
Alexander Fuchs BSc

A neural network approach to Ni-Au nano-cluster modelling

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Technical Physics

submitted to

Graz University of Technology

A ss. Prof . Mag. phil. Dipl. - Ing. Dr. phil. Dr. techn. A ndreas Hau ser

Insitu te of E x perimental Phyics

 Diplom-Ingenieur

Supervisor

Graz, March 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Kurzfassung

Der Einsatz quantenchemischer Methoden zur Modellierung und Verifikation experimen-
teller Messungen in der Molekül- und Clusterphysik hat in den letzten Jahrzehnten stark
an Bedeutung dazugewonnen. Sie erweisen sich als wertvolles Instrument, um Erkenntnisse
über physikalische Zusammenhänge der Nanowelt zu gewinnen, welche anders nur schwer
greifbar wären. Trotz der stets steigenden Rechenleistung moderner Computer ist die
Größe der mittels ab initio-Methoden berechenbaren Systeme limitiert. Als Alternativen
bieten sich Näherungsverfahren auf der Basis von Kraftfeldern an, welche die Rechenzeit
zwar um ein Vielfaches verringern können, allerdings aber auch Einbußen bei der Genau-
igkeit der Simulation mit sich bringen.
Der von Behler und Parinello[1] vorgeschlagene Ansatz, Kraftfelder über neuronale Netz-
werke zu beschreiben, wurde bereits für einige Systeme erfolgreich umgesetzt. Er reduziert
einerseits die benötigte Rechenzeit gegenüber ab initio-Berechnungen, andererseits konnte
auch die Genauigkeit gegenüber herkömmlichen Kraftfeldansätzen gesteigert werden. Das
Hauptziel dieser Diplomarbeit war es, einen lauffähigen Programmcode für ein neuronales
Netzwerk nach der von Behler und Parinello vorgeschlagenen Struktur zu implementieren.
Das Programm wurde anschließend optimiert und an die Aufgabe der Simulation von Ni-
Au Nanopartikeln angepasst. Erste Ergebnisse für das bimetallische Ni-Au-System wurden
mit anderen Methoden verglichen und bewertet.

Abstract

The use of computational chemistry methods for the modelling of experiments and the
verification of measurements in molecular and cluster physics has gained popularity dur-
ing the past years. It has become a valuable tool for the understanding of the nano-world
and the underlying physical principles, which would be intangible otherwise. Despite the
constant rise in computational power, the feasible system size of ab initio methods is still
limited. To overcome this flaw, the introduction of approximations based on force fields
can reduce the computational effort significantly. However, this also introduces larger er-
rors to the simulation.
The ansatz proposed by Behler and Parinello[1] to describe force-fields via neuronal net-
works has been applied successfully to a variety of systems. Besides a large gain in eval-
uation speed compared to ab initio methods, it also outperforms conventional force-field
methods in terms of chemical accuracy. The main focus of this thesis was the imple-
mentation of a running neural network code based on the structure proposed by Behler
and Parinello. The program was further optimised and adapted for the simulation of Ni-
Au nanoparticles. First results for the bimetallic Ni-Au-system were compared to other
methods.

Acknowledgements

First and foremost I would like to thank my supervisor Ass.Prof. Mag. Dipl.-Ing. DDr.
Andreas W. Hauser for his ongoing support and the opportunity to write this thesis. To-
gether with him and my colleagues Ralf and Johannes I could gain deeper insights into
this novel and interesting topic.

I also would like to thank the FWF Austria who made this thesis possible through the
“Heterogeneous catalysis on metallic nanoparticles” project.

Last but not least I would also like to express my deep gratitude to my friends and family
who supported me throughout my whole university career.

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Target . 1

1.3. Structure . 2

1.4. Common Abbreviations . 2

2. Theoretical background 3
2.1. Quantum-Chemistry . 3

2.2. Describing a system . 3

2.3. Hartree-Fock . 5

2.3.1. Born-Oppenheimer approximation 5

2.3.2. Hartree-Fock equations . 7

2.4. Density-Functional-Theory . 9

2.4.1. Kohn-Sham equations . 9

2.4.2. Exchange-Correlation Functionals 10

2.4.3. Local Density Approximation . 10

2.4.4. Gradient Corrected Methods . 11

2.4.5. Plane Wave Basis Functions . 11

2.4.6. Pseudopotentials . 12

2.5. Force field methods for metal clusters . 12

2.5.1. Pairwise potentials . 13

2.5.2. Many body potentials . 13

2.5.3. Modified embedded atom model . 13

2.5.4. Second moment approximation models 14

2.6. Artificial Neuronal Networks . 15

2.6.1. General Introduction . 15

2.6.2. Activation functions . 16

2.6.3. Error function . 17

2.6.4. Regularization . 18

2.6.5. Training . 21

2.6.6. Behler-Type Networks . 23

2.7. Symmetry functions . 24

2.7.1. Behler-Parinello symmetry functions 25

3. Modelling of Metallic Nano Clusters 29
3.1. Python Framework . 29

3.2. Implementation . 29

3.2.1. Main . 29

3.2.2. Descriptors . 30

i

Contents

3.2.3. Data generation . 31
3.2.4. Types . 31
3.2.5. Optimization . 32
3.2.6. MD-Simulation . 33

3.3. NN Structure . 34
3.3.1. Single composition system . 34
3.3.2. Multiple system sizes . 35
3.3.3. Data generation . 36

4. The Ni-Au system 37
4.1. Ni-Au Metal Clusters . 37
4.2. NN for Ni-Au-Cluster . 37
4.3. Training data . 37
4.4. Investigations . 38

4.4.1. Structure . 38
4.4.2. Symmetry functions . 39
4.4.3. Optimizer . 39
4.4.4. Learning rate . 40
4.4.5. Error function . 40
4.4.6. Activation functions . 43
4.4.7. Comparison of the error for different methods 49
4.4.8. Prediction of relative energies . 51

5. Conclusion and Outlook 53

A. Appendix 55
Sample input file for Quantum Espresso . 56

References 58

ii

List of Figures

2.1. Domains of dynamical equations. 4

2.2. Morse potential for different α. 13

2.3. Example for a neuronal network with N hidden layers 15

2.4. Sigmoid activation function. 16

2.5. Hyperbolic tangent activation function. 16

2.6. RELU activation function. 16

2.7. ELU activation function. 17

2.8. Histogram of the evolution of the unregularized weights. 18

2.9. Histogram of the evolution of the regularized weights. 18

2.10. System used to visualize the PES . 19

2.11. Key features of the second hidden layer. 19

2.12. Key features of the third hidden layer. 20

2.13. Forward (blue) and backward (orange) step visualization. 21

2.14. Example error plot indicating the optimal stopping point.[2] 22

2.15. Atomic neural networks as proposed by Behler and Parinello.[1] 24

2.16. Absorbance of the receptors of the human eye as a function of wavelength.[3] 25

2.17. The cosine cut-off function G1 as a function of the inter-atomic distance r
in Å for different cutoff radii Rc. 26

2.18. Examples for the tanh cut-off function G1. 26

2.19. G2 functions as a function of the inter-atomic distance r in Å. 27

2.20. G5 functions as a function of the inter-atomic angle φ. 28

3.1. Class structure of the descriptors sub-module. 30

3.2. Class structure of the data generation sub-module. 31

3.3. Class structure of the types sub-module. 32

3.4. Class structure of the optimize sub-module. 32

3.5. Class structure of the md utils sub-module. 33

3.6. The network structure for a Ni2Au2 system visualized in TensorBoard. The
arrows are indicating how the tensors are combined during a forward step. . 34

3.7. Network structure for eight different system composition visualized in Ten-
sorBoard. 35

4.1. Pyramid-shaped network structure. 38

4.2. Error as a function of time for different network structures. 38

4.3. Radial dependence of the used symmetry functions. 39

4.4. Quadratic error as a function of the training steps. 41

4.5. Adaptive error as a function of the training steps. 41

4.6. Quadratic error as a function of the training steps. 42

4.7. Adaptive error as a function of the training steps. 42

iii

List of Figures

4.8. Comparison between the errors for the different network architectures trained
on energies as a function of the training steps (f = 0.85). 44

4.9. Comparison between the errors for the different network architectures trained
on energies for the first 800 training steps (f = 0.00). 44

4.10. Comparison between the errors for the different network architectures trained
on energies for the last 25000 training steps (f = 0.85). 45

4.11. Comparison between the errors for the different network architectures trained
on energies and forces as a function of the training steps (f = 0.85). 46

4.12. Comparison between the errors for the different network architectures trained
on energies and forces for the first 150 training steps (f = 0.5). 46

4.13. Comparison between the errors for the different network architectures trained
on energies and forces for the last 5000 training steps (f = 0.85). 47

4.14. Cut through the PES of the Ni2Au system for the different runs. 48
4.15. Comparison between the energies predicted by the MEAM, and the calcu-

lated DFT data. 49
4.16. Comparison between the energies predicted by the SMATB model, and the

calculated DFT data. 49
4.17. Comparison between the energies predicted by the NN trained on energies,

and the calculated DFT data. 50
4.18. Comparison between the energies predicted by the NN trained on energies

and forces, and the calculated DFT data. 50
4.19. Evaluation of the relative energies of different geometries for a neural net-

work being trained on energies. 51
4.20. Evaluation of the relative energies of different geometries for a neural net-

work being trained on energies and forces. 52

iv

List of Tables

4.1. Parameters of the used radial symmetry functions. 39
4.2. Comparison between the quadratic and the adaptive error function w.r.t.

the energy root mean square error ERMSE in meV for lr = 0.001. 41
4.3. Comparison between the quadratic and the adaptive error function with

respect to the energy root mean square error ERMSE in meV for lr = 1e−4. . 42
4.4. Different network architectures. 43
4.5. Comparison of the energy root mean square error ERMSE in meV for the

different network architectures trained on energies. 45
4.6. Comparison of the energy root mean square error ERMSE in meV for the

different network architectures trained on energies and forces. 47
4.7. Fitted parameters for the SMATB model. 50
4.8. Comparison between SMATB, DFT and the NN relative energy results, for

the NN being trained on energies. 51
4.9. Comparison between SMATB, DFT and the NN relative energy results, for

the NN being trained on energies and forces. 52

v

1. Introduction

Neuronal networks have become a valuable tool across a very large spectrum of disciplines.
Their flexible functional form makes them also applicable to represent potential energy
surfaces of molecules and other atomic compounds. This thesis will manly focus on the
use of neural networks for predicting energies of metal cluster systems.

1.1. Motivation

Simulation of atomic and molecular processes has become a valuable tool for the prediction,
verification and understanding of experimental results. Traditional approaches such as
force-field based or ab initio methods have a large accuracy versus cost trade-off and can
therefore only be applied to a limited field of problems. The force-field approach offers fast
simulation of large scale systems, but for example fails to describe the making and breaking
of bonds between the atoms. On the other side, the ab initio methods such as Hartree-
Fock and Density Functional Theory are very accurate at describing molecules, small
clusters and periodic systems, but are computationally rather expensive and it is difficult
to achieve convergence for large metallic systems. The flexible and simple functional form
of the neuronal networks offers a good compromise between accuracy and evaluation time
of the model and should give a good representation of the system. The method still relies
on training data produced by traditional ab initio methods. Therefore, the training data
should be cheap in production, but also representative for the system under study.

1.2. Target

The target of this thesis is to develop a suitable neuronal network and a complementing
framework which will then be applied to quantum chemistry problems and be compared
to traditional methods and other neuronal network approaches. The main focus of this
thesis lies on metal-cluster systems; in particular, on the Ni-Au system. During the thesis
the following questions will be addressed:

• Force-Fields: Can the PES of metal clusters be represented by neuronal networks?

• Quantum Mechanical Interactions: Can quantum mechanical interactions be ap-
proximated by a neuronal network?

• Extrapolation capability: Are systems which are larger than those contained in the
training set sufficiently well described by the neuronal net?

• Outlook on further improvements: How could the method be further improved? Is
it possible to reduce the amount of training data without loosing accuracy?

1

1. Introduction

1.3. Structure

Chapter 2 provides a short introduction into quantum-chemistry. The methods used for
data generation will be explained. Furthermore, a general introduction about neuronal
nets and the most common used neuronal net approaches for quantum chemistry will be
discussed.
In Chapter 3 a detailed structure of the neuronal network and the Python framework
will be presented. The most important methods and functionalities will be described and
explained.
Chapter 4 contains details for the Ni-Au system. The model and the data generation for
the Ni-Au cluster system will be discussed. Results of the method will be presented and
compared to other methods.
In Chapter 5 this thesis will discuss the results of the used method and also give an outlook
on further improvements.

1.4. Common Abbreviations

Abbreviation Meaning

DFT Density Functional Theory

HF Hartree-Fock method

PES Potential Energy Surface

NN Neuronal Network

FNN Feed Forward Neural Network

ANN Atomic Neural Network

2

2. Theoretical background

2.1. Quantum-Chemistry

The following sections 2.1 -2.4 follow the book of F. Jensen entitled Introduction to Com-
putational Chemistry.1 The latter can be understood as the attempt to study chemical
relevant processes by solving the underlying many-body problem containing electrons and
nuclei with computational methods. The properties of molecular systems are dependent
on the types of atoms involved, their number of electrons and the overall geometric ar-
rangement. For a given system, quantum chemistry therefore attempts to calculate various
properties such as:

• Equilibrium geometries for the system
• Relative energies of geometries
• Properties of a system (Dipole moment, polarizablility, etc.)
• Transition rates from one into another geometry
• Dynamic behaviour of the system over time
• Interaction of different atoms and molecules

2.2. Describing a system

To describe a sytem one needs four fundamental features:

• The system - What are the particles and where are they?
• Starting conditions - What are the particles starting conditions concerning

position and velocity?
• Interaction - What is the mathematical form of the forces

acting between the particles?
• Dynamics equation - How can the time evolution of the

systems be described mathematically?

The interactions in a molecular system are determined by the underlying potential (V).
The forces (F) on particles contained in that system are the result of a gradient in the
potential at the position of the atom.

F = −∇V. (2.1)

For interactions on atomic level the only relevant interaction is the electromagnetic inter-
action. In most cases, the simple form of the Coulomb potential is sufficient:

VCoulomb(rij) =
qiqj
rij

. (2.2)

1See reference 4, Chapter 1, pages 3-10.

3

2. Theoretical background

In the picture of QED (Quantum Electro Dynamics) the Coulomb interaction is the zeroth-
order term of the potential. For calculations of higher accuracy, higher order terms are
are included to account for other effects such as electron-electron interactions.

Velec(r12) =
1

r12

[
1− 1

2

(
v1 · v2 +

(v1 · r12) + (v2 · r12)

r2
12

)]
, (2.3)

with vi being the velocity vector of particle i.

Figure 2.1.: Domains of dynamical equations.

The correct description of a system is dependent on its mass and the velocity of its particles.
Figure 2.1 illustrates the domains of dynamic equations. For slowly moving heavy particles
Newtonian mechanics applies (see 2.36), but as the velocity increases, relativistic effects
become more important and one has to switch to relativistic mechanics and account for
the relativistic mass (see 2.5).

F =
dp

dt
= m

dv

dt
= ma, (2.4)

m =
m0√

1− v2

c2

. (2.5)

The same applies to light particles. At slow speeds the Schrödinger equation applies very
well(see eq.: 2.6 to 2.8), but it neglects relativistic effects which can become of relevance

4

2.3. Hartree-Fock

for electrons close to the nuclei. Therefore, the Dirac-equation has to be introduced.
In the non-relativistic case the Schrödinger equation applies,

HΨ = i
∂Ψ

∂t
, (2.6)

with H being the Hamiltonian operator

HSchrödinger = T + V, (2.7)

V being the potential and the kinetic energy

T =
p2

2m
= − 1

2m
∆. (2.8)

In the case of a relativistic description, the Hamiltonian has the form

HDirac = (c · α · p+ β ·m · c2) + V, (2.9)

with α and β being 4x4 matrices representing the relativistic time and the 3 space dimen-
sions.
For a many-particle system, the Hamiltonian has to include the motion of all nuclei and
electrons and their interactions with each other:

H = −
N∑
i=1

1

2
∆2
i −

M∑
a=1

1

2Ma
∆2
a −

N∑
i=1

M∑
a=1

Za
ria

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
a=1

∑
b>a

ZaZb
Rab

. (2.10)

2.3. Hartree-Fock

Hartree-Fock2 (HF) is a method for solving the time-independent Schrödinger equation
for electrons in a given nuclear arrangement.

HΨ = EΨ (2.11)

It is a mean field theory method relying on the variational principle and has to be solved
iteratively.

2.3.1. Born-Oppenheimer approximation

An important simplification for solving the Schrödinger equation is the Born-Oppenheimer
approximation, which assumes that the motion of the electrons is much faster than the
motion of the nuclei. Therefore, the coupling between the nuclei and the electronic motion
is neglected. At first the terms of the Hamiltonian 2.10 get restructured:

Htot = Tn +He +Hmp,

He = Te + Vne + Vee + Vnn.

2See reference 4, Chapter 3, pages 80-92.

5

2. Theoretical background

Here He is the electronic Hamiltonian and Hmp is the mass-polarization Hamiltonian,

Hmp = − 1

2Mtot

(
Nelec∑
i

∇i

)2

. (2.12)

With Mtot the total mass of all nuclei.
Ψtot can be expanded in the complete set of electronic functions with the expansion coef-
ficients being functions of the nuclear coordinates,

Ψtot(R, r) =
∞∑
i=1

Ψni(R)Ψi(R, r). (2.13)

Now He only depends on the nuclear positions, but not their momenta. Equation 2.13
inserted in 2.3 yields:

∞∑
i=1

(Tn +He +Hmp)Ψni(R)Ψi(R, r) = Etot

∞∑
i=1

Ψni(R)Ψi(R, r). (2.14)

By considering that He and Hmp only act on the electronic part of the wave function,
and using the fact that Ψi is an exact solution of the electronic Schrödinger equation, one
arrives at the expression

∞∑
i=1

Ψi(∇2
nΨni) + 2(∇nΨi)(∇nΨni) + Ψni(∇2

nΨi)

+ ΨniEiΨi + ΨniHmpΨi = Etot

∞∑
i=1

ΨniΨi.

Using the orthonormality of Ψi and multiplying by Ψ∗j from the left we arrive at:

∇2
nΨnj + EjΨnj +

∞∑
i=1

2 〈Ψj | ∇n |Ψi〉 (∇nΨni)

+ 〈Ψj | ∇2 |Ψi〉Ψni + 〈Ψj |Hmp |Ψi〉Ψni = EtotΨnj .

In the adiabatic expansion the wave function is restricted to a single electronic surface,
resulting in the neglection of all the coupling terms:

(∇2
n + Ej + 〈Ψj | ∇2

n |Ψj〉+ 〈Ψj |Hmp |Ψj〉)Ψnj = EtotΨnj .

After neglecting the mass-polarization and reintroducing the kinetic energy operator one
arrives at:

(Tn + Ej(R) + U(R))Ψnj(R) = EtotΨnj(R).

In the Born-Oppenheimer approximation the diagonal correction U(R) is neglected, re-
sulting in

(Tn + Ej(R))Ψnj(R) = EtotΨnj(R). (2.15)

6

2.3. Hartree-Fock

Hence, in the Born-Oppenheimer picture the atoms move on a potential energy surface
(PES) with their energy only depending on R and the kinetic energy.

When describing many-electron systems the total wave function has to be anti-symmetric,
i.e. an anti-symmetrized product of one electron orbitals. A convenient way to create such
a wave function is a by writing it as a Slater determinant:

ΦSD =
1√
N

∣∣∣∣∣∣∣∣
Φ1(1) Φ2(1) . . . ΦN (1)
Φ1(2) Φ2(2) . . . ΦN (2)
. .
Φ1(N) Φ2(N) . . . ΦN (N)

∣∣∣∣∣∣∣∣ ; 〈Φi| |Φj〉 = δij . (2.16)

2.3.2. Hartree-Fock equations

After evaluating all the terms in the many-body Hamiltonian 2.39, and considering per-
mutations between particles, one arrives at following expression for the energy,

E =

Nelec∑
i=1

hi +
1

2

Nelec∑
i=1

Nelec∑
j=1

(Jij −Kij) + Vnn, (2.17)

with

Vnn =

Nnuclei∑
a

Nnuclei∑
b>a

ZaZb
|Ra −Rb|

,

hi = −1

2
∇2
i −

Nnuclei∑
a

Za
|Ra − ri|

.

Coulomb integrals, denoted as Jij , represent the classical repulsion between two electrons.
Kij are the exchange integrals which have no classical equivalent. The target is to de-
termine the set of molecular orbitals (MOs) that minimizes the energy, with the MOs
remaining orthogonal and normalized. Such a constrained optimization can be done via
Lagrange multipliers. The condition for the optimization is that the Lagrange function is
stationary with respect to an orbital variation,

δL = δE −
Nelec∑
ij

λij(〈δφi| |φj〉 − 〈φi| |δφj〉) = 0 (2.18)

The variation of the energy is given by

δE =

Nelec∑
i

(〈δφi|hi |φi〉+ 〈φi|hi |δφi〉) +

Nelec∑
ij

(〈δφi| Jj −Ki |φj〉+ 〈φi| Jj −Kj |δφj〉). (2.19)

Now we can introduce the Fock-operator Fi,

δE =

Nelec∑
i

(〈δφi|Fi |φi〉+ 〈φi|Fi |δφi〉), (2.20)

7

2. Theoretical background

an effective one-electron operator, describing the kinetic energy and the interaction with
all nuclei and all other electrons:

Fi = hi +

Nelec∑
j

(Jj −Kj). (2.21)

Inserting the Fock-operator in equation 2.18 gives

δL =

Nelec∑
i

〈δφi|Fi |φj〉 〈φi|Fi |δφj〉 −
Nelec∑
ij

λij(〈δφi| |φj〉+ 〈φi| |δφj〉 ,

using 〈φ| |δφ〉 = 〈δφ| |φ〉 and 〈φ|F |δφ〉 = 〈δφ|F |φ〉 one arrives at

Nelec∑
ij

(λij − λij∗) 〈δ| |φj〉 = 0.

This means that λij = λ∗ji and the Fock matrix is hermitian.
The final Hartree-Fock equations can be written as

Fφi =

Nelec∑
j

λijφj . (2.22)

By choosing a unitary transformation, the Lagrange multiplier matrix becomes diagonal
and the equations can be transformed into a standard Eigenvalue problem,

Fiφ
′
i = εφ′i. (2.23)

Finally, the total energy can be written as

E =

Nelec∑
i

εi −
1

2

Nelec∑
ij

(Jij −Kij) + Vnn. (2.24)

8

2.4. Density-Functional-Theory

2.4. Density-Functional-Theory

Density functional theory3 (DFT) is based on the proof by Hohenberg and Kohn that the
electronic ground state energy is solely determined by the electron density ρ. In principle
this means that the dimensionality of the problem can be reduced drastically from 4N to
(three spatial one spin dimension) to 4 variables. The only problem of DFT is that the
functional connecting the density ρ to the energy of the system is not know. Nevertheless,
there are approaches to solve the problem by estimating the energies for the kinetic and
exchange part of the total energy. The most common approach is to use Kohn-Sham
theory, which reintroduces molecular orbitals in order to get a better estimate of the
kinetic energy.

2.4.1. Kohn-Sham equations

The introduction of orbitals in DFT is the key behind today‘s use in computational chem-
istry, as orbital-free methods provide a insufficiency representation of the kinetic energy.
Therefore, the Kohn-Sham formalism splits the kinetic energy into two parts, one which
can be calculated exactly and a small correction term. The re-introduction of orbitals
increased the complexity of the problems again, from 4 to 4N variables and the electron
correlation term re-appears in the Hamiltonian:

Hλ = T + Vext(λ) + λ · Vee, (2.25)

with λ being a parameter proportional to the considered electron-electron interaction. For
a non-interacting system with λ = 0 the kinetic energy has the form

TS =

Nelec∑
i=1

〈φi| −
1

2
∇2 |φi〉 . (2.26)

By considering natural orbitals (NO) the exact kinetic energy can be calculated via

T [ρexact] =
∞∑
i=1

ni 〈φNO
i | −

1

2
∇2 |φNOi 〉 ,

ρexact =
∞∑
i=1

ni|φNO
j |2,

Nelec =
∞∑
i=1

ni.

(2.27)

Since the exact density matrix and therefore the natural orbitals are not known, the
approximate density can be written in terms of auxiliary one-electron functions.

ρapprox =

Nelec∑
i=1

|φi|2 (2.28)

3See reference 4, Chapter 6, pages 232-252.

9

2. Theoretical background

By absorbing the remaining kinetic energy into the exchange-correlation term the general
energy expression for DFT becomes

EDFT[ρ] = TS[ρ] + Ene[ρ] + J [ρ] + EXC[ρ]. (2.29)

By setting EDFT equal to the exact energy solution the correlation energy becomes

EXC[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ])− J [ρ]). (2.30)

2.4.2. Exchange-Correlation Functionals

The various DFT methods differ only in their choice for the exchange-correlation energy
functional. The explicit form of this potential has been elusive, except for special cases
such as a uniform electron gas. However, it is possible to derive a number of properties
such a functional would have to fulfil.

• The energy functional should be self-interaction-free.

• For a constant density, the uniform electron gas should be recovered.

• Rescaling the coordinates should result in a linear rescaling of the exchange energy:
ρλ(x, y, z) = λ3ρλ(λx, λy, λz) and EX[ρλ] = λEX[ρ].

• When scaling the electron coordinates by a factor larger than 1 the magnitude of
correlation should increase: −EC[ρλ] > −λEC[ρ];λ > 1.

• If the scaling parameter goes to infinity the correlation energy for a finite system
has to approach a negative constant.

• A lower bound for the exchange-correlation energy relative to the LDA exchange
energy is given by the Lieb-Oxford condition: EX[ρ] ≥ EXC[ρ] ≥ 2.273ELDA

X [ρ].

• The exchange potential should have an asymptotic
1

r
behaviour as r →∞.

• The correlation potential should have an asymptotic −1

2
αr−4 behaviour, where α is

the polarizability of the Nelec − 1 system.

2.4.3. Local Density Approximation

The Local Density Approximation assumes that the density is a slowly varying function.
The exchange energy for this approximation is given by the Dirac formula:

ELDA
X [ρ] = −CX

∫
ρ

4
3 (~r)d~r, (2.31)

with the energy density

εLDA
X = −CXρ

1
3 . (2.32)

When considering spin, the densities are split into separate densities ρα and ρβ for each
spin. This approximation is then called Local Spin Density Approximation (LSDA).

10

2.4. Density-Functional-Theory

2.4.4. Gradient Corrected Methods

An obvious improvement to LDA is to add a dependence on derivatives of the density as
well. The Generalized Gradient Approximation(GGA) methods include the first derivative
of the density with the additional constraints that the integration over Fermi and Coulomb
holes gives the required values of -1 and 0. A popular functional is the PBE (Perdew-
Burke-Ernzerhof) functional. The exchange energy can be written as an enhancement
factor multiplied onto the LSDA functional.

εPBE
X = εLDA

X F (x),

F (x) = 1 + a− a

1 + bx2
.

(2.33)

For the correlation part the correction is added to the LDA expression,

εPBE
C = εLDA

C +H(t),

H(t) = cf3
3 ln

[
1 + dt2

(
1 +At2

1 +At2 +A2t4

)]
,

A = d

[
exp

(
−
εLDA
C

cf3
3

)
− 1

]−1

,

f3(ζ) =
1

2

(1− ζ)
2
3 + (1− ζ)

2

3

 ,
t =

[
2(3π3)

1
3 f3

]−1
x.

(2.34)

The parameters a, b, c and d are not obtained by fitting to experimental data, but derived
from the conditions mentioned in section 2.4.2.

2.4.5. Plane Wave Basis Functions

When modelling infinite systems with periodic boundary conditions, the appropriate choice
of basis functions are functions with an infinite range, e.g. plane waves. Since the outer
valence electrons in metals behave like free electrons, the solutions of the Schrödinger
equation for free electrons can be used as a basis. The allowed values for ~k are given by
the unit cell translational vector ~t with m being an integer.

χk(~r) = ei
~k~r,

E =
1

2
|k|2,

~k~t = 2πm.

(2.35)

With ~k being related to the energy by equations 2.35 the basis set size is defined by an
energy cut-off. By using a very large unit cell, this basis set can also be used to describe
non-periodic systems. This so called supercell approach requires a large basis set size
to avoid self-interaction. This self-interaction stems from the periodicity of the system,
with the system interacting with the atoms of the neighbouring unit cells. To reduce the
kmax needed to describe the rapidly varying core electrons, this method is often used in
combination with pseudopotentials (Section 2.4.6).

11

2. Theoretical background

2.4.6. Pseudopotentials

For heavy elements with a large number of core electrons the number of basis functions
to describe the electronic structure becomes inconveniently large. At the same time, core
electrons do not participate in bonding and have only minimal influence on the valence
structure. Therefore, the core electrons are often modelled by pseudopotentials.4 This
can be seen analogous to semi-empirical methods yielding good results at a fraction of the
cost. The four major design steps for pseudopotentials are:

• Generate a suitable all-electron wave function for the atom using standard HF or
relativistic Dirac-HF methods.

• Exchange the valence orbitals by a set of node-less pseudo-orbitals.

• Exchange the core electrons by a parametrized potential using expansions of analyt-
ical functions, such as Bessel or Gaussian functions.

• Obtain the suitable parameters for the potential by a fitting process such that the
pseudo-orbitals solving the Schrödinger equation match the all-electron valence or-
bitals.

Projector Augmented Wave

The Projector Augmented Wave (PAW) methods also falls into the category of pseudopo-
tentials, although it formally retains all the electrons. The PAW wave function can be
written as a valence term expanded in a plane wave basis plus a contribution from the core
radius of each nucleus. The core contribution expanded as the difference of the all electron
density and the density from a node-less pseudo-atomic orbital density. This terms allows
the wave function within the core region to adapt to different environments.

2.5. Force field methods for metal clusters

Molecular Dynamics methods based on force fields only use the atom positions and veloc-
ities as input information. The electrons are not considered as individual particles, which
means that the bonding has to be included explicitly, rather than being calculated by
solving the electronic Schrödinger equation. No effects of quantum nature are included in
this type of calculations, which means the motion of the atoms is treated classically based
on Newton‘s equations of motion,

F = m · a = −∇φ. (2.36)

For time-independent problems, the calculation task reduces to finding energy minima
on the potential energy surface (PES). Therefore, a potential for the system has to be
constructed. The forces acting on the atoms are then calculated using formula 2.1. [4]

4See reference 4, Chapter 5, pages 222-225.

12

2.5. Force field methods for metal clusters

2.5.1. Pairwise potentials

Pairwise potentials describe the potential between two atoms. A simple example for a pair
potential is the Morse potential:

EMorse(r) = D(e−2α(r−r0)−2 ·e−α(r−r0)), (2.37)

Figure 2.2.: Morse potential
for different α.

with α =

√
k

2D
and D as the dissociation energy.[5]

Another often used example for a pairwise potential is the Lennard-Jones potential,[6]
which is computationally less expensive than potentials with an exponential dependence.

ELennard, Jones = 4ε
(r0

r12
− r0

r6

)
. (2.38)

2.5.2. Many body potentials

For many body problems the modelled potential mostly consists of a pairwise interaction
part and a three-body-interaction part. For a more precise description of the system higher
order interactions can be considered and included in the potential. The appropriate order
of truncation depends on the modelled material and the desired accuracy.[7]

ETOT =

N∑
i,j

E(rij) +

N∑
i,j,k

E(rijk) + ... (2.39)

2.5.3. Modified embedded atom model

The modified embedded atom model is a derivative of the embedded atom model. In this
model, one atom is embedded in the charge density produced by its surrounding atoms via
a properly chosen embedding function. The charge density itself is modelled by summing
over two particle interactions. The total energy can be written as

E =
∑
i

Fi(ρ̄i) +
1

2

∑
i 6=j

φij(Rij)

 , (2.40)

with φij being a pairwise interaction potential, ρi being the charge density and Fi the
embedding function for atom i. For the modified embedded atom model ρi is augmented
with additional angular dependencies.[8]

13

2. Theoretical background

Sutton-Chen potential An often used potential for describing atoms of metallic systems
is the Sutton-Chen potential, which is a variant of an embedded atom model. Here the

embedding function Fi is chosen to be the
√
q̄i, with qi =

∑N
j=1,i 6=j

(
a

rij

)m
and the

pairwise interaction is a modified Coulomb Term[9]:

ETOT = ε

1

2

N∑
i 6=j

(
a

rij

)n
− c

N∑
i=1

√√√√ N∑
j=1,i 6=j

(
a

rij

)m (2.41)

2.5.4. Second moment approximation models

Gupta potentials
The Gupta potential[10] is a second moment approximation to the tight binding model
which was developed for transition metals. It uses a band model to estimate the attractive
cohesive energy due to the d electrons. By neglecting the d − d overlap and the trans-
fer integrals for next nearest and higher neighbours and assuming exponentially varying
transfer integrals one arrives at the expression

Ed = A

∑
j

√
e−2q(Rj−R0)

 , (2.42)

with Rj − R0 being the displacement of atom j from its equilibrium position and q and
A a fit parameter for the potential. The countervailing short-range repulsive force arises
mainly from the s-electrons and is approximately of the form

Es = B
∑
j

ep(Rj−R0). (2.43)

By combining both terms and using B =
A√
N

q

p
one arrives at the complete Gupta-

potential,

ETOT = A

∑
j

√
e−2q(Rj−R0)

− A√
N

q

p

∑
j

ep(Rj−R0). (2.44)

SMATB with Born-Mayer type repulsion
The repulsive individual atomic contributions are composed of a Born-Mayer[11] type
term, while the band energy of the atom is appoximated by the square root of the local
density of states. With the fit parameters Aij , ζij , pij and q as well as the equilibrium
distance r0,ij and the inter-atomic distance rij the resulting potential can be written as:

ETOT =
∑
i

∑
j

Aije
−pij

(
rij
r0,ij

−1

)
−
∑
j

ζij

√
e
−2q

(
rij
r0,ij

−1

) . (2.45)

14

2.6. Artificial Neuronal Networks

2.6. Artificial Neuronal Networks

Artificial neuronal networks[12] have been an active field of research for the last decades,
but it is only due to the increase of computational power and the development of new
training methods that they are successfully applied to a variety of tasks, such as im-
age and pattern recognition,[13] multi dimensional regression,[14] and Markov decision
processes.[15] It can be shown that neural networks can be used as a universal appropria-
tor for any finite dimensional function.[16]

2.6.1. General Introduction

A neural network is structured into layers. It typically consists of an input layer and
several hidden layers, which are interconnected with each other, and the output layer (see
Figure 2.3). Each of these layers is built up from nodes called artificial neurons. In fully
connected networks each node is connected to every node in the previous layer and the
following layer.[12]

Figure 2.3.: Example for a neuronal network with N hidden layers

Usually each neuron is represented by a weight and a bias node plus a corresponding
activation function. Every layer collects the activations of the previous layer as its in-
put and propagates the resulting activation to the next layer until the output neuron
is reached. For a network with one hidden layer and an arbitrary number of nodes the
analytic expression can be written as:

yji = f ji (bji +

Nj−1∑
k=1

wj−1
k · yj−1

k), (2.46)

with yji as the activation of the ith node for the jth layer, wj−1
k the weight of the kth node

for the j − 1th layer, bji the bias of the ith node for the jth layer and f ji the activation
function for the ith node for the jth layer.
Since the network has an analytic form its derivative can also be determined analytically.

15

2. Theoretical background

2.6.2. Activation functions

Activation functions connect the nodes between the different layers of the network. Their
goal is to model the activation of a biological neuron. The earliest examples for activation
functions are sigmoid and hyperbolic tangent functions, which are manly used for wide-
networks, consisting mostly of only one hidden layer with a large number of nodes.[17]

f(x) =
1

1 + e−x
(2.47)

Figure 2.4.: Sigmoid activation function.

f(x) = tanh(x) (2.48)

Figure 2.5.: Hyperbolic tangent activation
function.

For more complex problems another activation function is found to be more efficient with
respect to learning speed. The rectified linear unit (RELU) function and other functions
derived from RELU are nowadays the most commonly used activation functions.[18]

f(x) =

{
0 if x ≤ 0
x if x > 0

(2.49)

Figure 2.6.: RELU activation function.

16

2.6. Artificial Neuronal Networks

The best performing derivative of the RELU function is the exponential linear unit (ELU)
activation function which has exponential behaviour for activations smaller or equal to
zero and a linear behaviour otherwise.[19]

f(x) =

{
ex − 1 if x ≤ 0
x if x > 0

(2.50)

Figure 2.7.: ELU activation function.

The activation function of the last layer depends on the type of error function used for the
training. For a regression task using a quadratic error function, or another function which
has a linear derivative, the standard choice would be a linear activation function for the
output layer.

2.6.3. Error function

The error function is minimized during the training. The type of error functions used
during the training depends on the task specifics. For a regression task normally the
quadratic error function is used. With t(i) being the target value and yw(x(i)) the prediction
value of the network as a function of the input x(i) of the ith sample in the batch. The
total error EQ is then calculated as the sum over all errors within the batch:

EQ =
m∑
i=1

(t(i) − yw(x(i))2. (2.51)

Due to the fact that, when fitting Gaussian distributed data, the maximum-likelihood fit,
containing the weights wML, minimizes the quadratic error, the quadratic error function
is used for regression tasks.[20]

p(t(i)|x(i), w, σ2) =
n∏
i=1

√
(2πσ2) · e

−
1

2σ2 (t(i)−yw(x(i)))
2

,

wML = arg max
w

m∑
i=1

log(p(t(i)|x(i), w, σ2)),

m∑
i=1

log(p(t(i)|x(i), w, σ2)) = −m · log(σ)− m

2
log(2π)−

m∑
i=1

(t(i) − yw(x(i)))2

2σ2
,

wML = arg min
w

m∑
i=1

(t(i) − yw(x(i)))2.

(2.52)

However, the quadratic behaviour can cause instabilities during the training process due
to outliers causing large errors and thus resulting in large changes for the weights.

17

2. Theoretical background

2.6.4. Regularization

Regularization is a method to prevent the NN from over-fitting the data.[21] The main
idea behind regularization is to include the value of the weights in the error function, so
during the optimization process not only the error, but also the weights get minimized,
leading to a better result for the optimization.

Figure 2.8.: Histogram of the evolution
of the unregularized weights.

Figure 2.9.: Histogram of the evolution
of the regularized weights.

This is due to the fact that only weights contributing a relevant information to the overall
model survive the optimization, while the other weights minimize their absolute value
(see Figures 2.8 and 2.9). By using this technique one gets a set of characteristic weights
representing the main building blocks of the model, which are often referred to as features.
These features can be seen analogous to eigenvector solutions to the trained task.
For the PES of any molecular system, these features can be visualized by choosing 2 degrees
of freedom of the system and evaluating the neuron outputs for the specific layer. For
simplicity, the chosen sample system will be a triatomic system with interatomic distances
r = r1 = r2 and an angle φ as coordinates, which enforces at least C2V symmetry, see
Figure 2.10.

18

2.6. Artificial Neuronal Networks

Figure 2.10.: System used to visualize the PES

This way one can visualize the features of a certain layer by removing the layers following
and analysing the output of said layer. The results can be see in Figures 2.11-2.12:

Figure 2.11.: Key features of the second hidden layer.

19

2. Theoretical background

Figure 2.12.: Key features of the third hidden layer.

From Figures 2.11 and 2.12 one can see that, as as you go deeper in the network, the
features get more complex and begin to look more similar to the final PES. In the third
layer the overall shape of the PES is more or less fixed. Therefore, the key features are
negatives of each other containing only slight variations.
The total error Etot is obtained by adding the regularization to the quadratic error EQ

(see equation 2.51). The most common types are the L1 regularization,

Etot = EQ + λ

k∑
i

|wi|, (2.53)

and the L2 regularization,

Etot = EQ + λ
k∑
i

(wi)
2, (2.54)

with λ being a small parameter weighting the regularization error.

20

2.6. Artificial Neuronal Networks

2.6.5. Training

A training cycle consists of a forward and a backward step. During the forward step
the inputs are presented to the network and propagated through each layer to produce
a prediction value. In the backward step, the prediction produced by the network and
the corresponding target value are inserted into the defined error function. The optimizer
then changes the weights of each node corresponding to its error contribution:

∆wijk = −dEtot

dwkij
, (2.55)

with wijk being the weight matrix in layer k and Etot the total error for the forward step.

Figure 2.13.: Forward (blue) and backward (orange) step visualization.

Data preparation

To avoid getting trapped in local minima the training data is split into batches. These
batches are all fed to the network and their corresponding errors are accumulated before
the back-propagation step is performed.
For validation purposes, the total data contains training and validation data. The valida-
tion data is never used during the training and allows to evaluate the performance of the
network concerning over-fitting and convergence. As shown in Figure 2.14, the optimal
training point of the network is defined by the minimum of the validation error. After
that, the training error and the validation error diverge and the network is over-fitting the
training data.

21

2. Theoretical background

Figure 2.14.: Example error plot indicating the optimal stopping point.[2]

Optimizers

The optimizer computes the gradients for the error and applies them to the variables
according to its type.
Gradient Descent Optimizer
The most basic optimizer is the gradient descent optimizer. It is a first order iterative
optimizer which modifies the weights proportional to the negative gradient. The step
width of the optimizer is defined by the so called learning rate η, which is a multiplicative
factor in the weight change ∆wkij :

∆wkij = −η · ∂Etot

∂wkij
. (2.56)

Adam Optimizer
The Adam algorithm[22] is a first-order gradient-based optimizer based on adaptive esti-
mates of lower-order moments. It is a very efficient and stable algorithm, which outper-
formed the standard optimizers such as gradient descent or AdaGrad on a variety of tasks.
The algorithm contains four predefined parameters: η the learning rate, β1, the update
parameter for the first moment mt, β2, the update parameter for the second moment vt,

22

2.6. Artificial Neuronal Networks

and ε which prevents the update from being too sensitive to small gradients.

∆wijk = −η · m̂t√
v̂t + ε

,

m̂t =
mt

1− βt1
,

v̂t =
vt

1− βt2
,

mt = β1mt−1 + (1− β1)
df

dwkij
,

vt = β2mt−1 + (1− β2)

(
df

dwkij

)2

.

(2.57)

Levenberg-Marquardt
The Levenberg-Marquardt[23],[24] algorithm is a second-order optimizer and has an im-
proved robustness compared to the Gauss-Newton algorithm.

∆wijk = (H + λ · diag[H])−1∂Etot

dwkij
, (2.58)

with H denoting the Hessian matrix and λ as a weighting parameter.

2.6.6. Behler-Type Networks

To create networks that are able to efficiently represent a molecular system they need to
fulfil certain criteria:

• The number of input nodes has to stay constant and independent of system size
or composition.

• The inputs need to represent a unique description of the molecular system.

In the model proposed by Behler and Parinello these requirements are met by de-constructing
the total energy as a sum of atomic energies. Each atomic energy is produced by an Atomic
Neural Net (ANN) represented by a feed forward network.

23

2. Theoretical background

Etot =

N∑
i

Ei (2.59)

Figure 2.15.: Atomic neural networks as proposed by Behler and Parinello.[1]

The surroundings of each atom are mapped via symmetry adapted functions and are then
fed to the network. Each atom type has a separate set of weights. This is necessary due
to the fact that the net knows the atom position and types of its neighbours, but has no
information about the atom it is representing.

2.7. Symmetry functions

Since Cartesian coordinates contain redundancies with respect to the rotational and the
translational degrees of freedom of the total symmetry, they are a bad choice for the
description of a molecular potential energy surface. A better choice could be internal
coordinates. However, due to the fact that the internal coordinates can only describe one
particular system, the NN would need to be trained on the target system, which would
restrict its application to small systems only.
A more suitable choice are symmetry functions that transform the Cartesian coordinates
into inputs for the NN fulfilling the following criteria:[25],[1]

• Rotation and translation invariance
• Invariance with respect to permutations within the same atomic species
• Unique description of the molecular system
• Constant number of inputs for the ANN

As a biological equivalent one could imagine the receptors of the eye, which serve as an
input for the brain and are responsible for specific frequency ranges. Only by the com-
bination of all three types of cones the human brain can distinguish between all different
colors of the visible spectrum.

24

2.7. Symmetry functions

Figure 2.16.: Absorbance of the receptors of the human eye as a function of wavelength.[3]

2.7.1. Behler-Parinello symmetry functions

Behler and Parinello proposed symmetry functions which are separated into a radial (two-
body) and an angular (three-body) interaction part.[1] To ensure that the potential goes
to zero at the cut-off distance each symmetry function is multiplied with a radial cut-off
function.

G1
ij = fc(Rij). (2.60)

One possible cut-off function is a cosine function which has zero value and slope at the
cut-off radius.

fc,cos(Rij) =

 0.5 ·
[
cos

(
πRij

Rc

)
+ 1

]
if Rij ≤ Rc

0 if Rij > Rc

(2.61)

25

2. Theoretical background

Figure 2.17.: The cosine cut-off function G1 as a function of the inter-atomic distance r in
Å for different cutoff radii Rc.

For the hyperbolic tangent, not only the first but also the second derivative goes to zero
at the cut-off radius.

fc,tanh(Rij) =

 tanh3

[
1− Rij

Rc

]
if Rij ≤ Rc

0 if Rij > Rc

(2.62)

Figure 2.18.: Examples for the tanh cut-off function G1.

26

2.7. Symmetry functions

Radial dependencies are captured by Gaussians with varying slopes and center positions:

G2
ij = fc(Rij) · e−η(Rij−Rs)2 . (2.63)

Figure 2.19.: G2 functions as a function of the inter-atomic distance r in Å.

To get a smoother decay of the cut-off, the G3
ij function can be used:

G3
ij = fc(Rij) ·

[∑
k

fc(Rik) +
∑
k

fc(Rjk)

]
. (2.64)

To explicitly include the rejective radial behaviour for three body interactions the G4
ij

functions can be included as well:

G4
ij = fc(Rij) · e−ηR

2
ij

[∑
k

fc(Rik) · e−ηR
2
ik +

∑
k

fc(Rjk) · e−ηR
2
jk

]
. (2.65)

To represent the angular dependencies of the system a modified cosine function can be
used. The G5

ij function also includes a radial dependency to emphasise the angular de-
pendence of inter-atomic interactions at short range:

G5
ij = fc(Rij) · e−ηR

2
ij · 21−ζ ·∑

Θkij

[
(1 + λ · cos Θkij)

ζ · e−η(R2
ik+R2

jk) · fc(Rik) · fc(Rjk)
]
. (2.66)

27

2. Theoretical background

Figure 2.20.: G5 functions as a function of the inter-atomic angle φ.

28

3. Modelling of Metallic Nano Clusters

Since the network structure of Behler (see Section 2.6.6) is different from most other
NN applications, many high level machine learning tools are not directly applicable to
this approach. Therefore, a program package needed to be built from low level machine
learning packages. The most versatile open source packages are offered for the Python
programming language, which is used in combination with C-library extensions for time-
critical calculations.

3.1. Python Framework

The code manly utilizes the program packages NumPy[26] and TensorFlow[27] for the
construction, training and evaluation of the networks. To enable the generic generation
of customized symmetry functions the SymPy[28] module is used. For optimization pur-
poses the scipy.optimize[29] library is utilized to minimize implementation efforts. In the
molecular dynamics simulation implementation large parts of the PyParticles[30] project
code could be recycled and has been adapted to fit our needs. For the extraction of the
training data from the files the Regular Expressions module re is utilized and the plots
are done using the Matplotlib[31] module.

3.2. Implementation

The module is structured into the main module and 6 different sub-modules containing
utilities for:

• Training
• Descriptors
• Data generation
• Network types
• Optimization
• MD-Simulation

The properties and methods of the sub-modules will be displayed in an UML diagram. In
an UML diagram each class is represented by a box with the first section being the class
name, the second section being the class properties and the third section displaying all
methods implemented within this class.

3.2.1. Main

The main module consists of utilities for loading, training, saving and evaluating the
networks. It accesses the sub-modules in types to build the networks and implements
all settings used during training. It initializes the variable environment, specifies the

29

3. Modelling of Metallic Nano Clusters

optimizing procedure and loads the specified symmetry functions from the descriptors

module.

3.2.2. Descriptors

The descriptors module is wrapping a C-library which represents the symmetry functions
used for the network. New descriptors can be added to the library by modifying the
corresponding text file customSymFuns.txt and recompiling the library via the setup.py
file. This module uses the SymPy library to implement the generic generation of derivatives
for any given symmetry function. The descriptors library can implement any type of two
and three body interaction with a similar structure as the Behler-Parinello symmetry
functions. This allows the assessment of different types of functions with respect to their
ability to map the chemical environment onto neural networks.

Figure 3.1.: Class structure of the descriptors sub-module.

30

3.2. Implementation

3.2.3. Data generation

The purpose of this sub-module is to parse the data from the ab initio or force-field
calculation output files into a suitable format. Currently, it is able to read Quantum-
Espresso and LAMMPS output files.

Figure 3.2.: Class structure of the data generation sub-module.

3.2.4. Types

The types sub-module contains the utilities for the construction of the molecular neural
networks and its force and energy tensors. It implements separate functions for serial and
parallel construction of the networks. Due to the special structure of these networks (see
Section 3.3) the training can only be done in a serial fashion. The evaluation, on the other
hand, can also be done with a parallel structure.

31

3. Modelling of Metallic Nano Clusters

Figure 3.3.: Class structure of the types sub-module.

3.2.5. Optimization

The optimize sub-module is a wrapper for the scipy.optimize library, providing access to
all optimization algorithms implemented in scipy.optimize.

Figure 3.4.: Class structure of the optimize sub-module.

32

3.2. Implementation

3.2.6. MD-Simulation

The md utils sub-module is a modified and reduced version of PyParticles. The NNForce

class wraps the force tensor evaluation from the main module to use it within the PyPar-
ticles particle set. Additionally this module implements a Berendsen[32] and a Langevin
thermostat,[33],[34] as well as a logger for the xyz-format.

Figure 3.5.: Class structure of the md utils sub-module.

33

3. Modelling of Metallic Nano Clusters

3.3. NN Structure

For the training of a Behler-Parinello type network one set of variables is necessary for
each atom type. Therefore, in the case of multiple atoms per type, the variable set needs
to be evaluated and trained for each atom of the corresponding type. This corresponds to
the situation of multiple geometries being presented to the same network.

3.3.1. Single composition system

For the situation of only one system size and composition the Tensorflow graph consists of
a single energy prediction tensor and the corresponding error function. Figure 3.6 shows
the structure of such a network for the Ni2Au2 system. The dark blue boxes represent
the inputs, the green boxes the activation functions, the light blue boxes the atomistic
energy predictions and the orange boxes the variables which are shared among the atomic
neural networks of one type. The grey and dark blue boxes at the top represent the energy
prediction and the target energy for the whole system, which then serve as an input for
the error function.

Figure 3.6.: The network structure for a Ni2Au2 system visualized in TensorBoard. The
arrows are indicating how the tensors are combined during a forward step.

34

3.3. NN Structure

3.3.2. Multiple system sizes

Figure 3.7 shows the network structure for multiple system sizes and compositions. Each
variant is represented by a separate energy prediction tensor and error function using the
same structure as for the single composition network. For training, all these error functions
are then summed up and fed to the optimizer. The trainable variables, represented as
orange boxes in Figure 3.6, are shared between all variants so each variant relies on the
same set of variables.

Figure 3.7.: Network structure for eight different system composition visualized
in TensorBoard.

35

3. Modelling of Metallic Nano Clusters

3.3.3. Data generation

For the generation of training data it is crucial to have a good coverage of the whole phase
space of a system. It is also vital to include different system sizes and compositions into
the training set. This can be achieved either via MD-simulations at high temperature,
by sampling techniques such as Meta-Dynamics simulations, or by a combination of both
techniques.

MD-simulations
The MD-simulations should be carried out well above the melting point of the material
of interest. This way, the potential will also be sampled in regions far off the equilibrium
structure.

Meta-Dynamics
Meta-Dynamics, as implemented in the program package PLUMED,[35] offers phase space
sampling with less redundancy. It is also based on an MD-simulation, but constantly
modifies the potential by giving a penalty for previously visited regions of the phase
space. Therefore, the MD-run is less likely to revisit the penalized regions and drives
the system into phase space regions a standard simulation would only reach at very high
temperatures. This is an effective method for a systematic sampling of a system. However,
for larger system the implementation of a Meta-Dynamics simulation becomes more and
more challenging and time consuming, and only for small systems this method will offer
a time benefit over MD-simulations.

36

4. The Ni-Au system

4.1. Ni-Au Metal Clusters

Due to their unique physical, optical and chemical properties bimetallic nano clusters are
an interesting new class of materials for a variety of applications.[36] Ni is a ferromagnetic
material, which could be used in medical applications such as drug delivery, DNA sepa-
ration or magnetic resonance imaging enhancement.[37],[38] However, pure particles of Ni
oxidise very easily due to their large surface to volume ratio, which reduces their mag-
netic moment. Therefore, bimetallic core-shell structures using Au as a coating for the Ni
core, could offer a solution to prevent this oxidation. Also, for applications as a catalyst,
mixed metallic nanoparticles offer interesting possibilities such as tunable reactivities,[39]
bifunctional activity[40] and additional stabilization of sensitive catalysts via a co-metal
partner.

4.2. NN for Ni-Au-Cluster

Since the simulation of Ni-Au clusters with ab initio methods is a time extensive and often
difficult task, the use of NN could widen the range of possible computer experiments.
Especially for applications in catalysis a faster method could enable simulations of surface
reactions on a large scale. However, a first test of our NN approach will be the correct
description of structural features of the pristine clusters.

4.3. Training data

The most time consuming and sensitive task when training a NN potential is the gen-
eration of training data. A choice of representative model systems is crucial. For our
training dataset we choose NixAu13−x and the NixAu55−x systems. All calculations for
the generation of the training data are carried out with Quantum Espresso,[41] using a
projector augmented wave ansatz (see Section 2.4.6) with the PBE[42] functional for the
exchange/correlation energy. The exact parametrisation can be looked up in the Appendix.

37

4. The Ni-Au system

4.4. Investigations

4.4.1. Structure

The feed forward network was designed with the basic concept of a pyramid-shaped struc-
ture for the hidden layers.[43] For the standard network, the input and the hidden layers
are connected via ELU activation functions and the output layer via a linear activation.

Figure 4.1.: Pyramid-shaped network structure.

The network size is determined empirically. A coarse hyper-parameter search was con-
ducted to find the optimal structure.

Figure 4.2.: Error as a function of time for different network structures.

While the 16-60-40-20-1 structure reaches the lowest error of all structures, it has a
comparable slow convergence behaviour. The 16-80-60-40-1 structure shows the fastest
and best overall error convergence. Therefore, all further investigations were carried out
using this network structure.

38

4.4. Investigations

4.4.2. Symmetry functions

For a better comparability with the Modified Embedden Atom Model (MEAM) and the
Second Moment Approximation to Tight Binding model (SMATB) only radial symme-
try functions are considered for the training. In this case all Gaussian functions are
centered at Rs = 0 Å and the slope η is varied as specified in Table 4.1. The cutoff-radius
Rc was set to be at 7 Å and the cutoff function was multiplied onto the Gaussian function
as visualized in Figure 4.3.

Table 4.1.: Parameters of the used radial
symmetry functions.

Nr. Rs /Å Rc /Å η /Å
−2

1 0.0 7.0 1.428

2 0.0 7.0 0.714

3 0.0 7.0 0.357

4 0.0 7.0 0.214

5 0.0 7.0 0.124

6 0.0 7.0 0.071

7 0.0 7.0 0.036

8 0.0 7.0 0.003

Figure 4.3.: Radial dependence of the used
symmetry functions.

4.4.3. Optimizer

For the optimization, the first order ADAM optimizer (see. 2.6.5) was selected using the
following standard parameters: β1 = 0.9, β2 = 0.999, ε = 10−8. This is due to the possi-
bility to perform batch training, which is not an option in other second-order optimizers
such as Levenberg-Marquardt or Kalman-Filter.[44] Without the use of batch-learning,
the optimizations are more likely to end up in local minima.[45] Second-order methods
also have the downside of limited network sizes, because of the need for a matrix inversion
during the optimization step.

39

4. The Ni-Au system

4.4.4. Learning rate

It is also advisable to let the learning rate decay as the training progresses. For this task
an exponential decay was chosen,

lrt+1 = lrt · k
t

t0 , (4.1)

with k being the decay rate and t0 as the decay step. The parameters chosen for the
training are k = 0.96, t0 = 500.

4.4.5. Error function

In general training data will be noisy, resulting in a Gaussian distribution for the data
around the exact solution µ with a standard deviation of σ. For our modelling we assume
that the ab initio energies represent the exact solution µ for our system, without having
any uncertainty for the data. Therefore, σ → 0 and the maximum-likelihood is not
defined, making the choice of error functions depending more strongly on other criteria
like robustness. For large errors, the steep gradient of the quadratic error makes the
training converge fast towards a better model parametrisation, but as the training error
approaches lower values, the absolute error function becomes more favourable because of
its robustness against outliers.[46] Therefore, the following error function was introduced,
which continuously transforms from a quadratic to an absolute error function in the range
of ∆E = |10−1 − 101| eV :

Etot =
1

2

Batchsize∑
i

(∆E)2 ·
(
σ(|∆E|)− 1

2

)
+ |∆E| ·

(
σ(|∆E|) +

1

2

)
, (4.2)

with σ denoting the sigmoid function (see 2.6.2). By modifying the function σ(|∆E|) to
σ(|∆E| · k + d) the transition can be adjusted to the specific problem.

40

4.4. Investigations

To compare the convergence behaviour of the networks for the quadratic and the adaptive
error function we train first with a Ni5Au5 dataset and equal parametrization with a
learning rate of lr = 0.001.

Figure 4.4.: Quadratic error as a function
of the training steps.

Figure 4.5.: Adaptive error as a function
of the training steps.

Table 4.2.: Comparison between the quadratic and the adaptive error function w.r.t. the
energy root mean square error ERMSE in meV for lr = 0.001.

ERMSE training / meV ERMSE validation /meV

Quadratic 261.49 281.79

Adaptive 4.51 4.85

Figure 4.4 shows that the quadratic error function suffers from large instabilities during
the training process, being the result of outliers in the training data. Outliers are far off the
predicted values and therefore produce large errors, which are enhanced by the quadratic
behaviour of the error function. Although Figure 4.5 also shows spikes produced by outliers
in the dataset, only the model using the quadratic error function is affected significantly,
resulting in a much larger energy root mean square error. The quadratic term is less
dominant in the adaptive error function, resulting in smaller weight changes during the
back-propagation and a smoother convergence behaviour.

41

4. The Ni-Au system

Using a smaller learning rate of lr = 1e−4, both error charts converge smoothly towards the
minimum. However, the adaptive error function reaches a significantly lower root mean
square error after the same number of training steps without over-fitting the training data
points.

Figure 4.6.: Quadratic error as a function
of the training steps.

Figure 4.7.: Adaptive error as a function
of the training steps.

Table 4.3.: Comparison between the quadratic and the adaptive error function with
respect to the energy root mean square error ERMSE in meV for lr = 1e−4.

ERMSE training / meV ERMSE validation /meV

Quadratic 11.85 11.71

Adaptive 4.13 4.96

By looking at the convergence behaviour of the training runs in Figures 4.6 - 4.7 , it can be
stated that the adaptive error function outperforms the standard quadratic error function
even for a smaller learning rate. This is an interesting finding, because neither of the error
plots show any major spikes. Nevertheless, the adaptive error function seems to be able to
further reduce the error, while the quadratic error function has almost converged after the
specified number of training steps. This might be a result of the not normally distributed
nature of our training data.

42

4.4. Investigations

4.4.6. Activation functions

To connect the input and the hidden layers the ELU (see 2.6.2) activation function is used.
It allows for an efficient training of deep neural networks and also provides a smooth energy
landscape for the model. For the output layer a linear activation is used in order to have an
unrestricted value range for the energy output. A series of tests revealed that the training
speed and the RMSE of the model can be improved significantly by exchanging one of
the ELU activation functions with a Morse potential-like activation function. By forcing
the network into this structure, we can assume that the input of the Morse layer has to
represent an adapted distance. The part of the network following the Morse layer then
post-processes the output to the fit the training potential. For the activation function all
parameters of the Morse potential are chosen to be one, yielding the function

f(x) = e−2(x−1) − 2e−(x−1). (4.3)

This physically motivated activation function also improves the asymptotic behaviour of
the potential for small inter-atomic distances and lowers the number of training points
needed in this critical section of the phase space. This way, we obtain a more robust
model, e.g. in combination with MD-simulations.

Comparison between different network architectures.
The training was performed for 4 different network architectures, with the Morse activation
function replacing the ELU activation function between different layers. By analysing the
convergence behaviour, the root mean square error, and the shape of the potential, the
overall performance of the variants will be assessed.

Table 4.4.: Different network architectures.

Run Nr.

1 Morse activation function between layer 1 and 2

2 Morse activation function between layer 2 and 3

3 Morse activation function between layer 3 and 4

4 Only ELU activation functions

43

4. The Ni-Au system

Training with energies
For visualization purposes, the error graphs were made using the smoothing filter of Ten-
sorBoard with the smoothing factor f . Figures 4.8 - 4.10 show that for the training on
energies only, run 3 performs well at the beginning of the training, but fails to reduce
the error below a certain threshold. The best overall performance was delivered in runs
1 and 2. Note that run 1 achieves the lowest ERMSE, but not the lowest error. This can
be a result of difficulties in the regularization for this configuration. In general, run 2
has a smoother decay of the error function and the best overall performance. All variants
performed better then the pure mathematical model using only ELU activation functions.

Figure 4.8.: Comparison between the errors for the different network architectures
trained on energies as a function of the training steps (f = 0.85).

Figure 4.9.: Comparison between the errors for the different network architectures trained
on energies for the first 800 training steps (f = 0.00).

44

4.4. Investigations

Figure 4.10.: Comparison between the errors for the different network architectures trained
on energies for the last 25000 training steps (f = 0.85).

Table 4.5.: Comparison of the energy root mean square error ERMSE in meV for the
different network architectures trained on energies.

Run Nr. ERMSE training /meV ERMSE validation /meV

1 6.87 6.51

2 7.57 7.37

3 10.61 10.57

4 11.99 12.76

45

4. The Ni-Au system

Training with energies and forces
By including gradients into the training the error converges much faster. As Figures 4.8 -
4.10 show, run number 1 again achieves the lowest ERMSE and run 2 the lowest error. From
the graph one can see that the error for run 1 is oscillating very strongly and therefore
the results may vary significantly depending on the number of steps used for training.

Figure 4.11.: Comparison between the errors for the different network architectures trained
on energies and forces as a function of the training steps (f = 0.85).

Figure 4.12.: Comparison between the errors for the different network architectures trained
on energies and forces for the first 150 training steps (f = 0.5).

46

4.4. Investigations

Figure 4.13.: Comparison between the errors for the different network architectures trained
on energies and forces for the last 5000 training steps (f = 0.85).

Table 4.6.: Comparison of the energy root mean square error ERMSE in meV for the
different network architectures trained on energies and forces.

Run Nr. ERMSE training /meV ERMSE validation /meV

1 5.33 5.39

2 7.06 6.88

3 8.79 8.63

4 11.88 11.75

47

4. The Ni-Au system

Comparision of the potential shapes for the Ni2Au system
For visualisation, the inter-atomic distance r = r1 = r2 and the angle φ between the atoms
are chosen, which enforces at least C2v symmetry in the triatomic system. The results are
summarized in Figure 2.10.

Figure 4.14.: Cut through the PES of the Ni2Au system for the different runs.

By looking at the PES for this simple system one can observe that the runs 1 and 2 are
able to reproduce the correct equilibrium distance as well as the exponential dependence
for small radii and angles. Interestingly, run 3 fails to get the correct shape of the PES.
This may be a result of the low remaining flexibility of the network after the Morse layer.
In run 4, the network manages to reproduce the PES close to the equilibrium distance,
but shows a non-physical behaviour for small angles. This is due to a lack of data points
in this region of the phase space.

48

4.4. Investigations

4.4.7. Comparison of the error for different methods

Modified Embedded Atom Model (MEAM)
The modified embedded atom model was evaluated with the LAMMPS[47],[48] program
package using the parameters as suggested by Baskes.[8]

Figure 4.15.: Comparison between the energies predicted by the MEAM, and the calcu-
lated DFT data.

Unsurprisingly, the MEAM fails for small cluster sizes. However, it also performs badly
for the largest clusters in the dataset consisting of 147 atoms.

Second Moment Approximation to Tight Binding (SMATB)
The SMATB model (see eq.2.45) was fitted to the Ni-Au data also used for the training
of the neural network (see Section 4.3).

Figure 4.16.: Comparison between the energies predicted by the SMATB model, and the
calculated DFT data.

49

4. The Ni-Au system

The used parameters can be found in Table 4.7.

Table 4.7.: Fitted parameters for the SMATB model.

Ni-Ni Ni-Au Au-Au

Aij /eV 0.20 0.20 0.24

ζij /eV 1.84 1.60 1.40

pij 9.94 9.93 9.78

qij 2.49 3.54 4.30

r0,ij /Å 2.49 2.69 2.88

Although this method manages to get a significantly lower error for the larger clusters
than the MEAM, it is still too inaccurate for smaller cluster sizes.

Neural network approach
The network consists of a 16-80-60-40-1 structure using ELU activation functions except
between layer two and three, where a Morse potential like function is used.

Figure 4.17.: Comparison between the en-
ergies predicted by the NN
trained on energies, and the cal-
culated DFT data.

Figure 4.18.: Comparison between the en-
ergies predicted by the NN
trained on energies and forces,
and the calculated DFT data.

The network trained solely on energies is able to reproduce the absolute energies for
the systems within the training dataset with a high accuracy and also has a comparable
error for the extrapolation to larger clusters (see Figure 4.17). By including forces to the
training the overall error rises for all cluster sizes. It has to be noted that due to memory
issues not all geometries were included in the training set, which results in a significantly
larger error for these geometries (see Figure 4.18).

50

4.4. Investigations

4.4.8. Prediction of relative energies

Having a comparable ERMSE for the NiAu146 clusters in the test set, the SMATB model
and the neural network approach are being compared in their ability to predict relative
energies. Seven NiAu146 icosahedra are selected (see Figure 4.19) for the assessment of
the reproduction quality of relative energies. Both methods, the SMATB and the neu-
ral network approach are evaluated for the seven geometries and the DFT energies are
calculated accordingly. Afterwards, the resulting energies relative to the global optimum
structure (Ni located in the center of the cluster) are calculated.

Neural network trained on energies
The relative energies EDFT, ESMATB and ENN are calculated with respect to the lowest
energy solution Ei,0 of the specific method.

Figure 4.19.: Evaluation of the relative energies of different geometries for a neural network
being trained on energies.

Table 4.8.: Comparison between SMATB, DFT and the NN relative energy results, for
the NN being trained on energies.

Geometry Nr. EDFT /eV ESMATB /eV ENN /eV

0 0.00 0.00 0.00

1 0.77 0.57 0.39

2 0.93 0.48 0.40

3 1.20 0.78 0.47

4 1.75 1.17 1.40

5 1.79 1.12 1.29

6 1.83 1.32 1.43

While both methods manage to predict the global optimum structure correctly, they also
fail to reproduce the correct energy ordering for the different geometries. Therefore, none
of the above methods is preferable over the other for this task.

51

4. The Ni-Au system

Neural network trained on energies and forces

Figure 4.20.: Evaluation of the relative energies of different geometries for a neural
network being trained on energies and forces.

Table 4.9.: Comparison between SMATB, DFT and the NN relative energy results, for the
NN being trained on energies and forces.

Geometry Nr. EDFT / eV ESMATB / eV ENN / eV

0 0.00 0.00 0.00

1 0.77 0.57 1.00

2 0.93 0.48 1.16

3 1.20 0.78 1.28

4 1.75 1.17 2.08

5 1.79 1.12 2.11

6 1.83 1.32 2.22

The inclusion of forces into the training improves the relative energies of the neural network
approach significantly. It reproduces the correct order for all geometries. Therefore, this
network seems applicable to geometry optimizations.

52

5. Conclusion and Outlook

The use of neural networks for the calculation of metallic nanoparticles has shown to be
a promising but also quite limited approach. The quality of the network is strongly de-
pendent on the used training data. Extensive amounts of ab inito calculations need to be
performed in a preliminary step, in order to cover sufficiently large regions of the phase
space. This reduces the calculation time benefit against pure ab initio methods for small
cluster sizes. However, the neural network method proved to be a valuable alternative to
other force field methods for the application on metal clusters by drastically reducing the
error with respect to the DFT calculations. In geometry optimizations, the neural network
potential could improve on the force field potentials as well. When trained on energies and
forces, it was able to reproduce the ab initio results qualitatively. This may also enable
the use in MD-calculations and geometry optimizations of large metallic clusters, where
the convergence of the DFT iteration is difficult to achieve.
Since the relative energy error using only radial symmetry function was low enough to
reproduce the expected energy ordering between the test geometries, angular interactions
do not seem to contribute significantly for the investigated Ni-Au system. Once the neural
network potential is trained and validated, the calculation time per geometry is mostly
dependent on the translation of Cartesian coordinates to symmetry function activations.
By utilizing only radial two-body interactions, the computational effort can be reduced
from N3 to N2, which is an significant improvement for larger clusters. To further improve
the efficiency of the translation from Cartesian coordinates into symmetry functions, the
number and parameters of the Gaussian functions could be optimized in advance to present
the data to the neural network in an optimal way. This could either be done by empirical
regression on the target system or by finding an analytic expression for the distribution of
symmetry functions based on a set of optimized parameters.
Additionally, a new error function was introduced to improve the convergence behaviour
during the training. The error function was shown to be less effected by outliers during
the training and reached a lower error on both the validation and the training dataset.
This new error function allows for larger learning rates and therefore shorter total training
times. In future investigations, the error function should be tested using other optimiz-
ers, including second order optimizers to verify the convergence improvements for these
methods. The general idea of making an adaptive error function can also be extended and
tested for other applications.
Furthermore, it was shown that, by including a Morse potential-like activation function
in one layer of the network, the convergence as well as the asymptotic behaviour of the
neural network potential could be improved significantly. This measure not only reduced
the error of the method, but also fixed the undefined and often non-physical behaviour
of the network in formerly unexplored parts of the phase space. It was shown that also
the position of the Morse-activation function within the network played an important role
in the networks convergence behaviour, with the most reliable results being achieved by

53

5. Conclusion and Outlook

placing the Morse-activation function between layer 2 and 3. Future investigations should
try to verify these improvements also for organic systems when three-body interactions
are included. Also, more complex activation functions can be thought of and tested to
force the neural network expression to be of a certain form and include further physically
meaningful information right from the start.
Finally, to ultimately test this method, measurable physical properties need to be cal-
culated and compared to experimental results. Using the molecular dynamics module, a
phase diagram could be constructed and diffusion processes could be modelled for selected
metal combinations and cluster sizes. Furthermore, in combination with other methods,
the potential could be used for transition state searches as for example in catalysis ap-
plications. Nevertheless, it has to be stated that the generation of training data is an
immensely time consuming task, which grows in complexity as the number of different el-
ements increases. Therefore, this approach seems to be currently limited to a very specific
class of computational chemistry problems.

54

A. Appendix

55

&CONTROL

 calculation = 'md',

 restart_mode = 'from_scratch',

 prefix = 'Ni6Au7_md_0',

 pseudo_dir = '/home/…',

 outdir = '/home/…',

 dt = 50,

 nstep = 500

/

&SYSTEM

 ibrav = 1,

 celldm(1) = 45

 nat = 13,

 ntyp = 2,

 ecutwfc = 30.D0,

 ecutrho = 300.D0,

 nosym = .true.,

 occupations='smearing', smearing='methfessel-paxton',degauss=0.01

/

&ELECTRONS

 conv_thr = 1.D-4,

 mixing_beta = 0.1D0,

 electron_maxstep = 400

/

&IONS

 ion_dynamics = 'verlet',

 ion_temperature ='berendsen'

 tempw = 2000.D0

 pot_extrapolation='second_order'

 wfc_extrapolation='second_order'

/

A. Appendix

Sample input file for Quantum Espresso

56

ATOMIC_SPECIES

Ni 58.69 Ni.pbe-n-kjpaw_psl.0.1.UPF

Au 197.00 Au.pbe-dn-kjpaw_psl.0.1.UPF

ATOMIC_POSITIONS {{angstrom}}

Ni 0.00000000000 0.00000000000 0.00000000000

Ni 0.00000000000 1.15660844666 1.87143177837

Ni 1.15660844666 1.87143177837 0.00000000000

Ni 1.87143177837 0.00000000000 1.15660844666

Ni -1.15660844666 1.87143177837 0.00000000000

Ni -1.87143177837 0.00000000000 1.15660844666

Au 0.00000000000 -1.15660844666 1.87143177837

Au -1.15660844666 -1.87143177837 0.00000000000

Au 1.15660844666 -1.87143177837 0.00000000000

Au 1.87143177837 0.00000000000 -1.15660844666

Au 0.00000000000 1.15660844666 -1.87143177837

Au -1.87143177837 0.00000000000 -1.15660844666

Au 0.00000000000 -1.15660844666 -1.87143177837

K_POINTS Gamma

57

Bibliography

[1] J. Behler and M. Parrinello, “Generalized neural-network representation of high-
dimensional potential-energy surfaces,” Phys. Rev. Lett., vol. 98, p. 146401, Apr 2007.

[2] T. Shaikhina and N. A. Khovanova, “Handling limited datasets with neural networks
in medical applications: A small-data approach,” Artificial Intelligence in Medicine,
vol. 75, pp. 51 – 63, 2017.

[3] O. College., Anatomy & physiology. Houston, TX: OpenStax CNX. Retrieved from
http://cnx.org/content/col11496/latest/, 2013.

[4] F. Jensen, Introduction to Computational Chemistry. John Wiley & Sons, 2006.

[5] P. M. Morse, “Diatomic molecules according to the wave mechanics. ii. vibrational
levels,” Phys. Rev., vol. 34, pp. 57–64, Jul 1929.

[6] J. E. Lennard-Jones, “Cohesion,” Proceedings of the Physical Society, vol. 43, no. 5,
p. 461, 1931.

[7] M. W. Finnis and J. E. Sinclair, “A simple empirical n-body potential for transition
metals,” Philosophical Magazine A, vol. 50, no. 1, pp. 45–55, 1984.

[8] M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impuri-
ties,” Phys. Rev. B, vol. 46, pp. 2727–2742, Aug 1992.

[9] A. P. Sutton and J. Chen, “Long-range finnissinclair potentials,” Philosophical Mag-
azine Letters, vol. 61, no. 3, pp. 139–146, 1990.

[10] R. P. Gupta, “Lattice relaxation at a metal surface,” Phys. Rev. B, vol. 23, pp. 6265–
6270, Jun 1981.

[11] M. Born and J. E. Mayer, “Zur Gittertheorie der Ionenkristalle,” Zeitschrift für
Physik, vol. 75, pp. 1–18, Jan 1932.

[12] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)
a review of applications in the atmospheric sciences,” Atmospheric Environment,
vol. 32, no. 14, pp. 2627 – 2636, 1998.

[13] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal of Electronic
Imaging, vol. 16, 2007.

[14] D. F. Specht, “A general regression neural network,” IEEE Transactions on Neural
Networks, vol. 2, pp. 568–576, Nov 1991.

59

Bibliography

[15] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learn-
ing,” in Machine Learning Proceedings 1994 (W. W. Cohen and H. Hirsh, eds.),
pp. 157 – 163, San Francisco (CA): Morgan Kaufmann, 1994.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359 – 366, 1989.

[17] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathemat-
ics of Control, Signals and Systems, vol. 2, pp. 303–314, Dec 1989.

[18] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th International Conference on International Con-
ference on Machine Learning, ICML’10, (USA), pp. 807–814, Omnipress, 2010.

[19] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” CoRR, vol. abs/1511.07289, 2015.

[20] J. Kiefer and J. Wolfowitz, “Consistency of the maximum likelihood estimator in
the presence of infinitely many incidental parameters,” The Annals of Mathematical
Statistics, vol. 27, no. 4, pp. 887–906, 1956.

[21] H. Adeli and M. Wu, “Regularization neural network for construction cost estima-
tion,” Journal of Construction Engineering and Management, vol. 124, no. 1, pp. 18–
24, 1998.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

[23] K. Levenberg, “A method for the solution of certain non-linear problems in least
squares.,” Q. Appl. Math., vol. 2, pp. 164–168, 1944.

[24] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parame-
ters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2,
pp. 431–441, 1963.

[25] J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neu-
ral network potentials,” The Journal of Chemical Physics, vol. 134, no. 7, p. 074106,
2011.

[26] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A structure for
efficient numerical computation,” Computing in Science Engineering, vol. 13, pp. 22–
30, March 2011.

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from tensorflow.org.

60

Bibliography

[28] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin, A. Ku-
mar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.
Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry,
A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Sco-
patz, “Sympy: symbolic computing in python,” PeerJ Computer Science, vol. 3,
p. e103, Jan. 2017.

[29] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for
Python,” 2001–. [Online; accessed 27.02.2018].

[30] S. R., “PyParticles: Open source scientific tools for Python,” 2012 –. [Online; accessed
27.2.2018].

[31] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[32] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,
“Molecular dynamics with coupling to an external bath,” The Journal of Chemical
Physics, vol. 81, no. 8, pp. 3684–3690, 1984.

[33] T. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-
component model for distortive phase transitions,” Phys. Rev. B, vol. 17, pp. 1302–
1322, Feb 1978.

[34] B. DNWEG and W. PAUL, “Brownian dynamics simulations without gaussian ran-
dom numbers,” International Journal of Modern Physics C, vol. 02, no. 03, pp. 817–
827, 1991.

[35] M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Dona-
dio, F. Marinelli, F. Pietrucci, R. Broglia, and M. Parrinello, “Plumed: A portable
plugin for free-energy calculations with molecular dynamics,” vol. 180, pp. 1961–1972,
10 2009.

[36] M. Schnedlitz, M. Lasserus, R. Meyer, D. Knez, F. Hofer, W. E. Ernst, and A. W.
Hauser, “Stability of coreshell nanoparticles for catalysis at elevated temperatures:
Structural inversion in the NiAu system observed at atomic resolution,” Chemistry
of Materials, vol. 30, no. 3, pp. 1113–1120, 2018.

[37] J. Gao, H. Gu, and B. Xu, “Multifunctional magnetic nanoparticles: design, synthesis,
and biomedical applications,” Accounts of chemical research, vol. 42, no. 8, pp. 1097–
1107, 2009.

[38] C. Sun, J. S. Lee, and M. Zhang, “Magnetic nanoparticles in MR imaging and drug
delivery,” Advanced drug delivery reviews, vol. 60, no. 11, pp. 1252–1265, 2008.

[39] S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, “Ru-Pt core-shell
nanoparticles for preferential oxidation of carbon monoxide in hydrogen,” Nat Mater,
vol. 7, pp. 333–338, 04 2008.

61

Bibliography

[40] D. C. Papageorgopoulos and F. A. de Bruijn, “Examining a potential fuel cell poison:
A voltammetry study of the influence of carbon dioxide on the hydrogen oxidation
capability of carbon-supported Pt and PtRu anodes,” Journal of The Electrochemical
Society, vol. 149, no. 2, pp. A140–A145, 2002.

[41] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fab-
ris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch, “Quantum espresso: a modular and open-source
software project for quantum simulations of materials,” Journal of Physics: Con-
densed Matter, vol. 21, no. 39, p. 395502, 2009.

[42] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct 1996.

[43] J. S. Smith, O. Isayev, and A. E. Roitberg, “Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost,” Chem. Sci., vol. 8,
pp. 3192–3203, 2017.

[44] M. Gastegger and P. Marquetand, “High-dimensional neural network potentials for
organic reactions and an improved training algorithm,” Journal of Chemical Theory
and Computation, vol. 11, no. 5, pp. 2187–2198, 2015. PMID: 26574419.

[45] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points - online stochastic
gradient for tensor decomposition,” CoRR, vol. abs/1503.02101, 2015.

[46] F. H. Thanoon, “Robust regression by least absolute deviations method,” Interna-
tional Journal of Statistics and Applications, Vol. 5 No. 3,pp. 109-112., 2015,.

[47] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal
of Computational Physics, vol. 117, no. 1, pp. 1 – 19, 1995.

[48] S. J. Plimpton and A. P. Thompson, “Computational aspects of many-body poten-
tials,” MRS Bulletin, vol. 37, no. 5, p. 513521, 2012.

[49] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt
algorithm,” IEEE Transactions on Neural Networks, vol. 5, pp. 989–993, Nov 1994.

[50] R. LeSar, Introduction to Computational Materials Science: Fundamentals to Appli-
cations. Cambridge University Press, 2013.

[51] B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim, “The modified embedded-atom
method interatomic potentials and recent progress in atomistic simulations,” Calphad,
vol. 34, no. 4, pp. 510 – 522, 2010.

[52] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application
to impurities, surfaces, and other defects in metals,” Phys. Rev. B, vol. 29, pp. 6443–
6453, Jun 1984.

62

