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abstract
This thesis deals with RF pulse optimization for chemical exchange saturation
transfer by optimal control.
Chemical exchange effects, which can arise from off-resonant RF irradiation, are
described by the Bloch-McConnell equation. An analytical and two numerical
solvers based on operator splitting are introduced and compared. A fast forward
approximate numerical solution is possible with high accuracy due to second or-
der convergence with respect to the time step together with exact solutions of the
subsystems. Due to the special form of the Bloch-McConnell equation, part of said
numerical solution can be described using fast rotation matrices. The accuracy of
the numerical solution method is shown in various numerical experiments.
For the optimization of RF pulses, a reasonable cost functional is modeled and ana-
lyzed regarding various aspects. Including physical limitations, an optimal control
problem is derived. For every suitable RF pulse, existence and uniqueness of a so-
lution of the Bloch-McConnell equation are shown. The corresponding adjoint
equation and linearized state equation are introduced and a connection between
them is established. The Fréchet differentiability of the control-to-state-operator is
derived. Finally, for the optimal control problem, first order necessary conditions
for optimality are derived. These form the basis for numerical optimization.
Numerical experiments are performed with a two pool model, where magneti-
zation exchange arises between a water proton pool and a solute proton pool.
Optimization runs are performed regarding various aspects. Different functionals
are compared. Since standard tracking turns out to be infeasible, a second dy-
namical system is added where the chemical exchange is turned off. A combined
L∞−tracking of both dynamical systems is proposed. It is reformulated with in-
equality constraints and solved approximately by penalization techniques. Since
sparsity of the RF pulse is important for the application, numerical optimization
results are presented both for given sparsity and sparse control. In postoptimal
simulation studies, the stability of input parameters, especially of the magnetiza-
tion exchange rates, is investigated. Another two pool problem is analyzed, which
allows for validation by phantom experiments on a 3T MR−hardware.

There is increasing interest in chemical exchange saturation transfer contrast,
as several metabolites have been reported to be detectable by this approach
in vivo, including amide protons in proteins, creatine, glutamate and glu-
cose. [24]
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zusammenfassung
Diese Arbeit befasst sich mit der RF Puls Optimierung für Sättigungsübertragung
durch chemischen Austausch mittels optimaler Steuerung.
Auswirkungen des chemischen Austausches auf die Magnetisierung der Proto-
nen im Wasser, welcher durch off-resonante RF Anregung entstehen kann, werden
durch die Bloch-McConnell Gleichung beschrieben. Ein analytischer und zwei nu-
merische Löser, basierend auf einem Operatorsplitting, werden eingeführt und ver-
glichen. Quadratisches konvergentes symmetrisches Splitting in Verbindung mit
exakter Lösung der Subsysteme erlaubt eine genaue und effiziente numerische
Lösung der Vorwärtsgleichung. Wegen der speziellen Form der Bloch-McConnell
Gleichung kann ein Teil der numerischen Lösung günstig mit Rotationsmatrizen
beschrieben werden. Die Genauigkeit der numerischen Löser wird durch verschie-
dene numerische Beispiele untermauert.
Für die Optimierung eines RF Pulses wird ein geeignetes Kostenfunktional mod-
elliert und unter verschiedenen Aspekten analysiert. Das Optimalsteuerungsprob-
lem wird aufgestellt unter Berücksichtigung der technischen Beschränkungen der
MR−Hardware. Für jeden geeigneten RF Puls wird die Existenz und Eindeutigkeit
einer Lösung der Bloch-McConnell Gleichung gezeigt. Die zugehörige adjungierte
Gleichung und die linearisierte Zustandsgleichung werden eingeführt und es wird
eine Verbindung zwischen diesen aufgebaut. Die Fréchet Differenzierbarkeit des
Steuerungs-Zustands-Operator wird gezeigt. Alles zusammen erlaubt schließlich die
notwendigen Optimalitätsbedingungen erster Ordnung herzuleiten. Diese bilden
die Basis für numerische Optimierung.
Numerische Experimente konzentrieren sich zunächst auf ein Beispiel mit zwei
Pools von Protonen, von Wasser und von einem darin gelösten Stoff. Verschiedene
Optimierungsstudien werden präsentiert. Zuerst wird das Kostenfunktional näher
untersucht. Ein sinnvoller Sollzustand wird hergeleitet. Da ein standard Track-
ing sich als nicht zielführend herausstellt, wird ein zweites dynamisches System
hinzugefügt, wobei der chemische Austausch auf Null gesetzt wird. Ein kom-
biniertes L∞−Tracking beider dynamischen Systeme ermöglicht das Design guter
RF Pulse für CEST . Nach Umformulierung mittels Ungleichungen kann es approx-
imativ über Penalisierung gelöst werden. Numerische Optimierungsergebnisse
werden präsentiert, auch mit Fokus auf dünn besetzte Steuerungen. Im Anschluss
an die Optimierung wird die Robustheit des optimierten RF Pulses bezüglich der
Input Parameter, im besonderen der Austauschraten, untersucht. Ein zweites zwei
Pool Modell wird untersucht, welches speziell für Phantom Messungen an einer
3T MR−Hardware definiert wurde.

Es besteht erhöhtes Interesse in Kontrasten durch chemischen Austausch und
Sättigungsübertragung, da einige Stoffwechselvorgänge durch diesen Ansatz
in vivo sichtbar werden, eingeschlossen Amid Protonen in Proteinen, Kreatin,
Glutamat und Glucose. [24]
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1 analytical and numerical solution of the bloch
and bloch-mcconnell equations

For the Bloch and Bloch-McConnell equations three solvers - an analytical one
and two fast numerical ones - are introduced. The analytical solvers are based
on eigenvalues and eigenvectors and yield exact solutions at the cost of an in-
creased runtime. However, in case of RF pulse optimization, the Bloch and the
Bloch-McConnell equations need to be simulated frequently. Therefore, two fast
numerical solvers are derived for the Bloch equation. One is based on an asym-
metric operator splitting and is first order accurate, while the other one is based
on a symmetric operator splitting and is second order accurate. The theory based
on the asymmetric solver is already used in the well known solver of Brian Har-
greaves, see [2]. Additional literature can be found in [8] and [9]. Afterwards, the
numerical solvers are extended to the Bloch-McConnell equation.

1.1 Bloch’s equation

The temporal evolution of the magnetization vector M in external fields can be
modeled by the Bloch equation. In 1946, the physicist Felix Bloch stated the as-
sumption, that individual nuclei in a sample can be described by a single vector
M, called the net magnetization. Joseph Lamor investigated, that an external field
B produces a "twisting force" on M resulting in its precession at frequency γB.
Bloch recognized that the signal quickly decays to zero, where the decay time is
based on the studied material. Said signal decay arises from the interaction of the
individual spins with each other and the environment. Therefore, M returns to its
initial position parallel to the static magnetic field B with magnitude M0 by re-
leasing energy to its environment. This process is called relaxation. The relaxation
times T1 and T2 reflect the regrowth of longitudinal magnetization Mz on the one
hand, and the decay of transverse magnetization (Mx,My) on the other hand.
During returning to the equilibrium after a 90◦ pulse, the magnetization vector M
performs as

Mx(t) =M0e
−t/T2 cos(ωt),

My(t) =M0e
−t/T2 sin(ωt),

Mz(t) =M0(1− e
−t/T1),

which describes a spiraling precession around B with frequency ω = γB. ω is
called Lamor frequency and γ gyromagnetic ratio. Out of it, Bloch described this
phenomena by the Bloch equation

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2
,

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2
,

dMz(t)

dt
= γ(M(t)×B(t))z −

Mz(t) −M0

T1
.
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This is a macroscopic description which is a sufficient description for a large num-
ber of spins. They describe the motion of the sum of all nuclear magnetic moment
in the sample. A microscopic description is governed by laws of quantum mechan-
ics.

The full time dependent Bloch equation with relaxation in the rotating frame is
therefore given as

dM
dt (t, z) =


− 1
T2

γGs(t)z −γB1,y(t)

−γGs(t)z − 1
T2

γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1

M(t, z) +

 0

0
M0
T1

 ,

M(0, z) =M0(z),

(1)

where M(t, z) = (Mx(t, z),My(t, z),Mz(t, z))T is the magnetization vector, γ the
gyromagnetic ratio, M0 ∈ R3 the initial magnetization, M0 the equilibrium mag-
netization and T1, T2 are the relaxation times. B1(t) = (B1,x(t),B1,y(t))T is the radio
frequency (RF) pulse and Gs(t) is the slice-selective gradient, see [11].
For fixed position z, (1) is a linear ordinary differential equation system with non-
constant coefficients. Therefore, a full analytical solution is not possible in general,
e.g. [15]. It is possible for the special case of free induction decay, where the RF pulse
B1 is zero. Furthermore, for piecewise constant RF pulse B1 and gradient Gs, (1)
is per time step a linear system with constant coefficients. Therefore, an analytic
solution with eigenvalues and eigenvectors is possible, e.g. [15]. Hence, the time
interval [0, T ] is uniformly discretized with step length τ using N steps

0 = t0 < t1 < · · · < tN = T

leading to piecewise constant matrices A1, · · ·AN, where

An =

 − 1
T2

γGs(tn−1)z −γB1,y(tn−1)

−γGs(tn−1)z − 1
T2

γB1,x(tn−1)

γB1,y(tn−1) −γB1,x(tn−1) − 1
T1

 .

Now the piecewise constant Bloch equation in each time step [tn−1, tn] reads{
dM
dt = An ·M+ b̃ on (0, τ),

M(0, z) = Mn−1(z),
(2)

where Mn−1 is given from the previous time step with M0 being the initial condi-
tion. We set Mn(z) =M(τ, z).

1.1.1 Analytical solution based on eigenvalues and eigenvectors

Below an analytical solution for the piecewise constant Bloch equation (2) is de-
signed based on eigenvalues and eigenvectors. Calculating the characteristic poly-
nomial of the system matrix An leads to the problem

χ(λ) = λ3 + pλ2 + qλ+ r
!
= 0 (3)
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for some coefficients p, q, r ∈ R. The three roots of (3) are λ1, λ2 and λ3, where
λi ∈ C/R is a root if and only if the complex conjugate λi is a root. Now the so-
lution behavior of (2) can be characterized using the properties of geometric and
algebraic multiplicity of the eigenvalues. For doing so, the definition of general-
ized eigenvectors shall be introduced.

Definition 1. [15] v ∈ Cn\{0} is called generalized eigenvector of order l ∈ N corre-
sponding to the eigenvalue λ of the matrix A ∈ Cn×n, if

(A− λI)lv = 0 and (A− λI)l−1v 6= 0,

where I is the identity matrix in Cn×n.

With this definition, the general solution of the homogenous equation

dMh

dt
= AnMh (4)

is now given for different cases.
Case 1: λ1 has algebraic multiplicity 3. Therefore λ1 = λ2 = λ3 ∈ R.

Case 1a: λ1 has geometric multiplicity 1. Let v1 be the eigenvector corre-
sponding to λ1. The corresponding generalized eigenvectors of order 2 and
3 are u2 and u3. Now the general solution of the homogenous equation (4)
is given as

Mh(t) = c1e
λ1tv1 + c2e

λ1t(u2 + t(An − λ1I)u2)

+ c3e
λ1t(u3 + t(An − λ1I)u3 +

t2

2
(An − λ1I)

2u3).

with constants c1, c2, c3 in R.

Case 1b: λ1 has geometric multiplicity 2. Let v1 and v2 the corresponding
linearly independent eigenvectors. Let u2 be the generalized eigenvector of
order 2. Then the homogenous solution is

Mh(t) = c1e
λ1tv1 + c2e

λ1tv2 + c3e
λ1t(u2 + t(An − λ1I)u2).

Case 1c: λ1 has geometric multiplicity 3. Therefore we can choose three lin-
early independent eigenvectors v1, v2 and v3 and the homogenous solution
is given as

Mh(t) = c1e
λ1tv1 + c2e

λ1tv2 + c3e
λ1tv3.

Case 2: λ1 has algebraic multiplicity 1 and λ2 6= λ1 has algebraic multiplicity 2, i.e.
λ2 = λ3 ∈ R.

Case 2a: λ2 has geometric multiplicity 1. Let v1 the be eigenvector corre-
sponding to λ1 and v2 the one corresponding to λ2. Let the generalized
eigenvector of order 2 associated with λ2 be u2. Now the homogenous so-
lution is

Mh(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ2t(u2 + t(An − λ2I)u2).
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Case 2b: λ1 has geometric multiplicity 1 with eigenvector v1 and λ2 has geo-
metric multiplicity 2 with linearly independent eigenvectors v2 and v3 which
leads to

Mh(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ2tv3.

Case 3: Three different eigenvalues λ1, λ2 and λ3. Therefore, the geometric multi-
plicity of each eigenvalue is 1.

Case 3a: The eigenvalues are real, which means that the corresponding eigen-
vectors v1, v2 and v3 are real as well and the homogenous solution is

Mh(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3.

Case 3b: λ1 is real, but λ2 is not, i.e. λ2,3 = α± iβ with corresponding eigen-
vectors v1 and v2,3 = a± ib. Here the homogenous solution is

Mh(t) = c1v1e
λ1t+c2e

αt (cos(βt) · a− sin(βt) · b)
+c3e

αt (sin(βt) · a+ cos(βt) · b) .

In all cases, the particular solution Mp(t) of (2) is given as Mp(t) = −A−1
n b̃ and

therefore the full solution reads

M(t) =Mh(t) +Mp(t).

The constants c1, c2 and c3 shall be calculated out of the initial condition

M(0) = Mn−1.

1.1.2 Numerical solution based on operator splitting

The idea of operator splitting methods is to decompose the problem into simpler
subproblems and solve them individually using specific solvers. In this thesis,
an asymmetric and a symmetric operator splitting scheme are used. Therefore,
the Bloch matrix An in each time step and for fixed position z is decomposed
additively into

An = Rn +C,

where

Rn =

 0 γGs(tn−1)z −γB1,y(tn−1)

−γGs(tn−1)z 0 γB1,x(tn−1)

γB1,y(tn−1) −γB1,x(tn−1) 0


describes the rotation and

C =

− 1
T2

− 1
T2

− 1
T1


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the relaxation effects. Note that C does not depend on the time t. Now an asym-
metric operator splitting scheme is defined as

dMrot

dt
= Rn ·Mrot, Mrot(0) =M

n−1, (5a)

dMrel

dt
= C ·Mrel + b̃, Mrel(0) =Mrot (τ) , (5b)

where Mn is defined as

Mn =Mrel(τ).

In contrast, a symmetric operator splitting scheme is defined as

dMrot,1

dt
= Rn ·Mrot,1, Mrot,1(0) =M

n−1, (6a)

dMrel

dt
= C ·Mrel + b̃, Mrel(0) =Mrot,1

(
1

2
τ

)
, (6b)

dMrot,2

dt
= Rn ·Mrot,2, Mrot,2(0) =Mrel(τ), (6c)

where Mn is given as

Mn =Mrot,2(τ).

The three rotation parts (5a), (6a) and (6c) can be solved easily using rotation
matrices Dn,asy and Dn,sy, see [7] and [5], so that

Mrot = Dn,asy ·Mrot(0),
Mrot,1 = Dn,sy ·Mrot,1(0),
Mrot,2 = Dn,sy ·Mrot,2(0).

The rotation matrices D underly the following definition.

Definition 2 (Rotation Matrices). [5] The rotation by an angle α about an axis in
the mathematical positive sense in the direction of n = (n1,n2,n3) with |n| = 1 is
given as

D(α,n) =

(
n21(1− cosα) + cosα n1n2(1− cosα) −n3 sinα n1n3(1− cosα) +n2 sinα

n1n2(1− cosα) +n3 sinα n22(1− cosα) + cosα n32(1− cosα) −n1 sinα
n1n3(1− cosα) −n2 sinα n2n3(1− cosα) +n1 sinα n23(1− cosα) + cosα

)
.

Since C is a diagonal matrix, equations (5b) and (6b) can be solved as

Mrel = exp(Cτ)(Mrel(0) − b̃) + b̃

where

exp(Cτ) =

exp(− 1
T2
τ)

exp(− 1
T2
τ)

exp(− 1
T1
τ)

 .
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1.2 Bloch-McConnell’s equation

Suppose you have two proton pools A and B. For each pool, magnetization can
be described individually via the Bloch equation, each of them having individual
relaxation times, equilibrium magnetization and initial magnetization. Through
various physical processes, the individual Bloch equations are coupled and the
two pools can exchange magnetization with rates kA,B and kB,A, respectively, see
Figure 1. This exchange can be modeled by adding exchange rates to the Bloch
equation.

PoolA PoolB

kA,B

kB,A

Figure 1: Magnetization exchange between pool A and pool B.

Expanding the Bloch equation (1) with magnetization transfer terms for a water
proton pool w and two solute proton pools s1 and s2 yields the Bloch-McConnell
equation {

dM
dt (t, z) = A(t, z) ·M(t, z) + b̃,
M(0, z) =M0(z).

(7)

Therein the system matrix A(t, z) is given as a block matrix

A(t, z) =

A11(t, z) ks1,wI ks2,wI

kw,s1I A22(t, z) ks2,s1I

kw,s2I ks1,s2I A33(t, z)

 (8)

where I ∈ R3×3 is the identity matrix. The submatrices A11(t, z), A22(t, z) and
A33(t, z) are given as

A11(t, z) =

− 1
T2,w

− kw,s1 − kw,s2 ∆ωw(z) −γB1,y(t)

−∆ωw(z) − 1
T2,w

− kw,s1 − kw,s2 γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1,w

− kw,s1 − kw,s2

 ,

A22(t, z) =

− 1
T2,s1

− ks1,w − ks1,s2 ∆ωs1(z) −γB1,y(t)

−∆ωs1(z) − 1
T2,s1

− ks1,w − ks1,s2 γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1,s1

− ks1,w − ks1,s2

 ,

A33(t, z) =

− 1
T2,s2

− ks2,w − ks2,s1 ∆ωs2(z) −γB1,y(t)

−∆ωs2(z) − 1
T2,s2

− ks2,w − ks2,s1 γB1,x(t)

γB1,y(t) −γB1,x(t) − 1
T1,s2

− ks2,w − ks2,s1

 .
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The inhomogeneity reads

b̃ =
(
0, 0, M0,w

T1,w
, 0, 0,

M0,s1
T1,s1

, 0, 0,
M0,s2
T1,s2

)T
. (9)

The Bloch-McConnell equation (7) describes the magnetization of three proton
pools during RF irradiation.

M = (Mx,w,My,w,Mz,w,Mx,s1 ,My,s1 ,Mz,s1 ,Mx,s2 ,My,s2 ,Mz,s2)
T

is the vector describing the magnetization of the water proton pool w and the
solute proton pools s1 and s2, respectively, γ the gyromagnetic ratio, M0 ∈ R9 the
initial magnetization, M0,w the equilibrium magnetization corresponding to pool
w and M0,si the one corresponding to pool si, i = 1, 2.
T1,w, T1,s1 and T1,s2 are the longitudinal relaxation times, T2,w, T2,s1 and T2,s2 are the
transversal relaxation times. B1(t) = (B1,x(t),B1,y(t))T is the radio frequency (RF)
pulse. The frequency offset of the RF irradiation relative to the Larmor frequency
of the water proton pool w and the solute proton pools si, i = 1, 2, is described
by ∆ωw(z) and ∆ωsi(z) and can be computed through z−ωw and z−ωsi . ki,j
are the magnetization transfer rates from pool i to pool j. The Bloch-McConnell
equation for another number of solute proton pools is defined analogously. In the
following, the theory and methods are derived for two solute proton pools s1 and
s2. It is obviously valid also for only one solute proton pool by simply setting all
the transfer rates corresponding to s2 to zero.
Again, for fixed z, the time interval [0, T ] is uniformly discretized using a step
length τ into

0 = t0 < t1 < · · · < tN = T

yielding piecewise constant matrices

A1, · · ·AN. (10)

1.2.1 Analytical solution based on diagonalization

A calculation of the analytical solution for Bloch-McConnell’s equation in time
step [tn−1, tn] would result in

M(t) = (Mn−1 +A−1
n b̃) exp(Ant) −A−1

n b̃.

The matrix exponential exp(Ant) can be calculated analytically only if the system
matrix An is diagonalizable, which is not the case here in general. A fast solution
can be found in using Matlab’s matrix exponential function expm, if An is not diag-
onalizable. However, this results in an approximate numerical solution which has
been shown to yield large errors in some examples, especially for small relaxation
times, see [12]. Therefore, a more robust numerical solution method is introduced
below.
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1.2.2 Numerical solution based on operator splitting

As in Section 1.1.2 the numerical solvers for the Bloch-McConnell equation are
based on an asymmetric and a symmetric operator splitting scheme. Consider a
splitting of the discretized Bloch-McConnell matrices (10) of the form

An = Rn +C

where

Rn =

R11,n R22,n
R33,n

 (11)

with

R11,n =
(

0 ∆ωw(z) −γB1,y(tn−1)

−∆ωw(z) 0 γB1,x(tn−1)
γB1,y(tn−1) −γB1,x(tn−1) 0

)
,

R22,n =
(

0 ∆ωs1
(z) −γB1,y(tn−1)

−∆ωs1
(z) 0 γB1,x(tn−1)

γB1,y(tn−1) −γB1,x(tn−1) 0

)
,

R33,n =
(

0 ∆ωs2
(z) −γB1,y(tn−1)

−∆ωs2
(z) 0 γB1,x(tn−1)

γB1,y(tn−1) −γB1,x(tn−1) 0

)
describes the rotation of each pool independently. The other part

C =

 C11 ks1,wI ks2,wI

kw,s1I C22 ks2,s1I

kw,s2I ks1,s2I C33

 (12)

with

C11 =

(
− 1

T2,w
−kw,s1 −kw,s2

− 1
T2,w

−kw,s1 −kw,s2

− 1
T1,w

−kw,s1 −kw,s2

)
,

C22 =

(
− 1

T2,s1
−ks1 ,w −ks1 ,s2

− 1
T2,s1

−ks1 ,w −ks1 ,s2

− 1
T1,s1

−ks1 ,a −ks1 ,s2

)
,

C33 =

(
− 1

T2,s2
−ks2 ,w −ks2 ,s1

− 1
T2,s2

−ks2 ,w −ks2 ,s1

− 1
T1,s2

−ks2 ,w −ks2 ,s1

)

models the relaxation effects and the exchange. These matrices are constant in
time. Similarly to chapter 1.1.2 an asymmetric operator splitting scheme is defined
as

dMrot,1

dt
= Rn ·Mrot, Mrot(0) =M

n−1, (13a)

dMrel

dt
= C ·Mrel + b̃, Mrel(0) =Mrot(τ), (13b)

where τ is the step length and Mn is given as

Mn =Mrot(τ).
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Again, the symmetric operator splitting scheme is defined as

dMrot,1

dt
= Rn ·Mrot,1, Mrot,1(0) =M

n−1, (14a)

dMrel

dt
= C ·Mrel + b̃, Mrel(0) =Mrot,1(

1

2
τ), (14b)

dMrot,2

dt
= Rn ·Mrot,2, Mrot,2(0) =Mrel(τ), (14c)

where

Mn =Mrot,2(τ).

Since Rn is a blockdiagonal matrix of Bloch rotation matrices, one can use rotation
matrices Dn,asy and Dn,sy so that

Mrot = Dn,asy ·Mrot(0),
Mrot,1 = Dn,sy ·Mrot,1(0),
Mrot,2 = Dn,sy ·Mrot,2(0).

The calculation of (13b) and (14b) is done using eigenvalues and eigenvectors and
the theory deduced in 1.1.1. The following Lemma shows that a reduction to three
smaller independent eigenvalue problems is possible by posing separate problems
for the x, y and z components.

Lemma 1 (Calculation of the eigenvalues). The eigenvalues of matrix (12) are the
eigenvalues of the three submatrices

C1 = C2 =


− 1
T2,w

− kw,s1 − kw,s2 ks1,w ks2,w

kw,s1 − 1
T2,s1

− ks1,w − ks1,s2 ks2,s1

kw,s2 ks1,s2 − 1
T2,s2

− ks2,w − ks2,s1


and

C3 =


− 1
T1,w

− kw,s1 − kw,s2 ks1,w ks2,w

kw,s1 − 1
T1s1

− ks1,w − ks1,s2 ks2,s1

kw,s2 ks1,s2 − 1
T1,s2

− ks2,w − ks2,s1


of C.

Proof. The idea of the proof is to transform the submatrix C into a blockdiagonal
matrix using similarity transformations.
Preliminary Remark Let Q be a unitary matrix, i.e. QQT = QTQ = I and assume
that (λ, x) is an eigenpair of C. Let w := QTx, then

QTCQw = QTCQQTx = QTCx = QTλx = λQTx = λw

which means that (λ, x) is an eigenpair of C if and only if (λ,QTx) is an eigenpair
of QTCQ. With that, define a unitary matrix Q as

Q =
(
e1 e4 e7 e2 e5 e8 e3 e6 e9

)
,
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where ei denotes the i−th unit vector and note that

QTCQ =

C1 C2
C3

 .

Since the eigenvalues of a blockdiagonal matrix are the eigenvalues of the blocks,
the assertion follows.

Now (13b) and (14b) can be solved using the theory of chapter 1.1.1 for each block
of QTCQ.

1.3 Numerical experiments

The error behavior of the asymmetric operator splitting solver, abbreviated with
ASY, and the symmetric operator splitting solver, abbreviated with SY, is analyzed
using an example with a water proton pool w at 0 ppm and a solute proton pool
s at 3.5 ppm. The input data used for this comparison coincides with the model
problem which was used in [23], where the parameters originate from an amide
proton system in white matter. Various tests with different relaxation times and
zero or non-zero exchange rates are performed. For the comparisons, three differ-
ent real RF pulses with a pulse length of 2.1s are used, see Figure 2. The first one
is block pulse, named BL, the other two are smoother Gaussian pulses, named G1
and G2. The z-spectrum Ω = [−5, 5] ppm is discretized using 101 steps, whereas
the time interval is discretized using a step length of 5e− 4s in the first experi-
ments. Afterwards, a convergence analysis is done with step lengths starting at
1e − 3s refining up to 1e − 5s. Finally, the run-time of the analytical solver and
both operator splitting solvers is analyzed using a small scale and two large scale
examples.
Every coordinate of the magnetization vector M is compared at the terminal time
T against the analytical solver, abbreviated withANA, using specific relative errors

ε2,x,w =
‖Ma,x,w(z, T) −Mn,x,w(z, T)‖L2(Ω)

‖Ma,x,w(z, T)‖L2(Ω)

,

ε∞,x,w =

sup
z∈Ω

|Ma,x,w(z, T) −Mn,x,w(z, T)|

sup
z∈Ω

|Ma,x,w(z, T)|
=
‖Ma,x,w(z, T) −Mn,x,k(z, T)‖L∞(Ω)

‖Ma,x,w(z, T)‖L∞(Ω)
.

Here Ma,x,w denotes the x−coordinate of the water magnetization calculated us-
ing the analytic solver, whereas Mn,x,w was calculated using one of the numerical
solvers. The errors corresponding to the y− and z−coordinate and the solute pro-
ton pool s are defined analogously. For the tests with relaxation, not only the ana-
lytic solver and the two operator splitting solvers are compared, but the numerical
solver which was used in [24], abbreviated with E3, as well. The numerical exper-
iments were performed on a MacBook Pro (2GHz Intel Core i5, 8 GB RAM).
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Figure 2: Initial RF pulses using a block type pulse train BL and two Gaussian type pulse
trains G1 and G2.

1.3.1 Comparison without relaxation and without exchange rates

For the first comparison, no relaxation is assumed, which means setting both the
longitudinal relaxation times and the transversal relaxation times to infinity. The
exchange rates kw,s and ks,w are set to zero. Therefore, the resulting problem is
to solve the Bloch equation two times individually without relaxation. Table 1

shows six error components in both error norms for the two different solvers SY
and ASY, and for three different RF pulses BL, G1 and G2. It can be seen that
all relative errors are nearly in machine precession. The excellent error behavior
did not occur unexpectedly. Since the example is performed without relaxation
and without transfer rates, both operator splitting solvers perform with rotation
matrices only, which yield an exact solution in this case, as it was shown for the
Bloch case we have here, see [7].
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Table 1: Error study for block pulse BL and Gaussian pulses G1 and G2 with
T1 = T2 = ∞, k = 0.

RF Solver Error εi,x,w εi,y,w εi,z,w εi,x,s εi,y,s εi,z,s

BL
SY

i = 2 2.9e− 13 3.2e− 13 4.9e− 13 3.7e− 13 3.9e− 13 5.2e− 13
i =∞ 2.8e− 13 5.2e− 13 4.2e− 12 6.3e− 13 4.4e− 13 4.3e− 12

ASY
i = 2 2.7e− 13 3.2e− 13 4.9e− 13 3.4e− 13 3.9e− 13 5.3e− 13
i =∞ 3.5e− 13 6.4e− 13 4.3e− 12 4.9e− 13 5.1e− 13 4.3e− 12

G1

SY
i = 2 1.4e− 13 8.6e− 13 4.2e− 13 1.4e− 13 9.2e− 13 4.8e− 13
i =∞ 1.7e− 13 1.1e− 12 4.1e− 12 1.7e− 13 1.2e− 12 4.1e− 12

ASY
i = 2 2.6e− 13 8.7e− 13 4.3e− 13 2.1e− 13 8.0e− 13 4.8e− 13
i =∞ 2.4e− 13 1.1e− 12 4.1e− 12 2.1e− 13 1.0e− 12 4.2e− 12

G2

SY
i = 2 3.7e− 13 4.2e− 13 4.2e− 13 3.5e− 13 5.0e− 13 4.7e− 13
i =∞ 3.7e− 13 1.1e− 12 4.1e− 12 3.7e− 13 8.5e− 13 4.2e− 12

ASY
i = 2 4.7e− 13 6.7e− 13 4.3e− 13 4.5e− 13 6.1e− 13 4.8e− 13
i =∞ 4.4e− 13 1.1e− 12 4.2e− 12 4.7e− 13 1.0e− 12 4.2e− 12

1.3.2 Comparison without relaxation and with exchange rates

Both relaxation times for the water proton pool and the solute proton pool are
set to infinity, but the exchange rates are assumed to be kw,s = 0.25 Hz and
ks,w = 25Hz. Now, the numerical solution with operator splitting is not exact and

Table 2: Error study for block pulse BL and Gaussian pulses G1 and G2 with
T1 = T2 = ∞, k 6= 0.

RF Solver Error εi,x,w εi,y,w εi,z,w εi,x,s εi,y,s εi,z,s

BL
SY

i = 2 3.7e− 4 3.8e− 4 7.5e− 5 9.5e− 4 7.0e− 3 6.1e− 5
i =∞ 4.2e− 4 3.5e− 4 2.8e− 4 1.0e− 3 2.5e− 3 2.4e− 4

ASY
i = 2 3.8e− 4 3.8e− 4 7.8e− 5 9.2e− 3 6.2e− 2 1.9e− 3
i =∞ 4.4e− 4 3.9e− 4 2.8e− 4 7.2e− 3 3.0e− 2 5.2e− 3

G1

SY
i = 2 1.9e− 4 2.6e− 4 1.9e− 5 2.0e− 3 2.3e− 3 8.7e− 6
i =∞ 1.7e− 4 2.3e− 4 1.3e− 4 2.1e− 3 1.9e− 3 6.4e− 5

ASY
i = 2 2.0e− 4 2.7e− 4 2.2e− 5 1.8e− 2 2.0e− 2 9.9e− 4
i =∞ 1.8e− 4 2.5e− 4 1.4e− 4 1.7e− 2 1.7e− 2 3.6e− 3

G2

SY
i = 2 6.2e− 4 1.2e− 4 3.2e− 5 2.3e− 3 8.8e− 4 7.9e− 6
i =∞ 4.6e− 4 1.0e− 4 2.2e− 4 1.9e− 3 8.6e− 4 4.8e− 5

ASY
i = 2 6.3e− 4 1.4e− 4 3.3e− 5 1.0e− 2 2.1e− 2 1.1e− 3
i =∞ 5.1e− 4 1.5e− 4 2.2e− 4 8.7e− 3 1.8e− 2 3.9e− 3

the splitting errors can be observed in Table 2. It can be seen that the symmetric
operator splitting solver SY shows in general smaller errors through all examples
than the asymmetric operator splitting solver ASY, especially for the solute. The
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error of the z−coordinate of both the water pool and the solute proton pool is
observed to be slightly smaller than the one of the others.

1.3.3 Comparison with relaxation and without exchange rates

The longitudinal relaxation times are set to T1,w = T1,s = 1.048s and the transversal
relaxation times to T2,w = 0.069s and T2,s = 0.015s with zero exchange. The solver
E3 of [24] can be included in the comparison.

Table 3: Error study for block pulse BL and Gaussian pulses G1 and G2 with
T1 6= ∞, T2 6=∞, k = 0.

RF Solver Error εi,x,w εi,y,w εi,z,w εi,x,s εi,y,s εi,z,s

BL

SY
i = 2 4.5e− 5 1.0e− 3 4.7e− 6 4.6e− 5 4.1e− 2 1.5e− 5
i =∞ 4.3e− 5 3.5e− 4 8.7e− 6 4.7e− 5 1.8e− 2 2.3e− 5

ASY
i = 2 3.6e− 3 4.1e− 3 1.1e− 4 1.7e− 2 8.4e− 2 1.3e− 4
i =∞ 3.6e− 3 3.7e− 3 2.5e− 4 1.7e− 2 3.2e− 2 2.4e− 4

E3

i = 2 1.5e− 1 5.2e− 1 1.3e− 2 2.6e− 1 2.7e− 1 1.1e− 2
i =∞ 1.5e− 1 1.8e− 1 1.7e− 2 2.6e− 1 2.5e− 1 1.3e− 2

G1

SY
i = 2 2.6e− 5 6.9e− 5 6.8e− 6 1.6e− 4 2.7e− 3 2.6e− 5
i =∞ 2.2e− 5 1.8e− 5 1.2e− 5 2.0e− 4 4.8e− 4 3.5e− 5

ASY
i = 2 3.6e− 3 3.6e− 3 9.4e− 5 1.7e− 2 1.7e− 2 1.6e− 4
i =∞ 3.6e− 3 3.6e− 3 2.3e− 4 1.7e− 2 1.7e− 2 2.4e− 4

E3

i = 2 6.1e− 2 5.9e− 2 2.6e− 1 2.6e− 1 2.6e− 1 1.1e− 2
i =∞ 6.0e− 2 5.8e− 2 1.3e− 2 2.6e− 1 2.6e− 1 1.3e− 2

G2

SY
i = 2 2.7e− 5 3.1e− 5 5.1e− 6 4.7e− 4 5.1e− 4 2.3e− 5
i =∞ 1.7e− 5 2.1e− 5 9.6e− 6 1.4e− 4 3.2e− 4 3.3e− 5

ASY
i = 2 3.6e− 2 3.6e− 2 9.1e− 5 1.7e− 2 1.7e− 2 1.5e− 4
i =∞ 3.6e− 2 3.6e− 2 2.4e− 4 1.7e− 2 1.7e− 2 2.4e− 4

E3

i = 2 5.9e− 2 6.0e− 2 1.2e− 2 2.6e− 1 2.6e− 1 1.1e− 2
i =∞ 6.0e− 2 6.0e− 2 1.3e− 2 2.6e− 1 2.6e− 1 1.3e− 2

In contrast to the case without relaxation, the symmetric operator splitting solver
SY shows to have significantly improved accuracy compared to the asymmetric
operator splitting solver ASY through all RF pulses, see Table 3. Both splitting
schemes outperform E3 in accuracy. Figure 3 shows the absolute pointwise dif-
ference of the z−spectra of the different numerical solvers to the analytical solver.
It can be seen, that the numerical solver E3 performs fine around the water pro-
ton pool at 0 ppm, it’s difference to the analytical solution increases outside the
neighborhood of the water proton pool, where the used RF pulse was the Gaussian
G1.
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Figure 3: z−magnetization of water pool with T1 6= ∞, T2 6= ∞, k = 0 with G1. Full view,
difference between analytical solution and numerical solution and two zoom
pictures.

1.3.4 Comparison with relaxation and with exchange rates

This last comparison works with typical longitudinal relaxation times T1,w = T1,s =

1.048s and the transversal relaxation times T2,w = 0.069s and T2,s = 0.015s. The ex-
change rates are set to kw,s = 0.25Hz and ks,w = 25Hz, which are the values
from [24]. The symmetric operator splitting solver SY has the best error perfor-
mance, the asymmetric operator splitting solver ASY is just between E3 and SY,
see Table 4. SY shows a reduced L∞−error compared to ASY of up to factor 1000
and of up to factor 2500 compared to E3. Again, the z−spectra in full view, zoom
and difference view are depicted in Figure 4, 5 and 6 for the RF pulses under in-
vestigation. The highest absolute errors are observed in Figure 4 in the difference
plot, where E3 yields large oscillating error. Obviously, the nonsmooth RF pulse,
more precise the block pulse train BL, leads to increased numerical error here. The
behavior among the two Gaussian pulses G1 and G2 is about the same, see Figure
5 and 6.
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Table 4: Error study for block pulse BL and Gaussian pulses G1 and G2 with
T1 6= ∞, T2 6=∞, k 6= 0.

RF Solver Error εi,x,w εi,y,w εi,z,w εi,x,s εi,y,s εi,z,s

BL

SY
i = 2 4.4e− 5 1.1e− 3 5.1e− 6 2.2e− 4 6.0e− 3 1.9e− 5
i =∞ 4.5e− 5 3.7e− 4 1.0e− 5 4.4e− 4 3.4e− 3 3.2e− 5

ASY
i = 2 3.7e− 3 4.2e− 3 1.1e− 4 2.4e− 2 3.1e− 2 2.5e− 3
i =∞ 3.7e− 3 3.8e− 3 2.6e− 4 2.3e− 2 2.6e− 2 5.7e− 3

E3

i = 2 1.5e− 1 5.2e− 1 1.3e− 2 3.6e− 1 3.6e− 1 4.1e− 2
i =∞ 1.4e− 1 1.8e− 1 3.4e− 1 3.4e− 1 3.6e− 1 9.6e− 2

G1

SY
i = 2 2.3e− 5 7.1e− 5 7.5e− 6 1.3e− 3 1.9e− 3 2.1e− 5
i =∞ 2.7e− 5 2.2e− 5 1.2e− 5 2.1e− 3 1.4e− 3 3.3e− 5

ASY
i = 2 3.7e− 3 3.7e− 3 9.4e− 5 2.6e− 2 2.6e− 2 1.6e− 3
i =∞ 3.7e− 3 3.7e− 3 2.3e− 4 2.2e− 2 2.3e− 2 3.7e− 3

E3

i = 2 6.2e− 2 6.0e− 2 1.2e− 2 3.9e− 1 3.9e− 1 2.4e− 2
i =∞ 6.1e− 2 5.9e− 2 1.3e− 2 3.4e− 1 3.5e− 1 5.8e− 2

G2

SY
i = 2 2.9e− 5 3.4e− 5 5.9e− 6 1.2e− 3 1.4e− 3 2.1e− 5
i =∞ 2.0e− 5 2.8e− 5 9.7e− 6 1.8e− 3 1.3e− 3 3.2e− 5

ASY
i = 2 3.7e− 3 3.7e− 3 9.2e− 5 2.5e− 2 2.5e− 2 1.7e− 3
i =∞ 3.7e− 3 3.7e− 3 2.4e− 2 2.2e− 2 4.0e− 3 4.0e− 3

E3

i = 2 6.1e− 2 6.1e− 2 1.2e− 2 3.8e− 1 3.8e− 1 2.6e− 2
i =∞ 6.1e− 2 6.1e− 2 1.3e− 2 3.5e− 1 3.5e− 1 6.5e− 2
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Figure 4: z−magnetization of water pool calculated with BL, where T1 6= ∞,
T2 6= ∞, k 6= 0. Full view, difference between analytical and numerical solution
and two zoom pictures.
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Figure 5: z−magnetization of water pool calculated with G2, where T1 6= ∞, T2 6= ∞,
k 6= 0. Full view, difference between analytical and numerical solution and two
zoom pictures.

1.3.5 Comparison with various time discretizations

In this series of tests, the block pulse BL is analyzed with relaxation and with ex-
change rates for time discretizations with different resolutions. The specific norm
used for this comparison is the relative L2−norm over all coordinates of the mag-
netization evaluated at the terminal time T, defined as

ε2 =
‖Ma(z, T) −Mn(z, T)‖L2(Ω)

‖Ma(z, T)‖L2(Ω)

,

where Ma is the magnetization which is calculated with the analytical solver and
Mn the magnetization out of one of the numerical solvers, namely the symmet-
ric and the asymmetric operator splitting solver. For a further investigation, the
experimental order of convergence EOC is calculated, which is defined as

EOC(τ, τ ′) =
log ε2(τ)

ε2(τ ′)

log τ
τ ′

.

This approach for a different length of time steps τ results in errors printed in Table
5. From theory one expects a quadratic order of convergence for the symmetric
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Figure 6: z−magnetization of water pool calculated with G1, where T1 6= ∞, T2 6= ∞,
k 6= 0. Full view, difference between analytical and numerical solution and two
zoom pictures.

operator splitting solver SY and a linear order of convergence for the asymmetric
operator splitting solver ASY. The numerical results in Table 5 verify both orders
over a wide range of step sizes.

Table 5: Errors for different time discretizations.

SY ASY
τ ε2 EOC ε2 EOC

1e− 3 2.2e− 4 1.2e− 3
5e− 4 4.4e− 5 2.18 5.9e− 4 1.02
1e− 4 1.7e− 6 2.02 1.2e− 4 0.99
5e− 5 4.2e− 7 2.02 5.9e− 5 1.02
1e− 5 1.7e− 8 1.99 1.2e− 5 0.99
5e− 6 4.2e− 9 2.02 5.9e− 6 1.02

1.3.6 Runtime

Since runtime is a vital point of RF pulse optimization, a study is done for the
analytic, symmetric and asymmetric operator splitting solvers. For both operator
splitting solvers, a vectorized and a non-vectorized implementation is considered.
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The RF pulse used for this comparison is the block pulse BL. Relaxation is assumed
with T1,w = T1,s = 1.048s, T2,w = 0.069s and T2,s = 0.015s. The exchange rates are
set to kw,s = 0.25Hz and ks,w = 25Hz, [24]. At first, a small scale example is
executed using 4.2e3 time points and a time step length of τ = 5e − 4s. The z-
spectrum Ω = [−5, 5] ppm is discretized using a step length of 0.1 into 101 parts.
For the second example the time discretization is refined to 4.2e5 time points and
a time step length of τ = 5e− 6s. For the third example only the z-spectrum is
refined instead using a step length of 0.01 into 1001 steps.

Table 6: Runtime in seconds for a different number of points in space Nx and time Nt.

not vectorized vectorized
Example Nx Nt ANA SY ASY SY ASY

Small scale 101 4.2e3 27.5 2.1 1.9 0.34 0.24
Large scale 1 101 4.2e5 ∼ 3000 225 218 100 91

Large scale 2 1001 4.2e3 ∼ 300 20 18 1.82 1.77

Increasing the number of points in time Nt yields a linear increase of runtime
of the analytical solver ANA and both non-vectorized numerical solvers SY and
ASY. Comparing the runtimes of the small scale example and the first large scale
example for the vectorized implementations, see Table 6, a greater than linear in-
crease in runtime can be investigated. However, when we compare the runtime
for a different number of points in space Nx, the vectorized solvers SY and ASY
show a less than linear increase, and not a linear increase as for the non-vectorized
implementations and the analytical solver ANA.
SY is only slightly slower than ASY, and both are much faster than working with
the analytical solution. Especially the vectorized implementations of the operator
splitting solvers are quite fast and would be a good option for optimization.

Conclusion

For the Bloch equation and the Bloch-McConnell equation, three solvers were de-
rived, an analytical one and two numerical ones. The analytical one allows to
investigate the error properties of any numerical solver, but is not suitable for op-
timization due to an increased runtime.
In contrast, both numerical solvers SY and ASY are quite fast, whereby the asym-
metric operator splitting solver is slightly faster. However, the results show that
SY prevails with a quadratic order of convergence as well as reduced numerical
error.
Therefore, the symmetric operator splitting solver SY is the preferred forward
solver for optimal control and is used in the following chapters.
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2 optimal control modeling and theory
The following problem, known as the Problem of the Rocket Car, see [22] demon-
strates the goal of optimal control: Optimizing a certain behavior, where the gov-
erning equations are typically differential equations.
Suppose you are driving a car with maximal acceleration 1 and maximal negative
acceleration −1, i.e. −1 6 u(t) 6 1, where u(t) is the thrust of the car at time t.
Your goal is to drive in shortest time from point A to point B. y(t) ∈ R denotes the
position of the car at time t,m is the mass of the car. y0,yT ∈ R are the known and
desired positions of the car according to point A and point B. Furthermore, the car
should be at rest at t = 0 and t = T and reach the desired position in minimum
time.

min
u∈Uad

J = T ,

subject to m
d2y

dt2
(t) = u(t) in (0, T),

y(0) = y0,
dy

dt
(0) = 0, y(T) = yT ,

dy

dt
(T) = 0,

Uad = {u ∈ L2(0, T)
∣∣ |u(t)| 6 1 for a. a. t ∈ [0, T ]}.

This depicts a standard optimal control problem. J is called the objective functional,
u is called the control variable and describes the essential degrees of freedom in
the optimization. In contrast, y is given as solution of the differential equation. It
is called the state variable. Accordingly, |u(t)| 6 1 is usually referred to as control
constraints. Uad is called the admissible set of controls.

Now, a reasonable cost functional J for chemical exchange saturation transfer is
introduced, an admissible set Uad is constructed, which models technical limitations
of the MR−scanner and as constraint, the Bloch-McConnell equation is chosen.

2.1 The optimal control problem for CEST RF pulse design

2.1.1 Derivation of the objective function

Preliminary Remark: The modeling of the objective function is demonstrated for a
water proton pool w at 0ppm and a solute proton pool s at 3.5ppm with exchange
rates ks,w = 25Hz and kw,s = 0.25Hz. The external magnetic field is chosen to be
B0 = 3T and the gyromagnetic ratio γ is set to γ = 267.513MHz · T−1. Those values
correspond to [24]. However, the modeling approach is not restricted to two pool
models and can be generalized comfortably to models with more than two pools.
It is requested, that the peak of the solute proton pool in the z-spectrum is thin,
but deep in order to separate it from the water proton pool and prevent a spill-
over effect, which means that the peaks of the water proton pool and the solute
proton pool merge. An example of a good z-spectrum is given in Figure 7. It
was created using a 0.9s continuous wave RF pulse. However, such a long pulse
cannot be implemented in the scanner due to duty cycle constraints of the RF
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Figure 7: Desired z-spectrum.

amplifiers, which means that the RF pulse cannot be turned on for such a long
time. Therefore, an optimization goal is to find a RF pulse, which rebuilds the
z−spectrum in Figure 7 as good as possible while fulfilling all scanner limitations.
In particular we require the RF pulse to be sparse in time, i.e. it should be zero for
some points in time.

Let Mz,w be the z−magnetization of the water proton pool, Mz,w,des the desired
z− magnetization of the water proton pool as in Figure 7, where the exchange
rates are included. A component J1 of the full cost functional J reads

J1 =
β

q1

∫
Ω

∣∣Mz,w(T , s) −Mz,w,des(s)
∣∣q1ds,

where β > 0 is a weighting parameter and q1 ∈ N specifies the norm used to
measure the distance to the target. J1 should be evaluated at the terminal time T .
This approach faces some difficulties, though. Numerical experiments have shown
that with this objective it can not be guaranteed, that the RF pulse created rebuilds
the CEST−peak through magnetization transfer and not through saturation of the
RF pulse itself, see Section 3.1.2.
As remedy, not only the magnetization calculated with exchange rates should be
tracked, but also the one without as well to guarantee that the desired z−spectrum
is generated by CEST−effect only, and not by direct saturation of the water magne-
tization around the CEST peak. Let M̃z,w be the z−magnetization of the water pro-
ton pool calculated without exchange rates and M̃z,w,des the desired z−magnetization
of the water proton pool without exchange rates. Now another part J2 of the full
cost functional J is given as

J2 =
β0
q2

∫
Ω

∣∣M̃z,w(T , s) − M̃z,w,des(s)
∣∣q2ds,

where β0 > 0 and q2 ∈N.
The RF pulse B1 = (u1,u2) is given in polar coordinates, i.e.

u1 = r cos(ϕ), u2 = r sin(ϕ).
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An advantage of this definition is that the control constraints transform into stan-
dard box constraints, see (15). Next, the RF pule undergoes some limitations. First,
the pulse power shall be not too large, so

J3 =
α

2

T∫
0

r(t)2dt,

where α > 0. Second, the RF pulse is desired to be zero for some points in time
in order to fulfill the duty cycle constraints of the RF amplifiers. One method of
ensuring this is given by sparse control [10]

J4 = η

T∫
0

|r(t)|dt,

where η > 0. Another possible solution of this task is to set r ≡ 0 on a given
fixed subset of the time interval. Both variants are presented in the numerical
experiments below. For the following theory part we set η = 0. Now the full
objective function J reads

J(r,ϕ) =
α

2

T∫
0

r(t)2dt+
β

q1

∫
Ω

∣∣Mz,w(T , s) −Mz,w,des(s)
∣∣q1ds

+
β0
q2

∫
Ω

∣∣M̃z,w(T , s) − M̃z,w,des(s)
∣∣q2ds.

2.1.2 Modeling of the constraints

Due to scanner limitations and physical limits, the RF amplitude is restricted with
a maximum amplitude rmax √

u21 + u
2
2 6 rmax. (15)

Clearly, a transformation of the pulse into polar coordinates r and ϕ is useful since
it transforms this constraint into box constraints

0 6 r 6 rmax, 0 6 ϕ 6 2π.

Therefore, the admissible set Uad is given as

Uad = {r ∈ L∞(0, T), ϕ ∈ L∞(0, T) |

0 6 r 6 rmax, 0 6 ϕ 6 2π for almost all t ∈ (0, T)}.

Note that as we only consider finite RF pulse duration times, L∞(0, T) ↪→ L2(0, T).
Therefore, a f ∈ L∞(0, T) fulfills not only ‖f‖L∞(0,T) <∞, but also ‖f‖L2(0,T) <∞.
Finally, the Bloch-McConnell equation from Section 1.2 has to be fulfilled. Alto-
gether, the optimal control problem can now be defined.
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Definition 1 (Optimal control problem forCEST RF pulse design). LetU = [L∞(0, T)]2
be the control space, (r,ϕ) ∈ U the control,

M = (Mx,w,My,w,Mz,w,Mx,s,My,s,Mz,s)
T ∈ [H1(0, T)]6

the state with exchange, and analogously M̃ the state without exchange. Then
define the objective function J : U×H1(0, T)×H1(0, T)→ R,

J(r,ϕ,Mz,w, M̃z,w) =
α

2

T∫
0

r(t)2dt+
β

q1

∫
Ω

∣∣Mz,w(T , s) −Mz,w,des(s)
∣∣q1ds

+
β0
q2

∫
Ω

∣∣M̃z,w(T , s) − M̃z,w,des(s)
∣∣q2ds.

Let

Uad = {r ∈ L∞(0, T), ϕ ∈ L∞(0, T) |

0 6 r 6 rmax, 0 6 ϕ 6 2π for almost all t ∈ (0, T)}.

Then the optimal control problem for RF pulse design for CEST imaging is given as

min
(r,ϕ)∈Uad

J(r,ϕ,Mz,w, M̃z,w)

s.t

{
dM
dt = A ·M+ b̃, dM̃

dt = Ã · M̃+ b̃,
M(0, z) =M0(z), M̃(0, z) =M0(z), z ∈ Ω

(16)

with A, b̃ given by the Bloch-McConnell equation, see (7). Ã is A with exchange
rates replaced by zero.

2.2 Existence and uniqueness of solutions of the Bloch-McConnell equation

Before having a closer look on the solution of the optimal control problem (16),
existence and uniqueness of solutions of the forward Bloch-McConnell equation
(7) are shown. For simplicity of representation, this section is written for two pools.
Due to the pointwise nature of the Bloch-McConnell equation in spatial direction,
it suffices to discuss most of the theory for a fixed spatial position.
We equip the space [L2(0, T)]6 with the usual norm

‖M‖2[L2(0,T)]6 =
T∫
0

|M|22 dt,

where |·|2 is the euclidean norm in R6. The norms in [L2(0, T)]2, [L∞(0, T)]2 and
[H1(0, T)]6 are defined analogously.

Theorem 1 (Existence and uniqueness of solutions of the state equation).
Let M0 ∈ R6, b̃ ∈ [L∞(0, T)]6. Let A be defined as in (8), but with ω = ω0 ∈ Ω fixed
and for 2 pools. The full Bloch-McConnell equation only dependent on the time{

dM
dt (t) = A ·M(t) + b̃,
M(0) =M0,

(17)

admits for every RF pulse B1 ∈ [L∞(0, T)]2 a unique solution M(t) ∈ [H1(0, T)]6.
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Before proving this essential theorem, we note that ‖A(t)‖∞ is bounded, since all
coefficients therein are bounded due to B1 ∈ [L∞(0, T)]2, so

sup
t∈(0,T)

‖A(t)‖∞ <∞.

It futher holds that ‖b̃‖∞ 6 ∞. Therefore, assuming M ∈ [L2(0, T)]6, from (17)
it can be inferred that dM

dt ∈ [L2(0, T)]6, too. Hence, M ∈ [H1(0, T)]6 immediately
follows. However, we first show the existence M ∈ [C([0, T ])]6 with Banach’s fixed
point theorem.

Theorem 2 (Banach’s fixed point theorem). [18]
Let (X,d) be a complete metric space, M ⊂ X non-empty and closed. Let φ :M →M be
a contraction with contraction constant smaller than 1. Then, φ admits exactly one fixed
point.

Based on that, Theorem 1 can now be proven.

Proof. H1(0, T) is densly embedded in C([0, T ]) and (C([0, T ]), ‖ · ‖∞) is complete.
In order to simplify the proof of existence, find solutions in [C([0, T ])]6 in the first
place and extend them to [H1(0, T)]6 afterwards. From (7) it follows that

M(τ) =

τ∫
0

(
A(t)M(t) + b̃

)
dt+M0

︸ ︷︷ ︸
=:φ(M)(τ)

∀ τ ∈ [0, τ1], (18)

with φ : [C([0, τ1])]6 → [C([0, τ1])]6. Therefore, (18) yields a fixed point problem
M = φ(M) on [0, τ1]. The fixed point theorem of Banach is applicable, since
(C([0, τ1]), ‖ · ‖∞)6 is complete. What we have to show is, that φ is a contraction
with contraction number K smaller than 1, i.e.

‖φ(M1) −φ(M2)‖[C([0,τ1])]6 6 K · ‖M1 −M2‖[C([0,τ1])]6 , K < 1.

In the first place, the contraction is shown in a small interval [0, τ1]. Afterwards, it
is extended to [0, T ]. For [0, τ1] we get

‖φ(M1) −φ(M2)‖[C([0,τ1])]6 = max
i=1,···6

sup
τ∈[0,τ1]

∣∣∣∣∣∣[
τ∫
0

A(t)(M1(t) −M2(t))dt]i

∣∣∣∣∣∣
6 max
i=1,···6

sup
τ∈[0,τ1]

τ∫
0

‖A(t)‖∞︸ ︷︷ ︸
6c

|[M1(t) −M2(t)]i|dt

6

(
max
i=1,···6

sup
τ∈[0,τ1]

|[M1 −M2]i|

)
cτ1︸︷︷︸
=:K

.

Therein, we would like to get K < 1. Note that c < ∞ for any fixed time horizon.
Therefore, choose the endpoint τ1 of the first interval as τ1 < 1

c . It holds τ1 > 0

since c > 0. Since ‖A(t)‖∞ 6 c holds for all times, we can repeat the step with the
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same step length τ1, such that for every interval [τ1n, τ1(n+ 1)], φ is a contraction.
As the interval [0, T ] is finite, there exists a finite N ∈N, such that

[0, T ] ⊂
N⋃
n=0

[nτ1, (n+ 1)τ1].

So φ has a unique fixed point in every time interval, yielding a unique solution
M of the Bloch-McConnell equation. The continuity of the decomposed solution
at the interval transitions is given by construction. Therefore, the full solution,
denoted again by M, belongs to [C([0, T ])]6. But as [C([0, T ])]6 is continuously em-
bedded in [L2(0, T)]6, M belongs to [L2(0, T)]6 as well. In the end, M ∈ [H1(0, T)]6

as noted above.

Now we know that the Bloch-McConnell equation (17) has a unique solution for
a given RF pulse B1.

2.3 Auxiliary results for adjoint operators

We introduce the adjoint equation pointwise in space for ω = ω0{
−dp
dt −A

Tp = aQ in (0, T),
p(T) = aΩ,

(19)

where aQ ∈ [L∞(0, T)]6 and aΩ ∈ R6. Note that the matrixA is the Bloch-McConnell
matrix (8). Further note that the equation is backward-in-time. The following
Lemma guarantees that (19) has a solution in [H1(0, T)]6, too.

Lemma 2 (Solution of the adjoint equation). Under the prerequisites of Theorem 1,
the adjoint equation (19) admits a unique solution p ∈ [H1(0, T)]6.

Proof. Introduce the inverse time τ ∈ (0, T), τ = T − t, and define

p̃(τ) = p(T − τ),

Ã(τ) = A(T − τ),
ãQ(τ) = aQ(T − τ).

Due to p̃τ =
dp̃(τ)
dτ =

dp(T−τ)
dτ = −p ′(T − τ), (19) is equivalent to the forward differ-

ential equation {
p̃τ − Ã(τ)

T p̃(τ) = ãQ(τ) for τ ∈ (0, T),
p̃(0) = ãΩ.

(20)

For this equation, Theorem 1 guarantees a unique solution p̃ ∈ [H1(0, T)]6. Retrans-
forming the time again yields the solution p ∈ [H1(0, T)]6 of (19).

For ease of representation, the full Bloch-McConnell matrix A is split into a con-
stant part Ac and two pulse-dependent parts Au1 and Au2 such that

A = Ac +Au1u1 +Au2u2,
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where we denote the RF pulse as B1 = u = (u1,u2). Then the directional derivative
(see Definition 3 below), of A in direction ∂u = (∂u1,∂u2) is

∂A = Au1∂u1 +Au2∂u2.

In the following, we introduce the linearized state equation and draw a connection
to the adjoint equation.

Theorem 3 (Auxiliary result). Let ∂M ∈ [H1(0, T)]6 be a solution of{
∂Mt − ∂AM−A∂M = 0,

∂M(0) = 0.
(21)

(21) is called linearized state equation in direction (∂u,∂M). Then there holds for all
aΩ ∈ R6, aQ ∈ [L∞(0, T)]6 and corresponding p ∈ [H1(0, T)]6 defined by (19)

aTΩ∂M(T) +

T∫
0

aTQ∂Mdt =

T∫
0

pT∂AMdt.

Proof. A variational formulation for ∂M with a testfunction p yields
T∫
0

pT∂Mtdt−

T∫
0

pT∂AMdt−

T∫
0

pTA∂Mdt = 0,

∂M(0) = 0.

On the other hand, a variational formulation for p with a testfunction ∂M results
in

−

T∫
0

pTt ∂Mdt−

T∫
0

[ATp]T∂Mdt =

T∫
0

aTQ∂Mdt,

p(T) = aΩ.

Partial integration of the first variational formulation leads to

pT∂M

∣∣∣∣T
0

−

T∫
0

pTt ∂Mdt−

T∫
0

pT∂AMdt−

T∫
0

pTA∂Mdt

=aTΩ∂M(T) −

T∫
0

pTt ∂Mdt−

T∫
0

pT∂AMdt−

T∫
0

pTA∂Mdt = 0.

With inserting the corresponding terms of the second variational formulation, it
follows that

aTΩ∂M(T) +

T∫
0

aTQ∂Mdt−

T∫
0

pT∂AMdt = 0.

Later on, we use this result to obtain a simpler description of the first order opti-
mality conditions.
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2.4 First order necessary conditions

Numerical optimization methods are usually based on first order necessary con-
ditions. For the derivation of such optimality conditions, we first need to become
acquainted with some generalization of differentiation. Therefore, the concepts of
Gâteaux and Fréchet differentiation are introduced.
Let X and Y be Banach spaces, U ⊂ X open and F : U→ Y.

Definition 3 (First variation). [22] If for u ∈ U and h ∈ U the limit

δF(u,h) := lim
t→0

1

t
(F(u+ th) − F(u))

exists in Y, then it is called directional derivative of F at u in direction h. If this
limits exists for all h ∈ U, then the mapping h 7→ δF(u,h) is called first variation
of F at u.

Here we don not require linearity of the mapping. On the basis of above definition,
we introduce the following.

Definition 4 (Gâteaux differentiability). [22] If the first variation δF(u,h) exists at
u and is linear, i.e. a linear continuous operator A : X→ Y exists, such that

δF(u,h) = Ah

for all h ∈ U, then F is called Gâteaux differentiable and A Gâteaux derivative of
F at u. We write A = F ′(u).

Definition 5 (Fréchet differentiability). [22] F is called Fréchet differentiable at
u ∈ U, if there exist an operator A ∈ L(X, Y) and a mapping r(u, ·) : X → Y with
the following properties. For all h ∈ X with u+ h ∈ U it holds

F(u+ h) = F(u) +Ah+ r(u,h)

and for r it holds that

‖r(u,h)‖Y
‖h‖X

→ 0 for ‖h‖X → 0.

A is called Fréchet derivative of F at u. We write A = F ′(u).

The definition of Fréchet differentiability is equivalent to

‖F(u+ h) − F(u) −Ah‖Y
‖h‖X

→ 0 for ‖h‖X → 0.

If F is Fréchet differentiable, it is Gâteaux differentiable as well and the differentials
coincide. The next Lemma is the last piece of groundwork we need before we can
derive optimality conditions.

Lemma 3 (Chain rule). [22] Let X, Y and Z be Banach spaces, U ⊂ X, V ⊂ Y open
and F : U → V as well as G : V → Z at u ∈ U and F(u) ∈ V Fréchet differentiable
mappings. Then E = G ◦ F defined by E(u) = G(F(u)) is Fréchet differentiable at
u and

E ′(u) = G ′(F(u))F ′(u).
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The following Theorem is the basis for the derivation of optimality conditions.

Theorem 4. [22] Let X be a real Banach space, U ⊂ X a convex set and f a real Gâteaux
differentiable functional on an open subset of X, which encloses U. u ∈ U shall be a
solution to

min
u∈U

f(u),

so

f(u) 6 f(u), ∀u ∈ U.

Then the following variational inequality holds:

f ′(u)(u− u) > 0 ∀u ∈ U. (22)

On the other hand, let u ∈ U be a solution to the variational inequality (22) and f addi-
tionally convex, then u is a global solution of minu∈U f(u).

Now, a line to the optimal control problem (16) is drawn. First, the solution oper-
ator is defined. Afterwards, it is shown that this operator is Fréchet differentiable,
which allows the use of the chain rule. Last, Theorem 4 is applied.

Remark 1. Due to Theorem 1, there exists for every control u ∈ [L∞(0, T)]2 a solu-
tion M ∈ [H1(0, T)]6 of (7). Therefore, define the solution operator G as

G :

{
[L∞(0, T)]2 → [H1(0, T)]6,

u 7→M.

Notation 1. In the following, A(u) denotes the Bloch-McConnell matrix (8) which
contains the RF pulse u.M(u) is the magnetization satisfying the Bloch-McConnell
equation (7) with the coefficient matrix A(u).

Theorem 5. The operator G is Fréchet differentiable.

Before starting with proving Theorem 5, we repeat the linearized state equation in a
point (M,u) in direction ∂u{

∂Ṁ = A(u)∂M+ ∂A(∂u)M(u),
∂M(0) = 0,

(23)

where ∂A(∂u) is the directional derivative of A with respect to u in direction ∂u.
For ∂u = u− ũ it holds ∂A(∂u) = A(u) −A(ũ).

Lemma 4. The solution ∂Mϕ of the linearized state equation (23) fulfills

‖∂M(ϕ)‖[H1(0,T)]6 6 c‖u− ũ‖[L2(0,T)]2

with c > 0. Here u and ũ are in [L∞(0, T)]2, ϕ = u− ũ.

Before proving Lemma 4, we repeat the Lemma of Gronwall in its integral form.
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Theorem 6 (Gronwall’s Lemma). [1]
Let ζ,ϕ and χ be real, continuous functions, χ(t) > 0 for all t ∈ [a,b]. If

ζ(t) 6 ϕ(t) +

t∫
a

χ(s)ζ(s)ds, t ∈ [a,b]

then

ζ(t) 6 ϕ(t) +

t∫
a

χ(s)ϕ(s) exp

 t∫
s

χ(u)du

ds, t ∈ [a,b].

Proof of Lemma 4. Step 1.
Testing the linearized state equation (23) with ∂M(ϕ) itself and integrating yields
for t ∈ [0, T ]

t∫
0

∂M(ϕ)T
d∂M(ϕ)

dt
ds =

t∫
0

∂M(ϕ)TA(u)∂M(ϕ)ds

+

t∫
0

∂M(ϕ)T [A(u) −A(ũ)]M(u)ds.

Note that

t∫
0

∂M(ϕ)T
d∂M(ϕ)

dt
ds =

1

2

t∫
0

d

dt
|∂M(ϕ)|22 ds =

1

2
|∂M(ϕ)(t)|22 .

|·|2 is the euclidean vector norm in R6. With a generic constant c > 0 it follows that

1

2
|∂M(ϕ)(t)|22 =

t∫
0

∂M(ϕ)TA(u)∂M(ϕ)ds+

t∫
0

∂M(ϕ)T (A(u) −A(ũ))M(u)ds

6

t∫
0

∣∣∣∂M(ϕ)TA(u)∂M(ϕ)
∣∣∣
2
ds+

t∫
0

∂M(ϕ)T (A(u) −A(ũ))M(u)ds

6

t∫
0

|∂M(ϕ)|22 ‖A(u)‖2ds+
t∫
0

∂M(ϕ)T (A(u) −A(ũ))M(u)ds

6 c ‖A(u)‖L∞(0,t;R6)︸ ︷︷ ︸
6c

t∫
0

|∂M(ϕ)|22 ds+

t∫
0

∂M(ϕ)T (A(u) −A(ũ))M(u)ds.

Note that as u ∈ [L∞(0, T)]2 it holds that ‖A(u)‖L∞(0,t;R6) 6 c.
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Using Young’s inequality [6] with p = q = 2 yields,

t∫
0

∂M(ϕ)T [A(u) −A(ũ)]M(u)ds 6

t∫
0

|∂M(ϕ)|2 |(A(u) −A(ũ))M(u)|2 ds

6

t∫
0

[
|∂M(ϕ)|22

2
+

|(A(u) −A(ũ))M(u)|22
2

]
ds.

Altogether we obtain

|∂M(ϕ)(t)|22 6 c

t∫
0

|∂M(ϕ)(s)|22 ds+

t∫
0

|(A(u) −A(ũ))M(u)|22 ds. (24)

Step 2. The Lemma of Gronwall (Theorem ) is now applied to (24), so

1

2
|∂M(ϕ)(t)|22 6

t∫
0

|(A(u) −A(ũ))M(u)|22 ds (25)

+ c

t∫
0

s∫
0

|(A(u) −A(ũ))M(u)|22 dτ exp

 t∫
s

cdr


︸ ︷︷ ︸

6c

ds

6

t∫
0

|(A(u) −A(ũ))M(u)|22 ds+ c

t∫
0

s∫
0

|(A(u) −A(ũ))M(u)|22 dτ︸ ︷︷ ︸
6
t∫
0

|(A(u)−A(ũ))M(u)|22dτ as s6t

ds

6 c

t∫
0

|(A(u) −A(ũ))M(u)|22 ds (26)

with a generic constant c > 0.
Step 3. Equation (26) is further estimated. Therefore define

N1 = N2 =

 0 0 (u− ũ)1
0 0 (u− ũ)2

−(u− ũ)1 −(u− ũ)2 0


and

N := A(u) −A(ũ) =

(
N1

N2

)
.

The Frobenius norm ‖A‖F =

(∑
i

∑
j

∣∣Aij∣∣2
)1
2

is compatible with the L2−norm and

it can be easily evaluated that

‖N‖2F = 4 |(u− ũ)1|
2 + 4 |(u− ũ)2|

2 = 4 |u− ũ|22 .
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Therefore,

‖(A(u) −A(ũ))M(u)‖2[L2(0,T)]6 =‖NM(u)‖2[L2(0,T)]6 =
T∫
0

|NM(u)|22 dt

6

T∫
0

‖N‖2F |M(u)|22 dt 6 sup
t∈(0,T)

|M(u)(t)|22

T∫
0

‖N‖2Fdt

= sup
t∈(0,T)

|M(u)(t)|22︸ ︷︷ ︸
6c

T∫
0

4 |u− ũ|22 dt 6 c‖u− ũ‖2[L2(0,T)]2 .

So

‖∂M(ϕ)(t)‖2[L2(0,T)]2 6 c‖u− ũ‖2[L2(0,T)]2 .

Step 4.
The estimation for d

dt∂M(ϕ) is derived from the following.

‖ d
dt
∂M(ϕ)‖2[L2(0,T)]6 = ‖A(u)∂M(ϕ) + [A(u) −A(ũ)]M(u)‖2[L2(0,T)]6

6 ‖A(u)∂M(ϕ)‖2[L2(0,T)]6 + ‖[A(u) −A(ũ)]M(u)‖2[L2(0,T)]6

=

T∫
0

|A(u)∂M(ϕ)|22 dt+ ‖[A(u) −A(ũ)]M(u)‖2[L2(0,T)]6︸ ︷︷ ︸
Step 3

.

We investigate that

T∫
0

|A(u)∂M(ϕ)|22 dt 6

T∫
0

‖A(u)‖2F |∂M(ϕ)|22 dt

6 sup
t∈(0,T)

‖A(u)(t)‖2F‖∂M(ϕ)‖2[L2(0,T)]6
Step 3

6 c‖u− ũ‖2[L2(0,T)]2 .

The matrix A(u) is not only bounded in ‖ · ‖∞, but in ‖ · ‖F as well, which allowed
the last inequality. Therefore,

‖ d
dt
∂M(ϕ)‖2[L2(0,T)]6 6 c‖u− ũ‖2[L2(0,T)]2 .

Step 5. Finally, everything is put together yielding

‖∂M(ϕ)‖2[H1(0,T)]6 = ‖∂M(ϕ)‖2[L2(0,T)]6 + ‖
d

dt
∂M(ϕ)‖2[L2(0,T)]6 6 c‖u− ũ‖2[L2(0,T)]2 .

Now Theorem 5 can be proven.
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Proof of Theorem 5. Let u ∈ U and U ⊂ [L∞(0, T)]2 a suitable open neighborhood.
Let ũ ∈ U with ‖ũ − u‖[L2(0,T)]2 6 δ, ϕ := ũ − u and δ > 0. Let ∂M(ϕ) be the
solution to the linearized state equation{

∂Ṁ(ϕ) = A(u)∂M(ϕ) + ∂A(∂u)M(u),
∂M(ϕ)(0) = 0,

(27)

where ∂A(∂u) = A(ũ) −A(u).
The solution ∂M(ϕ) exists in [H1(0, T)]6 due to Theorem 1. Then

d

dt
(M(ũ) −M(u) − ∂M(ϕ)︸ ︷︷ ︸

=:S

) = A(ũ)M(ũ) −A(u)M(u)

−A(u)∂M(ϕ) − (A(ũ) −A(u))M(u)

= A(ũ)(M(ũ) −M(u) − ∂M(ϕ)︸ ︷︷ ︸
=:S

)

+ (A(ũ) −A(u))∂M(ϕ)︸ ︷︷ ︸
=:b

.

Therefore we consider the problem{
dS
dt = A(ũ)S+ b,

S(0) = 0.
(28)

Now test (28) with S itself and integrate

t∫
0

ST
d

dt
Sds =

t∫
0

STA(ũ)Sds+

t∫
0

STbds.

Note that

t∫
0

ST
d

dt
Sds =

1

2

t∫
0

d

dt
|S|22 ds =

1

2
|S(t)|22 ,

where we used the euclidean vector norm. With a generic constant c > 0 it follows

1

2
|S(t)|22 6 c‖A(ũ)‖

2
L∞(0,t;R6

t∫
0

|S|22 ds+

t∫
0

STbds

6 c

t∫
0

|S|22 ds+

t∫
0

|S|2 |b|2 ds

6 c

t∫
0

|S|22 ds+

t∫
0

(
|S|22
2

+
|b|22
2

)
ds,
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where in the last line Young’s inequality [6] was applied. Therefore

|S(t)|22 6 c

t∫
0

|S|22 ds+

t∫
0

|b|22 ds.

The Lemma of Gronwall yields

|S(t)|22 6

t∫
0

|b(s)|22 ds+

t∫
0

c

s∫
0

|b(v)|22 dv exp

 t∫
s

cdv


︸ ︷︷ ︸

6c

ds

6

t∫
0

|b(s)|22 ds+ c

t∫
0

s∫
0

|b(v)|22 dv︸ ︷︷ ︸
6
t∫
0

|b(v)|22dv as s6t

ds

6 c

t∫
0

|b(s)|22 ds.

Now we resubstitute and get

|M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t)|22 6 c

t∫
0

|(A(ũ) −A(u))∂M(ϕ)|22 ds

6 c

t∫
0

‖A(ũ) −A(u)‖2F |∂M(ϕ)|22 ds

6 c

t∫
0

4 |u− ũ|22 |∂M(ϕ)|22 .

Those steps were done analogously to Step 3, Proof of Lemma 4. We further inves-
tigate that

c

t∫
0

|u− ũ|22 |∂M(ϕ)|22 6 c‖∂M(ϕ)‖2[L∞(0,T)]6‖u− ũ‖2[L2(0,T)]2

6 c‖∂M(ϕ)‖2[H1(0,T)]6‖u− ũ‖2[L2(0,T)]2 .

The last inequality is a consequence of Morrey’s Theorem [3]. With the result of
Lemma 4 it finally follows that

|M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t)|22 6 c‖ũ− u‖4[L2(0,T)]2 .
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Putting everything together yields

‖M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t)‖2[H1(0,T)]6

= ‖M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t)‖2[L2(0,T)]6

+ ‖ d
dt

(M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t))‖2[L2(0,T)]6

6 c‖ũ− u‖4[L2(0,T)]2 + ‖A(ũ)(M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t))‖2[L2(0,T)]6

+ ‖(A(ũ) −A(u))∂M(ϕ)‖2[L2(0,T)]6

6 c‖ũ− u‖4[L2(0,T)]2 + sup
t∈(0,T)

‖A(ũ)(t)‖2F︸ ︷︷ ︸
6c

‖M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t)‖2[L2(0,T)]6

+ ‖∂M(ϕ)‖2[L∞(0,T)]6︸ ︷︷ ︸
6‖∂M(ϕ)‖2

c[H1(0,T)]6

‖ũ− u‖2[L2(0,T)]2 .

With the previous step and Lemma 4 it follows that

‖M(ũ)(t) −M(u)(t) − ∂M(ϕ)(t)‖2[H1(0,T)]6 6 c‖ũ− u‖4[L2(0,T)]2 .

In conclusion,

‖G(ũ) −G(u) −G ′(u)(ũ− u)‖[H1(0,T)]6 6 c‖ũ− u‖2[L2(0,T)]6 6 c‖ũ− u‖2[L∞(0,T)]6 ,

due to L∞(0, T) ↪→ L2(0, T). As ‖ũ− u‖2
[L∞(0,T)]6 6 δ,

‖G(ũ) −G(u) −G ′(u)(ũ− u)‖[H1(0,T)]6 6 cδ
2.

This implies the claimed Fréchet differentiability.

Now, the first order necessary conditions for (16) can be derived. Let p be the
solution to the adjoint equation (19) with

aQ = 0, aΩ = (0, 0,β(Mz,w(T , s) −Mz,w,des(s))
q1−1, 0, 0, 0)T .

Let analogously p̃ be the solution to the adjoint equation (19) with

ãQ = 0, ãΩ = (0, 0,β0(M̃z,w(T , s) − M̃z,w,des(s))
q2−1, 0, 0, 0)T

and zero exchange rates. Then, Theorem 3 yields

pT (T)∂M(T) =

T∫
0

pT∂AMdt,

p̃T (T)∂M̃(T) =

T∫
0

p̃T∂ÃM̃dt.
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Therein, ∂M̃ is the tangent state defined with zero exchange rates. We rewrite the
L2− regularization of the RF pulse in Cartesian coordinates as

α

2

T∫
0

r(t)2dt =
α

2

T∫
0

u1(t)
2dt+

α

2

T∫
0

u2(t)
2dt.

Using the chain rule Lemma 3, differentiation of the cost functional

J(u1,u2,Mz,w, M̃z,w) =
α

2

T∫
0

u1(t)
2dt+

α

2

T∫
0

u2(t)
2dt

+
β

q1

∫
Ω

∣∣Mz,w(T , s) −Mz,w,des(s)
∣∣q1ds

+
β0
q2

∫
Ω

∣∣M̃z,w(T , s) − M̃z,w,des(s)
∣∣q2ds

in direction h = (∂u1,∂u2) yields

J ′(u1,u2,Mz,w, M̃z,w)h = α

T∫
0

u1∂u1dt+α

T∫
0

u2∂u2dt

+β

∫
Ω

∣∣Mz,w(T , s) −Mz,w,des(s)
∣∣q1−1∂Mds

+β0

∫
Ω

∣∣M̃z,w(T , s) − M̃z,w,des(s)
∣∣q2−1∂M̃ds

= α

T∫
0

u1∂u1dt+α

T∫
0

u2∂u2dt

+

∫
Ω

T∫
0

pT∂AMdtds+

∫
Ω

T∫
0

p̃T∂ÃM̃dtds,

where in the last line the auxiliary result 3 was used. Now we define as before
∂A = Au1∂u1 + Au2∂u2 and ∂Ã = Au1∂u1 +Au2∂u2 and note, that ∂A and ∂Ã
are equal.
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Using that, we further investigate

J ′(u1,u2,Mz,w, M̃z,w)h = α

T∫
0

u1∂u1dt+α

T∫
0

u2∂u2dt

+

∫
Ω

T∫
0

pT (Au1∂u1 +Au2∂u2)Mdtds+

∫
Ω

T∫
0

p̃T (Au1∂u1 +Au2∂u2)M̃dtds

=

T∫
0

((
αu1 +

∫
Ω

pTAu1Mds+

∫
Ω

p̃TAu1M̃ds

)
∂u1

+

(
αu2 +

∫
Ω

pTAu2Mds+

∫
Ω

p̃TAu2M̃ds

)
∂u2

)
dt.

Therefore, we can identify the reduced gradient g(u1,u2) of J as

g(u1,u2) =
(
g1
g2

)
=

αu1 +
∫
Ω

pTAu1Mds+
∫
Ω

p̃TAu1M̃ds

αu2 +
∫
Ω

pTAu2Mds+
∫
Ω

p̃TAu2M̃ds

 . (29)

Now we assume the existence of a minimizer (u1,u2). Then, according to Theorem
4, it must satisfy

g(u1,u2)
(
u1 − u1
u2 − u2

)
> 0 ∀

(
u1
u2

)
∈ Uad.

In practice, we have to start with transforming the RF pulse (r,ϕ) into cartesian
coordinates (u1,u2). Then the gradient should be calculated as above. Afterwards,
retransformation of the RF pulse into polar coordinates yields the reduced gradient
in polar coordinates

ĝ(r,ϕ) =
(

g1 cos(ϕ) + g2 sin(ϕ)
−g1r sin(ϕ) + g2r cos(ϕ)

)
.
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3 numerical optimization and experiments
In the preceding chapter, the fundament for numerical optimization was laid. An
optimal control model was designed and analyzed. First order optimality condi-
tions were derived, that form the basis for numerical optimization. Therefore, this
chapter can now proceed with the numerical solution of different application prob-
lems. First, a sophisticated desired state is derived for a 2 pool model from liter-
ature. The cost functional is further analyzed and adapted compared to Section
2.1 and different initializations for optimization are compared. Optimization runs
using the optimization method of [17] are performed, see Section 3.1.3. The re-
sults are discussed. Then, after the optimization, the robustness of the optimized
RF pulse with respect to relaxation times, exchange rates and frequency offsets is
investigated in numerical experiments. Afterwards, the optimization model and
method are applied to a second 2 pool model with values that are directly related
to an experiment on an MR scanner, and allow for phantom measurements.

3.1 Optimization of a 2 pool model

The input data used for this comparison coincides with the model problem which
was used in [24], where the parameters originate from an amide proton system
in white matter. Due to the specifications of the MR scanner (Magnetom Skyra,
Siemens Healthcare, Erlangen, Germany), the external magnetic field was chosen
to be B0 = 3T . The longitudinal relaxation times are T1,w = T1,s = 1.048s and the
transversal relaxations times are T2,w = 0.069s and T2,s = 0.015s. Magnetization
exchange is modeled by the frequency offset of the RF irradiationωw = 0ppm and
ωs = 3.5ppm and exchange rates kws = 0.25Hz and ksw = 25Hz. The normalized
equilibrium magnetizations are set to M0,w = 1 and M0,s = 0.01. The z−spectrum
Ω = [−15, 15]ppm is discretized into 601 parts using a step length of 0.05ppm. The
duration of the RF−pulse is 0.9s.

3.1.1 Determination of a desired state

As already mentioned in Section 2.1, the peak of the solute proton pool in the
z−spectrum is required to be thin, but deep. A good candidate RF pulse for gener-
ating such a z− spectrum is a continuous wave RF pulse with a long duration, here
0.9s. What needs to be calibrated is the amplitude of this pulse. Due to limitations
of the RF amplifiers, it is generally restricted with 2.5µT . Therefore, several pulses
varying in amplitude are compared. The comparison was done using a step length
of ∆t = 1e− 4s.
Figure 8 shows several z−spectra calculated with different values of B1. While the
yellow curve with B1 = 0.25µT shows a very thin and distinct CEST−peak in the
z−spectrum (left picture), the larger B1−amplitude of 0.58µT prevails clearly in the
difference between z−magnetization of the water proton pool with and without
exchange Mdiff. Therefore, the latter value is chosen as amplitude for generation
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Figure 8: Desired z-spectrum and magnetization difference Mdiff = Mz,w − M̃z,w

for different values of B1, where Mdiff arises from the difference of the
z−magnetization of the water proton pool w with and without exchange rates.

of the desired state. This value was experimentally determined and corresponds
with the value derived in [21].

Time discretization

For model validity, and also for accurate numerical solutions with the symmetric
operator splitting solver, see Section 1.3.5, a minimum sampling rate (correspond-
ing to a maximum time step size) has to be prescribed and met. In particular,
the Nyquist-Shannon sampling theorem must be regarded for practical application of
results.

Theorem 7 (Nyquist-Shannon sampling theorem). [4] If a function x(t) contains no
frequencies higher than B hertz, it is completely determined by giving its ordinates at a
series of points spaced 1/(2B) seconds apart.

Reformulating this theorem for our problem yields a minimum sampling rate of

∆t <
1

2maxzSpec B0
γ
2π

to guarantee good reconstruction, where maxzSpec = |Ω|. For our proposed exam-
ple, this leads to

∆t <
1

2 · 30 · 3267.5129·1062π

s ≈ 1.30 · 10−4s.

However, such a short sampling rate results in time-consuming optimization runs.
Therefore, we use a sampling rate of ∆t = 1e− 3s for analyzing the cost functional,
where some moderate irregularities within the z-spectrum can be expected due to
the Nyquist Theorem 7. After the deduction of the right functional and optimiza-
tion parameters, the sampling rate is reduced to ∆t = 1e − 4s and optimal RF
pulses for practical application are generated.
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3.1.2 Investigation of different cost functionals

In the following, we take a closer look on the cost functional and explain its form.
Three different cost functionals are investigated. First, only a simpler version of
the full functional J, which only uses tracking of the z−magnetization of the water
proton pool and L2−regularization of the RF pulse is considered. Second, tracking
is applied to the difference between z−magnetization of the water proton pool
with and without exchange Mdiff. Third, the full cost functional J, which was de-
rived in Section 2.1 is utilized in a slightly modified form. It is shown, that this
choice fulfills the needs of Chemical Exchange Saturation Transfer problems best.
For the first two cases a block-type pulse train is chosen as initial for optimization
with an amplitude of B1 = 0.58µT . The terminal time is set to 0.9s with a step
length of ∆t = 1e− 3s yielding 900 time discretization points.

Tracking of water magnetization with exchange

We consider the cost functional J as

J1(r,ϕ) =
α

2

T∫
0

r(t)2dt+
β

q1

∫
Ω

∣∣Mz,w(T , s) −Mz,w,des(s)
∣∣q1ds.

Typical regularization parameters are chosen as α = 10−2 and β = 102. Optimiza-
tion with q1 = 2 yields an RF pulse, which results in the z−spectra in Figure 9.
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Figure 9: z−spectra using J1 calculated with and without exchange rates.

In the left plot of Figure 9, the optimized z−magnetization of the water proton pool
w calculated with exchange rates seems to be excellent, the desired magnetization
was rebuild almost perfectly. However, the z−magnetization calculated without
exchange, see the right plot, is perturbed around the solute proton pool at 3.5ppm.
This behavior is undesired, the water magnetization without exchange should not
deviate from its desired magnetization. Otherwise, it can not be guaranteed, that
the CEST−peak created with exchange stems from magnetization exchange and
not from saturation.
To overcome this issue, a modified cost functional is presented below, which uses
tracking of the difference of the z−magnetization of the water proton pool calcu-
lated with and without magnetization exchange in order to prevent this undesired
direct saturation.
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Tracking of a difference

For the next two objectives, the dynamical system is doubled in its size. Addition-
ally to the Bloch-McConnell equation, also the system with zero exchange rates
(corresponding to the Bloch equation per pool) is included. The difference of the
z−magnetization of the water proton pool, which was calculated with exchange
rates and the one without exchange rates, named Mdiff, is then defined as

Mdiff(T , s) =Mz,w(T , s) − M̃w,z(T , s), s ∈ Ω.

In Section 3.1.1 it is mentioned, why this value is important for Chemical Exchange.
Intuitively, one would assume that tracking of the Mdiff towards a desired differ-
ence Mdiff,des is a reasonable task for optimization and prevents the problems,
which occurred with the previous cost functional. Therefore, define a cost func-
tional J2 as

J2(r,ϕ) =
α

2

T∫
0

r(t)2dt+
δ

q2

∫
Ω

∣∣Mdiff(T , s) −Mdiff,des(s)
∣∣q2ds.

Again, L2−regularization is included. The norm is defined with q2 = 2, the weight-
ing parameters are set to α = 10−2 and δ = 102. Then optimization results in
the z−spectra in Figure 10.
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Figure 10: z−spectra using J2 calculated with and without exchange rates.

What we can conclude is that all the instabilities occur in both the z−spectra with
and without exchange simultaneously, since the cost functional J2 does not penal-
ize a gap between the desired magnetizations, but only between the differences,
which cancel away here. Therefore, tracking of Mdiff alone is also not a suitable
optimization task.

In contrast, the cost functional J introduced in Section 2.1 overcomes these prob-
lems and that is exactly why it was proposed.
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Best approximation in L∞-norm

Due to the preceding results, compared to Section 2.1, a slightly modified cost func-
tional J is introduced, which includes L∞−tracking of the water proton pool, as this
approach allows to set taylored boundaries for the solution. Also L2−regularization
of the RF pulse is included. This approach will overcome the issues that occurred
in the previous cost functionals. On the one hand, L∞−tracking of the desired
z−spectrum with exchange will guarantee a visible CEST−peak after optimiza-
tion. On the other hand, L∞−tracking of the z−spectrum without exchange as well
will prevent unwanted magnetization saturation around the CEST−peak. Also, the
presented tracking of Mdiff is implicitly included in this approach, but without al-
lowing to rebuild the instabilities which we faced above.

Due to [22], Section 6.1.2, we know that the problem of pure minimization

min
u∈U
‖y− yd‖L∞(Ω1) + ‖y− yd‖L∞(Ω2)

is equivalent to the problem with pointwise state constraints

min
u∈U,ε1,ε2>0

ε1 + ε2,

s.t. ‖y− yd‖L∞(Ω1) 6 ε1,

‖y− yd‖L∞(Ω2) 6 ε2.

In this spirit, we define the optimal control problem below and the solution theory
of Section 2 can be applied.

min
(r,ϕ)∈Uad,ε1>0

J(r,ϕ) = ε1 +
α

2

T∫
0

r(t)2dt,

s.t.


dM
dt = AM+ b̃, dM̃

dt = ÃM̃+ b̃,

M(0, s) =M0(s), M̃(0, s) =M0(s), s ∈ Ω,

‖Mw(T) −Mw,des‖L∞(ΩC) 6 ε1,

‖Mw(T) −Mw,des‖L∞(Ω0) 6 ε2,

‖M̃w(T) − M̃w,des‖L∞(ΩC) 6 ε3,

‖M̃w(T) − M̃w,des‖L∞(Ω0) 6 ε4,

(30)

where ε2, ε3 and ε4 are given error parameters. Therein, the main objective is
to approach the CEST−peak in an environment ΩC as close as possible in the
L∞−norm, i.e. the most important task is to reduce ε1. Simultaneously, certain
error bounds ε2 for the z−spectrum with exchange within Ω0 = Ω\ΩC, as well as
ε3, ε4 for the z−spectrum without exchange are prescribed.
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Inspired by [17], the state constraints are treated with a Lqi−penalization, where
qi ∈ N, i = 1, · · · 4, and the qi are even. With parameters µi, i = 1, · · · 4, the
optimal control problem (30) is modified to

min
(r,ϕ)∈Uad

Jpen(r,ϕ) = J(r,ϕ)

+
µ1
q1

∫
ΩC

(
Mw(T) −Mw,des

ε1

)q1
ds+

µ2
q2

∫
Ω0

(
Mw(T) −Mw,des

ε2

)q2
ds

+
µ3
q3

∫
ΩC

(
M̃w(T) − M̃w,des

ε3

)q3
ds+

µ4
q4

∫
Ω0

(
M̃w(T) − M̃w,des

ε4

)q4
ds,

s.t.


dM
dt = AM+ b̃, dM̃

dt = ÃM̃+ b̃,

M(0, s) =M0(s), M̃(0, s) =M0(s), s ∈ Ω.

(31)

3.1.3 About the optimization method

The penalized optimal control problem (31) has a similar form to the one in [17].
Therefore, the optimization method and software of [17] are used for all optimiza-
tion within this thesis. A short description of the underlying methods is given
here. For the extension of the software to sparse control, see [14]. The optimiza-
tion method is a matrix-free second-order method with exact discrete derivative
using adjoint calculus based on equation (29). The core of the optimization method
is a combination of semismooth Newton method for the box control constraints
(as well as the sparsity) with a quasi-Newton method for the smooth parts given
by the tracking term. The method is analyzed in [14]. For robustness, the method
is embedded into a trust-region framework build on Steihaug-cg [20]. The semis-
mooth Newton method is based on the reformulation of the first-order necessary
condition with Robinson’s normal map, confer [16]. In this work the proximal map
of the box constraints, and of sparsity with box constraints are applied here. As
quasi-Newton method, the BFGS method is used, in compact limited-memory im-
plementation and with a limit of 100. The objective parameters µ are calibrated
automatically with the techniques from [17].

3.1.4 Reduction of the error band

In the cost functional (31), four different error bounds εi, i = 1, · · · 4 for reproduc-
ing the desired magnetization are defined. The task is to minimize ε1. Algorithmi-
cally, this is done in an outer homotopy loop, so that all εi, i = 1, · · · 4, are fixed in
the optimization. This allows to apply the optimization method of [17]. As soon
as the optimization method finds an admissible point, ε1 is reduced and the op-
timization is continued. Within this framework, it is also possible to reduce the
other parameters ε2, ε3 and ε4. Therefore, we compare two different strategies, a
uniform reduction of those values ε1 = ε2 = ε3 = ε4, with a version, where only
the error bounds around the CEST−peak with and without exchange are reduced.
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Due to the duty-cycle constraint in the RF amplifiers, we aim at RF pulses that are
sparse in time. Two different scenarios will be investigated. First, the sparsity is
given and fixed. Later, the sparsity will be optimized by sparse control. The fixed
sparsity is prescribed as

0 6 r(t) 6 rmax for t ∈ Ton,
r(t) = 0 for t ∈ Toff,

with I = Ton ∪ Toff, Ton ∩ Toff = ∅ and I = [0, T ]. Here we would like the RF to
be 100ms on and 100ms off alternating. As initialization for optimization, a 0.9s
Gaussian pulse with a mean amplitude of 0.58µT and rmax = 2.5µT is used which
fulfills the mentioned box constraints, see Figure 11. The step length is chosen to
be ∆t = 1e− 3s, while the z−spectrum Ω = [−15, 15]ppm is discretized with a
step size of 0.05ppm. The optimization is done with on the one hand fixed values

0 200 400 600 800
time points

0

0.5

1

1.5

am
pl

itu
de

 in
 

 T

Initial RF pulse
u
v

Figure 11: Initial RF pulse for optimization using a Gaussian type pulse train, where
u = r · cos ϕ and v = r · sinϕ.

of qi, and on the other hand with a homotopy loop for increasing qi around the
optimization.

uniform reduction The error bounds are initially set to εi = 0.03, i = 1, · · · 4
and they are uniformly reduced by 1%, with regularization parameters µi = 10,
and i = 1, · · · 4. This study of optimization is done with the L2− norm for each
boundary part, so qi = 2, i = 1, · · · 4. We require a uniform reduction of all bounds
and a maximum iteration number of 10000.

non-uniform reduction The parameters εi, µi and qi are initialized with the
same values as above and a maximum iteration number of 10000. But we require a
non-uniform reduction, tightening only the error bounds around the CEST−peak
specified by ε1 and ε3, by reducing stepwise by 1%.

In Table 7 we see the optimization results, where DE denotes the outcome using
the desired RF pulse, IN the initial and UN and NON−UN are the two optimized
pulses corresponding to the description above. The optimization runs indicated
by H, SC and SCL will be discussed in Section 3.1.5 and 3.1.6. Here, the value
CEST describes the difference of the water magnetization in the CEST−peak with
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Table 7: Optimization results from different studies. The rows show the desired RF pulse
DE, the initial IN and the optimized UN, NON−UN, H and SC with its finer
version SCL. The columns depict the CEST−peak with its increase, the duty cycle,
the SAR and the error parameters.

RF CEST increase in% duty cycle SAR ε1 ε2 ε3 ε4

DE 0.123 100% 0.3028
IN 0.079 55.56% 0.6792

UN 0.0893 23.4% 55.56% 0.2934 0.0197 0.0197 0.0197 0.0197
NON−UN 0.0897 24.3% 55.56% 0.2169 0.0083 0.0300 0.0083 0.0300

H 0.0900 25.0% 55.56% 0.2799 0.0158 0.0158 0.0158 0.0158
SC 0.0954 37.3% 56.22% 0.2394 0.0130 0.0130 0.0130 0.0130
SCL 0.0930 31.8% 57.72% 0.2259 0.0142 0.0142 0.0142 0.0142

Table 8: Optimization results from different studies. The rows show the initial RF pulse
IN and the optimized UN, NON−UN, H and SC with its finer version SCL. The
columns depict the relative L∞− and L2−errors to the desired magnetization DE.

RF ε∞,1 ε∞,2 ε∞,3 ε∞,4 ε2,1 ε2,2 ε2,3 ε2,4

IN 6.0e− 2 1.6e− 1 5.0e− 2 1.6e− 2 3.3e− 2 4.8e− 2 3.2e− 2 4.7e− 2

UN 5.1e− 3 2.0e− 2 1.3e− 2 2.0e− 2 6.3e− 3 3.3e− 3 4.3e− 3 3.4e− 3
NON−UN 4.9e− 3 3.0e− 2 1.3e− 2 3.1e− 2 6.0e− 3 5.1e− 3 4.2e− 3 5.2e− 3

H 8.9e− 3 1.6e− 2 1.6e− 2 1.6e− 2 6.6e− 3 4.8e− 3 6.8e− 3 5.1e− 3
SC 9.4e− 3 1.3e− 2 1.3e− 2 1.3e− 2 7.0e− 3 3.9e− 3 7.5e− 3 4.2e− 3
SCL 5.3e− 3 1.3e− 2 1.4e− 2 1.4e− 2 5.8e− 3 3.0e− 3 5.7e− 3 3.3e− 3

and without exchange at the CEST−peak, here at 3.5ppm. Compared to the initial
value, the CEST−peak increases 23.4% for the uniform reduction UN and 24.3%
for the non-uniform reduction NON − UN. The value obtained by the desired
magnetization DE is unreachable, which was expected since it was created with a
pulse that does not fulfill the enforced sparsity pattern.
The duty cycle depicts the number of points in time, where the RF pulse is turned
on. As we applied the same fixed sparsity pattern for the initial RF pulse IN and
the two optimized pulses UN and NON−UN, this value is obviously the same
for all of them. The next column monitors the global RF pulse power

SAR(r) =

T∫
0

r(t)2dt,

where r(t) is the amplitude of the pulse during a specific point in time. Due to
application reasons, the SAR is wished to be limited, therefore it was also included
in the cost functional, see Section 2.1. The SAR of the initial pulse IN was in both
optimization runs UN and NON−UN reduced to less than a half that value, and
now admits a lower SAR than the desired RF pulse DE.
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Figure 12: Uniform reduction of the bounds resulting in ε = 0.0197 with a maximum iter-
ation number of 10000 and qi = 2, i = 1, · · · 4. Plots of z−magnetization (left)
and the difference to the desired magnetization (right) of the water proton pool
with (row one) and without (row two) exchange. Row three shows the differ-
ence between magnetization with and without exchange and the optimized RF
pulse, where u = r · cosϕ, v = r · sinϕ.

The values ε∞,i, i = 1, · · · 4 and ε2,i, i = 1, · · · 4 in Table 8 define the relative max-
imum error and the L2−error of the optimized and initial magnetizations com-
pared to the magnetization DE in all four tracking regions. Now we see that both
optimized pulsesNON−UN andUN dramatically reduce those values, where the
one with a uniform reduction UN has a better overall error, while the non-uniform
one NON−UN is slightly better in the regions around the CEST−peak, but not
so good outside.
Due to the better overall error and only a slightly worse CEST−peak, the following
optimization runs should consider a uniform reduction of the error parameters.
Figure 12 shows the graphical results of the optimization run with the resulting RF
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pulse UN. Both in the magnetization with and without exchange rates, we see that
the optimized magnetization scratches the lower bound at 7.5ppm and −7.5ppm,
respectively. This phenomena is a result of the Nyquist-Theorem 7, as the sampling
rate was chosen too small. We expect to overcome this instabilities when using a
smaller time step length ∆t. Moreover, the magnetization without exchange rates
still shows some direct saturation of the water proton pool at 3.5ppm. A further
drive of optimization should reduce this undesired behavior. The optimized RF
pulse has left its initial Gaussian shape to a slightly oscillating one.

3.1.5 Homotopy loop

Next, optimization with a fixed set of values qi, i = 1, · · · 4 is compared with a
version, where these experiments are increased in a homotopy loop around the
optimization in order to approach the L∞−tracking. The expected outcome of this
comparison is, that the homotopy loop can drive optimization further towards the
desired state (in an L∞−sense).

optimization with fixed exponents First, optimization of above problem
is done without a homotopy loop, i.e. without increasing the values qi. We set
qi = 2 and µi = 2, i = 1 · · · 4 and εi = 0.03, i = 1, · · · 4 in the first place. This case
corresponds to the uniform reduction with optimized RF pulse UN from above.

optimization with increasing exponents We perform optimization for
fixed exponents to some maximal iteration number. Then the exponents qi are
increased and optimization is started again, where this time the initial RF is the
optimized RF pulse of the last optimization, see Algorithm 1.

Algorithm 1 Homotopy loop
Data: Initial RF pulse (r0,ϕ0), initial parameters qi, allowed maximum number of

iterations maxIter, number of homotopy runs n
Result: Optimized RF pulse (r,ϕ)
for i=1 to number homotopy runs n do

optimize yielding RF pulse (r,ϕ)
increase qi
set (r0,ϕ0) = (r,ϕ)

In particular, optimization is here done with increasing the qi from 2 to 10 in steps
of 2, allowing a maximum number of iterations 2000 for every qi. Again, all µi are
set to 10 and ε1 = · · · = ε4 = 0.03. As before we require a uniform reduction of
the bound. During optimization, the εi were decreased to εi = 0.0158, i = 1, · · · 4.
The µi are recalibrated within the optimization method of [17] automatically. Table
7 shows that the optimized RF pulse H has an increasing CEST−peak of 25%,
where the SAR as about the same as for the other optimized pulses. The errors
towards the desired state DE are about the same as for UN, see Table 8.
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Figure 13: Uniform reduction of the bounds resulting in ε = 0.0158, where qi = 2 to 10
with a maximum iteration number of 2000. Plots of z−magnetization (left) and
the difference to the desired magnetization (right) of the water proton pool
with (row one) and without (row two) exchange. Row three shows the differ-
ence between magnetization with and without exchange and the optimized RF
pulse, where u = r · cosϕ, v = r · sinϕ.

In Figure 13 we see that compared to the run without homotopy, the optimized RF
pulse has a similar shape. But magnetization with and without exchange is now
significantly closer to the desired one which is a consequence of the smaller value
of ε1.
Comparing these two approaches, performing with a homotopy loop prevails here.
The effort for both optimization tasks was the same, as we have chosen the total
number of iterations being the same, but the optimized RF pulse with homotopy
loop yields a better z−spectrum both with and without exchange than the one
without homotopy.
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3.1.6 Sparsity

In this section, motivated by the fact, that the RF amplifiers underly a certain duty
cycle constraint, a comparison regarding two different methods for obtaining spar-
sity is done. The first one allows the control only to work on a certain set of
time points Ton, whereas on Toff it is forced to be zero. The second one includes
L1−regularization of the RF amplitude in the cost functional, the points in time
where the RF should be zero are not prescribed here.

fixed sparsity Analogously to Section 3.1.2, we define a region Ton of the time
set and a counterpart Toff such that [0, T ] = Ton ∪ Toff. Both controls u and v are
allowed to work on Ton, but are forced to be zero on Toff. The initial Gaussian pulse,
see Figure 11 fulfills this requirements with Ton = [0, 100]∪ [200, 300] · · · ∪ [800, 900]
and Toff = [0, T ]\Ton, where T = 900ms. All regularization parameters correspond
to Section 3.1.4. This case was already analyzed within the RF pulse UN, yielding
a defined sparsity of 44.44%.

sparsity control It is well known, that sparsity of the optimal control can be
achieved by adding a L1−cost of the optimal control to the objective, confer [19].
This task is performed using a two step approach.
Step 1. The cost functional J is enhanced with additional L1−regularization, so

Jsparse = J+ η

T∫
0

|r(t)|dt,

with a regularization parameter η > 0, see Section 2.1. During this part of opti-
mization it is detected, where the RF pulse is switched on and off, i.e. certain sets
Ton and Toff can be defined. The exponents are fixed to qi, i = 1, · · · 4, the εi are
fixed to 0.03. In contrast to the case of fixed sparsity, optimization is started with
the desired RF pulse as initial pulse. Therefore, the duty cycle in the beginning
is 100% and the error of the initial towards the desired is zero in all regions of
interest. The regularization parameters were set in a way, that a similar sparsity to
the case with fixed sparsity was obtained, see Table 7.
The implementation is based on an extension of [17] to sparsity by using Robin-
son’s normal map, [16].
Step 2. Optimization with the original cost functional J is done analogously to the
case of fixed sparsity with the sets Ton and Toff, which were examined in Step 1.
As initial RF pulse, the optimized one of Step 1 is used. Table 7 shows that the
CEST−peak was increased by 37.3%, which is by far the best of all results. The
SAR is in the order of the others. Also the ε−bounds are reduced far more than
the others with uniform reduction. In Table 8 we see that the the errors around
all regions of interest are in the order of the others. The interesting form of the
optimized RF pulse can be seen in Figure 14.
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Figure 14: Two step approach including sparse control resulting in ε = 0.013. Plots of
z−magnetization (left) and the difference to the desired magnetization (right)
of the water proton pool with (row one) and without (row two) exchange. Row
three shows the difference between magnetization with and without exchange
and the optimized RF pulse, where u = r · cosϕ, v = r · sinϕ.

We compared different method of performing optimization. First, a uniform re-
duction of the error bounds was identified to be more stable compared to the non-
uniform one. Second, the homotopy loop around the qi was presented as method
to drive optimization further towards the desired state. In the end, we introduced
L1−sparsity and showed that it is possible to also optimize the sparsity pattern
itself, together with the RF pulse. These first runs with sparsity optimization yield
promising results.
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3.1.7 Optimized RF pulse

Now we turn to the optimization with fine time step size ∆t = 1e− 4s. As this
value is a correct discretization choice by means of the Nyquist Theorem 7, we ex-
pect that the instabilities around 7.5 and −7.5ppm vanish. This behavior occurred
indeed, see Figure 15.
The optimized sparse RF pulse is depicted in the lower right plot. Similarly to the
case with the larger step length, the optimized RF pulse is after a first amplitude
zero for quite a long time and then gains an oscillating behavior with some addi-
tional zero parts. The optimized z−spectrum stays always inside the box around
the desired spectrum and is active at the CEST peak, see the upper right plot.
Other results are summarized in Table 7, line SCL. There it can be seen that the
optimized error bound ends up slightly larger than in the coarse discretization SC.
The fine solution is slightly sparser and exhibits a smaller SAR value. The increase
in CEST−peak is 31.8%. The relative errors are depicted in Table 8, line SCL. Here,
lower values than in the coarse case SC are observed.

Robustness

In this last series of comparison, robustness of the optimized RF pulse with respect
to slight changes of relaxation times, exchange rates and frequency offsets is exam-
ined. Again, as desired state, the output of a 0.9s continuous wave pulse is used.
The values ε∞ and ε2 denote the relative L∞− and L2−errors of the optimized
z−magnetization of the water proton pool with CSL towards the desired one DE
with exchange. In contrast, ε̃∞ and ε̃2 denote the relative errors without exchange
rates.

Table 9: Robustness regarding a change of relaxation times T1,w, T1,s and T2,w, T2,s.

Example RF CEST ε∞ ε̃∞ ε2 ε̃2

1

DE 0.123
SCL 0.093 1.3e− 2 1.4e− 2 3.5e− 3 3.7e− 3

2

DE 0.125
SCL 0.095 1.2e− 2 1.4e− 2 3.8e− 3 3.8e− 3

3

DE 0.122
SCL 0.094 1.9e− 2 1.9e− 2 4.4e− 3 4.7e− 3

4

DE 0.126
SCL 0.096 1.9e− 2 2.0e− 2 4.7e− 3 4.9e− 3

5

DE 0.116
SCL 0.089 8.6e− 3 1.4e− 2 3.0e− 3 3.2e− 3
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First, we analyze the behavior regarding a change of relaxation times T1, and T2,
see Table 9.
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Figure 15: Two step approach including sparse control resulting in ε = 0.0142. Time
step length of ∆t = 1e − 4s. Plots of z−magnetization (left) and the differ-
ence to the desired magnetization (right) of the water proton pool with (row
one) and without (row two) exchange. Row three shows the difference between
magnetization with and without exchange and the optimized RF pulse, where
u = r · cosϕ, v = r · sinϕ.

The first example describes the original parameter set. In the second respective
the third example, the longitudinal respective the transverse relaxation times are
increased by 10%. During the fourth example, all relaxation times are increased
by 10%. In contrast, the relaxation times are reduced by 10% in the fifth example.
In Table 9 wee see that CEST and the four errors change only slightly with the
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changed relaxation times. Note that the relative errors are always related to the
continuous waver pulse using the corresponding changed relaxation times.

Next, the behavior among changes of magnetization exchange rates is analyzed.
Again, the first example uses the initial parameter set to have a certain reference.
During the second and the third one, the exchange rates kws and ksw are increased
by 10% and 20%, while in the fourth, they are decreased by 10%. In the fifth one,
only the exchange rate from solute to water ksw is increased by 30%. The sixth one
reduced kws by 50% and increases ksw by 50%.

Table 10: Robustness regarding a change of magnetization exchange rates kws and ksw.

Example RF CEST ε∞ ε̃∞ ε2 ε̃2

1

DE 0.123
SCL 0.093 1.3e− 2 1.4e− 2 3.5e− 3 3.7e− 3

2

DE 0.131
SCL 0.100 1.3e− 2 1.4e− 2 3.7e− 3 3.7e− 3

3

DE 0.140
SCL 0.106 1.3e− 2 1.4e− 2 3.9e− 3 3.7e− 3

4

DE 0.111
SCL 0.086 1.3e− 2 1.4e− 2 3.4e− 3 3.7e− 3

5

DE 0.117
SCL 0.088 1.3e− 2 1.4e− 2 3.5e− 3 3.7e− 3

6

DE 0.055
SCL 0.040 1.3e− 2 1.4e− 2 3.2e− 3 3.7e− 3

In Table 10 we see that although a change of exchange rates has a significant
influence on the CEST−peak, the behavior of the optimized RF pulse compared
to the desired one is about the same. The values specified by ε̃∞ and ε̃2 are in all
examples the same, as those are calculated without exchange rates.

Table 11: Robustness regarding a change of the frequency offset of the solute ωs.

Example RF CEST ε∞ ε̃∞ ε2 ε̃2

1

DE 0.123
SCL 0.093 1.3e− 2 1.4e− 2 3.5e− 3 3.7e− 3

2

DE 0.122
SCL 0.095 1.3e− 2 1.4e− 2 4.1e− 3 3.7e− 3

3

DE 0.123
SCL 0.096 1.3e− 2 1.4e− 2 4.5e− 3 3.7e− 3

4

DE 0.120
SCL 0.093 1.3e− 2 1.4e− 2 4.1e− 3 3.7e− 3

5

DE 0.117
SCL 0.091 1.3e− 2 1.4e− 2 4.4e− 3 3.7e− 3
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Last, robustness of the CEST effect with respect to change in the frequency offset
of the solute proton pool ωs is regarded. For the second and the third example,
it is set to 4ppm and 4.5ppm, while for the fourth and fifth they are reduced to 3
and 2.5ppm. As can be seen in Table 11, both the performance of the continuous
wave pulse DE and the optimized pulse SCL are nearly not influenced by altered
frequency offsets.

3.2 Optimization of 2 pool problem for phantom measurements

Another two pool model, which was designed to be measured on the MR scanner
is presented and optimized here. The parameters originate from creatine in mus-
cle and correspond to [13]. Due to the specification of the MR−scanner, B0 = 3T .
The longitudinal relaxation times are set to T1,w = 1.3s and T1,s = 0.5s, where
the transversal relaxation times are T2,w = 0.18s and T2,s = 0.011s. The frequency
offsets are described with ωw = 0ppm and ωs = 1.9ppm, where the exchange
rates between the water proton pool and the solute proton pool are specified by
kws = 0.702Hz and ksw = 389Hz. As normalized initial magnetization, M0,w = 1

and M0,s = 0.0018 are used. We require a pulse duration of 0.9s, where corre-
sponding to Nyquist’s Theorem 7, a time step length of ∆t = 1e− 4s is applied.
The z−spectrumΩ = [−15, 15]ppm is discretized into 601 steps using a step length
of 0.05. As desired state for optimization, the magnetization calculated with a 0.9s
continuous wave RF pulse with an amplitude of 0.58µT was used.
Optimization was done analogously to Section 3.1.7, i.e. a uniform reduction of
the error bands, a homotopy loop and sparsity via L1−regularization were used.

Table 12: Optimization results from different studies. The rows show the desired RF pulse
DE and the optimized OP. The columns depict the CEST−peak, the duty cycle,
the SAR and the error parameters.

RF CEST duty cycle SAR ε1 ε2 ε3 ε4

DE 0.048 100% 0.3028
OP 0.029 33.6% 0.1796 0.0102 0.0102 0.0102 0.0102

Table 13: Optimization results for the second two pool model with the optimized OP.
Optimization results from different studies. The row shows the optimized RF
pulse OP. The columns depict the relative L∞− and L2−errors to the desired
magnetization DE.

RF ε∞,1 ε∞,2 ε∞,3 ε∞,4 ε2,1 ε2,2 ε2,3 ε2,4

OP 3.7e− 3 5.9e− 3 1.0e− 2 9.5e− 3 5.2e− 3 1.5e− 3 5.1e− 3 1.5e− 3

With a duty cycle of only 33.6%, the error of the ε−bands could be reduced to
εi = 0.0102, see Table 12. Additionally, the SAR was reduced by about 41%
compared to the continuous wave pulse. The desired state is reached closely, the
relative errors are depicted in Table 13. Figure 16 shows the visualized results,
especially the interesting shape of the optimized RF pulse.
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Figure 16: Two step approach including sparse control resulting in ε = 0.0102. Time
step length of ∆t = 1e − 4s. Plots of z−magnetization (left) and the differ-
ence to the desired magnetization (right) of the water proton pool with (row
one) and without (row two) exchange. Row three shows the difference between
magnetization with and without exchange and the optimized RF pulse, where
u = r · cosϕ, v = r · sinϕ.
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conclusion and outlook
A numerical forward solver for the Bloch-McConnell equation was presented which
is second order accurate and provides solutions in short time. The optimal control
problem for Chemical Exchange Saturation Transfer was modeled and analyzed.
First order necessary conditions were derived. The next section covered compre-
hensive numerical optimization studies for a selected 2 pool model, including nu-
merical experiments with different objective functions, sparse control, and robust-
ness studies. Afterwards, optimization was done for a second two pool model,
yielding a RF pulse which will be implemented on the scanner for performing
phantom measurements.

In the future, the sparse control for CEST should be further investigated, especially
the joint optimization of sparsity and L∞−tracking in one step is expected to fur-
ther increase the quality of the solutions. Furthermore, weighting or penalization
terms should be added in order to more evenly distribute the sparsity pattern.
Besides, the investigation of other homotopy strategies for the εi and qi might ad-
ditionally improve the CEST effect of the optimized pulses. However, the state and
the adjoint solvers should be parallelized first using C++ with OpenMP, or using
graphic cards. Besides, also RF pulse design for models with three or more pools
needs to be investigated for improving the practical realization of CEST imaging.
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