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Abstract

In recent years, deep learning based methods achieved state-of-the-art performance in

most computer vision tasks. However, these methods are typically supervised, and require

huge amounts of annotated data to train. Acquisition of annotated data can be a costly

endeavour, especially for pixelwise methods such as image segmentation. To circumvent

these costs and train on smaller datasets, data augmentation is commonly used to artifi-

cially generate additional training data. A major downside of standard data augmentation

methods is that they require knowledge of the underlying task in order to perform well,

and introduce additional hyperparameters into the deep learning setup.

To improve on these issues, we propose a novel method of data augmentation utilizing

Generative Adversarial Networks (GANs). By modifying the GAN -formulation to gener-

ate image-segmentation pairs, we can train a generative model that synthesizes new images

and their corresponding segmentation masks from random noise. These synthetic image-

segmentation pairs can then further be used to train segmentation networks, effectively

acting as a data augmentation method.

We evaluate our method on two image segmentation tasks: medical image segmen-

tation of the left lung of the SCR Lung Database and semantic segmentation of the

Cityscapes dataset. For the medical segmentation task, we show that our GAN -based

augmentation performs as well as standard data augmentation, and training on purely

synthetic data even outperforms our previously published results. For the Cityscapes eval-

uation, we report that our GAN -based augmentation scheme is competitive with standard

data augmentation methods, only performing slightly worse. We show synthetic image-

segmentation pairs for both datasets and demonstrate that even for complex datasets such

as Cityscapes, our GAN manages to generate reasonable synthetic data, suggesting that

GAN -based augmentation has potential for future research.

Keywords. Generative Adversarial Networks, data augmentation, segmentation, deep

learning, medical image analysis
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Kurzfassung

Methoden basierend auf Deep-Learning haben in den letzten Jahren in den meisten An-

wendungen im Bereich Computer-Vision den Stand der Technik übertroffen. Viele dieser

Methoden beruhen auf überwachtem Lernen, und benötigen daher riesige Mengen an an-

notierten Daten um gute Ergebnisse zu erzielen. Die Beschaffung von annotierten Daten

kann ein kostspieliges Unterfangen sein, vor allem für pixelweise Methoden, wie zum

Beispiel Bildsegmentierung. Um diese Kosten zu umgehen, und auch mit einer geringen

Anzahl an Daten trainieren zu können, wird häufig Datenaugmentierung verwendet, um

künstlich neue Daten zu erzeugen. Ein großer Nachteil von konventioneller Datenaugmen-

tierung ist, dass diese zusätzliches Wissen über die zugrunde liegenden Daten und deren

Anwendung voraussetzt, um gute Ergebnisse zu erzielen, sowie dass durch Datenaugmen-

tierung zusätzliche Hyperparameter in das Deep-Learning-Setup eingebracht werden.

Wir präsentieren eine neuartige Methode der Datenaugmentierung, basierend auf Gen-

erative Adversarial Networks (GANs), deren Ziel es ist, typische Nachteile der Datenaug-

mentierung zu beheben. Unsere Methode modifiziert die Struktur der GANs, sodass Paare

bestehend aus Bild und dazugehöriger Segmentierungsmaske aus Rauschen erzeugt wer-

den. Diese Paare können weiterführend genutzt werden, um Segmentierungsnetzwerke zu

trainieren, wodurch sie effektiv als Datenaugmentierungsmethode fungieren.

Wir evaluieren unsere Methode auf zwei Anwendungen im Bereich der Bildsegmen-

tierung: medizinische Bildsegmentierung des linken Lungenflügels basierend auf den Daten

der ‘SCR Lung Database’, sowie semantische Bildsegmentierung basierend auf dem Daten-

satz ‘Cityscapes’. Wir zeigen, dass unsere Methode der GAN -basierten Datenaugmen-

tierung für die medizinische Bildsegmentierung gleichwertige Ergebnisse erzielt, wie kon-

ventionelle Datenaugmentierung, und dass Netzwerke, die rein auf synthetischen Daten

trainiert wurden, bessere Ergebnisse erzielen als in unseren bisher publizierten Resul-

taten. In der Evaluierung des Cityscapes Datensatzes zeigen wir, dass unsere GAN -

basierte Datenaugmentierunsmethode konkurrenzfähig mit konventioneller Datenaugmen-

v



vi

tierung ist, und nur leicht schlechtere Ergebnisse erzielt. Zudem zeigen wir synthetische

Bilder und dazugehörige Segmentierungsmasken für beide Anwendungen, und demonstri-

eren, dass unser GAN sogar für komplexe Datensätze wie Cityscapes plausible synthetische

Daten erzeugen kann. Dieses Ergebnis legt nahe, dass GAN -basierte Datenaugmentierung

Potenzial für zukünftige Forschung zeigt.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Modern machine learning methods currently revolutionize our daily life. Covering a huge

range of applications such as face detection [71], automatic speech recognition [24] and

translation of text between different languages [70], and even highly advanced applications

such as used in autonomous driving [14] and medical diagnosis [54], machine learning is

already a major part of our lives. Especially deep learning [36] based methods consistently

show improvements in the state-of-the-art every year, and for many computer vision tasks,

even surpass human performance. However, what most of these methods have in common

is that they are supervised, therefore requiring annotated data for training. Supervised

methods try to predict a label y, given the input data x, therefore requiring a set of

training data with corresponding annotation labels [18]. Contrary to supervised methods,

unsupervised methods do not require labels, and most commonly try to learn more about

the underlying structure or distribution of the data [18]. Furthermore, most deep learn-

ing methods require a large amount of data to train, often in the range of hundreds of

thousands of images, only to be able to find a solution for a single task.

To circumvent the issue of insufficient annotated training data, there are three common

approaches that can be taken when using deep learning for a new application where a large

amount of specific, annotated data is not available. First, the most common approach is

to use a public dataset containing images similar to the images required for the given task

as training data. For certain applications, such as natural image classification, seman-

tic segmentation of objects or urban areas, or digit classification, there are large, public

1



2 Chapter 1. Introduction

datasets freely available. Additionally, for many applications and deep learning architec-

tures, pre-trained network parameters for most of these public datasets are freely available,

which can then be adjusted and fine-tuned to work on new datasets or tasks. This idea of

using network parameters trained on a similar dataset and fine-tuning them to work on

a different task is called transfer learning, and is based on the concept that early stages

in a deep network capture useful representations, e.g. edge- or pattern-detection filters,

that are useful even for different, related datasets [18]. Contrary to transfer learning, do-

main adaptation is a related concept that exploits the knowledge gained from pre-trained

networks by fine-tuning on the same task (e.g. image classification with the same class

definitions), but on related, different data [18]. However, even though transfer learning

and domain adaptation are useful techniques in practice, as soon as the data required for

any given task is more specific, and therefore very different to the data present in public

datasets, those methods can not be applied easily.

The second common method of dealing with a low amount of data is to manually

annotate additional data. While for some tasks, for example image classification, the

labeling of data is not as expensive, especially in domains such as medical imaging, the

acquisition of annotated groundtruth data is time-intensive, requires knowledge of experts,

and is therefore very expensive. Furthermore, it is very difficult to predict how much

data is required to train any given deep learning architecture, as the amount of required

annotated images could vary by multiple orders of magnitude, depending on the task and

application.

Finally, the third method to deal with a low amount of training data is to use data

augmentation. Data augmentation is the process of generating additional training data

from the available existing data. Typically, this is done by using annotation-preserving

transformations on the input data, such as randomly rotating, translating or deforming

the image. Through the random nature of data augmentation, it can be used to potentially

generate an ‘infinite’ amount of training data by augmenting the already existing data.

Although this is an effective way of dealing with the issue of low amounts of training

data, it is not universally applicable, as the type of data augmentation and its parameters

need to fit the intended task. For example, if the augmentation parameters are chosen

such that they are too strong for a given task and deep learning setup, the augmentation

might make the task too challenging to learn, which can significantly reduce the resulting

performance. Furthermore, the parametrization of data augmentation methods introduces

another set of very important hyperparameters, which can have a significant impact on

the error made by the deep learning method.

While randomly augmenting data using simple transformations is the most common

method of data augmentation, more sophisticated approaches for synthesizing additional

training data have been proposed as well. However, since real and synthetic data dis-

tributions typically are very different, this is not an easy task, and requires additional

post-processing on the synthetic data. For example, it has been shown that by rendering

photorealistic, synthetic images and performing a set of transformations on those rendered
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images, they can be used to train an object detector with good performance [56]. Similarly,

in the medical domain, it has been shown that by training a deep neural network on high-

quality rendered 3D images from other computer vision tasks and fine-tuning it towards

medical data, the general network performance can be improved when data is scarce [53].

This shows that data augmentation by using a generative model can improve the training

of deep learning methods. For rendering-based methods, this generative model is typically

carefully fine-tuned or matched to fit the real data distribution.

Recently introduced by Goodfellow et al. in 2014, Generative Adversarial Networks

(GANs) provide an attractive method of automatically learning a generative model by

just training a standard deep neural network [19]. A GAN consists of two subnetworks:

the generator, and the discriminator, which are pitted against each other. The generator

synthesizes data from an input noise vector. The discriminator is a standard classification

network, which receives real data, as well as data from the generator as input. The goal

of the discriminator is to perfectly classify each input image as either real or synthetic,

while the goal of the generator is to synthesize images similar to the real data, fooling the

discriminator. GANs have demonstrated potential in tasks such as state-of-the-art image

generation ([21], [31]), domain-transfer ([30], [78]) or synthetic data generation ([64], [45]).

However, while GANs show impressive results when trained on large datasets, it is still a

topic of active research how GANs behave when trained on a small amount of data.

For this thesis, we will focus on data augmentation methods in the context of image

segmentation tasks. Image segmentation is the process of partitioning an image into a set

of regions that cover it [68]. This typically results in a segmentation mask, where every

pixel has a label, and is therefore assigned to a specific region. Image segmentation is

often used as a preprocessing step, to detect dense image regions of interest. Figure 1.1

illustrates an X-ray image and its corresponding segmentation mask of the left lung as an

example.

(a) Lung X-ray image. (b) Groundtruth segmentation mask for the left
lung.

Figure 1.1: Image segmentation of the left lung of a lung X-ray image.

As segmentation is a pixel-wise problem, the acquisition of annotated segmentation

masks is even more time consuming, compared to e.g. classification tasks, as a human an-
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notator has to label every pixel manually. Therefore, an automated method of generating

high quality synthetic data would resolve the issue of manual annotation, which would

ideally lead to easier training of deep learning methods with an initially low amount of

annotated data.

1.2 Contributions and Outline

The goal of this thesis is to evaluate the performance of GANs when used for data aug-

mentation and to systematically study GAN -based augmentation and standard data aug-

mentation. To achieve this, we introduce a novel modification to the standard GAN

architecture, which simultaneously generates images and corresponding synthetic segmen-

tation masks. These pairs of synthetic images and corresponding synthetic annotations

allow us to train a deep neural network for image segmentation and evaluate the per-

formance of GAN -based data augmentation in a quantitative manner. We evaluate our

GAN architecture by comparing GANs-based augmentation to conventional data aug-

mentation methods on two segmentation tasks, one from medical imaging, i.e. X-ray lung

segmentation, and another, more challenging one from computer vision, i.e. urban scene

understanding. Additionally, we compare the segmentation performance when training

with different ratios of real and generated data, to further evaluate the impact of GANs

samples on the training process.

Chapter 2 provides a thorough introduction to the topic of deep learning, and pro-

vides necessary background information for all further chapters. In Chapter 3, we discuss

some of the most significant milestones in GAN research, ranging from the original GAN ,

as introduced by Goodfellow et al. in 2014 [19], to very recent advancements such as

the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) in-

troduced by Gulrajani et al. in 2017 [21]. Additionally, we discuss the method of data

augmentation called SimGAN [64] as an application closely related to our contribution. In

Chapter 4, we describe our contribution and concrete implementation details of our deep

convolutional networks for the Lung SCR Database [72] and the Cityscapes [10] dataset

for semantic segmentation. Chapter 5 describes the evaluation setups for both datasets

and presents all qualitative and quantitative results. Finally, Chapter 6 concludes this

thesis, and illustrates possibilities for future investigation.
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In the recent years, Deep Learning has made a significant impact on our everyday

lives. Deep Learning is already used to automatically detect and recognize faces in our

images [71], automatically analyze our speech [24], perform translation of text [70] and

even segment medical image data to aid in medical diagnosis [54]. While conventional

machine learning methods require careful tuning and data preprocessing by humans to ex-

tract meaningful representations out of raw input data, the key aspect of Deep Learning

methods is to automatically learn representations and internal structure of raw input data,

by using several stacked processing layers [36]. These layers typically compute simple dif-

ferentiable functions on the input based on their parameters, which are called weights,

and by feeding the input through multiple layers, more abstract representations can be

learned. For example, in image classification, the output of the first few layers typically

consists of edges at particular orientations and locations in the image, while later layers

can encode more abstract concepts such as patterns or even objects by utilizing the infor-

mation of the early layers. While the application of Deep Learning methods has turned

out to be very successful for a wide variety of topics, we will mainly focus on the appli-

cation of Deep Learning in the Computer Vision domain. In particular, we will focus on

5
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the problem of image segmentation, which, for example, is used in automatic object de-

tection [62] or to localize and delineate anatomical structures and other regions of interest

in medicine ([51], [50]). Section 2.1 will give an overview of the basic building blocks of

artificial neural networks, the artificial neurons. Section 2.2 describes Feedforward Neural

Networks (FNNs), which are a type of artificial neural network, in more detail. Section 2.3

describes the optimization process of neural networks, in particular the backpropagation

algorithm, optimizers such as Stochastic Gradient Descent (SGD) [8] and regularization

methods such as Dropout [67] and weight decay [35]. As activation functions of artificial

neurons significantly impact gradients and training of neural networks, they are discussed

in Section 2.4. In Section 2.5, the Convolutional Neural Network (CNN), which is a very

popular extension of standard neural networks, is explained in more detail. As an applica-

tion with specific interest to this thesis, image segmentation using deep CNNs is discussed

in more detail in Section 2.6. Finally, Section 2.7 is dedicated to the process of data

augmentation in deep learning, as this is the main topic investigated in this thesis.

2.1 Artificial Neurons

Artificial neurons are the basic building blocks of artificial neural networks. They describe

a simple mathematical model inspired by neurons in the brain. The fundamental function

of an artificial neuron is to receive multiple inputs x1, x2, ... and compute a weighted sum z

for these inputs using the weights w1, w2, ... [47]. This weighted sum z is a linear transfor-

mation of the inputs of the neuron. Additionally, the bias b is added to the weighted sum

of the inputs, and the result is passed through a non-linear activation function σ, resulting

in the final output a. Thus, from a given set of inputs x1, x2, ..., the neuron performs a

nonlinear transformation on its inputs by first computing a linear transformation, and

additionally applying a bias and a nonlinear activation function, resulting in

a = σ

(∑
i

xi · wi + b

)
= σ (z) , (2.1)

which can be reformulated to a more convenient vector based notation exploiting the dot

product of the vectorized weights w and the vectorized inputs x

a = σ
(
xT ·w + b

)
= σ (z) . (2.2)

Figure 2.1 illustrates the structure of the artificial neuron. Through the choice of weights

and bias, the artificial neuron can be trained to approximate a function given the inputs x.

In the earliest proposed artificial neurons, the Threshold Logic Units [43], the training pa-

rameters, which only consisted of weights and a threshold, therefore just computing a linear

transformation, needed to be set manually. Nowadays, advanced automatic gradient-based

learning methods are used, which are described in more detail in Section 2.3.
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Figure 2.1: Schematic of an artificial neuron.

Although it is a very simple model, the artificial neuron has the capabilities to be

used for a variety of problems. If the step function is chosen as the activation function,

the neuron can be used for binary classification. These types of neurons used for binary

classification are called Perceptrons [55]. In 1958, Rosenblatt proposed the first automatic

learning algorithm for Perceptrons, that, given linearly separable training data, converges

to a solution. This learning algorithm was based on adjusting the perceptron weights

depending on the predicted class and the actual class from the training dataset, and

therefore represents one of the earliest models for supervised learning. However, it was

not until 1986, when Rumelhart et al. popularized the backpropagation algorithm for

training neural networks [58], that combining artificial neurons to form neural networks

was a focus of research. If a logistic sigmoid function is used as the activation function

instead of a step function, this approach is commonly refered to as logistic regression [18].

By squashing the weighted sum of the inputs to the range between 0 and 1, the output

can be interpreted as a probability. Therefore, in order to classify the outputs of logistic

regression, it is necessary to threshold them. By combining multiple perceptrons into a

network, it is even possible to solve problems that are not linearly separable, such as the

XOR problem [18].

2.2 Feedforward Neural Networks

Feedforward Neural Networks (FNNs), similar to the previously discussed artificial neu-

rons, have the goal of approximating a function given inputs x [18]. However, instead
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of being limited to very simple functions consisting only of a single weighted sum with

an activation function, FNNs combine multiple neurons to form a directed graph without

cycles. Artificial neurons at the same depth in this graph are grouped into layers, where

each layer can be summarized as a single function consisting of these multiple neurons.

An example of an FNN is illustrated in Figure 2.2. Every FNN consists of the inputs

(commonly referred to as the input layer), an arbitrary number of intermediate layers of

neurons called hidden layers, and a layer computing the outputs called the output layer.

This layer based approach is also where the name Deep Learning comes from, as the depth

of an FNN describes the number of layers an FNN consists of [18]. When every neuron

in a layer is connected to all neurons in the following layer, this is called a fully-connected

network, with layers exhibiting this behavior being called fully-connected layers. The sim-

ple FNN illustrated in Figure 2.2 is already much more powerful than a single artifical

neuron. It can be shown that FNNs with a single hidden layer can be used to approxi-

mate any continuous function to any desired precision ([11], [27]). FNNs represent the

Figure 2.2: Structure of a simple FNN . For visual clarity, biases are omitted, even though every
artificial neuron ANi also has a bias term bi.

foundation of most deep learning applications. The very popular and successful CNNs,

which are described in more detail in Section 2.5, are simply an extension to standard

FNNs [18]. In the following section we will show how, instead of manually tuning weights

and biases of FNNs to approximate functions, modern methods automatically learn those

network parameters from data.

2.3 Optimizing Neural Networks

The goal of optimizing FNNs is to automatically find weights and biases such that the

network approximates the desired target output y given input x. In order to achieve

this, it is necessary to define a metric for how well the FNN approximates the output.

This metric is commonly referred to as the loss function or cost function J(θ), where θ

describes the combined network parameters (weights, biases). Given a set of N training
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examples xT = [xT1 ,xT2 , ...,xTN ] and corresponding targets y = [y1,y2, ...,yN ], J(θ)

is typically computed as the average of the per-example loss function L(a(xTi
;θ),yi),

where a(xTi
;θ) is the output of the FNN , given training example xTi

as input and

network parameters θ [18]:

J(θ) =
1

N

N∑
i=1

L(a(xTi
;θ),yi) (2.3)

For example, if L is defined as

L = ||a(xTi
;θ)− yi||2 , (2.4)

we arrive at the popular Mean Squared Error (MSE) loss function. A smaller loss function

value is typically equal to a better function approximation of the FNN , therefore the

training procedure of FNNs can be formulated as an optimization problem, where the

goal is to minimize the loss function J(θ) with respect to the network parameters θ. This

is commonly done using a variant of the gradient descent algorithm.

2.3.1 Gradient Descent

Given a real-valued loss function J(θ), such as described in the previous section, the goal

of gradient descent is to find a local minimum of J(θ) with respect to the parameters θ.

While for simple loss functions, it might be feasible to compute its minimum analytically,

for more complex functions of multiple parameters, such as the loss functions of FNNs with

millions of parameters, this quickly becomes infeasible [18]. In contrast to the analytical

computation of minima, gradient descent is a numerical approach that works by choosing

random starting parameters and repeatedly following the function towards the direction

of its steepest descent. For a single training example xTi
with the corresponding target

output yi, the direction of steepest descent is given by computing the negative gradient

of the per-example loss function with respect to the parameters θ at the position xTi
and

yi:

− gθi = −∇θL(a(xTi
;θ),yi) (2.5)

The final gradient for the loss function J(θ) is then given by computing the average of all

gradients over the whole training set xT :

− gθ =
1

N

N∑
i=1

−gθi (2.6)

By defining a positive factor controlling the magnitude of the gradient descent, called the

learning rate η, the gradient descent update rule of the FNN parameters θ can be defined

as

θ = θ + η · −gθ. (2.7)
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An example of the gradient descent procedure applied on a simple 1-dimensional MSE loss

is shown in Figure 2.3. The full gradient descent procedure is described in Algorithm 1.
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Gradient Descent with momentum applied to a 1-dimensional cost function J( )

Figure 2.3: Gradient descent on a 1-dimensional loss function showing how the method iteratively
gets closer to the global minimum. After just a few steps, gradient descent was able to find the
optimum at the value of θ = 0.5.

Depending on the initialization of the parameters, it is possible for gradient descent to

find the global minimum of J(θ), however, this is not guaranteed, unless J(θ) is convex.

Important to note is that for gradient descent to converge, the loss function needs to

be smooth and provide gradients everywhere. This is also the reason why the chosen

loss function is typically different from the actual objective, and a surrogate loss function

is used instead [18]. As an example, instead of optimizing for the number of correctly

classified examples in an image classification problem, we could optimize over the MSE

of the predicted confidence and target confidences of each class. While the number of

correctly classified examples would be discrete, and therefore non-smooth, the MSE would

be smooth everywhere, providing useful gradients for gradient descent.

So far, we described gradient descent as an algorithm that can find a local minimum of

a loss function J(θ) by computing gradients with respect to its parameters θ. However, the

computation of this gradient with respect to all parameters of our FNN (weights, biases)

is not straight forward - how can we determine the influence of a small change in a single

weight or bias to the loss, and therefore the gradient of the loss with respect to this weight

or bias? This is where the backpropagation [58] algorithm comes in.
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Algorithm 1: Gradient descent algorithm.

Randomly initialize parameters θ = θ0;
for number of iterations do

for input training sample xTi
do

Compute the FNN output a(xTi
;θ) given the input xTi

and the current
parameters θ;

Compute the gradient of the per-example loss function for the FNN output
a(xTi

;θ) and the target output yi with respect to the parameters θ:

gθi = ∇θL(a(xTi
;θ),yi) (2.8)

Update the parameters θ by adding the negative average gradient, multiplied
by the learning rate η, given the number of training examples N :

θ = θ − η 1

N

N∑
i=1

gθ (2.9)

2.3.2 Efficient Gradient Computation using Backpropagation

While the idea of backpropagation has been floating around since the 1970s [61], it was

not utilized for neural network optimization until Werbos first applied it in 1981 [74],

and Rumelhart et al. popularized it in 1986 [58]. The backpropagation algorithm is a

procedure based on the chain rule of calculus to compute the gradient of the per-example

cost function L with respect to each individual weight and bias ([47], [18]).

Before describing the algorithm, it is convenient to describe a matrix-based notation.

The weight wljk describes the weight connecting the kth neuron in layer (l − 1) to the jth

neuron in layer l. From these weights, we can assemble a matrix W l, which is called the

weight matrix for the lth layer, where the entry in the jth row and kth column is equal to

wljk. Given K neurons in the layer (l − 1) and J neurons in the layer l, this matrix has

the following form:

W l =

w
l
11 . . . wl1K
...

. . .
...

wlJ1 . . . wlJK

 (2.10)

Similarly, the biases blj , the pre-activation outputs zlj and the outputs alj of the jth neuron

in layer l can be vectorized as bl, zl and al, respectively:

bl =

b
l
1
...

blJ

 zl =


zl1 =

∑
k w

l
jka

(l−1)
k + blj

...

zlJ =
∑

k w
l
jka

(l−1)
k + blj

 al =

a
l
1 = σ(zl1)

...

alJ = σ(zlJ)

 (2.11)
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As the first step of the backpropagation algorithm, the forward propagation results

are computed. During this step, the FNN receives a single training example xTi
as input

and computes the outputs of each layer al as well as the pre-activation outputs of each

layer zl, up to the final layer D. Additionally, given the final FNN output aD, the per-

example loss L(aD,yi) is computed, given the target output yi for this training example.

This is called forward propagation, because the network outputs are iteratively computed

for every layer, starting from the input layer, up to the output layer. Afterwards, the

backward propagation is done by first computing the gradient gDa on the output layer D,

with respect to the FNN output:

gDa = ∇aD L(aD,yi) (2.12)

Since we are interested in the gradient with respect to the pre-activation output, we

compute that by simply performing an elementwise product � (also known as Hadamard

product) between the post-activation gradient and the derivative of the activation function:

gDz = gDa � σ′(zD) (2.13)

This pre-activation gradient gDz can then be used to compute the gradients of the cost

function J(θ) with respect to the weight matrix WD and the bias vector bD:

∇bD L(aD,yi) = gDz (2.14)

∇WD L(aD,yi) = gDz (a(D−1))ᵀ (2.15)

To arrive at the post-activation gradients of the next lower-level hidden layer (D− 1), we

simply multiply the transposed weight matrix (WD)ᵀ by the pre-activation gradient of

the current layer gDz :

g
(D−1)
a = ∇zD−1L(aD,yi) = (WD)ᵀgDz (2.16)

The above steps can now iteratively be performed until every individual gradient with

respect to every weight and bias in the first layer is known, therefore resulting in the final

per-example gradient

gθi = ∇θ L(a(xTi
;θ),yi), (2.17)

for a given training example xTi
and target output yi. Therefore, using the backprop-

agation algorithm, we now have a method to compute the gradient for a single training

example mentioned in Equation 2.8, which is required by gradient descent to update the

FNN parameters ([47], [18]).

However, a big drawback of optimizing neural networks via backpropagation and gra-

dient descent is the vanishing gradient problem [26]. As described above, the gradient for

a specific weight is computed by backpropagating from the output towards the respective
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neuron. In this backpropagation path, through the usage of the chain-rule of calculus, gra-

dients are repeatedly multiplied from back to front. Therefore, when gradients are small

(which can happen e.g. when using saturating activation functions such as sigmoid or

hyperbolic tangent), this can result in tiny gradients for the neurons in the front layers of

the network, which results in slow learning for these neurons. While this is a problem with

backpropagation and gradient descent itself, modern methods in deep learning mostly rem-

edy this issue. Rectified Linear Unit (ReLU) [44] activations do not saturate the gradient

magnitude in the positive input region, and therefore do not experience vanishing gradi-

ents in that region. Additionally, a recent type of network architecture, called Residual

Network (ResNet) [23], bypasses neurons or layers with vanishing gradients by employing

shortcut paths, allowing gradients to flow uncircumvented through much deeper networks.

Finally, by normalizing intermediate layers using batch normalization [29], the distribution

of inputs is more stable, resulting in a lower chance of getting stuck in saturated modes.

2.3.3 Stochastic Gradient Descent

While standard gradient descent using backpropagation is a useful method to train FNNs

automatically, gradient descent itself requires a lot of computational resources when the

training set is very large, as one single update step requires the computation of all gradients

for all training examples.

The goal of Stochastic Gradient Descent (SGD) is to speed up the learning

process by slightly modifying the standard procedure of gradient descent. The main

difference between SGD and standard gradient descent is that SGD estimates the

gradient of the cost function ∇θJ(θ) by computing the gradients of the per-example

loss only for a small subset of m randomly chosen training examples from the

training set xM = [xM1 ,xM2 , ...,xMm ] ⊂ xT , with corresponding target outputs

yM = [yM1 ,yM2 , ...,yMm ] ⊂ y. This subset of training examples is called a minibatch,

where m is the number of examples in this minibatch, called minibatch size [47]. The

minibatches are chosen without replacement, i.e. every training example from the

training set is chosen exactly once before a repeating example is chosen again. The

gradient approximation using minibatches can be summarized as

∇θJ(θ) = ∇θ
1

N

N∑
i=1

L(a(xTi
;θ),yi) ≈ ∇θ

1

m

m∑
i=1

L(a(xMi
;θ),yMi

). (2.18)

For very small minibatch sizes, this only very roughly approximates the actual gradient,

but in practice, SGD and algorithms derived from it have been shown to converge well [18].

2.3.4 Gradient Descent with Momentum

As described in Section 2.3.1, gradient descent can be used to find a local minimum of

a function. However, depending on the shape of the function, the iterative approach
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of gradient descent can often take a large number of steps1. Especially for functions

containing many almost flat regions with small gradients, traversing the function space

with gradient descent is slow [69]. To solve this, momentum is added to the gradient

descent algorithm. The main idea of momentum is to add short-term memory to gradient

descent, also sometimes called acceleration. Effectively, this is a Taylor approximation of a

second order scheme, keeping only first and second order terms (gradients and acceleration,

respectively). We change the weight update step in Equation 2.9 to

gβ = β gβ +
1

N

N∑
i=1

gθi (2.19)

θ = θ − ηgβ, (2.20)

where the initial gβ is set to zero, η is the learning rate and β is known as the momentum

term. An example of momentum on a 1-dimensional MSE loss is shown in Figure 2.4.
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Gradient Descent with momentum applied to a 1-dimensional cost function J( )

Figure 2.4: Gradient descent on a 1-dimensional loss function with momentum. The influence of
the momentum term β can be seen in the faster initial convergence (compared to Figure 2.3) and
small ‘overshoot’ over the optimum at θ = 0.5.

Compared to the same setup shown in Figure 2.3 for gradient descent without momentum,

it can clearly be seen that, for loss functions with very nice properties (single global

1Why Momentum Really Works, https://distill.pub/2017/momentum, Accessed: 01.02.2018

https://distill.pub/2017/momentum
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minimum, convex, smooth), gradient descent with momentum converges faster for the

same learning rate.

2.3.5 Adaptive Learning Rate Optimizers

While SGD is a very powerful optimization method for training FNNs, it is not trivial to

choose the best learning rate η for any given task. If η is chosen too large, the training

might oscillate, not converge, or skip over relevant local minima. If it is chosen too small,

it significantly delays the convergence process.

A common technique to circumvent this issue is to use learning rate decay [40]. For ex-

ample, using step decay, the learning rate can be reduced by some factor every few epochs,

which allows for a large learning rate at the beginning of training and a smaller learning

rate towards the end of training. However, this decay procedure is also a hyperparameter

in itself, and it needs to be designed carefully depending on the application.

Adaptive learning rate optimizers aim to work around the problem of finding the

correct learning rate differently. In these methods, the learning rate η is not a global

variable, but instead every trainable parameter now has a separate learning rate for itself.

While these methods often still require some hyperparameter tuning, the main argument is

that they work well for a broader range of setups, often when just using suggested default

hyperparameters [40]. This section summarizes commonly used adaptive learning rate

optimizers Adagrad [13], RMSProp [25], and Adaptive Moment Estimation (Adam) [32]

for training deep FNNs.

2.3.5.1 Adagrad

The main idea of Adagrad [13] is to keep track of the sum of squared gradients for each

parameter, and use that sum to normalize the parameter update element-wise [40]. This

is illustrated in the following adjusted parameter update when using minibatch gradient

descent

θ = θ − η√
G+ ε

� 1

m

m∑
i=1

gθi , (2.21)

where the additional normalization term
√
G+ ε consists of the matrix G containing the

sum of squares of the past gradients with respect to all parameters θ along its diagonal,

and ε is a term to avoid divison by zero [57]. By using this per-parameter learning

rate, Adagrad effectively eliminates the need to tune the learning rate. However, since the

squared gradients are strictly accumulated in the matrixG, and therefore the accumulated

sum is strictly growing, the effective learning rate shrinks during training until it eventually

becomes too small to provide any useful parameter update.
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2.3.5.2 RMSProp

In order to reduce the aggressive, monotonically decreasing learning rates provided by

Adagrad, RMSProp [25] adjusts the matrix G from the Adagrad update to not contain

the accumulated sum of squared gradients of all parameters in its diagonals. Instead, it

uses a moving average of squared gradients in its diagonals given as

Gii = γGii + (1− γ)

(
1

m

m∑
i=1

gθi

)2

i

. (2.22)

The decay rate γ is now an additional hyperparameter, with a proposed default value

of 0.9. The main parameter update is the same as for Adagrad, therefore this method

still adjusts the learning rate of each parameter based on the magnitude of its gradients,

however, the moving average prevents updates from getting monotonically smaller [40].

2.3.5.3 Adam

Similarly to how SGD was extended with momentum, Adaptive Moment Estimation

(Adam) [32] extends RMSProp by introducing an exponentially decaying average of past

gradients

µ = β1µ+ (1− β1)

(
1

m

m∑
i=1

gθi

)
(2.23)

v = β2v + (1− β2)

(
1

m

m∑
i=1

gθi

)2

, (2.24)

where µ and v are the estimates of the first and second moment of the gradients, respec-

tively [57]. As µ and v are initialized as zero-vectors, Kingma and Ba [32] observed that

they are initially biased towards zero. By using bias-corrected estimates

µ̂ =
µ

1− βt1
(2.25)

v̂ =
v

1− βt2
, (2.26)

where t is the current training iteration number, they circumvent this issue which leads

to an update rule similar to Adagrad and RMSProp:

θ = θ − η√
v̂ + ε

µ̂ (2.27)

Recommended values by the authors for the parameters of Adam are ε = 1 ·10−8, β1 = 0.9

and β2 = 0.999.
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2.3.6 Initialization of Weights and Biases

While describing the gradient descent algorithm in Section 2.3.1, we mentioned that gradi-

ent descent works by iteratively stepping towards the direction of steepest descent, starting

from an initial position. For neural networks, this initialization needs to be chosen very

carefully. For example, if multiple neurons in the same hidden layer share the same weights,

they will receive the same gradients, and therefore compute the same results, leading to

wasted model capacity [6]. Typically, neural network weights are simply initialized from

a zero-mean Gaussian destribution with a small standard deviation [34]. A problem with

this, however, is that the variance of the distribution of outputs from a randomly ini-

tialized neuron grows with the number of inputs [40]. To normalize the variance of each

neuron’s output to 1, it is sufficient to use a standard normal distribution and scale the

weight by the square root of its fan-in nin, which is the number of its inputs:

w0 ∼
N (0, 1)
√
nin

(2.28)

Similarly, Glorot and Bengio performed an analysis on the backpropagated gradients and

recommend an initialization [16] (known as Xavier or Glorot initialization) of

w0 ∼
√

2

nin + nout
N (0, 1), (2.29)

where nout is the fan-out, describing the number of output units. Specifically for neurons

with ReLU activation, He et al. recommend using an initialization [22] (known as He

intialization) of

w0 ∼
√

2

nin
N (0, 1). (2.30)

For biases, it is common to simply initialize all biases to 0 in FNNs [40].

2.3.7 Regularization

So far, we only mentioned training an FNN with gradient descent and backpropagation,

using the training set xT with the corresponding labels y. While this allows us to train our

FNNs to predict outputs for our training set, it does not necessarily mean that it is able

to predict outputs correctly for unseen data. Therefore, typically two additional sets of

data are introduced to optimize FNNs, the validation set xval and the test set xtest. All

three sets (training, validation, test) are disjoint, such that no sample is common among

them. The validation set is typically used to fine-tune the FNN model hyperparameters,

such as the network architecture or the learning rate. The test set is only used for the

final evaluation to check the performance of the FNN on previously unseen data. If an

FNN does not generalize well, i.e. has a smaller training loss than test loss, this is called

overfitting, while the inverted scenario, i.e. it has a much smaller test loss compared to
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the training loss, is called underfitting. Typically, overfitting and underfitting are directly

related to the model capacity of a machine learning method. Loosely speaking, the model

capacity of a deep network is directly correlated to the number of parameters inside the

network. The model capacity decides how well a deep network is able to fit a wide

variety of functions [18]. If the capacity is too small, the network might be unable to

fit the training set (underfitting), while a model capacity that is too large might lead to

memorization of training samples (overfitting) [18]. Underfitting is typically not much of

an issue with FNNs, as this can mostly be remedied by using a more powerful or deeper

network architecture with more parameters. Overfitting, however, needs to be taken into

account to be able to use FNNs for new, unseen data. The process of reducing the effect

of overfitting or preventing it altogether is called regularization [18]. This section briefly

describes the most popular regularization techniques for FNNs.

2.3.7.1 Early Stopping

When the model capacity of an FNN is large enough to be able to overfit, it is typically

observed that the training loss decreases steadily until convergence, while the validation

loss decreases at the start and rises again after the FNN starts to overfit. Early stopping

aims to regularize the FNN by finding the network parameters at the point of the lowest

validation loss. By using those network parameters with the lowest validation loss, the

network potentially generalizes better to unseen data. Therefore, early stopping basically

prevents overfitting before it has a measurable impact on the validation loss. An example

where the benefit of early stopping can be seen is illustrated in Figure 2.5.

2.3.7.2 Weight Decay

Weight decay, also known as L2 parameter regularization, is a strategy that adds a regu-

larization term to the loss function which penalizes large weights:

Ω(θ) = α
1

2
||w||22 . (2.31)

The parameter α determines the amount of weight decay [18]. This effectively changes

the gradient descent update for the network weights to

w = (1− ηα)w − η 1

m

m∑
i=1

∇wL(a(xTi
;w),yi). (2.32)

This has the effect of only preserving parameters which significantly contribute to reducing

the loss function, while decaying away the other parameters [18].
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Figure 2.5: Example of possible training and validation cost functions over the iterations during
training. Around iteration 3400, the network starts to overfit, resulting in increased validation cost
while still reducing training cost over time. The vertical line marks the minimum of the validation
cost, for which the model should provide the best generalization and therefore test performance.

2.3.7.3 Dropout

Dropout [67] is an efficient and powerful method of regularizing FNNs, which works by

training a virtual ensemble of all subnetworks that can be formed by removing units not

in the output layer from a base network. By multiplying its output value by zero, it is

possible to effectively remove an artificial neuron from an FNN [18]. Therefore, a binary

mask signifying if an artificial neuron is enabled or not can be defined. This mask is

applied to all input and hidden neurons in the network for every example in a minibatch

using a minibatch-based optimizer such as SGD . Each artificial neuron samples from this

binary mask using a fixed probability called the dropout rate, which commonly is set to 0.5

for hidden neurons and 0.8 for input neurons, describing the probability of including that

specific neuron. This means that for every training example, each neuron has a chance

to be active, equal to the dropout rate. This forces the FNN to not depend on specific

artificial neurons only, but to instead distribute the computation to multiple neurons,

therefore reducing the impact of overfitting. For testing, the network weights are typically

just divided by the inclusion probability for each neuron, which is called the weight scaling

rule ([18], [67]).
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2.3.8 Batch Normalization

Motivated by stability and performance issues when training very deep FNNs, Ioffe and

Szegedy introduced batch normalization [29] as a method of adaptive reparamerization to

better coordinate updates between many layers in a deep network [18]. During training,

it is adventageous for every layer to have a fixed distribution, such that the following

layer does not have to readjust its weights to acommodate for changes in distribution.

For the input layer, this is commonly done by normalizing all training, validation, and

test examples. The goal of batch normalization is to normalize intermediate layers during

training as well [29]. For any given input or hidden layer, let A be a matrix containing

a minibatch of post-activation outputs of that layer, where each row of A contains the

outputs for its respective training example. In order to normalize A to have zero mean

and unit variance, its elements are replaced with

A′i,j =
Ai,j − µj

σj
, (2.33)

where µj and σj describe the mean and standard deviation of the post-activation output

of neuron j, respectively, and i is the minibatch index. For the rest of the network, these

adjusted outputs A′ are used just the same way that the A was used originally. Most

importantly, the computation of the mean and standard deviation as well as the normal-

ization using them is part of the FNN , and therefore when computing the gradient of

this neuron, the backpropagation algorithm will backpropagate through these computa-

tions. This results in removing the effect of operations that simply increase the mean or

standard deviation in a neurons output [18]. Previously, normalization approaches either

added additional penalty terms to force normalized output statistics, which led to imper-

fect normalization, or renormalized all neuron statistics after each gradient step, which

was usually inefficient due to the required time. Batch normalization defines the respec-

tive units to be normalized by definition, therefore circumventing these issues. At training

time, the mean and standard deviation of each neuron output is simply computed over the

training minibatch. At test time, these definitions may be replaced by running averages

collected during training.

The normalization of mean and standard deviation of a neuron output can reduce

the expressive power of a FNN containing this neuron [18]. Therefore, it is common

to replace the outputs A with γA′ + β rather than just the normalized A′, where γ

and β are learned parameters that allow for the new formulation to contain any mean

and standard deviation. This new parameterization can represent the same family of

functions as the original parameterization, while at the same time being easier to learn

with gradient descent [18]. Through batch normalization, both additive and multiplicative

noise is introduced at training time, which can have a regularizing effect, sometimes even

making other techniques such as Dropout unnecessary [18].
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2.4 Activation Functions

As described in Section 2.1, artificial neurons typically use non-linear activation functions

on the weighted sum of their inputs. This section describes commonly used activation

functions as well as their properties during optimization.

2.4.1 Sigmoid

The sigmoid activation function has the mathematical form of

σ(x) =
1

1 + e−x
, (2.34)

which maps the real-valued input x to the range between 0 and 1 ([40],[18]). The sigmoid

activation function is shown in Figure 2.6. In early neural networks, sigmoids were a

popular choice due to the biologically inspired interpretation, as the output range between

0 and 1 could be interpreted as the firing rate of the neuron, where 0 represents a neuron

that does not fire at all, and 1 represents a neuron firing at maximum frequency [40].

However, the sigmoid activation function has some significant drawbacks, resulting in

other activation functions becoming more popular. The main drawback of sigmoids is

that they saturate and therefore provide only gradients very close to zero in these regions,

effectively preventing the backpropagation algorithm from providing gradients through

this neuron to all the inputs ([40],[18]). Additionally, the output of the sigmoid activation

is not zero-centered, which can lead to undesirable dynamics during gradient descent [40].

Therefore, using sigmoid activation functions for hidden neurons is discouraged [18]. For

output neurons, the range between 0 and 1 can be useful, e.g. for interpreting predictions

as probabilties.

2.4.2 Hyperbolic Tangent

The Hyperbolic Tangent (tanh) activation function is closely related to the sigmoid acti-

vation function and has the mathematical form of

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
= 2σ(2x)− 1. (2.35)

As can be seen in Equation 2.35, tanh is simply a scaled version of the sigmoid acti-

vation [40]. However, it is centered around 0, and therefore does not exhibit some of

the issues that sigmoid activations have. As a result, tanh activations are almost always

preferred to sigmoid activations ([40],[18]). The tanh activation is shown in Figure 2.7.
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Figure 2.6: Sigmoid Activation function in the range of x = [−10, 10].
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Figure 2.7: tanh Activation function in the range of x = [−10, 10].
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2.4.3 Rectified Linear Unit

The ReLU [44] activation is defined as

ReLU(x) = max(0, x), (2.36)

which is illustrated in Figure 2.8. It was found that it significantly accelerates the con-

vergence of SGD compared to sigmoid or tanh activations [34]. This is most likely due

to the linear, non-saturating form of ReLUs, preventing the main issue of sigmoid units,

the vanishing gradient problem ([26], [40]). It is also very efficient to compute, as it just

requires thresholding the neuron activations at zero. Additionally, as ReLUs have a second

derivative of 0 almost everywhere and a derivative of 1 in the active regions, the gradients

are large and consistent in the active region, which is very useful for learning [18]. One

of the main drawbacks of ReLUs is that units can ‘die’ during training. If the weights

during training are shifted in such a way that for all data inputs during SGD , the neuron

activation lies on the flat plane in the negative x-area, the neuron will only backpropagate

a gradient of 0, making it very unlikely that this neuron will recover from this state [40].

This can especially occur if the learning rate is set too high, resulting in larger swings for

parameter updates.
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Figure 2.8: ReLU Activation function in the range of x = [−10, 10].
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2.4.4 Leaky Rectified Linear Unit

As a method to fix the problem of ‘dying’ ReLUs, the Leaky Rectified Linear Unit (leaky

ReLU) [22] activation has been introduced, which has the mathematical form of

leaky ReLU(x) =

{
αx x < 0

x x ≥ 0
, (2.37)

where α is a small coefficient determining the negative slope of the function. The leaky

ReLU activation is illustrated in Figure 2.9. Given that leaky ReLUs now provide gradients

also for negative inputs, gradients are also non-zero in these regions, which prevents the

neuron from ‘dying’ [40].
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Figure 2.9: leaky ReLU Activation function in the range of x = [−10, 10], with the slope coefficient
set to α = 0.2.

2.5 Convolutional Neural Networks

Up until this section, all neural networks we described were fully-connected FNNs, where

every neuron in each layer except the input layer is connected to every neuron in the

previous layer. Every neuron then computes a function of its inputs and its weights and

biases, independently from all other neurons in the same layer. Consider a fully-connected

FNN taking a simple RGB image (defined as a volume) of size [256 × 256 × 3] as its

input. Flattening this volume, every single neuron has [256× 256× 3] = 196608 weights,

and that is only for a single neuron, while deep architectures require a lot of neurons

and hidden layers to sufficiently represent complex structures contained in the input data.
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This means that the fully-connected nature of these networks consumes a lot of memory,

especially for large images or videos, and the huge number of parameters can lead to

overfitting [40]. In order to address these issues, CNNs [37] were introduced as a very

popular extension of standard neural networks. By definition, CNNs are simply neural

networks that use convolution instead of matrix multiplication in at least one of their

layers [18]. By exploiting the knowledge that neural network inputs commonly have a

known, grid-like topology [18], such as in the case of time-series data, images, or volumes,

this convolution operation allows for a much more efficient forward propagation pass that is

very well suited for fast GPU implementation, in addition to vastly reducing the number of

parameters in the network, which allows for increased network sizes [40]. Most importantly,

everything regarding the optimization of standard fully-connected neural networks, such

as the optimization using SGD and backpropagation, or the application of non-linear

activation functions on the output still applies for CNNs.

2.5.1 Convolution

2.5.1.1 Overview

For a two-dimensional image I, the discrete convolution is defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (2.38)

where K(m,n) is a two-dimensional kernel, and the output S(i, j) is referred to as the

feature map [18]. Intuitively, this operation ‘slides’ the kernel along the image I and com-

putes a weighted sum of the kernel and the image at each position i, j. An example of

such a discrete two-dimensional convolution is illustrated in Figure 2.10. The convolution

operation can easily be extended to an arbitrary number of image and kernel dimensions.

In the context of CNNs, the kernel K describes the learnable weights of the convolutional

layer, and each convolutional layer can contain an arbitrary number of kernels, each re-

sulting in its own output feature map, stacked along the feature ‘depth’ axis. Important

to note is that the convolution is always performed along the full feature depth of the

input, for example, if the input image was an RGB image with respective dimensions of

[8× 8× 3] (3 ‘slices’, one for each color channel), the kernel would also need to be of size

3 along the depth axis, for example [4× 4× 3]. This convolution along the feature depth

axis for an RGB image is visualized in Figure 2.11.

Typically, the kernel is much smaller than the image, resulting in sparse connectivity

between inputs and outputs of a convolutional layer, which is one of the key motivations

of CNNs [18]. Intuitively, the idea behind sparse connectivity in CNNs is that small

kernels are good enough to detect useful features or patterns, such as edges, in images.

Sparse connectivity also implicitly defines the receptive field of the output feature map

entries. The receptive field in each spatial dimension is defined as the number of inputs

each respective feature map output is affected by during the convolution [18]. For the
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Figure 2.10: Two-dimensional convolution, where the kernel K is restricted to be strictly inside
the image I. Every output element of the feature map S is computed as a weighted sum between
the image I and the kernel K at a specific position i, j. The receptive field of each feature map
entry is illustrated by correspondingly colored boxes in the image I.

Figure 2.11: Two-dimensional convolution, where the kernel K is restricted to be strictly inside
the RGB image I. The kernel has to accomodate for all the channels inside the input, therefore it
needs to be of size 3 along the depth axis.

example shown in Figure 2.10, the receptive field is 2 in each spatial dimension, and is

illustrated by the differently colored boxes, while Figure 2.11 demonstrates a receptive

field of 4 in each spatial dimension.

In addition to sparse connectivity, parameter sharing is also a key motivation of CNNs.

In traditional fully-connected neural networks, every element of the weight matrix is used

exactly once when computing the output, as every element describes a unique weight be-
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tween one input and one output [18]. For a CNN , each kernel entry is used at multiple

positions across the image, therefore implicitly sharing that parameter across the whole

image. While this does not affect the runtime performance of forward propagation com-

pared to fully-connected networks, it again significantly reduces the memory footprint of

CNNs. Parameter sharing also has a very useful side-effect: as the kernel keeps the same

parameters at every position, the convolutional layer is invariant to translation of the

input, as this will just simply translate the output as well.

2.5.1.2 Parameterization

Each convolutional layer has a certain set of hyperparameters, each of which determine

the receptive field, the number of connections and the output size of the feature maps.

Kernel Size The kernel size (sometimes also called filter size) K describes the recep-

tive field, and therefore the size of the convolutional kernel that is applied to all input

locations. Increasing this parameter allows the convolutional layer to pick up more spatial

information, while simultaneously increasing the number of network weights. As previ-

ously discussed, the number of feature depth channels D of a convolutional kernel is always

equal to the number of depth channels of the input [40].

Number of Kernels The number of kernels directly corresponds to the number of

learnable parameters and the depth D of the output volume of a convolutional layer.

As each kernel produces an individual output feature map, D kernels produce an output

feature map of depth D [40].

Stride As described previously, convolution can be understood as weighted summation

by ‘sliding’ a kernel over an input volume. However, the ‘sliding’ does not need to happen

with an offset of one pixel at a time, which is what the stride describes. The stride S

specifies the number of pixels the kernel is moved between every output feature compu-

tation. Larger strides will produce smaller output feature maps, as a lower amount of

computations (with larger distances in between) will be performed [40]. This concept is

illustrated in Figure 2.12.

Zero-Padding Due to the way the convolution operation works, the spatial output di-

mensions of a convolutional layer shrink if the convolutional kernel is strictly enforced to

be inside the image (compare to Figure 2.10 and Figure 2.11). However, it is often conve-

nient to keep spatial dimensions of input and output layers the same, for example when

computing functions in a pixel-wise manner. This is where zero-padding can be applied.

By appending the input volume with zeros around the border, it is possible to circumvent

the shrinking of the spatial dimensions when performing convolution. The amount of zeros



28 Chapter 2. Deep Learning

added on each side for every spatial dimension is an additional hyperparameter P . An

example of zero-padding is illustrated in Figure 2.13.

(a) Stride S = 1. (b) Stride S = 2. (c) Stride S = 3.

Figure 2.12: Convolution on a one-dimensional input with different strides.

Figure 2.13: One-dimensional convolution with zero-padding.

Dilation Introduced very recently, the dilation d is another hyperparameter that allows

for the convolutional layer to have a larger effective receptive field relative to the input

while keeping the kernel size the same. This is achieved by introducing d spaces between

each cell of the kernel ([9], [75]). Standard convolution, as described previously, simply

uses a dilation of 0, and therefore uses a contiguous kernel. By increasing the dilation, and

therefore the spacing between kernel cells, it is possible for a convolutional layer to pick

up a larger spatial extent of the input while keeping memory consumption the same. The

concept of dilated convolutions (sometimes also called atrous convolutions) with different

dilations is illustrated in Figure 2.14.
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(a) Dilation d = 0. (b) Dilation d = 1.

(c) Dilation d = 2. (d) Dilation d = 3.

Figure 2.14: Dilated convolution on a two-dimensional input for different dilations. For illustra-
tive purposes, only one kernel position, centered on the input image is visualized.
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Given the input volume size W , the kernel size K, the stride S, dilation d and the

zero-padding P , the resulting output volume has the size of2

Wo =

⌊
W + 2P −K − (K − 1)(d− 1)

S

⌋
+ 1. (2.39)

By carefully utilizing the kernel size, number of filters, stride, dilation and zero-padding,

it is possible to fully define the spatial and feature dimensions of the output while still

being able to adjust the amount of weights and effective receptive field per convolutional

layer, giving fine-grained control over every part of the convolutional layer.

2.5.2 Pooling

In order to keep the amount of parameters low and to further increase the effective recep-

tive field of outputs with respect to the input, it can be beneficial to use a special form of

spatial downsampling, called pooling, after some convolutional layers in the network [40].

Pooling, similar to convolution, can also intuitively be understood as a sliding kernel

mechanism, with similar parameters, such as stride and kernel size. The key difference is

that pooling computes a fixed function on its inputs, which is most commonly the max

operation (max-pooling). The most common form of pooling consists of a [2×2] kernel with

a stride of 2. When sliding this kernel across the input volume using the max function,

it effectively processes non-overlapping [2× 2] chunks of the input volume and only keeps

the largest value at the output feature map, discarding 75% of the input data. Another

common variant of pooling is average pooling, for which the kernel simply computes the

average over all its input elements. The backpropagation for max-pooling can simply be

done by only routing the gradient through the input that had the largest value in the

forward pass [40]. An example of max-pooling can be seen in Figure 2.15.

As this function is fixed, it does not require any trainable parameters, and therefore

does not increase the memory consumption and model capacity of the CNN architecture,

compared to strided convolutions. However, recent CNNs architectures seem to steer

away from using pooling for downsampling, and instead propose to always use strided

convolutions to reduce the spatial dimensions [66]. This seems to be especially important

when training generative models such as Generative Adversarial Networks (GANs) [52].

2.5.3 Fractionally Strided Convolution

Sometimes, similarly to how it can be useful to reduce the spacial resolution of intermediate

layers in a CNN , it can also be useful to increase spatial resolution, for example in encoder-

decoder architectures ([54], [5]). While it is also possible to simply increase the spatial

resolution by standard image processing methods such as nearest neighbor or bilinear

2Convolution Arithmetic Tutorial, http://deeplearning.net/software/theano/tutorial/conv_

arithmetic.html, Accessed: 01.02.2018

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
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Figure 2.15: Two-dimensional max-pooling, using a pooling size of [2× 2] with a stride of 2.

upsampling, it can be useful to combine the upsampling process with learnable parameters,

intuitively ‘learning’ the upsampling algorithm which best fits the given data.

Fractionally Strided Convolutions, also sometimes called Transposed Convolutions, sim-

ply swap the forward and the backward pass of a regular convolution, therefore leading to

a larger spatial resolution given specific parameters.

2.6 Image Segmentation using Deep Convolutional Neural

Networks

Due to the strong focus of this thesis on image segmentation, this section will give a brief

introduction to the problem of image segmentation and how to approach it from a deep

learning perspective using encoder-decoder CNN architectures.

2.6.1 Image Segmentation

The goal of image segmentation is to partition an image into a set of disjoint regions that

cover it [68]. Typically, the output of image segmentation is a segmentation mask, where

every pixel contains the label of the region or class detected by the segmentation algorithm.

Therefore, image segmentation is a pixel-wise operation. For every input pixel, the goal is

to produce an output pixel which has the correct region label. For example, if the goal is

to segment a lung X-ray image into the regions ‘left lung’ and ‘everything except left lung’,

the result should ideally look like illustrated in Figure 2.16.

The easiest method to perform binary (two-class) image segmentation is by simply

thresholding the image. If the input pixel is larger than a specific threshold, it belongs

to the foreground class, otherwise it belongs to the background class. However, this only

works for very easy tasks, where the regions of interest share a common pixel intensity
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(a) Lung X-ray image. (b) Groundtruth segmentation mask for the left
lung.

Figure 2.16: Image segmentation of the left lung of a lung X-ray image.

range. Image segmentation is one of the oldest and most relevant computer vision prob-

lems, as it reduces complexity, and is therefore a valuable preprocessing step for many

tasks. As an example, the segmentation of the left lung significantly reduces the search

area if the task is to find anomalies in the left lung. Before the rise of deep learning,

a long history of research led to image segmentation algorithms based on thresholding,

clustering, region growing, graph partitioning and many more [68]. However, since mod-

ern deep learning approaches achieve state-of-the-art on image segmentation tasks, most

recent advancements in image segmentation have been in the deep learning domain [15].

2.6.2 Encoder-Decoder Architecture

As previously described, image segmentation is a pixel-wise method, therefore it is neces-

sary for a deep neural network to take an input image, and produce an output segmentation

mask. Similar to most modern deep neural networks, CNNs are typically chosen for this

task, as the sheer amount of pixels would make fully-connected FNNs require too much

memory in most cases.

A very common network architecture for image segmentation is the encoder-decoder

network. As the name implies, such a network mainly consists of two stages, the encoder,

and the decoder. The encoder typically consists of a series of convolutions and pooling

operations, and the goal of this stage is to increase the effective receptive field of the net-

work as well as to generate an embedding in a lower dimensional feature space. For every

pooling step, the following convolutional layers will have a larger receptive field relative

to the input image, which is important for the network to learn global image context

for regions that are large. The decoder is typically a mirrored version of the encoder,

and contains a series of upsampling operations (or fractionally strided convolutions) and

convolutions. The input to the decoder is the output of the encoder, which is the layer

representing the lower dimensional, compressed feature embedding. The goal of the de-

coder is to ‘reconstruct’ a segmentation mask from the highly compressed output of the

encoder. This is mainly motivated by the idea that by compressing the input to a small,
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intermediate representation, the network has to learn a good representation of the input

data, otherwise the decoder will not be able to construct a good segmentation mask out

of the compressed intermediate representation. A very popular convolutional architecture

of this kind, especially in the medical computer vision community, is the U-Net archi-

tecture [54]. In addition to containing standard encoder and decoder paths, the U-Net

also contains ‘shortcuts’, which are typically implemented as channel concatenations or

additions, between encoder and decoder at the same depth. This allows for the decoder to

incorporate finer details of the encoder stage as well, and not just strictly use upsampled

versions of the final encoder output. A U-Net style network architecture is illustrated in

Figure 2.17.

Figure 2.17: U-Net style encoder-decoder network architecture.
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2.6.3 Softmax Cross-Entropy Loss

As previously discussed, optimizing neural networks via gradient descent requires a loss

function, for which the gradients are computed. For image segmentation, a common

choice is to use the softmax cross-entropy loss, which is also commonly used for image

classification. The only difference between image segmentation and image classification

regarding the loss function is that for image segmentation, the loss is computed per pixel

individually, while for image classification, the loss is computed for the whole image.

Instead of a final segmentation mask, segmentation networks typically predict ‘pseudo-

probabilities’ for every pixel and class. Therefore, the network output typically consists

of a number of images stacked on the depth axis, one image for each possible class, where

each image predicts a ‘pseudo-probability’ of every pixel in the image belonging to the

respective class. Equivalently, every output pixel has a vector of ‘pseudo-probabilities’

containing the likelihood of it belonging to a certain class.

The softmax cross-entropy loss consists of two parts. First, the network outputs (the

‘pseudo-probabilities’) are fed through a softmax function, which is simply a multidi-

mensional generalization of the sigmoid function. This results in actual probabilities for

every pixel, i.e. the sum over all class probabilities for every pixel is 1. Given a vector

zj of ‘pseudo-probabilities’ containing K class entries for a single pixel j of the output

minibatch, the softmax function is computed as [47]

σ(zj)i =
ezji∑K
k e

zjk
, (2.40)

where i is the class index.

The second part of the softmax cross-entropy loss is the computation of the cross-

entropy between the now computed softmax outputs and the target probabilities. In

image segmentation, pixels can typically only belong to a single class, therefore the target

probabilities are simply 1.0 for the class a pixel belongs to, and 0.0 otherwise. Given a

target vector of probabilities tj and the softmax output σ(zj), the cross-entropy for a

single pixel j of the output minibatch can be computed as [47]

Cj = −
K∑
i

tji log(σ(zj)i), (2.41)

where i is the class index. Finally, by computing the cross-entropy Cj for every target

pixel j in the whole minibatch, the full cross-entropy loss is computed by averaging all

cross-entropies for every pixel:

C =
1

N

N∑
j

Cj , (2.42)

where N is the total number of pixels of the output minibatch, and j is the pixel index
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over the whole minibatch.

2.7 Data Augmentation

For some applications, acquiring a sufficient amount of training data for training a deep

neural network can be difficult. As an example, in medical imaging, the acquisition of

labeled training data is very time-consuming and costly, since a trained expert needs to

manually annotate every image in the training set. An insufficient amount of training data

can lead to overfitting, as the neural network is more likely to just memorize certain aspects

of the training set. To regularize this type of overfitting, data augmentation is commonly

applied. Data augmentation describes the process of generating additional training data

by transforming the given input training data. Most commonly, data augmentation for

deep learning is done online, therefore the input image (or input image minibatch for SGD)

is transformed directly before being fed into the deep neural network. Data augmentation

has been shown to be especially beneficial for medical image segmentation [54]. Even for

large datasets such as ImageNet [59], it has been shown that data augmentation can be

beneficial as an additional regularizer for very deep architectures [34]. Additionally, data

augmentation allows for an easy way to incorporate prior knowledge about possible unseen

data. For example, if test images are taken with a varying amount of brightness, it might

make sense to augment with random intensity shifts to accomodate for the variation in

brightness in test data. Possible data augmentation schemes range from simple additive or

multiplicative image modifications such as intensity shifts, to geometric transformations

such as rotation, scaling, elastic deformation to synthetic data generation. This section

discusses commonly used data augmentation methods and their possible uses and effects

on training deep neural networks. For all data augmentation schemes in this section, the

parameters assume an image minibatch I normalized to an intensity range of [−1, 1] with

a spatial extent of [256 × 256]. All described data augmentation schemes should only be

carefully applied in the context of task, dataset and network architecture, as augmentation

parameters that do not fit the training setup can lead to worse performance than not using

augmentation at all.

2.7.1 Additive Noise

Additive noise describes the augmentation scheme of adding element-wise noise from a

specific distribution to an image minibatch before feeding it into the neural network. As

an example, given a minibatch of noise-matrices N ∼ N (µ, σ2) drawn from a zero-mean

Gaussian noise distribution with a standard deviation of σ = 0.2, this results in the

following augmented image minibatch:

IA = I +N (2.43)
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An example of an augmented image using additive noise can be seen in Figure 2.18.

(a) Base Image. (b) Image augmented with additive zero-mean
Gaussian noise with standard deviation of σ =
0.2.

Figure 2.18: Additive noise for data augmentation.

Adding noise to the input forces the neural network to be tolerant against uncorrelated

variations in pixel values, and therefore can reduce overfitting. Additionally, if the noise

source of test images is known, additive noise can help to adjust training images to be

more similar to test images.

2.7.2 Intensity Scaling

For intensity scaling, each image is transformed by element-wise multiplication with a

scalar. This typically results in a change of image contrast, as multiplying the image with

a scalar has a more significant impact (when looking at the absolute change in intensity)

on larger image intensities. An example for intensity scaling by a scalar drawn from a

Gaussian distribution with a mean of µ = 1 and a standard deviation of σ = 0.4 is shown

in Figure 2.19.

(a) Base Image. (b) Image augmented with intensity scaling us-
ing Gaussian noise with a mean of µ = 1.0 and
standard deviation of σ = 0.4.

Figure 2.19: Intensity scaling for data augmentation.
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Intensity scaling can be useful if test images are expected to have varying contrast, as

the network can be made more tolerant against changes in contrast if this augmentation

method is applied.

2.7.3 Intensity Shift

Intensity shift describes the procedure of performing an element-wise addition of a scalar

to the image. This corresponds to a basic brightness change for the image, as positive

values for the intensity shift lead to brighter images, while negative values lead to darker

images. An example for intensity shift by a scalar drawn from a Gaussian distribution

with zero-mean and a standard deviation of σ = 0.4 is shown in Figure 2.20.

(a) Base Image. (b) Image augmented with intensity shift using
zero-mean Gaussian noise with standard devia-
tion of σ = 0.4.

Figure 2.20: Intensity shift for data augmentation.

This augmentation technique is especially useful to improve generalization of neural

networks for varying brightness in the test data.

2.7.4 Random Flipping

For random flipping, images are typically flipped around a chosen axis, most commonly

at a rate of 50%. The resulting minibatch therefore has an equal chance of containing the

flipped or non-flipped version of the image. An example for a horizontally flipped image

is shown in Figure 2.21.

Random flipping is very useful when the test data contains, for example, natural images

or faces, as these images typically are still valid when flipped.

2.7.5 Random Translation

When performing random translation, the image is shifted by a random distance on each

axis. For this operation, there are several ways to decide how the pixels outside the

image boundaries (which can now be visible due to the translation) are computed. The

nearest neighbor mode simply repeats the nearest pixel which is inside the original image
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(a) Base Image. (b) Image flipped horizontally.

Figure 2.21: Horizontal flipping for data augmentation.

boundaries. The constant mode just sets all outside pixels to a certain constant value.

Using the wrap mode, the outside pixels are computed by ‘wrapping’ the image around

each boundary. Similarly, by using the reflect mode, the outside pixels are computed by

reflecting the image around each boundary. An example for random translation with the

reflect boundary mode is shown in Figure 2.22.

(a) Base Image. (b) Image translated randomly using a shift
drawn from a Gaussian distribution with a mean
of µ = 15 pixels and standard deviation of
σ = 15 pixels for each axis.

Figure 2.22: Random translation for data augmentation. The magenta grid is just for illustrative
purposes, to better visualize how the image coordinates were transformed.

While CNNs in itself are translation invariant due to the convolution operation, it can

still be useful to augment data using random translation, as this can force the learned ker-

nels to generalize better to different image positions, when combined with other geometric

intensity transformations.

2.7.6 Random Rotation

Similar to random translation, random rotation is a geometric coordinate transformation

applied on the input image minibatch. In random rotation, each image inside the mini-

batch is rotated randomly, most commonly either using fixed possible angles (e.g. 0, 90,
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180, or 270 degrees) or using a randomly drawn angle in a specific range (e.g. a range

between −60 and 60 degrees). As rotation can also lead to pixels outside the image now

being inside the image, the same boundary modes as mentioned in Section 2.7.5 apply. An

example of an image augmented with random rotation in the range of (−60, 60) degrees

using the reflect mode can be seen in Figure 2.23. Random rotation is very useful for

making the neural network invariant to rotation.

(a) Base Image. (b) Image rotated randomly using a rotation
angle drawn from a uniform distribution in the
range of (−60, 60) degrees.

Figure 2.23: Random rotation for data augmentation. The magenta grid is just for illustrative
purposes, to better visualize how the image coordinates were transformed.

2.7.7 Random Cropping

In random cropping, each image inside a minibatch is cropped to a smaller size. This

has multiple effects: First, the image size is reduced, therefore requiring a lower amount

of memory for storing neural network activations. Therefore, cropping can be a valid

alternative to simple downsampling, with the benefit of not losing fine-grained information.

The second effect is that it forces the neural network to not expect certain features at

certain positions all the time, as the crop might not even contain specific regions. An

example of a randomly cropped image (to a size of [128×128]) can be seen in Figure 2.24.

In addition to the regularizing effect, random cropping also does not hinder the testing

on new images. For the results on large, uncropped test images, the image can simply be

cropped multiple times in a way that the whole image is covered by crops. The final results

are then obtained by assembling the crop-wise results. As re-assembling of cropped results

can lead to inconsistencies at the edges (e.g. for pixel-wise methods such as segmentation),

in practice, the test image can be cropped such that there is an overlap between crops.

For classification, the final label can be decided by majority vote, while for pixel-wise

methods, a fully sized image can be assembled by computing cropped partial images,

using interpolation in the overlapping regions of every crop.
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(a) Base Image. (b) Image cropped randomly to a size of [128×
128].

Figure 2.24: Random cropping for data augmentation. The magenta grid is just for illustrative
purposes, to better visualize how the image was cropped.

2.7.8 Elastic Deformation

In addition to the simpler geometric transformations previously described, elastic defor-

mation is a method to deform images using basis spline transformations. This method

is particularly common in medical imaging, as a tuned spline transformation can bet-

ter approximate anatomical variation compared to very simple transformations [54]. The

method works by defining a grid of sparse, regular control points and deforming each con-

trol point using basis spline interpolation kernels3. An example of elastic deformation is

shown in Figure 2.25.

(a) Base Image. (b) Image augmented using elastic deformation
with displacements of the basis spline transfor-
mation drawn from a zero-mean Gaussian dis-
tribution with a standard deviation of σ = 15
pixels.

Figure 2.25: Elastic deformation for data augmentation. The magenta grid is just for illustrative
purposes, to better visualize how the image coordinates were transformed.

While elastic deformation can be very useful to model realistic variation in the data,

it is very computationally intensive, and therefore should only be used when appropriate,

3ITK: Insight Segmentation and Registration Toolkit - Documentation, https://itk.org/Doxygen/
html/classitk_1_1BSplineTransform.html, Accessed: 01.02.2018

https://itk.org/Doxygen/html/classitk_1_1BSplineTransform.html
https://itk.org/Doxygen/html/classitk_1_1BSplineTransform.html
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as it significantly increases the training time of the neural network in the online data

augmentation case.

2.7.9 Synthetic Data Augmentation

Synthetic data augmentation describes a completely different approach to standard data

augmentation. In this method, the input images are not transformed, but instead a

generative model of some kind is tuned to generate additional, synthetic data resembling

the real data. Very recently, 3D models have been used to render highly realistic images to

increase the amount of training data and improve the performance of object detection [56].

As another example, rendered synthetic images have been used to improve the performance

of landmark detection in medical imaging [53]. Furthermore, it has been shown that using

modern deep learning models such as GANs, it is even possible to refine purely rendered

data with information from real data to arrive at more realistic synthetic data [64]. As

this method is especially relevant to our investigation, Section 3.4 describes this approach

in more detail. The main drawback of synthetic data augmentation using rendered images

or models is that it requires a significant time investment. It is not trivial to create a

renderer for images that is realistic enough to be useful for training neural networks, and

the refinement to make the rendered images more realistic requires a lot of fine-tuning and

careful parameterization to arrive at good results.

2.8 Summary

It is undeniable that deep learning resulted in significant advancements in the computer

vision community. Whether it is object classification, image segmentation, landmark lo-

calization or image translation, most computer vision applications have benefitted signifi-

cantly from deep learning. In this chapter, we described the basic building blocks of deep

learning, the artificial neurons, as well as their computational behavior. Additionally, we

discussed how to organize multiple artificial neurons into FNNs, and how to efficiently

optimize FNNs using SGD , backpropagation and various other optimization and regu-

larization schemes. Furthermore, we described CNNs, and the main differences between

regular FNNs and CNNs, such as convolution, pooling and fractionally strided convolu-

tions. As we have a strong focus on image segmentation in this thesis, we illustrated how

modern CNNs can be used for image segmentation. Finally, as the main focus of this

thesis, data augmentation was discussed in detail, and some of the most common data

augmentation methods were described.
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Since the introduction of Generative Adversarial Networks (GANs) in 2014 by Good-

fellow et al. [19], the original idea has been improved and iterated upon, and it has been

shown that GANs are useful in a multitude of applications, such as domain-transfer ([30],

[78]), synthetic data generation and refinement ([64], [45]), super-resolution [39] or state-

of-the-art high-resolution image generation ([21], [31]). While many of these applications

iteratively improved the common knowledge about the inner workings of GANs, this

chapter will only focus on the major milestones in GAN research relevant to our work.

Section 3.1 describes the original approach, as introduced by Goodfellow et al. in 2014 [19].

In Section 3.2, we discuss the advancements made by Radford et al. in 2015 culminating

in the Deep Convolutional Generative Adversarial Network (DCGAN) [52], which, for the

first time, provided a set of guidelines for efficient and stable training of GANs. Since the

theoretical background of GANs was still relatively unexplored, researchers started to take

a closer look at the theoretical formulation of GANs ([48],[77]). This lead to the introduc-

tion of multiple variants of different optimization criterions for training GANs, including

least squares loss [42], matching of reconstruction loss distributions [7] or the Wasserstein

distance as a loss function ([3],[21]). As our experiments described in Chapter 4 are based

on the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)

introduced by Gulrajani et al. in 2017 [21], we describe Wasserstein Generative Adversarial

Networks (WGANs) [3] and WGAN-GP [21] in more detail in Section 3.3. Finally, as an

example of GANs applied in the context of data augmentation, we describe SimGAN [64]

43
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in more detail in Section 3.4.

3.1 Fundamentals

GANs, as introduced by Goodfellow et al., currently represent the state-of-the-art for

generative models. A GAN is a framework for estimating generative models, consisting of

two differentiable submodels, which are typically implemented as deep neural networks:

the generator G with parameters θG and the discriminator D with parameters θD. An

illustration of a typical GAN setup is shown in Figure 3.1. The generator and the dis-

criminator compete against each other: the generator is trained to generate images G(z)

which resemble the training data distribution pR, using a latent noise vector z, sampled

from the distribution pz as input, while the discriminator receives the generated images

G(z) as well as the real training data x as input and is trained to differentiate between

generated images and real images. Therefore, G is trained to minimize the probability

of D identifying the generated images as synthetic (D (G (z)) ≈ 0), while D is trained to

maximize the probability of itself being correct (D (G (z)) ≈ 0) , (D (x) ≈ 1), leading to

the following minimax [20] value function:

min
G

max
D

V (D,G) = Ex∼pR [logD (x)] + Ez∼pz [log (1−D (G (z)))] (3.1)

The ideal discriminator for a fixed generator, as shown by Goodfellow et al., is given by

D∗G =
pR

pR + pG
, (3.2)

Figure 3.1: Architecture setup for a typical GAN .
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where pG is the distribution of data generated by the generator. The optimum of the

minimax game is reached for pR = pG, i.e. when the generator perfectly replicates the

training data distribution. For this optimum, the optimal discriminator output is D∗G = 1
2 ,

meaning that the discriminator is unable to differentiate between training data and gen-

erated data distributions. For practical implementation of GANs, the minimax objective

shown in Equation 3.1 is optimized by alternating the optimization of G and D, optimiz-

ing G once for multiple steps of D, in order to keep D in its optimal region, leading to

Algorithm 2:

Algorithm 2: Training algorithm for GANs, using minibatch stochastic gradient
descent. For each generator training step, k discriminator training steps are
performed.

for number of training iterations do
for k discriminator update steps do

Generate a minibatch G(z) of m images from the Generator G;
Take a minibatch x of m images from the real data;
Compute the weight update for the discriminator D by ascending the
stochastic gradient gθD :

gθD = ∇θD
1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

(3.3)

θD = θD + η gθD (3.4)

Generate a minibatch G(z) of m images from the Generator G;
Compute the weight update for the generator G by descending the stochastic
gradient gθG :

gθG = ∇θG
1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
)))

(3.5)

θG = θG + η gθG (3.6)

A significant part of the popularity and wide adoption of GANs in research is that

GANs can be trained by using well researched and understood methods also used for

training discriminative models, such as backpropagation and Stochastic Gradient Descent

(SGD), without requiring intractable probabilistic computations [19]. The first examples

of GANs used popular deep learning techniques such as Dropout [67] and Rectified Linear

Units (ReLUs) [17] in their architecture, which was only easily possible due to the generator

and discriminator being neural networks. Examples of images generated by these early

networks can be seen in Figure 3.2 and Figure 3.3.

While the results seen in Figure 3.2 and Figure 3.3 were competitive with other gen-

erative models at the time, the stability of training GANs was a significant issue. The
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Figure 3.2: Samples from a fully-connected Generative Adversarial Network trained on
MNIST [38]. Image taken from [19].

Figure 3.3: Samples from a Generative Adversarial Network with a convolutional generator and
discriminator trained on CIFAR10 [33]. Image taken from [19].

optimization between the generator and the discriminator was very fragile, as one of the

networks could sometimes overpower the other, leading to a multitude of possible failure

states of GANs, for example mode collapse [20]. Mode collapse describes a common prob-

lem for GANs, where the generator learns to map multiple different noise input vectors

z to the same output G(z). This is mainly because the gradients in the discriminator

are computed independently from each other, without incorporating any kind of similarity

measure for comparing samples of a given minibatch [60]. Therefore, the generator might

learn to only create a single image (mode) with the largest discriminator response. When

this situation settles in, the discriminator quickly learns that this single mode comes from

the generator, and as a response, the generator will shift this mode to a different loca-

tion. However, since all of the generated images in a mode-collapsed minibatch are almost

identical, the difference in gradients is not enough to force the generator to create mul-

tiple different images, it will just generate a different single image instead, leading to an
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oscillatory failure state. Partial mode collapse similarly results in the generator creating

only a very small amount of different images, or images which all share common features.

An example of a generator exhibiting mode collapse can be seen in Figure 3.4. Without

extensive hyperparameter searches, this restricts the use of early GAN implementations

to applications where the variance of generated output images is not an important crite-

rion. Fortunately, this was adressed in future GAN research, by using methods such as

minibatch discrimination [60] or different optimization objectives such as the Wasserstein

loss ([3],[21]) which is described in more detail in Section 3.3.

Figure 3.4: Samples from a Generative Adversarial Network exhibiting mode collapse trained on
LSUN [76] bedrooms. Multiple similar images are generated in the same minibatch instead of a
diverse set of samples. Image taken from [3].

3.2 Deep Convolutional Generative Adversarial Networks

Building on the success of GANs, Radford et al. introduced Deep Convolutional Generative

Adversarial Network (DCGAN) [52], with the goal to better incorporate recent methods

used in training Convolutional Neural Networks (CNNs). The DCGAN architecture is

built on a set of guidelines to improve stability of training and image quality:

Fully-Convolutional Neural Network (FCNN) architecture Use strided convolu-

tions instead of pooling and fractionally strided convolutions instead of upsampling

to make the generator and discriminator architectures fully convolutional [52]. An

example of such an architecture in form of the DCGAN generator is demonstrated

in Figure 3.5. The discriminator architecture is simply mirrored.

Batch Normalization [29] Add Batch Normalization to all convolutional layers except

the final generator layer and the first discriminator layer, as it is necessary for deep

networks to begin learning and improve training stability.

Activation Functions Use ReLU [17] activation in all generator layers except the last

one, which uses Hyperbolic Tangent (tanh) activation. Use Leaky Rectified Linear

Unit (leaky ReLU) [41] activation in all discriminator layers.
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Figure 3.5: DCGAN fully convolutional generator architecture. Image taken from [52].

To demonstrate their guidelines for designing GAN , Radford et al. trained a DCGAN

on the LSUN [76] bedrooms dataset, which contains over 3 million training examples at an

image resolution of [64× 64]. Fully converged samples from the experiment performed by

Radford et al. can be seen in Figure 3.6. Furthermore, Radford et al. also experimented

with the latent noise vector input of the generator. Drawing two random noise vectors z1
and z2 from a uniform distribution and linearly interpolating between them, they showed

that the generated images between z1 and z2 form a smooth transition without sharp

edges, suggesting that the generator did not just learn to recreate the training images,

but has succeeded in establishing a representation of the submanifold spanned by the

input images. In addition to this experiment, it was also shown that the properties of the

generator latent space allow for vector arithmetic for visual concepts. For example, when

computing the average noise vector input for output images where people are wearing

glasses, this average can be used to add glasses to a person without glasses, by simply

adding the average noise vector of people with glasses to the vector of a person without

glasses.

An additional key motivation for DCGAN was to use CNNs in the field of unsupervised

learning. Radford et al. showed that by using the discriminator as a feature extractor for

image classification tasks, they achieve competitive performance with other unsupervised

algorithms on CIFAR10 [33] and SVHN [46].

While the training of GANs is more stable when using DCGAN architectures, the hy-

perparameters for training DCGAN (model size, architecture, optimizer parameters, ...)

still have to be chosen very carefully. Otherwise, the DCGAN might oscillate during train-

ing, where it simply switches between generating noise artefacts and generating reasonable

images, which was also reported by the authors of DCGAN .
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Figure 3.6: DCGAN samples after five epochs of training on LSUN [76] bedrooms. Image taken
from [52].

3.3 Wasserstein Generative Adversarial Networks

With the advent of theoretical GAN research ([48],[77]), new loss functions for optimizing

GANs became more popular. This led to the introduction of Wasserstein Generative Ad-

versarial Networks (WGANs) [3] by Arjovsky et al. in 2017. Often, learning a probability

distribution is done by using maximum likelihood estimation to find the best fit of the

model density Pθ to the given real data x. Given the real data distribution pR and the

model distribution pG, the limit (in the number of samples) of the maximum likelihood

estimate is equal to minimizing the Kullback-Leibler (KL) divergence KL(pR||pG). How-

ever, the KL divergence is undefined or infinite if the model density Pθ does not exist,

for example if the distributions are supported by low dimensional manifolds, as then the

model manifold and the support of the true distribution might not intersect [3]. This is

the reason why many generative models add an additional noise term to the model distri-

bution, resulting in blurry, degraded images. Instead of estimating the density pR, GANs

work by passing a random variable z through a parametric function G, which is typically

implemented as a neural network. Therefore, it is possible to directly sample from the

model distribution pG, and by changing the model parameters θG, it is possible to adjust

pG to be similar to the real distribution pR.

The main motivation behind WGAN is to analyze the different ways to measure dis-

tances between the model distribution pG and the real distribution pR. In the original

formulation for GANs introduced by Goodfellow et al., they show that the objective func-

tion to optimize is the Jensen-Shannon (JS) divergence. For WGAN , the distance function
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used is the Earth-Mover (EM) distance or Wasserstein-1 distance, which intuitively com-

putes the cost of the optimal transport plan to transform the distribution pR into pG. The

Wasserstein-1 distance is defined as

W (pR, pG) = inf
γ∈Π(pR,pG)

E(x,y)∼γ [ ||x− y|| ] , (3.7)

where Π(pR, pG) is the set of all joint distributions (the set of all ’transport plans’) γ(x, y),

whose marginals are pR and pG, respectively. As the infimum in Equation 3.7 is intractible,

the dual form of the Wasserstein-1 distance [73] is used as a base to derive the optimization

scheme

W (pR, pG) = sup
||D||L≤1

Ex∼pR [D(x)]− Ex∼pG [D(x)] , (3.8)

where the supremum is over all 1-Lipschitz functions. By replacing this constraint with a

K-Lipschitz assumption, the dual formulation only changes by a multiplicative constant

of K, which does not change the optimization problem, as K can just be absorbed into the

learning rate hyperparameter. If a parameterized family of functions D with parameters

θD ∈ W contains functions that are all K-Lipschitz, the following optimization problem,

which leads to the main training objective for WGAN , can be derived. By assuming that

the supremum in Equation 3.8 is obtained for some θD ∈ W and by incorporating the

generator network G(z) as the model distribution pG, we can reformulate the equation to

arrive at

max
θD∈W

Ex∼pR [D(x)]− Ez∼pz [D (G(z))] . (3.9)

This formulation can be roughly approximated by training a neural network D, which is

now called the critic instead of the discriminator. The critic is parameterized with weights

θD lying in a compact space W , and by backpropagating through Ez∼pz(z) [∇θGD (G(z))],

we arrive at the training scheme, which is similar to that of the original GAN . To have the

critic weights θD lie in a compact space, Arjovsky et al. suggest to clip the critic weights to

a fixed box, with suggested parameters of W = [−0.01, 0.01], after each gradient update.

The full training procedure of WGAN is described in Algorithm 3.

When optimized, the Wasserstein-1 distance shows nicer properties than the JS di-

vergence, such as a more sensible behavior when learning distributions supported by low

dimensional manifolds. This results in WGAN being able to learn probability distributions

where other learning objectives, such as those derived by the JS and KL divergences fail.

Since the EM distance is continuous and differentiable, Arjovsky et al. suggest to train

the critic to optimality, as the better trained critic will provide more reliable gradients.

With the standard JS objective of the original GAN , this is not possible, since when the

discriminator gets better, the JS distance is locally saturated, leading to the problem of

vanishing gradients [2], while WGAN still has gradients everywhere. Arjovsky et al. also

claim that WGAN resolves the issue of mode collapse due to the critic being trained until

optimality. Additionally, an optimal critic allows for a meaningful interpretation of the
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Algorithm 3: Training algorithm for WGAN , using minibatch stochastic gradi-
ent descent. Default suggested parameters are α = 0.00005 for the learning rate,
c = 0.01 for the clipping range and kcritic = 5 critic updates.

for number of training iterations do
for kcritic critic update steps do

Generate a minibatch G(z) of m images from the Generator G;
Take a minibatch x of m images from the real data;
Compute the stochastic gradient gD of the critic D with respect to the
critic weights θD:

gD = ∇θD

[
1

m

m∑
i=1

[
D
(
x(i)
)
−D

(
G(z(i))

)]]
(3.10)

Update the critic weights using RMSProp [25];
Clip the weights to be inside the range of [−c, c];

Generate a minibatch G(z) of m images from the Generator G;
Compute the stochastic gradient gG of the generator G with respect to the
generator weights θG:

gG = −∇θG
1

m

m∑
i=1

[
D
(
G(z(i))

)]
(3.11)

Update the generator weights using RMSProp [25];

critic loss, as it approximates the EM distance.

3.3.1 Wasserstein Generative Adversarial Networks with Gradient

Penalty

While WGAN improved the training of GANs significantly, some settings still led to low-

quality samples or complete lack of convergence. Gulrajani et al. argue that these failure

modes are due to the way the 1-Lipschitz constraint is enforced in the original WGAN . The

weight clipping present in the original WGAN shows, for some scenarios, that the critic has

problems finding the optimal functions, therefore underusing its capacity. Additionally,

weight clipping can also lead to vanishing or exploding gradient norms, which results

in unstable gradients, and therefore, unstable training [21]. Gulrajani et al. prove that

the optimal critic in the WGAN framework has unit gradient norm almost everywhere

under pR and pG. This motivated them to enforce the 1-Lipschitz constraint of the original

WGAN differently - by using a soft penalty on the gradient norm of the critic, the gradient

norm can be encouraged towards 1, which forms the basis of the Wasserstein Generative

Adversarial Network with Gradient Penalty (WGAN-GP) training procedure [21]. For this
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gradient norm, Gulrajani et al. sample uniformly from a distribution px̂ that is defined

along the lines between pairs of samples from the real data distribution pR and the model

distribution pG. Implementing this gradient penalty, the original WGAN loss function is

modified to

L = Ex∼pR [D(x)]− Ez∼pz [D (G(z))]︸ ︷︷ ︸
WGAN critic loss

+λEx̂∼px̂
[
(||∇x̂D(x̂)||2 − 1)2

]
︸ ︷︷ ︸

WGAN-GP gradient penalty

, (3.12)

where λ describes the penalty coefficient, which Gulrajani et al. found to work well for

a multitude of experiments if set to a value of λ = 10. The WGAN-GP training proce-

dure is described in Algorithm 4. Compared to WGAN and DCGAN , which used batch

normalization in both the generator and the critic/discriminator, WGAN-GP does not

use batch normalization in the critic, as the gradient penalty term in the objective would

not be valid [21], and it is suggested to use layer normalization [4] instead. Samples of a

WGAN-GP trained on the LSUN [76] bedrooms dataset can be seen in Figure 3.7.

Algorithm 4: Training algorithm for WGAN-GP , using minibatch stochastic
gradient descent. Suggested parameters are α = 0.0001 for the learning rate, λ =
10 for the penalty coefficient, β1 = 0, β2 = 0.9 for the decay rates of the Adaptive
Moment Estimation (Adam) [32] optimizer and kcritic = 5 critic updates.

for number of training iterations do
for kcritic critic update steps do

Generate a minibatch G(z) of m images from the Generator G;
Take a minibatch x of m images from the real data;
Compute random interpolates between real and generated data, using uniform
noise ε ∼ U [0, 1]

x̂ = εx+ (1− ε)x̂ (3.13)

Compute the gradient gD of the critic D with respect to the critic weights θD:

gD = ∇θD

[
1

m

m∑
i=1

[
D
(
x(i)
)
−D

(
G(z(i))

)
+ λ

[(∣∣∣∣∣∣∇x̂(i)D(x̂(i))
∣∣∣∣∣∣
2
− 1
)2]]]

(3.14)
Update the critic weights using Adam [32];

Generate a minibatch G(z) of m images from the Generator G;
Compute the gradient gG of the generator G with respect to the generator weights θG:

gG = −∇θG
1

m

m∑
i=1

[
D
(
G(z(i))

)]
(3.15)

Update the generator weights using Adam [32];

The improved training stability, especially on multiple datasets, and the solid theoret-

ical foundation based on WGAN was the main reasoning for us to choose WGAN-GP as

the base of our implementation described in Chapter 4.
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Figure 3.7: Samples from WGAN-GP after convergence when trained on LSUN [76] bedrooms.
Image taken from [21].

3.4 SimGAN

As an application of GANs closely related to data augmentation, and therefore to our

contribution, we will discuss SimGAN [64] in this section. The main idea of SimGAN is

to render simulated image data, for which the annotation is known, and to incorporate

a GAN to refine the synthetic data. The goal of this refinement process is to use real,

unannotated data to improve the realism of the rendered image data, while preserving

the annotation information [64]. Without requiring human annotation effort, Shrivastava
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et al. achieved state-of-the-art classification results using their SimGAN architecture. The

overview of the SimGAN architecture is illustrated in Figure 3.8.

Figure 3.8: SimGAN architecture for unsupervised synthetic image refinement. Image taken
from [64].

SimGAN uses a number of modifications compared to the traditional GAN

formulation. In addition to the standard adversarial loss, they introduced a

self-regularization loss that minimizes a feature transform of the synthetic and real

images lreg = ||ψ(xref )− xsyn||1 , where ψ is a mapping from image space to a feature

space. In their paper, Shrivastava et al. simply used an identity mapping (ψ(x) = x)

as the default transform. This self-regularization loss forces the refinement network to

produce refined images that resemble the unlabeled real images more closely, while still

preserving the annotation information of the rendered image [64]. The second major

modification of SimGAN is that it uses a local adversarial loss. Key motivation for this

approach is that the refiner network tends to over-emphasize certain image features to

fool the current discriminator network, which can lead to artifacts [64]. To prevent this,

Shrivastava et al. design the discriminator such that it outputs a probability map of

size [w × h], effectively splitting the input image into [w × h] patches. The adversarial

loss function is then simply computed as the sum of the cross-entropy losses over the

local patches. This helps the refinement network to produce images, where every local

patch has similar statistics to a real image patch. The local adversarial loss approach

is illustrated in Figure 3.9. In order to further stabilize training and reduce artifacts,

Shrivastava et al. also implemented a history of refined images. Instead of sampling a

new minibatch of images as the input every time, SimGAN keeps a buffer of B images,

and takes half of the images of a minibatch from this buffer. After every iteration, half of

the refined images randomly replace previous images inside this buffer. By introducing

memory into the discriminator, this improves the consistency of training [64]. This
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Figure 3.9: SimGAN local adversarial loss. Image taken from [64].

concept is illustrated in Figure 3.10.

Figure 3.10: SimGAN history of refined images to improve stability. Image taken from [64].

SimGAN shows that GANs have potential to be used for data augmentation, which is

the main topic of our investigation in Chapter 4.
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3.5 Summary

In this chapter, the major milestones in GAN research were presented. Introduced very

recently, the original GAN completely changed modern generative modeling. Being able to

implicitly estimate a model distribution using just data in combination with popular deep

learning methods such as backpropagation and SGD made for a very attractive generative

model. However, early GANs struggled with stability, often resulting in failures during

training. Motivated by this idea, and especially the potential application for unsupervised

feature extraction, the DCGAN architecture was introduced, which resulted in a much

more stable training procedure when following the DCGAN guidelines. Finally, with

the advent of research on the theoretical formulation of GANs, WGAN and WGAN-GP

were introduced, which fundamentally changed the objective function of GAN to include

the EM distance, resulting in stable training with a solid theoretical foundation. GANs

definitely show potential in a lot of applications, which is where most research is focused

on to this date. Especially related to our investigation, applications such as SimGAN show

that GANs also have potential for use in the domain of data augmentation. In Chapter 4,

we will discuss our approach for using GANs in a way to synthesize additional labeled

training data for image segmentation.
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In this chapter, we present our novel modification to Generative Adversarial Networks

(GANs), which we use to synthesize images and corresponding segmentation masks at

the same time. We describe how to arrive at our GANs architecture, and evaluate the

generated images and segmentation masks by using them as training data for two image

segmentation tasks. Additionally, we compare the GAN -based data augmentation to

standard data augmentation techniques, such as described in Section 2.7. In Section 5.1,

we evaluate on the SCR Lung Database [72], a small, medical image segmentation dataset.

For the second evaluation shown in Section 5.2, we chose the Cityscapes [10] dataset (see

Figure 5.6 for an example image and segmentation mask) for semantic segmentation in

order to test our approach on a larger, challenging dataset.

4.1 Modifying Generative Adversarial Networks for Data

Augmentation

As discussed in Chapter 3, GANs are the current state-of-the-art method to learn gen-

erative models. However, the standard GAN definition only allows for the generation of

images, without respective labels. Therefore, for the generated data to be used for data

augmentation, the conventional GAN formulation needs to be modified to also generate

corresponding labels. During the course of this thesis, we proposed a novel GAN archi-

tecture, which jointly generates images and their corresponding segmentation masks, for

direct use of training data augmentation [45]. Compared to the standard GAN formu-

57
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lation, this architectural adaptation is straight-forward to implement, as it is a simple

change in the network architecture, and can therefore be used with any GAN training

scheme, such as the Wasserstein Generative Adversarial Network (WGAN) or the more

recent Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP).

The main idea of our proposed architecture is that we fuse the image and segmentation

mask to create an image-segmentation pair. This is done by concatenating both images

along the channel axis. As an example, a given RGB image of dimensions [W × H × 3]

with its corresponding segmentation mask of dimensions [W ×H × 1] results in an image-

segmentation pair with dimensions of [W×H×4]. When training the GAN , the generator

is now modified to generate image-segmentation pairs, instead of just images. This change,

in its most trivial form, can be achieved by simply modifying the final convolutional layer in

the generator, such that the number of output channels is equal to the number of channels

of the required image-segmentation pair. For the discriminator, a similar principle is

applied. The discriminator now takes image-segmentation pairs as input, and its goal is

to correctly decide if any given image-segmentation pair is real or synthetic. Therefore, the

first convolutional layer of the discriminator needs to be modified to accept inputs where

the number of channels is equal to the number of channels of the image-segmentation pair.

Our GAN architecture that we use to generate image-segmentation pairs is illustrated in

Figure 4.1.

Figure 4.1: GAN architecture for generation of image-segmentation pairs.
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While we showed some preliminary results for this architecture in [45], for this thesis,

we perform a much more extensive evaluation to find out how well GANs perform for

data augmentation, especially when compared to standard data augmentation. For all

of our evaluations, we define ‘standard’ data augmentation as a combination of image

transformations, such as described in Section 2.7, while GAN-based augmentation refers

to adding synthetic image-segmentation pairs from our modified GAN architecture to the

training set of a segmentation network.

4.2 Implementation Details

All GANs in our experiments are trained using the WGAN-GP training scheme and loss

function, as we found this to be the most robust method for training GANs, even across

multiple datasets. For the gradient penalty hyperparameter, we used the default value sug-

gested by Gulrajani et al., setting λ = 10. Additionally, compared to [45], we significantly

increased the image resolution, in order to test how well the GAN is able to handle higher

resolutions. Our code is based on the code provided by the authors of WGAN-GP [21]1,

using the TensorFlow [1] deep learning framework. For both our evaluations, we use a

similar evaluation setup. First, we split the data into one or multiple training, validation,

and test sets. Then, we train GANs for every training set of this dataset, until the image

quality does not further improve. Finally, we take the fully-trained generator network, and

use it directly as an input to a U-Net [54] style segmentation network. Compared to our

previous evaluation [45], where we simply sampled a fixed amount of image-segmentation

pairs, this allows for the full range of possible images to be sampled from the generator,

capturing the full amount of variation that the generator has learned from the data. For

training the segmentation network, we use different ratios of real and generated data, and

apply either no additional standard data augmentation, or a combination of standard data

augmentation methods. When mixing real and generated data, we exclusively use only

the specific GAN that was trained on the same real training data set, to keep all training

sets separate. Our evaluation setup is illustrated in Figure 4.2. Additionally, for all

segmentation networks, early stopping is used. For every segmentation network, we train

for at least 3000 iterations. During training, we keep track of the minimal loss and its

iteration number, as well as the network parameters at the loss minimum, measured for

the internal validation set. We only stop the training when 3000 iterations have passed

since the last validation loss minimum was found. In practice, this resulted in a good com-

promise of network performance and training time. The final metric for our evaluation

is the segmentation performance of the segmentation network on the unseen test data.

For the evaluation on the test set, and therefore the final segmentation performance, we

upsample the output of our segmentation networks using bicubic upsampling to the target

resolution. When computing the final segmentation masks of the SCR Lung Database,

1GitHub: Improved Training of Wasserstein GANs, https://github.com/igul222/improved_wgan_

training, Accessed: 01.02.2018

https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
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Figure 4.2: Evaluation setup containing a pre-trained generator and U-Net style segmentation
network.

we additionally apply largest-connected-component post-processing, in order to only ex-

tract the single largest foreground object, as we are only interested in a single object (the

left lung) in this evaluation. Afterwards, we compute the Dice coefficient, the Hausdorff

distance (for the SCR Lung Database), and the mean Intersection-over-Union (mIoU)

(for the Cityscapes dataset) as our evaluation metrics. All evaluations were done on an

NVIDIA Tesla K80 with 12GB of GPU memory, although all networks were designed for

an NVIDIA GTX980M with 8GB of GPU memory. For both evaluations, all input images

were intensity-normalized to a range of [−1, 1].

4.2.1 Network Architectures: SCR Lung Database

Our GAN architecture for the SCR Lung Database is based on the Deep Convolu-

tional Generative Adversarial Network (DCGAN) [52], with added layers to handle the

higher resolution and added modifications for handling image-segmentation pairs. Even

though WGAN-GP has no issues when training on more complex architectures, such as

ResNet [23]-based architectures, due to the required time when training a GAN , we de-

cided to stick to a simpler architecture. All architectural parameters of our GAN for the

SCR Lung Database are listed in Table 4.1. Our segmentation network is based on U-

Net [54], with a depth of 3. As described in Section 2.6.3, we use the sigmoid cross-entropy

loss for computing our segmentation loss. Additionally, we used a constant number of 64
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kernels in every convolutional layer of our segmentation network, as we found that to re-

sult in the most consistent performance. The architectural parameters of our segmentation

network for this evaluation are listed in Table 4.2.

SCR Lung Database Generator Architecture

Minibatch Size: 16, Optimizer: Adaptive Moment Estimation (Adam) (η = 0.0001, β1 = 0.5, β2 = 0.9).
All weights were initialized using the He initializer [22].
The input noise vector of dimensionality 128 was drawn from a zero-mean Gaussian distribution with unit variance.

Input
Projection

Generator
Stage 1

Generator
Stage 2

Generator
Stage 3

Generator
Stage 4

Generator
Stage 5

Generator
Stage 6

Type Fully-
Connected

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Input
Dimension

[1× 128] [4× 4× 2048] [8× 8× 1024] [16× 16× 512] [32× 32× 256] [64× 64× 128] [128×128×64]

Output
Dimension

[4× 4× 2048] [8× 8× 1024] [16× 16× 512] [32× 32× 256] [64× 64× 128] [128× 128× 64] [256× 256× 2]

Number of
Kernels

- 1024 512 256 128 64 2

Kernel
Size

- 5 5 5 5 5 5

Stride - 2 2 2 2 2 2

Padding - 1 1 1 1 1 1

Activation Rectified
Linear Unit
(ReLU)

ReLU ReLU ReLU ReLU ReLU Hyperbolic
Tangent
(tanh)

Batch
Normalization

yes yes yes yes yes yes no

(a) Generator architecture of our GAN trained on the SCR Lung Database.

SCR Lung Database Discriminator Architecture

Minibatch Size: 16, Optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.9).
All weights were initialized using the He initializer [22].

Discriminator
Stage 1

Discriminator
Stage 2

Discriminator
Stage 3

Discriminator
Stage 4

Discriminator
Stage 5

Discriminator
Stage 6

Output

Type Convolution Convolution Convolution Convolution Convolution Convolution Fully-
Connected

Input
Dimension

[256× 256× 2] [128× 128× 32] [64× 64× 64] [32× 32× 128] [16× 16× 256] [8× 8× 512] [4× 4× 1024]

Output
Dimension

[128×128×32] [64× 64× 64] [32× 32× 128] [16× 16× 256] [8× 8× 512] [4× 4× 1024] [1]

Number of
Kernels

32 64 128 256 512 1024 -

Kernel
Size

5 5 5 5 5 5 -

Stride 2 2 2 2 2 2 -

Padding 2 2 2 2 2 2 -

Activation ReLU ReLU ReLU ReLU ReLU ReLU -

Batch
Normalization

yes yes yes yes yes yes no

(b) Discriminator architecture of our GAN trained on the SCR Lung Database.

Table 4.1: Architecture of the GAN trained on the SCR Lung Database.
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SCR Lung Database Segmentation Network Architecture

Minibatch Size: 16, Optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.9).
All weights were initialized using the He initializer [22].
No Batch-Normalization was used in any layer.

Encoder
Stage 1

Encoder
Stage 2

Encoder
Stage 3

Encoded
Features

Decoder
Stage 1

Decoder
Stage 2

Decoder
Stage 3

Output

Type
Convolution
Convolution
Pooling

Convolution
Convolution
Pooling

Convolution
Convolution
Pooling

Convolution
Convolution

Upsampling
Concat (Encoder 3)
Convolution
Convolution

Upsampling
Concat (Encoder 2)
Convolution
Convolution

Upsampling
Concat (Encoder 1)
Convolution
Convolution

Convolution

Input
Dimension

[256× 256× 1] [128× 128× 64] [64× 64× 64] [32× 32× 64] [32× 32× 64] [64× 64× 64] [128× 128× 64] [256× 256× 64]

Output
Dimension

[128×128×64] [64× 64× 64] [32× 32× 64] [32× 32× 64] [64× 64× 64] [128× 128× 64] [256× 256× 64] [256× 256× 2]

Number of
Kernels

64 64 64 64 64 64 64 2

Kernel
Size

3 3 3 3 3 3 3 3

Stride 1 1 1 1 1 1 1 1

Padding 1 1 1 1 1 1 1 1

Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU

Pooling
[2× 2],
Average

[2× 2],
Average

[2× 2],
Average

- - - -

Table 4.2: Architecture of the U-Net based segmentation network trained on the SCR Lung
Database.

4.2.2 Network Architectures: Cityscapes

Similar to Section 4.2.1, our GAN is based on DCGAN [52], and our segmentation network

is based on U-Net [54]. Our GAN mostly follows the same architecture as before, and

is only slightly adjusted for the different image size and image depth, due to the images

being RGB. The detailed listing of all architectural parameters of our GAN trained on

the Cityscapes dataset is shown in Table 4.3. For our segmentation network, compared

to our evaluation on the SCR Lung Database, we increased the number of filters for all

convolutional layers to 256, as well as the depth of the network to 4, as the semantic seg-

mentation of the Cityscapes dataset is a much more difficult problem, therefore requiring

a more powerful segmentation network. The architecture of the segmentation network

used for the Cityscapes dataset is shown in more detail in Table 4.4.
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Cityscapes Generator Architecture

Minibatch Size: 8, Optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.9).
All weights were initialized using the He initializer [22].
The input noise vector of dimensionality 128 was drawn from a zero-mean Gaussian distribution with unit
variance.

Input
Projection

Generator
Stage 1

Generator
Stage 2

Generator
Stage 3

Generator
Stage 4

Generator
Stage 5

Type Fully-
Connected

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Fractionally
Strided
Convolution

Input
Dimension

[1× 128] [8× 4× 1024] [8× 16× 512] [32× 16× 256] [64× 32× 128] [128×64×64]

Output
Dimension

[8× 4× 1024] [16× 8× 512] [32× 16× 256] [64× 32× 128] [128× 64× 64] [256×128×4]

Number of
Kernels

- 512 256 128 64 4

Kernel
Size

- 5 5 5 5 5

Stride - 2 2 2 2 2

Padding - 1 1 1 1 1

Activation ReLU ReLU ReLU ReLU ReLU tanh

Batch
Normalization

yes yes yes yes yes no

(a) Generator architecture of our GAN trained on the Cityscapes dataset.

Cityscapes Discriminator Architecture

Minibatch Size: 8, Optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.9).
All weights were initialized using the He initializer [22].

Discriminator
Stage 1

Discriminator
Stage 2

Discriminator
Stage 3

Discriminator
Stage 4

Discriminator
Stage 5

Output

Type Convolution Convolution Convolution Convolution Convolution Fully-
Connected

Input
Dimension

[256× 128× 4] [128× 64× 32] [64× 32× 64] [32× 16× 128] [16× 8× 256] [8×4×512]

Output
Dimension

[128× 64× 32] [64× 32× 64] [32× 16× 128] [16× 8× 256] [8× 4× 512] [1]

Number of
Kernels

32 64 128 256 512 -

Kernel
Size

5 5 5 5 5 -

Stride 2 2 2 2 2 -

Padding 2 2 2 2 2 -

Activation ReLU ReLU ReLU ReLU ReLU -

Batch
Normalization

yes yes yes yes yes no

(b) Discriminator architecture of our GAN trained on the Cityscapes dataset.

Table 4.3: Architecture of the GAN trained on the Cityscapes dataset.
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Cityscapes Segmentation Network Architecture

Minibatch Size: 8, Optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.9).
All weights were initialized using the He initializer [22].
No Batch-Normalization was used in any layer.

Encoder
Stages 1/2

Encoder
Stages 3/4

Encoded
Features

Decoder
Stages 1/2

Decoder
Stages 3/4

Output

Type

Convolution
Convolution
Pooling
Convolution
Convolution
Pooling

Convolution
Convolution
Pooling
Convolution
Convolution
Pooling

Convolution
Convolution

Upsampling
Concat (Encoder 4)
Convolution
Convolution
Upsampling
Concat (Encoder 3)
Convolution
Convolution

Upsampling
Concat (Encoder 2)
Convolution
Convolution
Upsampling
Concat (Encoder 1)
Convolution
Convolution

Convolution

Input
Dimension

[256×256×3] [64× 64× 256] [16× 16× 256] [16× 16× 256] [64× 64× 256] [256× 256× 256]

Output
Dimension

[64×64×256] [16× 16× 256] [16× 16× 256] [64× 64× 256] [256× 256× 256] [256× 256× 8]

Number of
Kernels

256 256 256 256 256 8

Kernel
Size

3 3 3 3 3 3

Stride 1 1 1 1 1 1

Padding 1 1 1 1 1 1

Activation ReLU ReLU ReLU ReLU ReLU ReLU

Pooling
[2× 2],
Average

[2× 2],
Average

- - -

Table 4.4: Architecture of the U-Net style segmentation network used for the Cityscapes dataset.

4.3 Evaluation Metrics

In this section, we briefly describe the evaluation metrics that we use in our experiments.

4.3.1 Dice Coefficient

The Sørenson-Dice coefficient, which nowadays is most commonly referred to as the Dice

coefficient or Dice score, is a metric for computing the similarity between two sam-

ples ([12],[65]). It is computed as

DSC =
2TP

2TP + FP + FN
, (4.1)

where TP , FP and FN describe the true positives, false positives and false negatives

between both samples, respectively. It can easily be applied to the problem of image

segmentation, by simply computing a confusion matrix between predicted and labeled

segmentation mask, and deriving the components of the Dice score from the confusion

matrix.
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4.3.2 Intersection-over-Union

The Intersection-over-Union (IoU), also called Jaccard Index is very similar to the Dice

coefficient, and is also used to compute a similarity measure between two samples. It is

computed as

IoU =
TP

TP + FP + FN
, (4.2)

which simply uses a different weighting for true positives, compared to the Dice coefficient.

4.3.3 Hausdorff Distance

The Hausdorff distance measures the distance between two sets, by measuring how close

each point of one set is to all points of the other set. The maximum distance (i.e. the

farthest distance from a point in one set to its nearest neighbor in the other set) is the

Hausdorff distance [28]. It is defined as

H(A,B) = max(h(A,B), h(B,A)), (4.3)

where

h(A,B) = max
a∈A

min
b∈B
||a− b|| (4.4)

is the directed Hausdorff distance, and ||a− b|| is a norm (e.g. the Euclidean norm)

between point a from set A and point b from set B. Intuitively, the Hausdorff distance

describes the most mismatched point between set A and set B, and therefore describes

the largest distance between any points of A and B [28]. Unlike the Dice and IoU , the

Hausdorff distance has no explicit pairing of points, i.e. many points of A might be close

to a single point of B.
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In this chapter, we describe both datasets used for our evaluation as well as present

our evaluation setup for every dataset. Finally, we present qualitative and quantitative

results for both the SCR Lung Database as well as the Cityscapes dataset, and discuss

these results in detail.

5.1 SCR Lung Database Medical Image Segmentation

5.1.1 Dataset Description

The SCR Lung Database [72] is a dataset consisting of 247 chest X-ray images, taken from

the JSRT database [63]. Its image resolution is [2048 × 2048] at a physical resolution of

0.175 mm per pixel in each dimension, and it contains groundtruth segmentation masks

for 5 objects: both lungs, the heart and both clavicles. Additionally, 154 images contain

exactly one pulmonary lung nodule each, while the other 93 images contain none. For our

evaluation, we chose the task of segmenting the left lung from the image. An example

image with its corresponding segmentation mask can be seen in Figure 5.1.

5.1.2 Evaluation Procedure

All images are downsampled to a resolution of [256× 256] before we use them for training

in order to fit all our networks into GPU memory while still being able to use a large

enough minibatch size for stable training. We shuffle the dataset randomly and split it

into 3 folds, each containing 135 training images, 30 validation images and 82/83 test

images, chosen such that all images are contained exactly once in the set of test images.

67
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(a) Example image from the SCR Lung
Database.

(b) Example segmentation mask from the
SCR Lung Database. Segmentation classes
are listed in the legend below.

Classes:
Background Foreground (Left Lung)

Figure 5.1: Example image and category segmentation mask from the SCR Lung Database.

For the final evaluation of the segmentation performance, we report performance as the

average Dice score and Hausdorff distance over all folds.

As the first step of our evaluation, we train a Generative Adversarial Network (GAN)

with our modified architecture (see Section 4.1) for each of the 3 folds of training data,

resulting in 3 fully-trained GANs. As it is still difficult to determine a quantifiable stopping

criterion for the training of GANs, every GAN was trained for 10000 iterations, which took

approximately 24 hours per GAN . The raw image-segmentation pairs from the generator

are in the intensity range of [−1, 1]. Therefore, when training our segmentation network

using generated images, we threshold all segmentation masks at 0 when computing the

segmentation loss. An example for a segmentation mask sampled from the GAN before

and after thresholding can be seen in Figure 5.2.

For the main part of our evaluation of the SCR Lung Database, we train multiple

segmentation networks for every fold, using an exhaustive set of combinations of real and

generated data as well as with and without standard data augmentation. We evaluated

different combinations of standard data augmentation on one fold of the validation set

to find suitable augmentation parameters for the final comparison. For this parameter

search, we fixed elastic deformation at 10 pixels for each control point, to speed up the

search. These results for different augmentation methods are shown in Table 5.1, and the

combination of parameters listed in bold will be used as our standard data augmentation

method for the final evaluation. However, we also tried several other combinations of
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(a) Raw segmentation image sampled from
the GAN in the intensity range of [−1, 1].

(b) Binary segmentation mask after thresh-
olding the GAN output at 0.

Figure 5.2: Raw output and thresholded segmentation mask sampled from the GAN trained
on the SCR Lung Database. Segmentation classes in the thresholded image are the same as in
Figure 5.1.

augmentation parameters and found the difference in validation performance to be neg-

ligible. Important to note is that this parameter search was done on only a single fold

of the validation set, therefore those results are not comparable to our final qualitative

results which are averaged over all folds. Before computing our final segmentation perfor-

mance metrics, we remove everything from the resulting segmentation mask except for the

largest connected component, as we only want to predict the left lung, which is a single

connected component. Training each segmentation network took approximately 8 hours

on our setup.

5.1.3 Results

The full details of our implementation and network architectures are described in Sec-

tion 4.2. Sample images from our GANs trained on the SCR Lung Database can be seen

in Figure 5.3. The final segmentation performance, averaged across all folds, is shown

in Table 5.2. In order to better compare GAN -based data augmentation and standard

data augmentation, we also present samples of resulting segmentation masks for two of

our networks: the network trained on a mix of real and generated data without data aug-

mentation (GANs-based augmentation), and the network trained solely on real data with

standard data augmentation. Some of the best resulting samples are shown in Figure 5.4,

while the example showing the worst performance is presented in Figure 5.5.
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Augmentation Parameters
Validation

Performance

Intensity shift
around zero
(stddev)

Intensity scaling
around zero
(stddev)

Random translation
around zero
(stddev)

Elastic deformation
around zero
(stddev)

Dice
(mean)

- - - - 0.9698
- - - 10 px 0.9706
- - 10 px 10 px 0.9685
- 0.50 - 10 px 0.9703
- 0.50 10 px 10 px 0.9677
0.50 - - 10 px 0.9640
0.50 - 10 px 10 px 0.9691
0.50 0.50 - 10 px 0.9663
0.50 0.50 10 px 10 px 0.9712

Table 5.1: Comparison of augmentation parameters for the SCR Lung Database. All results
were computed by training strictly on real data and recording the best validation performance.
For illustrative purposes, we only report the Dice score, although the Hausdorff distance and
mean Intersection-over-Union (mIoU) score follow the same ordering of segmentation performance.
For further evaluation, we use the augmentation parameters listed in bold as our standard data
augmentation.

Figure 5.3: Sample images from our GAN trained on the SCR Lung Database. Odd columns
show generated images, while even columns show the respective generated segmentation masks.
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Image Groundtruth
Prediction
GAN -based
Aug.

Prediction
Standard
Aug.

Difference:
GAN -based
Aug.

Difference:
Standard
Aug.

Figure 5.4: Comparison of good segmentation masks from fully trained segmentation networks
between standard data augmentation and GAN -based data augmentation for the SCR Lung
Database. Columns 3 and 5 show results from our segmentation network trained using GAN -
based augmentation with a mix of real and generated data, while Columns 4 and 6 show the
results of our segmentation network trained using standard data augmentation.

Image Groundtruth
Prediction
GAN -based
Aug.

Prediction
Standard
Aug.

Difference:
GAN -based
Aug.

Difference:
Standard
Aug.

Figure 5.5: Comparison of the worst performing test sample from fully trained segmentation
networks between standard data augmentation and GAN -based data augmentation for the SCR
Lung Database. Columns 3 and 5 show results from our segmentation network trained using GAN -
based augmentation with a mix of real and generated data, while Columns 4 and 6 show the results
of our segmentation network trained using standard data augmentation.
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Method

Number
of real
pairs in
minibatch

Number
of generated
pairs in
minibatch

Aug.?
Dice
(mean)

Dice
(stddev)

Hausdorff
(mean)

Hausdorff
(stddev)

This Work

16 0 yes 0.9765 0.0165 1.2057 mm 0.3131 mm
16 0 no 0.9742 0.0166 1.2626 mm 0.3440 mm
8 8 yes 0.9765 0.0228 1.1722 mm 0.3313 mm
8 8 no 0.9768 0.0147 1.2106 mm 0.3154 mm
0 16 yes 0.9655 0.0163 1.2651 mm 0.3067 mm
0 16 no 0.9632 0.0202 1.3273 mm 0.3434 mm

Previous
Neff et al. [45]

16 0 no 0.9608 0.0101 - -
≈ 8 ≈ 8 no 0.9537 0.0121 - -
0 16 no 0.9172 0.0283 - -

Table 5.2: Segmentation performance comparison between training on real data, generated data,
and mixed data, using either no additional data augmentation, or standard data augmentation
(see Table 5.1), evaluated on our test set of the SCR Lung Database. Since our previous setup [45]
was not tested on full resolution, the Hausdorff distance was omitted from the previous results, as
it is not an accurate comparison.

5.1.4 Discussion

Figure 5.3 shows that our GAN manages to generate high-quality images with correspond-

ing segmentation masks that fit the generated image well. Compared to our previous GAN

samples of this dataset shown in [45], the generated samples are of much higher quality and

more closely resemble the training data. We also do not experience mode collapse of our

generated samples compared to our previous results, as the resulting samples show similar

variety to the training set the generator was trained on. Looking at the segmentation

performance shown in Table 5.2, we can see that the Dice scores and Hausdorff distances

are very close between all networks, only showing a significant gap for the networks trained

on strictly synthetic data and for our previous results in [45]. Augmenting with synthetic

images from a trained GAN does not decrease the segmentation performance, and net-

works trained with a mix of synthetic and real images stay competitive with networks

trained on strictly real data, using standard data augmentation. Even though the differ-

ence is small, the best result (Dice score, standard deviation of Dice) of our evaluation

was achieved using our GAN -based augmentation, i.e. using a network trained on mixed

real and synthetic data. This suggests that GAN -based augmentation might be a viable

augmentation strategy in the future, especially if GAN research further improves on the

quality and variety of generated images. Furthermore, it is very interesting to see that our

network trained on purely synthetic data beats the performance of the network trained

on real data of our previous work [45]. Important to note is that this is not due to mode

collapse or overfitting of our generator on the training data, but due to the higher quality

of the synthetic images sampled from our GAN on-the-fly, in addition to the use of a more
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powerful segmentation network. This shows that our GAN has managed to learn enough

about the underlying training data distribution to produce valuable images for training

segmentation networks.

Looking at the samples produced from our GAN -augmented network and our network

trained with standard augmentation in Figure 5.4 and Figure 5.5, we can see that the

segmentation quality is also equally good. For some test images, the network trained with

GAN -based data augmentation produces better segmentation masks, while for others, the

network trained with standard data augmentation achieves higher quality results. Since

the Dice scores and Hausdorff distances are almost identical, and we can not determine

significant differences in image quality, it seems that the lung segmentation problem for

this dataset is already solved by the U-Net. Additional augmentation does not provide any

more benefits, but also does not have a negative impact on the results either. However,

GAN -based augmentation also does not lead to worse performance in this case, which

was not the case in our previous evaluation [45], suggesting that the higher quality GAN

images from Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-

GP) improved our overall augmentation method, and our GAN managed to better capture

the distribution of our training data.

5.2 Cityscapes Semantic Image Segmentation

5.2.1 Dataset Description

For our second evaluation, we chose the task of semantic segmentation using the

Cityscapes [10] dataset. Cityscapes is a challenging dataset for semantic urban scene

understanding, which aims to capture the complexity of real-world urban scenes. For 30

object classes divided into 8 groups, pixel-level and instance-level segmentation masks

are provided for every image. The base resolution of all images is [2048× 1024× 3]. This

dataset consists of 2975 training images and 500 validation images with finely annotated

segmentation masks, with an online submission system used to evaluate performance on

the test set, for which the groundtruth segmentation masks are not known. Since this

segmentation problem is much more challenging compared to the lung segmentation

problem we evaluated in Section 5.1, we decided to only do segmentation of the 8 object

groups (‘categories’ ) defined in the Cityscapes dataset, and not on the individual classes.

An example image as well as the corresponding segmentation mask containing these 8

categories can be seen in Figure 5.6.
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(a) Example image from the Cityscapes dataset.

(b) Example segmentation mask from the Cityscapes dataset. Each of the 8 categories
and its color-coding are listed in the legend below.

Categories:
Void Flat
Construction Object
Nature Sky
Human Vehicle

Figure 5.6: Example image and category segmentation mask from the Cityscapes dataset.
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5.2.2 Evaluation Procedure

Due to the test set being not as easily accessible, we created our own data split from the

given training and validation sets. We used all 500 images from the Cityscapes validation

set as our test set. For our internal validation set, we randomly selected 400 images from

the Cityscapes training set. Finally, our training set consists of the remaining 2575 images

from the Cityscapes training set. Due to the much larger amount of data compared to the

SCR Lung Database and the time consuming nature of our evaluation, we only evaluate on

this single fold of data. For all networks in this evaluation, we downscaled the resolution

of all input images to [256 × 128 × 3] to be able to fit our generator network and our

segmentation network into memory at the same time, while still keeping a sufficiently

large minibatch size. This is definitely not ideal, as the Cityscapes dataset contains a lot

of small, thin structures (e.g. objects such as street lights and traffic signs), that almost

vanish in the downsampled image. An example for such a downsampled input is shown in

Figure 5.7.

Before training our segmentation networks, we train our modified GAN (see Sec-

tion 4.1) on the Cityscapes dataset for 10000 iterations, as the image quality did not

improve further after that. For the standard data augmentation, we experimented us-

ing a set of multiple different augmentation methods, and chose the best one based on

the performance on the validation set. The validation results for different augmentation

methods are shown in Table 5.3, and the combination of parameters listed in bold will be

used as our standard data augmentation method for further training. Similar to before,

we threshold the output segmentation images of the generator to arrive at discrete seg-

mentation masks. An example for a segmentation mask sampled from the GAN before

and after thresholding can be seen in Figure 5.8.

Augmentation Parameters
Validation

Performance

Intensity shift
around zero
(stddev)

Intensity scaling
around zero
(stddev)

Random translation
around zero
(stddev)

Horizontal
flipping

mIoU

- - - yes 0.8042
0.05 0.05 - yes 0.7950
- - - no 0.7804
0.05 0.05 5.00 px no 0.7421
0.10 0.10 10.00 px no 0.6989

Table 5.3: Comparison of augmentation parameters for the Cityscapes dataset. All results were
computed by training strictly on real data and recording the best validation performance. For illus-
trative purposes, we only report the mIoU , although the Hausdorff distance and Dice score follow
the same ordering of segmentation performance. For further evaluation, we use the augmentation
parameters listed in bold as our standard data augmentation.
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(a) Example of a downsampled image from the Cityscapes dataset.

(b) Example of a downsampled segmentation mask from the Cityscapes dataset. Each of
the 8 categories and its color-coding are listed in the legend below.

Categories:
Void Flat
Construction Object
Nature Sky
Human Vehicle

Figure 5.7: Example of a downsampled image and category segmentation mask from the
Cityscapes dataset.
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(a) Raw segmentation image sampled from
the GAN in the intensity range of [−1, 1].

(b) Discrete segmentation mask after thresh-
olding the GAN output.

Figure 5.8: Raw output and thresholded segmentation mask sampled from the GAN trained
on the Cityscapes dataset. Segmentation classes in the thresholded image are the same as in
Figure 5.6, and use the same color mapping for visualization.

For our final evaluation of the Cityscapes dataset, we again train our segmentation

network on different ratios of real and generated data, using either no augmentation or

standard data augmentation. Each segmentation network took approximately 24 hours to

train until convergence.

5.2.3 Results

The full details of our implementation and network architectures are described in Sec-

tion 4.2. Samples of our GAN trained on Cityscapes are shown in Figure 5.10. Our final

segmentation performance for all different evaluation setups of the Cityscapes dataset is

documented in Table 5.4. Additionally, we show the resulting mIoU for every category

for the four best performing networks in Figure 5.9. Since the significant amount of down-

sampling of the input images makes the segmentation of small objects of the categories

‘Human’ and ‘Object’ much more difficult, we also present mIoU results excluding those

categories in Table 5.4. Similar to our evaluation in Section 5.1, we also show several

examples of resulting segmentation masks to better compare GAN -based augmentation

to standard augmentation. These examples are illustrated in Figure 5.11. In order to

better demonstrate the variety of the Cityscapes dataset, we show additional examples of

good segmentation masks in Figure 5.12.

5.2.4 Discussion

By looking at the sample images shown in Figure 5.10, we can see that the image quality is

not as high when compared to the GAN samples shown in Section 5.1.3. Still, the network

learned to generate images of good variety, without the problem of mode collapse (see Sec-

tion 3.1). Most importantly, the generated segmentation masks still fit to every generated

image. GANs have consistently shown to generate very realistic images, especially for

datasets containing a large amount of self-similarity, such as face datasets [31]. In addi-

tion to self-similarity, the most impressive GAN results are often achieved by training on
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Network
ID

Number
of
real pairs
in minibatch

Number
of
generated pairs
in minibatch

Aug.? mIoU
mIoU

excluding
‘Human’ and ‘Object’

8-0-Aug 8 0 yes 0.7859 0.8894
8-0-NoAug 8 0 no 0.7616 0.8767
4-4-Aug 4 4 yes 0.7548 0.8732
4-4-NoAug 4 4 no 0.7630 0.8786
0-8-Aug 0 8 yes 0.4705 0.6535
0-8-NoAug 0 8 no 0.4632 0.6426

Table 5.4: Segmentation performance comparison between training on real data, generated data,
and mixed data, using either no additional data augmentation, or standard data augmentation,
evaluated on our test set of the Cityscapes dataset.
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Figure 5.9: mIoU for every category of the Cityscapes dataset. For visual clarity, we omit the
worst performing networks and only report results for the four best networks, identified by their
network ID shown in Table 5.4.

huge datasets, containing millions of images. However, the usage of GANs as a generative

model for more complex datasets has not been explored in much detail in related literature

so far, therefore it is very interesting to see how the resulting images of an off-the-shelf

GAN for a complex dataset look like. Especially comparing to Figure 5.10, we can see

that self-similarity seems to significantly improve the image quality, and varying datasets

such as Cityscapes seem to be very difficult to learn for a GAN .

For our quantitative evaluation, we found that the best standard data augmentation for

this dataset and our segmentation network architecture was to just use horizontal flipping

(see Table 5.3). Using other combinations of intensity shift, intensity scaling, or random

translation led to worse segmentation performance. For some settings, the segmentation

performance was even worse than not using data augmentation at all. This illustrates

an important point of data augmentation - the augmentation parameters require careful

tuning to fit the dataset, as wrong data augmentation can have a negative effect by dras-
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Figure 5.10: Sample images from our Generative Adversarial Network trained on the Cityscapes
dataset. Columns 1 and 3 show generated images, while columns 2 and 4 show the respective
generated segmentation masks.

tically reducing the segmentation performance. From our final segmentation performance

shown in Table 5.4, we can see that the network trained on real data, using standard data

augmentation, achieved the best performance compared to all other networks. However,

we can again observe that the network trained using GAN -based augmentation without

additional standard data augmentation achieves similar performance to the network that

was trained on real data without augmentation. Especially interesting is that when using

GAN -based augmentation without standard augmentation, the results are actually better

than some of the results when using standard augmentation shown in Table 5.3. This

illustrates that our GAN has learned a reasonable representation of our training data,

even though the generated samples are not of high quality.

Compared to the highscore database of the Cityscapes dataset1, our baseline perfor-

mance for the category mIoU is in line with the weaker results on the online database.

Our intuition is that the reason for this is twofold. First, we perform 8-times downsam-

pling of the training images in order to fit our computational budget. On one hand, this

is because it is very difficult to train GANs on even higher resolutions, as for higher res-

olution images, discriminating between generated and real images is easier [49], resulting

in gradients that point in random directions, which are thereful not useful for learning [2].

Additionally, high-resolution deep networks typically require a lower minibatch size to fit

into GPU memory, therefore further compromising training stability, unless very recent,

1Cityscapes Pixel-Level Semantic Labeling Task Results, https://www.cityscapes-dataset.com/

benchmarks/#pixel-level-results, Accessed: 20.02.2018

https://www.cityscapes-dataset.com/benchmarks/# pixel-level-results
https://www.cityscapes-dataset.com/benchmarks/# pixel-level-results
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more sophisticated methods, such as ProGAN [31], are used. On the other hand, due to

the nature of our evaluation setup shown in Figure 4.2, we require the full generator model

and our segmentation network to both fit into memory, as we sample the generator during

training of our segmentation network. Therefore, we quickly reach our GPU memory limit,

forcing us to downsample the input data.

Performing large amounts of downsampling leads to a much worse segmentation perfor-

mance for small or thin structures, and borders between regions, as those fine details vanish

when downsampling is applied. When comparing the example image shown in Figure 5.6

to its downsampled version shown in Figure 5.7, it is easy to see that fine details are almost

completely lost. The traffic sign posts that are easily visible in the full-resolution image

are only one pixel wide on the downsampled image, making segmentation of those regions

very difficult. This effect can also be seen by comparing the resulting segmentation masks

of our networks, shown in Figure 5.11 and Figure 5.12. Most of the errors of our results

are in the border regions between classes, as the fine detail necessary to determine exact

borders is lost during downsampling. We also observe the consequence of downsampling

in Figure 5.9, where we show results for every category. While our networks consistently

perform much worse on the ‘Object’ and ‘Human’ categories, the other categories show

good results, given that we only used a standard U-Net segmentation network architecture

with additional data augmentation methods. Computing the mIoU over all categories but

those two, we achieve much better scores, as can be seen in Table 5.4.

The second reason for our weaker performance compared to the competition on the

highscore list is that we do not pretrain our networks. Many of the submissions on the high-

score list use pre-trained network weights, mostly trained on the ImageNet [59] database,

as feature extractors in their network pipeline. As one of our main goals is to evaluate how

GAN -based data augmentation affects the results of training segmentation networks, we

did not want to additionally pre-train our networks, as that introduces another variable

that significantly impacts training behavior of deep networks.

The effects of downsampling can also be seen in the example segmentation masks

produced by our networks shown in Figure 5.11. Both the network trained using GAN -

based augmentation and the network trained using standard data augmentation produce

reasonable results. However, they both suffer from similar problems. While large regions

are detected well, small objects are often completely missing, and borders between class

regions are not as precise. This is especially visible in the error images, which show that

most of the error comes from imprecise borders and small objects. However, we can see

that for easier images our networks produce high-quality segmentation masks, and even

our worst results shown in Figure 5.11 still look reasonably good.
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Prediction
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Aug.
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Image Groundtruth

Prediction
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Prediction
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Aug.

Error
Standard

Aug.

Categories:
Void Flat
Construction Object
Nature Sky
Human Vehicle

Figure 5.11: Comparison of segmentation masks from fully trained segmentation networks be-
tween standard data augmentation and GAN -based data augmentation for the Cityscapes dataset.
The comparison on the top shows the best test result, while the comparison on the bottom shows
the worst result.
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Figure 5.12: Comparison of segmentation masks from fully trained segmentation networks be-
tween standard data augmentation and GAN -based data augmentation for the Cityscapes dataset.
Both results achieved good segmentation performance.



6
Conclusion

Data augmentation in deep learning presents an easy to use method of regularization,

especially when training data is scarce. Due to the sheer amount of possible augmentation

methods, it is necessary to carefully analyze the training data and find a fitting augmen-

tation method to improve the performance of deep networks. While data augmentation

is typically done using simple image transformations, the recent popularity of Generative

Adversarial Networks (GANs) led to new possibilties for data augmentation. Even though

previous research was done on data augmentation using synthetic data, for example by

rendering photo-realistic images, GANs illustrate an interesting new approach in learning

a generative model from data. GANs provide the benefit of learning a generative model

while being able to use conventional deep learning techniques. While it was difficult to

train GANs when they were first introduced in 2014, especially with recent advances such

as the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP),

training GANs has become easier and more stable.

During the course of this thesis, we proposed a novel GAN architecture [45], which

is able to generate image-segmentation pairs, instead of just images. This modification

allows us to use the generated data as training data for supervised segmentation networks,

therefore augmenting the original training data with synthetic data, generated by the

GAN . Although our initial published results were promising [45], the sample quality of

our GAN and our evaluation setup showed a lot of possibilities for improvement, especially

as we did not compare standard data augmentation to our GAN -based approach.

Our main focus of this thesis was to perform a comparison between standard data

augmentation and GAN -based data augmentation. For the first comparison, we chose

to perform medical image segmentation of the SCR Lung Database, similar to our pre-

viously published results. We found that by making use of more recent advancements

in GAN research, such as WGAN-GP , we can increase the image resolution even fur-

ther, compared to our previous approach, leading to higher image quality. However, as

we also improved our segmentation network architecture, we seemed to already approach

saturation in segmentation performance. Both GAN -based augmentation and standard
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data augmentation produced almost identical results compared to using no augmentation

at all. Still, GAN -based augmentation achieved competitive performance compared to

standard data augmentation, and networks trained on purely synthetic data still achieved

good results, further illustrating that our GAN has managed to capture the training data

well enough to be used for training other networks.

Our second comparison focused on a much more challenging dataset, the Cityscapes

dataset for urban scene understanding. Most research work done on training GANs uses

huge datasets with a lot of self-similarity, such as human face datasets. One of our core

motivations to choose a more difficult dataset was to test how well our GAN architecture

handles the generation of complex, multi-class segmentation masks. We found that our

GAN learned to generate images resembling our training data, although the image quality

was much lower compared to the synthetically generated images based on the SCR Lung

Database. Our intuition is that this is mostly because of the missing self-similarity and

the relatively low amount of images, given the complexity of the dataset. For this evalu-

ation, we observe that choosing a correct data augmentation setup has significant impact

on the segmentation performance. We found that for some augmentation methods, the

segmentation performance decreased, even past our baseline non-augmented segmentation

network. Due to the lower image quality of the generated images, the segmentation per-

formance did not improve when using GAN -based augmentation. However, similar to our

evaluation done on the SCR Lung Database, using additional GAN samples for training

did not decrease the segmentation performance compared to using no augmentation. As

this dataset is much more challenging, we experienced a significant increase in performance

when using standard data augmentation.

To summarize, we performed an extensive evaluation of the possibilities of using GANs

for training data augmentation in image segmentation tasks. While our current results

only show that GAN -based augmentation neither has a positive, nor a negative impact,

we believe that if a GAN was able to fully learn the training data distribution, the addi-

tional synthetic data could be highly useful as a regularizer for deep networks. Compared

to standard data augmentation, GAN -based augmentation does not require extensive

data analysis to find out optimal augmentation parameters. Especially in the Cityscapes

evaluation, we saw how certain data augmentation parameters can lead to much worse

performance, therefore an augmentation method that is learned from data would save a

lot of effort in fine-tuning deep networks. Future research could focus on using our modi-

fied GAN architecture in different setups. Popular image-to-image translation GANs such

as CycleGAN [78] could be modified to generate image-segmentation pairs, instead of just

images. This could then be used to translate a whole annotated dataset into another

domain, where it can be used as synthetic data for training data augmentation. Addition-

ally, the most obvious future improvement of our work would be to increase the resolution

and representation power of our GAN , leading to higher quality synthetic images. We are

certain that such an improved generative model could be used as a data augmentation

method to improve performance for supervised deep learning tasks.
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Abstract: Modern deep learning methods achieve state-of-the-art results in many com-

puter vision tasks. While these methods perform well when trained on large datasets, deep

learning methods suffer from overfitting and lack of generalization given smaller datasets.

Especially in medical image analysis, acquisition of both imaging data and corresponding

ground-truth annotations (e.g. pixel-wise segmentation masks) as required for supervised

tasks, is time consuming and costly, since experts are needed to manually annotate data.

In this work we study this problem by proposing a new variant of Generative Adversar-

ial Networks (GANs), which, in addition to synthesized medical images, also generates

segmentation masks for the use in supervised medical image analysis applications. We

evaluate our approach on a lung segmentation task involving thorax X-ray images, and

show that GANs have the potential to be used for synthesizing training data in this specific

application.

87





BIBLIOGRAPHY 89

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,

D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng,

X. (2016). TensorFlow: A system for large-scale machine learning. In Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation (OSDI),

OSDI’16, pages 265–283. USENIX Association. (page 59)

[2] Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training Gen-

erative Adversarial Networks. In Proceedings of the Fifth International Conference on

Learning Representations (ICLR). (page 50, 79)

[3] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Generative Adversarial

Networks. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th Interna-

tional Conference on Machine Learning (ICML), volume 70 of Proceedings of Machine

Learning Research, pages 214–223. PMLR. (page 43, 47, 49, 50)

[4] Ba, L. J., Kiros, R., and Hinton, G. E. (2016). Layer normalization. In NIPS 2016

Deep Learning Symposium. (page 52)

[5] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet: A deep convolutional

encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 39(12):2481–2495. (page 30)

[6] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. In Montavon, G., Orr, G. B., and Müller, K.-R., editors, Neural Networks:

Tricks of the Trade (2nd ed.), volume 7700 of Lecture Notes in Computer Science, pages

437–478. Springer. (page 17)

[7] Berthelot, D., Schumm, T., and Metz, L. (2017). BEGAN: Boundary equilibrium

generative adversarial networks. CoRR, abs/1703.10717. (page 43)

[8] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.

In Lechevallier, Y. and Saporta, G., editors, Proceedings of COMPSTAT2010: 19th

International Conference on Computational Statistics, pages 177–186. Physica-Verlag

HD, Heidelberg. (page 6)

[9] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2015).

Semantic image segmentation with deep convolutional nets and fully connected CRFs. In

Proceedings of the Third International Conference of Learning Representations (ICLR).

(page 28)

[10] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke,

U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene



90

understanding. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). (page 4, 57, 73)

[11] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2(4):303–314. (page 8)

[12] Dice, L. R. (1945). Measures of the amount of ecologic association between species.

Ecology, 26(3):297–302. (page 64)

[13] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research (JMLR),

12:2121–2159. (page 15)

[14] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2012). Scene parsing with

multiscale feature learning, purity trees, and optimal covers. In Proceedings of the 29th

International Conference on International Conference on Machine Learning, ICML’12,

pages 1857–1864. Omnipress. (page 1)

[15] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Rodŕıguez,
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[45] Neff, T., Payer, C., Štern, D., and Urschler, M. (2017). Generative Adversarial

Network based synthesis for supervised medical image segmentation. In Proceedings of

the OAGM&ARW Joint Workshop, pages 140–145. (page 3, 43, 57, 59, 72, 73, 83)

[46] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading

digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning. (page 48)

[47] Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

(page 6, 11, 12, 13, 34)

[48] Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Training generative neu-

ral samplers using variational divergence minimization. In Lee, D. D., Sugiyama, M.,

Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural Information

Processing Systems 29 (NIPS), pages 271–279. Curran Associates, Inc. (page 43, 49)

[49] Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with aux-

iliary classifier GANs. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th

International Conference on Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 2642–2651. PMLR. (page 79)
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