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Abstract  

Aroma Extract Dilution Analysis (AEDA) evaluates volatile compounds most likely 

contributing to the overall aroma of a food sample by means of flavour dilution (FD) 

factors. In the food industry, this can be useful to compare aroma-active profiles of raw 

materials or finished products and to select those that are statistically similar. When 

multiple samples are analysed, the high number of variables makes it difficult to take 

conclusions. Principal Component Analysis (PCA) should not be applied to FD values as 

they are discrete numbers. To our knowledge, there are no appropriate methods available 

to interpret AEDA results from multiple samples. In this study, a new rapid methodology 

to interpret AEDA results was developed. Latent Dirichlet Allocation (LDA) was 

developed in the context of text analysis as a mean of dimensionality reduction and has 

been successfully applied for the analysis of AEDA outcomes. Furthermore, Jensen 

Shannon divergence measure was a useful tool to compare the distribution of volatile 

compounds with similar descriptions ("berries", "cheese" or "fruits") among different 

samples. 

Introduction 

Gas chromatography-olfactometry (GC-O) is used to judge the sensory relevance of 

the volatiles present in foods. In particular, AEDA evaluates the odour activities of the 

volatiles by sniffing the effluent of a series of dilutions of the original aroma extract. The 

result is expressed as the flavour dilution (FD) factor that corresponds to the maximum 

dilution value detected. Compounds with the highest FD are assumed to be most likely 

contributing to the overall aroma of a food product. AEDA is a time-consuming technique 

and generally research articles report the analysis of 1-3 samples where it is fairly easy to 

see differences. However, when multiple samples are analysed, the interpretation of 

AEDA results becomes challenging. This is because AEDA data set is fairly high-

dimensional but sparse and it is difficult to conclude similarity among samples. A 

common approach in situations like this is to map the data into an adequate lower 

dimensional sub space where the comparison and clustering is done. When the data is 

normally distributed, PCA is often used. However, PCA should not be applied to AEDA 

because the data are discrete. This may be the reason why in other works, the statistical 

interpretation of AEDA has been claimed to be controversial or even not applicable [1, 

2] although the authors did specify the reasons.  

Latent Dirichlet Allocation (LDA) was developed in the context of text analysis as 

a means of dimensionality reduction [3]. For example, LDA can be used to cluster 

documents where instead of cluster them word by word, they can be clustered by topic (a 

topic would be described by a distribution over words). In probability theory and 

statistics, the Jensen–Shannon divergence is a method of measuring the similarity 

between two probability distributions [4].  

The aim of this work was to develop a rapid methodology using LDA and Jensen-

Shannon divergence to interpret AEDA results from multiple samples. In particular, the 

method was used to investigate the similarities in the aroma profile of pet foods. 
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Materials and methods 

Samples 

8 pet foods samples from different brands and varieties were used in this study. 20 

g of each sample were suspended with 20 mL H2O and extracted with 100 mL diethyl 

ether (distilled before use). The organic layer was separated from the residue and the 

volatiles were isolated via Solvent Assisted Flavour Evaporation. The distillate was dried 

over sodium sulphate and concentrated to 200 μL using a Vigreux column.  

GC-O analysis 

High resolution gas chromatography was performed by means of a Trace GC 

(Finnigan, Bremen) and a column FFAP (30 m x 0.25 mm x 0.25 μm, J&W Scientific). 

The samples (1 μl) were injected using “on column“ injection technique at 40 °C. After 

1 min, the temperature was raised 6 °C/min until 240 °C were reached. The flow rate of 

the carrier gas (helium) was set on 1.5 mL/min. At the end of the capillary, the effluent 

was split 1:1 into a flame ionization detector (FID) and a sniffing port by using two 

deactivated, uncoated fused silica capillaries (20 cm × 0.25 mm). The FID and sniffing 

port were held at 250 °C. Linear retention indices (LRI) were calculated by the equation 

given by Kovats. The volatile fraction was diluted stepwise 1+1 with solvent and each 

dilution step was sniffed until no odourant in the effluent was perceived. The odour 

extract dilution analysis was performed by two trained panellists. FD factors were 

expressed in logarithmic scale units. 

Statistical analysis 

LDA was used to model aroma profiles as random mixtures over latent topics, each 

topic was characterized as a distribution over aroma compounds and was interpreted as a 

basic aroma profile. 

The following generative process was assumed for each product aroma profile In: 

1. Choose N  ̴  Poisson (ξ) as the sum of all logarithmized FD-factors. in In 

2. Choose Θ  ̴  Dirichlet (α) 

3. For each of the N: 

(a) Choose topic Zn  ̴ Multinomial (Θ) 

(b) Choose a DF from the aroma compounds from p(In|Zn,β), a multinomial 

probability conditioned on the topic Zn 

Model fitting and inference based on this process was done by Variational Bayes. 

To determine the similarity of the aroma profiles of two products, to use information-

theoretically motivated measure of distance of two probability distributions 𝑷 and 𝑸 like 

the Kullback-Leibler divergence 𝑫𝑲𝑳(𝑷||𝑸) =  ∑ 𝑷(𝒊) ⋅ 𝐥𝐨𝐠
𝑷(𝒊)

𝑸(𝒊)
 𝒊 is appropriate. 

Jensen-Shannon Divergence is the symmetric version of Kullback-Leibler 

divergence and was used a distance metric to describe distances between products, as 

follows:  

𝑱𝑺𝑫(𝑷||𝑸) =
𝟏

𝟐
𝑫𝑲𝑳(𝑷||𝑴) +

𝟏

𝟐
𝑫𝑲𝑳(𝑸||𝑴) 

Where 𝑴 =
𝟏

𝟐
(𝑷 + 𝑸). 

Results and discussion 

A total of 77 odour-active compounds was detected in the samples although 10 of 

them could not be identified (Table 1). The 67 identified compounds include 11 alcohols, 

10 aldehydes, 10 acids, 8 ketones, 7 sulphur compounds, 4 esters, 4 pyrazines, 4 lactones, 
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3 hydrocarbons, 2 pyrrolines, 2 furans and 2 nitrogen compounds. Not all of the flavour 

active compounds were present in all the samples and for those present in all the samples, 

the FD values were different in many cases. From the FD factors it was not obvious if 

samples were statistically different to each other (Figure 1). 

Table 1: Volatile compounds in the pet food samples and their odour description.  

 

LDA was used to reduce the dimensions by clustering the odour descriptors into 

“aroma topics”. The 77 odour-active compounds were narrowed down to 3 aroma topics, 

each aroma topic being a distribution of odour-active compounds as shown in Figure 2. 

Aroma topic 1 was mainly defined by compounds having sweet, roasted notes, Aroma 

Topic 2 by spicy, fruity floral notes and Aroma Topic 3 by stable, fatty and cheese notes.  

In Figure 3, the aroma topics per sample are shown. As it can be seen the aroma 

topic 1 was common to all the samples. It could be argued that it contains the basic flavour 

active compounds for pet foods. The presence of aroma topics 2 and 3 varied among the 

samples contributing to the specific notes. It was observed that products 2, 4 and 6 had 

similar flavour active profiles, as well as products 7 and 8. 

Compound/chemical class Odour descriptor LRI FFAP Compound/chemical class Odour descriptor LRI FFAP

Ketones Alcohols

2,3-butanedione butter 967 linalool floral 1 1529

3-mercapto-2-butanone catty, blackcurrant 1267 geraniol rose 1839

1-octen-3-one mushroom 1294 2-methoxyphenol smoky 1857

3-mercapto-2-pentanone catty 1356 2-phenylethanol honey 1 1900

(Z)-1,5-octadien-3-one geranium 1367 maltol caramel 2 1957

3-methyl-2,4-nonandione minty 2 1706 4-ethyl-2-methoxyphenol clove 1 2014

β-damascenone apple 1807 4-methylphenol barnyard 2083

β-ionone violet 1920 eugenol clove 2 2162

Aldehydes 3-/4-ethylphenol leather 2169

2-/3-methylbutanal malty 911 2,6-dimethoxyphenol smoky, clove 2258

hexanal grassy 1077 isoeugenol clove 3 2333

(Z)-4-heptenal fishy 1233 Pyrrolines

octanal citrus 1289 2-acetyl-1-pyrroline roasty 1 1328

(E,Z)-2,6-nonadienal cucumber 1582 2-propionyl-1-pyrroline roasty 2 1406

phenylacetaldehyde floral 2 1625 Terpenes and hydrocarbons

(E,E)-2,4-nonadienal fatty 1 1688 á-pinene resinous 1007

(E,E)-2,4-decadienal fatty 2 1800 (E,Z)-1,3,5-undecatriene pineapple 1378

(E,E,Z)-2,4-6-nonatrienal oatflakes 1 1860 vanillin vanilla 2560

tr.-4,5-epoxy-(E)-2-decenal metallic 1986 Esters

Acids ethyl-2-methylbutanoate fruity 1 1038

acetic acid vinegar 1433 methylhexanoate fruity 2 1174

propanoic acid cheese 1 1511 ethyl-3-phenylpropanoate cinnamon 1 1867

2-methylpropanoic acid cheese 2 1553 ethylcinnamate cinnamon 2 2113

butanoic acid cheese 3 1606 Nitrogen compounds

2-/3-methylbutanoic acid cheese 4 1656 indol mothballs 1 2440

pentanoic acid cheese 5 1724 3-methylindol mothballs 2 2480

3-/4-methylpentanoic acid cheese 6 1781 Terpenes and hydrocarbons

hexanoic acid goat 1 1833 á-pinene resinous 1007

phenylacetic acid honey 2 2530 (E,Z)-1,3,5-undecatriene pineapple 1378

phenylpropionic acid goat 2 >2600 vanillin vanilla 2560

Sulfur compounds Lactones

3-methyl-2-buten-1-thiol beer 1107 γ-octalactone coconut 1906

dimethyltrisulfide cabbage 1 1370 sotolon seasoning 1 2185

2-fufurylthiol burnt 1418 δ-dodecalactone peach 2383

methional cooked potato 1444 3-hydroxy-2(2H)-pyranone meaty 1953

benzenemethanthiol cress, burnt 1616 Unknowns

dimethyltetrasulfide cabbage 2 1713 unknown 1 sulphurous 1150

2-acetyl-2-thiazolin roasty 3 1744 unknown 2 caramel 1 1415

Pyrazines unknown 3 minty 1 1555

2,3,5-trimethylpyrazine earthy 1 1400 unknown 4 catty, rhubarb 1933

2-ethyl-3,5-dimethylpyrazine earthy 2 1450 unknown 5 oatflakes 2 1975

2,3-diethyl-5-methylpyrazine earthy 3 1478 unknown 6 sour 2029

2-vinyl-3,5-dimethylpyrazine earthy 4 1542 unknown 7 minty 3 2079

Furans unknown 8 fatty 3 2150

furaneol caramel 3 2017 unknown 9 foxy 2208

abhexone seasoning 2 2246 unknown 10 chemical 2300
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Figure 1: FD factors for the 8 samples analysed and the corresponding descriptors identified for each of the 
flavour-active compounds.  

 
Figure 2: Aroma topics obtained by LDA. Bars represent the distribution of each odour-active compound.  

 
Figure 3: Aroma topics 1, 2 and 3 in the samples (Left, centre and right columns respectively).  

The developed method was successfully applied to pet food and could be a useful 

tool for the food and flavour industry to select raw materials with similar aroma profiles. 

The correlation between this method and the traditional quantification of compounds 

could be explored in the future. 
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