
D
ra

ft

CNN training using additionally training data extracted from frames of
endoscopic videos

Georg Wimmer1 and Michael Haefner2 and Andreas Uhl1

Abstract— Insufficient amounts of labeled training data poses
a big problem in machine learning, especially for medical
applications where medical image data sets are usually quite
small. In this work we propose a method to increase the amount
of labeled endoscopic image data in order to improve the
classification accuracy of automated diagnosis systems for the
classification of colonic polyps. Starting from a small colonic
polyp endoscopic image database, we increase the number of
images by tracking the content shown in the images through
the endoscopic videos and by extracting patches from frames
of the videos that show the same content as in the images of
the database, but under different viewing conditions. By means
of our proposed method we are able to increase the amount
of labeled image data by factor 40, without adding images
of insufficient image quality or images without clearly visible
features for the differentiation of colonic polyps. We will show
that this increased amount of training images can drastically
improve the performance of CNNs, which are state-of-the-art
in the automated classification of colonic polyps.

I. INTRODUCTION

Modern endoscopy devices are able to take images and
videos from inside the colon which facilitates computer-
assisted analysis of the acquired material with the goal of
detecting and diagnosing abnormalities.

Usually, endoscopic image databases consist of image
patches that are manually extracted from images routinely
captured during endoscopy or from manually chosen frames
of endoscopic videos. The image patches of the databases
show regions of interest with clearly visible mucosa struc-
tures and/or geometric features that enable a differentiation
between healthy and affected mucosa (in our case we dif-
ferentiate between different classes of colonic polyps). The
labels for those extracted image patches are provided by
medical experts.

Although videos are routinely recorded during endoscopy,
the video material cannot be used for the training of au-
tomated diagnosis systems since there are no labels given
for the mucosal regions shown in the videos, except for the
ones where images of frames were manually extracted and
labeled. Furthermore, for large parts of the video the image
quality is insufficient to enable a classification of the shown
mucosal regions.

In this work we propose a method that generates addi-
tional labeled image data with sufficient image quality by
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tracking the regions shown in the manually extracted patches
(with given label information) throughout the video. By
automatically extracting image patches of those regions from
endoscopic video frames we generate additional image data
with given label information. Those new image patches show
the same regions as shown in the original, manually extracted
image patches, but under different viewing conditions (dif-
ferent scales and viewpoints), with different image qualities
and potentially also with different imaging modalities (image
enhancement technologies like e.g. i-Scan modes can be
switched on and off during endoscopy). The final step of
our proposed method filters out all image patches with
insufficient image quality. Contrary to previous approaches
assessing the informativeness of frames in colonoscopic
videos [1], [2], we do not only focus on image blur as
quality measures but also on the visibility of mucosal texture
structures and discard all images without clearly visible
texture structures.

To test if our approach to increase the number of training
images is suited for automated diagnosis systems, we apply
them to the old (manually extracted) and to the new, enlarged
database and compare the classification results of the two
databases. More specifically, we train convolutional neural
networks (CNNs) using both databases and compare their
classification accuracy.

Convolutional neural networks are state-of-the-art in the
automated diagnosis of colonic polyps and outperform hand-
crafted image representations as shown in [3], [4]. Generally,
thousands or millions of images are used and required as
data corpus to achieve well generalizing deep architectures.
In endoscopic image classification however, the available
amount of data usable as training corpus is often much
more limited to a few hundreds or thousands of images or
even less. By means of our proposed method to increase
the amount of labeled training data we aim to overcome this
issue and train nets that perform better and are less overfitted
to the training data.

This work presents two contributions:

• We propose a method that fully automatically generates
labeled endoscopic image data. The additional image
data is extracted from frames of endoscopic images
and those images with insufficient image quality are
discarded. To the best of our knowledge, this has not
been done before in literature.

• We train CNNs on the old, original database and the
new, enlarged database and compare their results.
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Pit Pattern I Pit Pattern II Pit Pattern IIIS Pit Pattern IIIL Pit Pattern IV Pit Pattern V

Non-neoplastic Neoplastic

Fig. 1. The 6 pit pattern types along with exemplar images and their
assigned classes in case of a two class (non-neoplastic vs neoplastic)
differentiation

II. COLONIC POLYPS

Colonic polyps are a rather frequent finding and are known
to either develop into cancer or to be precursors of colon
cancer. Colonic polyps are usually divided into hyperplastic,
adenomatous and malignant polyps. In order to determine a
diagnosis based on the visual appearance of colonic polyps,
the pit pattern classification scheme was proposed by [5].
A pit pattern refers to the shape of a pit, the opening of a
colorectal crypt. The various pit pattern types and exemplar
(HM-endoscopic) images of the classes are presented in
Fig 1. The pit pattern classification scheme differentiates
among six types. Type I (normal mucosa) and II (hyperplastic
polyps) are characteristics of non-neoplastic lesions, type III-
S, III-L and IV are typical for adenomatous polyps and type
V is strongly suggestive to malignant cancer.

In this work we use the two-classes classification scheme
differentiating between non-neoplastic and neoplastic le-
sions. This classification scheme is quite relevant in clinical
practice as indicated in [6].

Our original colonic polyp image database consists of
manually extracted patches from frames of HD colonoscopic
videos with high image quality. The patches are recorded
using either white light (WL) endoscopy or the i-Scan tech-
nology. The i-Scan (Pentax) image processing technology [7]
is a digital contrast enhancement method which consists of
combinations of surface enhancement, contrast enhancement
and tone enhancement. The three i-Scan modes operate as
follows:

1) i-Scan1 augments pit pattern and surface details, pro-
viding assistance to the detection of dysplastic areas.
This mode enhances light-to-dark contrast by obtaining
luminance intensity data for each pixel and adjusting
it to accentuate mucosal surfaces.

2) i-Scan2 expands on i-Scan1 by adjusting the surface
and contrast enhancement settings and adding tone
enhancement attributes to the image. i-Scan2 assists by
intensifying boundaries, margins, surface architecture
and difficult-to-discern polyps.

3) i-Scan3 is similar to i-Scan2, with increased illumi-
nation and emphasis on the visualization of vascular
features. This mode accentuates pattern and vascular
architecture.

In Fig. 2 we see an image showing an adenomatous polyp
with WL endoscopy (a) and i-Scan (b,c,d)

(a) WL (b) i-Scan 1 (c) i-Scan 2 (d) i-Scan 3

Fig. 2. Images of a polyp using WL endoscopy and different i-Scan modes.

The i-Scan modes and WL can be switched on and off
by the endoscopist during colonoscopy. Most of the videos
contain sequences with all 4 imaging modalities (WL i-Scan
1,2,3).

The high definition (HD) colonic polyp image database
was acquired by extracting patches of size 256×256×3 from
frames of HD-endoscopic (Pentax HiLINE HD+ 90i Colono-
scope) videos. The database consists of patches gathered with
4 different imaging modalities (three different i-Scan modes
(modes 1,2,3) and WL endoscopy). The database consists
of 478 image patches (144 images showing non-neoplastic
mucosa and 301 images showing neoplastic polyps) from 84
patients.

III. FRAMES FROM ENDOSCOPIC VIDEOS

In this section we propose our unsupervised method to
extract high quality image patches with label information
from frames of endoscopic videos.

A. Movement Estimation

In endoscopic videos, the video capture device (the endo-
scope) is moving through the colon. So contrary to movies,
its alone the video capture device that is moving and not the
objects that are shown in the video. Since the movements
are often very fast, it is quite hard to track the position
of the regions shown in the endoscopic video. The rapid
movements of the endoscope cause movement blur and fast
changes of the distances from the camera to the mucosal wall
(which causes sharp transitions from well focused sections
of the video to sections of the video that are completely
out of focus and hence quite blurry). Furthermore, there are
no hard edges in the mucosal images and big parts of the
videos are recorded out of focus because the distance from
the endoscope to the mucosal wall is very often too high and
sometimes also too low to be in the optimal focus range of
the camera. That means big parts of the videos appear blurry.
Additionally, the imaging modalities (WL, i-Scan 1,2,3) can
change from one frame to the other in the videos.

This all makes it quite difficult to reliably track objects
in the videos. Furthermore, major parts of the video do
not exhibit enough image quality to be used to effectively
differentiate between different types of polyps.

For the patches of our endoscopic image database, label
information were provided by medical experts. As already
mentioned in the introduction, we want to automatically
generate additional image patches with label information. By
tracking the region shown in the original image patch we are
able to take more images of the considered region of interest.
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So, our first task is to track the content shown in a 256 x
256 sized patch throughout the video (forward and backward
through the video).

Since we are facing highly complex motion (e.g. position-
variant transformations and parallax effects) in endoscopic
videos, simple motion models are not sufficient to describe
the motions between successive HD endoscopy video frames.

In this work we use the optical flow estimation by Black
and Anandan [8], which is part of the implementation
available for the work in [9]. This method is quite versatile
when it comes to the estimation of arbitrary complex motions
between images. This is mainly due to the fact that optical
flow methods allow to estimate local motion, while simpler
methods usually work well only with global motion.

We use the following notations to describe our proposed
method: f0 denotes the frame from which an image patch
from our endoscopic image database was manually extracted,
p0(~x0) denotes the manually extracted patch from frame f0
and ~x0 = (x0,y0) denotes its position inside frame f0 (the
coordinate of the middle point of the patch). fi denotes the
i-th frame starting from f0 (either forwards or backwards
through the video) and pi(~xi) denotes the patch extracted
from fi, where xi is the tracked position of the region
shown in p0(~x0). The optical flow estimation is applied from
frame ( fi−1) to frame ( fi) and not from f0 to fi because of
the distinctly more accurate movement estimations in our
experiments for estimating the movement from frame to
frame. Movement estimation is applied to gray scale versions
of the frames and image patches.

Although optical flow estimation usually works quite fine
to track the content shown in a patch from frame to frame,
it can fail in case of extreme motions, extreme image blur,
and changing imaging modalities. Furthermore, errors in the
movement estimation would add up the longer we track a
region through the video.

To avoid any errors of the optical flow estimations, we
apply a correlation based movement estimation as backup if
the image patch pi−1(xi−1) is too different to the subsequent
patch pi(xi). More specifically, if the correlation coefficient
between the patch pi−1(~xi−1) and patch pi(~xi) (where~xi is the
position tracked from pi−1(~xi−1) by means of the optical flow
estimation) is beneath a threshold Ct = 0.8 (the correlation
coefficient can range from +1 (for two identical patches) to
-1 (for a patch and its inverse version)), then the position
~xi of the patch pi is re-evaluated by selecting the position
that leads to the highest correlation coefficient with patch
pi−1(~xi−1):

~xi = (xi,yi) = max
(x,y)

(corr(pi−1(xi−1,yi−1), pi(x,y))), with

corr(pi−1(xi−1,yi−1), pi(x,y)) = corr(qi−1,qi) =

∑256
m=1 ∑256

m=1(q
i−1
mn −qi−1)(qi

mn−qi)√
(∑256

m=1 ∑256
m=1(q

i−1
mn −qi−1)2)(∑256

m=1 ∑256
m=1(qi

mn−qi)2)
,

where qi
mn denotes the gray value of the pixel in the image

patch qi with position (m,n) and qi denotes the medium gray

value over all pixels in qi.
This way of tracking is more time consuming than the

optical flow estimation but it is also more accurate in the
presence of strong blur and/or high camera movement.

Furthermore, we have four stop conditions to avoid errors
in tracking the content of the patches. If one of the following
stop conditions applies, then we stop tracking the position
of the content in the patches any further since the risk of
incorrect movement estimations becomes too high:

1) We stop if the estimated movement from one frame
to the next one exceeds 50 pixels (Euclidean distance
d(xi−1,xi)> 50).

2) We stop if two successive patches pi−1 and pi differ
too strongly. For this, we resize both patches to size
32× 32. If the difference between the gray values of
the downsized patches exceeds 10 in average, then
the patches are considered as too different. This stop
condition is applied to detect cuts in the video or to
stop tracking if the content shown in the video changes
too fast to enable a reliable tracking.

3) If the tracked position xi of the patch pi is so far outside
of the frame fi that the patch exceeds the border of the
frame.

4) We stop at latest at the 300th iteration (maximal
300 iterations forward through the video and maximal
300 iterations backward through the video). Since the
frame rate of the videos is 25 frames per second,
this corresponds to tracking the content shown in the
original patch p0 for at most 12 seconds backwards
and forwards through the video starting from frame f0.
We set that maximum number of iterations (i ≤ 300)
to avoid that small individual errors in the movement
estimation sum up to a more significant error in the
movement estimation.

We ensured by manual inspection of the automatically
extracted patches, that all additionally extracted patches show
the same content as shown in the original patch (p0) (but with
different viewpoints and scales). Hence, the label information
of each original patch also applies to all patches pi originated
from the original patch p0.

B. Image Quality Control

In order to differentiate between different types of polyps,
the polyps and their pit-pattern structure have to be clearly
visible. As already mentioned before, major parts of the
video does not exhibit enough image quality to enable a
differentiation between different types of polyps.

To ensure that only those automatically extracted image
patches are further used to train automated diagnosis sys-
tems that enable a correct diagnosis, some criteria were
determined to differentiate between images with high enough
image quality and those images that are discarded because
of limited image quality. The image quality tests are applied
to grayscale versions of the (originally RGB) image patches.
The following threshold values to differentiate between infor-
mative and non-informative patches were set so that the qual-
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ity assessment of the automatically extracted image patches
widely corresponds with the authors subjective opinion.

1) Reflections: If the number of overexposed pixels (gray
value > 240) in a newly extracted patch exceeds 3500
(that is about one of 19 pixels), then the image patch
is classified as uninformative.

2) Darkness: If the number of underexposed pixels (gray
value < 45) in a newly extracted patch exceeds 4000
(that is about one of 15 pixels), then the patch is
classified as uninformative.

3) Blur and visibility of texture structures: The image
patch is subdivided into 10× 10 pixel regions and
standard deviations are computed for each of those
regions. The highest (the top 20%) and the lowest (the
bottom 20%) standard deviations are omitted and the
mean value of the remaining standard deviations (std)
is computed as quality measure. The highest standard
deviations are omitted because those outliers would
heavily influence the mean value and since reflections
can cause high standard deviations in the 10x10 pixel
regions. The lowest standard deviations are omitted
since it is not necessary that texture structures are
clearly visible everywhere in the patch. It is sufficient
if most parts of a patch are informative but it does not
pose a problem if small parts of a patch are recorded
out of focus. If std(pi)< 5, then the patch is classified
as uninformative.

4) Blur and pit pattern structure: Our quality measure
to rate the visibility of texture structures like the pit
pattern structure is based on difference of Gaussians
(DoG). We apply DoG by subtracting a Gaussian
blurred image (σ = 1, filter size 5×5) from a stronger
Gaussian blurred image (σ = 3 and filter size 9× 9).
Then each pixel value of the DoG image is replaced
by its absolute value. The resulting non-negative DoG
image of a grayscale endoscopic image patch high-
lights mucosal structures like the pit-pattern structure.
Similar to the standard deviations and because of the
same reasons, the highest 10% and the lowest 10%
of the DoG values are omitted and the mean value
(DoG) is computed of the remaining DoG values. If
DoG(pi) < 2, then the patch is classified as uninfor-
mative.

5) Comparison to the reference image patch p0: Frames
recorded with the i-Scan imaging modality show
clearly more contrast and a better visability of mucosal
structures than those frames that were recorded with
traditional white light endoscopy. Furthermore, images
showing healthy mucosa usually show less contrast
than those images showing adenomatous polyps. So
the quality measurements do not only respond to the
quality of the frames but also to the used imaging
modality and the shown content. There are even some
original image patches that do not fulfill all of the
before mentioned criteria (most of them show healthy
mucosa and were captured using WL endoscopy).

So we introduce an additional quality measure that
balances the image patch quality with reference to
the quality of the original image patch p0. If an
image patch pi does not fulfill one of the before
mentioned quality thresholds, but if the considered
quality measure of the image patch pi is at most 5%
worse than the quality measure of the original patch p0,
then the image patch pi is still classified as informative.
We do not want to throw away patches that are only
very slightly worse in terms of image quality than the
reference patch p0. On the other hand, if an image
patch pi is clearly more blurry and if the mucosal
texture structures are clearly less visible than for the
original image patch (DoG(pi) < 0.6×DoG(p0) or
std(pi) < 0.6× std(p0)), then the image patch pi is
classified as non-informative, even if it fulfills all
before mentioned criteria.

6) Movement: If the estimated movement d(xi−1,xi)> 15,
then the patch pi is classified as uninformative. Image
patches with higher movement almost always suffer
from movement blur.

7) Duplicity: If corr(pi, pi−1)> 0.95, then pi is classified
as uninformative. If there is hardly any difference
between two patches than we only use one of them.
This step will be later motivated in Section IV.

In Figure 3 we show some examples of informative and
non-informative patches. On the left side we see examples
that were accepted as informative image patches and on the
right side we see examples that originate from the same
original patches as the image patches to their left and that
were discarded because of insufficient image quality.

The original HD colonic polyp image data base consists
of 478 image patches. The enlarged version of the database
using our proposed method includes 18969 image patches.
So in average, about 39 image patches were generated from
one patch of the original database. In case of 40 original
patches, no additionally patches with sufficient image quality
could be generated. The maximum number of generated
image patches from one original patch is 270. The standard
deviation over the generated patches per original frame is 43,
so there are huge variations in the number of additionally
generated image patches per original patch.

IV. CNN TRAINING

This section gives the implementation details for CNN
training and the description of the employed nets.

We employ two nets in this work, the VGG-f net [10] and
the VGG-16 network [11]. The VGG-f net consists of five
convolutional layers and three fully connected layers with
a final SoftMax classifier. The VGG-16 net consists of 13
convolutional layers subdivided in 5 convolutional blocks
(where each of the 2-3 convolutional layers inside of a block
have the same number and sizes of filters) and three fully
connected layers with a final SoftMax classifier.

The two nets are trained from scratch and we randomly
initialize the coefficients of the layers based on [12]. The
last fully connected layer is acting as soft-max classifier and
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(a) Accepted (b) std too high

(c) Accepted (d) DoG too high

(e) Accepted (f) std and DoG too high

(g) Accepted (h) reflections

(i) Accepted (j) darkness

Fig. 3. Examples of informative (left) and uninformative (right) patches
originating from the same original patch.

computes the training loss (log-loss). Stochastic gradient de-
scent (SGD) with weight decay (λ = 0.0005) and momentum
(µ = 0.9) is used for the training of the models.

As already mentioned in the introduction, CNN training is
applied to two different image databases. We use the original
colonic polyp image database and the new enlarged database
for training the CNNs.

Training is performed on batches of 128 images each,
which are for each iteration randomly chosen from the
training data and subsequently augmented (see Section V).

In case of the original database, the 128 images are for
each iteration randomly chosen from the training data.

In case of the enlarged database, the image patches that
originate from one original image patch are quite similar and
we need to consider that fact for the selection of training
images per batch. If we would randomly choose images
for training like for the original database, then the images
of some patients would be used very often for training
(those with a lot of automatically extracted image patches),
whereas images of other patients (those with a low number of
automatically extracted image patches) would be used much
less for training. On the other hand, if we would randomly
choose the patients and then randomly choose one image per
patient for training, then we would not really profit from the
high amount of additional image data since the chance that
a specific image is chosen for training from a patient with
a high number of automatically extracted patches is very
low (compared to an image of a patient with a low number
of automatically extracted patches). So we decided to first
randomly choose one of the original patches, whereat the
probability of those original patches varies with the amount
of images that originate from them. More specifically, the
probability to choose one original patch is multiplied by
factor fn with fn = 3

√
n, where n is the number of patches

originating from one original patch (including the original
patch). After one original patch is chosen, we randomly
choose an image patch that is originating from the considered
original patch (including the original patch itself), where
each image patch has the same chance to be chosen. So for
example, if the number of image patches originating from
original patch A is 100 (n(A) = 100) and 1 for patch B
(n(B) = 1, only the original patch itself), then the probability
of choosing any image belonging to patch A for training is
3
√

100 = 4.64 times higher than choosing the image belong-
ing to patch B. On the other hand, the probability that the one
image of patch B is chosen for training is higher by factor
100/4.64= 21.54 than the probability that one specific image
of patch A is chosen. This approach to select the training
images was the reason to discard image patches that are
very similar to other image patches (the duplicity criteria
in Section 3).

V. EXPERIMENTAL SETUP

Our employed nets require input image sizes of 224×
224× 3. The image data is normalized by subtracting the
mean image of the training portion. We then linearly scale
each image within [−1,1].

We use data augmentation to increase the number of
images for training and validation. Augmentation is applied

38



D
ra

ft

CNN architecture Training Database
Original Database Enlarged Database

VGG-16 76.2 (6.6) 86.9(7.2)
VGG-f 83.9(5.7) 84.2(3.8)

TABLE I
MEAN ACCURACIES OVER THE 10 FOLDS AND THE STANDARD

DEVIATIONS (IN BRACKETS) FOR THE TWO NETS ON BOTH DATABASES

to the batches of images extracted for training. The augmen-
tation is based on cropping one sub-image (224×224 pixels)
from each image patch with randomly chosen position.
Subsequently, the sub-image is randomly rotated (0°, 90°,
180° or 270°) and randomly either flipped or not flipped
around the horizontal axis. Validation is performed using a
majority voting over five crops from the validation image
using the upper left, upper right, lower left, lower right and
center part.

We perform 10-fold cross-validation to achieve a stable
estimation of the generalization error, where each of the 10
subsamples of an image database consists of the images from
about 10% of the patients of a database. All images of one
patient are in one subsample and each subsample consists of
about 10% of the total images of a database (at least in case
of the original database there are about 10% of the images in
one subsample, in case of the enlarged database the number
of images per subsample can vary depending on the number
of additionally extracted patches per patient). All nets are
trained using the training portion of our data corpus (9 of
the 10 subsamples). The final validation is performed on the
left-out part. That means for each database and for each of
the two network architectures, ten different nets are trained,
one for each of the 10 folds. To ensure the highest possible
comparability between the results of the two databases, we
used the same folds for both databases. That means the
training data corpus of a fold consists of image data from the
same patients for both databases (whereat the patients contain
distinctly more images in case of the enlarged database). For
both databases, validation is performed on the validation data
corpus of the original database for each fold. That means
validation is always performed on the same images for both
databases (to have comparable results), whereas training is
always performed on a much bigger data corpus in case of
the enlarged database, but from images of the same patients
as for the original database.

In our experiments, we compute the overall classification
rate (OCR) for each fold and report the mean OCR over all
10 folds with the respective standard deviation.

A. Results and Discussion

The results of the experiments using our two nets trained
on the original colonic polyp database as well as trained on
the enlarged version of the database are presented in Table
I.

As we can see in Table I, the VGG-16 net clearly profits
from additional training data (86.9% vs 76.2%). The VGG-f
net on the other hand did not really profit from the additional

training data. The results only increased by 0.3% using
the enlarged database. A possible reasons for the different
outcomes of the two nets is that the VGG-16 net has much
more layers and parameters to be learned. The original
database was not large enough to properly train this big net.
The much smaller VGG-f net on the other side was not able
to profit that much from the additional training data. The
overall quality of the automatically extracted image patches
is slightly worse compared to the original patches. So we
guess that the difference in the quality of the training images
(from the enlarged database) compared to the evaluation
images (from the original database) is the reason for the
only very small improvement of the results for the VGG-f
net using the enlarged image database for training.

In Figure 4 we see the the training losses and the vali-
dation accuracies during training (fold 1 of 10) for the two
nets on both databases. We can observe that for both net
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Fig. 4. Comparison of the training losses and the validation accuracies
during training on the two databases.

architectures, the training loss decreases much faster on the
smaller original database and reaches much lower levels at
the end of training as for training on the enlarged database.
The validation accuracies stagnate earlier for training on the
original database as for training on the enlarged database.
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This all indicates that the nets are more overfitted to the
training data corpus in case of the smaller original database.

VI. CONCLUSION

In this work we presented an approach to increase the
amount of labeled image data by a fully automated system
that extracts image patches of endoscopic video frames from
mucosal regions where label information is available. In
that way we were able to increase the number of images
by factor 40 and hence distinctly increase the amount of
training data for automated diagnosis systems. Care was
taken that only images with sufficient image quality and
clearly visible mucosal texture structures were extracted. We
showed that the increased number of training images can
drastically improve the performance of CNNs. The mean
accuracy of the VGG-16 net increased from about 76 % using
the original database to nearly 87% using the enlarged image
database for training. The results of the much smaller VGG-
f net did only slightly improve using the additional training
data. We furthermore showed that the increased number of
training images reduces the overfitting to the training data
corpus.
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