing

Interface (MPI). Beyond that, a multi-process-multi-GPU implementation will not differ

that much from the multithreaded approach. At least every CPU process might utilize its

assigned GPUs in a multithreaded way as well. So, the biggest advantage of porting multi

GPU programs to many computing nodes is that it will give one a tremendous boost in

speed and maximum problem size. [NVI18], [Wil13]

2.2.4 Thrust

Thrust, developed by NVIDIA and shipped within its parallel execution toolkit, is a

remarkable and overall useful extension to the CUDA R© functionality. It provides a C++

template library based on the Standard Template Library (STL), which is indeed fully

interoperable with CUDA R© C. By using this high level interface it only takes a minimum

of effort to implement a maximum performance parallel application. Basically Thrust

defines two template based container object types. The first one (thrust::host vector<T>)

is host side based and the other one resides on the device. Except from their GPU binding

both of them are truly comparable to their STL relative (std::vector<T>). The usage of

this vectors hides any nested calls to low level functions like cudaMalloc, cudaFree and

cudaMemcpy behind their object oriented API.

Additionally Thrust brings in generic and fast algorithms for data manipulation of

parallel primitives, like scan, sort and reduce. Since all algorithms work for both provided

vector types, they can be composed together and extended by own ones implementing

CHAPTER 2. THEORY 17

concise and readable source code. The data exchange procedure is simplified by the use of

class operators. Listing 2.3 shows how Thrust simplifies CPU and GPU data utilization

seamlessly.

In earlier CUDA R© versions Thrust calls always used the default stream only. That

leads to some performance issues if Thrust based algorithms were used in implementations

driving multiple execution streams. In newer versions, this problem is solved. Now, there

is an implementation using cuda::par.on(stream) do support multiple streams [NVI15].

1 // i n i t i a l i z e random va lues on host

2 th rus t : : ho s t vec to r<int> h vec (1000) ;

3 th rus t : : generate (h vec . begin () , h vec . end () , rand) ;

4

5 // copy va lue s to dev i c e

6 th rus t : : d ev i c e ve c to r<int> d vec = h vec ;

7

8 // compute sum on host

9 i n t h sum = thrus t : : reduce (h vec . begin () , h vec . end ()) ;

10

11 // f i nd extremas on dev i ce

12 i n t d min = thrus t : : min element (d vec . begin () , d vec . end ()) ;

13 i n t d max = thrus t : : max element (d vec . begin () , d vec . end ()) ;

Listing 2.3: Simple Thrust Example

Figure 2.5: Example views of the NVIDIA Visual Profiler (Source: NVIDIA)

CHAPTER 2. THEORY 18

2.2.5 CUDA Profiling Tools

Profiling is of major interest when it comes to performance and runtime optimization. To

ease the process of profiling CUDA R© code the toolkit comes with a easy-to-use profiling

tool, called NVIDIA Visual Profiler (nvvp). This tool is a cross-platform performance

profiling tool. It delivers vital feedback for optimizing CUDA C/C++ applications to the

developers and supports guided application analysis. A sample view of the tool is given

in figure 2.5.

2.3 Inter-process Communication (IPC)

From time to time concurrent running processes need to communicate and exchange data

with each other. A well known example is the communication of a web-server with a web-

browser. In that case the data transfer is usually handled through sockets using dedicated

routes within a network. Such connections are two-way based, because the client explicitly

requests resources that are delivered by the server afterwards. Beside that also one-way

communication schemes exist, like a pipe or FIFO (short for First-In-First-Out). However,

every time two processes communicate with each other this is called IPC.

2.3.1 Shared Memory

A pretty simple IPC method is shared memory. In principal it allows two or more processes

to access the same memory region, as shown in figure 2.6. Shared memory is a very fast

way to exchange data. In a nutshell, the operating system will only map the same Random

access memory (RAM) pages into each participating process. This makes access to it as

fast as for a process’ non-shared memory, and it does not require any additional system

calls to the operating system kernel. Therefore, any modification done by any thread will

be seen by all others immediately. Note, that this avoids unnecessary data copies which

might be very resource intensive.

To use shared memory one process has to allocate a shared memory segment, using

a dedicated system call. Once this is done all other processes desired to use the segment

have to attach to it. This is done by executing an other system call. After usage of the

shared memory, for instance all participating processes finished their work, one of them

has to deallocate the segment.

Since shared memory resides in global RAM and all processes gain direct access to

it there is no implicit synchronization logic. This means that multiple threads should

not write to the same location at the same time. Doing so will lead to race conditions

CHAPTER 2. THEORY 19

causing unexpected and undetermined program behavior. To circumvent this situation

the programmer has to take care of inter-process synchronization by himself.

Figure 2.6: Multiple processes map to same shared memory region (Source: RCPE
GmbH)

2.3.2 Resource Locking

Race Condition

Whenever multiple concurrent threads or processes use a shared resource, like dedicated

data structures in a shared memory segment or shared devices, it is required to coordinate

their accesses to it. Neglecting upcoming synchronization will lead to undefined or unde-

termined behavior. For example, suppose that two concurrent running threads will write

to the same memory location, at the same time, and read from that location afterwards.

Imagine the first thread writes ’A’ and the second one writes ’B’ to the memory. Now we

have two cases. In the first one each of the two threads will not interrupt each other. So,

the first thread will write and read ’A’ and the second one does the same with ’B’. In the

other case, one of the threads will interrupt the other one right after the write command.

The interrupting thread will now override the data and both will read the last written

value. Figure 2.7 illustrates the mentioned case.

Deadlock

A deadlock determines a situation where two or more actors wait for the other to finish. To

show how simple a deadlock situation can occur, consider two concurrent processes. Both

where developed independently, but they are designed to fulfill the same task, printing

pressed keyboard letters directly to a printer. They need to take a lock on each of the

two resources. Now imagine, that one tries to take the keyboard lock first and the other

attempts to take the printer lock at first. This will work as long as not both processes

held the locks at the same time. If, at any point in time, one process holds the lock for the

CHAPTER 2. THEORY 20

Figure 2.7: Race condition, two threads using same memory resource (Source: RCPE
GmbH)

keyboard and the other one has already acquired the lock for the printer, both processes

will stall on waiting for the other one to release his locked resource.

SpinLock

A very primitive synchronization method is the SpinLock. The thread, that likes to acquire

the lock, simply waits in a loop (”spin”) until the lock is free, as shown in listing 2.4. Since

the thread is doing nothing useful while waiting for the resource to become available, this

is a kind of ”busy waiting”.

1 // a c t i v e wait u n t i l r e s ou r c e i s f r e e

2 whi l e (! spinLock . f r e e ()) ;

3

4 // acqu i r e a lock to the r e s ou r c e

5 spinLock . acqu i r e () ;

Listing 2.4: Thread try to acquire a SpinLock

Mutex

A Mutex is another method to resource locking. Although it is used like a SpinLock it

does not introduce the problem of ”busy waiting”. In current implementations, regarding

to hardware support, whenever a thread tries to acquire a locked Mutex it is sent to sleep.

While a thread is sleeping it is ignored by the scheduler. Once the Mutex is released the

CHAPTER 2. THEORY 21

sleeping thread gets woken up by the scheduler again, and can try gain now exclusive

access to the shared resource again.

Condition Variable

A Condition Variable is a synchronization primitive that enable threads or processes to

wait until a certain condition occurs. Since a naive approach by just keep checking a value,

will lead to race conditions a Condition Variable needs to be used together with a lock,

protecting the shared resources. A well known example to this is the Producer-Consumer

problem. Here the Producer creates data and puts it into a FIFO as long as the FIFO is

not full and needs to be blocked while the FIFO is full. On the other hand, the Consumer

takes elements from the FIFO as long as the FIFO is not empty and needs to be blocked

while the FIFO stays empty. Listing 2.5 shows a basic solution for this problem, using a

FIFO, two Condition Variables and a Mutex.

1 F i f o f i f o ;

2 Mutex lock ;

3 Condit ionVar iab le empty ;

4 Condit ionVar iab le f u l l ;

5

6 producer {
7 whi l e (t rue) {
8 lock . acqu i r e () ; // acqu i r e l ock f o r i n i t i a l check

9 // i f f i f o i s f u l l , wait u n t i l e lements got removed

10 whi l e (f i f o . f u l l ())

11 wait (f u l l , l o ck) ;

12 produce (f i f o) ; // produce something

13 no t i f yA l l (empty) ; // no t i f y consumer

14 lock . r e l e a s e () ; // r e l e a s e the lock

15 }
16

17 consumer {
18 whi le (t rue) {
19 lock . acqu i r e () ; // acqu i r e l ock f o r i n i t i a l check

20 // i f f i f o i s empty , wait u n t i l e lements got i n s e r t e d

21 whi l e (f i f o . empty ())

22 wait (empty , l o ck) ;

23 consume (f i f o) ; // consume

24 no t i f yA l l (f u l l) ; // no t i f y producer

25 lock . r e l e a s e () ; // r e l e a s e the l ock

26 }

Listing 2.5: The producer-consumer problem solution with two

ConditionVariables and one Mutex

CHAPTER 2. THEORY 22

Barrier

A Barrier is a synchronization primitive used in parallel computing. It is used when an

algorithm, which is executed by multiple threads or process, needs to define a certain point

of synchronization that needs to be reached by all actors before continuing. So, a Barrier

in source code means that all threads or processes have to stop at this point and send to

sleep by the scheduler. If all actors have successfully reached the synchronization point,

they get waken up again and will continue. Therefore, a Barrier holds a counting variable,

that is increased as long the number of waiting members is not reached. When the count

reaches the given number of members to be wait for, all of them are released again and

the count is set to zero again.

2.3.3 Message-Passing Interface (MPI)

MPI donates a portable and standardized programming model for IPC. Providing an

easy to understand API it is used widely in computer science for parallel computing tasks.

Having convenient C and Fortran bindings, it brings generalized process synchronization

and data exchange methods to many vendor platforms, without the need of significant

changes in the underlying communication and system software. [oT15] [MS01] [TB14]

2.4 Program Libraries

Within an enlarged meaning the term program library may involve different types of li-

braries, like source files, macros, object- or bytecode and tools. In terms of software

development, a program library is the collection of non-volatile resources. This means

subprograms and -routines in many cases. Those software parts often implement special-

ized functionality like algorithm and specific methods. Once provided within a library

object it makes them reusable in widen field of different software solutions.

Depending on the operating system and the development solution a program library

might be delivered in several ways. It could consist of either a single file or a directory

containing multiple library files. An other method is do collect several libraries of different

types inside on single file. This can be called as a library database. Last but not least the

term program library does not need to explicitly name a library file. In that case some

reusable components might be saved as single executable files providing standard routines

on data manipulation. An example for a Linux shell processing some input data through

a set of independent executables is shown in listing 2.6.

CHAPTER 2. THEORY 23

1 #!/ bin / sh

2 # s p l i t s t r i n g in to tokens separated by ’ ’ , take the second f i e l d and

3 # remove any exclamation marks

4 $> echo ’ He l lo !WORLD! ! ’ | cut −d ’ ’ −f 2 | sed −e ’ s /\ !∗// g ’

5 WORLD

Listing 2.6: Use executables as algorithm resources in a (linux) shell

For the ’in source’ usage within a specific software tool a concrete connection to the

providing library have to exist. The linkage and binding is resolved by specialized tools

called linker or binder. Library resources can be jump addresses or other routine calls and

get resolved into fixed or relocatable addresses. Conceptually two different approaches are

possible as shown in figure 2.8.

2.4.1 Static Linking

The method of static linking is performed during the creation process of an object file,

a library file or an executable. Sometimes this it also referred as early binding. Within

static linking all of the modules needed by the compilation are copied into the created

object. This is called a static build. As an advantage a statically linked executable might

not need any other resources. Otherwise the resulting object size will be bigger than by

using dynamic linking. Furthermore the linking has to be redone when any of the modules

are recompiled.

2.4.2 Dynamic Linking

In contrast to static linking the process of dynamic linking does not copy the needed

resources into the output file. Rather, only a reference to the containing library is added

to the application file. This might include the full file path or just a simple file name, as

shown in listing 2.7. On execution time this dependency is resolved by an dynamic loader

trying to find and link the libraries resources. By using dynamic linking executable sizes

will shrink and redoing the link process does not have to be done so often. Otherwise this

method introduces some overhead while run time. [Jon08]

CHAPTER 2. THEORY 24

Figure 2.8: Static vs. dynamic linking for the Linux operating system. (Source: [Jon08])

1 #!/ bin / sh

2 $> ldd . / a . out

3 l inux−vdso . so . 1 (0 x00007ffd2b11b000)

4 l i b s t d c++.so . 6 => / l i b 6 4 / l i b s t d c++.so . 6 (0 x00007 fcb73 f f2000)

5 libm . so . 6 => / l i b 6 4 / libm . so . 6 (0 x00007fcb73c f0000)

6 l i b g c c s . so . 1 => / l i b 6 4 / l i b g c c s . so . 1 (0 x00007fcb73ad8000)

7 l i b c . so . 6 => / l i b 6 4 / l i b c . so . 6 (0 x00007fcb73717000)

8 / l i b 6 4 / ld−l inux−x86−64. so . 2 (0 x000055e16f7 f6000)

Listing 2.7: Dynamic linkage of a simple ”Hello World”-executeable (64bit linux

system)

2.4.3 The BOOST C++ Libraries

BOOST provides a set of libraries for the C++ programming language. With first version

released in 1999 BOOST currently offers more than eighty individual libraries. The main

goal of all included sub-libraries is a gain in efficiency for the C++ development. There-

fore it brings independence of the used operating system by building up an abstraction

layer. Additionally it supplies well known and approved solutions for recurring tasks and

introduces quiet a lot of useful data structures. Most of its libraries are header only based

but a few of them provide independent library objects as well. Main parts consist of

inline functions, templates and macros giving a huge impact on efficiency and flexibility.

CHAPTER 2. THEORY 25

Since BOOST is implemented on a high standard and its founders closeness to the C++

standards committee, several BOOST libraries already found their way into modern C++

standards. The following BOOST libraries are used heavily within this thesis execution.

Algorithm A collection of general purpose algorithms

Container Implements several well-known containers

Interprocess Simplifies the use of common interprocess communication

and synchronization mechanisms

Smart Pointer A collection of general purpose smart pointers

Thread Enables the use of multiple threads of execution with shared

data in portable C++ code

For a full list of libraries provided by BOOST see the BOOST homepage at http:

//www.boost.org/.

2.5 XPS - eXtended Particle System

2.5.1 Overview

XPS (figure 2.9) is a software developed at the RCPE together with some industrial

partners, since 2011. It embeds DEM based methodologies for usage with miscellaneous

sized particles and varying characteristics. The program utilizes CUDA R© compatible

graphic cards of the newest generation and is capable of performing large scale simulations

with more then fifty million particles in reasonable time. E.g. a simulation with 50 million

particles will proceed about 0.5 steps/s on a single modern GPU (e.g. a Titan X).

Figure 2.9: The XPS Logo (Source: RCPE GmbH)

http://www.boost.org/
http://www.boost.org/

CHAPTER 2. THEORY 26

Although having huge particle numbers is a nice attribute at all, the framework

provides many more features. Real world geometries supplied via files encoded in the

STereoLithography (STL) format can be processed and may act as impenetrable walls.

Allowing single parts of the geometries to move (e.g. translate or rotate) special devices

can be simulated as well. Figure 1.1 shows such an device within the simulation. As

another remarkable feature XPS provides a method to process a so called coupled sim-

ulation. In this case the plain particle simulation can be coupled with the output of a

fluid simulation. This calculation is provided by AVL FIRE R© which is a dedicated CFD

software. On the one hand XPS uses the provided fluid information to let additional forces

act on the particles (e.g. drag- and pressure-forces). On the other hand some material and

simulation characteristics of the solids acting as source terms in the fluid phase. Figure 1.2

shows an example application. Additionally a spraying module is available which enables

the simulation of so called coating processes, which are often used in combination with

one of the above methods.

2.5.2 Current Implementation

Acting as a framework the program is build up on a modular basis. The current imple-

mentation of XPS is split into a set of more or less independent parts, making it easily

extendable. Core components are split into a small set of libraries, making their usage as

independent as possible. A generalized configuration methodology, based on command-

line parameters and input files, enables an easy and flexible way of parameterization. The

common management kernel binds a specific, but exchangeable, simulation component

to the core components. Currently, specialized simulator kernels have to be provided by

dynamically linked libraries, but a solution using at run-time loadable simulator objects

can be introduced with minor effort. This makes XPS working as a plug-in system.

By now, XPS provides a DEM as well as a SPH simulation kernel, which are under

massive development. The DEM simulation kernel is capable to work on a set of different

shaped particles, as shown in figure 2.10. Those particles can be modified and parametrized

as well, by using shapes and materials from an editable databases. Via a certain plug-in a

connection to a host-sided CFD simulation, provided by AVL FIRE R© can be established.

For post-processing reasons all simulation output is provided via result files which can

be written at dedicated time steps. An integrated live-viewer makes it possible to take

a look at the current state of the simulation. Furthermore, a post viewing application is

available which makes it possible to view and analyze existing simulation outcome.

The next section gives an introduction to the basic DEM methodology as implemented.

Note, that special models, like SPH, might differ from them by a little.

CHAPTER 2. THEORY 27

Figure 2.10: Particle shapes available in XPS. From left to right and top to down single-
sphere, multi-sphere, true-shape tablets and polyhedrons are shown. (Source: RCPE
GmbH)

2.5.3 Implemented DEM Algorithmic

In section 2.1 the DEM was already outlined. When it comes to huge particle numbers

it has been shown that a trivial solution suffers in terms of speed because of algorithmic

complexity. Therefore special attention has to be given especially on the neighbor search

part. In XPS algorithmic the DEM workload is subdivided into successive phases. A

preparation phase is done to determine regional relationships between all particles. After-

wards the collision phase calculates all forces exposed to each single chunk. Finally the

integration phase sums up all forces and calculates the local displacement and new particle

velocities and rotation.

Preparation Phase

Although, the DEM itself is a grid-less-method logical-grids (mostly uniformed) are used

for detecting regional relationships between the chunks. A necessary precondition for these

CHAPTER 2. THEORY 28

logical grids is that their cell edge sizes exceed the maximal elongation of all particles inside

the simulation domain in each direction. It has to be said that in an optimal case particle

sizes should not diverge intensely. Figure 2.11 shows such a uniformed grid containing

some spherical particles for a two dimensional world. The particles use the grid to gain

information of their direct neighbors. In this figure the blue balloon detects those other

balloons marked with the green check as direct neighbors. On the other hand, the one

having marked with the red cross is not detected as a neighbor.

Figure 2.11: Spherical objects sorted into a uniformed grid (Source: [Kar12])

As a precondition a certain set of vectors is needed for the preparation step:

• hashes - holding a scalar value determining cell affiliation; size is equal to the number

of particles in grid domain

• indices - holding particle indices and linking them to their belonging hash values;

size is equal to the number of particles in the grid domain

• cellstart - determining the starting indexes of sorted hashes and particle indices in

the above vectors; size is equal to the number of cells of the grid

The grid cells of the uniformed logical grid are subsequently indexed in each dimension.

For a two dimensional grid this would be {x, y} and {x, y, z} for a three dimensional

world, respectively. Based on that indexing scheme and giving the maximum number of

CHAPTER 2. THEORY 29

cells in each direction a hash value can be calculated via

cPos.xyz =

⌊
pos.xyz − worldOrigin.xyz

cellSize.xyz

⌋
hash3d = cPos.z · gridSize.y · gridSize.x + cPos.y · gridSize.x + cPos.x

(2.2)

Note that the hash value is unique for each grid cell and leads to a linear indexing scheme

of all cells. We will call this the ”cellid”. For each particle the corresponding cellid is

calculated and written into the hash vector at array index particle id. Furthermore the

indices array is filled up by an linear sequence over the particle ids. The cellstart vector

needs to be initialized with a value ”InvalidHash” which is bigger than the maximum

value for cellid. Afterwards a key-value sort is done over the hash and indices vectors.

The values in the hash are the keys and the indices as values. Now having the hash values

in an ascending order the start indices for the cells can be determined easily. Note the

found indices in cellstart correspond to the changes of values in the hashes array. Figure

2.12 shows the described actions. Now having the cellstart filled up each particle can

easily determine all particles in their own and their neighbor cells. For two dimensional

domains this will give a total of nine cells or twenty-seven for three dimensions, respectively.

Although the described method of logical grids is commonly used there are other ways

to retrieve regional relationships. For instance the usage of a method called Bounding

Volume Hierarchy (BVH) makes the algorithm independent from particle size divergences.

Possible implementations are described by Kureck ([Kur16]) or Karras [Kar12].

Figure 2.12: DEM Preparation phase: From particles in cellspace to cellstart vector
(Source: RCPE GmbH)

CHAPTER 2. THEORY 30

At last it has to be said that the preparation step is not fundamentally needed for the

force calculation itself, rather it is done in order to minimize the overhead for neighbor

detection of all particles. Basically it minimizes the run-time complexity for the neighbor

search from Θ(n2) to Θ(k · n), with k � n.

Collision Phase

Within the collision phase each particle computes the total amount of force and torque

affecting it separately. Based on information of the preparation phase the collision kernels

are called for all possible collisions, like particle-particle and particle-walls collisions. From

an algorithmic view, a single thread is running for each particle on the utilized GPU. As

outlined in figure 2.13 for the particle-particle collision, each thread first determines its

associated clump and evaluates its cell position, as given from the preparation phase.

In the three-dimensional simulation world each particle now checks its own and the 26

neighbor cells. Given the current cell identification as a three component index x, y, z,

the 27 cells to check can be determined as shown in equation 2.3.

x + xi, xi ∈ [-1, 1]

y + yi, yi ∈ [-1, 1]

z + zi, zi ∈ [-1, 1]

(2.3)

Next, the cell under process has to be checked if it is outside the world. If so it will

be not processed and the algorithm proceeds with the next one. Since all clump are given

through a sorted vector, based on the cell indices, the first particle in the cell is indexed

by information from the cellstart vector. If this index is invalid (”InvalidHash”) the cell

does not contain any particles and the process continues with the next cell. A valid index

will now point to the first particles in the examined cell. Now the algorithm iterates

through all sequenced particles until the hash value, which determines the corresponding

cell, changes or it reaches the end of the vector, which is of length numParticles. Because

the cell containing the current particle, given by xi = yi = zi = 0, is checked as well, this

case has to also be proven. This prevents the force calculation of a particle with itself, as

this will be certainly wrong to do. For all remaining possible collision partners, the thread

now calculates the upcoming collision forces using a linear spring/damper model, as shown

in figure 2.14. All resulting forces are summed up in a single three component vector, per

particle. If the simulation accounts for rotation information as well, the upcoming torque

has to be calculated and considered too. Therefore, a second force vector is needed.

For collisions with any given geometry the collision calculation has to be done as well.

CHAPTER 2. THEORY 31

Figure 2.13: DEM Collision phase - neighbor search via uniform grid (Source: RCPE
GmbH)

Because each geometry is given as a set of triangles, all triangles have to undergo the

preparation phase. This associates each of them with their linked cells. Now, a unique

kernel is called in which all particles check and calculate all upcoming collisions with the

triangle set, similar to the particle-particle collision process.

CHAPTER 2. THEORY 32

Figure 2.14: The spring/damper model that is used for particle collisions (Source:
[Rad06])

Integration Phase

The last phase in XPS’ DEM algorithmic is the integration phase. Given all acting forces

and torques, for all particles, a single integration kernel is started for all particles. As

shown in equation 2.4, by knowing the current time-step size (dt), the current velocity

(~v) and the angular velocity (ω), the position (~p) and the rotation angle (~a) vectors are

updated at first.

~pi+1 = ~pi + ~vidt

~ai+1 = ~ai + ~ωidt
(2.4)

By transforming the equations given in 2.1 into terms shown in 2.5 with knowing

the particle mass (m) as well as the time-step size, each thread now calculates the delta

velocities for his corresponding particle. Note, that especially the equations for the rotation

component are valid for spheres solely.

d~vi =
~Fi

m
dt

d~wi =
~Mi

m
dt

(2.5)

If set, the influence resulting from the acting gravitational force (~G), as shown in equation

2.6, is calculated as well. Note, that the gravitational component can be chosen freely and

CHAPTER 2. THEORY 33

might be zero or directed to any direction.

d~gi = ~Gdt (2.6)

At the end of the integration phase the new translational and rotational velocities are

summed up as shown in equation 2.7.

~vi+1 = ~vi + d~vi + d~gi

~ωi+1 = ~ωi + d~ωi

(2.7)

[Neu13], [JSRK13], [RGK10], [Rad06]

Chapter 3

Shared Simulation Data

3.1 Design

The main goal of this task is to extend the XPS framework to share all data of a running

simulation with other processes in real time. Therefore, some kind of IPC needs to be

implemented. This section will give an overview over design thoughts related to this task.

Possible methods are outlined and evaluated for their practical application.

3.1.1 Pipes

To share the data among concurrent programs a link has to be created between their

processes. An easy-to-use and very common method on doing this to create a pipe in

between. By chaining the processes’s standard streams, connecting the ones output stream

to the others input stream, pipelining provides one-way communication only. Since it is

required that the simulation processes can receive control commands and does not only

provides its data, two-way communication is needed. Therefore, the pipeline method is

not applicable here.

3.1.2 Streams

By using streams and sockets a two-way communication can be achieved. This technique

is used when a server communicates with a client, for example. Although the use of this

method might solves the problem of the two-way communication there is another fact to

be considered in this design process. Every time when data needs to be send through a

stream it needs to be copied on the one hand and also do not have to be altered while it

is not completely send. Since the amount of data that needs to be shared might get very

huge, this circumstance will block the simulation process while the data is passed through

34

CHAPTER 3. SHARED SIMULATION DATA 35

the stream. Additionally, fast data updates might happen and will make it necessary to

resend the whole data set again.

3.1.3 Shared Memory

As illustrated in section 2.3.1 shared memory is a method that can be used to share ones

process data among a certain number of other programs easily. It uses dedicated mem-

ory segments containing arbitrary data structures, which are mapped into the processes

virtual memory. Therefore unwanted and time-consuming memory copies can be reduced

by this technique. Since all data shared via such a segment shows up in all attending

processes, which might be far more than just two, at the same time, shared memory can

be used for inter-process synchronization also. This makes the shared memory method

most appropriate for the given task.

3.1.4 Actual Design

The principal duty in case of any shared memory implementation is on operating systems

side. Therefore, any process, wanting to use shared memory, has to register his needs by

the operating system. The main idea is to build some infrastructure around the low-level

shared memory management and pack it into a single library to make is reusable by the

different players. Ideally, the whole shared memory communication can be integrated

seamlessly into the available code base. By this means a single developer should not need

to know anything about shared memory at all.

At this point BOOST’s library on inter-processing needs to be mentioned here. It

already contains an implementation for shared memory which is almost operating system

independent. Basically the usage of this library requires that a set of steps are needed

to be taken. First the shared memory segment has to be created or opened, if it already

exists. Then the segment needs to mapped into the process’s address space. Afterwards

data can be placed into the segment or read from it. A basic example is given in listing

3.1

CHAPTER 3. SHARED SIMULATION DATA 36

1 i n t main (i n t argc , char ∗argv [])

2 {
3 //Create a shared memory ob j e c t .

4 shared memory object shm (c r ea t e on ly , ”MySharedMemory” , r e ad wr i t e) ;

5 // Set s i z e

6 shm . t runcate (1000) ;

7

8 //Map the whole shared memory in t h i s p roc e s s

9 mapped region reg i on (shm , r ead wr i t e) ;

10

11 //Write a l l the memory to 1

12 std : : memset (r eg i on . g e t add r e s s () , 1 , r eg i on . g e t s i z e ()) ;

13 // Do some work . . .

14 // cleanup i f needed

15 shared memory object : : remove (”MySharedMemory”) ;

16 re turn 0 ;

17 }

Listing 3.1: Basic usage of BOOST shared memory implementation

3.2 Implementation

Thoughts on the design of this task and possible methods for realization where already

discussed in section 3.1. Based on that, this section will describe what the implementation

actually looks like.

3.2.1 Define data to be shared

At first all data that needs to be shared has to be defined. Therefore a data structure has

to be created holding all simulation data and extend it with necessary metadata as shown

in table 3.2.1.

Type Description

Particle data (dynamic) position, velocity and rotation information

Particle data (static) identification, shape and material

Geometry data (dynamic) per obstacle STL triangle set

Geometry data (static) simulation world, boundaries and obstacle trans-
formation description

Time step data time step timings, like step size, start and end
times

Configuration general simulation settings, like gravity

Table 3.1: Description of data that needs to be shared between simulation and any ob-
serving process

CHAPTER 3. SHARED SIMULATION DATA 37

From a single particle view the current state information like position, velocity and

rotation is needed on the one hand. On the other hand static information, as that is

the identification number, shape and material characteristics is needed additionally. For

definition of the simulation world, characteristics information about the bounding box

is needed. Furthermore, the wrapping triangle set described by a STL geometry and

information about geometry movement is needed for every solid obstacle within the simu-

lation, as well. Last but not least simulation configuration and dynamic data as time step

information and settings are shared too.

In the current implementation all of this data is collected within a single object instance

called XPSConfig. As a single point of information it implements the Singleton design

pattern. It is used within the whole program and therefore it is already implemented in a

thread-safe way.

3.2.2 The data sharing infrastructure

Making the data sharing method highly integrable is one if the most important goals within

this task. Therefore, an infrastructure is created that gives access to the data regions in

a seamless way. By providing a self-contained program library the implementation effort

is lowered on developers side. An easy-to-use access pattern, through program options or

command line arguments, allows any user to enable the sharing option on program start.

Wrapping the general implementation

As outlined in section 3.1.4 the BOOST library on inter-processing is used. Therefore,

a new infrastructure, encapsulating this library is created, giving access to the shared

memory regions. It is build of up by two parts.

The first part of the introduced infrastructure is a managing object, called SHM Holder.

It is implementing the Singleton design pattern to act as a central point of access. This

object provides two ways to access the wrapped general shared memory implementation.

By the use of the first one a new shared memory region can be created. The other one is

to open a previously created region, or load it respectively.

Introducing a static allocator

Beside the managing object a way for dynamically allocating memory within the shared

region needs to be defined. Therefore a allocator class, called MutableAlloc, is introduced.

This class implements a easy to use interface for allocating memory either in the mapped

shared memory region or the normal process heap. For this it implements static, template

CHAPTER 3. SHARED SIMULATION DATA 38

based, access methods for the allocation and deallocation of memory. Where the memory

resides is defined by an initial step. How this new infrastructure is initialized is shown in

listing 3.2.

1 std : : s t r i n g shm = ”MySharedMemory” ;

2

3 i f (c r ea t e shm reg i on)

4 {
5 // c r e a t e a shared memory reg i on i f r eques ted

6 // s e t 2GB as d e f au l t

7 std : : s i z e t shm s ize = 2.1475 e+09;

8 SHM Holder : : I n i t (shm size , shm) ;

9 }
10 e l s e i f (l oad shm reg ion)

11 {
12 SHM Holder : : Open(shm) ;

13 }
14 e l s e

15 {} // nothing to do

16

17 // in any case we need to i n i t i a l i s e MutableAlloc i n s t an c e s here ,

18 // s i n c e they a l l use the same SegmentManager we can use any templated

19 // ve r s i on o f MutableAlloc here

20 // Note : i f SHM Holder was not i n i t i a l i z e d e x p l i c i t l y

21 // std : : a l l o c a t o r (Heap) w i l l be used

22 MutableAlloc<char > : : I n i t (SHM Holder : : SegmentManager ()) ;

23

24 // Note : the SegmentManager can be a l t e r e d l a t e r on , to support

mu l t ip l e

25 // shared memory r e g i on s or to switch to Heap memory

Listing 3.2: Initialization and usage process of the SHM Holder and MutableAlloc

class

Placing data in the shared memory region

As mentioned before all necessary data is already held by the XPSConfig class. The

singleton instance of this class now needs to be placed into the shared memory region, or

loaded from it respectively. Therefore, the current instantiation method is extended. The

original GetInstance method now accepts an optional parameter for the segment manager

to use. To allocated memory dynamically into the shared memory region the previous

defined allocator class needs to be utilized. For initialize object creation it is needed to

forward the outcome of the allocation, which is the memory address, to a placement new

call. Note, that there is the possibility of a named and a anonymous creation. The named

one is used if the object should be directly locatable by any other process. For example,

CHAPTER 3. SHARED SIMULATION DATA 39

this is used to locate the main XPSConfig object. The process of placing the context

object into shared space and allocating memory accordingly is shown in listing 3.3.

1 // assume the SHM Holder and MutableAlloc c l a s s e s

2 // are i n i t i a l i z e d proper ly

3

4 i f (l oad shm reg ion)

5 {
6 // i f we want to load from SHM we need to search

7 // f o r an in s t ance c rea ted p r ev i ou s l y

8 XPSConfig : : F indInstance (SHM Holder : : SegmentManager ()) ;

9 }
10 e l s e

11 {
12 // c r e a t e s XPSConfig in SHM i f SHM Holder i s i n i t i a l i z e d ,

13 // otherwi se Heap i s used

14 XPSConfig : : GetInstance (SHM Holder : : SegmentManager ()) ;

15 }
16

17 // . . .

18 // get d i r e c t a c c e s s to the a l l o c a t o r in use

19 void ∗ a l l o c = SHM Holder : : SegmentManager () ;

20

21 // c r e a t e a named s t r i n g in shared memory

22 std : : s t r i n g ∗ s t r 1 = r e i n t e r p r e t c a s t<boost : : i n t e r p r o c e s s : :

managed shared memory : : segment manager∗>(a l l o c)−>construct<std : :

s t r i ng >(”MyString”) (”My St r ing Content”) ;

23

24 // c r e a t e an anonymous ob j e c t in SHM

25 std : : s t r i n g ∗ s t r 2 = new(MutableAlloc<std : : s t r i ng >() . create anonymous ())

std : : s t r i n g (”My St r ing Content”) ;

26

27 // . . .

28 // c l ean up ob jec t s , i t ’ s the same f o r named and anonymous ob j e c t s

29 MutableAlloc<std : : s t r i ng >() . remove anonymous (s t r 1) ;

30 MutableAlloc<std : : s t r i ng >() . remove anonymous (s t r 2) ;

31 // here we need to des t roy the s i n g l e t on

32 XPSConfig : : Destroy () ;

Listing 3.3: Place the XPSConfig object in shared memory and create new objects

there

3.2.3 View and update simulation data

To observe a simulation, the process now needs to initialize its data within the shared

memory region. Contrariwise, the observing process has to load the simulation context

from the same space. The code needed for that is shown above and an example is given

in the results, section 3.3. To provide continuous updates of the simulation data, a simple

CHAPTER 3. SHARED SIMULATION DATA 40

command-response protocol was implemented. With that the observing process can either

change a predefined refresh rate or directly request an update of the data at any time.

Note, that updates of the simulation data can only be done directly after a simulation

time-step was finished and the next one has not started yet. Since the simulation is

running in concurrent threads (see chapter 5) additional synchronization work between

the data management code and the simulation algorithmic is required.

3.2.4 Deploy as program library

To lower the developers effort on implementing an consumer application, like for viewing,

data forwarding (e.g. over TCP/IP), online analysis or similar, the implementation is

packed into a program library. When used, either linked dynamically or statically, access

is given to the shared memory by just initializing the SHM Holder class and search for

an existing XPSConfig object in shared memory. Similar as shown in the listing above.

Afterwards, all shared simulation can be accessed in the consuming program, by querying

the XPSConfig object.

For the case that it is needed to place other objects into the shared memory region, the

allocator implementation is provided as well. Since it consists mostly of template based

code it is shared as a source only library.

3.2.5 Command line arguments

As stated before, some new command line arguments and program options where intro-

duced, allowing an user to enable the data sharing routines. The new options are shown

below.

• shm - no argument - use shared memory, default name is ”XPS {PID}”, where PID

is the process id given by the operating system

• name-shm - name - use/create the shared memory block identified by name, implies

the smh option

• load-shm - name - load the shared memory block identified by name, implies the

smh option

3.3 Results

To show the basic functionality of the suggested implementation an arbitrary simulation

can be started. The only thing that has to be done is to actually use the given functionality.

CHAPTER 3. SHARED SIMULATION DATA 41

How this is obtained will be shown below. Additionally, a side by side view of the old

internal simulation viewer and a connected one will be presented as well.

3.3.1 Usage

At first the simulation process has to be instructed using the data sharing functionality.

This is done by passing one of the newly introduces command line arguments shown in

section 3.2.5. The execution line is shown below in listing 3.4. After this call the simulation

starts to run with calculation settings given in the xps.config file. Furthermore, the process

will register a shared memory segment named XPS Test.

1 $> xps −−c on f i g xps . c on f i g −−name−shm XPS Test

Listing 3.4: Call to XPS for using shared memory

On the other hand, the remote viewer application needs to be adjusted to connect to

the shared memory segment. This is done within the graphical user interface settings as

shown in figure 3.1. Afterwards, the current simulation outcome, from the running XPS

process, will be shown within the remote viewer.

Figure 3.1: Connect Live Simulation (Source: RCPE GmbH)

3.3.2 Example

At the bottom of the settings window, as shown in figure 3.1, the refresh rate for updating

the current data in shared memory can be adjusted. In this example it is set to one

second. Note, that this means simulation time and not real time. So, for example, by

using a time-step size of 10−5s by the simulation, an update will be triggered after every

CHAPTER 3. SHARED SIMULATION DATA 42

ten thousand simulation steps. This setting might be altered later on.

Figure 3.2: Left internal deprecated viewer, right external live viewer (Source: RCPE
GmbH)

Figure 3.2 shows a running simulation within the built-in, deprecated viewer on the

left side and the newer remote capable user interface on the right side. As it can be seen,

the view is the same on both sides. The simulation running in the background was at

0.75s simulation time.

Chapter 4

Multi-GPU DEM - Design

The use of multiple GPUs for exploiting an additional level of parallelism, requires struc-

tural and logical changes in the original implementation of the XPS algorithmic outlined

in section 2.5. Currently, the algorithm works on a single particle set bounded to exactly

one single GPU utilized by one CPU thread. This procedure was absolutely fine until now,

but is inappropriate for further multi-GPU implementations. This chapter is mentioned

to give an overview through design thoughts for this particular task.

4.1 Subdividing the simulation world

The main idea for utilizing multiple GPUs within the existing DEM implementation is to

split the upcoming computational burden across all utilizable devices. The DEM algorithm

used in XPS is strictly sequential in its time step based iterations and all particles have

a spatial locality. While using the grid based particle localization approach, as presented

in 2.5.3, the split might be done along any cell boundary. We will call such a boundary

a halo. For the DEM, dealing with concrete particles only, each halo needs to have a

thickness of one grid cell on every side of the boundary.

4.1.1 Choosing a reasonable sub-division

Although, any closed path might be used for domain separation, not all of them will make

sense. For example, a split, along an arbitrary path of cell boundaries, as shown in figure

4.1 for the 2D domain, is not wise to choose. In the shown situation, a single GPU has

to deal with multiple halos in multiple dimensions, all of them rather small in size. This

gives the need to calculate and dispatch all information for each halo separately, giving a

tremendous additional workload to each GPU.

43

CHAPTER 4. MULTI-GPU DEM - DESIGN 44

GPU 0

GPU 1 GPU 2

Figure 4.1: Splitting a 2D domain along an arbitrary path of cell boundaries (Source:
RCPE GmbH)

Therefore, it is wise to split the domain along planes consisting of cell boundaries.

When having multiple splits, which means using three or more GPUs working on the

same domain, splits as shown in 4.2 might be suitable. Here the simulation domain is

divided along planes in the vertical and horizontal directions. As a drawback it has to be

mentioned that now each sub-domain may has a boundary plane in every dimension (up

to three for a three dimensional simulation world). As stated before, this will also increase

the algorithmic and computational effort needed for handling the halos.

GPU 0

GPU 1

GPU 2

Figure 4.2: Splitting a 2D domain along vertical and horizontal planes (Source: RCPE
GmbH)

So the perfect split will be along one simple dimension for all sub-divisions, as shown in

figure 4.3. In this configuration each GPU has to handle only a maximum of two halos for

CHAPTER 4. MULTI-GPU DEM - DESIGN 45

its assigned sub-domain. Both aligned with the same axis, making the algorithmic effort

as low as possible. Assuming all cells are enumerated with one most significant axis and

the split plane chosen along this axis, such a configuration will give additionally memory

accesses enhancement on a single GPU. By occupying contiguous memory areas for the

halo planes, the number of needed memory transfers is reduced, as shown by [RBH+14].

GPU 0

GPU 1

GPU 2

Figure 4.3: Splitting a 2D domain along vertical or horizontal planes (Source: RCPE
GmbH)

4.1.2 Subdivision overlap and halo distribution

As shown in the sections 2.1 and 2.5.3 each particle needs to know all of its direct neighbors

at each time step. This means, the GPU, on which the particle currently resides on, must

be able to access all the needed information. If the particle resides in the inner part of

the assigned sub-domain, this is no problem at all, since all of the information required

resides in local GPU memory. On the other hand, if the particle currently stays within a

domain halo, the GPU needs to access the halo information shared by the neighbor GPU

as well. As mentioned before the halo thickness needs to be two grid cells wide, having

a thickness of one grid cell on each associated sub-domain on both sides. The overlap is

pictured in figure 4.4. [DCVB+13]

The halo information has to be shared in every time step. There are two communication

steps needed. At the beginning of each time-step, the preparation takes place. Within this

step all particles positions are evaluated and they are sorted into the grid. Afterwards all

particles residing in a halo have to be collected and distributed to the neighbor GPU. At

the end of a time step calculation all particles leaving the sub-domain need to be detected

and transferred into their new domain. If having all sub-division boundaries bound to

CHAPTER 4. MULTI-GPU DEM - DESIGN 46

Figure 4.4: The boundary between two sub-domains on grid cell layer, with the halo
highlighted in red. (Source: RCPE GmbH)

planes parallel to an major axis, as described above, the detection of a leaving particle

can be fulfilled by just checking the crucial position component. The described process

is pictured in figure 4.5, for a two dimensional simulation world split in the x-direction.

[RBH+14]

4.2 Hiding GPU memory transfers

To provide all neighboring sub-domains with the updated positions of halo particles two

data transfers have to be done in every time step. Since direct GPU-GPU memory com-

munication is not an option for the available cards, while doing this thesis, all memory

transfers needed to be queued through the hosts RAM. This will introduce a significant

overhead slowing down the overall computational speed.

To avoid this problem, one can exploit the hardware capability to perform concurrent

computations and data transfers. By using asynchronous work queues, provided by the

asynchronous API of the CUDA R© platform, transfers can be started as soon as the needed

data is ready. As described in the theory section about the CUDA R© programming model

2.2.1, we can use events and streams for doing so. Additionally the asynchronous approach

can be used to parallelize smaller and independent computational workloads also. This

will give an extra performance gain in some situations. What can exactly be done will be

shown in the thesis part about the implementation in chapter 5. [Yua13], [RBH+14]

CHAPTER 4. MULTI-GPU DEM - DESIGN 47

GPU 0 GPU 1

T X

T0

T1

T2

T3

0 1 2-1-2

Figure 4.5: A single particle traveling to another GPU domain (Source: RCPE GmbH)

T0: Px = 1.5 Particle is known to the right sided domain solely

T1: Px = 0.5 Particle entered the halo recently and is shared with the left
domain

T2: Px = −0.5 Particle left the right sided domain and was transfered to the
right one. Since it is located in the halo region, it is still shared with the
right domain

T3: Px = −1.5 Particle is known to the left sided domain solely

4.3 Load balancing

In the ideal case, the whole workload is distributed to all available GPUs equably. Assum-

ing the halo distribution, in detail the data exchange, slows done all participating GPU

by the same factor, then the speed-up of the multi-GPU is linear to the total number of

GPUs used.

Analysis show that most of the time is spent during force calculation. The per particle

workload which is needed for this step depends heavily on how many neighbors the particle

has. By processing a certain amount of particles on a single GPU, the total time the device

will need to perform a single time step is directly proportional to the mean number of

neighbors per particle. Due to the Lagrangian nature of the DEM, particles move through

space during the simulation is running. Therefore, ideal load balancing, giving a linear

speed-up is rather hard to achieve.

For utilizing all available GPUs the whole simulation world needs to be split into a

set of sub-domains. One for each device. At simulation start all sub-domains should

CHAPTER 4. MULTI-GPU DEM - DESIGN 48

contain the same amount of particles, if all of the used computing devices obtain the same

computational power. Otherwise the number of particles for a single sub-domain should

be proportional to its computing capacity. Attention, has to be given to the total available

memory of the used device, because in any case the particles simulation data has to fit

into device memory.

GPU 0 GPU 1 GPU 2

1 million 1 million 1 million
Number of

 Particles

8 ms 22 ms 18 ms
Execution

 Time

1.5 million 0.7 million 0.8 million
Number of

 Particles

12 ms 15.4 ms 14.4 ms
Execution

 Time

T0

T1

1 million 1 million 1 million
Number of

 Particles

8 ms 22 ms 18 ms
Execution

 Time

T2

X

Figure 4.6: Example of load balancing by particle number, of a setup with GPUs of
different speed. (Source: RCPE GmbH)

Two different load balancing algorithms can be used now. The first one assures that

always the same amount of particles is assigned to all sub-domains. This algorithm is

suitable if all used GPUs have the same computing power. The example in figure 4.6

shows how the algorithm works. Note, that GPUs with different speeds where choosen

do show the infeasibilities of this simple method for optimizing the execution time. First,

all three sub-domains contain the same amount of particles. After a certain number of

time steps the particle count diverges. Now a balancing action is executed. The task is

to move sub-domain boundaries to equalize the particle count over all domains. It can be

CHAPTER 4. MULTI-GPU DEM - DESIGN 49

seen, that the situation at time T1 is more ideal in respect to simulation time, than the

equalized situation at time T2.

The other possible balancing algorithm optimizes the total per time step execution

time over all devices. A weighted average of computing time per simulation step over a

suitable number of steps is measured per device. The average should be used, because a

single time step might present high fluctuations on execution time. As stated above this

is due to the mean number of particle-particle interactions within a single domain. After

a defined number of steps, these values are evaluated and further load balancing actions

are triggered. It has to be noted, that this algorithm will not unify the computation time,

over all sub-domains, by a single execution. But it will equalize the workload over the

total simulation time, increasing the overall performance. It can be easily seen that this

algorithm binds more process time then the first, simpler one, but it is more adaptive and

therefore best suitable for devices with different computational capacities.

GPU 0 GPU 1 GPU 2

1 million 1 million 1 million
Number of

 Particles

8 ms 22 ms 18 ms
Execution

 Time

1.5 million 0.7 million 0.8 million
Number of

 Particles

12 ms 15.4 ms 14.4 ms
Execution

 Time

T0

T1

1.65 million 0.6 million 0.75 million
Number of

 Particles

13.2 ms 13.2 ms 13.5 ms
Execution

 Time

T2

X

Figure 4.7: Example of load balancing by execution time, of a setup with GPUs of
different speed. (Source: RCPE GmbH)

CHAPTER 4. MULTI-GPU DEM - DESIGN 50

Figure 4.7 shows an example on how this method will balance the workload for two

computing devices. The number of steps used for averaging is five. Used weights are the

same for all samples w = 1
5 . The balance action is executed every five time steps. Similar

to the example before, the workload diverges over time. After the balancing step, the

execution times of the next step are adjusted. [DCVB+13] [RBH+14]

4.4 Possible implementations

Based on the given DEM implementation shown in section 2.5.2, the algorithmic should

be extended to run on multiple GPUs in parallel. As stated in section 2.2.3 there exist

three different methods on how multiple GPUs can be utilized from a host program.

Figure 4.8 shows a simplified flow-chart of all steps needed in the multi-GPU Discrete

Element Methods simulation. Computational tasks that might be running in parallel

are already drawn side by side. All needed synchronization steps are shown explicitly.

Execution tasks that needs to be synchronized on two or more GPUs are shaded light

green. Synchronization that has to be done for a single device only is shaded light blue.

In the first step, temporary time step information needs to be cleared. This is acting

forces, grid mapping, halo information and so forth. No synchronization needs to be done

afterwards since the next step, which is preparation, needs to be done for each sub-domain

solely. After synchronization all particle positions will be known. Now, the simulation can

be split into two execution paths. The one is colliding all particles within the domain,

including all halo particles. Since all calculation outcome is hold internally, this step does

not need inner synchronization.

The other path has to exchange the halo information with the neighboring GPU at

first. This needs two internal synchronization steps. The first has to synchronize directly

after downloading from the GPU memory for exchanging data through host memory.

The second synchronization has to take place after the actual transfer. Consider this

two synchronization steps are needed per single halo. So a sub-domain having two halos

will need four synchronization points. After successful data exchange each halo needs to

calculate all collisions happening halo-internally.

Before the integration step, all calculations regarding particle collisions within the

domain must be completed. Therefore, every computing device has to be synchronized

internally. After, the integration is fulfilled the second halo-exchange step is performed.

All particles leaving their domains have to be detected. By using a halo division as shown

in figures 4.3 and 4.4, domain split parallel to an single axis, this step is computational

inexpensive. The only thing that needs to be done, do detect a leave, is to check if

CHAPTER 4. MULTI-GPU DEM - DESIGN 51

Figure 4.8: Simplified flow-chart for a DEM implementation computed on n GPUs.
(Source: RCPE GmbH)

the particle is outside of its domain in the split direction. Since a particle should not

move further than about ten percent of the grid edge size, only particles located inside

a halo have to be checked here. Detected displaced particles now have to be transferred

to the neighbor GPU, where they will enter the sub-domain. This requires the same

synchronization points, as the previous halo exchange. The last step that needs to be

taken is load balancing. This requires additional synchronization, due to the implemented

algorithm as specified in section 4.3.

CHAPTER 4. MULTI-GPU DEM - DESIGN 52

4.4.1 Single-Threaded Multi-GPU (ST-MGPU)

As stated in the theory section about multi-GPU, it is possible to drive multiple GPUs

from a single CPU thread. To do so, the controlling thread needs to know all information

about the current simulation and the state of all GPUs under it’s control. Having such a

single authority prevents the need of IPC among multiple players, as this has to be taken

in focus for the other two methods.

One the other hand, it can be easily seen that the GPU synchronization overhead

prevalences really quick as the number of used GPUs increases. This is because all com-

puting devices have to be checked for their current state on an periodic base. It is needed

to react on all changes specially but in respect to the state of all other devices. This makes

the code base even more complex and introduces algorithmic overhead at the expense of

process time.

4.4.2 Multi-Threaded Multi-GPU (MT-MGPU)

In contrast to the single threaded approach, the multi-threaded multi-GPU method re-

moves nearly all inter GPU synchronization issues. Additionally, one might gain further

CPU sided performance by doing host side tasks in parallel, like host sided memory copies.

Since one GPU is driven by a single CPU thread the handling of computing devices is

much simpler here. The algorithmic just needs to query the simulation steps one by one

into the execution pipe. So the prior needed GPU synchronization will be transformed

into host sided synchronization tasks, for which a form of IPC is needed.

4.4.3 Multi-Process Multi-GPU (MP-MGPU)

If multi-threading is not suitable or the used GPUs are distributed to different physical

computing nodes, connected by an network, multi-process multi-GPU can be implemented.

If so all IPC has to be done on process level. An implementation using MPI is described

by [Yua13].

Chapter 5

MultiGPU DEM - Implementation

The basic properties for a multi-GPUs implementation of the DEM method where al-

ready given in the design chapter 4, where the basic ideas behind the implementation had

been described. Based on this ideas, this chapter is supposed to show what the explicit

implementation of the DEM algorithm on a multi-GPU system could look like.

5.1 Preliminary work and re-factoring of the existing code

After deep analyses of the existing implementation, as presented in section 2.5, the existing

code base was undergoing a huge re-factoring step. The monolithic calculation part got

extracted and made more configurable and reusable. Thus, a base class of an abstract

concrete simulator object, simply called Simulator, was implemented. This class defines a

specialized interface to address time-step based algorithms, as shown in figure 5.1.

<<abstract class>>

Simulator

+Simulator(in id,in configuration)

+IsInitialized(): bool

+Init(): void

+Reset(): void

+Finalize(): void

+Update(in dt:float): void

+RetrieveActSimulationData(out simulationData,in what): bool

+ProcessCommand(in command:Command): bool

Figure 5.1: Class diagram of the minimal Simulator interface. (Source: RCPE GmbH)

53

CHAPTER 5. MULTIGPU DEM - IMPLEMENTATION 54

After creating a simulator object it has to initialized with an configuration object

through the Init() function. In almost the same manner, Reset() will set all internal data

back to there default state and Finalize() will finish an ongoing simulation. After suc-

cessful initialization the Update(dt) routine is mentioned to be triggered at each time-step

to calculate the next algorithm step, with a step size of dt. Through the ProcessCom-

mand(command) interface the simulation can be altered while processing. Therefore, a

command has to be submitted between two algorithmic steps. Finally, the RetrievAct-

SimulationData(simulationData, what) method is used to retrieve the current simulation

data, like particle positions, velocity and others.

The existing single-GPU DEM-solver was re-implemented along with the existing ex-

isting CFD-coupling. With a new algorithmic design of the managing core-parts of the

XPS software it is now possible to run multiple simulators in parallel. This characteristic

is now used by the CFD-DEM co-simulaton two.

5.2 Top-Down view

As shown in the collaboration diagram in figure 5.2, a multi-GPUs solver is implemented

based on the new simulator interface. The multi-GPU simulator object instruments a

certain amount of concrete workers. One for each used GPU. Note, in a more developed

version of the a multi-GPU simulator the worker to GPU arrangement and the number of

used graphical units might not be fixed and may change over time. Due the complexity of

such an implementation and the inconsiderable implications on this thesis such a feature

is not implemented.

Stated previously in chapter 4, about the design of this task, the three dimensional

simulation domain is split into clusters of cubic forms. The size of this blocks is affected

directly by the algorithm and outcome of load balancing. A single block, and all particles

within it, is always hard bounded to a single GPU. Particle data is organized in a special

data structure. For that reason, all objects located in a given block form a particle set.

Subsequently, a worker obtains ownership of the particle set assigned to its correlated GPU

and block, respectively. The worker now executes the DEM algorithm on this particles. To

do so the worker class instruments a list of highly specialized solvers, which are explained

below.

5.2.1 Algorithm solvers

To be able to proceed the DEM algorithmic in a step wise manner so called solvers where

introduced. A solver is an object that implements the DEMSolver interface, given in figure

CHAPTER 5. MULTIGPU DEM - IMPLEMENTATION 55

Figure 5.2: Collaboration diagram of the multi-GPU implementation of the DEM.
(Source: RCPE GmbH)

5.3. This abstract class looks similar to the Simulator interface shown before. Therefore

it is suitable for being used within the time-step based algorithm of the DEM, too.

<<abstract class>>

DEMSolver

+DEMSolver(in id)

+Init(in config:Configuration): void

+Reset(): void

+Finalize(): void

+Update(in dt:float,inout data:Simulation Data): void

Figure 5.3: Class diagram of the minimal DEMSolver interface. (Source: RCPE GmbH)

CHAPTER 5. MULTIGPU DEM - IMPLEMENTATION 56

As indicated by figure 4.8, dedicated footsteps, presented in figure 5.4, can be extracted

for the multi-GPU based DEM. By having a specialized solver for each dedicated footstep,

the whole calculation is split into small parts, that can be run subsequently and, if pos-

sible, in parallel. A solver comprises the algorithm to fulfill one or more of the presented

footsteps. So, a particular list of specific solvers will solve a complete DEM time-step if

executed in the right sequence. The solver execution is triggered by calling the update()

method. Furthermore, this design allows easily replacement of used algorithmic details, as

exploiting cell based or BVH based [Kur16] methods within the preparation phase. The

solvers used in this implementation, as shown in figure 5.2 are explained below.

Figure 5.4: Dedicated footsteps for the multi-GPU based DEM. (Source: RCPE GmbH)

Prepare solver

Described in the sections 2.1 and 2.5.3 (preparation phase), the DEM itself is a grid-

less-method. But for the faster detection of local relationship of the particles, some kind

of helper method might be used. This can be local grids, the BVH method, describe

by [Kur16], or any other suitable technique. The class of preparation solvers are used to

provide and apply the chosen procedure onto the particle set. The delivered data structure

for the regional correspondence vary with the method used. Therefore, all subsequent

solvers, using the outcome, have to have support for the technique chosen.

Collide solver

A collision solver needs to work on the information provided by a preparation solver, as

shown before. To detect all collisions happening, the solver needs to check all neighbors

for all particles. This can be done in parallel for all particles. Once a collision is detected,

interacting forces are calculated and added to the resulting force and momentum vectors

CHAPTER 5. MULTIGPU DEM - IMPLEMENTATION 57

for the particle observed. This procedure is described in section 2.5.3 (collision phase)

in detail. It may happen, that other solvers, like the halo solvers, work in parallel on

the same particles at the same time. Especially the mentioned class of halo solvers will

calculate interacting forces too. Therefore, all additions to the resulting vectors need to

be done in a thread-safe way. A method to do so is using the atomic functions provided

by CUDA R© as described by [NVI18].

Halo solver

By splitting the simulation domain into separate blocks halo spaces arise, like illustrated

in section 4.1.2. The class of halo solvers are responsible to solve the special tasks bound

to this spaces. A halo solver will first collect all particles in his observed halo space

and exchange this information with the related halo solver of the neighboring simulation

domain and vice versa. After receiving the neighbor information, the halo solver needs

to do a collide step for all particles within his control and all of the particles in the

adjacent halo. This is done similar like the collision solver does this, because localization

information is exchanged as well. After the integration step of the DEM, it is also in the

hand of a halo solver to collect all particles leaving the simulation domain block and hand

them over to the domain they are entering.

Integration solver

After having all forces, for all single particles in the observed domain, summed up an

integration solver is used to calculate the new particle positions, velocities and rotation

information. This is done by starting a calculation per particle, solving the equations and

doing the steps as described in section 2.5.3 (integration phase).

5.3 Multi-Threaded implementation

Due to the design decision by having each GPU used controlled by only one single worker

object it makes sense to use a multi-threaded approach of the host-sided code base. So,

each worker runs as an own thread, with its own context, controlled by the simulator

object. As mentioned in section 4.4, IPC techniques, like locking of data-structures and

synchronization, with methods described in section 2.3, are needed.

As shown in figure 5.5 synchronization is needed between the workers and the control-

ling simulator object. All workers have to communicate with their neighbors when doing

data exchanges. This is needed for solving the halo specific tasks, like exchanging halo

CHAPTER 5. MULTIGPU DEM - IMPLEMENTATION 58

domain particles information, especially. Therefore, the communication has to be syn-

chronized after collecting and sending this information, like marked in light green within

the figure. Additionally, global synchronization between the managing simulator object

and all workers need to be done at certain points, marked in light blue.

Figure 5.5: Detailed flow chart with marks for needed synchronization points between
workers. (Source: RCPE GmbH)

5.4 Optimizing execution speed

When it comes to speed optimization of GPU code execution, there are two things to

needed to be counted for. On the one hand, transferring data from a GPU to the CPU

or the other way around, is expensive in terms of bandwidth and time. On the other

CHAPTER 5. MULTIGPU DEM - IMPLEMENTATION 59

hand, small kernels, executed just for a few threads, may not fully utilize a GPU core. If

so, a CUDA R© core will have space for executing other kernels in parallel. Both of this

issues can be addressed by using CUDA R© streams for parallel execution and events for

synchronization, like described in section 2.2.1.

5.5 Load balancing

As stated in section 4.3 load balancing is needed to equalize the execution time over

all GPUs used. Therefore, the execution time of each time-step is recorded for each

worker separately. After a certain number of time-stamp loops, an averaged time value

is calculated for each worker. Now a factor is evaluated between all workers and as a

consequence the sub-domain blocks, assigned to the used GPUs and workers, are shifted

and resized. To prevent that shifting gaps are getting too large, the load balancing is

done every 32 time-steps. Additionally to prevent particles falling out of any simulation

sub-domain while load-balancing is done, the resize difference must not bigger than half of

the diameter of the smallest particle used. By considering this, particles that might leave

the domain while balancing, will be still considered in the next time-step loop and leave

the sub-domain accordingly.

Chapter 6

Multi-GPU DEM - Results

This chapter shows the results of this thesis implementation of the Multi-GPU objective.

As a start, the used test system is described. Afterwards, results for two improvement

characteristics introduced by this work are shown. The first one targets on pure perfor-

mance gains that where achieved. The other shows how the Multi-GPU approach can

increase the maximum number of particles per simulation.

6.1 The Test System

For testing the suggested implementation a potent test system is needed. Since it was

available during this thesis execution time, a Multi-GPU blade, built by TYAN, was used.

Although, this system offers space for up to eight GPUs driven by two CPUs only four

GPUs where available during the test phase. Table 6.1 shows specifications of the test

system. A picture of the system is given in figure 6.1.

Model name Tyan GPU Barebone B7079F77CV10HR
Operating System CentOS 7, Kernel 3.10
NVIDIA Driver 352.63 stable
CUDA version 7.5.18
CPU 2 x Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
Memory 128 GB DDR4
GPUs 4 x NVIDIA GeForce Titan X (Maxwell)

Table 6.1: Specifications of the test system as used to evaluate the Multi-GPU implemen-
tation.

60

CHAPTER 6. MULTI-GPU DEM - RESULTS 61

Figure 6.1: A view on the test system as used to evaluate the Multi-GPU implementation,
featuring four GeForce Titan X GPUs driven by two Xeon(R) CPUs. (Source: RCPE
GmbH)

6.2 The Test Case

To get detailed insights on the suggested implementation a basic test case was chosen. As

shown in figure 6.2, the test example consists of a regular box and a pack of spheres falling

into it. This is like pouring marbles into a transport box. On the one hand, this is a very

realistic and practical example. On the other hand it is very computation intensive too.

6.2.1 Evaluation Of Memory Usage

To get knowledge about how many particles can be simulated on a dedicated GPU, the

memory consumption of a single particle has to be evaluated first. For the simple test

case, that was used for the evaluation of performance optimization, as shown in section

6.3, each particle needs a set of variables. Those variables are shown and explained in

table 6.2.

CHAPTER 6. MULTI-GPU DEM - RESULTS 62

Figure 6.2: Particles falling into a box test case, with one million particles at different
process times. (Source: RCPE GmbH)

CHAPTER 6. MULTI-GPU DEM - RESULTS 63

Name Type Bytes Explanation

id uint64 8 unique particle id
species uint32 4 a value masking the shape type and material of the

particle
position float4 16 current position of the particle in the simulation

world (x, y, z) and the shape scale/size (w)
velocity float4 16 current velocity of the particle (x, y, z)
force float4 16 current force acting on the particle (x, y, z)

Total 60 Bytes

Table 6.2: Minimum GPU memory consumption per particle.

A float4 determines a special vector type introduced by CUDA R©, as shown in listing

6.1. It consists of four float values (x, y, z, w). To optimize memory throughput it has to

be known that a warp coalesces all accesses into one or more memory transactions. Those

depend heavily on word sizes, which should be aligned as 1, 2, 4, 8 or 16 bytes. Since

the float4 consists of 16 bytes in total, this data type is optimized for usage on GPUs.

Therefore this type should be preferred, even if other structures will match the data-layout

better. [NVI18]

1 s t r u c t d e v i c e b u i l t i n b u i l t i n a l i g n (16) f l o a t 4

2 { f l o a t x , y , z , w; } ;

Listing 6.1: The float4 type as defined by the CUDA toolkit.

As outlined in section 2.5.3 additionally storage for cell information is needed. Per

particle in the simulation, the hash is a four byte value and the index is of eight bytes

length. Considering this and the values given in table 6.2, for a basic simulation without

rotation and other properties, each particles will need a total of 72 bytes. Moreover, the

cellstart vector needs another four bytes per cell.

6.2.2 Test Case Variations

The test case considers a simulation world size of 2m · 2m · 2m, that is a total volume of

8m3. To get this box filled up by a desired particle quantity a maximum particle size has

to be approximated. In case of spherical particles this is the diameter (d). Equation 6.1

shows a simple approximation. Note, the spherical particles are assumed as cubes. The

number of particles to be used is given as N and the simulation volume is denoted by V.

Psize =
3

√
V

N
(6.1)

CHAPTER 6. MULTI-GPU DEM - RESULTS 64

Since XPS has support of some kind of filling algorithms, the so called Grid-Placer

was used to fill the simulation volume. The upper left spot of figure 6.2 shows a regularly

filled start condition. As the name suggests, it works on a regular basis and considers

some offset and minimal spacing between the particles it places. Therefore, it is need able

that the chosen particle size is somewhat smaller than approximated.

Assuming the simulation contains a quantity of N particles with a diameter of d the

cell size of an optimal uniformed grid has to be adjusted. As stated in section 2.5.3, the

ideal cell size will be likewise the particle size. Equation 6.2 determines how the number of

cells in each direction (gridSize.xyz) can be calculated for the ideal case. The maximum

particle elongation is given as d and worldSize.xyz donates the world sizes.

gridSize.xyz =

⌊
worldSize.xyz

d

⌋
(6.2)

Equation 6.3 shows the calculation of the total amount of memory M needed on the

GPU for a given quantity of particles N and a certain number of grid cells C. For the test

case 72 bytes are needed per particle and additional 4 bytes per cell.

M = N ·MP + C ·MC

= N · 72B + C · 4B
(6.3)

To profile the implementation, in terms of speed up and maximum reachable particle

count, the described test case was executed in different variations as shown in table 6.3.

Number of Particle Cells Memory usage
particles size per count particles cells total
[million] [mm] dimension [million] [GiB] [GiB] [GiB]

1 20 100 1 0.067 0.004 0.071

10 9.2 217 10.22 0.671 0.038 0.71

50 5.4 370 50.65 3.353 0.188 3.54

100 4.2 476 107.85 6.706 0.402 7.1

230* 3.26 613 230.35 15.423 0.858 16.28

300* 2.96 675 307.55 20.12 1.15 21.27

600** 2.36 847 607.65 40.23 2.26 42.52

* only run-able on multiple GPUs

** only run-able on four GPUs with massive changes on optimization code parts

Table 6.3: Test case variations.

CHAPTER 6. MULTI-GPU DEM - RESULTS 65

As shown in the variations table 6.3, the total amount of memory needed on the

GPU for the 100 million example is around 7.1GiB. Given these values, about another

3.2GiB have to be added for algorithmic overhead and performance optimization. This

is for sorting the particle indices every time-step, in the preparation phase, and sorting

the whole particle set every N time-steps, to have better memory alignment. A GeForce

Titan X, as it is available in the test system, provides a total memory amount of 12GiB.

So, the 100 million particle test case will fit quite good on this kind of GPUs.

When it comes to the Multi-GPU implementation further memory consumption on

the GPUs has to be considered. This arises from the need to collect particles in the halos

and sorting particles leaving the domain, as shown in chapter 5. Therefore the maximal

number of particles per simulation is not scalable by the GPU count. This leads to the

fact, that a maximum of about 75 million particles per GeForce Titan X GPU was able

to be utilized.

6.3 Test 1: Performance Gain

To test the plain speed-up gain from a single GPU up to the four GPUs available in the test

system, the test case was executed in the 1, 10, 50 and 100 million setups. Furthermore,

as shown in table 6.4, the 230 and the 300 million setups where executed on three and four

GPUs, respectively. Since preliminary tests do not show a major difference in run-times

between the two shown implementations, that one which is using halo threads and that

which do not, only the version without halo threads was used for test case executions.

Number of particles GPUs
[million] 1 2 3 4

1 X X X X

10 X X X X

50 X X X X

100 X X X X

230 X X

300 X

Table 6.4: Test 1: Mapping number of particles examples on number of GPUs.

As a precondition the simulation world is split into N different domains, where N is

the number of GPUs used. The split is done automatically and since all GPUs in the

test system are of the same type, all domains have the same amount of particles in the

start condition. For this test no automatic load balancing was used. However, due to the

CHAPTER 6. MULTI-GPU DEM - RESULTS 66

test case species having load balancing won’t cause any big difference on the results. The

initial domain division for the 1 million particles run is given in figure 6.3, for instance.

Figure 6.3: Test 1: Sub-domain division for the 1 million particles example. From one
GPU, on the upper-left, to four GPUs on the lower right. For each configuration, all
sub-domains are equal in the amount of particles they contain. (Source: RCPE GmbH)

6.3.1 Expectations

From a extremely naive sight, one might expect that the achieved performance gain scales

directly with the number of used GPUs. In practice, communication and synchronization

overhead has to be considered. As shown in the implementation chapter 5 there are several

synchronization points while processing a single time step. Moreover, particles inside the

CHAPTER 6. MULTI-GPU DEM - RESULTS 67

halos and those leaving their domain have to be send to the neighbor domains. As a matter

of fact, it has to be known that all halos will always be full of particles in the supposed

test case. Therefore the practical speed-up will always be lower than the number of used

GPUs.

6.3.2 Results

At first it has to be noted, that there exists a natural relation between the simulation

performance and the number of particles in the simulation. This is as long true, as the

GPUs utilization stays over a certain level. As shown by the results for the average

performance in table 6.5 and the simulation wall clock times in table 6.6 this behavior

arises here as well.

The simulation starts at time zero and is carried out for one second of process time.

At the beginning, all particles are loosely packed, thus there are no interactions between

the spheres at all. This makes the example not really computational intense at this point.

Since gravity is acting on the particles, they are falling down until the lowest ones rebound

at the boxes bottom side. From this time on, particles start to interact with each other.

This increases the computational effort dramatically, lowering the simulation speed. Due

to the rebound forces, particles start to diverge again for a short time. At the process’s end

time, the particles are packed together very closely. There is not much motion left, but the

number of particle interactions reaches a maximum. Consequently, the simulation reached

a steady state, which is extremely computational intensive. The described behavior can be

seen in figure 6.2 visualizing the test case. Additionally, the calculation costs at a specific

point in process time can be derived from the figures showing the evolution of processed

simulation steps per second, which are:

• Figure 6.4 for the 1 million particles example

• Figure 6.5 for the 10 million particles example

• Figure 6.6 for the 50 million particles example

• Figure 6.7 for the 100 million particles example

• Figure 6.8 for the 230 and the 300 million particles example

Table 6.5 shows the average of the processed simulation steps per second for the perfor-

mance test cases, while table 6.6 shows the total wall clock times of the test runs. Timings

are measured from program start until the end of the simulation process. Therefore, set-up

and cleanup time consumptions are also included.

CHAPTER 6. MULTI-GPU DEM - RESULTS 68

Figure 6.4: Test 1: Evolution of processed simulation steps per seconds over the process
time for 1 million particles. (Source: RCPE GmbH)

Figure 6.5: Test 1: Evolution of processed simulation steps per seconds over the process
time for 10 million particles. (Source: RCPE GmbH)

CHAPTER 6. MULTI-GPU DEM - RESULTS 69

Figure 6.6: Test 1: Evolution of processed simulation steps per seconds over the process
time for 50 million particles. (Source: RCPE GmbH)

Figure 6.7: Test 1: Evolution of processed simulation steps per seconds over the process
time for 100 million particles. (Source: RCPE GmbH)

CHAPTER 6. MULTI-GPU DEM - RESULTS 70

Figure 6.8: Test 1: Evolution of processed simulation steps per seconds over the process
time for 230 and 300 million particles. (Source: RCPE GmbH)

Number of particles Average steps/s
[million] 1 GPU 2 GPUs 3 GPUs 4 GPUs

1 56.62 75.29 73.37 53.12

10 6.03 10.05 10.65 9.82

50 1.24 2.07 2.48 2.37

100 0.62 1.03 1.27 1.23

230 0.56 0.55

300 0.43

Table 6.5: Test 1: Average simulation steps per second.

Number of particles Runtime in minutes
[million] 1 GPU 2 GPUs 3 GPUs 4 GPUs

1 29.5 22.25 22.75 31.5

10 277 166.5 157 175.25

50 1362.5 810 675.25 707.75

100 2725.25 1632.5 1318.5 1363.25

230 2999.5 3029.5

300 3912.25

Table 6.6: Test 1: Wall clock times.

CHAPTER 6. MULTI-GPU DEM - RESULTS 71

6.3.3 Discussion

To achieve a high speed up it is not only necessary to have many GPUs working on the

problem, moreover it has to be assured that all of them are utilized to a level as high

as possible. This is all the more true when there is CPU work that needs to be hidden.

In case of Multi-GPU this is mostly communication overhead. For the used test case it

has to be said, that all of the halos always have nearly the same amount of particles in

it, regardless of how many GPUs are used. Additionally, this value stays approximately

constant over simulation time. Therefore, the communication overhead can be seen of

somewhat constant for the used test case. This is a lucky circumstance, because the

results will show performance loss if the communication gets prevalence.

As it can be seen in figure 6.9 the 1 million particles example does not benefit from

using more than two Titan X GPUs. Even worse the speed up gets negative in this example

when the problem is split to four GPUs. By using two GPUs, the 10, 50 and 100 million

particles examples show pretty good behavior in terms of speed-up. All of them increased

their performance as expected by about 67%. This means the communication overhead

is about 30%. If we use more GPUs the communication overhead gets more and more

important. This is, because we have now less particles in the domains on the one hand,

but have more inter-domain halos, on the other hand, with the same amount of particles

as before.

By using three GPUs the 10 million particles example does not gain a high speed-up

any longer, here only 10%. Otherwise the 50 and 100 million particles examples gain

another 33% to 40%. This is absolutely fine and within the expectations. By adding a

fourth GPU working on the problems, we will see a drop in performance in all of the

examples pictured here. For the 1 million particles case it even gets negative. Figure 6.10

shows the situation for three GPUs. It can be seen that the longest running kernel, which

is colliding all particles inside the domain and painted here in turquoise, is called on a

regular basis. So the same kernel is running on all GPUs within all worker threads at

the same time. When running this example with four GPUs a problem seems to raise up.

About every three to six time-steps, one or two workers are scheduled lately as marked

by the red boxes in figure 6.11. This is causing a massive performance drop because the

other two have to wait for them, at the next synchronization point. This bad scheduling

behavior reveals a big problem of the supposed implementation, which occurs on the used

test system, at least.

CHAPTER 6. MULTI-GPU DEM - RESULTS 72

Figure 6.9: Test 1: Performance gain in percent compared from using 1 GPU to 2, 3 and
4 GPUs. (Source: RCPE GmbH)

Figure 6.10: Test 1: Kernel schedule analysis for the 100 million particles example running
on three GPUs. All workers executed the same kernel at the same time. Therefore, there
are no huge synchronization problems expected. (Source: RCPE GmbH)

6.4 Test 2: Reaching The Test System’s Limits

Although, gaining a speed up in performance is fine enough, the supposed implementation

also offers the possibility to calculate simulation containing many more particles. By

having our four Titan X cards in the test system, providing a total memory amount of

48 GiB, a simulation with 600 million will theoretically fit on them. As shown in table

CHAPTER 6. MULTI-GPU DEM - RESULTS 73

Figure 6.11: Test 1: Kernel schedule analysis for the 100 million particles example running
on four GPUs. Compared to figure 6.10 scheduling problems do occur here. Some of the
kernels are deferred, causing other workers to wait for them. (Source: RCPE GmbH)

6.3 that will require about 42 GiB of memory in total. This is for the particles and

cells only. As mentioned before, there are some performance boosting procedures used

which are consuming additional memory. By having them in the code the total memory

consumption will be around 60 GiB in total, so the example will be not run-able on the

test system. But by eliminating those procedures and doing some other memory saving

tricks, like increasing the grid size dramatically, it is possible to get the 600 million particle

simulation running. Listing 6.2 shows the memory consumption on the four GPUs while

running the 600 million example.

+−−−+
| Proce s s e s : GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 25211 C xps 10067MiB |
| 1 25211 C xps 10196MiB |
| 2 25211 C xps 10196MiB |
| 3 25211 C xps 10069MiB |
+−−−+

Listing 6.2: Test 2: Part of nvidia-smi output, showing total memory usage of

the 600 million particles test case.

Although this example was executable it runs terrible slow under the given conditions,

this is because there where no performance optimization done. Given an average of less

than 0.1 simulation steps per second, on 100% utilization of all four GPUs, the example

CHAPTER 6. MULTI-GPU DEM - RESULTS 74

was only executed for a short time. This is because, other, more important simulations,

needed to be preferred. By extrapolating the values, from the short run, a single second

of process time would take about two weeks to be calculated.

Chapter 7

Conclusion and Outlook

The goals of this thesis were to increase the usability of the XPS software package and

speed up the included CUDA R© based DEM implementation. On the one hand, the imple-

mentation for sharing the simulation results, implemented in the first task of this thesis,

reveals more possibilities for the program usability. A simple viewer, running completely

independent of the simulation process, was implemented showing the simulation state in

real-time. Additionally, any consumer might be implemented giving even more possibili-

ties to work on current data, like doing analysis steps, transferring data over networks or

creating live pictures.

The implementation of the multi-GPU version of the underlying DEM solver gives

a very good speed-up for ordinary simulation examples. Additionally the total number

of particles that can be used in one single run, was increased massively as shown in the

results by up to 600 million by using four TitanX, for example.

7.1 Future Work

Kureck [Kur16] showed how the implementation of his (Linear-) Bounding Volume Hier-

archy work gained a speed-up as well, especially for non-uniformed particles. So based on

his work and this thesis a combined Multi-GPU solver can be implemented which benefits

from both. Assuming such an implementation even more realistic real-world problems

might be simulated in future.

By exploiting the shared data task, a network transfer stack for real-time simulation

results and many more analysis tools are easily to implement. Making the whole XPS

software package even more user friendly and adoptable to new fields.

75

Appendix A

Acronyms and Glossaries

Acronyms

API Application Programming Interface . 7

BOOST The BOOST C++ libraries . 5

BVH Bounding Volume Hierarchy . 29

CFD Computational Fluid Dynamics . 2

CPU Central Processing Unit . 2

CUDA R© Compute Unified Device Architecture . 2

DEM Discrete Element Method . IX

GPU Graphics Processing Unit. IX

IPC Inter-process Communication . 5

MPI Massage-Passing Interface . 16

RAM Random access memory . 18

RCPE Research Center Pharmaceutical Engineering . 1

SIMT Unique architecture employed by a SM. It creates, manages and schedules threads

of a warp. 14

SM Streaming Multiprocessor (SM, SMX) . 9

SPH Smoothed Particle Hydrodynamics . 2

STL STereoLithography . 26

XPS eXtended Particle System. 2

76

Glossary 77

Glossary

Application Programming Interface An Application Programming Interface is a set of rou-

tines, protocols and tools for building software and ap-

plications. .

7

AVL FIRE R© A powerful multi-purpose thermo-fluid software rep-

resenting the latest generation of 3D CFD. It is being

developed and continuously improved to solve the most

demanding problems in respect of geometrical com-

plexity, physics and chemistry. .

2

Central Processing Unit A integrated electronic circuit (processor) performing

logical, control and I/O operations. 2

Discrete Element Method A numerical simulation method for computing stresses

and motion of arbitrary particle systems. IX

Event In CUDA R© a event determines a synchronization point

within a Stream when recorded. 13

eXtended Particle System eXtended Particle System (XPS) is the name of a par-

ticle simulation software using a CUDA R© implemen-

tation of the DEM developed at the RCPE.

2

Graphics Processing Unit A specialized electronic circuit (processor) mostly used

to compute graphics and images. IX

hash value A hash value is the result of a certain hashing algorithm

that can be performed on an arbitrary data source. A

hashing function generates a byte array of a specific

length to store a ”thumbprint” of the source data. Well

known hash functions are defined by the MD family

(e.g. MD5) or the SHA family (e.g. SHA-1, SHA-256).

29

Glossary 78

Massage-Passing Interface Massage-Passing Interface is a portable and standard-

ized system for IPC. .

16

NVIDIA The NVIDIA Corporation . 2

Smoothed Particle Hydrodynamics A numerical simulation method for computing fluid

flows, based on particles. 2

Stream In CUDA R© a Stream determines a sequence of opera-

tions that execute in the same order as they are issued

on the GPU.. 11

Thrust Thrust is a C++ template library for CUDA, based on

the Standard Template Library (STL).. 16

Bibliography

[CS79] P. A. Cundall and O. D. L. Strack. A Discrete Numerical Model For Granular

Assemblies. Géotechnique, 29(1):47–65, 1979.

[Cun71] P.A. Cundall. A Computer Model for Simulating Progressive Large Scale

Movements in Blocky Rock Systems. In Proc. Int. Symp. Rock Fracture,

ISRM, pages 2–8, Nancy (F), 1971.

[DCVB+13] J.M. Domnguez, A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, and

M. Gmez-Gesteira. New multi-GPU Implementation for Smoothed Particle

Hydrodynamics on Heterogeneous Clusters. Computer Physics Communica-

tions, 184(8):1848 – 1860, 2013.

[GWKE14] Nicolin Govender, Daniel N. Wilke, Schalk Kok, and Rosanne Els. Devel-

opment of a convex polyhedral discrete element simulation framework for

NVIDIA Kepler based GPUs. Journal of Computational and Applied Math-

ematics, 270:386 – 400, 2014. Fourth International Conference on Finite

Element Methods in Engineering and Sciences (FEMTEC 2013).

[Har12] Mark Harris. How to Implement Performance Metrics in CUDA

C/C++. https://devblogs.nvidia.com/parallelforall/

how-implement-performance-metrics-cuda-cc/, 2012. Accessed:

2016-02-14.

[Jon08] M. Tim Jones. Anatomy of Linux dynamic libraries. http://www.ibm.com/

developerworks/library/l-dynamic-libraries/, 8 2008. Accessed: 2016-

02-14.

[JSRK13] Dalibor Jajcevic, Eva Siegmann, Charles Radeke, and Johannes G. Khinast.

Large-scale CFD-DEM simulations of fluidized granular systems. Chemical

Engineering Science, 98:298 – 310, 2013.

79

https://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-cc/
http://www.ibm.com/developerworks/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/library/l-dynamic-libraries/

BIBLIOGRAPHY 80

[Kar12] Tero Karras. Thinking Parallel, Part I: Collision Detection

on the GPU. https://devblogs.nvidia.com/parallelforall/

thinking-parallel-part-i-collision-detection-gpu/, November

2012. Accessed: 2016-02-14.

[Kre11] Yossi Kreinin. SIMD <SIMT <SMT: parallelism in NVIDIA GPUs. http://

yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html,

November 2011. Accessed: 2016-02-12.

[Kur16] Hermann Kureck. Design and Implementation of Massively Parallel Algo-

rithms on GPUs for Particle Simulation. Master’s thesis, Graz University of

Technology, 2016.

[MS01] Mark Mitchell and Alex Samuel. Advanced Linux Programming. New Riders

Publishing, Thousand Oaks, CA, USA, 2001.

[Neu13] Georg Neubauer. XPS - A GPU based framework for coupled particlefluid

simulation methods. B.S. Thesis, Graz University of Technology, 2013.

[NVI15] NVIDIA Corporation, 2701 San Tomas Expressway; Santa Clara, CA 95050.

Thrust Quick Start Guide, version 7.5 edition, 2015.

[NVI18] NVIDIA Corporation, 2701 San Tomas Expressway; Santa Clara, CA 95050.

NVIDIA CUDA C Programming Guide, version 9.1 edition, 2018. Accessed:

2018-02-05.

[oT15] University of Tennessee. MPI: A Message-Passing Interface Standard. Forum,

Message Passing, Knoxville, TN, USA, 2015. http://www.mpi-forum.org/

docs/mpi-3.1/mpi31-report.pdf.

[Rad06] Charles Radeke. Statistische und mechanische Analyse der Kr”afte und

Bruchfestigkeit von dicht gepackten granularen Medien unter mechanischer

Belastung. PhD thesis, Fakult”at f”ur Mathematik und Informatik der TU

Bergakademie Freiberg, 2006.

[RBH+14] Eugenio Rustico, Giuseppe Bilotta, Alexis Herault, Ciro Del Negro, and Gio-

vanni Gallo. Advances in Multi-GPU Smoothed Particle Hydrodynamics Sim-

ulations. IEEE Transactions on Parallel and Distributed Systems, 25(1):43–

52, 2014.

https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-i-collision-detection-gpu/
https://devblogs.nvidia.com/parallelforall/thinking-parallel-part-i-collision-detection-gpu/
http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

BIBLIOGRAPHY 81

[Ren11] Steve Rennich. CUDA C/C++ Streams and Concurrency. http:

//on-demand.gputechconf.com/gtc-express/2011/presentations/

StreamsAndConcurrencyWebinar.pdf, 2011. Accessed: 2016-02-14.

[RGK10] Charles A. Radeke, Benjamin J. Glasser, and Johannes G. Khinast. Large-

scale powder mixer simulations using massively parallel GPUarchitectures.

Chemical Engineering Science, 65(24):6435 – 6442, 2010.

[TB14] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Prentice

Hall Press, Upper Saddle River, NJ, USA, 4th edition, 2014.

[Wil13] N. Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Program-

ming. Addison-Wesley, 2013.

[Yua13] Yuan Tian, Ji Qi, Junjie Lai, Qingguo Zhou, Lei Yang. A Heterogeneous

CPU-GPU Implementation for Discrete Elements Simulation with Multiple

GPUs. 2013.

http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

	Introduction
	Motivation
	Objectives
	XPS - eXtended Particle System
	Outline

	Theory
	Discrete Element Method (DEM)
	Compute Unified Device Architecture
	Programming Model
	Hardware Implementation
	Multi-GPU
	Thrust
	CUDA Profiling Tools

	Inter-process Communication (IPC)
	Shared Memory
	Resource Locking
	Message-Passing Interface (MPI)

	Program Libraries
	Static Linking
	Dynamic Linking
	The BOOST C++ Libraries

	XPS - eXtended Particle System
	Overview
	Current Implementation
	Implemented DEM Algorithmic

	Shared Simulation Data
	Design
	Pipes
	Streams
	Shared Memory
	Actual Design

	Implementation
	Define data to be shared
	The data sharing infrastructure
	View and update simulation data
	Deploy as program library
	Command line arguments

	Results
	Usage
	Example

	Multi-GPU DEM - Design
	Subdividing the simulation world
	Choosing a reasonable sub-division
	Subdivision overlap and halo distribution

	Hiding GPU memory transfers
	Load balancing
	Possible implementations
	Single-Threaded Multi-GPU (ST-MGPU)
	Multi-Threaded Multi-GPU (MT-MGPU)
	Multi-Process Multi-GPU (MP-MGPU)

	MultiGPU DEM - Implementation
	Preliminary work and re-factoring of the existing code
	Top-Down view
	Algorithm solvers

	Multi-Threaded implementation
	Optimizing execution speed
	Load balancing

	Multi-GPU DEM - Results
	The Test System
	The Test Case
	Evaluation Of Memory Usage
	Test Case Variations

	Test 1: Performance Gain
	Expectations
	Results
	Discussion

	Test 2: Reaching The Test System's Limits

	Conclusion and Outlook
	Future Work

	Acronyms and Glossaries
	Bibliography

