
Herwig Stütz, BSc

Algorithms for MAX-SAT

MASTERARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur

Masterstudium Mathematische Computerwissenschaften

Technische Universität Graz

Betreuerin:
Ao. Univ.-Prof. Dipl.-Ing. Dr.techn. Bettina Klinz

Institut für Diskrete Mathematik

Graz, März 2018

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig

verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und

die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als

solche kenntlich gemacht habe.

Graz, am .

(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly marked

all material which has been quoted either literally or by content from the

used sources.

. .

date

. .

(signature)

ABSTRACT

MAX-SAT is the optimization variant of the satisfiability (SAT) decision

problem. The task for MAX-SAT is to find the maximum number of satisfiable

clauses for a given boolean formula. Both problems are NP-hard.

The aim of this thesis is to present and implement a selection of algorithms

for MAX-SAT. A computational study is conducted in which the implemented

algorithms are compared with regard to their performances on test data. John-

son’s greedy algorithm, a randomized variant from Poloczek and Schnitger,

the metaheuristic simulated annealing, and the exact algorithm MSU3 are

discussed.

Benchmark instances from two different MAX-SAT evaluation events are used

to test the algorithms. From these experiments, the respective performance

ratios and solver runtimes are collected. Furthermore, for the test set of partial

instances, the approximation ratios are considered for those instances where

reference values are available.

The results show good average performance ratios that are better than expected

from the respective performance guarantees. Whenever simulated annealing

was able to find a solution before the given timeout occurred, it was able to

yield the best results but the greedy algorithms had a clear runtime advantage.

The theoretically better approximation ratio of the randomized variant over

the basic greedy algorithm could not be confirmed in practice. Finally, the

results for partial instances suggest that the evaluated algorithms constitute

suitable heuristics for certain instances.

ZUSAMMENFASSUNG

MAX-SAT ist die Optimierungsvariante des Entscheidungsproblems Satisfiabil-

ity (SAT). Die Problemstellung bei MAX-SAT lautet die maximale Anzahl an

erfüllbaren Klausen für die gegebene logische Formel zu finden. Beide Probleme

sind NP-schwer.

Das Ziel dieser Masterarbeit ist es eine Auswahl von Algorithmen für MAX-SAT

vorzustellen und zu implementieren. Eine experimentelle Untersuchung wird

durchgeführt, in der die implementierten Algorithmen untereinander in Bezug

auf deren Güte auf Testdaten verglichen werden. Johnsons Greedy-Algorithmus,

eine randomisierte Variante von Poloczek und Schnitger, die Metaheuristik

Simulated Annealing und der exakte Algorithmus MSU3 werden vorgestellt.

Benchmark Instanzen von zwei MAX-SAT Evaluation Bewerben werden ver-

wendet um die Algorithmen zu testen. In diesen Experimenten werden die

jeweiligen Güten und Laufzeiten der implementierten Lösungsroutinen erfasst.

Weiters werden für Testdaten mit partiellen Instanzen die Approximationsgüten

betrachtet, da bei diesen Testdaten für manche Referenzlösungen verfügbar

sind.

Die Ergebnisse zeigen gute durchschnittliche Approximationsgüten, welche

besser als die jeweiligen theoretischen Garantien sind. Wann immer Simulated

Annealing ein Resultat vor dem Zeitlimit geliefert hat, war dieses das Beste

unter den getesteten Algorithmen. Die Greedy-Algorithmen haben jedoch einen

deutlichen Laufzeit-Vorteil. Die theoretisch besseren Approximationsgüten der

randomisierten Variante gegenüber dem originalen Greedy-Algorithmus konnten

in der Praxis nicht bestätigt werden. Schließlich zeigen die Ergebnisse für die

partiellen Instanzen, dass die evaluierten Algorithmen sinnvolle Heuristiken für

eine Klasse dieser Instanzen darstellen.

ACKNOWLEDGEMENT

First of all, I would like to thank my supervising professor, Dr. Bettina Klinz,

for providing me with guidance in the choice of the topic and throughout the

thesis.

A big thank you goes to my superiors at work, who supported me by granting

my leave of absence to write this thesis, and my colleagues for taking over my

tasks in the meantime.

I want to thank my wife, Gudrun, for her invaluable emotional support and

linguistic advice.

Last, but not least, I would like to thank my mother, who always supported

me and encouraged me to follow my interests.

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Thesis outline . 2

2 Preliminaries 3

2.1 MAX-SAT variants . 3

2.2 Approximation algorithms . 4

3 Known approximation results for MAX-SAT 7

4 A selection of algorithms 9

4.1 Johnson’s Greedy Algorithm 9

4.1.1 A Simplified Variant 12

4.1.2 Running time analysis 14

4.2 Slack Algorithm . 14

4.2.1 Running time analysis 21

4.3 Simulated Annealing . 21

4.3.1 Overview . 22

4.3.2 Convergence results . 23

4.3.3 Simulated Annealing for MAX-SAT 24

4.3.4 Running time analysis 26

4.4 Open-WBO . 26

4.4.1 Methods for solving MAX-SAT 27

4.4.2 MSU3 . 28

4.4.3 CNF Encoding . 29

5 Computational study 31

5.1 Implementation details . 31

5.1.1 Simulated annealing 31

5.1.2 Greedy and slack algorithm 32

5.2 Test Environment . 33

5.2.1 Solver User Interface 33

5.2.2 Dimacs-Format . 34

i

CONTENTS CONTENTS

5.2.3 Machine Specification 36

5.2.4 Batch system . 37

5.3 Benchmarks . 37

5.3.1 MAX-SAT Evaluation 2016 37

5.3.2 MAX-SAT Evaluation 2017 38

5.4 Results of the computational study 39

5.4.1 MAX-SAT Evaluation 2016 40

5.4.2 MAX-SAT Evaluation 2017 44

6 Conclusion 46

References 47

A Results per Category 52

ii

1 INTRODUCTION

1 Introduction

This thesis deals with the optimization version of the well-known Satisfiability
problem (SAT) which can be stated as follows: The input consists of a boolean
formula ϕ with m clauses in n variables given in conjunctive normal form
(CNF). Each clause contains one or more variables in positive or negated form,
called literals. The task is to find a truth assignment of the variables which
satisfies the formula ϕ. The well known Cook-Levin theorem [14] proves that
this problem is NP-complete, making it infeasible to solve for large instances
provided that P 6= NP. Note that 2-SAT, the class of instances with at most
2 literals per clause, can be decided in polynomial time, whereas 3-SAT is
already NP-complete.

A natural variant of SAT is its optimization version, where the question
is not only to answer whether the formula is satisfiable but also to find the
maximum number of clauses that can be satisfied simultaneously in case it
is not. This problem is called MAX-SAT and it is the main subject of this
thesis.

MAX-SAT has applications in various fields. A few examples are VLSI
debugging [12], protein interaction interference [50], and cancer therapy design
[34].

MAX-SAT turns out to be even harder than SAT. Garey, Johnson, and
Stockmeyer [21] proved that MAX-2-SAT, the subclass of MAX-SAT with at
most 2 literals per clause, is NP-hard. They did so by showing that 3-SAT
can be reduced to MAX-2-SAT.

This motivates the use of approximation algorithms and heuristics for
MAX-SAT in order to find a solution in acceptable time, even if it suboptimal.

Approximation algorithms typically are applied in situations where prob-
lems are too hard to be solved with exact optimization algorithms. Many
different approaches for the design of approximation algorithms can be taken.
The basic ideas are often quite simple but are gradually refined and tuned.
It is also possible to attempt to apply methods for related problems and
evaluate their suitability.

Theoretical performance guarantees often only consider the worst-case,
which is not reflecting the performance for an average instance or an instance
from practice. Thus, evaluating the theoretical methods with diverse bench-
mark instances, especially including such with real-world applications, can
help to identify possible gaps between theory and practice.

This knowledge can then be used to identify approximation algorithms
suitable for the respective practical task. As so often, this is usually a tradeoff
between quality and time.

The goal of this thesis is to investigate the gaps between theoretical and

1

1.1 Thesis outline 1 INTRODUCTION

practical results for a selection of methods and test sets for MAX-SAT.

1.1 Thesis outline

In Section 2, we provide the notions and preliminaries needed in the rest of
the thesis.

A short overview of previous work on approximation algorithms for
MAX-SAT is given in Section 3.

Section 4 discusses a selection of algorithms for the MAX-SAT problem
which we implemented in order to compare their performance on certain
test sets. We first present the greedy approximation algorithms of Johnson,
followed by a randomized variant from Poloczek and Schnitger. Then, the
metaheuristic of simulated annealing in its general form, as well as applied to
MAX-SAT, is introduced. Finally, to give a contrast to these approximation
algorithms and heuristics, a third-party exact solver, Open-WBO, is presented
along with the underlying MSU3 algorithm.

Section 5 reports on computational experiments with the implemented al-
gorithms. We first comment on some practical considerations about simulated
annealing and the greedy algorithms with respect to running the benchmarks.
Then, the test environment in which the benchmarks are run is introduced.
This includes the command line tool in which the algorithms are implemented,
the format of the benchmarks as well as the machine specifications and the
deployment of the solver on the machine. Finally, the benchmark instances
are listed, followed by a discussion of the experimental results.

2

2 PRELIMINARIES

2 Preliminaries

We start by defining the basic notions involved in the problem description of
MAX-SAT. Building on these, we can proceed to the problem statement of
MAX-SAT and its variants. We then define the approximation ratio in order
to talk about the theoretical quality of the presented algorithms.

Definition 2.1 (SAT formula). Let V be a set of boolean variables taking
values in {0, 1}, also written as true and false. A literal y can either be a
variable x in V or its boolean negation x.

Then, a SAT formula ϕ (in the n variables in V) consists of the conjunction
of m clauses, i.e.

ϕ =
∧
i

ci.

Therein, each clause ci is composed of the disjunction of at least one literal:

ci =
∨
j

yij.

A clause with exactly one literal is called unit clause.

A clause c is satisfied by the assignment x, if one of its literals y is satisfied
by the assignment. If the literal y is the variable x, then y is satisfied if and
only if x is assigned true in x and if y is the negation of a variable, x, then y
is satisfied if and only if x is assigned false.

Note that the empty formula with 0 clauses is trivially satisfied by con-
vention.

In this thesis, the set of clauses of a formula ϕ is written as S and, for a
given assignment of the variables, the subset of satisfied clauses is denoted by
SSAT.

Definition 2.2 (MAX-SAT).

• Given: A SAT formula ϕ in the variables in V .

• Goal: Find a truth assignment x of the variables in V that maximizes
the number of satisfied clauses |SSAT|.

2.1 MAX-SAT variants

Derived from the original definition for MAX-SAT, several variations of the
problem description are possible:

3

2.2 Approximation algorithms 2 PRELIMINARIES

One variant is to equip the clauses with weights. To each clause c we
assign a non-negative weight wc. The objective changes to maximizing the
weight of the satisfied clauses

∑
c∈SSAT

wc, instead of their number. This is
called weighted MAX-SAT. By setting wc = 1 for all clauses, an unweighted
instance can easily be transformed into an instances of the weighted variant.

Another variant is to restrict the number of literals per clause. This idea
gives rise to two related problems: In MAX-k-SAT, each clause can have at
most k literals, whereas in MAX-Ek-SAT each clause must contain exactly k
literals.

Finally, we can consider instances where a subset of clauses has to be fully
satisfied in order for a solution to be feasible. Clauses in this subset are called
hard clauses, while the other clauses are called soft. Instances of this kind
are also called partial.

In the following, we are mainly interested in the general case, but some of
these variants also appear.

2.2 Approximation algorithms

Since we are particularly interested in MAX-SAT, the definitions given here
only consider maximization problems. However, corresponding definitions
can be made for minimization problems.

We start by giving the definition of an optimal solution for a given problem:

Definition 2.3 (Feasible and optimal solutions). For a given input x, the
set of feasible solutions is denoted by S(x) 6= ∅. Each solution s ∈ S(x) is
assigned an objective value v(x, s) > 0. For a maximization problem, an
optimal solution for a given input x is a feasible solution s∗ with

v(x, s∗) = max
s∈S(x)

v(x, s).

The objective value of an optimal solution s∗ for input x is denoted by
v∗(x) = v(x, s∗).

In order to judge the solution quality of an algorithm that might produce
suboptimal solutions, we need a measure of the produced solution quality. In
the following we will provide such a measure. First, we consider algorithms
in general.

Definition 2.4. An algorithm A for an optimization problem is an algorithm
that, for each problem instance x, finds feasible solution sA(x) ∈ S(x). The
length of a given input x, denoted by |x|, is defined as the length of the string
that encodes the input to the algorithm A.

4

2 PRELIMINARIES 2.2 Approximation algorithms

Note that this definition does not yet define approximation algorithms.
In order to define approximation algorithms, we first need the notion of
approximation ratio, a quality measure for optimization algorithms.

The definitions of the approximation ratios start by assessing the quality
of a single solution and progress to make statements about the algorithm in
general.

Definition 2.5 (Approximation ratio of a solution). The approximation ratio
of a feasible solution s ∈ S(x) compares its objective value to that of the
optimal solution by forming the ratio

r(x, s) =
v(x, s)

v∗(x)
.

The definition for the approximation ratio of a solution can be extended
in a straight-forward way to a specific algorithm.

Definition 2.6 (Approximation ratio of an algorithm). The approximation
ratio of the algorithm A for the instance x is defined as

rA(x) = r(x, sA(x)).

Note that there are other possible ways to define these ratios. For example,
one of the fundamental books on the topic, Garey and Johnson [20], defines
the approximation ratio in a way that unifies maximization and minimization
problems, which comes in handy when considering optimization problems in
general.

In order to be able to use the approximation ratio without a specific
instance in mind, we consider the worst-case possible. Let n be a positive
integer, then

rA(n) = min{rA(x) : |x| ≤ n}
where |x| is the size of the instance x in some encoding suitable for the
algorithm.

Definition 2.7 (Absolute approximation ratio). The absolute approximation
ratio for an algorithm A is defined as

rA = sup{r ≤ 1: rA(x) ≥ r for all instances x}.

However, depending on the actual problem, this ratio does not always tell
the full truth, in particular for large instances since the ratio can include a
term that is shrinking as the instance size is increasing. In such situations, it

5

2.2 Approximation algorithms 2 PRELIMINARIES

can be more useful to consider an asymptotic version of the approximation
ratio.

Definition 2.8 (Asymptotic approximation ratio). The asymptotic approxi-
mation ratio for the algorithm A is defined as

r∞A = sup{r ≤ 1: ∀ε > 0: ∃r(ε) > 0: ∀x with v∗(x) ≥ r(ε) : rA(x) ≥ r − ε}.

One example where the asymptotic ratio is more useful than the absolute
one is the first fit decreasing (FFD) algorithm for BIN-PACKING. Here, the
absolute approximation ratio is rFFD ≤ 2

3
, whereas the asymptotic ratio is

r∞FFD = 9
11

. See for example [20] for the details.
With the definitions of approximation ratios established, we can formulate

approximation algorithms.

Definition 2.9 (Approximation algorithm). An approximation algorithm A
for an optimization problem is an algorithm that

• for each input x yields a feasible solution sA(x) ∈ S(x),

• runs in polynomial time in |x|, and

• for which there exists a constant r ≤ 1 that bounds the approximation
ratio of the algorithm, i.e. rA ≥ r.

Definition 2.10 (APX). The complexity class APX consists of all problems
for which there exists a polynomial-time approximation algorithm with an
absolute approximation ratio of r for some constant r ≤ 1.

APX is the class of all problems that are approximable up to a constant
ratio.

6

3 KNOWN APPROXIMATION RESULTS FOR MAX-SAT

3 Known approximation results for

MAX-SAT

This section gives a quick summary of the evolution of approximation algo-
rithms for MAX-SAT problems.

The first approximation algorithm for MAX-SAT is due to Johnson [30],
who in 1974 provided a 1

2
-approximation algorithm. More specifically, he

proved that the greedy algorithm guarantees a (1− 1
2k

)-approximation if each
clause contains at least k literals. The 1

2
ratio was later improved by Chen,

Friesen, and Zheng [11], who showed that Johnson’s algorithm is actually a
2
3
-approximation algorithm and that this bound is tight.

In [49], Yannakakis presented an algorithm which first transforms a
MAX-SAT instance to an instance that is equivalent in terms of approx-
imability but which contains no unit clauses, that is, clauses with only one
literal. Yannakakis’ algorithm is based on non-trivial network flow techniques
and leads to an approximation ratio of 3

4
for MAX-SAT.

By using the probabilistic method on a solution to a linear programming
relaxation in combination with Johnson’s algorithm, Goemans and Williamson
[25] found a simpler 3

4
-approximation solution to MAX-SAT.

With the use of semidefinite programming techniques (SDP), Goemans
and Williamson were able to achieve a 0.87856-approximation ratio for
MAX-2-SAT and a 0.7584-approximation for MAX-SAT [24]. The algorithms
are extensions of SDP algorithms for MAX-CUT, which are also presented in
the same paper.

Based on [18] and [24], Feige and Goemans [17] improved the algorithm
for MAX-2-SAT to a 0.931-approximation via an extension of the formulation
of MAX-SAT, that is making use of an extended SDP formulation, which
includes additional constraints (triangle inequalities).

Building on the work of Goemans and Williamson and combining it
with [17] and [31], Asano and Williamson [5] obtained a 0.7846 performance
guarantee for MAX-SAT. Asano [4] later simplified and improved the analysis
from [5] and obtained a performance guarantee of 0.7877.

To date, the best result for MAX-SAT was achieved by Avidor, Berkovitch,
and Zwick [6]. It improves upon [4] by using a hybrid algorithm, and has an
approximation ratio of 0.7968.

Regarding hardness, H̊astad [27] showed that approximating instances con-
taining exactly 3 literals (i.e. MAX-E3-SAT instances) with an approximation
ratio of 7

8
+ ε is NP-hard for ε > 0.

Recently, work has been done on a special type of 3
4
-approximation algo-

rithm: Given an initial ordering of the variables, the variables are successively

7

3 KNOWN APPROXIMATION RESULTS FOR MAX-SAT

set to true or false with certain probabilities that depend on the built-up set of
satisfied and unsatisfied clauses. Poloczek, Williamson, and Zuylen [43] give
an overview of such algorithms and present a data structure for implementing
them in linear time and space. One such example of a 3

4
-approximation

algorithm is given in Buchbinder et al. [9] as a special case of their work on
submodular maximization.

An overview of approximation algorithms with respect to performance on
real world MAX-SAT instances is given by Poloczek and Williamson [42].

8

4 A SELECTION OF ALGORITHMS

4 A selection of algorithms for MAX-SAT

This section provides a detailed description of those MAX-SAT algorithms
that are part of the computational study which is reported on in Section 5.

First, Johnson’s greedy approximation algorithm and the Slack algorithm,
a variant of Johnson’s algorithm, are described. For both of them, first an
overview is given, followed by the detailed pseudocode and an analysis of their
respective approximation guarantees. We then describe the data structures
that are used for the implementation.

Then, the metaheuristic simulated annealing is presented. Starting with
the conceptual origins, the method is motivated, finally leading to the general
form of the algorithm. Furthermore, we state some results on the theo-
retical convergence of the algorithm with references to more details. The
section is closed by applying simulated annealing to MAX-SAT, giving specific
pseudocode for the algorithm together with notes for its implementation.

Finally, the third-party exact solver Open-WBO is described. This con-
trasts the previously discussed approximation algorithms and heuristic. The
solver is described from a practical side first before giving a brief overview of
the underlying algorithm.

4.1 Johnson’s Greedy Algorithm

Greedy algorithms are widely used in the field of optimization, due to their
inherent simplicity. They work by incrementally fixing parts of the solution,
only considering local information for the respective decision. For MAX-SAT,
the parts that are fixed are the truth assignments of the variables x ∈ V . In
each step, a variable is fixed to either 0 or 1 based on a metric for either the
number of newly satisfied clauses or the weight of the clauses containing the
variable.

We start with the greedy algorithm that is referred to as B2 in [30]. John-
son uses a set-representation for the instances. With this set-representation,
the greedy algorithm can be described as follows: The SAT formula ϕ is
represented as the set of its clauses, denoted by S. Each clause c is itself
represented as the set of its literals y and is assigned a clause weight wc.

During the computation, the algorithm keeps track of the set of satisfied
clauses SSAT and the set of clauses SLEFT which are left to be considered.
Additionally, the set of unfixed literals is denoted by LLEFT and the set of
literals fixed to true is LSAT.

All clauses that are not yet satisfied but still contain at least one unfixed
literal are called alive. Clauses that are alive but contain literals that were
set to false are called wounded.

9

4.1 Johnson’s Greedy Algorithm 4 A SELECTION OF ALGORITHMS

Initially, all clauses are assigned some weight depending on the number of
literals in the respective clause and the original clause weight in the formula.
Then, iterating over the variables in an arbitrary but fixed order, the algorithm
chooses a truth value for each variable such that it maximizes the (modified)
weight of the newly satisfied clauses. Clauses that contain the negated literal,
and thus were wounded in this step, are modified by doubling their weights.
This is supposed to mitigate the reduced probability of such a clause being
satisfied.

The complete pseudocode can be found in the listing for Algorithm 1. It
closely resembles the original structure of the algorithm in [30], with only
minor changes to the names of the involved sets and the straight-forward
extension to weighted clauses.

Algorithm 1 Greedy algorithm

1: procedure Greedy(S) . Maximizing the weight of sat. clauses in S
2: for all c ∈ S do . Set initial weights
3: w(c)← wc2

−|c|

4: end for
5: SSAT ← ∅, LSAT ← ∅, SLEFT ← S, LLEFT ← literals in S
6: while LLEFT ∩ SLEFT 6= ∅ do . Loop over literals
7: Let y ∈ LLEFT such that y occurs in SLEFT

8: Sy ← clauses in SLEFT containing y
9: Sy ← clauses in SLEFT containing y

10: if
∑

c∈Sy
w(c) ≥∑c∈Sy

w(c) then . Choose “heavier” literal

11: LSAT ← LSAT ∪ {y}, SSAT ← SSAT ∪ Sy, SLEFT ← SLEFT \ Sy
12: for all c ∈ Sy do
13: w(c)← 2w(c)
14: end for
15: else
16: LSAT ← LSAT ∪ {y}, SSAT ← SSAT ∪ Sy, SLEFT ← SLEFT \ Sy
17: for all c ∈ Sy do
18: w(c)← 2w(c)
19: end for
20: end if
21: LLEFT ← LLEFT \ {y, y}
22: end while
23: return LSAT, SSAT

24: end procedure

10

4 A SELECTION OF ALGORITHMS 4.1 Johnson’s Greedy Algorithm

Theorem 4.1 (Johnson). For MAX-SAT instances with at least k ≥ 1 literals

per clause, Algorithm 1 has an approximation ratio of r1(n) ≥ 2k−1
2k

.

For simplicity, the proof is given for the unweighted case. However, the
weighted case can be handled similarly by using the total weight W =

∑
c∈S wc

for the clauses in S instead of just the respective number of clauses, |S|.
Proof. In the beginning, since each clause has at least k literals, the summed
weight of the clauses in SLEFT is at most |S| · 2−k. Now, in each step of
the iteration, a literal y is chosen and the set of clauses containing y is
removed from SLEFT. By the greedy property, the weight that is subtracted
by removing the clauses from SLEFT is at least the weight that is added to
SLEFT by doubling the weight of the wounded ones. Thus, the weight of SLEFT

does not increase and is still at most |S| · 2−k at the end of the algorithm. On
the other hand, at the end, each clause in SLEFT must have been wounded,
and thus doubled in weight, exactly as many times as it contains literals.
This means that, after the procedure, each clause in SLEFT has weight 1.
Combining these arguments yields

|S| = |SLEFT|+ |SSAT| ≤
|S|
2k

+ |SSAT|,

and thus

|SSAT| ≥ |S|
(
1− 1

2k
)
.

This proof does not take into account the optimal solution, but com-
pares the number of satisfied clauses in the solution to the total number of
clauses. This measure is called performance ratio and is a lower bound for
the approximation ratio.

Note that for instances containing unit clauses, this analysis of the algo-
rithm can only promise a performance ratio of 1

2
. However, this bound is not

tight. Both [11] and the full version of [40] prove that Johnson’s algorithm
is indeed a 2

3
-approximation algorithm. The former is using Johnson’s origi-

nal notation while the latter is using the terminology devised for the Slack
algorithm in [41].

For an example where the bound from Theorem 4.1 is tight, consider the
formula

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5)

∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x6 ∨ x7)

∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x8 ∨ x9)

∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x10 ∨ x11).

11

4.1 Johnson’s Greedy Algorithm 4 A SELECTION OF ALGORITHMS

It can be fully satisfied by any assignment with x1 = 0, x4 = 1, x6 = 1, x8 = 1
and x10 = 1. But for the first decision of the algorithm, namely

∑
c∈Sx1

w(c) ≥∑
c∈Sx1

w(c), equality holds and the algorithm may choose x1 = 1. Then every

possible assignment of the variables x2 and x3 will leave one clause unsatisfied.
So the approximation ratio for such a solution is r1(ϕ) = 7

8
= 2k−1

2k
.

Johnson’s paper states a time complexity of O(N logN) with N = |ϕ|
being the overall (encoding) length of the formula.

The algorithm can be implemented quite easily by following the structure
of the original description of the algorithm closely using a library implementing
the used set operations, such as the Set library from [13]. A detailed analysis
of the complexity is omitted at this point in favor of the analysis of the
simplified variant in Section 4.1.2.

4.1.1 A Simplified Variant

With the naive implementation of the algorithm, which simply translates into
calls to the Set library, the runtime of the program is not even practical for
small instances.

To overcome this, we use a more direct approach: Using a more variable-
centric notation, we can re-write the algorithm such that an O(N) time
implementation is possible.

Again, let us consider the update procedure of Johnson’s algorithm: With
the defined start weight for each clause and the update rule to double the
weight of all clauses that were wounded, we get

µx =
∑
x∈c

wc2
−|c|

as the metric for variable x, where |c| is the number of unfixed variables of
the clause.

Essentially, the algorithm then boils down to iterating over all variables x
and deciding on the respective truth assignment solely based on µx and µx.
The pseudocode for this condensed form can be found in listing Algorithm 2.

What is left to do is to define a suitable data structure which allows the
involved operations to be done in an efficient way. The main operation in the
algorithm is the summing of clause weights for a given variable. For this, it
would be helpful to have a mapping from the variable to the required data
for µx and µx.

Therefore, for each clause we store its respective weight and current length
in a vector. Then, for each variable, a list of references to the clauses that
contain the positive literal and a list of references to the clauses that contain

12

4 A SELECTION OF ALGORITHMS 4.1 Johnson’s Greedy Algorithm

Algorithm 2 Greedy algorithm

1: procedure Greedy(S) . Maximizing the satisfied clauses in S
2: for all x ∈ V do

3: µx ←
∑

c : x∈c
c alive

wc2
−|c|, µx ←

∑
c : x∈c
c alive

wc2
−|c|

4: if µx ≥ µx then
5: x← 1
6: else
7: x← 0
8: end if
9: Remove x, x from all clauses in S

10: end for
11: end procedure

the negative literal can be kept. As references, the indices of the actual
clauses in the array are used. The positive and negative lists are stored in
two separate arrays (pos and neg in Figure 4.1.1) and are accessible from
the variable, as their indices provide a mapping from variable to clauses with
O(1) access time.

clauses (c0, w0) (c1, w1) (cm, wm)

variables

pos.

neg.

− 1 n

r11

r1k1

2

rn1

rnkn

r11

...

r11

Figure 1: Custom data structure for the greedy algorithm

With this data structure, all that needs to be done in each step of the
algorithm is to go through the pos and neg lists for the current variable, and
retrieve the referenced clause data.

13

4.2 Slack Algorithm 4 A SELECTION OF ALGORITHMS

After a truth value has been assigned to the variable, the update works in
a similar way: All clauses that are now satisfied by the variable setting can
be marked as such by simply traversing through the corresponding list and
updating the entry in the array containing the clause weights. Similarly, all
clauses that were wounded in this step can be updated by iterating over the
list of clauses and updating the respective weight or length.

4.1.2 Running time analysis

If N is the overall number of literals the formula ϕ contains, counting multiple
occurrences of each literal, then by using this data structure a time and space
complexity of O(N) can be achieved.

First, consider the construction of the data structure: The construction of
the array storing the clause weights and remaining lengths needs O(N) time
and O(m) space. All N literals are traversed once. For each distinct literal,
a reference to the clause it is contained in is added to pos or neg, the clause
lists of the literal. This can be done in O(1) for each literal. Thus the overall
construction can be done in O(N) time.

During the computation, the steps needed for each of the n variables are:

1. Traverse through both pos and neg to retrieve the clauses containing x
or x and calculate µx and µx. For each reference in pos and neg, O(1)
time is needed to access the information from the clause array. Thus, if
kx and kx are the lengths of pos and neg, this needs O(kx + kx) time.

2. Since µx and µx are already calculated, the decision whether to set
x = 0 for x = 1 only takes O(1).

3. Updating the clause lengths in the clause array for the satisfied and
wounded clauses: As with the retrieval, this can be done in O(1) for
each of the kx + kx references.

Summing over all n variables thus yields a runtime of∑
x

O(kx + kx) =
∑
c

O(|c|) = O(N).

4.2 Slack Algorithm

The Slack algorithm is a randomized variant of Johnson’s greedy algorithm and
was first proposed in [41] (2011). It builds upon the canonical randomization
(CR) of a modified Johnson’s algorithm. Instead of greedily choosing the

14

4 A SELECTION OF ALGORITHMS 4.2 Slack Algorithm

value of x based on µx and µx, the decision is made probabilistically with
probabilities q0 = µx

µx+µx
for x = 0 and q1 = µx

µx+µx
for x = 1.

The main difference to a step in Johnson’s algorithm is the definition of
the measure used to decide which value to assign to a variable. In the original
algorithm, this measure was defined as

µx =
∑
c : x∈c

wc2
−|c|.

This gives shorter clauses larger weights than longer clauses, as they have a
higher probability of becoming unsatisfiable.

The modification for the Slack algorithm is to still give unit clauses a
larger weight but to leave the weights of longer clauses untouched:

µx = 2
∑
c : x∈c
c alive
|c|=1

wc +
∑
c : x∈c
c alive
|c|>1

wc, µx = 2
∑
c : x∈c
c alive
|c|=1

wc +
∑
c : x∈c
c alive
|c|>1

wc.

The paper in [41] defines additional variables in order to simplify this
definition. Let the values wx and wx be the weights of the unit clause x and
x respectively:

wx =
∑
c : x∈c
c alive
|c|=1

wc, wx =
∑
c : x∈c
c alive
|c|=1

wc,

Also, let fanin be the combined weight of all alive non-unit clauses containing
x (after removing the already fixed variables) and let fanout be the same for
x:

fanin =
∑
c : x∈c
c alive
|c|>1

wc, fanout =
∑
c : x∈c
c alive
|c|>1

wc.

With the additional definition of

∆ = 2wx + fanin +2wx + fanout,

the definitions from above can be rewritten as

µx = fanin +2wx, µx = fanout +2wx,

and

q0 =
fanout +2wx

∆
, q1 =

fanin +2wx
∆

.

Note that for formulas with 2 literals per clause the two definitions of µx,

15

4.2 Slack Algorithm 4 A SELECTION OF ALGORITHMS

the one from Johnson’s algorithm and the one defined for the Slack algorithm,
are equivalent.

The distance between the weights for x = 0 and x = 1 is called slack and
is defined as

slack = |µx − µx| = |q1 − q0| ·∆.
The basic idea for the algorithm is to carefully increase the slack by some

ε by changing the probabilities to

p0 = q0 − ε, p1 = q1 + ε

where we assume w.l.o.g. q0 ≤ q1.

To find a suitable ε, and with it p0 and p1, we consider one step of the
algorithm using the CR with the modified weights µx and µx as defined for
the Slack algorithm. Increasing the probability from q1 to p1 is a good idea if
it increases the likelihood of the variable being fixed to the value that would
also be assigned to the variable in an optimal assignment. However, if this is
not the case, it constitutes a new source of error. We consider the decision
for variable x with respect to the expected deviation, or “contradiction”, to
the optimal assignment π that is added by using the changed probabilities.

Let sat be the total weight of newly satisfied clauses and let unsat be the
total weight of terminally unsatisfied clauses after fixing x. Both are random
variables and their expected values are given by

E[sat] = p0(wx + fanout) + p1(wx + fanin)

E[unsat] = p0wx + p1wx.

Furthermore, let wounded be the weight of clauses which are still alive after
fixing x, but for which one of their literals was falsified. Again, this forms a
random variable with expectation

E[wounded] = p0 fanin +p1 fanout .

Now we can consider the “contradiction” when setting x as compared
to the optimal assignment π. This can be expressed with the two random
variables c and c′. They represent the total weight of all alive clauses right
before and after the decision for x is made respectively. The assignment for
the variables up to but excluding x is the same as in π, while for the decision
for x the probabilities from the Slack algorithm are used. Then c′ − c is the
“lost potential”, or “contradiction”, when fixing x. This contradiction can
be related to the other previously defined random variables according to the
following Lemma.

16

4 A SELECTION OF ALGORITHMS 4.2 Slack Algorithm

Lemma 4.1.

E[sat−3 ·unsat−2(c′− c)] = E[slack + wounded−2(c′− c)]− (wx+wx). (1)

Proof. The definition of slack can be re-written as

slack =

{
fanin +2wx − (fanout +2wx) if x = 1

fanout +2wx − (fanin +2wx) if x = 0

by splitting up the absolute value into its cases and substituting µx and µx
for their definitions. The expected value of slack is

E[slack] = p1(fanin +2wx − (fanout +2wx))

+ p0(fanout +2wx − (fanin +2wx)).

We now consider a simplification of Equation 1 and show that E[sat− 3 ·
unsat] = E[slack + wounded]− (wx + wx):

E[sat− 3 · unsat]

= p0(wx + fanout) + p1(wx + fanin)− 3(p0wx + p1wx)

= p0(2wx + fanout−2wx − fanin) + p1(2wx + fanin−2wx − fanout)

− p0wx − p0wx + p0 fanin−p1wx − p1wx + p1 fanout

= E[slack]− p0(wx + wx)− p1(wx + wx) + p0 fanin +p1 fanout

= E[slack]− (wx + wx) + E[wounded]

From this, the Lemma follows.

Summing over all variables, we obtain the following result. Note that
the yet to be determined new probabilities will make the right-hand side in
Equation 1 non-negative.

Lemma 4.2.

E[Sat] ≥ 3E[Unsat]− 2(W −Opt)

= W − 3E[Sat] + 2Opt,

where Sat and Unsat are the sums of sat and unsat, respectively, over all
variables in the SAT formula, W is the total weight of all clauses, and Opt
is the objective value of an optimal solution.

We now give the analysis for choosing ε and the modified probabilities by
closely following the analysis in [41].

17

4.2 Slack Algorithm 4 A SELECTION OF ALGORITHMS

Lemma 4.3. Let p0 and p1 be the assignment probabilities for x = 0 and
x = 1 respectively. Then, if x = 1 is optimal, the equation

E[c′ − c] ≤ p0 · fanin−wx

holds and if x = 0 is optimal, then

E[c′ − c] ≤ p1 · fanout−wx

holds.

Proof. Assume that x = 1 is optimal. We consider the cases for fixing x = 0
and x = 1:

• Assume that the variable x is fixed to 0. Consider the alive clauses
(after fixing x) that would have been satisfied by x = 1 but become
contradictory when setting the variables as in the optimal assignment
otherwise. Denote the weight of these clauses with faninc. Clearly, the
inequality faninc ≤ fanin holds.

• Assume that the variable x is fixed to 1. No new contradiction is
introduced, i.e. fanoutc = 0.

The contradictory unit clauses x are removed in both cases. Thus

E[c′ − c] = p0(faninc−wx)− p1wx ≤ p0 fanin−wx

The case for x = 0 being optimal can be shown analogously.

Lemma 4.4.

1. q1 fanout−q0 fanin = 2q0wx − 2q1wx.

2. Let Slack = |2wx + fanin−(2wx + fanout)|, p0 = q0− ε, p1 = q1 + ε and
assume that q0 ≤ q1 and x = 1 is optimal. Then

E[wounded−2(c′ − c)]− (wx + wx)

≥ −Slack

∆
(wx + wx) + ε(fanout + fanin).

If x = 0 is optimal, then

E[wounded−2(c′ − c)]− (wx + wx)

≥ Slack

∆
(wx + wx)− ε(fanout + fanin).

18

4 A SELECTION OF ALGORITHMS 4.2 Slack Algorithm

Proof.

1. q1 fanout−q0 fanin = 2q0wx− 2q1wx is equivalent to q1(2wx + fanout) =
q0(fanin +2wx). In the last equation, both sides are equivalent to q0q1∆.

2. If x = 1 is optimal then

E[wounded−2(c′ − c)]− (wx + wx) ≥ p1 fanout−p0 fanin +wx − wx

holds by using Lemma 4.3 and the equation for the expected value
of wounded. Then, using the first statement of this lemma, it can be
shown that

p1 fanout−p0 fanin +wx − wx = −Slack

∆
(wx + wx) + ε(fanout + fanin).

With this, the claim follows.

For q0 ≤ q1 and p0 = q0 − ε, p1 = q1 + ε the expected slack can be
re-formulated as

E[slack] =
Slack2

∆
+ 2ε Slack,

using Slack = (q1 − q0)∆. Then assuming x = 1 is optimal we get the
inequality

E[slack + wounded−2(c′ − c)]− (wx + wx)

≥ Slack2

∆
+ 2ε Slack−Slack

∆
(wx + wx) + ε(fanout + fanin).

(2)

If setting ε = 0, and thus considering the original probabilities, then the right
hand side of Equation 2 is negative only for Slack ∈ (0, wx + wx). We choose
this condition to decide whether to adjust the probabilities in the algorithm.
For the case where the probabilities need to be adjusted, i.e. ε > 0, a solution
that makes the right hand side disappear is

ε1 =
−Slack2

∆
+ Slack

∆
(wx + wx)

2 Slack + fanout + fanin
.

A similar analysis can be done for the case where x = 0 is optimal. There,
the right hand side of the inequality for E[slack + wounded−2(c′− c)]− (wx +
wx) is non-negative for all ε ≥ 0, provided fanout + fanin ≤ 2 Slack holds.
This yields a correction term ε2 which is not lower than ε1. Thus ε1 can be
used as the correction term for the case where x = 1 as well as where x = 0
holds.

19

4.2 Slack Algorithm 4 A SELECTION OF ALGORITHMS

It can be shown that the modified probabilities are well defined, i.e
0 ≤ ε1 ≤ q0.

Utilizing these considerations, the Slack algorithm can be formulated as
in the listing for Algorithm 3.

Algorithm 3 Slack algorithm

1: procedure Slack(S) . Maximizing the weight of sat. clauses in S
2: for all x ∈ V do
3: Set wx, wx, fanin, fanout and ∆ as defined above.

4: q0 ← 2wx+fanout
∆

, q1 ← 2wx+fanin
∆

5: slack← |q0 − q1| ·∆

6: ε1 ← − slack2

∆
+ slack

∆
(wx+wx)

2 slack + fanout + fanin

7: if slack = 0 or slack ≥ wx + wx then
8: p0 ← q0, p1 ← q1

9: else
10: if q0 < q1 then
11: p0 = q0 − ε1, p1 = q1 + ε1

12: else
13: p0 = q0 + ε1, p1 = q1 − ε1

14: end if
15: end if

16: x←
{

0 with prob. p0

1 with prob. p1

17: end for
18: end procedure

Theorem 4.2 (Poloczek and Schnitger [41]). Let W be the total weight of
all clauses and let Opt be the total weight of all satisfied clauses in an optimal
solution. The Slack algorithm satisfies clauses with an expected total clause
weight of

E[Sat] ≥ 2Opt +W

4
≥ 3

4
Opt.

This is tight: No approximation ratio r > 3
4

can be achieved.

We will now illustrate the rationale for the tightness result. For this
purpose we use an example which is particularly bad for the Slack algorithm:
Let n be sufficiently large. We define 2n variables x1, . . . , xn and y1, . . . , yn.
For the formula we consider the clauses (xi∨yj)∧(yj∨xi), for all i, j = 1, . . . , n
representing the logical equivalence xi ↔ yj.

20

4 A SELECTION OF ALGORITHMS 4.3 Simulated Annealing

This formula can be completely satisfied with an optimal value of 2n2 by
assigning xi = 1 and yj = 1 for all i, j.

We now consider the assignment of the Slack algorithm when first pro-
cessing all variables xi and then all yj variables. Since slack = 0 holds for
all xi, the probabilities are prob[xi = 1] = prob[xi = 0] = 1

2
. We therefore

expect to only set half of the variables xi to 1. No matter the assignment of
the variables yj, at least 1

4
of the total weight will not be satisfied:

Suppose k of the variables xi have been set to 0. Now consider yj for
some j: There are k terms of the form (0→ yj) ∧ (yj → 0) and n− k terms
of the form (1→ yj) ∧ (yj → 1). The first group demands yj = 0 while the
second group demands yj = 1 in order for the formula to be fully satisfied.
For an optimal assignment, given the variables xi fixed above, the algorithm
should choose yj = 0 for k ≥ n

2
and yj = 1 for n− k ≥ n

2
. In any case, there

will be min(k, n− k) unsatisfied clauses for each yj. If yj = 1 then k clauses
of the from yj → 0 are unsatisfied and if yj = 0 then n − k clauses of the
form 1→ yj are unsatisfied. Thus, the total number of unsatisfied clauses is
nk out of 2n2. When choosing n large enough, k will be close to n

2
and the

overall ratio is 1
4
.

4.2.1 Running time analysis

The Slack Algorithm can use the same data structure that was used above for
Johnson’s Algorithm. While the calculations needed in order to decide on the
truth assignment for each variable are slightly more complex, this calculation
is still possible in O(1) time. Thus, we again get a time and space complexity
of O(N), where N is the length of the overall formula.

4.3 Simulated Annealing

In this section we describe simulated annealing, both as a general optimization
method and as a heuristic for MAX-SAT.

A short overview of the history of the method is given first, followed by the
method itself in its general form based on [15]. We then consider convergence
results for the method. Finally, with the general terms established, simulated
annealing as applied to MAX-SAT is considered. The algorithm as proposed
in [45] is described, including an explanation of how the algorithm fits into
the larger simulated annealing landscape.

21

4.3 Simulated Annealing 4 A SELECTION OF ALGORITHMS

4.3.1 Overview

Simulated annealing has its conceptual origins in thermodynamics. There,
annealing describes the process of first heating a material to a high temperature
and then slowly cooling the matter in order to bring it to a desired equilibrium
state. At the initial high temperature, the molecules can still move around
relatively freely to find a thermal equilibrium. But as the material is cooling
down, the possible movements of the molecules become more and more
restricted. Finally, the material solidifies into a robust state of minimal
energy between the particles.

This physical process is translated into an algorithm for general optimiza-
tion problems, where a given energy function is to be minimized. The result
is a general metaheuristic for various optimization problems. It combines a
descent algorithm with probabilistic uphill steps that allow to escape local
minima.

First formulated in [32] and [10], we can also see the method as an iterated
version of the Metropolis algorithm from [37] or the generalized version known
as the Metropolis-Hastings algorithm from [28].

The Metropolis algorithm employs a modified Monte Carlo scheme to find
an equilibrium state for a fixed temperature using the Boltzmann distribution,
which was generalized to arbitrary distributions by Hastings.

Simulated annealing repeatedly applies the Metropolis-Hastings algorithm,
starting with a high temperature that is gradually lowered after each iteration.
In the beginning the high temperature allows for more steps away from the
current local minimum, just like in the physical process, whereas such moves
become increasingly unlikely as the temperature cools down. When the
temperature reaches 0, only moves towards the (local) minimum are accepted.

At its core, simulated annealing employs two stochastic processes. The
first is the generation of the states in the system: The initial state for the
algorithm is generated randomly and in each step random perturbations are
applied to the state in order to move around the state space in search of a
global minimum. These perturbations are applied with certain acceptance
probabilities P .

This is where the second stochastic process comes into play. The per-
turbed states that have lower energy than the originating state are assigned a
probability of 1, whereas the probabilities for perturbed states with a higher
energy (i.e. that are further away from the optimum) are set to a value that
depends on the current temperature and the energy difference between the
states.

For each temperature, the perturbation and acceptance processes are
iterated until the current state has reached a certain equilibrium condition.

22

4 A SELECTION OF ALGORITHMS 4.3 Simulated Annealing

This termination condition can take several different forms: It ranges from
limiting the number of accepted or unaccepted state transitions to fixing the
number of iterations, e.g. considering each component of the state exactly
once.

Starting with Tmax, the procedure described above is repeated for each
temperature T until Tmin is reached. The temperature is updated according
to some cooling-schedule T (k) in each step k.

The pseudocode for the general simulated annealing method can be found
in the listing for Algorithm 4.

Algorithm 4 Simulated Annealing

1: procedure Simulated Annealing
2: x← random initial state
3: T ← Tmax, k ← 0
4: while T ≥ Tmin do
5: repeat
6: ∆x← random perturbation of the state
7: ∆E = E(x+ ∆x)− E(x)
8: x← x+ ∆x with probability P (∆E, T)
9: until Equilibrium reached for temperature T

10: T ← T (k), k ← k + 1
11: end while
12: end procedure

When using the Boltzmann distribution with P (∆E, T) = e−
∆E
T for

∆E > 0 and P (∆E, T) = 1 if ∆E < 0 in Algorithm 4, the resulting algorithm
is called Boltzmann Annealing. This is the original simulated annealing that
evolved from the Metropolis algorithm.

4.3.2 Convergence results

Given certain conditions, simulated annealing has been proven to converge
towards a global optimum in [22]. Most importantly, the cooling schedule has
to satisfy a logarithmic cooldown as described by the equation

T (k) ≥ C

log(k + 1)
,

where k is the iteration in the cooling schedule and C is some constant.
Hajek [26] showed conditions for C which make the algorithm converge in

probability to a global optimum.

23

4.3 Simulated Annealing 4 A SELECTION OF ALGORITHMS

Unfortunately, while these results prove that, conceptually, the algorithm
is able to find a global optimum, they require cooling schedules that are not
feasible in practice as it would be faster to solve the problem exactly.

Therefore, faster cooling schedules without convergence guarantees such
as T (k) = aT (k − 1) with 0.85 ≤ a ≤ 0.96 are often used in practice.

4.3.3 Simulated Annealing for MAX-SAT

The application of simulated annealing to MAX-SAT was first addressed in
1996, in an attempt to solve certain SAT instances that were hard to solve
for traditional algorithms [45]. In the paper, Spears describes a simulated
annealing variant with a deterministic state generator, a logistic acceptance
function, and an exponential decay rate as the cooling schedule.

The state space for MAX-SAT consists of all possible assignments of the
variables.

Generating the neighbor states is rather intuitive: Given an assignment of
the variables, new states are sequentially generated by flipping one variable
after another, at each step testing if the flip is accepted. That way, each
variable is flipped and tested exactly once before the temperature is updated.

The energy function maps truth assignments to the total weight of the
clauses satisfied by the respective assignment:

E(x) =
∑

c∈SSAT(x)

wc

where x is the current truth assignment of the variables in V .

The increase or decrease in energy, ∆E, can be computed as the difference
E(x + ∆x)−E(x) where ∆x is the flip of one variable. But this is computa-
tionally expensive. Fortunately, it can also be computed directly: Let ∆xE
denote the increase or decrease in energy (i.e. the change in weight of satisfied
clauses) when flipping the truth value of variable x, without loss of generality,
from true to false. Only clauses in which x was the only satisfied variable
become unsatisfied when flipping and only unsatisfied clauses containing x
become satisfied. Thus keeping a list of positive and negative clauses, like
before for the greedy algorithm, allows the computation to be done more
efficiently. With this mapping and the number of satisfied literals for each
clause, the change in energy can be expressed as

∆xE =
∑

c∈SUNSAT(x)

wc −
∑

c∈SSAT(x)
c\{x}6∈SSAT(x)

wc

24

4 A SELECTION OF ALGORITHMS 4.3 Simulated Annealing

A similar data structure is described in [45].

For the acceptance probabilities, the logistic function

P (∆E, T) =
1

1 + e−
∆E
T

is used along with the cooling schedule

T (k) = Tmaxe
−kr(i),

where k is the number of complete sweeps over the variables and r(i) = 1
i·|V |

is the decay rate with the number of retries i and the number of variables |V |.
The algorithm takes an additional parameter to specify the number of

retries. Each retry starts a separate run of the algorithm with an individual
random assignment of the variables. The main difference, however, is the
decay rate, which is slowed down by the retry number i. Spears describes
this definition of the decay rate r(i), depending on the number of tries, as a
reasonable choice. This is a form of reannealing described in [29], where the
temperature decreases exponentially.

The full simulated annealing algorithm for MAX-SAT can then be put
together as listed in Algorithm 5.

Algorithm 5 Simulated Annealing

1: procedure Simulated AnnealingMAX-SAT(S)
2: for i = 1 . . .max tries do
3: x← random initial assignment
4: T ← Tmax

5: while T ≥ Tmin do
6: T ← Tmaxe

−kr(i)

7: for x ∈ V do

8: ∆xE ←
∑

c∈SUNSAT(x) wc −
∑

c∈SSAT(x)
x only sat. lit.

wc

9: Flip x in x with probability 1

1+e−
∆xE
T

10: end for
11: end while
12: end for
13: end procedure

25

4.4 Open-WBO 4 A SELECTION OF ALGORITHMS

4.3.4 Running time analysis

Given the cooling schedule T (k) = Tmaxe
−kr(i), the number of temperatures

that need to be run through is

k ≥ 1

r(i)
ln
Tmax

Tmin

= in ln
Tmax

Tmin

,

where i is the current try and n is the total number of variables. We consider
the parameters Tmax, Tmin and the number of tries to be constant. Then the
number of temperatures that need to be considered is O(n).

The calculation of ∆xE for each variable x needs to iterate over all clauses
that x and x occur in. Together with the loop over all variables, the cost per
temperature amounts to∑

x

O(kx + kx) =
∑
c

O(|c|) = O(N),

with N = |ϕ| again being the overall length of the formula.

Thus, the overall time complexity is O(nN) = O(N2).

4.4 Open-WBO

So far, only approximation algorithms for which optimality can only be
guaranteed when the solution satisfies all clauses have been discussed here.
There is, however, a whole range of algorithms for MAX-SAT which are able
to solve the optimization problem exactly. For such algorithms, it is not
conducive to consider their approximation ratios as the approximation ratios
of exact algorithms are always 1. However, it is possible to compare these
algorithms among each other using the time they need to arrive at the solution
or on the number of instances they are able to solve before a given timeout is
reached.

The latter is used as the metric in an event affiliated with the Interna-
tional Conference on Theory and Applications of Satisfiability Testing [46],
called MAX-SAT Evaluation [2]. In this event (exact) MAX-SAT solvers
are benchmarked against each other on submitted test instances. The goal
for the submitted solvers in the evaluation is to solve as many instances
from the test sets as possible before a given timeout occurs. In 2017, the
two main tracks of the competition were the unweighted and the weighted
track. Each track contains crafted and industrial instances as well as partial
instances with hard and soft clauses. Instances in the “crafted” category come
from MAX-SAT encodings of theoretical problems such as MAX-CUT, while

26

4 A SELECTION OF ALGORITHMS 4.4 Open-WBO

“industrial” instances encode problems such as circuit debugging problems.
More information on the MAX-SAT Evaluation contest from 2017 can be
found at http://mse17.cs.helsinki.fi/index.html.

In the track for unweighted instances, the solver that solved the largest
number of instances before the timeout of one hour was the solver Open-WBO
with the version Open-WBO-RES. It managed to solve 652 out of 880 instances
(74%).

In the following, an overview of the tool Open-WBO is given from a
practical perspective. This includes an outline of the used algorithms. After-
wards, the underlying algorithm of Open-WBO-RES for unweighted instances
is described in more detail in order to contrast the approximation algorithms
and metaheuristic discussed before with an exact optimization algorithm.

Open-WBO consists of different versions to solve MAX-SAT and its
variants, Open-WBO-RES being only one of them. Open-WBO-RES is based on
the unsatisfiability-based algorithms MSU3 [35] and OLL [38] for unweighted
and weighted instances respectively. These algorithms iteratively refine a
lower bound for the number of unsatisfiable clauses until the bound is large
enough for the generated sub-problem to be satisfied. Another version is
Open-WBO-LSU which employs a linear search algorithm that successively
refines an upper bound for the number of unsatisfiable clauses until an
optimal solution is found.

Both versions work by constructing and solving a sequence of SAT in-
stances. These instances are solved by calling a SAT solver to find solutions
to the respective sub-problems.

Due to the modular design of Open-WBO, any SAT solver implement-
ing or extending the MiniSAT interface [16] can be used to solve the sub-
problems. One benefit of this design choice is that it allows making use of
performance improvements of SAT solvers to speed up Open-WBO with-
out any additional work for Open-WBO itself. For the MAX-SAT Eval-
uation of 2017, the SAT solver Glucose4.1 from http://www.labri.fr/

perso/lsimon/glucose/ was used. For unweighted MAX-SAT instances,
Open-WBO-RES incorporates additional, partition-based techniques, which are
heuristically enabled on a per-instance basis. A more detailed overview of
Open-WBO and the other algorithms participating in the evaluation is given
in [2].

4.4.1 Methods for solving MAX-SAT

Before discussing MSU3 in detail, we give a short overview of methods for
solving MAX-SAT.

Solvers for MAX-SAT utilizing branch and bound compute a lower bound

27

http://mse17.cs.helsinki.fi/index.html
http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/

4.4 Open-WBO 4 A SELECTION OF ALGORITHMS

and apply inference rules to simplify the formula in order to restrict the search
space, e.g. [33, 1]. Another method for solving MAX-SAT instances is pseudo
boolean (PB) optimization, e.g. [8]. With this method, blocking variables
are added to clauses to allow for the overall formula to be satisfied, even if
the clauses themselves are not satisfied with the current assignment of the
original variables. Additionally to the blocking variables, a cost function that
is to be minimized is introduced. The cost function consists of the sum of all
blocking variables that are set to true. Unsatisfiability-based algorithms for
MAX-SAT [19, 35] work by identifying minimal unsatisfiable sub-formulas,
extracted from the proof traces of conflict-driven clause learning SAT solvers
(CDCL). MSU3 belongs to this category and is described in the following
section.

4.4.2 MSU3

As a member of the class of unsatisfiability-based algorithms, MSU3 makes
use of minimal unsatisfiable sub-formulas in its calculations. The algorithm
incorporates this by repeatedly constructing specific SAT formulas, for which
a SAT solver provides the answer whether or not the formula is satisfiable.
All but the last answer from the solver are thus that the provided formula is
not satisfiable. Additionally, a minimal set of clauses that cannot be satisfied
is returned. An outline of the algorithm from [35] is as follows:

1. Identify all (disjoint) unsatisfiable cores, that is minimal unsatisfiable
clause sets.

2. Add one new, or fresh, variable as a positive literal to each clause in
the unsatisfiable core. These variables are called blocking variables.

3. The number of unsatisfiable clauses is at least one for each core identified
in step 1. This bound is used in the (linear) search for the exact number.

Let k denote the current lower bound, namely the number of unsatisfiable
cores. The formula is extended with the blocking variables bi and the
cardinality constraint

∑
bi ≤ k and is tested for satisfiability with k

increasing in every step:

First, the PB constraint that exactly k blocking variables are set to 1,
and thus allowing k clauses to not be satisfied, is added to the formula.
As long as the overall formula (with the PB constraint) is not satisfiable,
the parameter for the number of unsatisfied clauses k is increased and
the PB constraint is updated with the new parameter. Then the formula
is submitted to the SAT solver once again. If, during an unsuccessful

28

4 A SELECTION OF ALGORITHMS 4.4 Open-WBO

try the unsatisfiable core contains a clause without blocking variable, a
fresh blocking variable is added to the clause in the formula that is to
be solved.

4. Finally, after step 3, the maximum number of clauses that can be
satisfied is the number of total clauses in the formula, minus the current
value of the parameter k.

The missing piece in the outline above is how to add the PB constraint to
ensure that the number of blocking variables set to true is correctly bounded.
This is addressed in the next section.

4.4.3 CNF Encoding

In step 3 of the algorithm above, the linear search for the exact number of
unsatisfied clauses needs to maintain the constraint

∑
bi = k on the boolean

blocking variables bi. One method for encoding this constraint as a CNF
formula is the Totalizer encoding [7]. It was extended for Open-WBO to allow
incremental updates to the constraint as they appear in the algorithm [36].
We now describe the basic method for generating a CNF formula for such a
constraint.

Given the literals l1, . . . , ln, the goal is to maintain the constraint that
exactly k of those literals are satisfied. In the encoding, the number of satisfied
literals is represented by boolean variables encoding a unary number, i.e. the
number k between 1 and n is represented by the variables y1, . . . , yn with
y1 = · · · = yk = 1 and yk+1 = · · · = yn = 0. To ensure that the variables
yi correspond to the correct number of satisfied literals, a tree structure
of additional variables and clauses is added, which encodes this cardinality
relation. The leaves of the tree are the literals l1, . . . , ln that need to satisfy
the constraint, while the root of the tree represents the cardinality of the
constraint, k. All non-leaf nodes Ni1 = (y

(i1)
1 , . . . , y

(i1)
ni1

;ni1) represent the
number of satisfied literals in the leaves below it. The boolean variables
y

(i1)
1 , . . . , y

(i1)
ni1

encode the number of those literals as a unary number as
explained above where ni1 is the maximum number of literals that can be
represented in the node. The number ni1 is chosen to be the total number
of leaves of the subtree with root Ni1 . As an inner node, Ni1 has two child
nodes that represent the literal counts k2 and k3 respectively. Therefore, Ni1

needs to encode the number k1 with k1 = k2 + k3. This relation is enforced

29

4.4 Open-WBO 4 A SELECTION OF ALGORITHMS

(y
(1)
1 , . . . , y

(1)
n1 ;n1)

(y
(2)
1 , . . . , y

(2)
n2 ;n2)

(y
(i)
1 , y

(i)
2 ; 2)

(l1; 1) (l2; 1)

(y
(3)
1 , . . . , y

(3)
n3 ;n3)

(y
(j)
1 , y

(j)
2 ; 2)

(ln−1; 1) (ln; 1)

Figure 2: Tree representation of the Totalizer for l1 + · · ·+ ln ≤ k

by connecting the nodes using the formula∧
0≤k2≤n2
0≤k3≤n3
0≤k1≤n1
k2+k3=k1

y
(i2)
k2
∨ y(i3)

k3
∨ y(i1)

k1

with y
(i1)
0 = y

(i2)
0 = y

(i3)
0 = 1 to allow that one sibling contains no true literals.

Strictly speaking, the formula encodes the relation k1 ≥ k2 + k3. But with∧
j=k+1,...,n

yj

the constraint that at most k literals are true can be enforced. Finally, these
formulas together with the unit clauses of the variables yi from the root node
taken in conjunction represent the desired cardinality constraint.

Summing up, the literals l1, . . . , ln required to satisfy the cardinality
constraint l1 + · · ·+ ln ≤ k are placed separately in the leaves of the binary
tree. For each internal node of the tree, the clauses that are added ensure
that the node counts at least as many true literals as its two child nodes.
These constraints, starting at the leaves and going up to the root, ensure that
the root counts all satisfied literals. This is visualized in Figure 2.

30

5 COMPUTATIONAL STUDY

5 Computational study

This section reports on the computational study which has been a major
part of this thesis. The goal is to evaluate the practical behaviour of the
algorithms described in Section 4. In the following, the algorithms will be
identified by their names as used in the command line tool that is elaborated
in Section 5.2.1. These identifiers are annealing, greedy and slack for the
respective algorithm. Additionally, greedy-s as a variant of greedy has been
included. For details see Section 5.1.2.

Our main point of interest lies in the quality of the solution as measured by
the approximation ratio. This creates a problem because the approximation
ratio depends on the number of satisfied clauses in the optimal solution,
which is usually not available. The weaker performance ratio, where the total
number of clauses is used as an upper bound for the optimal solution, will
therefore be considered instead. Recall that the performance ratio is a lower
bound for the approximation ratio.

Another metric that will be considered is the time needed by the algorithms
to arrive at their final result. The times are expected to differ the most between
the greedy algorithms and simulated annealing, as the greedy algorithms
are sharing a common data structure and are thus expected to have similar
runtimes.

Before we report about the results of the experiments we will comment on
some implementation details. After that, the test environment is described.
This includes usage of the solver, input and output formats and the machine
specification on which the instances are solved. Finally, the benchmark test
sets, taken from the MAX-SAT Evaluations in 2016 and 2017, are described
together with the results of the respective experiments.

5.1 Implementation details

In addition to the theoretical discussions of the algorithms in Section 4, a few
practical considerations are necessary when conducting the computational
experiments.

5.1.1 Simulated annealing

For simulated annealing, reasonable default values for the parameters that
show up in the algorithm are suggested in [45]. In our experiments we set
Tmax = 0.3 for the initial temperature and Tmin = 0.01 for the minimal
temperature, at which the system is considered cooled down. The number
of retries is set to 1, since early tests showed that the restricting factor in

31

5.1 Implementation details 5 COMPUTATIONAL STUDY

solving MAX-SAT instances with simulated annealing is the computation
time. Additionally, the algorithm seemed to yield good results even with only
one attempt.

Our implementation of simulated annealing also allows for a timeout to
be specified, as tests during the initial implementation quickly revealed a
much higher computation time than for the other algorithms. This timeout
considers only the actual computation time of the algorithm because reading
and preprocessing the instance cannot be interrupted. In the following, the
time limit is set to 120s as is used in [42]. The actual time reported by the
algorithm can exceed the specified timeout since the algorithm checks between
iterations whether the specified time has passed and, if so, breaks from the
loop and subsequently all loops it is nested in. Additionally, some extra
time is needed for postprocessing after the actual computation to extract
the solution from the data structure used in the specific algorithm. This can
further increase the total time even after the timeout has passed, especially
for larger instances.

5.1.2 Greedy and slack algorithm

The performance guarantee for the Slack algorithm (Theorem 4.2) states
an expected approximation ratio of 3

4
. Since this is a probabilistic result,

individual values can be lower than that, as can be the case for the minimal
values in the summary tables presented in Section 5.4. For better comparison
with the probabilistic approximation guarantee for the Slack algorithm, the
reported performance ratios for this algorithm should be considered in aggre-
gated form. This means considering the mean ratio for a set of instances or
the average of multiple runs of the same instance instead of considering each
value individually.

In [42], which served as a starting point for the present evaluation, a
variant of Johnson’s algorithm was considered instead of the original algorithm
described in Section 4.1. To allow for better comparison with the results
from [42], we implemented that variant as well. It is based on the deviation
from Johnson’s algorithm in the derivation of the Slack algorithm, which
doubles the weight of unit clauses and leaves the weights of all other clauses
as they are. As with the Slack algorithm before, the implementation of this
variant uses the same greedy framework and simply replaces the local decision
for each variable, given the relevant clauses. To distinguish the variant of
the greedy algorithm from the original greedy algorithm, the variant will be
labeled greedy-s in the following, where s stands for simple or slack.

32

5 COMPUTATIONAL STUDY 5.2 Test Environment

5.2 Test Environment

Before discussing specific test instances and reporting on the experimental
results for them, we describe the environment in which the instances are
solved. This includes the user interface to the solver implemented for the
computational study with the respective options for each algorithm, input
and output formats, as well as the runtime environment with the hardware
used and the runtime configuration options.

5.2.1 Solver User Interface

The solver for the computational study of this thesis is implemented as the
command line program maxsat-exe and is written in the functional program-
ming language Haskell (https://www.haskell.org/) using the compiler GHC
8.0.2. It reads an instance definition from a file, applies the specified algo-
rithm, and prints the solution, i.e. the variable assignment, to the screen.
Optionally, a file can be specified upon command invocation to which the
same summary information is written in CSV format. The command line
tool provides a simple yet useful interface to the implemented algorithms,
including a help text outlining the correct usage of the program.

./maxsat-exe --help

maxsat -- A MAX-SAT solver

Usage: maxsat-exe COMMAND [-v|--verbose] [-s|--stats] [-z|--summary ARG]

[-w|--weighted] FILES

Available options:

-v,--verbose Whether to print verbose log messages

-s,--stats Whether to collect and print statistics

-z,--summary ARG If specified, a summary of the simulation will

be written to the file

-w,--weighted Whether to run instances with specified weights.

Has no effect for unweighted instances

FILES Input file in Dimacs format

-h,--help Show this help text

Available commands:

greedy Solve using greedy algorithm

slack Solve using slack algorithm

annealing Solve using simulated annealing

greedy-s Solve using the Poloczek variant of the greedy

algorithm

The annealing algorithm offers additional parameters that are specific to
this algorithm. These include the previously mentioned tuning parameters as

33

https://www.haskell.org/

5.2 Test Environment 5 COMPUTATIONAL STUDY

well as the timeout parameter. The corresponding help text reads as follows:

./maxsat-exe annealing --help

Usage: maxsat-exe annealing [-t|--tries ARG] [-l|--min-temp ARG]

[-u|--max-temp ARG] [--timeout ARG]

Solve using simulated annealing

Available options:

-t,--tries ARG tries (default: 1)

-l,--min-temp ARG min-temp (default: 1.0e-2)

-u,--max-temp ARG max-temp (default: 0.3)

--timeout ARG If specified, the timeout in seconds

-h,--help Show this help text

5.2.2 Dimacs-Format

The command line tool uses the DIMACS format for input and output. It is
the mandatory input and output format for the participating solvers in the
annual MAX-SAT Evaluation and is adopted here for consistency. Unweighted
instances are specified in the DIMACS CNF format whereas the DIMACS
WCNF format is used for weighted problem definitions. The full specification
is available at http://www.maxsat.udl.cat/16/.

DIMACS CNF and WCNF are line-based text file formats that consist of
three elements: Parameters, clauses and optional comment lines.

The format for unweighted instances is discussed first: The instance file
may start with one or more comment lines. Each comment line starts with c,
usually followed by a description of the instance or additional information.
These comment lines are ignored by the solver.

The line specifying the parameters is non-optional and has to be in the
format

p cnf <nbVars> <nbClauses>.

It starts with p, followed by the instance type, the number of variables
<nbVars>, and the total number of clauses <nbClauses>. In the example
above, the instance type is cnf, identifying the instance as an unweighted
CNF formula.

After the parameters, the actual clauses of the instance are listed. In
that list of clauses, variables are encoded as integers from 1 to <nbVars>,
with negated variables represented as the respective negative integer. Each
clause has to be written on a separate line, wherein the positive and negative
variables are separated by spaces and postfixed with 0 to signal the end of
the clause.

For example, consider the following formula in 5 variables and 4 clauses

34

http://www.maxsat.udl.cat/16/

5 COMPUTATIONAL STUDY 5.2 Test Environment

in conjunctive normal form:

ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x5).

This formula can be represented as the following input file in the DIMACS
format:

c

c Test Instance 1

c

p cnf 5 4

1 2 0

2 -3 0

-3 4 0

1 -2 5 0

The format for weighted instances is similar. Here, the parameter line has
the format

p wcnf <nbVars> <nbClauses> <maxWght>

with the instance type wcnf and an additional parameter <maxWght>, which
specifies the maximum weight of a single clause.

The clauses themselves are written as in the unweighted case, but with
the (integer) weight of the clause at the beginning of the line, followed by the
list of literals.

As an example, the previous formula augmented with weights 8, 8, 8 and
12 would be written as follows:

c

c Weighted Test Instance 1

c

p wcnf 5 4 12

8 1 2 0

8 2 -3 0

8 -3 4 0

12 1 -2 5 0

The output format for printing messages to either the screen or a log file
is similar to the input format. Just like the input file format it is line-based,
with similar prefixes distinguishing different messages. There are 4 distinct
message types:

• The objective value, defined as the number of unsatisfied clauses, is
prefixed with o. There can be more than one such line in the output log,
with only the last one being valid. This way, the algorithm can print
objective values for intermediate solutions and update them whenever
a better solution is found.

35

5.2 Test Environment 5 COMPUTATIONAL STUDY

• The type of the solution is prefixed with s, and can either be

– OPTIMUM FOUND if the last line with an objective value is that of
an optimal solution,

– SATISFIABLE if the algorithm found a variable assignment satisfy-
ing all hard clauses of the instance, or

– UNKNOWN otherwise.

If no such message is printed, UNKNOWN can be assumed implicitly.

• The variable assignment for the printed objective value is shown as a
spaces-separated list of satisfied literals, prefixed with v.

• Finally, all other log messages and information that are printed are
interpreted as comments and are prefixed with c.

We give an example of what such a log might look like:

c maxsat solver

c

c Version: 2c5c8075

c Opts: AlgGreedy

c Started at: 2018-01-09 19:22:00.723561 UTC

c

c Reading file sbox_4.wcnf

c Elapsed Time: 651.32 us

c Number of clauses: 387, number of variables: 147

c Running algorithm

o 35

v 1 2 3 4 5 6 7 -8 9 -10 11 12 13 14 15 -16 -17 -18 -19 -20 -21 -22 -23 24

25 26 27 28 -29 -30 -31 -32 -33 -34 -35 36 37 38 39 -40 -41 -42 -43 -44

-45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 59 60 61 62 -63

-64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 76 77 78 79 -80 -81 -82

-83 -84 -85 -86 -87 88 -89 -90 -91 -92 -93 -94 -95 -96 -97 -98 -99 -100

-101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114

-115 116 117 -118 119 -120 -121 -122 123 -124 -125 -126 -127 -128 -129

-130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144

-145 -146 -147

c Ratio: 0.91 (352 of 387 satisfied)

c Elapsed Time: 1.88 ms

5.2.3 Machine Specification

The tests were conducted on a Debian Linux workstation located at the Insti-
tute of Optimization and Discrete Mathematics at Graz University of Tech-
nology, Austria. The machine is running the kernel Linux 4.9.0-5-amd64

36

5 COMPUTATIONAL STUDY 5.3 Benchmarks

#1 SMP Debian 4.9.65-3+deb9u2 (2018-01-04) x86 64 on an Intel(R)

Xeon(R) CPU E5-2630 v3 @ 2.40GHz processor with 32 cores, 128GB of
memory and a 1TB HDD (SATA 6.0Gb/s) storage space with 7200 RPM and
128MB cache.

5.2.4 Batch system

Running all instances with the different algorithms and collecting their results
is in itself a task to be considered carefully. With 911 instances from the
2016 test sets and 880 instances from 2017 in combination with 4 algorithms,
naively processing the more than 7000 jobs sequentially would require a
significant amount of time. Luckily, the available computer with its 32 cores
and 128GB of memory allows for a good amount of parallelization.

The instances of each category (as defined below) are solved in parallel
by all implemented algorithms, with one algorithm at a time. Recall that
those are greedy, slack, annealing, and greedy-s. The solver is restricted
to 1 CPU core for each instance as to not influence other jobs during parallel
execution. This is done via the runtime options +RTS -N1 -RTS. The script
coordinating the benchmarks runs at most 30 jobs at the same time. This
utilizes 30 of the 32 cores of the machine at once, with 2 cores to spare for
overhead and an interactive shell session to monitor the progress.

Unless specified otherwise, all instances are interpreted as unweighted, run
with the statistics flag -s enabled, the verbose flag -v disabled, and the output
piped into an instance-specific log file. The timeout is set to 120 seconds with
the option --timeout 120. Recall that this only affects annealing, and only
the actual optimization process without pre- or postprocessing. All other
parameters are not changed.

5.3 Benchmarks

Below we describe the benchmark test sets from the MAX-SAT Evaluations
in 2016 and 2017 [3, 2] that are used to evaluate the implemented algorithms.

5.3.1 MAX-SAT Evaluation 2016

From the evaluation in 2016 [3], three test sets with unweighted instances
are considered: The ms random test set consisting of randomly generated
instances, ms crafted containing instances specifically designed to test the
performance of MAX-SAT solvers, and ms industrial containing instances
used to solve real-world problems. Let us provide some more details on the
chosen three sets of test instances.

37

5.3 Benchmarks 5 COMPUTATIONAL STUDY

• ms random: 454 instances in 10 categories.

In the test set of randomly generated instances, the number of variables
ranges from 70 to 300 and the number of clauses from 700 to 2,600. The
ratios between the number of clauses and variables, which give a rough
overview of the structures of the instances, lie between 4.0 and 21.7.

• ms crafted: 402 instances in 11 categories.

In this test set, the number of variables lies between 27 and 11,264
with a median of 140. The number of clauses ranges from 48 to 39,424
(median 1,400) and the ratio of clauses to variables lies between 1.1 and
57.0.

• ms industrial: 55 instances in 2 categories.

The industrial test set is the smallest test set used in the MAX-SAT
Evaluation of 2016 but features the largest instances. The number of
variables starts at 45,552 but may be as high as 4,426,323 (median
400,085) and the number of clauses is between 140,056 and 15,983,633
(median 1,221,020). With 4,426,323 variables and 15,983,633 clauses
mem ctrl-problem.dimacs 27.filtered.cnf is the largest file with
around 616.2 MB. The clause to variable ratio is smaller than for the
test sets before, namely between 1.1922 and 4.7597.

5.3.2 MAX-SAT Evaluation 2017

In the evaluation of 2017, the organization of the test instances was re-
vised. The test set ms crafted and ms industrial of the partial track
from the previous years were merged, while dropping the random instances
from ms random altogether. Other non-random instances were added in-
stead. For new instances, the editors of the evaluation imposed the re-
quirement that each new category of test instances needs to be described
briefly in the format as is suggested for IEEE Proceedings and which can
be found at https://www.ieee.org/conferences_events/conferences/

publishing/templates.html. Both the editors’ discussion as well as the
actual instance descriptions can be found in [2].

Overall, 880 instances in 36 categories were used in the evaluation and
our experiments. The number of variables ranges from 27 to 2,785,108 with
a median of 19,778, while there are between 48 and 13,901,121 clauses per
instance (median 108,706). The ratio between clauses and variables ranges
further than for the test sets before. It starts at 0.1 and goes up to 1276.0,
with median 4.7.

38

https://www.ieee.org/conferences_events/conferences/publishing/templates.html
https://www.ieee.org/conferences_events/conferences/publishing/templates.html

5 COMPUTATIONAL STUDY 5.4 Results of the computational study

In addition to the results of the implemented algorithms, the results
of Open-WBO-RES, retrieved from http://mse17.cs.helsinki.fi/rankings.

html, have been included in the following discussion of computational results.
From the solver log files in DIMACS format, the variable assignment of the
solution, the objective value, and the type of the solution (optimal, satisfiable,
or unknown) are extracted and stored in a CSV file for later processing.

The MAX-SAT Evaluation 2017 used the StarExec computer cluster
(https://www.starexec.org/) whose 192 computation nodes consist of
Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz processors with 128GB of
main memory each. Each individual solver run was restricted to 1 CPU core
with a time limit of 1 hour and a memory limit of 32GB.

Including the results of an exact solver allows to compare the results of the
approximation algorithms to the actual solution of the optimization problem.
With these optimal solutions, the approximation ratios can be considered in
addition to the weaker performance ratios.

The instances in the “complete, unweighted” track from the MAX-SAT
Evaluation 2017 are unweighted but they include soft and hard instances,
which the approximation algorithms are unable to differentiate. Recall that
for such instances some clauses are marked as hard and thus have to be
satisfied in order for a solution to be feasible. However, in the DIMACS
format such instances are represented as weighted instances where the hard
clauses have a weight equal to the maximum weight parameter of the instance.
As long as that maximum weight is guaranteed to be greater than the sum
of all soft clauses, maximizing the weight of satisfied clauses should lead to
satisfying the hard clauses first. Of course, for the extreme case where every
clause is hard, the problem is reduced to a conventional SAT instance, for
which it is NP-hard to find a solution.

As a simple heuristic for such unweighted partial instances, those instances
are interpreted as weighted (non-partial) instances and solved as such. Then,
for the performance and approximation ratios the instances are again inter-
preted as unweighted and only the respective number of clauses is taken into
account.

5.4 Results of the computational study

The statistical analyses of the solver runtimes and performance ratios were
conducted in R (https://www.r-project.org/). The presented tables con-
tain summaries of the respective variables grouped by algorithm. We state
minimum, maximum as well as median, first, and third quartile to provide
insight into the distribution of the data. In the tables the quartiles are denoted
by q1 and q3. Also included are mean and standard deviation, abbreviated

39

http://mse17.cs.helsinki.fi/rankings.html
http://mse17.cs.helsinki.fi/rankings.html
https://www.starexec.org/
https://www.r-project.org/

5.4 Results of the computational study 5 COMPUTATIONAL STUDY

as sd, as measures for location and dispersion.

5.4.1 MAX-SAT Evaluation 2016

The results of the computational study for the benchmarks from the MAX-SAT
Evaluation 2016 are presented separately for the three test sets ms random,
ms crafted and ms industrial. We give a table containing the statistical
summary of the runtimes of the implemented algorithms in the maxsat-exe

tool, as well as a table containing the statistical summary of the respective
performance ratios for each of the three test sets. These are Tables 1 to 6.

After the results per test set are described, we consider the performance
ratios, again for each of algorithms, split into their respective categories.

Finally, because annealing exhibits behaviour that differs from that of
the other algorithms, the results for annealing are described in more detail.

min q1 median q3 max mean sd

greedy 0.001 0.002 0.003 0.003 0.013 0.003 0.001
slack 0.001 0.002 0.003 0.003 0.011 0.003 0.001
annealing 0.027 0.106 0.192 0.307 0.837 0.234 0.176
greedy-s 0.001 0.002 0.002 0.003 0.008 0.003 0.001

Table 1: Solver runtime for ms random, n = 454

min q1 median q3 max mean sd

greedy 0.793 0.839 0.887 0.954 0.989 0.896 0.059
slack 0.745 0.782 0.822 0.909 0.967 0.847 0.069
annealing 0.801 0.855 0.902 0.970 0.998 0.913 0.062
greedy-s 0.793 0.839 0.887 0.950 0.984 0.895 0.058

Table 2: Performance ratio for ms random, n = 454

ms random Looking at the times the algorithms needed to find approximate
solutions for the instances of the ms random test set in Table 1, it is clear that
with these instance sizes neither of the algorithms had any problems finding
such an approximation quickly. Even annealing took at most a little under
a second to find a variable assignment. The greedy algorithms greedy, slack
and greedy-s generally only show small differences in solver time. This is to
be expected because all three algorithms only differ in how to fix a variable
(local decision), but not in the overall structure of the algorithm.

On the performance side, we can see in Table 2 that the greedy algorithms
greedy and greedy-s are far above the theoretical worst-case of 2

3
, even

40

5 COMPUTATIONAL STUDY 5.4 Results of the computational study

if we are considering the performance ratio instead of the approximation
ratio. The algorithm with the highest mean performance ratio is simulated
annealing. Surprisingly, the Slack algorithm comes in last, with Johnson’s
greedy algorithm being second. The order of greedy and slack is particularly
interesting because this is the opposite of what would be expected from the
theoretical results. It is, however, in accordance with the experimental
findings in [42], where similar results were observed for the MAX-SAT and
SAT evaluation test sets from the years 2014 and 2015. Comparing the
MAX-SAT instances from 2014 and 2015 with those from 2016 is justified
since the test sets stayed mostly the same, with only few additions from 2014
to 2015 and few removals from 2015 to 2016.

min q1 median q3 max mean sd

greedy 0.000 0.002 0.002 0.004 0.131 0.004 0.008
slack 0.000 0.002 0.002 0.003 0.115 0.003 0.007
annealing 0.005 0.162 0.196 0.314 120.361 0.902 8.550
greedy-s 0.000 0.002 0.002 0.003 0.116 0.003 0.007

Table 3: Solver runtime for ms crafted, n = 402

min q1 median q3 max mean sd

greedy 0.756 0.820 0.831 0.840 0.990 0.828 0.027
slack 0.732 0.770 0.778 0.786 0.966 0.779 0.022
annealing 0.756 0.842 0.858 0.865 0.993 0.851 0.032
greedy-s 0.756 0.819 0.831 0.839 0.963 0.827 0.026

Table 4: Performance ratio for ms crafted, n = 402

ms crafted The results of the crafted instances are similar to those for
ms random before. annealing is still able to solve most instances within the
given time but the maximum solver time of over 120s indicates that the
timeout has been reached at least once (Table 3). As can be seen in Table 4,
this does not impact the performance ratios much. The average performance
ratios of the algorithms are ranked as before, with annealing fairing best,
greedy and greedy-s lying close together thereafter and slack following
behind with a considerable gap.

ms industrial The industrial instances are perhaps the most interesting
ones, not only because they have real-world applications but because the
results differ from the previous test sets. The most striking thing to notice is

41

5.4 Results of the computational study 5 COMPUTATIONAL STUDY

min q1 median q3 max mean sd

greedy 0.464 3.647 5.626 17.222 59.593 11.671 13.101
slack 0.404 4.488 7.103 19.480 64.527 12.736 13.528
annealing 120.567 124.961 127.901 136.719 179.478 133.660 13.638
greedy-s 0.522 3.766 5.838 15.552 57.909 11.489 12.648

Table 5: Solver runtime for ms industrial, n = 55

min q1 median q3 max mean sd

greedy 0.939 0.969 0.981 0.989 0.994 0.978 0.013
slack 0.879 0.914 0.919 0.925 0.934 0.916 0.013
annealing 0.763 0.812 0.823 0.842 0.938 0.827 0.033
greedy-s 0.949 0.971 0.982 0.991 0.994 0.980 0.011

Table 6: Performance ratio for ms industrial, n = 55

that annealing comes in on the last place here. The solver times in Table 5
are, however, able to shed some light on this result. Even the minimum solver
time for an instance of the ms industrial test set with annealing is above
120s, meaning that annealing was not able to solve a single instance before
the timeout occurred.

The results for the greedy algorithms are consistent with the results before.
However, the ratios for these algorithms are a bit higher in general (Table 6).
With average performance ratios of just below 98%, greedy and greedy-s

are a good fit for those instances.

Results per category The tables with the mean performance ratios for
each category and for each test set in Appendix A show that different categories
of instances can have quite different performance ratios. Of course, this can
be explained by their different structures and the actual numbers of satisfiable
clauses in each instance. What the categories do have in common, however,
is that they all yield very similar rankings between the algorithms. For all
categories except for the ones in ms industrial, annealing yields the highest
ratios, followed by both greedy variants greedy and greedy-s close together,
and slack trailing a bit behind. The poorer performance of annealing for
the industrial instances is again easily explained by the fact that for those,
annealing has a mean solver time greater than 120s, meaning that the solver
times out before finishing its computations.

A closer look at the results for annealing We are interested in if and
by how much the performance ratios of annealing improve when the timeout

42

5 COMPUTATIONAL STUDY 5.4 Results of the computational study

annealing120 annealing600 greedy

mean 0.829 0.839 0.974
sd 0.034 0.042 0.026

Table 7: Performance ratios when extending the timeout for annealing from
120s to 600s, n = 57

is increased. To answer this question, the instances from all test sets for
which annealing does not finish within the timeout of 120s are solved again
with a new timeout of 600s.

The results are presented side by side in Table 7 for an easy comparison.
Although the performance ratios of the instances in question are improved
by about one percent there still is a big gap when compared to greedy.
This is because most of the instances that ran into the timeout of 120s also
ran into the timeout of 600s. Almost all of these instances come from the
ms industrial test set.

It helps to take a closer look at the convergence behavior of simulated
annealing in order to get a better understanding of the algorithm. Figure
3 shows a typical energy graph of the simulated annealing process for one
of the instances of the ms crafted test set with 5,120 variables and 16,640
clauses. The number of satisfied clauses is plotted against the temperature
during the course of the algorithm. As an initial state for the algorithm,
a random assignment of the variables is chosen. This assignment already
satisfies about 14,000 of the 16,640 clauses. From there, the algorithm tries to
find better assignments but is also allowed to choose a worse assignment with
some probability depending on the current temperature. This is reflected in
the graph by a funnel that slowly gets narrower as the temperature decreases.
At around temperature 0.10, the system has cooled off and only small changes
in the number of satisfied clauses are visible.

One aspect that stands out is that the initial random assignment is al-
ready a good approximation. After a few steps, the algorithm shows linear
improvement of the number of satisfied clauses. It keeps this tendency for
about half of the simulation, after which the curve flattens until it reaches
its final approximation. Tuning the parameter for the minimum temperature
could save some runtime, with the drawback of a possibly slightly worse per-
formance ratio. It might be worth investigating whether a more sophisticated
simulated annealing routine might lead to improved results for the industrial
instances. Another option might be to try out other metaheuristics such as
Tabu search [23].

43

5.4 Results of the computational study 5 COMPUTATIONAL STUDY

Figure 3: Energy graph of the annealing process of instance
ms crafted/set-covering/scpcyc-scpcyc10 maxsat

5.4.2 MAX-SAT Evaluation 2017

As for the results of the computational study of the benchmarks from the
MAX-SAT Evaluation 2016, we give the runtimes of the implemented algo-
rithms together with the respective performance ratios in Tables 8 and 9.
Furthermore, the results from the solver Open-WBO-RES are combined with
the results of the implemented algorithms greedy, greedy-s, slack, and
annealing to list the approximation ratios in Table 10.

The results are similar to those for the 2016 evaluation. Overall, the
average performance ratios are better than the theoretical results would

44

5 COMPUTATIONAL STUDY 5.4 Results of the computational study

min q1 median q3 max mean sd

greedy 0.000 0.052 0.462 2.257 52.089 2.070 4.888
slack 0.000 0.054 0.471 2.388 50.836 2.184 5.107
annealing 0.006 40.175 120.479 122.195 197.516 91.233 51.747
greedy-s 0.000 0.046 0.429 2.184 51.151 2.008 4.821

Table 8: Solver runtime (total) for MSE17, n = 880

min q1 median q3 max mean sd

greedy 0.628 0.939 0.979 0.994 1.000 0.952 0.066
slack 0.607 0.904 0.944 0.970 1.000 0.924 0.066
annealing 0.621 0.852 0.950 0.985 1.000 0.915 0.084
greedy-s 0.629 0.948 0.978 0.994 1.000 0.950 0.069

Table 9: Performance ratio (total) for MSE17, n = 880

suggest, with all of them being above 90%. Both greedy and greedy-s are
again slightly ahead of slack. However, this time annealing comes in last,
but with only a small gap to slack. Looking at the solver runtimes in Table 8,
we see that the solver times for annealing are quite close to the timeout of
120s. Precisely 626 out of 880 instances did not finish before the timeout.

For the approximation ratios the results from Open-WBO-RES are used as
a reference for the optimal value whenever Open-WBO-RES was able to find an
optimal solution (in 652 out of 880 cases). The approximation ratio is only
calculated for instances where the approximation algorithms found a solution
that satisfies all hard clauses. This is reflected in the column “n” in Table 10.

min q1 median q3 max mean sd n

greedy 0.702 0.962 0.983 0.998 1.000 0.961 0.064 140
slack 0.803 0.915 0.971 0.998 1.000 0.953 0.050 132
annealing 0.687 0.915 0.989 1.000 1.000 0.944 0.080 158
greedy-s 0.702 0.963 0.986 0.998 1.000 0.959 0.067 133

Table 10: Approximation ratio (total) for MSE17

Out of the 652 instances for which Open-WBO-RES was able to find an
optimal solution, annealing also found an optimal solution for 11 instances.

The implemented algorithms greedy, greedy-s and annealing were able
to find a solution satisfying the hard clauses in 13 out of 36 categories. Only
slack solved instances from 2 fewer categories than the rest. Generally, this
suggests that interpreting instances with hard clauses as weighted instances as
described can be a viable heuristic if the structure of the problem is adequately
simple.

45

6 CONCLUSION

6 Conclusion

This thesis evaluated the practical performance of two approximation algo-
rithms for MAX-SAT, Johnson’s greedy algorithm and the Slack algorithm
of Poloczek and Schnitger, as well as the metaheuristic simulated annealing
(MAX-SAT version from Spears).

We found that both Johnson’s greedy algorithm and the Slack algorithm
have better average performance ratios on a wide range of test instances
than what can be proven in theory. Simulated annealing yielded the best
results for the instances on which it was able to finish its computation before
a specified timeout occurred but should be avoided for larger instances that
would require more computation time than the timeout permits.

The better theoretical performance guarantee of the Slack algorithm over
Johnson’s greedy algorithm did not carry over to the practical evaluation.
Johnson’s algorithm consistently managed to outperform the Slack algorithm.

All evaluated algorithms were also able to find feasible solutions to some of
the partial instances. However, the instances for which feasible solutions were
found are concentrated to few categories. This suggests that these categories
share a common structure particularly suited for the evaluated algorithms.

Future work could include, but is not restricted to, the following:

• More algorithms could be incorporated into the evaluation. The algo-
rithms implemented for this thesis use simple data structures and do
not make use of techniques such as linear or semidefinite programming.
In particular, the algorithm from Asano and Williamson [5], with an
approximation ratio of 0.7877 [4], would be of interest due to its good
theoretical guarantees.

• The authors of [44] use a derandomization of the Slack algorithm with
two iterations over the variables to achieve a 3

4
-approximation algorithm,

which the authors titled 2Pass. In their evaluation, 2Pass outperformed
both Johnson’s greedy algorithm as well as the Slack algorithm [42].
Again, this algorithm could be included in future evaluations in order
to reproduce these results.

• The structure of the partial instances could be investigated. The
instances could be searched for some common criteria that might be
able to explain their suitability for the tested algorithms. Such criteria
could then be used to design heuristic approaches for MAX-SAT.

46

REFERENCES REFERENCES

References

[1] T. Alsinet, F. Manya, and J. Planes. “Improved branch and bound
algorithms for Max-SAT”. In: (2003).

[2] “MaxSAT Evaluation 2017: Solver and Benchmark Descriptions”. In:
Volume B-2017-2 of Department of Computer Science Series of Publica-
tions B. Ed. by C. Ansotegui et al. University Of Helsinki, 2017.

[3] J. Argelich et al. MAX-SAT 2016: Eleventh Max-SAT evaluation. http:
//www.maxsat.udl.cat/16/. Accessed: 2018-01-07.

[4] T. Asano. “An Improved Analysis of Goemans and Williamson’s LP-
Relaxation for MAX SAT”. In: Fundamentals of Computation Theory:
14th International Symposium, FCT 2003, Malmö, Sweden, August 12-
15, 2003. Proceedings. Ed. by A. Lingas and B. J. Nilsson. Preliminary
version. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 2–14.
isbn: 978-3-540-45077-1. doi: 10.1007/978-3-540-45077-1_2.

[5] T. Asano and D. P. Williamson. “Improved Approximation Algorithms
for Max Sat”. In: Journal of Algorithms 42.1 (2002), pp. 173–202. doi:
10.1006/jagm.2001.1202.

[6] A. Avidor, I. Berkovitch, and U. Zwick. “Improved Approximation
Algorithms for MAX NAE-SAT and MAX SAT”. In: Approximation
and Online Algorithms. Approximation and Online Algorithms. Springer
Berlin Heidelberg, 2006, pp. 27–40. doi: 10.1007/11671411_3.

[7] O. Bailleux and Y. Boufkhad. “Efficient CNF Encoding of Boolean
Cardinality Constraints”. In: Principles and Practice of Constraint
Programming – CP 2003. Ed. by F. Rossi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 108–122. isbn: 978-3-540-45193-8.

[8] E. Boros and P. L. Hammer. “Pseudo-boolean Optimization”. In: Dis-
crete Appl. Math. 123.1-3 (Nov. 2002), pp. 155–225. issn: 0166-218X.
doi: 10.1016/S0166-218X(01)00341-9.

[9] N. Buchbinder et al. “A Tight Linear Time (1/2)-Approximation for
Unconstrained Submodular Maximization”. In: 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science. Oct. 2012, 649––658.
doi: 10.1109/focs.2012.73.

[10] V. Černý. “Thermodynamical Approach To the Traveling Salesman
Problem: An Efficient Simulation Algorithm”. In: Journal of Optimiza-
tion Theory and Applications 45.1 (1985), pp. 41–51. issn: 1573-2878.
doi: 10.1007/BF00940812.

47

http://www.maxsat.udl.cat/16/
http://www.maxsat.udl.cat/16/
https://doi.org/10.1007/978-3-540-45077-1_2
https://doi.org/10.1006/jagm.2001.1202
https://doi.org/10.1007/11671411_3
https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1109/focs.2012.73
https://doi.org/10.1007/BF00940812

REFERENCES REFERENCES

[11] J. Chen, D. K. Friesen, and H. Zheng. “Tight Bound on Johnson’s
Algorithm for Maximum Satisfiability”. In: Journal of Computer and
System Sciences 58.3 (1999), pp. 622–640. doi: 10.1006/jcss.1998.
1612.

[12] Y. Chen et al. “Automated Design Debugging With Maximum Satisfia-
bility”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 29.11 (2010), pp. 1804–1817. doi: 10.1109/tcad.
2010.2061270.

[13] containers: Assorted concrete container types. http://hackage.haskell.
org/package/containers-0.5.7.1. Version 0.5.7.1. 2016.

[14] S. A. Cook. “The complexity of theorem-proving procedures”. In: Pro-
ceedings of the third annual ACM symposium on Theory of computing -
STOC ’71. May 1971, pp. 151–158. doi: 10.1145/800157.805047.

[15] K.-L. Du and M. N. S. Swamy. “Simulated Annealing”. In: Search and
Optimization by Metaheuristics: Techniques and Algorithms Inspired
by Nature. Cham: Springer International Publishing, 2016, pp. 29–36.
isbn: 978-3-319-41192-7. doi: 10.1007/978-3-319-41192-7_2.

[16] N. Eén and N. Sörensson. “An Extensible SAT-solver”. In: Theory
and Applications of Satisfiability Testing. Ed. by E. Giunchiglia and A.
Tacchella. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518. isbn: 978-3-540-24605-3.

[17] U. Feige and M. Goemans. “Approximating the value of two power
proof systems, with applications to MAX 2SAT and MAX DICUT”. In:
Proceedings Third Israel Symposium on the Theory of Computing and
Systems. 1995, pp. 182–189. doi: 10.1109/istcs.1995.377033.

[18] U. Feige and L. Lovász. “Two-prover one-round proof systems”. In:
Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing - STOC ’92. 1992. doi: 10.1145/129712.129783.

[19] Z. Fu and S. Malik. “On Solving the Partial MAX-SAT Problem”.
In: Lecture Notes in Computer Science. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pp. 252–265. doi: 10.1007/
11814948_25.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1979. isbn: 0716710447.

[21] M. Garey, D. Johnson, and L. Stockmeyer. “Some Simplified Np-
Complete Graph Problems”. In: Theoretical Computer Science 1.3
(1976), pp. 237–267. doi: 10.1016/0304-3975(76)90059-1.

48

https://doi.org/10.1006/jcss.1998.1612
https://doi.org/10.1006/jcss.1998.1612
https://doi.org/10.1109/tcad.2010.2061270
https://doi.org/10.1109/tcad.2010.2061270
http://hackage.haskell.org/package/containers-0.5.7.1
http://hackage.haskell.org/package/containers-0.5.7.1
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-41192-7_2
https://doi.org/10.1109/istcs.1995.377033
https://doi.org/10.1145/129712.129783
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/11814948_25
https://doi.org/10.1016/0304-3975(76)90059-1

REFERENCES REFERENCES

[22] S. Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-6.6 (1984), pp. 721–
741. doi: 10.1109/tpami.1984.4767596.

[23] F. Glover, E. Taillard, and E. Taillard. “A user’s guide to tabu search”.
In: Annals of Operations Research 41.1 (1993), pp. 1–28. issn: 1572-9338.
doi: 10.1007/BF02078647.

[24] M. X. Goemans and D. P. Williamson. “Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming”. In: Journal of the ACM 42.6 (1995), pp. 1115–1145.
doi: 10.1145/227683.227684.

[25] M. X. Goemans and D. P. Williamson. “New 3
4
-Approximation Al-

gorithms for the Maximum Satisfiability Problem”. In: SIAM Jour-
nal on Discrete Mathematics 7.4 (1994), pp. 656–666. doi: 10.1137/
s0895480192243516.

[26] B. Hajek. “Cooling Schedules for Optimal Annealing”. In: Mathematics
of Operations Research 13.2 (1988), pp. 311–329. doi: 10.1287/moor.
13.2.311.

[27] J. H̊astad. “Some Optimal Inapproximability Results”. In: Journal of
the ACM 48.4 (2001), pp. 798–859. doi: 10.1145/502090.502098.

[28] W. K. Hastings. “Monte Carlo Sampling Methods Using Markov Chains
and Their Applications”. In: Biometrika 57.1 (1970), pp. 97–109. doi:
10.1093/biomet/57.1.97.

[29] L. Ingber. “Very Fast Simulated Re-Annealing”. In: Mathematical and
Computer Modelling 12.8 (1989), pp. 967–973. doi: 10.1016/0895-
7177(89)90202-1.

[30] D. S. Johnson. “Approximation Algorithms for Combinatorial Prob-
lems”. In: Journal of Computer and System Sciences 9.3 (1974), pp. 256–
278. doi: 10.1016/s0022-0000(74)80044-9.

[31] H. Karloff and U. Zwick. “A 7/8-approximation algorithm for MAX
3SAT?” In: Proceedings 38th Annual Symposium on Foundations of
Computer Science. 1997, pp. 406–415. doi: 10 . 1109 / sfcs . 1997 .

646129.

[32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization By
Simulated Annealing”. In: Science 220.4598 (1983), pp. 671–680. doi:
10.1126/science.220.4598.671.

49

https://doi.org/10.1109/tpami.1984.4767596
https://doi.org/10.1007/BF02078647
https://doi.org/10.1145/227683.227684
https://doi.org/10.1137/s0895480192243516
https://doi.org/10.1137/s0895480192243516
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1145/502090.502098
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1016/0895-7177(89)90202-1
https://doi.org/10.1016/0895-7177(89)90202-1
https://doi.org/10.1016/s0022-0000(74)80044-9
https://doi.org/10.1109/sfcs.1997.646129
https://doi.org/10.1109/sfcs.1997.646129
https://doi.org/10.1126/science.220.4598.671

REFERENCES REFERENCES

[33] C. M. Li, F. Manyà, and J. Planes. “Exploiting Unit Propagation to
Compute Lower Bounds in Branch and Bound Max-SAT Solvers”. In:
Principles and Practice of Constraint Programming - CP 2005. Ed.
by P. van Beek. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 403–414. isbn: 978-3-540-32050-0.

[34] P.-C. Lin and S. P. Khatri. “Application of Max-Sat-Based Atpg To
Optimal Cancer Therapy Design”. In: BMC Genomics 13.Suppl 6
(2012), S5. doi: 10.1186/1471-2164-13-s6-s5.

[35] J. Marques-Silva and J. Planes. “On Using Unsatisfiability for Solving
Maximum Satisfiability”. In: CoRR (2007). arXiv: 0712.1097 [cs.AI].

[36] R. Martins et al. “Incremental Cardinality Constraints for MaxSAT”.
In: Lecture Notes in Computer Science. Lecture Notes in Computer
Science. Springer International Publishing, 2014, pp. 531–548. doi:
10.1007/978-3-319-10428-7_39.

[37] N. Metropolis et al. “Equation of State Calculations By Fast Computing
Machines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–
1092. doi: 10.1063/1.1699114.

[38] A. Morgado, C. Dodaro, and J. Marques-Silva. “Core-Guided MaxSAT
with Soft Cardinality Constraints”. In: Principles and Practice of Con-
straint Programming. Ed. by B. O’Sullivan. Cham: Springer Interna-
tional Publishing, 2014, pp. 564–573. isbn: 978-3-319-10428-7.

[39] C. Papadimitriou. Computational Complexity. Theoretical computer
science. Addison-Wesley, 1994. isbn: 9780201530827.

[40] M. Poloczek. “Bounds on Greedy Algorithms for MAX SAT”. In: Algo-
rithms - ESA 2011. Algorithms - ESA 2011. Springer Berlin Heidelberg,
2011, pp. 37–48. doi: 10.1007/978-3-642-23719-5_4.

[41] M. Poloczek and G. Schnitger. “Randomized Variants of Johnson’s
Algorithm for MAX SAT”. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms. Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, 2011, pp. 656–663.
doi: 10.1137/1.9781611973082.51.

[42] M. Poloczek and D. P. Williamson. “An Experimental Evaluation of Fast
Approximation Algorithms for the Maximum Satisfiability Problem”. In:
Experimental Algorithms: 15th International Symposium, SEA 2016, St.
Petersburg, Russia, June 5-8, 2016, Proceedings. Ed. by A. V. Goldberg
and A. S. Kulikov. Cham: Springer International Publishing, 2016,

50

https://doi.org/10.1186/1471-2164-13-s6-s5
http://arxiv.org/abs/0712.1097
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1063/1.1699114
https://doi.org/10.1007/978-3-642-23719-5_4
https://doi.org/10.1137/1.9781611973082.51

REFERENCES REFERENCES

pp. 246–261. isbn: 978-3-319-38851-9. doi: 10.1007/978- 3- 319-

38851-9_17.

[43] M. Poloczek, D. P. Williamson, and A. van Zuylen. “On Some Recent
Approximation Algorithms for MAX SAT”. In: LATIN 2014: Theoretical
Informatics: 11th Latin American Symposium, Montevideo, Uruguay,
March 31–April 4, 2014. Proceedings. Ed. by A. Pardo and A. Viola.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 598–609. isbn:
978-3-642-54423-1. doi: 10.1007/978-3-642-54423-1_52.

[44] M. Poloczek et al. “Greedy Algorithms for the Maximum Satisfiability
Problem: Simple Algorithms and Inapproximability Bounds”. In: SIAM
Journal on Computing 46.3 (2017), pp. 1029–1061. doi: 10.1137/

15m1053369.

[45] W. Spears. “Simulated annealing for hard satisfiability problems”. In:
Cliques, Coloring, and Satisfiability. Cliques, Coloring, and Satisfiability.
American Mathematical Society, 1996, pp. 533–557. doi: 10.1090/
dimacs/026/26.

[46] Theory and Applications of Satisfiability Testing – SAT 2017. Lecture
Notes in Computer Science. Springer International Publishing, 2017.
doi: 10.1007/978-3-319-66263-3.

[47] I. Wegener. Complexity Theory. Springer-Verlag, 2005. doi: 10.1007/3-
540-27477-4.

[48] D. P. Williamson and D. B. Shmoys. The Design of Approximation
Algorithms. 1st. New York, NY, USA: Cambridge University Press, 2011.
isbn: 0521195276, 9780521195270.

[49] M. Yannakakis. “On the Approximation of Maximum Satisfiability”. In:
Journal of Algorithms 17.3 (1994), pp. 475–502. doi: 10.1006/jagm.
1994.1045.

[50] Y. Zhang et al. “Protein Interaction Inference as a MAX-SAT Problem”.
In: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Workshops. 2005. doi: 10.1109/
cvpr.2005.515.

51

https://doi.org/10.1007/978-3-319-38851-9_17
https://doi.org/10.1007/978-3-319-38851-9_17
https://doi.org/10.1007/978-3-642-54423-1_52
https://doi.org/10.1137/15m1053369
https://doi.org/10.1137/15m1053369
https://doi.org/10.1090/dimacs/026/26
https://doi.org/10.1090/dimacs/026/26
https://doi.org/10.1007/978-3-319-66263-3
https://doi.org/10.1007/3-540-27477-4
https://doi.org/10.1007/3-540-27477-4
https://doi.org/10.1006/jagm.1994.1045
https://doi.org/10.1006/jagm.1994.1045
https://doi.org/10.1109/cvpr.2005.515
https://doi.org/10.1109/cvpr.2005.515

A RESULTS PER CATEGORY

A Results per Category

cat annealing greedy greedy-s slack n

1 abrame-habet/max2sat/120v 0.832 0.819 0.819 0.766 45
2 abrame-habet/max2sat/140v 0.844 0.830 0.830 0.774 45
3 abrame-habet/max2sat/160v 0.852 0.838 0.838 0.778 45
4 abrame-habet/max2sat/180v 0.865 0.849 0.849 0.789 44
5 abrame-habet/max2sat/200v 0.882 0.864 0.864 0.799 49
6 abrame-habet/max3sat/110v 0.972 0.954 0.952 0.909 50
7 abrame-habet/max3sat/70v 0.948 0.935 0.934 0.896 45
8 abrame-habet/max3sat/90v 0.959 0.943 0.940 0.902 49
9 highgirth/3sat 0.991 0.960 0.954 0.915 50

10 highgirth/4sat 0.995 0.982 0.978 0.955 32

Table 11: Mean performance ratios for ms random

cat annealing greedy greedy-s slack n

1 bipartite/maxcut-140-630-0.7 0.862 0.837 0.837 0.780 50
2 bipartite/maxcut-140-630-0.8 0.863 0.836 0.836 0.781 50
3 maxcut/abrame-habet/v140 0.842 0.820 0.820 0.774 45
4 maxcut/abrame-habet/v160 0.849 0.824 0.824 0.776 45
5 maxcut/abrame-habet/v180 0.856 0.832 0.832 0.778 45
6 maxcut/abrame-habet/v200 0.863 0.838 0.838 0.781 45
7 maxcut/abrame-habet/v220 0.868 0.840 0.840 0.787 45
8 maxcut/dimacs-mod 0.802 0.793 0.793 0.767 62
9 maxcut/spinglass 0.894 0.863 0.863 0.776 5

10 set-covering/scpclr 0.981 0.972 0.934 0.934 4
11 set-covering/scpcyc 0.873 0.849 0.776 0.788 6

Table 12: Mean performance ratios for ms crafted

cat annealing greedy greedy-s slack n

1 circuit-debugging-problems 0.810 0.977 0.976 0.913 3
2 sean-safarpour 0.828 0.978 0.980 0.916 52

Table 13: Mean performance ratios for ms industrial

52

A RESULTS PER CATEGORY

cat annealing greedy greedy-s slack n

1 aes-key-recovery 0.988 0.999 0.999 0.971 35
2 aes 0.953 0.982 0.985 0.985 7
3 atcoss-mesat 0.874 0.994 0.992 0.977 18
4 atcoss-sugar 0.913 0.986 0.988 0.955 19
5 bcp-fir 0.956 0.875 0.876 0.967 32
6 bcp-hipp 0.998 0.998 0.998 0.997 35
7 bcp-msp 0.943 0.931 0.924 0.910 35
8 bcp-mtg 0.986 0.975 0.974 0.901 30
9 bcp-syn 0.928 0.872 0.854 0.853 35

10 circuit-debugging 0.810 0.977 0.976 0.913 3
11 circuit-trace 0.879 0.979 0.984 0.916 4
12 close-solutions 0.857 0.962 0.968 0.933 35
13 des 0.781 0.942 0.954 0.892 35
14 extension-enforcement 0.853 0.904 0.886 0.899 35
15 fault-diagnosis 0.768 0.995 0.995 0.956 35
16 frb 0.975 0.974 0.974 0.974 25
17 gen-hyper-tw 0.883 0.993 0.992 0.982 35
18 haplotype-assembly 0.900 0.875 0.875 0.900 6
19 hs-timetabling 0.891 0.942 0.943 0.926 2
20 job-shop 0.914 0.993 0.993 0.901 3
21 kbtree 0.789 0.784 0.788 0.770 24
22 maxclique 0.954 0.946 0.946 0.946 35
23 maxcut 0.821 0.811 0.811 0.774 30
24 maxone 0.922 0.902 0.896 0.860 25
25 mbd 0.974 0.961 0.962 0.917 35
26 min-fill 0.946 0.976 0.979 0.967 27
27 packup 0.977 0.966 0.966 0.953 35
28 pbo-mqc-nencdr 0.986 0.976 0.976 0.934 25
29 pbo-routing 0.989 0.985 0.986 0.910 15
30 protein-ins 0.998 1.000 1.000 1.000 12
31 reversi 0.976 0.995 0.994 0.941 35
32 scheduling 0.861 0.996 0.996 0.969 5
33 sean-safarpour 0.829 0.977 0.978 0.915 35
34 set-covering 0.916 0.898 0.839 0.848 10
35 tpr-multiple-path 0.887 0.991 0.990 0.909 35
36 treewidth-computation 0.968 0.999 1.000 0.944 33

Table 14: Mean performance ratios for mse17

53

	Introduction
	Thesis outline

	Preliminaries
	MAX-SAT variants
	Approximation algorithms

	Known approximation results for MAX-SAT
	A selection of algorithms
	Johnson's Greedy Algorithm
	A Simplified Variant
	Running time analysis

	Slack Algorithm
	Running time analysis

	Simulated Annealing
	Overview
	Convergence results
	Simulated Annealing for MAX-SAT
	Running time analysis

	Open-WBO
	Methods for solving MAX-SAT
	MSU3
	CNF Encoding

	Computational study
	Implementation details
	Simulated annealing
	Greedy and slack algorithm

	Test Environment
	Solver User Interface
	Dimacs-Format
	Machine Specification
	Batch system

	Benchmarks
	MAX-SAT Evaluation 2016
	MAX-SAT Evaluation 2017

	Results of the computational study
	MAX-SAT Evaluation 2016
	MAX-SAT Evaluation 2017

	Conclusion
	References
	Results per Category

