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Bringing classical Robot Vision descriptors to Deep Learning*

Jean-Baptiste Weibel, Timothy Patten, Michael Zillich and Markus Vincze

Abstract— Robot vision still relies heavily on classical hand-
crafted features because of their demonstrated robustness.
Recent advances in Deep Learning have been drastically
outperforming such classical approaches on images, however,
transferring this success to 2.5D data in a robust manner is still
an open question, both because of the challenges introduced by
an additional dimension and the lack of non-artificial large
3D dataset. In this work, we demonstrate the benefits of using
the PointNet[8] architecture to improve upon any histogram-
based descriptor. In particular, we introduce a network using
a global shape descriptor and a local descriptor that is directly
applicable to a point cloud, and that keeps the robustness of the
original descriptors (rotation invariance, robustness to variable
point density and occlusion). We obtain 83 % accuracy on the
ModelNet 40 dataset, using 10-100x less parameters than some
competing methods.

I. INTRODUCTION

Since the emergence of cheap and reasonably precise 2.5D
sensors, such as the Kinect, 3D object classification has been
intensively studied. It is an essential task for any indoor
robot. Many descriptors have been created for this purpose
specifically for such sensor. They all use point clouds, which
became the de facto data representation for robotic tasks.

The state-of-the-art deep learning methods used in general
computer vision have not been widely adopted by the field,
partly because they do not mix well with the unstructured
representation that is a point cloud, but also because large
datasets acquired with such sensor are still quite rare, which
limits the direct applicability of such methods.

This problem can be avoided altogether by using artificial
computer generated models to train a neural network, but
compared to 3D artificial models, data acquired by robots
tends to be noisier in a few characteristic ways:
• unaligned objects
• occlusion
• outliers points
• sensor noise
It is impossible to make any assumption about the pose of

objects in the scene. As such, the only two options are to use
rotation-invariant features, a path chosen by most classical
descriptors, or to align the data and compute features on
aligned models. If a large body of work exist regarding the
computation of robust local reference frame, aligning full
objects with noisy data is a challenging problem, and even
though they can deal with sensor noise to some extent, most
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of these methods are quite sensitive to outliers or occlusion.
Occlusions can be caused either by other objects in front of
our object of interest, or by viewpoint being unaccessible to
the robot. Outliers, on the other hand, are often remnants
from a previous segmentation step. Finally, sensor noise is
inevitable, and tends to increase with the distance to the
sensor. Robustness to variable point density and variable
noise is therefore important.

Most deep learning architectures developed so far do
not consider all type of noise. In particular, most of the
recent and best performing works are assuming aligned
models, which is, as discussed before, non-trivial to obtain
in a robotic context. These noise sources have all been
studied with more classical approaches which led to robust
descriptors.

We present in this paper a method to bridge the gap
between those two worlds. Our proposed architecture makes
use of the PointNet[8] architecture to replace the histogram
with a learned probabilistic version, making it possible to
learn end-to-end architectures that work on the original fea-
ture space. Any histogram-based descriptor can be improved
this way, keeping the original features advantages, such as
rotation invariance (no alignment necessary), robustness to
occlusions and variable point density.

Our contribution is the introduction of a general method to
improve the descriptiveness of any histogram-based descrip-
tor through learning while keeping their robustness. We also
showcase this method on an ESF-like global shape descriptor
[18] coined L-ESF and a SHOT-like local descriptor [16]
coined L-SHOT.

II. RELATED WORK
A. 3D Classification

Unsurprisingly, deep learning techniques dominate the
field of 3D classification. Due to the multiplicity of data
representation available when dealing with 3D data, the
approaches can differ drastically. We present here a non-
exhaustive list focusing on the most common and most
promising architecture.

The most straightforward way to apply convolutional
neural networks (CNN) to 3D data is to start by extracting
2D views from the full model. These depth maps can
then be fed to any available CNN. Many mappings from
single-channel to three-channel representation have also been
developed[3][2], thus avoiding the issue of the lack of large
dataset for training through the re-use of images-learned
features. Once a representation for each view is computed,
different schemes for pooling them have been developed,
from view pooling [15] to more complex view-set reasoning
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[17]. While performing very well in practice, thanks to the
advances of 2D CNN, these approaches generally lose all
information between the views, and raise the problem of view
selection. In an indoor robotic context, not all viewpoints are
accessible. They tend to use a lot more parameters than other
methods.

It is also possible to extend the design of 2D CNN to 3D
CNN, and to learn features over voxel grids. This direction
has been explored in [19] but also [7]. While this direction
is a meaningful extension of CNN, they bring with them
two main problem inherent to the design of the network.
First, the additional dimension is an optimization burden,
and because of the explosion of the number of parameters,
such approaches have been forced to work on relatively
coarse voxel grids, making the data much less informative.
Partitioning the space as in [11] is a way to tackle this issue.
Second, because of the design of the convolution, they are not
rotation invariant. They would thus need either to separately
learn each orientation of the object, making learning harder,
or align the model beforehand, which is in itself hard to
perform robustly.

The last direction is to work directly on point clouds.
This data representation loses any explicit neighbourhood
information. One way to get around it is to rely on the
creation of a KD-Tree over the set of points as in [6].
However, the KD-Tree itself depends on the orientation of the
model. Moreover, a reasonably large noise can also affect the
structure of the KD-Tree. Another option is to rely only on
the implicit information of the coordinates, as in [8] or [10].
The architecture from [8] will be referred to as the PointNet
architecture. By drastically expanding the feature dimension
of the coordinates (from 3 to 1024 in multiple steps), the
network can then learn up to 1024 function expressing a
probability of presence in a certain area of the space. This
approach also requires aligned data. The author relies on
a spatial transformer network[5], to learn a data dependent
alignment. Learning such an alignment over a whole object,
however, is vulnerable to outliers and occlusion in two ways:
the alignment itself will be affected and the representation
will then be computed on a not only incomplete but also
potentially misaligned set of points. The same author also
demonstrated the possibility of hierarchical feature learning
with the PointNet architecture[9], using a second PointNet
to learn over a set of local descriptors. In [10], the author
follows a similar path, except that it assumes that the models
are already aligned, and improve on the layers of the network
by subtracting a weighted version of the maximum activation
value over the whole set for each filter.

B. Robotic classification

As in classical vision, handcrafted features were carefully
developed to capture either local, regional or global infor-
mation.

To capture local information, a whole family of descriptors
were created following variants of the scheme introduced by
the Point Feature Histogram (PFH) and Fast Point Feature

Histogram (FPFH) [13]. They both rely on a set of angle be-
tween the normal of a point of interest and its neighborhood.

The best performing local handcrafted descriptor is prob-
ably the Signature of Histograms of OrienTations (SHOT)
descriptor [16]. It first aligns the neighborhood along a local
reference frame. This local reference frame is computed as
a repeatable representation of the statistical distribution of
points. Once aligned, the sphere around the point of interest
is divided in 32 spatial bins, and a histogram is computed
over each one of them.

The idea behind PFH/FPFH was extended to capture
viewpoint specific global information, by considering angles
with the vector going from the viewpoint to the centroid
of the considered object. This approach was coined View-
point Feature Histogram (VFH)[12]. On the other hand, the
Ensemble of Shape Functions (ESF) [18] relies on simple
randomly sampled geometrical construct, such as pairs and
triangles, instead of relying on the direct neighborhood of a
point of interest.

Through their use of randomization, histogram as a pool-
ing strategy, or other methods, all these descriptor have
proven their robustness to most of the type of noise encoun-
tered in data acquired by a robotic platform. However, their
descriptiveness is no match for more modern deep learning
approaches, and as such, it is typically challenging to reach
state-of-the-art results using such descriptors.

III. LEARNED DESCRIPTORS FOR ROBOTIC
CLASSIFICATION

Considering both the desire for robustness and the need
for good accuracy and generalization, we propose to learn
descriptors using the PointNet architecture, as a histogram-
like pooling solution thus providing robust yet descriptive
features.

In this section, we will first detail how we propose to learn
such a representation, then provide two concrete applications,
one on a global shape representation coined Learned-ESF
(L-ESF), and one on a local shape representation coined
Learned-SHOT (L-SHOT).

A. Learning histogram-like features

As illustrated in the previous section, most of the descrip-
tors used in robotic rely on histograms, which is a crucial part
of their robustness. Approaching noisy data as a set is a good
trade-off between the amount of information discarded and
the robustness of the description, and a histogram is the most
straightforward way to approach set pooling. The PointNet
architecture, by working on one data point at a time but
optimizing over the whole set, provides a structure to learn
functions that activate when a data point is present nearby.
In [8], those functions behave like probabilistic bins over
the Euclidean space. The global optimization ensures that
those functions are optimally spread. An ensemble of such
functions can therefore be seen as a probabilistic histogram
that is trainable end-to-end. This idea can be extended to any
other space.
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Fig. 1. System overview of our proposed method. The classifier layer is composed of two fully connected layers. N is the number of pairs sampled, M
is the number of local descriptors sampled.

In this setup, the spatial transformer network of the
original PointNet architecture is not necessary as we are
not working on Euclidean coordinates. Instead, we use 4
one-dimensional convolutional layers, with a kernel size of
1, and a progressively increasing number of filters, and
then a max-pooling layer to implement our histogram-like
feature learning scheme. Each of the layer include a batch
normalization step [4]. We also subtract a weighted version
of the maximum value of a given filter over the whole set to
each output, as described in [10]. We choose to use ReLU
as an activation function.

B. Global Pipeline - Learned ESF

In a first step, we want to extract robust shape informations
globally. This pipeline is strongly inspired by the ESF de-
scriptor [18], which is to our knowledge the best performing
global handcrafted shape descriptor that does not depend on
the viewpoint choice.

The ESF descriptor computation first samples randomly
pairs and triplets of points and extracts handcrafted features
for each one. It then creates various histograms over them.
For a pair of points, the features chosen are the distance
between them, and the percentage of the line from one point
to the other that is filled with surface points. This is done by
tracing the line with the help of the 3D Bresenham algorithm
in a voxel grid of size 64x64x64. For triplets of points, the
angles of the triangle and the area covered by the triangle
is computed. The robustness of this descriptor comes both
from the use of histogram and its randomness.

In our pipeline, we decided to focus on pairs of points. On
top of the features extracted for the ESF descriptor, we also
draw inspiration from the Point Pair Features[1], and Fast
Point Feature Histogram[13] descriptors. All the features we
extract from each pair are rotation invariant, thus making the
whole pipeline rotation invariant as well. That allows us to

not have to rely on any form of alignment.
Based on these considerations, after scaling our point

cloud to the unit sphere, our global shape descriptor com-
putation starts by randomly sampling pairs of points. For−→p 1 and −→p 2 the two sampled points, and −→n 1 and −→n 2
their respective normal vectors (which are assumed to be
normalized), we first extract the distance d between the
points as in (1).

d =
∥∥−→p 1−−→p 2

∥∥ (1)

We also consider the cosine similarity between the normals
(2), and the absolute value of the cosine similarity between
the vector −→p 1−−→p 2 and each of the normals (3)

cos(∠(−→n 1,
−→n 2)) =

−→n 1.
−→n 2 (2)

∣∣∣cos(∠(−→p 1−−→p 2,
−→n {1,2}))

∣∣∣=
∣∣∣∣∣
(−→p 1−−→p 2).

−→n {1,2}∥∥−→p 1−−→p 2
∥∥

∣∣∣∣∣ (3)

Finally, as in the ESF descriptor, we consider the per-
centage of −→p 1−−→p 2 that is on the surface of the object.
We follow the PointNet[8] architecture for the classification
of the global pipeline: the set of features is first fed to a
convolutional neural network, always operating on a single
pair at a time. After enlarging the feature dimension, the set
is then max-pooled.

Due to the intractable number of potential pairs, we tend
to lose any information relative to finer structures during
the sampling step. For this reason, we introduce a local
descriptor pipeline.

C. Local Pipeline - Learned SHOT

As mentioned in the previous section, we need a way
to capture finer structure to improve the descriptiveness of
our approach. However, computing local descriptor densely
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would be wasteful. As such, we need a way to direct our
sampling of local patches.

1) Attention Model: Given the nature of our global shape,
we choose to base our attention model on the statistical
consistency of the normal orientations. Indeed, finer struc-
tures are characterized by higher angle between neighboring
normals. However, we cannot solely rely on the local varia-
tions of the angle between normals, otherwise, any rounded
surface would be considered salient. Consider the example
of a flower pot: local descriptors on the leaf are probably
more informative than redundant local descriptors on the pot
itself.

We therefore chose to first create a histogram of angles
between normals and their neighbors. We then normalize
the histogram such that its sum is equal to one. With ‖P‖0
the number of non-zeros elements in our histogram and Pk
the k-th entry in the histogram, we apply the following
transformation:

P̃k =

{
‖P‖0−Pk if Pk ≤‖P‖0

0 otherwise
(4)

That allows us to only capture the statistically significant
angles and remove all highly recurrent angles. We can then
reproject the saliency value for each point by simply looking
up the saliency value corresponding to the angle, and then
summing over the whole neighborhood.

The actual sampling of salient points is done using a
Poisson sampling. For each point sampled, we set a neighbor-
hood of twice the number of points used for the descriptor
computation to be invalid for sampling. However, we use
the mean distribution between the distribution described
before, and a uniform sampling to better capture the model
specificities.

2) Local Descriptor: To design our local descriptor, we
followed the design of the SHOT descriptors[16]. The first
step for its computation is to compute a robust and repeatable
local reference frame (LRF) to align our point against. Then,
the sphere of all neighbors is divided in 32 bins, a histogram
of normal angles being computed for each of them.

Considering the success of the PointNet architecture [8]
over raw point coordinates, we chose a similar path when
designing our local descriptor. We first transform all the
neighboring points in the LRF computed as in the SHOT
descriptor, instead of relying on a learned alignment, and
use our sampled salient point as the origin. We can then
directly feed the coordinates of our points to a smaller scale
PointNet architecture. Indeed, by not having to include a
spatial transformer network, we can drastically reduce our
number of parameters.

IV. EXPERIMENTS

A. Invariance and Robustness

We designed our network around robust features. To
demonstrate their intrinsic power, we devised a set of trans-
formations applied to the input point cloud, and report the
corresponding accuracy. It is important to note that those

experiments are performed without re-training the net-
work, which is only trained on clean data. The following
experiments demonstrate that the network carry over the
robustness of the chosen features. We report the results
of our proposed architecture in comparison to the original
descriptors, whose robustness has already been proven. No
experiments are required regarding rotation invariance, as all
features fed to the network are rotation invariant.

1) Point Density robustness: We want to evaluate how
well our network behave depending on the point density
of the point cloud. We chose to randomly remove points
from the original instead of a more structured form of
downsampling. The results of the experiments are reported
in the figure IV-A.1
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Fig. 2. Influence of the point density on the accuracy

2) Occlusion robustness: To simulate occlusion, we chose
to remove a neighborhood around a randomly sampled point.
The size of the neighborhood corresponds to the percentage
of the points being removed. The results are reported in the
figure IV-A.2
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Fig. 3. Influence of occlusion on the accuracy
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3) Sensor noise: Working with full models prevents us
from using a realistic sensor noise model. However, we can
still model a generic noise by adding Gaussian noise. We
choose the standard deviation of our Gaussian noise as a
proportion of the longest distance between points in the point
cloud. The results are reported in the figure IV-A.3
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Fig. 4. Influence of sensor noise on the accuracy

B. ModelNet

We perform our evaluation on the ModelNet dataset[19],
a CAD model dataset which has two variants, ModelNet40
with 40 classes, and ModelNet10 which is a 10 class subset
of the ModelNet40.

Our method was designed to be used on Point Clouds,
so as a pre-processing step, we extract Point cloud from the
original CAD models by first down-sizing the CAD model to
the unit sphere, and then sampling a point every 1mm of the
surface of the point cloud for ModelNet40, and every 2mm
for ModelNet10. Due to the random nature of our algorithm,
we average the accuracy over 5 run on the test set.

For the global pipeline, we sample 5000 pairs on Model-
Net40, and 3200 on ModelNet10. For the local pipeline, we
sample 50 salient points drawn using Poisson sampling from
a distribution which is the average of a uniform distribution
and our attention model described above.

For the SHOT, ESF and SHOT+ESF results, we simply
replace our learned version of the descriptor with the original
descriptor, as implemented in [14]. We keep the same clas-
sification layers, and still merge the set of SHOT descriptors
with a PointNet architecture for a fair comparison.

The accuracy results can be found in table I for ModelNet

C. Discussion

As described above, we achieve results that are better or
on par with the methods based on voxel grids and classical
descriptors, but worst than the view-based methods. It should
however be noted that view-based methods uses architecture
with a lot more parameters (10-100 millions compared to
around 1 million for ours). Compared to point cloud based
methods, Kd-Networks performs best but requires aligned

TABLE I
ACCURACY ON THE MODELNET DATASET [19]

MN10 MN40 Input
3DShapeNets[19] 83.5 77 Voxel grid

VoxNet[7] 92 83 Voxel grid
PointNet[8] 89.2 Point Cloud

Kd-Networks[6] 94 91.8 KD-Tree
MVCNN[15] 90.1 Views

SHOT 83.3 73.9 Point Cloud
ESF 81.1 70.4 Point Cloud

SHOT+ESF 85.2 76.9 Point Cloud
Ours 86.3 83.0 Point cloud

models, so it is not as robust, and PointNet learns an
alignment which is itself sensitive to occlusion and outliers.

In the case of ModelNet10, most of the misclassifica-
tion are caused by confusion between night stand and
dresser, and between table and desk. In the case of
ModelNet40, most of the misclassification are caused by
confusion between flower pot and plant, on top of
the confusion made over the ModelNet10 dataset. A deeper
observation of the CAD models in each of these class show
that those mistakes are quite reasonable and shows promising
potential application of this architecture as a robust generic
shape feature.

In our study of the robustness of our model, we can see
that most of the desirable properties of the classical descrip-
tors are kept. Only the robustness to Gaussian noise seems
lower. This is due to the setup of our experiment: by not
retraining our network with any kind of data augmentation,
this study focuses on the intrinsic properties of the features
used, rather than on the already demonstrated learning capa-
bilities of neural network. However, in a classical descriptor,
the robustness to Gaussian noise mostly comes from the use
of a histogram, and if our learned equivalent of a histogram
has not faced noisy data during training, it is unlikely to cope
with it during testing.

The key benefit of our method is its robustness: it carries
over the benefits of classical handcrafted features, and it
does not require any alignment of the models, as the feature
extracted are themselves rotation-invariant. This allows us to
use a more compact network, as we do not require parameters
for a spatial transformer network, or additional parameters
that would be necessary to cover the representation over
many different orientations. Through the use of randomiza-
tion, smaller parameter number and batch normalization, our
model is less likely to overfit as every representation of a
given instance is slightly different, both during training and
testing.

V. CONCLUSIONS AND FUTURE WORK

We have shown in this paper a novel architecture that
provide robust yet descriptive shape features. Moreover, the
scheme devised in this paper can be used to adapt any local
or global histogram-based handcrafted feature into a learned
descriptor, thus providing better task specific performance
and end-to-end learning.
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The flexible nature of the architecture also allows its use
in both a single and multi-view scenario. In the case of
multiple views, it can perform efficiently, as information
already computed over previous sets can easily be included
to the next step through the max-pooling layer over the whole
set, all that while still preserving inter-views information.

Finally, by keeping track of the indices used during the
max pooling step, we can gather interpretable information
regarding the contribution of local structures. As an exten-
sion, such local descriptors could be use for correspondence
problems, such as pose estimation which can be done from
sampling pairs, as demonstrated in [1].
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